Il full-text non è disponibile per scelta dell'autore.
(
Contatta l'autore)
Abstract
In this work, we present a novel robust dual adaptive model predictive control scheme for linear discrete-time systems with parametric uncertainty in the output and affected by a state-disturbance and a measurement noise. The proposed MPC framework promotes learning of the unknown parameters and in the meantime tracks a desired target output despite the presence of a state disturbance. This is possible through a suitable restriction of the state, input and output constraints that covers the whole possible range of the state disturbance. We prove that the proposed controller is practically stable and we ensure robust constraint satisfaction for state, input and output, also in the presence of parametric uncertainty and bounded noises. We corroborate the theoretical result through a numerical example simulated on Matlab.
Abstract
In this work, we present a novel robust dual adaptive model predictive control scheme for linear discrete-time systems with parametric uncertainty in the output and affected by a state-disturbance and a measurement noise. The proposed MPC framework promotes learning of the unknown parameters and in the meantime tracks a desired target output despite the presence of a state disturbance. This is possible through a suitable restriction of the state, input and output constraints that covers the whole possible range of the state disturbance. We prove that the proposed controller is practically stable and we ensure robust constraint satisfaction for state, input and output, also in the presence of parametric uncertainty and bounded noises. We corroborate the theoretical result through a numerical example simulated on Matlab.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Ludovico, Davide
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
MPC,automatic control,output tracking,active learning,robust control,dual adaptive control
Data di discussione della Tesi
21 Marzo 2022
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Ludovico, Davide
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
MPC,automatic control,output tracking,active learning,robust control,dual adaptive control
Data di discussione della Tesi
21 Marzo 2022
URI
Gestione del documento: