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Abstract

The widely accepted standard model of cosmology consists of a cosmological constant,
Λ, responsible for the present expansion of the Universe, and cold dark matter, (CDM),
accountable for structure formation. This famous model, also known as ΛCDM, suffers
from both theoretical and observational problems, which motivate the study of alterna-
tive models.
In this thesis I present an alternative scenario: the interacting vacuum. In this class of
models, unlike in ΛCDM, vacuum energy, a dark energy with w = −1 equation of state,
and CDM are allowed to exchange energy and momentum.
I focus, in particular, on the geodesic CDM case, where only a pure energy exchange is
allowed. Within this subclass, three relevant models are considered: the linear vacuum
model, whose energy exchange is proportional to the vacuum energy density, the gener-
alised Chaplygin gas (GCG) interacting model, obtained decomposing the original GCG
into the two interacting dark components, and the Shan-Chen (SC) interacting model
obtained as well from a decomposition of the original SC model.
The aim of this elaborate is, using the covariant gauge-invariant (CGI) theory of cosmo-
logical perturbations, to show, for the aforementioned models, how the vacuum-CDM
interaction affects the growth of cosmic structures. It is found that a growing/decaying
vacuum energy always leads, for fixed initial conditions, to a less/more decreasing growth
rate f w.r.t. the non-interacting limit, namely the ΛCDM model.



Sommario

Il modello cosmologico standard comprende la costante cosmologica, Λ, responsabile per
la presente espansione dell’Universo, e la materia oscura fredda, dall’inglese (CDM), re-
sponsibile quest’ultima per la formazione di strutture cosmiche. Questo famoso modello
cosmologico, riconosciuto in letteratura come ΛCDM, presenta tuttavia problemi sia dal
punto di vista teorico che da quello osservativo, fatto che motiva lo studio di modelli
alternativi.
Nell’elaborato presento uno scenario alternativo; quello di un vuoto interagente. In que-
sta classe di modelli, a differenza del modello ΛCDM; il vuoto, ovvero una energia oscura
con equazione di stato w = −1, e la materia oscura fredda possono interagire liberamente
scambiandosi energia e momento.
In particolare, mi sono concentrato sul caso di CDM geodetica, per il qual caso è concesso
solo un trasferimento di energia e non di momento. All’interno di questa sottoclasse di
modelli ne sono stati presi in considerazione tre: un vuoto linearmente interagente, dove
il trasferimento di energia è proporzionale al vuoto stesso, il modello ‘interacting genera-
lised Chaplygin gas’ (GCG) ricavato separando le due componenti oscure dall’omonimo
modello GCG, e infine il modello interagente Shan-Chen (SC) ottenuto, anche questo,
attraverso uno splitting del suo omonimo SC non interagente.
L’obiettivo di questo elaborato è, all’interno del formalismo della teoria covariante gau-
ge invariante delle perturbazioni cosmologiche, quello di mostrare, per i modelli sopra
citati, come l’interazione vuoto-CDM modifichi la crescita di strutture cosmiche. Si è
trovato che la crescita/decrescita del vuoto implica, per le condizioni iniziali che sono
state imposte, una minore/maggiore decrescita del ‘growth rate’ f rispetto al limite non
interagente, ossia al modello ΛCDM.
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Introduction

The relatively recent discovery of the accelerated expansion of the Universe indicates
that (∼ 95%) of the total energy of the Universe is in the form of unknown dark fluid
components, namely, dark energy (∼ 70%) and dark matter (∼ 25%). The remaining
components are in the form of baryonic matter and radiation, the latter being, at present
time, negligible compared to the former. The clustering dark matter with zero pressure
(cold dark matter) is concentrated in structures and plays crucial role for forming galax-
ies and clusters of galaxies; dark energy instead possesses the negative pressure that
drives the recent accelerated expansion. The simplest way to describe dark energy is to
associate it with a constant vacuum energy density V characterised by the equation of
state parameter w = −1. In this manner, V is equivalent to a cosmological constant in
GR. The cosmological model that incorporates both a constant vacuum energy, denoted
by the Greek letter Λ, plus cold dark matter is known as ΛCDM. This model is the
standard model of cosmology. However, the cosmological constant explanation of dark
energy is deficient in many aspects. This has motivated many authors to work on al-
ternative dark energy models, e.g. quintessence, beyond GR theories, etc. In this thesis
we will focus on the so-called interacting vacuum scenario, an alternative type of dark
energy in which the vacuum is free to interact with cold dark matter.
The aim of the paper is to show, for different interacting vacuum models, how the afore-
mentioned interaction affects the growth of cosmological structures w.r.t. ΛCDM case;
which, as stated above, corresponds to a non interacting limit.
We begin by laying the foundations of the standard model of cosmology in Chapter 1,
discussing the Friedmann-Lemâıtre-Robertson-Walker (FLRW) solution to the Einstein
equations and its implications. Later on in this chapter, we have presented the standard
approach to cosmological perturbation theory focusing, in particular, on its differential
geometry foundations. Next, in Chapter 2, we discuss an alternative way for dealing with
cosmological perturbations, based on the covariant approach to GR. This is the covari-
ant gauge invariant (CGI) approach to cosmological perturbations. Following this path,
in Chapter 3, we present in detail the interacting vacuum scenario. Then, within the
CGI framework, we derive the dynamical equations for the scalar part of the comoving
matter density gradient. We conclude the exposition of this thesis with Chapter 4, where
we show how the the growth rate of cosmic structures f behaves, compared to ΛCDM,
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for three different interacting vacuum models: a linear vacuum model, the generalised
Chaplygin gas (GCG) and the Shan-Chen (SC) dark energy models both cast into the
framework of the interacting vacuum.
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Chapter 1

Fundamentals of cosmological
perturbation theory

The present view of the Universe divides its history into two parts: an early stage behind
the curtain of the surface of last scattering, which is most commonly modelled within the
paradigm of inflation, and a later stage during which the visible large scale structures
came into being and is described by the phenomenological ΛCDM model (frequently
referred to as the standard model of cosmology). This model is based upon the spatially
homogeneous and isotropic Friedmann-Lemâıtre-Robertson-Walker (FLRW) spacetime.
It successfully describes the average expansion of the universe on large scales according to
Einstein’s theory of General Relativity (GR), and the evolution from a hot, dense initial
state dominated by radiation to the cool, low density state dominated by non-relativistic
matter and, evidently, vacuum energy at the present day.
To a high degree of accuracy the large scale structure of the Universe can be described
by a homogeneous isotropic cosmology, the aforementioned FLRW spacetime. However,
the Universe we observe on sufficiently small scales is neither homogeneous nor isotropic,
otherwise we would not observe structures such as galaxies and clusters of galaxies. This
shows that FLRW spacetimes cannot be the whole picture and we have to modify them
if we want to incorporate inhomogeneities and anisotropies.
A very successful solution is to view FLRW spacetimes as a 0-th order term in a pertur-
bation expansion and derive higher order perturbation terms using perturbation theory.
Perturbation theory is used in many other areas in physics and the idea to employ these
techniques in GR, cosmology in particular, originates from the work of Lifshitz in 1946
[20], who was mainly interested in the dynamical stability of FLRW spacetimes against
perturbations. However, as Lifshitz himself pointed out, perturbation theory within GR
faces some additional problems w.r.t. other areas in physics, the so-called ‘gauge issues’.
Even if one fixes a particular gauge (coordinate system) and work within that, spurious
(or fictitious) gauge modes may appear during the derivation of the dynamical equations.
A way to circumvent the problem is to use a gauge invariant (coordinate choice indepen-
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dent) theory of cosmological perturbations. This theory was for developed by Bardeen
in 1980 [4], who introduced a set of GI quantities describing perturbations in both the
matter and geometry sectors, thus avoiding the appearance of spurious gauge modes.
However, the physical meaning of these variables is recovered only in some particular
gauge. This is why Ellis & Bruni in 1989 [1, 2] proposed an alternative path. They
developed the covariant gauge invariant (CGI) approach to cosmological perturbations,
where they defined a set of physically meaningful CGI variables, exploiting the Stewart
& Walker Lemma [6]. In this chapter, we shall present, in a rigorous way, what we have
just discussed.

1.1 The FLRW background spacetime

The form of a cosmological metric can be partly fixed by assuming the existence of
Killing vectors. In particular, we will have three space-like Killing vectors generating
spatial translations (which mathematically defines homogeneity), and three space-like
Killing vectors generating rotations (which mathematically defines isotropy). It is just
worth pointing out that we have no time-like Killing vector since we want to describe an
evolving Universe.†

In GR this translates into the statement that the Universe can be foliated into spacelike
slices such that each three-dimensional slice is maximally symmetric, i.e. it posses the
maximum number of Killing vectors [15], which for a d-dimensional space is:

N =
d(d+ 1)

2
. (1.1)

We therefore consider our spacetime to be R×Σ, where R represents the time direction
and Σ is a maximally symmetric spatial manifold. The spacetime metric thus takes the
form:

ds2 = −dt2 + γijdx
idxj i, j = 1, 2, 3 . (1.2)

where t is the timelike coordinate and γij is the metric on the three-dimensional surface
Σ, where for convenience we have considered a synchronous frame. For a maximally
symmetric space the spatial Riemann tensor is given by:

(3)Rijkl = κ(γikγjl − γjkγil) , (1.3)

where κ is a constant that can assume any real value. In particular, throughout our work
we will focus on the FLRW metric, where γij = γij(t) = a(t)2hij. In this case the spatial
Riemann tensor can be written as:

(3)Rijkl =
6K

a2
(hikhjl − hjkhil) , (1.4)

†In 1929 E. Hubble and M. Humason observed that farer galaxies recedes from us faster and faster.
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where (3)R = 6K/a2 is the spatial Ricci curvature. From the above, one can then derive
the FLRW metric in his most known form as:

ds2 = −dt2 + a(t)2

[
dr2

1− kr2
+ r2(dθ2 + sin2 θ dϕ2)

]
. (1.5)

The origin r = 0 is totally arbitrary, t is the proper time of an observer moving along
with the homogenous and isotropic cosmic fluid (the idealized representation of galaxies)
at r, θ and ϕ constant. k is instead the constant curvature of the Universe, whose sign
depends on κ, and whose values are re-scaled from the ones of κ to k = 0,+1,−1. These
corresponds respectively to a flat (Σt is flat), closed (Σt is a 3-sphere) and open (Σt is a
3-hyperboloid) spacetime:

ds2 = −dt2 + a2


dψ2 + ψ2(dθ2 + sin2 θ dϕ2)

dψ2 + sin2 ψ(dθ2 + sin2 θ dϕ2)

dψ2 + sinh2 ψ(dθ2 + sin2 θ dϕ2)

(1.6)

To sum up, the relevant coordinates and quantities in the FLRW metric are:

{t, r, θ, ϕ} comoving coordinates

a(t) (cosmic) scale factor (1.7)

k = 0,±1 curvature constant .

Observations are consistent with the Universe being spatially flat, to a high degree of
accuracy. In the following we will therefore restrict our attention to a spatially flat
FLRW metric, K = 0. The FLRW metric then reads:

ds2 = −dt2 + a(t)2dx2 . (1.8)

Physical coordinates are defined w.r.t. the comoving ones as xph = a(t)x. For a spatially
flat FLRW metric the overall normalization of the scale factor can be chosen at will,
since it amounts to a rescaling of the coordinates x. The standard choice is a(t0) = 1,
where t0 is the present value of cosmic time. A relevant quantity in cosmology is the
Hubble parameter which is defined by:

H =
ȧ

a
, (1.9)

its present value, denoted by H0, is:

H0 = h0 100 km s−1Mpc−1 , (1.10)

where the measured value of h0 is close to ∼ 0.7, with differences at the level of a few per-
cent, depending on the cosmological measurements and datasets used (CMB+BAO+SNe).
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The Hubble parameter H(t) has unit of inverse time and is positive for an expanding
Universe. It sets the fundamental scale of the FLRW spacetime, i.e. the characteristic
time-scale of this Universe is given by tH ∼ H−1, while the characteristic length-scale is
given by λH ∼ H−1( in units where c = 1). The former sets the scale for the age of the
Universe, while the latter sets its current observable size.

1.1.1 Particle horizon

Let’s introduce the conformal time η, defined by:

dη ≡ dt

a(t)
, (1.11)

so that

η =

∫ t dt′

a(t′)
, (1.12)

where the lower limit of integration can in principle be chosen arbitrarily. Adopting the
conformal coordinates (η, x), the FLRW metric takes the form:

ds2 = a(η)2(−dη2 + dx2) . (1.13)

The maximum comoving distance light can propagate between an initial time ti and
some later time t is:

rPH(t) = η − ηi =

∫ t

ti

dt′

a(t′)
, (1.14)

where we have replaced xPH with rPH just for notation convenience. Since light travels
along the curve ds2 = 0, in the FLRW model (without an earlier inflationary phase)
rPH(t) is equal to the comoving distance traveled by light from time ti = 0 up to time t.
The initial time ti is often taken to be the ‘origin of the universe’, ti ≡ 0, defined by the
initial singularity, a(ti = 0) ≡ 0.
This comoving distance therefore represents the maximum size of a region (measured in
comoving coordinates) that can be causally connected at time t, and it goes under the
name of comoving particle horizon. The corresponding physical particle horizon at time
t is:

RPH(t) = a(t)rPH(t) . (1.15)

In an accelerating Universe, if two particles are separated by a comoving distance greater
than the comoving Hubble scale, λ > (aH)−1, they cannot talk to each other from the
time considered on. However, if they are outside of each other’s comoving particle hori-
zon, this means they could have never communicated.

It is useful to remind the reader that each comoving (or coordinate) wavelength λ has
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an associated comoving wave number k ≡ |⃗k| following from λ = 2π/k. These quantities
are related to the physical wavelength and wave number of the Fourier mode by:

kph =
2π

λph
=

2π

aλ
= a−1k . (1.16)

Thus the wavelength λph corresponding to a given Fourier mode k⃗ grows in time as
the Universe expands. Since fluctuations are created on all length scales, i.e. with a
spectrum of wavenumbers k, we say that a fluctuation is inside/outside the horizon if:

sub - Horizon: k ≫ (aH) , (1.17)

super - Horizon: k ≪ (aH) . (1.18)

1.1.2 Cosmic fluids and dynamics

As we wrote above, we assume the Universe is filled with a (perfect) fluid of matter and
energy. If this fluid, that is isotropic in some frame, leads to a metric that is isotropic in
some frame, then the two frames have to coincide.
This means that the fluid is at rest in comoving coordinates. The four-velocity is then
uµ = (1, 0̄) and the corresponding energy-momentum tensor takes the simple form:

T µν = diag(−ρ, P, P, P ) , (1.19)

where ρ = ρ(t) and P = P (t) are the density and pressure of the cosmic fluid. The Ein-
stein equations Gµν = 8πGNTµν , relating the geometry of spacetime to the distribution
of energy and matter within it, then take the form of two coupled, non-linear ordinary
differential equations, called the Friedmann equations:

G00 = 8πGNT00 ⇒

[(
ȧ

a

)2

+
k

a2

]
=

8πGN

3
ρ , (1.20)

Gii = 8πGNTii ⇒ ä

a
= −4πGN

3
(ρ+ 3P ) . (1.21)

Notice that in an expanding Universe (i.e. ȧ > 0) filled with ordinary matter (i.e. matter
satisfying the strong energy condition: ρ + 3P > 0) Eqn. (1.21) implies ä < 0. This
indicates, as we have previously anticipated, the existence of a singularity in the finite
past: a(t ≡ 0) = 0. Of course, this conclusion relies on the assumption that GR and
the Friedmann equations are applicable up to arbitrary high energies and that no exotic
forms of matter become relevant at high energies. More likely the singularity simply
signals the breakdown of GR.
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Using either the Bianchi identities for Tµν or alternatively by combining Eqns. (1.20)
and (1.21) we arrive at the continuity equation, which can be expressed in the form:

ρ̇

ρ
= −3

(
1 +

P

ρ

)
ȧ

a
. (1.22)

If we now assume a barotropic fluid, namely a fluid whose pressure depends only on the
density

P = wρ , (1.23)

with w being a constant, we then have:

ρ ∝ a−3(1+w) . (1.24)

The simplest components of cosmic fluids are:

• Dust: in this case no force is present, beside gravity, and w = 0 (so that P = 0).
This corresponds to pressure-less or non-relativistic matter.

• Radiation: since mass is totally negligible, so is the trace of the energy-momentum
tensor:†

T = (−ρ+ 3P ) = 0 , (1.25)

we then find

P =
1

3
ρ ⇒ w =

1

3
, (1.26)

This case corresponds to massless particles or highly-relativistic matter.

For a long time it was thought that we now live in a matter (dust) -dominated Universe,
whereas in the early stages, the Universe dynamics was controlled by radiation, since
the density of the latter increases faster (going backward in time, see Fig. (1.1)). We
now know that the Universe expansion is presently accelerating (ä > 0), which is not
compatible with the effect of dust. In order to give rise to the cosmic acceleration in Eq.
(1.21) we need,

P < −1

3
ρ ⇒ w < −1

3
, (1.27)

where ρ is assumed to be positive. From this requirement we introduce the following
additional component:

†Recall that the trace of a (0, 2) tensor is invariant under rotations and this result is lifted to
any reference frame in GR. For a plane wave moving along the x-axis, the energy-momentum tensor is
Tµ

ν = diag(−E, p, 0, 0), where E is the energy and p the momentum, and the “mass-shell” condition
E = p implies T = 0.
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• Vacuum or dark energy: When w = −1, i.e. P = −ρ, it follows from Eq. (1.24)
that ρ is constant:

ρ =
Λ

8πGN

, (1.28)

where Λ is the famous cosmological constant representing the vacuum energy of
the Universe. This is the simplest component that fulfils the criteria in Eq. (1.27),
explaining so the current accelerated expansion of the Universe.

Figure 1.1: Simple sketch of the different epochs in the history of the Universe. In this picture, the Hot
Big Bang (HBB) is the initial moment at the onset of the radiation phase, when the Universe was very
small, hot and dense.

Eq. (1.24) along with the Friedmann Eq. (1.20) lead to the time evolution of the scale
factor:

a(t) ∝

{
t

2
3(1+w) w ̸= −1

eHt w = −1 .
(1.29)

For a flat (K = 0) FLRW Universe we have:

a(t) ∝ t
2
3 ⇒ Matter dominated Universe,

a(t) ∝ t
1
2 ⇒ Radiation dominated Universe,

a(t) ∝ eHt ⇒ Vaccum energy dominated Universe.

(1.30)

Where in the vacuum energy dominated Universe, most commonly known as de Sitter
Universe, H is just a constant factor. For such a multi-component model Eq. (1.20) can
be rewritten using the density parameters, in the following manner:

H2 =
∑
i

8πGN

3
ρi −

k

a2
⇒ 1 =

∑
i

Ωi + Ωk , (1.31)
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where

Ωi ≡
ρi
ρ∗
, Ωk ≡ − k

(aH)2
ρ∗ ≡

3H2

8πGN

. (1.32)

We often refer to the present values of the density parameters for radiation, non-relativistic
matter (baryons + cold-dark-matter), dark energy, and curvature respectively as:

Ω (0)
r ≡ ρ

(0)
r

ρ∗
, Ω (0)

m ≡ ρ
(0)
m

ρ∗
, Ω

(0)
de ≡ ρ

(0)
de

ρ∗
, Ω

(0)
k ≡ − k

H2
0

. (1.33)

If the expansion of the Universe is decelerating (i.e. ä < 0) then the curvature term
|Ωk| continues to increase (because the term (aH)2 = ȧ2 decreases), apart from the case
where the Universe is exactly flat (K = 0) from the very beginning.

Latest observations, as we mentioned above, point towards Ω
(0)
k ≃ 0. This means we

need a phase of cosmic acceleration (ä > 0) to reduce |Ωk| in the past cosmic expansion
history, unless the initial state of the Universe is extremely close to the flat one. In order
to realize the present level of flatness of the Universe, we require, prior to the radiation-
dominated epoch, a phase of cosmic inflation during which the scale factor increases by
more than e70 times.
From Eq. (1.31), assuming zero spatial curvature we have:

1 = Ωr + Ωm + Ωde = Ωtot . (1.34)

A spatially flat Universe, with Ωtot ≃ 1, corresponds to a current average density

ρ0 = ρ∗ ≃ 10−29g/cm3 , (1.35)

equivalent to about 6 protons per square cubic meter. In particular, three different
sources have been identified to contribute to ρ0:

• Baryonic matter, well approximated by a dust fluid, and estimated through the
luminosity of galaxies in the cosmos to be Ω

(0)
b ≃ 0.05.

• Dark matter, which again behaves like dust but is not directly detected, amount-
ing to Ω

(0)
dm ≃ 0.25.

• Radiation, negligible w.r.t. the other components, Ω
(0)
r ≃ 10−5.

• Dark energy, described by the above condition (1.27) Ω
(0)
de ≃ 0.70, meaning that

a total of 95% of the Universe content is nowadays still unknown.

A description of the Universe based on a flat FLRW spacetime, whose components are the
ones listed above, corresponds to the famous ΛCDM model. To a high degree of accuracy
the large scale structure of the Universe can be described by a homogeneous isotropic
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cosmology, the aforementioned FLRW spacetime. However, the Universe we observe
on sufficiently small scales is neither homogeneous nor isotropic (there are galaxies and
clusters of galaxies). This shows that FLRW spacetimes cannot be the whole picture and
we have to modify them if we want to incorporate these inhomogeneities and anisotropies.
We thus present, in the following section, the theory of cosmological perturbations.

1.2 Standard approach to cosmological perturbation

theory

In GR perturbation theory one has a real perturbed spacetime that is close to a simple
known symmetric background (BG) spacetime. This means that there exists a coordinate
system on the perturbed spacetime, where its metric can be written as

gµν(x) = ḡµν(x) + δgµν(x) , (1.36)

ḡµν being the metric of the background spacetime†, and δgµν a small deviation from it. In
addition, we require first and second partial derivatives, δgµν,ρ and δgµν,ρσ to be small as
well. The Einstein tensor and the energy-momentum tensor of the perturbed spacetime
can then be written as:

Gµν(x) = Ḡµν(x) + δGµν(x) , (1.37)

Tµν(x) = T̄µν(x) + δTµν(x) , (1.38)

where δGµν and δTµν are again a small deviation from their respective BG quantities.
From the above and using Einstein equations:

Gµν(x) = 8πGNTµν(x) and Ḡµν(x) = 8πGN T̄µν(x) , (1.39)

we the obtain:
δGµν(x) = 8πGNδTµν(x) . (1.40)

In particular, in order to write the above, a pointwise correspondence between the two
spacetimes is needed; so that we can compare different tensorial quantities belonging to
different manifolds. We will return to this point much more in detail in Chapter 2.
In first-order (or linear) perturbation theory, we drop all terms from our equations which
contain products of the small quantities δgµν , δgµν,ρ and δgµν,ρσ. The field equation
(1.40) becomes then a linear differential equation for δgµν , making things much easier
than in full GR. In second-order perturbation theory instead, one keeps also terms with
a product of two (but not more) small quantities. This makes the perturbation approach

†Throughout this work, we will denote background quantities with either an overbar or a ‘0’ sub-
script. However, from Chapter 2 on, we will use a ‘lighter’ notation where BG quantities will be
understood.
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to GR much more involved, see for example [17]. In cosmological perturbation theory
the observable Universe can approximately be described by a homogeneous and isotropic
FLRW spacetime. Since observations suggest we live in a spatially flat (K = 0) Universe,
throughout this work we shall only consider this case. It is much simpler than the open
and closed ones, since now the t = const time slices have Euclidean geometry.
Following this assumption, all physical quantities can be decomposed into a homogeneous
BG, where quantities depend solely on cosmic time, and inhomogeneous perturbations.
The perturbations thus ‘live’ on the BG spacetime and it is this BG which is used to
split the four-dimensional spacetime into spatial three-hypersurfaces as we will later see.
Any tensorial quantity can then be split in this manner:

T (t, xi) = T0 + δT (t, xi) . (1.41)

The background part is a time-dependent quantity T0 ≡ T0(t), whereas the perturbations
depend on time and space coordinates xµ = (t, xi). The above perturbation can be
further expanded as a power series:

δT (t, xi) =
∞∑
n=1

ϵn

n!
δTn(t, x

i) , (1.42)

where the subscript n denotes the order of the perturbation, and ϵ is a small parameter.
In linear perturbation theory, for example, we only consider first-order terms, i.e. ϵ1,
and can neglect terms resulting from the product of two perturbations, which would
necessarily be of order ϵ2 or higher.

1.2.1 Metric perturbations

Given the spatially flat (K = 0) FLRW background metric

ds2 = ḡµνdx
µdxν = −dt2 + a2(t)δijdx

idxj , (1.43)

the most general first-order perturbation is:

ds2 = gµνdx
µdxν = −(1+2ϕ)dt2+2a(t)Bidx

idt+a2(t)[(1−2ψ)δij+2Eij]dx
idxj . (1.44)

From the 3+1 (ADM) point of view the almost FLRW spacetime is described by means
of spacetime foliations where spatial hypersurfaces of constant time t are called slices and
curves of constant spatial coordinates xi but varying time t are called threads. Using this
formalism, Eij is a spatial symmetric and traceless† tensor Ei

i = δijEij = 0, while ψ is the
curvature perturbation, describing the intrinsic scalar curvature of spatial hypersurfaces.
These are both perturbations of the metric on the slices.

†Depending on the notation Eij can have also Ei
i ̸= 0
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The term Bi is the shift vector; it specifies the relative velocity between the threading
and the worldlines orthogonal to the slicing. ϕ is the lapse function, it specifies the
relation between the coordinate time t and the proper time τ along the threading. To
first order:

dτ

dt
=

√
1 + 2ϕ ≃ 1 + ϕ . (1.45)

In GR perturbation theory there are two kinds of coordinate transformations of interest.
One is the gauge transformation, to be later discussed, where the coordinates of the
background are kept fixed, but the coordinates in the perturbed spacetime are changed,
changing so the correspondence between the points in the background and the perturbed
spacetime.

Figure 1.2: The coordinates (t, xi) define a threading and a slicing (corresponding, respectively, to fixed
xi and fixed t). As indicated, the slicing typically isn’t orthogonal to the threading. Depicted in the
drawing are: the fluid velocity of a comoving observer v, and the velocity of the worldline orthogonal
to the slices B.

The other kind is one where we keep the gauge, i.e the correspondence between the back-
ground and perturbed spacetime points, fixed, but do a coordinate transformation in the
background spacetime. This, in turn, induces a corresponding coordinate transformation
in the perturbed spacetime.
The homogeneity and isotropy of the background allows us to separate the time from the
space dependence; i.e. allows us to foliate the spacetime into t = const spacelike slices.
This leaves us with the following transformations:

11



• Homogeneous transformations of the time coordinate, i.e., reparameterizations of
time, e.g. going from cosmic time t to conformal time η: dt→ dη = dt

a(t)
.

• Transformations in the space coordinates: xi
′
= X i′

jx
j.

It is by means of the latter one that perturbations in various quantities can be classified.†

In particular, according to how they transform under spatial rotations in the background
spacetime, we are able to distinguish among spatial scalars, vectors and tensors. The
full transformation matrices are:

Xµ′

ν =

[
1 0
0 X i′

j

]
=

[
1 0
0 Ri′

j

]
and Xµ

ν′ =

[
1 0
0 Ri

j′ ,

]
(1.46)

where Ri′
j is a rotation matrix,† with the property RRT = I, or Ri′

jR
k
i′ = (RRT )jk = δjk.

This BG coordinate transformation induces the corresponding transformation in the
perturbed spacetime xµ

′
= Xµ′

ν x
ν where the metric is:

gµν =

[
−(1 + 2ϕ) aBi

aBi a2[(1− 2ψ)δij + 2Eij]

]
(1.47)

Transforming the metric gρ′σ′ = Xµ
ρ′X

ν
σ′gµν , we get for the different components:

g0′0′ = −(1 + 2ϕ)

g0′i′ = aRk
i′Bk

gi′j′ = a2[(1− 2ψ)δkl + Ekl]R
k
i′R

l
j′

= a2[(1− 2ψ)δij + EklR
k
i′R

l
j′ ] ,

(1.48)

from which we identify the perturbations in the new coordinates:

ϕ′ = ϕ

ψ′ = ψ

Bi′ = Rj
i′Bj

Ei′j′ = Rk
i′R

l
j′Ekl .

(1.49)

Thus ϕ and ψ transform as scalars under rotations in the background spacetime coordi-
nates, Bi transforms as a 3-vector, and Eij as a spatial tensor. While staying in a fixed
gauge, we can think of them as scalar, vector and tensor fields on the flat background

†In the literature this is known as the SVT decomposition of metric perturbations.
†In this notation Ri′

j and Ri
j′ are two different matrices, corresponding to opposite rotations. The

position of the ′ indicates the direction of rotation. Notice that we have put the first index up to follow
the Einstein summation convention even if it is not needed.
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space. However, we are not yet satisfied; we can extract two more scalar quantities and
one more vector quantity from Bi and Eij. We know from the Helmholtz theorem of
standard vector calculus, that a vector field can be decomposed into two parts: one with
zero curl (longitudinal) and one with zero divergence (transverse):

Bi = B
∥
i +B⊥

i , (1.50)

Remember that a transverse vector is divergenceless and a longitudinal vector is curl-free,
namely:

∂iB⊥
i = 0 , ϵijk∂jB

∥
k = 0 . (1.51)

The curl-free part can be written as the gradient of a scalar B
∥
i = B ,i; further, we rename

the divergenceless part as B⊥
i = −Si. In this manner Bi can be written as:

Bi = B ,i − Si . (1.52)

A similar procedure applies to the symmetric traceless spatial tensor Eij, which can be

divided into a transverse part E⊥
ij , a solenoidal part ES

ij and a longitudinal part E
∥
ij:

Eij = E⊥
ij + ES

ij + E
∥
ij . (1.53)

E⊥
ij is divergenceless, while the divergence of ES

ij is a transverse (divergenceless) vector,

and the divergence of E
∥
ij is a longitudinal (curl-free) vector:

∂iE⊥
ij = 0 , ∂i∂jES

ij = 0 , ϵlkj∂k∂
iE

∥
ij = 0 . (1.54)

This means that the E
∥
ij can be derived from a scalar field E, and ES

ij can be derived
from a transverse vector Fi:

E
∥
ij = (∂i∂j −

1

3
δij∇2)E

ES
ij = F(i,j) with F i

,i = 0

E⊥
ij =

1

2
hij with ∂ihij = 0 , h i

i = 0

Eij = (∂i∂j −
1

3
δij∇2)E + F(i,j) +

1

2
hij .

(1.55)

The longitudinal part describes a single degree of freedom, the solenoidal part describes
two degrees of freedom; the transverse part hij cannot be further decomposed. It de-
scribes the remaining two degrees of freedom of the symmetric traceless spatial tensor
Eij.
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The metric perturbation can thus be divided into:

• a scalar part: consisting of ϕ, B, ψ, and E;

• a vector part: consisting of Bi and Fi;

• a tensor part hij.

Notice that we have imposed one constraint on both Bi and Fi, and 3+1 = 4 constraints
on hij leaving each of them 2 independent components. Thus, the 10 degrees of freedom
corresponding to the 10 components of the metric perturbation δgµν are divided into:

1 + 1 + 1 + 1 = 4 scalar

2 + 2 = 4 vector

2 = 2 tensor

degrees of freedom.
The Einstein tensor perturbation δGµν and the energy tensor perturbation δTµν can
likewise be divided into SVT components.
The important thing about this division is that the scalar, vector and tensor parts at
first-order do not couple to each other and evolve so independently. This allows us to
treat them separately, i.e. we can study, for example, scalar perturbations as if the vector
and tensor perturbations were absent.
Throughout this work we are going to focus on scalar perturbations only, which, from the
cosmological perspective, are the most important. They couple to density and pressure
perturbations and exhibit gravitational instability (namely overdense regions grow more
overdense). In other words, these type of perturbations causes structure formation in
the Universe from small initial perturbations.
Vector perturbations instead couple to the rotational velocity perturbations of the cosmic
fluid. They tend to decay, and are therefore not important in cosmology.
The two degrees of freedom of the tensor perturbations correspond instead to the two
polarizations of gravitational waves. They do have cosmological importance since, if
strong enough, they have an observable effect on the anisotropy of the CMB. However,
as mentioned above, in the following we are going to focus just on scalar perturbations.

1.2.2 Energy-momentum perturbations

The energy-momentum tensor, as we have seen, can be split into an homogeneous BG
plus inhomogeneous perturbation Tµν = T̄µν + δTµν , where the homogeneous part T̄µν is
necessarily of the perfect fluid form:†

T̄ µν = (ρ̄+ P̄ )ūµūν + P̄ δµν . (1.56)

†The ‘imperfections’ can only show up in the energy-momentum tensor if there is inhomogeneity.
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Because of homogeneity ρ̄ = ¯ρ(t) and P̄ = ¯P (t). Because of isotropy we cannot have
preferred spatial directions, implying so that uµ = (1, 0̄) in the BG. The inhomogeneous
perturbation δTµν(x) is:

δT µν = (δρ+ δP )ūµūν + (ρ̄+ P̄ )δuµδuν + δPδµν +Πµ
ν , (1.57)

where the anisotropic stress tensor, deviating from the perfect fluid form, is subject to
the constraints

Πµνu
ν = 0 , Π µ

µ = 0 . (1.58)

The orthogonality with uµ implies Π00 = Π0i = 0, i.e. only the spatial components Πij ̸=
0. The trace condition then implies Π i

i = 0; hence the anisotropic stress is a traceless
symmetric spatial tensor. Density and pressure perturbations can be decomposed in the
following manner:

ρ(t, xi) = ρ̄(t) + δρ(t, xi) , and P (t, xi) = P̄ (t) + δP (t, xi) . (1.59)

From the constraint uµuµ = −1 on the 4-velocity uµ we get:

uµ = [1− ϕ, a−1∂iv] , uµ = [−1− ϕ, ∂iθ] , (1.60)

where we have freely defined δui = a−1∂iv with ∂iv = a(∂xi/∂t) and θ = a(v + B). We
can now write the energy-momentum tensor as:

T µν = T̄ µν + δT µν

=

[
−ρ̄ 0
0 P̄ δij

]
+

[
−δρ (ρ̄+ P̄ )∂iθ

−(ρ̄+ P̄ )a−1∂iv δPδij +Πi
j

]
.

(1.61)

From the above we notice that the perturbation δTµν can also be divided into perfect
plus non-perfect fluid, with 5 + 5 degrees of freedom. Further, the energy-momentum
tensor Tµν , just like the metric tensor gµν , can be decomposed into SVT parts, with
4 + 4 + 2 degrees of freedom.

1.3 The gauge problem

In contrast to the homogeneous and isotropic FLRW Universe, where the preferable
coordinate system is fixed by the symmetry properties of the BG, there are no obvi-
ous preferable coordinates for analyzing perturbations. The freedom in the coordinate
choice, or gauge freedom, leads to the appearance of fictitious perturbation modes. These
fictitious modes do not describe any real inhomogeneities, but reflect only the properties
of the coordinate system used.
To demonstrate this point let us consider an undisturbed homogeneous isotropic Uni-
verse, where, as a reference quantity, we take the energy density ρ(t, xi) = ρ(t). In
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GR any coordinate system is allowed, we can in principle decide to use a ‘new’ time
coordinate t̃, related to the ‘old’ time t via t̃ = t + δt(t, xi). Then the energy density
ρ̃(t̃, xi) ≡ ρ(t(t̃, xi)) on the hypersurface t̃ = const depends, in general, on the spatial
coordinates xi,see Fig. (1.3). Assuming that δt≪ t, we have

ρ(t) = ρ(t̃− δt(t,x)) ≃ ρ(t̃)− ∂ρ

∂t
δt ≡ ρ(t̃) + δ̃ρ(t,x) . (1.62)

The first term on the right hand side must be interpreted as the background energy den-
sity in the new coordinate system, while the second describes a linear perturbation. This
perturbation is nonphysical and entirely due to the choice of the new ‘disturbed’ time.
Thus we can ‘produce’ fictitious perturbations simply by perturbing the coordinates.
Moreover, we can ‘remove’ a real perturbation in the energy density by choosing the
hypersurfaces of constant time to be the same as the hypersurfaces of constant energy:
in this case δρ(t,x) = 0 in spite of the presence of a real inhomogeneity.

ρ(t,x) = ρ(t) + δρ(t,x)

= ρ(t̃) + δ̃ρ(t,x) + δρ(t̃,x)

= ρ(t̃)

(1.63)

Choosing the hypersurfaces in such a way, the last two terms in Eq. (1.63) cancel and
we are left with an unperturbed energy density ρ(t̃).

Figure 1.3: A graphical illustration of the gauge issue in GR. Real perturbations can easily disappear
while fictitious ones can likewise be created.

The above was just a simple but meaningful example conveying the main idea about the
gauge issue affecting GR. Spurious coordinates artifacts, or gauge modes, in the calcu-
lations will always arise in any approach to GR that splits quantities into a background

16



plus a perturbation. Although GR is covariant, i.e. manifestly coordinate choice inde-
pendent, splitting variables into a background part and a perturbation is not a covariant
procedure, and therefore introduces a coordinate or gauge dependence.
To see what the gauge problem is in a more rigorous way, let us consider an idealised
Universe model S̄. Each quantity in this model will, as usual, be indicated by an over-
bar, then the spacetime S̄ will be given by the metric ḡµν and the manifold M̄, namely
S̄ ≡ {ḡµν ,M̄}. We perturb this model to obtain a ‘realistic’ Universe S ≡ {gµν ,M}.
The perturbation in each quantity is then the difference between the value the quantity
has at a given point in the physical spacetime S and the value at the corresponding point
in the background S̄. Considering all points, the perturbation field is determined. For
example, the metric perturbation is given by:

δgµν = gµν − ḡµν , (1.64)

while for the perturbation in the energy momentum tensor we have:

δTµν = Tµν − T̄µν . (1.65)

Two assumptions are implicit in writing the above relations: one is obvious, while the
other is rather obscure. The first one is that the unperturbed metric is a solution of the
Einstein equations with the unperturbed energy-momentum tensor as the source term
(we shall call this the 0-order solution). The second one is that the perturbations are
‘small’. These two assumptions are typical of any perturbation theory: the fact that is

Figure 1.4: Illustration of the mapping Φ from the idealised spacetime S̄ into the real spacetime S.

peculiar to GR is that we must perturb spacetime itself, so that the barred and unbarred
fields, as we previously sketched, are actually defined in different manifolds M̄ and M.
This implies that the procedure outlined above makes sense only if the correspondence
between points in M̄ and M is fixed, i.e. if we have a point identification map, so that
points in M̄ and M are ‘the same’, and operations such as subtraction of tensors (e.g.
Eqns. (1.64) and (1.65)) are well defined. Otherwise, even if we embed M̄ and M in
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a higher dimensional manifold N , we would be trying to subtract tensors defined at
different points, an ill-defined operation.
The choice of a particular map Φ between the background S̄ and the perturbed S space-
times is usually referred to as a gauge choice. Such a map is, in general, completely
arbitrary, although particular ones may be suitable for some purposes; this arbitrariness
is the gauge freedom of perturbation theory. Equivalently, a choice of coordinates in
S determines a map from S̄ into S. Thus the gauge freedom is represented also as a
freedom of coordinate choice in S.
Hence there are two ways to outline this freedom, usually referred to as the active and
passive approaches. In the next section we are going to discuss both of them from a dif-
ferential geometry perspective trying to introduce only the essential mathematical tools
that we need; we are going to follow [18, 19].

1.3.1 Geometrical aspects of gauge transformations

Consider a one-parameter family of 4-manifolds Mϵ embedded in a 5-manifold N . Each
manifold in the family represents a perturbed spacetime with the base or unperturbed
spacetime manifold represented by M0.
We define a point identification map Pϵ : M0 → Mϵ which identifies points in the
unperturbed manifolds with points in the perturbed manifold. This correspondence
specifies a vector field X upon N which is transverse to Mϵ at all points. The points
which lie on the same integral curve γ of X are to be regarded as the same point, as in
Fig. (1.5).

Figure 1.5: The vector field XA generates a point identification map between the manifolds M0 and
Mϵ. This in turn yields a diffeomorphism ϕϵ between coordinate neighbourhoods on the manifolds.

In terms of coordinates, take xµ on M0 and extend them to N by requiring that xµ =
const along each of the curves γ. This, in turn, induces coordinates xA = (xµ, ϵ) with
A = 0, 1, ..., 4 and µ, ν = 0, 1, ..., 3 on N . We parametrise the curves γ by ϵ implying
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dxA/dϵ = XA; we further choose the scaling of ϵ such that:

ϕϵ : M0 → Mϵ . (1.66)

In this way the vector field X generates a one-to-one, invertible, differentiable mapping
between M0 and Mϵ, i.e. a one-parameter group of diffeomorphisms and it follows
that ϕϵ+λ = ϕϵ ◦ ϕλ. In particular the inverse map from Mϵ to M0 will be denoted by
ϕ−1
ϵ = ϕ−ϵ, the identity map by ϕϵ=0.

Given a geometric quantity T defined on N the simplest way to produce a perturbation
expansion of T is to expand it as a Taylor series along γ. This yields a covariant power
series for T along the curve, see [19] for a proof. To first order the series has the form

ϕ∗
ϵT|0 = T0 + ϵ(£XT)

∣∣
0
+O(ϵ2) , (1.67)

where ϕ∗ stands for the pullback and ϕ∗
ϵT for the tensor T evaluated at the point where

ϵ = 0. Lie derivatives are used instead of partial derivatives so that the series is covariant.
At higher orders the Taylor expansion is given as in [19]:

ϕ∗
ϵT|0 = T0 +

∞∑
k=1

ϵk

k!

(
£k
XT

)∣∣∣
0
= (e(ϵ£X)T)

∣∣
0
. (1.68)

The expansion automatically provides the covariant perturbation expansion we want.
Each term in the series is proportional to a power of ϵ. The first term T0 is proportional
to ϵ0, the background value, ϵ(£XT)|0 is proportional to ϵ1, the linear value, the n-th
order term to ϵn

n!

(
£n
XT

)∣∣
0
. Once again ϕ∗Tϵ|0 is the perturbed value of T pulled back to

M0 and so the perturbed value of T is given by

∞∑
k=1

ϵk

k!

(
£k
XT

)∣∣∣
0
= ∆Tϵ

∣∣
0
:= ϕ∗

ϵT|0 −T0 , (1.69)

where we note that we could have not done the subtraction if we had not pulled T back
to M0. In a commonly used notation, including ϵ in T we write:

T = T0 +
∞∑
k=1

δkT

= T0 + δ1T+ δ2T+ δ3T+ ... ,

(1.70)

where δnT = ϵn

n!

(
£n
XT

)∣∣
0
. Notice that ∆Tϵ

∣∣
0
and δkT are defined on M0; this formalizes

the statement one commonly finds in the literature that ‘perturbations are fields living
in the background’.
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1.3.2 Active and passive gauge transformations

We define a gauge choice as the choice of correspondence between points on M0 and
points on Mϵ or, equivalently, the choice of a vector field X, generator of the gauge.
Let us now turn to defining gauge dependence in a clearer way. Consider a point p in
M0 and the generators X and Y corresponding to two different gauge choices, as in Fig.
(1.6); the choice X will identify the point p on M0 with a point q on Mϵ and will assign
to q the same xµ coordinates as at point p.
On the other hand, the gauge choice Y will identify p with a different point u on Mϵ

assigning in its turn the coordinates of p to u. Clearly, the choice of gauge induces a
coordinate change (a gauge transformation) on Mϵ. This is the passive interpretation.
In the active one, we choose a point u on Mϵ and find the point p on M0 which maps
to u under the gauge choice X and the point q, also on M0, which maps to u under the
gauge choice Y, see again Fig. (1.6). The gauge transformation this time is defined on
M0 and takes the coordinates of q to those of p in one of the two choices of gauge.

Figure 1.6: The left panel represents the passive view, while the right panel the active view. The vector
fields generate the gauge choice. A change in gauge from XA to Y A produces a gauge transformation.

To sum up, in the active approach the transformation of the perturbed quantities is eval-
uated at the same coordinate point, whereas in the passive approach the transformation
is taken at the same physical point.
The gauge dependence in perturbation theory stems from the fact that we separate
quantities into a background and a perturbed part, a operation not covariant in general,
which introduces additional, unphysical degrees of freedom. However, as we shall see in
Sec. (1.3.3), by choosing and combining suitable matter and metric variables the gauge
dependencies can be made to cancel out (the quantities so constructed will not change
under a gauge transformation).†

†An alternative way, as we will see in Chapter 2, is to consider CGI variables.
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Active point of view

Let’s now focus on the active interpretation of the gauge transformation. Corresponding
to the gauge choice X, we have a diffeomorphism ϕϵ : M0 → Mϵ and corresponding to
the vector field Y, we have a diffeomorphism ψϵ : M0 → Mϵ. The fields X and Y can
both be used to pull a generic tensor field T and therefore to construct two other tensor
fields ϕ∗

ϵ T and ϕ∗
ϵ T, for any value of ϵ. In particular, on M0 we now have three tensor

fields: T0 and
TX
ϵ := ϕ∗

ϵ T|0 , TX
ϵ := ϕ∗

ϵ T|0 . (1.71)

Since X and Y represent gauge choices for mapping a perturbed manifold Mϵ into the
unperturbed one M0, T

X
ϵ and TY

ϵ are the representations in M0 of the perturbed tensor
according to the two gauges. We can write, using Eq. (1.69):

TX
ϵ =

∞∑
k=0

ϵk

k!
£XT

∣∣
0
= T0 + δ1TX + δ2TX , (1.72)

TY
ϵ =

∞∑
k=0

ϵk

k!
£YT

∣∣
0
= T0 + δ1TY + δ2TY , (1.73)

where δ0TX = δ0TY = T0 by definition. For each ϵ the two vector fields X and Y induce
a composite diffeomorphism (gauge transformation) Φϵ on M0 represented in Fig. (1.7)
and given by:

Φϵ : M0 → M0 , (1.74)

where Φϵ is made up of two parts: a map ψϵ from M0 to Mϵ and a map ϕ−ϵ from Mϵ

to M0:
Φϵ := ϕ−ϵ ◦ ψϵ . (1.75)

It is easy to notice that the tensor fields TX
ϵ and TY

ϵ , defined by the gauges ϕϵ and ψϵ,
are connected by the linear map Φ∗

ϵ :

TY
ϵ = ψ∗

ϵT
∣∣
0
= (ψ∗

ϵ ◦ ϕ∗
−ϵ ◦ ϕ∗

ϵ T)
∣∣
0
= (ϕ−ϵ ◦ ψϵ)∗(ϕ∗

ϵT)
∣∣
0
= Φ∗

ϵ(ϕ
∗
ϵT)

∣∣
0
= Φ∗

ϵT
X
ϵ . (1.76)

We can now expand the pull-back Φ∗
ϵT

X
ϵ of a tensor field TX

ϵ applying the generating
formula for a generic n-th order gauge transformation, see Lemma 2 in [19]:

TY
ϵ =

∞∑
l1=0

∞∑
l2=0

· · ·
∞∑
lk=0

· · · ϵl1+2l2+···+klk+···

2l2 · · · (k!)lk · · · l1!l2! · · · lk! · · ·
£l1
ξ(1)

£l2
ξ(k)

· · ·£l1
ξ(k)

· · ·TX
ϵ ; (1.77)

doing so we can write TY
ϵ as:

TY
ϵ = TX

ϵ + ϵ£ξ(1)T
X
ϵ +

ϵ2

2
(£2

ξ(1)
+£ξ(2))T

X
ϵ + · · · , (1.78)
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Figure 1.7: The map Φϵ which maps the point p to the point q is formed by first mapping p to u using
the map ψϵ and then mapping u to q using the map ϕ−ϵ, i.e. Φϵ = ϕ−ϵ ◦ ψϵ.

where ξ(1) and ξ(2) are now the first two generators of Φϵ or of the gauge transformation,
if one prefers.
Now, that we have enough geometrical tools, let us finally discuss the concept of gauge
invariance. If TX

ϵ = TY
ϵ , for any pair of gauges X and Y, we say that T is totally gauge

invariant. This is a very strong condition, because then (1.72) and (1.73) imply that
δkTX = δkTY , for all gauges X and Y and for any k.
In any practical case, however, one is interested in perturbations to a fixed order n; it
is thus convenient to weaken the definition above, saying that T is gauge invariant to
order n iff δkTX = δkTY for any two gauges X and Y, and ∀k ≤ n. We have then the
following result, directly quoting M. Bruni [19]:

“Proposition. A tensor field T is gauge invariant to order n ≥ 1 iff £ξδ
kT = 0,

for any vector field ξ on M and ∀k < n.

Proof. Let us first show that the statement is true for n = 1. In fact, if δ1TX = δ1TY ,
we have £X−YT|0 = 0. But since X and Y define arbitrary gauges, it follows that X−Y
is an arbitrary vector field ξ with ξA=4 = 0, i.e. tangent to Mϵ ∀ ϵ. Let us now suppose
that the statement is true for some n. Then, if one also has δn+1TX |0 = δn+1TY |0, it
follows that £X−Y δ

nTX = 0 and we establish the result by induction over n.”

As a consequence of the above, we have the so-called Stewart & Walker Lemma, quoting
again from their original paper [6]:

“Lemma. T is gauge invariant to order n iff T0 and all its perturbations of order
lower than n are, in any gauge, either:
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(i) vanishing;

(ii) or constant scalars;

(iii) or a combination of Kronecker deltas with constant coefficients.”

Going back to Eq. (1.78) we can now relate the perturbations in two different gauges.
To the two lowest orders, this is easy to do explicitly:

δTY − δTX = £ξ(1)T0 , (1.79)

δ2TY − δ2TX = (£ξ(2) +£2
ξ(1)

)T0 + 2£ξ(1)δT
X . (1.80)

Further, substituting (1.72) and (1.73) into (1.78), using the fact that £ξ(k)ϵ = 0, and
identifying terms of the same order in ϵ, we can obtain the expressions for ξ(k):

ξ1 = Y −X , (1.81)

ξ2 = [X, Y ] . (1.82)

The same principle applies for higher order terms.

The map (1.78) generated by Φϵ, see Fig. (1.5), enables us to relate two coordinate

systems: (U, x)
Φϵ−→ (U ′, x̃) under an infinitesimal transformation generated by ϵ ξµ.

In the active view, this transformation takes the point p with coordinates xµ(p) to the
point q = Φϵ(p) with coordinates xµ(q).
Note that in the active view it is the point that changes. Applying the map as in (1.78)
we get:

xµ(q) = xµ(p) + ϵξµ(1)(x(p)) +
1

2
ϵ2
(
ξµ(1) ,ν(x(p))ξ

ν
(1)(x(p)) + ξµ(1)(x(p))

)
+O(ϵ3) . (1.83)

Notice that, as stated above, the left-hand side and the right-hand side of (1.83) are
evaluated at different points.

Passive point of view

In the passive approach we specify the relation between two coordinate systems directly,
hence all quantities in the passive approach have to be evaluated at the same physical
point.† In order to make contact with the active approach we take directly Eqn. (1.83)
as our starting point. To take the passive approach further, we therefore need to rewrite
the left-hand side and the right-hand side of (1.83), since they are evaluated at two

†For a more mathematically rigorous approach, see once again [19]. We have instead followed for a
lighter approach [18].
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different coordinate points. Referring to Fig. (1.6), we choose p and q to be points such
that the coordinates of q in the new coordinates are the same as the coordinates of p in
the old coordinates: i.e. x̃µ(q) = xµ(p), then from Eqn. (1.83):

x̃µ(q) := xµ(p) = xµ(q)− ϵξµ(1)(x(p))−
1

2
ϵ2
(
ξµ(1) ,ν(x(p))ξ

ν
(1)(x(p)) + ξµ(1)(x(p))

)
+O(ϵ3) .

(1.84)
Using the first two terms of Eqn. (1.83):

xµ(q) = xµ(p) + ϵξµ(1)(x(p)) , (1.85)

to get a Taylor expansion for ξµ(1)(x(p)), namely:

ξµ(1)(x(p)) = ξµ1
(
xµ(q)− ϵξµ(1)(x(p))

)
= ξµ(1)(x(q))− ϵξµ(1) ,ν(x(q))ξ

ν
(1)(x(q)) ,

(1.86)

where in the very last term we have replaced ξν(1)(x(p)) by ξν(1)(x(q)), the correction

being third-order small. Substituting Eq. (1.86) into (1.84) finally gives the desired
result, namely a relation between the ‘old’ xµ and the ‘new’ x̃µ coordinate systems:

x̃µ(q) = xµ(q)− ϵξµ(1)(x(q)) +
1

2
ϵ2
(
ξµ(1) ,ν(x(q))ξ

ν
(1)(x(q))− ξµ(2)(x(q))

)
+O(ϵ3) , (1.87)

all evaluated at the same point q. Eqns. (1.83) and (1.87) express the relationship, in the
language of coordinates, between the active and the passive views. While (1.83) provides
us with the coordinates, in the same chart (U, x), of the different points p and q = Φϵ(p),
Eqn. (1.87) gives the transformation law between the coordinates of the same point q in
the two different charts (U, x) and (Φϵ(U), x̃).

1.3.3 Application to cosmology

As an application of the above, we now derive the gauge transformation laws, at first-
order, for relevant cosmological quantities; see [17] for a second-order treatment. In the
following we are going to adopt the active approach as it is simply more direct w.r.t. the
passive one. At first order we have:

xµ(q) = xµ(p) + ϵξµ1 (p) , (1.88)

Before studying the transformation behaviour of the perturbations at first order, we split
the generating vector ξµ(1) into a scalar temporal part α and a spatial scalar and vector

part, β and γi, according to:
ξµ(1) = (α, β ,i+γi) , (1.89)
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where the vector part is divergence free ∂kγ
k = 0. We remind the reader that Lie

derivatives on different tensorial quantites are given by:

£ξf ≡ f;λξ
λ , (1.90)

£ξVµ ≡ Vµ;λξ
λ + ξλ;µV

λ , (1.91)

£ξgµν ≡ gµν;λξ
λ + gµλξ

λ
;ν + gλνξ

λ
;µ . (1.92)

It follows immediately from Eqn. (1.79) and (1.90) that, to first-order, a scalar quantity
such as the energy density transform as:†

δ̃ρ = δρ+ ρ̄′α . (1.93)

We now adopt an alternative definition, w.r.t. Eqn. (1.60), of the 4-velocity uµ:

uµ = a−1[1− ϕ, vi] , uµ = a[−1− ϕ, vi +Bi] , (1.94)

and write using the Lie derivative in Eqn. (1.91):

δ̃uµ = δuµ + u
(0)
µ ,0 ξ

0 + u
(0)
λ ξλ,µ . (1.95)

For the above defined 4-velocity we end up with:

ṽi + B̃i = vi +Bi − α,i . (1.96)

Now, anticipating the transformation law of the metric perturbation Bi, we get the
transformations for the scalar and vector parts, respectively:

ṽ = v − β′ , (1.97)

ṽi = vi − γi
′
. (1.98)

Considering metric perturbations instead, from Eqns. (1.79) and (1.92) we find:

δ̃gµν = δgµν + g
(0)
µν,λξ

λ
(1) + g

(0)
µλ ξ

λ
(1), ν + g

(0)
λν ξ

λ
(1), µ . (1.99)

The metric we are adopting here is:

ds2 = a2
[
− (1 + 2ϕ)dη2 + 2(B,i − Si)dη dx

i + [(1− 2ψ)δij + 2Eij]dx
idxj

]
. (1.100)

Notice that Eij is this time given by:‡

Eij = (E ,ij + F(i,j) +
1

2
hij) , (1.101)

†Remember that tensorial quantities in the FLRW background have no spatial dependence. Fur-
thermore, the FLRW BG we are considering is flat (K = 0); this allows us to replace covariant with
partial derivatives.

‡Where Eij is not traceless anymore. In this manner we have a simpler metric, i.e. we don’t have
to carry around the laplacian term − 1

3δij∇
2E as in Eqn. (1.44).
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additionally we group the tensor perturbations in:

Cij = −ψδij + E ,ij + F(i,j) +
1

2
hij . (1.102)

Using the previously discussed conditions on metric perturbations:

Sk,k = 0 , F k
,k = 0 , hik,k = 0 , hkk = 0 , (1.103)

we can write the gauge transformations for the metric perturbations using Eqn. (1.99).

The transformations for the perturbations in δg
(1)
00 and δg

(1)
0i are quite straightforward,

leading to Eqn. (1.110) and

B̃i = Bi + ξ′i − α,i , (1.104)

whose scalar part is obtained performing the divergence of the above, see Eqn. (1.112).

Focusing on δg
(1)
ij and starting from Eqn. (1.99) we have:

2C̃ij = 2Cij + 2Hαδij + ξi,j + ξj,i . (1.105)

Taking the trace of the above and substituting it into (1.3.3) we get:

− 3ψ̃ +∇2Ẽ = −3ψ +∇2E + 3Hα +∇2β . (1.106)

Taking the spatial trace of (1.105) we get a second equation relating the scalar pertur-
bation ψ and E:

− 3∇2ψ̃ +∇2∇2Ẽ = −3∇2ψ +∇2∇2E + 3H∇2α +∇2∇2β , (1.107)

from which we can obtain the transformation laws for ψ̃ and Ẽ. Taking now the diver-
gence of Eqn. (1.105) we get:

2C̃ j
ij, = 2C j

ij, + 2Hα,i +∇2ξi +∇2β,i . (1.108)

Substituting the obtained results for ψ̃ and Ẽ we then arrive at:

∇2F̃i = ∇2Fi +∇2γi . (1.109)

We can sum up the transformations of the first-order metric perturbations we have from
the above, first for scalars as:

ϕ̃ = ϕ+Hα + α′ , (1.110)

ψ̃ = ψ −Hα , (1.111)

B̃ = B − α + β′ , (1.112)

Ẽ = E + β , (1.113)
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where H = a′

a
, for the vector perturbations as:

S̃i = Si − γi
′
, (1.114)

F̃ i = F i + γi . (1.115)

The first-order tensor perturbation is found to be gauge invariant:

h̃ij = hij , (1.116)

by substituting the above transformations laws into Eqn. (1.105). This can also be
understood from the Stewart–Walker lemma [6]: at first order, quantities that are iden-
tically zero in the background are manifestly gauge invariant, and there is no tensor part
in the background.

1.4 Gauge invariant variables and gauge choices

It is important to understand that physical observables are not dependent on the choice
of coordinates, though physical observables may be different for different observers. This
is what led Bardeen in [4] to find a way to specify quantities unambiguously, such that
they have a GI definition. Notice that this is not the same as gauge independence.
In fact, a quantity like the tensor metric perturbation, hij, is truly gauge independent at
first order in that the tensor part of the metric perturbation is the same in all gauges.
The scalar curvature perturbation, ψ, on the other hand is intrinsically gauge dependent.
It is different under different time slicings, see Eqn. (1.111). As we have previously
anticipated, one can construct a GI combination, which may be referred to as the GI
curvature perturbation, but they only correspond with the curvature perturbation ψ in
one particular gauge.
As a result one can find in the literature many different GI curvature perturbations
corresponding to the many different choices of gauge, such as Ψ, ζ and R, corresponding
to the curvature perturbations in the longitudinal, uniform density and the comoving
gauge respectively, to name just three. Let’s now give a more rigorous description of
what we have just sketched above.

1.4.1 Specific gauges

As stated at the beginning of Section 1.3, the conformal time η gives the slicing of the
perturbed spacetime into η = const hypersurfaces; while the spatial coordinates xi give
the threading of the perturbed spacetime into xi = const threads (i.e. timelike curves).
Slicing and threading are orthogonal to each other iff the shift vector vanishes Bi = 0.

27



In the gauge transformation,

η̃ = η − ξ0 (1.117)

x̃i = xi − ξi , (1.118)

ξ0 = α changes the slicing and ξi = (β,i+γi) changes the threading. From the 4-scalar
transformation law we see that perturbations in 4-scalars, e.g. δρ, depend only on the
slicing. The dependence of metric quantities can be immediately noticed from Eqns.
(1.110)-(1.116).
s Focusing now only on scalar perturbations, we notice that the two scalar gauge functions
in ξµ allow two of the metric scalar perturbations to be eliminated. This is the meaning
of gauge fixing (defining a gauge choice); we use the freedom we have in α and β to
eliminate two d.o.f. in the perturbed metric. Let’s some examples starting from what is
called variously orthogonal zero-shear, longitudinal and conformal Newtonian gauge.

Longitudinal gauge

If we choose to work on spatial hypersurfaces with vanishing shear (σ ≡ E ′−B), we find
from Eqs. (1.112) and (1.113) that the shear scalar transforms as:

σ̃ = σ + α . (1.119)

This implies that to obtain perturbations in the longitudinal gauge starting from arbi-
trary coordinates we should perform the transformation:

αℓ = −σ = B − E ′ . (1.120)

In addition, the longitudinal gauge is completely determined by the spatial gauge choice
Ẽℓ = 0, which from σ̃ℓ = Ẽ ′

ℓ − B̃ℓ = 0, implies B̃ℓ = 0. This, in turn, from Eqn. (1.113),
leads to:

βℓ = −E . (1.121)

The remaining scalar metric perturbations, ϕ and ψ, are given from Eqns. (1.110) and
(1.111), they are:

ϕ̃ℓ = ϕ+H(B − E ′) + (B − E ′)′ , (1.122)

ψ̃ℓ = ψ +H(B − E ′) . (1.123)

the expressions for ϕℓ and ψℓ are identical to the so called Bardeen potentials Φ and
Ψ. These variables are defined by hand in such a way to be invariant under the gauge
transformations in Eqns. (1.110 - 1.113):

Φ ≡ ϕ+H(B − E ′) + (B − E ′)′ , (1.124)

Ψ ≡ ψ −H(B − E ′) . (1.125)
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In this particular gauge we are able to assign to (1.124) and (1.125) a precise physical

meaning via their equality to ϕ̃ℓ and ψ̃ℓ. Moreover, in many cases of physical interest
such as in the absence of anisotropic stress (Πij = 0) one finds Φ = Ψ; i.e. there is only
one variable required to describe all scalar metric perturbations:

ds2 = a2
[
− (1 + 2Φ)dη2 + (1− 2Φ)δijdx

idxj
]
. (1.126)

We can, in general, obtain GI expressions for the energy density perturbation δρ, ex-
ploiting the transformation law in Eqn. (1.93):

∆ = δ +
ρ̄′

ρ̄
(v +B) . (1.127)

Other gauge-invariant density perturbations are:

δρσ = δρ+ ρ̄′(B − E ′) , δρψ = δρ+
ρ̄′

H
ψ . (1.128)

Notice that in the longitudinal gauge δρσ ≡ δ̃ρℓ. The intrinsic spatial curvature on
η = const hypersurfaces is:

(3)R = (3)R0 +
(3)δR =

6K

a2
+

12K

a2
ψ +

4

a2
∇2ψ . (1.129)

Thus, the metric perturbation ψ determines the curvature of perturbed η = const hyper-
surfaces.†. However, there are also other useful GI curvature perturbations, especially
those which are conserved under certain broad conditions. Two such quantities are:

R = ψ −H(v +B) , (1.130)

ζ = −ψ −Hδρ

ρ̄′
, (1.131)

The relation between the two GI quantities can be obtained using Eqn. (1.127) and is
given by:

ζ = −R− Hρ̄
ρ̄′

∆ . (1.132)

The below generalized Poisson equation (1.154) shows that R = −ζ on super-Hubble
scales. In particular, using the perturbed energy conservation equation, uν∇µδT

µν = 0,
one can see that ζ ′ = R′ = 0 on super-Hubble scales for adiabatic modes.
Cosmological inhomogeneity is characterized by the intrinsic curvature of spatial hyper-
surfaces, ζ or R. Both ζ and R have the aforementioned attractive feature that they

† (3)R is gauge invariant for a flat FLRW background, since in that case this quantity vanishes in
the background, see Chapter 2.
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remain constant outside the horizon, i.e. when k < (aH) (during inflation). An impor-
tant fact is that their amplitude is not affected by the unknown physical properties of
the Universe shortly after inflation (we remind the reader that we know next to nothing
about the details of reheating; it is the constancy of ζ and R outside the horizon that
allows us to nevertheless predict cosmological observables). After inflation, the comov-
ing Hubble horizon grows, so eventually all fluctuations will re-enter the horizon. After
horizon re-entry, i.e. k > (aH), ζ or R determine the perturbations of the cosmic fluid
resulting in the observed CMB anisotropies and the observed LSS. For a detailed review
of how quantum fluctuations from inflation affects the LSS of the Universe see [22].

Comoving orthogonal gauge

We say that the slicing is orhogonal, if the η = const slices are orthogonal to the fluid
4-velocity. This condition turns out to be equivalent to the condition that the fluid
velocity perturbation equals the shift vector. For scalar perturbations:

Orthogonal slicing ⇔ v = B . (1.133)

From the gauge transformation Eqns. (1.97) and (1.112),

ṽ = v − β′ , (1.134)

B̃ = B − α + β′ , (1.135)

we see that we get to the comoving slicing by α = B−v−2β′. Moreover, we say that the
threading is comoving if the threads are world lines of fluid elements, i.e. the velocity
perturbation vanishes, δui = 0:

Comoving threading ⇔ v = 0 . (1.136)

We obtain a comoving threading from the gauge transformation β′ = v. Finally, the
comoving orthogonal gauge is defined by requiring both orthogonal slicing and comoving
threading:

Comoving orthogonal gauge ⇔ vc = Bc = 0 . (1.137)

The threading is now orthogonal to the slicing. The gauge transformations allowing to
place us in this gauge are:

β′
c = v , (1.138)

αc = B + v . (1.139)

However, this does not fully specify the coordinate system in the perturbed spacetime,
since only β′ is specified, not β. Thus we remain free to do time-independent transfor-
mations:

x̃i = xi + ξ(x⃗),
i (1.140)

30



while staying in the comoving gauge. This does not change the way the spacetime is
sliced and threaded by the coordinate system, it just relabels the threads with different
coordinate values xi. In this gauge we have the following identities for R and ∆:

R ≡ ψ̃c , ∆ ≡ δ̃c =
δ̃ρc
ρ̄
. (1.141)

Synchronous gauge

The synchronous gauge was the first one to be used in cosmological perturbation theory,
by Lifshitz in [20]. The synchronous gauge is defined for scalar perturbations by the

requirement ϕ̃ = B̃ = 0; in this manner the proper time for observers at fixed spatial
coordinates coincides with cosmic time in the FLRW background, i.e. dτ = dt. This
implies the following gauge transformations:

α′
sync + αsyncH = −ϕ , (1.142)

β′
sync = αsync −B . (1.143)

We see that, like for the comoving gauge, only the derivative of βsync is determined.
In addition, αsync is determined only up to solutions of the homogeneous equation
α′
sync +Hαsync = 0.†

Thus, the gauge is not fully specified by the synchronous condition, leading to the im-
possibility of introducing GI quantities. In turn, if one is not careful enough, this leads
to the presence of spurious gauge modes inside the dynamical equations. Fact remarked
by Lifshitz himself.

Spatially flat gauge

In this gauge one selects spatial hypersurfaces on which the induced metric is left unper-
turbed by scalar perturbations, condition that requires ψ̃ = Ẽ = 0. This corresponds to
a gauge transformation where:

αflat =
ψ

H
, βflat = −E . (1.144)

The density perturbation has a gauge-invariant definition in this gauge; from Eqn.
(1.128):

δρψ ≡ δ̃ρflat = δρ+ ρ̄′
ψ

H
. (1.145)

†By that, we mean that the solution of the particular equation implies the presence of a constant
spatially dependent term C(xi).
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Uniform density gauge

The uniform energy density gauge is defined by the condition δ̃ρ = 0, which implies a
temporal gauge transformation:

αδρ = −δρ
ρ̄
. (1.146)

In this gauge ζ ≡ −ψ̃δρ.

Dynamics in the longitudinal gauge

This is one of the more convenient gauges to use for deriving dynamical equations. Let’s
briefly sketch its dynamics.
The first-order perturbed Einstein equations δGµν = 8πGNδTµν for scalar modes give
two constraints and two evolution equations. In a general gauge, the (00) (energy) and
(0i) (momentum) constraints are:

(∇2 + 3K)ψ − 3H(ψ′ +Hϕ) +H∇2σ = 4πGNa
2δρ , (1.147)

ψ′ +Hϕ+Kσ = −4πGNa
2(ρ+ P )(v +B) . (1.148)

The (ij) evolution equations are:

ψ′′ + 2Hψ′ −Kψ +Hϕ′ + (2H′ +H2)ϕ = 4πGNa
2(δP +

2

3
∇2Π) , (1.149)

σ′ + 2Hσ − ϕ+ ψ = 8πGNa
2Π , (1.150)

where the last one using the Bardeen potentials become:

Ψ− Φ = 8πGNa
2Π . (1.151)

Hence, in absence of anisotropic stress we have Ψ = Φ. In addition, for a flat (K = 0)
Universe, Eq. (1.149) provides a second-order evolution equation for the metric pertur-
bation in the longitudinal gauge driven by isotropic pressure:

Φ′′ + 3HΦ′ + (2H′ +H2)Φ = 4πGNa
2δP . (1.152)

For adiabatic perturbations we can relate the pressure to the density, δP = c2sδρ, in
which case (1.147) and (1.152) yield a closed second-order differential equation:

Φ′′ + 3(1 + c2s)HΦ′ + [2H′ + (1 + 3c2s)H2 − c2s∇2]Φ = 0 , (1.153)

from which explicit solutions may be obtained. Writing the energy and momentum
constraints in terms of GI variables we can further arrive at a GI generalization of the
Newtonian-Poisson equation:

∇2Ψ = 4πGNa
2∆ ρ̄ ≡ 4πGNa

2δ̃ρc . (1.154)
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Chapter 2

Covariant gauge invariant ΛCDM
perturbations

This chapter is divided in two main sections: in Section 2.1 we present the covariant
fluid approach to GR, where, for obvious reasons, we focus on the case of a FLRW
spacetime [21]. In cosmology we assume that the description of the matter content of
the Universe is approximated by a continuous fluid. At each point in spacetime we can
assign a 4-velocity vector ua representing the velocity of the volume element of the fluid
surrounding that point.† It follows that, at each point p, we can foliate our FLRW space-
time into a time direction parallel to the 4-velocity ua of the fluid and a 3-dimensional
slice orthogonal to ua. This splitting is achieved by means of the three spatial metric (or
projector) hab.
In Section 2.2 we present an alternative approach to the theory of cosmological per-
turbations. This GI approach, w.r.t. the one of Bardeen presented in Chapter 1, is
based on the covariant approach to cosmology and is thus CGI (covariant and GI). This
alternative has been proposed by Ellis & Bruni [1, 2] and is based on the Stewart &
Walker Lemma discussed in Section 1.3. In particular, by means of this Lemma, we can
define CGI variables which have the advantage of having an explicit physical meaning
independently of any chosen gauge.

2.1 Covariant approach to Cosmology

2.1.1 Kinematics

Let ua be a future directed timelike vector field (uau
a = −1); this vector field can be

regarded as the 4-velocity of the corresponding observer Ou. At each point p of the
spacetime we have a subspace Hp of the tangent space Tp at p which is orthogonal to ua.

†Notice that we will here use the indices a, b, c... and µ, ν, σ... interchangeably.
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We can then define the projection tensor in this subspace as:

hab ≡ gab + uaub , (2.1)

where we have the following identities:

hab ≡ gab + uaub ⇒ habh
b
c = hac, haa = 3 , h b

a ub = 0 . (2.2)

This defines the spatial part of the local rest frame of the observer. Hence, the tensor is
the metric in the subspace Hp of Tp, orthogonal to the corresponding 4-velocity ua.
In cosmology, there exists a preferred family of world-lines, named fundamental world-
lines, representing the motion of fundamental observers in the Universe, i.e. observers
which are at rest w.r.t. a given volume element of fluid. Let us now define some relevant
kinematical quantities for the the normalized 4-velocity vector tangent to the flow lines:

ua =
dxa

dτ
⇒ uaua = −1, (2.3)

where τ , the proper time along the fluid flow lines, coincide with the cosmic time t. In
a FLRW Universe we have uµ = δµ0 and uµ = −δ0µ. The time derivative of any tensor
T a··· b··· along the fluid flow lines is simply the covariant derivative along ua:

Ṫ a··· b··· ≡ uc∇cT
a···

b··· , (2.4)

where the above is the rate of change of T a··· b··· as measured by a fundamental observer.
Using hab we can also define the spatial derivative in the local reference frame Ou as:

(3)∇cT
a···

b··· ≡ h f
c h

a
d · · ·h e

b · · · ∇fT
d···

e··· . (2.5)

It follows from the above definition that (3)∇a preserves the orthogonal metric hbc: that
is, (3)∇ahbc = 0. Consequently, we can raise and lower indices through equations acted
on by (3)∇a using hab, h

ab.
The 4-acceleration is defined as aa ≡ u̇a = ub∇bu

a and from Eqn. (2.3) it follows that
aaua = 0. The expansion scalar (volume expansion) Θ is the trace of ∇bua:

Θ ≡ ∇au
a , (2.6)

which represents the isotropic part of the expansion of the fluid. For instance, the action
of Θ alone during a small time interval on a sphere of fluid changes the latter in a larger
or smaller sphere with the same orientation. The shear tensor is instead the spatial
trace-free symmetric part of ∇bua:

σab ≡ h c
a h

d
b ∇(duc) −

1

3
Θhab ⇒ σabu

b = 0, σaa = 0 . (2.7)
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Since the shear tensor is symmetric, we can choose an orthonormal basis of shear eigen-
vectors, so the components of σab become σab = diag(0, σ1, σ2, σ3), where σ1+σ2+σ3 = 0
(since the tensor is trace-free). Then if there is an expansion in the 1-direction (σ1 > 0),
there must be a contraction in at least one other direction (say σ2 < 0). Thus, the
previous sphere becomes an ellipsoid, expanded in the 1-direction but contracted in the
2-direction, with the same volume as before. Hence the shear tensor describes a pure
distortion, without rotation or change of volume. Its magnitude is given by

σ2 ≡ 1

2
σabσ

ab ≥ 0 , σ = 0 ⇔ σab = 0 . (2.8)

The vorticity tensor ωab is the skew-symmetric spatial part of ∇bua defined as:

ωab ≡ h c
a h

d
b ∇[duc] ⇒ ωabu

b = 0 , (2.9)

with magnitude

ω2 ≡ 1

2
ωabω

ab ≥ 0 . (2.10)

Since ωab is skew-symmetric, all the information contained in it can be put in a vector,
the vorticity vector ωa:

ωa ≡
1

2
ηabcω

bc ⇔ ωab = ηabcω
c , (2.11)

obviously ωau
a = 0, where ηabc is the 3-dimensional totally skew-symmetric tensor:

ηabc ≡ ηabcdu
d , ηabcd = η[abcd] = −

√
|g|ϵabcd , g ≡ det(gab) , (2.12)

where ϵabcd is the totally skew-symmetric Levi Civita tensor. The action of ωa rotates
the sphere, leaving its shape and volume unchanged. The quantities we have now defined
characterize the kinematic features of the fluid flow. In fact, splitting ∇bua as:

∇bua =
(3)∇bua − aaub ,

(3)∇bua = ωab +Θab , Θab =
1

3
Θhab + σab ; (2.13)

where Θab is the symmetric part of (3)∇bua, we so obtain:

∇bua = ωab + σab +
1

3
Θhab − aaub , (2.14)

which shows that this derivative is completely determined by the previously defined
kinematic quantities. In addition, they can also be used to characterize some simple
Universe models. For example, in an Einstein static Universe ω = σ = aa = Θ = 0;
while in all other FLRW Universes ω = σ = aa = 0; Θ ̸= 0.
It is convenient to define a representative length scale a(t) by the relation:

ȧ

a
=

1

3
Θ , (2.15)

which, in a FLRW Universe, corresponds to the Hubble parameter H along the flow.
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Figure 2.1: Geometrical representation of the expansion Θ, shear σab and rotation ωab.

2.1.2 Geometry and matter

The Riemann tensor Rabcd is defined by the commutation relation satisfied by the co-
variant derivatives of any arbitrary 4-vector; for the 4-velocity ua we have:

(∇c∇d −∇d∇c)ua = Rabcdu
b . (2.16)

On contracting the above with uc we obtain a propagation equation for (∇dua) along the
fluid flow lines:

(∇dua)
· −∇du̇a + (∇du

c)(∇cua) = Rabcdu
buc , (2.17)

Contracting a− d indices we get:

(∇au
a)· −∇au̇

a + (∇auc)(∇cua) = −Rbcu
buc . (2.18)

In terms of the kinematic quantities, this is

Θ̇ +
1

3
Θ2 + 2(σ2 − ω2)− A = −Rbcu

buc , (2.19)

where we have defined ∇au̇
a = A and used symmetry properties of the kinematical

quantities.

Riemann tensor

Just for sake of completeness we mention that the Riemann tensor can be decomposed
into its ‘trace’, i.e. the Ricci tensor and its trace-less part, the Weyl tensor:

Ra
bad ≡ Rbd , Cab

cd ≡ Rab
cd − 2g

[a
[cR

b]
d] +

1

3
Rg

[a
[cg

b]
d] ⇒ Ca

bad = 0 . (2.20)
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We can further split the Weyl tensor into its ‘electric’ and ‘magnetic’ components, re-
spectively defined by:

Eac ≡ Cacbdu
bud , Hac ≡

1

2
ηacdC

cd
beu

e ; (2.21)

Eab = E(ab) , Hab = H(ab) , Ea
a = Ha

a = 0 , Eabu
b = Habu

b = 0 . (2.22)

The reason for this terminology is that Eab and Hab satisfy a ‘Maxwellian’ form of the
Bianchi’s identity, see [21, 8] for a complete explanation.

Energy-momentum tensor

Contracting the Bianchi identities ∇[eR|ab|cd] = 0 we get:

∇bG
ab = 0 , Gab ≡ Rab −

1

2
Rgab , (2.23)

thus from Einstein equations Gab = κTab:
†

∇bT
ab = 0 , (2.24)

where Tab, as measured by an observer moving with 4-velocity ua, can be split into its
parts parallel and orthogonal to ua as follows:

Tab = ρuabb + Phab + 2q(aub) + πab . (2.25)

The observer measures that:

• ρ = Tabu
aub is the relativistic energy density (rest mass density plus total internal

energy);

• P = 1
3
habTab is the relativistic pressure;

• qa = −h b
a Tbcu

c is the relativistic energy-flux due to processes such as diffusion and
heat conduction;

• πab ≡ h c
a h

d
b Tcd− 1

3
(hcdTcd)hab is the relativistic anisotropic (trace-free) stress tensor

due to effects such as viscosity or free-streaming or magnetic fields;

where in general ρ and P will be related through an equation of state. For a perfect fluid
the energy-momentum tensor becomes:

T ab = ρuaub + Phab = (ρ+ P )uaub + Pgab . (2.26)

The conservation of energy-momentum can be projected either along ua leading to energy
conservation, i.e. ub∇aT

ab = 0, or along hab leading to momentum conservation, i.e.
hcb∇aT

ab = 0.

†Throughout this work we have adopted the notation: 8πGN = 1 = c.
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Raychaudhuri equation

The evolution of Θ along the fluid flow lines is given by the Raychaudhuri equation.
Inserting the expression for Rbcu

buc, rephrased in terms of energy-momentum quantities,
in Eqn. (2.19) we get:

Θ̇ +
1

3
Θ2 + 2(σ2 − ω2)− A+

1

2
κ(ρ+ 3P − 2V ) = 0 , (2.27)

where V = Λκ−1.
The Raychaudhuri equation is the fundamental equation of gravitational attraction that
establishes that in GR, (ρ+ 3P ) is the active gravitational mass of the fluid.
For ρ + 3P > 0, a.k.a. strong energy condition (SEC), we have from Eqn. (2.27) a
volume contraction; we also see that V contributes as a constant repulsive force, and a
similar repulsive role is played by the acceleration divergence A and by the vorticity ω.
On the other hand, the shear σ tends to shrink the volume.
Notice that, within this approach to cosmology, the above Raychaudhuri equation reduces
to the dynamical Friedmann equation in case we consider a homogeneous and isotropic
Universe, i.e. setting σ = ω = A = 0:

3(Ḣ +H2) = −1

2
κ(ρ+ 3P − 2V ) . (2.28)

2.1.3 Intrinsic 3-curvature with zero vorticity

Only when the fluid vorticity vanishes there exists a family of spatial hypersurfaces Σ⊥
everywhere orthogonal to the fluid flow vector ua. Indeed it is possible to show that:

ωa = 0 ⇔ u[b∇cud] = 0 ⇔ u[buc,d] = 0

⇔ ∃ local functions r, t: ua = −rt,a , (2.29)

Analytically, t is a potential function for the direction of ua. Geometrically, this means
ua is orthogonal to the surfaces t = const, for Xaua = 0 ⇔ Xat,a = 0. This means that
the derivative of t in the direction Xa is zero for every vector Xa orthogonal to ua.
In other words, for the hypersurfaces Σ⊥ to exist, it must be possible to write ua as
a 4-gradient. Then the hypersurfaces Σ⊥ ≡ t = const are instantaneous hypersurfaces
of simultaneity for all the fundamental observers, i.e. the hypersurfaces Σ⊥ define a
cosmic time t. However, the function t does not necessarily measure proper time along
the world lines. Indeed, the derivative of t along the world lines with respect to proper
time is ṫ = t,au

a = −r−1uau
a = r−1. Thus t can be chosen to measure proper time

along the world lines only if r = r(t), for only then can we choose r = 1 by rescaling
t→ t′(t); such a t is a normalized cosmic time, which both determines the rest space of
each fundamental observer and measures proper time along all the fundamental world
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lines. However one can normalize the cosmic time to measure also the proper time along
each flow line only if aa = 0. In fact, in the case aa ̸= 0, one can normalize the cosmic
time to measure proper time along one world line but then, even though it synchronizes
instantaneous events on the different world lines, it will not measure proper time along
other world lines.†

Spatial Ricci curvature

In a general fluid flow, we can define the quantity:

K = 2
(
− 1

3
Θ2 + σ2 + κ(ρ+ V )

)
, (2.30)

which turns out to satisfy the relation:

(3)R = K − 2ω2 . (2.31)

When ω = 0, K acquires a special significance: it is the Ricci scalar (3)R of the 3-
dimensional spatial hypersurfaces Σ⊥; that is: ω = 0 ⇒ (3)R = K. In this context, we
have:

(3)R = K =
6K

a2
, → K

a2
=

1

3

(
− 1

3
Θ2 + σ2 + κ

(
ρ+ V

))
, (2.32)

where σ2 obviously vanishes if we are in a FLRW background (where K = 0,±1). In
such a case the above equation is just the constraint Friedmann equation:

H2 +
K

a2
=

1

3
κ(ρ+ V ) . (2.33)

2.2 Covariant gauge invariant cosmological pertur-

bations

In Chapter 1 we have discussed the standard perturbative formalism of cosmological per-
turbations as developed by Bardeen [4]. His theory is based on the definition of linear GI
variables built from GI linear combinations of gauge-dependent perturbations. However,
this method could lead to some interpretation issues, since the physical and geometrical
meaning of the resulting quantities is often obscure unless a gauge is specified.
This has led Ellis & Bruni [1, 2] to develop a different approach to GI cosmological per-
turbations, which often provides a clearer picture of the almost FLRW model describing

†For example, the comoving time coordinate t in the FLRW universes is a fundamental cosmic time
that measures proper time along each world line. The standard time coordinate t in a Schwarzschild
solution is a cosmic time for static observers, but does not measure proper time along their world lines.
Their acceleration is in fact non-zero, following from dτ2 = (1− 2m/r)dt2.
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the real Universe. Following the aforementioned authors, we here study what is called
the covariant gauge invariant (CGI) approach, based on what we have presented in Sec-
tion 2.1.
Central to the CGI approach is the Stewart & Walker Lemma of Section 1.3. The basic
idea is to introduce covariantly defined exact variables T (i.e. meaningful in any space-
time) such that T0 in a FLRW BG Universe vanish. In this way, from the aforementioned
Lemma, the quantity itself is a GI perturbation in the almost FLRW Universe; its phys-
ical significance being apparent via the covariant definition.
Given the symmetries of FLRW models, any tensor that describes spatial inhomogeneity
or anisotropy must vanish in the background and therefore its linear perturbation will
remain invariant under gauge transformations.

2.2.1 CGI variables

A FLRW Universe model, as stated in Section 2.1, is characterized by the below condi-
tions:

σ = ω = 0 = A , (2.34)

with
ρ = ρ(t) , P = P (t) , Θ = Θ(t) . (2.35)

where t is the normalized cosmic time defined by the FLRW fluid flow vector: ua = −t,a
and

Eab = 0 , Hab = 0 , (2.36)

i.e. the Weyl tensor vanishes implying that these spacetimes are conformally flat [16].
From this characterization plus the Stewart & Walker lemma of Section 1.3, the basic
GI quantities for an almost FLRW Universe are as follows:

σab ≡ h c
a h

d
b ∇(duc) −

1

3
Θhab , (2.37)

ωab ≡ h c
a h

d
b ∇[duc] , (2.38)

aa ≡ ub∇bu
a , (2.39)

Eab ≡ Cabcdu
bud , (2.40)

Hab ≡
1

2
ηabdC

bd
ceu

e , (2.41)

qa ≡ −h b
a Tbcu

c , (2.42)

πab ≡ h c
a h

d
b Tcd −

1

3
(hcdTcd)hab . (2.43)

The last two, in particular, vanish identically in the perfect fluid case and are not going
to be discussed further in this work.
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These are the simplest covariantly defined quantities which vanish in FLRW models,
and so are GI. The problem consists in the fact that the list so far discussed does not
contain quantities characterizing the variation of the 0-order variables (energy density
ρ, pressure P and fluid expansion Θ) which are in general non-zero in FLRW and so are
not GI. However, we can find associated GI quantities: namely, the orthogonal spatial
gradients of these variables:

Xa ≡ h b
a ∇b ρ , Ya ≡ h b

a ∇bP , Za ≡ h b
a ∇bΘ . (2.44)

Notice that we have replaced the covariant derivative denoted by ‘;′ with the partial one
‘,′ since ρ, P and Θ are all scalar quantities. Each quantity is GI as they all vanish
in the FLRW BG; due to Eqns. (2.2) and (2.35). The spatial gradient can, in a more
convenient notation, be denoted as:

h b
a ∇b( ) ≡ (3)∇a( ) . (2.45)

We can define two other important GI quantities, namely the divergence of the acceler-
ation, and its spatial gradient:

A ≡ ∇aa
a , Aa ≡ (3)∇aA . (2.46)

The last GI quantity we are going to define stems from the following consideration: in
the case of vanishing vorticity, the Ricci scalar (3)R is GI iff K = 0, see Eqn. (2.32).
However, its spatial gradient is always GI. Thus, for a general fluid flow, it is interesting
to define from K the GI quantity:

Ka ≡ (3)∇aK = −4

3
ΘZa + 2Xa + 2 (3)∇a(σ

2) . (2.47)

Then isocurvature fluctuations can be defined as the zero-vorticity perturbations for
which Ka = 0.

2.2.2 Key CGI variables

As we mentioned at the beginning of Chapter 1, the quantity we are mostly interested
in is the density perturbation δρ which causes the formation of cosmic structures. The
point of this discussion is that instead of considering δρ with the arbitrariness that
implies (due to gauge transformations), we can find three simple GI quantities suitable
for describing the evolution of density perturbations, without the complexity of the
Bardeen variables’ interpretation. The analogue of the density perturbation in the CGI
formalism is the spatial projection of the energy density gradient: Xa. It describes the
density inhomogeneities which we wish to investigate, for if there is an overdensity which
is a viable protogalaxy (i.e. a cloud of gas forming a galaxy), this will be evidenced by a
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non-zero value of Xa (its magnitude directly indicating how rapid the spatial variation
of density is).
However, we normally wish to compare the density gradient with the existing density,
to characterize its significance. Hence we define a second quantity, the fractional density
gradient:

χa ≡
Xa

ρ
=

1

ρ
(3)∇aρ , (2.48)

which is also GI, and represents the relative importance of the density gradient. However
there is still a problem with χa; it is not dimensionless. In fact, when we consider the
time evolution of the fluid, both Xa and χa represent the change in density to a fixed
distance, whereas in the context of considering the growth of protogalaxy fluctuations we
want to consider density variations at a fixed comoving scale. Thus the third quantity
of interest is the comoving fractional density gradient obtained simply multiplying χa by
the scale factor a(t):

Da ≡ aχa =
a

ρ
(3)∇aρ , (2.49)

which is GI and dimensionless. The time variation of this quantity precisely reflects the
relative growth of density in neighboring fluid comoving volumes; this is what we wish
to investigate. The vector Da can be separated into a direction ea and a magnitude D:

Da = Dea eae
a = 1 eau

a = 0 ⇒ D = (DaDa)2 , (2.50)

where the magnitude D is the GI variable that most closely corresponds to the intention
of the usual δρ/ρ in representing the fractional density increase in a comoving density
fluctuation. The crucial difference from the usual Bardeen definition is that D represents
a (real) spatial fluctuation, rather than a (fictitious) time fluctuation, see B.1.
Since we have defined the comoving density gradient Da its useful to introduce also the
comoving expansion gradient:

Za ≡ aZa . (2.51)

In the following section we will derive dynamical equations for these CGI variables, with
the aim of obtaining a CGI dynamical equation for the comoving density gradient Da.

2.2.3 Exact CGI dynamical equations

We now derive the propagation equations along arbitrary fluid flow lines for the previ-
ously defined quantities. We obtain dynamic equations for the zero-order quantities ρ,
P and Θ on the one hand, and for the exact quantities Xa, Ya and Za, that are GI in an
almost FLRW Universe, on the other.
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0-th order dynamical equations

ub∇aT
ab = 0 ⇒ ρ̇+Θ(ρ+ P ) = 0 , (2.52)

hac∇bT
bc = 0 ⇒ aa = −(ρ+ P )−1Ya . (2.53)

The time evolution of P is determined from the above when we specify an equation of
state determining P from ρ. Following a standard notation we define:

w ≡ P

ρ
, c2s ≡

dP

dρ
=
Ṗ

ρ̇
, (2.54)

ẇ = −(1 + w)(c2s − w)Θ , (2.55)

where c2s is the adiabatic speed of sound, defined starting from the thermodynamic
relation P ≡ P (ρ, S):

δP =
∂P

∂S
δS +

∂P

∂ρ
δρ , (2.56)

as

c2s ≡
∂P

∂ρ

∣∣∣∣
S

, (2.57)

For a barotropic fluid P = wρ and c2s = w.
Notice that the evolution equation for Θ has already been obtained, see Eqn. (2.27).
Finally the time derivative of K along the fluid flow lines obeys the equation:

(K − 2σ2)· =
2

3
Θ(6σ2 −K − 4ω2 − 2A) . (2.58)

Remember that when ω = 0 this is an equation for the evolution of (3)R. Let’s now focus
on the exact GI variables.

1-st order dynamical equations

To obtain the propagation equation for Xa we proceed directly from Eq. (2.52), per-
forming the spatial gradient of the energy conservation equation we get:

h b
a ∇b

(
ρ̇
)
+ (ρ+ P )Za +Θ(Xa + Ya) = 0 . (2.59)

After some calculations one arrives at:

(Xa)
· + (Xb)(σ

b
a + ωba) +

4

3
Θ(Xa) + (ρ+ P )Za = 0 . (2.60)

Similarly we start from the spatial variation of the Raychaudhuri equation (2.27) to
obtain the propagation equation for Za:

h b
a ∇b

(
uc∇cΘ

)
+

2

3
ΘZa + h b

a

(
2∇b(σ

2 − ω2)− Ab

)
+

1

2
(Xa + 3Ya) = 0 . (2.61)
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After some algebra we obtain:

h b
a (Zb)

· +ΘZa − aaR+

(
1

2
Xa + 2 (3)∇a(σ

2 − ω2)−Aa

)
+ Zb(σ

b
a + ωba) = 0 , (2.62)

where R is given by:

R ≡ −1

3
Θ2 − 2(σ2 − ω2) + A+ ρ+ V (2.63)

=
1

2
K + A− 3σ3 + 2ω2 . (2.64)

When the e.o.s. of the fluid is known, the evolution of Ya will follow from the one for
Xa. Let us now compute the time evolution of the comoving fractional density gradient
Da. In order to do so, we exploit its definition as in the following:

Da =
aXa

ρ
⇒ (Da)

· =
a

ρ
(Xa)

· +
ȧ

ρ
Xa −

a

ρ2
ρ̇Xa (2.65)

=
a

ρ
(Xa)

· +

(
4

3
+ w

)
ΘDa , (2.66)

from the definition of Za = aZa we get:

(Da)
· = wΘDa − (1 + w)Za −Db(σ

b
a + ωba) , (2.67)

where Za is:

(Za)
· = −2

3
ΘZa −

1

2
ρDa − Zb(σ

b
a + ωba) + a

(
aaR + Aa − 2 (3)∇a

(
σ2 − ω2

))
. (2.68)

We notice, from the above equations, that the comoving gradients Da and Za are coupled.
Their equations contain also non-linear terms coupling these quantities with σab, ω

a
b, aa,

A and Aa, too.
Therefore, to consider a closed non-linear system of equations, one should take into
account the evolution of all these quantities (including also the Maxwell-like evolution
equations for Eab and Hab).
It is not surprising that to consider the fully non-linear equation for the density gradient
one has to take into account so many other quantities. After all, the fully non-linear
system is equivalent to the complete content of the Einstein equations. We have only
chosen new variables, more suitable for the study of the growth in time of spatial density
inhomogeneities.
In order to solve the equations and determine this growth, one has therefore to adopt
some restrictive and physically motivated hypothesis. The first step in this direction is
the linear approximation.
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2.2.4 Linearization procedure

The variables we have been considering so far are exactly defined CGI quantities, thus
they have a physical or geometrical meaning in an arbitrary spacetime. We want now to
restrict our attention to a real physical spacetime which is close to a FLRW Universe.
Instead of starting from an exact FLRW model and perturb it in the standard way, we
want to approach this Universe from a general spacetime.
Following the very mentioned Stewart & Walker Lemma from Section 1.3 and the co-
variant characterization of the FLRW spacetime, we know that variables that vanish in
the FLRW background are GI. We can therefore consider two sets of variables:

• 0-th order variables: ρ(t), P (t), Θ(t) = 3H; these are variables that do not
vanish in the FLRW background, i.e. in the spacetime that is the zero-order
approximation to the physical almost FLRW Universe.

• 1-st order GI variables: these are the variables that do vanish in the FLRW
background: in considering them as first-order quantities, we automatically define
the almost FLRW Universe as the spacetime in which these variables are non-
vanishing. Terms quadratic in these variables are negligible, e.g. Da σ

a
b, ∇a(σ

2).

Our aim is now to derive linear equations for these GI (and covariant) variables, therefore
we have to establish a linearization procedure for the aforementioned exact non-linear
equations.
However, given the above characterization of our variables, such a procedure is trivial:
the variables ρ, P and Θ, that always appear in the above exact equations as coefficients
of the GI variables are needed only at zero-order, i.e. they are treated as known functions
in the equations. The quadratic and higher order GI variables are simply dropped from
the equations.

2.2.5 Linearized CGI dynamical equations

Before deriving the linear dynamical equations for our CGI variables let us introduce a
new exact quantity. In Secction 2.2.1, we have defined K = (3)R+2ω2, which reduces to
the Ricci 3-curvature scalar corresponding to the hypersurfaces orthogonal to ua when
ω = 0. We now define the new CGI variable Ca:

Ca ≡ a3 (3)∇a
(3)R = a3Ka − 2a3 (3)∇a(ω

2) , (2.69)

where Ka =
(3)∇aK has been defined previously. When ω = 0, Ca is the exact curvature

gradient of the ua orthogonal hypersurfaces. Since the last term in Ca is second-order,
it follows that at linear order, Ca is the comoving curvature gradient, i.e. Ca = a3Ka.
Expanding such an expression at linear order we obtain:

Ca = −4

3
Θa2Za + 2a2ρDa . (2.70)
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We thus have an additional physical quantity that we can exploit to obtain the linearized
dynamical equations.
Linearizing Eqns. (2.67) and (2.68) and inserting them in (2.70) we obtain the following
system of coupled differential equations:

Ḋa = wΘDa − (1 + w)Za , (2.71)

Ża = −2

3
ΘZa −

1

2
ρDa + a

(3K
a2
aa + Aa

)
, (2.72)

Ċa =
6K

a2
Θ−1

(1
2
Ca − ρa2Da

)
− 4

3
Θa3

(3K
a2
aa + Aa

)
. (2.73)

From the definition of Aa and the momentum conservation equation (2.53) we see that
to first order we have:

Aa = −
(3)∇a

(3)∇2P

(ρ+ P )
= −c2s

(3)∇a
(3)∇bDb

a(1 + w)
, (2.74)

where (3)∇2 ≡ (3)∇a
(3)∇a. The second equality follows from the assumption of adiabatic

evolution, used throughout this thesis. Notice, from Eqn. (2.73), that for a flat Universe
(K = 0) we have:

(Ca)· =
4

3

a3

ρ+ P
Θ (3)∇a

(3)∇2P , (2.75)

Thus on large scales (Ca)· = 0. Further in the case of dust (P = 0), Ca is conserved no
matter the scale.
From the above system of coupled differential equations we can then obtain the below
second-order differential equation for Da:

D̈a+
(
2−6w+3c2s

)
HḊa−

[(1
2
+4w−3c2s−

3

2
w2

)
ρ−12(w−c2s)

K

a2
+c2s

(3)∇2
]
Da = 0 . (2.76)

We now adopt the local decomposition of Da as in [2] and we write:

a (3)∇bDa ≡ ∆ab = Wab + Σab +
1

3
∆hab , (2.77)

where

Wab ≡ ∆[ab] , Σab ≡ ∆(ab) −
1

3
∆hab , Σab = Σ(ab) , Σa

a = 0 . (2.78)

In analogy with Fig. (2.1), Wab represents a spatial variation of Da with no modification
of its magnitude (i.e. a rotation of the vector Da), Σab represents a change in the spatial
anisotropy of Da, and ∆ is related to spherically symmetric spatial variation of Da where
density is accumulated. Namely ∆ is associated with spatial aggregation of matter that
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we might expect to reflect the existence of high density structures in the Universe. Using
the linear identities in Appendix A.2 we can write the scalar part of Eqn. (2.76) as:

∆̈+
(
2−6w+3c2s

)
H∆̇−

[(1
2
+4w−3c2s−

3

2
w2

)
ρ−12(w−c2s)

K

a2
+c2s

(3)∇2
]
∆ = 0 . (2.79)

This is the covariant analogue of the standard equation for the density contrast δ = δρ/ρ,
which is obtained from the above in the case we fix the comoving-orthogonal gauge. The
last term on the right demonstrates the competing effects of gravitational attraction and
pressure support, with collapse occurring when the quantity within the braces is positive.
The physical wavelength of the mode is λ = 2πa/k, so that gravitational contraction will
take place only on scales larger than the critical Jeans length:

λJ =
2πa

kJ
≈ 2πcs√

(1/2 + 4w − 3c2s − 3/2w2)ρ+ 12(w − c2s)K/a
2
. (2.80)

Gravitational collapse will occur for λ > λJ only. For λ < λJ pressure gradients are
large enough to resist the collapse and lead to oscillations instead.
For a flat (K = 0) and matter dominated (Λ = 0, w = 0 = c2s) Universe Eqn. (2.79)
becomes scale independent:

∆̈ + 2H∆̇− 1

2
ρ∆ = 0 , (2.81)

and a simple solution can be obtained:

∆(a) = ∆1a
−3/2 +∆2a . (2.82)

Matter density perturbations in the matter era grow as ∆ ∝ a on all scales. In this case,
what we will later define as the growth rate f is simply:

f =
dlog∆+

dloga
= 1 . (2.83)

In the next chapter we will extend the CGI formalism to the so-called interacting vacuum
scenario. We will, in the same manner, derive a second-order differential equation for
∆+.
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Chapter 3

Covariant gauge invariant
interacting vacuum perturbations

The recent accelerated expansion of the universe detected by the precision measurements
of type Ia supernovae (SNe Ia), anisotropies in the cosmic microwave background radi-
ation (CMB) and observations of large-scale structures (LSS) indicates that about 95%
of the total energy of our Universe is in the form of unknown dark fluid components,
namely, dark energy and dark matter. The remaining components being in the form of
baryonic matter and radiation.
Clustering dark matter with zero pressure (cold dark matter) concentrates in local struc-
tures and plays crucial role for the formation of galaxies and clusters of galaxies, while
dark energy possesses a negative pressure that drives the recent accelerated expansion.
The simplest way to describe dark energy is to associate it with a constant vacuum en-
ergy density V characterised by the equation of state parameter w = −1, equivalent to
a cosmological constant in Einstein gravity Λ = 8πGNV . In fact, if spacetime retains
a non-zero energy density even in the absence of any particles, then this energy density
would be undiluted by the cosmological expansion and could drive an accelerated expan-
sion as the density of ordinary matter and radiation become sub-dominant.
As we stated in the Chapter 1, cosmology with Λ and CDM has become the standard
model of the Universe, known as ΛCDM. However, there are a few problems even within
the model that best describes our Universe.
These problems manifest in both the discrepancy between the predicted and observed
values of the cosmological constant, and in the tensions that exist between low-redshift
probes of the expansion rate and structure growth and the corresponding values inferred
from CMB measurements (for which a cosmological model must be assumed).
The former is known as the cosmological constant problem, namely a 120 orders of mag-
nitude discrepancy between the current vacuum energy density, ρΛ ∼ 10−29g/cm3, and
the theoretical value predicted by quantum field theories ρV ∼ 1092g/cm3.
The latter involves the tensions measured in the cosmological parameters H0 and σ8.
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In recent years, the precision of surveys has improved and these tensions have be-
come more apparent, especially in the value of the present Hubble parameter H0. The
most recent CMB measurement, from the Planck satellite, is H0 = 67.4 ± 0.5 km
s−1Mpc−1, whereas the most recent local determination, from the Hubble Space Tele-
scope, is H0 = 73.45± 1.66 km s−1Mpc−1, a discrepancy of 3.7σ. The tension in σ8, the
amplitude of the linear matter power spectrum on a scale of 8 h−1Mpc, is less severe
than the H0 one, but is yet another indicator of problems within ΛCDM.

Motivated by the aforementioned issues of ΛCDM cosmology, alternative models should
be considered to explain the current accelerated expansion of the Universe, where now
the origin of dark energy is not a cosmological constant anymore.
Among the many alternative approaches present in the literature, we adopt the so-called
interacting vacuum scenario, in which we consider an interacting vacuum energy, whose
present value is dependent on energy-momentum transfer with existing matter fields
[24, 25]. Since the physics underlying the dark sector is still unknown, it could be that
vacuum energy and dark matter interact directly and exchange energy. In particular this
dark energy class of models, unlike many others, does not introduce any new dynamical
degrees of freedom and it reduces to ΛCDM when the interaction vanishes, i.e. when the
vacuum energy density V = Λ/8πGN = const.

3.1 Interacting vacuum scenario

We define a vacuum energy V to have an energy-momentum tensor proportional to the
metric:

Ť µν = −V δµν . (3.1)

By comparison with the energy-momentum tensor of a perfect fluid:

T µν = (ρ+ P )uµuν + Pδµν , (3.2)

we identify the vacuum energy density and pressure with ρ̌ = −P̌ = V . However, since
there is no particle flow the 4-velocity of the vacuum remains undefined. Note that the
energy density ρ and 4-velocity of a fluid uµ can be identified with the eigenvalue and
eigenvector of the energy–momentum tensor:

T µνu
ν = −ρuµ . (3.3)

Because the vacuum energy–momentum tensor (3.1) is proportional to the metric tensor,
any 4-velocity uµ is an eigenvector, i.e.:

Ť µνu
ν = −V uµ ∀uµ , (3.4)
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and all observers see the same vacuum energy density V , i.e. the vacuum energy is boost
invariant.
We will now consider the possibility of a time and space dependent vacuum energy, i.e.
an inhomogeneous vacuum energy. Then, from Eqn. (3.1), we have:

∇µŤ
µ
ν = Qν , (3.5)

where the energy flow is given by:

Qν ≡ −∇νV . (3.6)

We see that, if the vacuum energy is covariantly conserved Qν = 0, then V must be
homogeneous in spacetime, i.e. ∇νV = 0. Thus a non-interacting vacuum energy is
equivalent to a cosmological constant in Einstein gravity, i.e. V = Λ/8πGN .
Conversely, an interacting vacuum Qν ̸= 0, is inhomogeneous in spacetime, i.e. ∇νV ̸= 0,
which implies V = V (t, xi). Although the vacuum does not have a unique 4-velocity, we
can use the energy flow Qν to define a preferred unit 4-vector in the interacting vacuum
case:

ǔµ =
−∇µV√
|∇νV∇νV |

, (3.7)

normalized such that ǔµǔ
µ = ±1, for a spacelike or timelike flow. Note however that ǔµ

defines a potential flow, i.e. we have no vorticity ∇[µǔν] = 0. This is not a negligible
fact, as it leads to some physical issues. We will discuss these issues later in Section 3.4.
The conservation of the total energy-momentum (including matter fields and vacuum
energy) in GR is:

∇µT
µ (tot)
ν = ∇µ(T

µ
ν + Ť µν) = 0 , (3.8)

and implies that the vacuum transfers energy-momentum to or from the matter fields:

∇µT
µ
ν = −Qν . (3.9)

If we consider the dark sector, the above implies an energy-momentum transfer between
the two dark components, i.e. CDM and vacuum.
We now consider the interaction 4-vector Qµ and project it in two parts, parallel and
orthogonal to the cold dark matter 4-velocity uµ:

Qµ = Quµ + fµ . (3.10)

In the frame of observers comoving with cold dark matter (i.e. for a vanishing fµ),
Q represents the energy flow; while in a generic frame, fµ is the momentum exchange
between CDM and vacuum. In particular, fµ is defined to be orthogonal to uµ, i.e.
fµuµ = 0.
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3.1.1 Spatially homogeneous background

The symmetries of a spatially homogeneous and isotropic FLRW metric require the
vacuum to be spatially homogeneous and isotropic, too; hence V = V̄ (t). This time
dependence, due to a non-zero energy transfer Q ̸= 0, is what distinguishes the present
background from the ΛCDM case. In this context, vacuum and matter are both homo-

Figure 3.1: (a) In an FLRW cosmology the homogeneous spatial hypersurfaces are orthogonal to both
the fluid 4-velocity uµ, and the vacuum energy flow Qµ. (b) In an inhomogeneous cosmology the spatial
hypersurfaces orthogonal to the fluid 4-velocity (light orange) and the vacuum energy flow (dark red)
do not necessarily coincide.

geneous on spatial hypersurfaces orthogonal to the matter four-velocity uµ = (1, 0̄). We
remark the fact that the energy flow ǔµ, and the matter velocity uµ, necessarily coincide
in FLRW cosmology due to the assumption of isotropy.
We have then the following dynamical equations for a flat (K = 0) FLRW Universe:

• continuity equation for matter fields:

ρ̇+ 3H(ρ+ P ) = −Q , (3.11)

• continuity equation for vacuum:
V̇ = Q , (3.12)

• Friedmann constraint equation:

H2 =
8πGN

3
(ρ+ V ) , (3.13)

• Friedmann Raychaudhuri equation:

Ḣ +H2 = −4πGN

3
(ρ− 2V ) , (3.14)
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As one can see from Eqn. (3.14), in both cases: the non-interacting one V = Λ/8πGN

and the interacting one with V > 0, the vacuum energy density always contributes pos-
itively to ä, eventually accelerating the expansion if and when it becomes the dominant
component.

3.2 CGI interacting vacuum

This is a rather central section of the thesis; we ‘translate’ D. Wands papers [24, 25] on
vacuum perturbations into the previously seen CGI formalism adopted by Ellis & Bruni
in [1, 2].
Let’s then apply the CGI formalism of Chapter 2 to the interacting vacuum scenario. In
order to do that, we need to define a new additional CGI quantity, the vacuum energy
spatial gradient Va, that adds to our set of exact variables, see Section 2.2.2:

Va ≡ (3)∇aV = h b
a ∇bV = −h b

a Qb = −fa , (3.15)

where the last equality follows from the splitting of Qb. This covariant gauge invariant
quantity, at first order, corresponds to the comoving vacuum perturbation of [24, 25].
It goes without saying that the above follows from the definition of the h b

a projector, it
being orthogonal to the fluid 4-velocity ua.
If we now consider the ȟ b

a projector, orthogonal to the energy flow 4-velocity ǔa in Eqn.
(3.7), we obtain the vacuum energy spatial gradient V̌a, which is defined as:

V̌a = ȟ b
a ∇bV = −ȟ b

a ǔb |∇cV∇cV |1/2 = 0 , (3.16)

and vanishes so by construction. The above CGI notation is clearly equivalent to what
appears in [24, 25]. However, using the covariant approach, we notice that in the ǔµ

frame of reference the vacuum is now exactly unperturbed. This being valid at all orders
not just linearly as highlighted in the aforementioned papers. In Appendix B we show
explicitly that both, the covariant and standard approaches are, as expected, totally
equivalent at linear order.

3.2.1 Exact CGI interacting dynamical equations

From the conservation of the total energy-momentum tensor in Eqn. (3.8), using the
(1+3) splitting, we project ∇µT

µν
(tot) = 0 along the time and space directions in the

following manner:

uν∇µT
µν
(tot) = 0 ⇒ ρ̇+Θ(ρ+ P ) = −V̇ , (3.17)

haν∇µT
µν
(tot) = 0 ⇒ aa = −(ρ+ P )−1(Ya − Va) , (3.18)
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obtaining so energy and momentum conservation, respectively. We also have from Eqns.
(3.6) and (3.15) that:

V̇ = Q and Va = −fa . (3.19)

To obtain the propagation equation for Xa in an interacting vacuum scenario we proceed
directly from Eqn. (3.17). Performing the spatial gradient of the energy conservation
equation we so obtain:

h b
a ∇b

(
ρ̇+ V̇

)
+ (ρ+ P )Za +Θ(Xa + Ya) = 0 . (3.20)

Now we can write:

h b
a ∇b

(
ρ̇+ V̇

)
= h b

a ∇b

(
∇c(ρ+ V )uc

)
(3.21)

= h b
a ∇c∇b(ρ+ V )uc + h b

a ∇c(ρ+ V )(σcb + ωcb +
1

3
Θhcb) (3.22)

where we have used for a generic scalar ∇b∇cf = ∇c∇bf . It is useful to express the first
term in the RHS of the previous equality as:

h b
a ∇c∇b(ρ+ V )uc = h d

a ∇c

[
h b
d ∇b(ρ+ V )

]
uc − h d

a ∇c

(
h b
d

)
uc∇b(ρ+ V ) (3.23)

= h b
a (Xb + Vb)

· − h d
a

(
adu

b + abud
)
∇b(ρ+ V ) (3.24)

= h b
a (Xb + Vb)

· + (Ya − Va)(ρ+ P )−1(ρ̇+ V̇ ) (3.25)

= h b
a (Xb + Vb)

· −Θ(Ya − Va) , (3.26)

where we have used ∇ahbc = 0 for the spatial projector. From the above relation we can
now write the exact covariant expression:

(Xa + Va)
· + (Xb + Vb)(σ

b
a + ωba) +

4

3
Θ(Xa + Va) + (ρ+ P )Za = 0 . (3.27)

This is the CGI equivalent of δρ in [24, 25], see B.2. Following Chapter 2, let us explicitly
compute the expressions for the three relevant CGI quantities; now in an interacting
vacuum scenario:

Da =
aXa

ρ
, Za = aZa , Ca = a3 (3)∇a

(3)R , (3.28)

where, unlike before, V in (3)R is not a constant term:

(3)R = 2

(
− 1

3
Θ2 + ρ+ V

)
+ 2(σ2 − ω2) . (3.29)

We begin with the derivation of the evolution equation for Za. Computing the spatial
variation of the Raychaudhuri equation (2.27) we get:

h b
a ∇b

(
uc∇cΘ

)
+

2

3
ΘZa + h b

a

(
2∇b(σ

2 − ω2)− Ab

)
+

1

2
(Xa + 3Ya − 2Va) = 0 . (3.30)
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The first term of this equation can be rephrased as:

h b
a ∇b

(
uc∇cΘ

)
= h d

a h
b
d u

c(∇b∇cΘ) + h b
a u

c∇cΘ∇b (3.31)

= h d
a uc∇c(h

b
d ∇bΘ)− h d

a (∇bΘ)uc∇ch
b
d + Zb(σ

b
a + ωba) +

1

3
ΘZa (3.32)

= h b
a (Zb)

· − Θ̇aa + Zb(σ
b
a + ωba) +

1

3
ΘZa , (3.33)

where we have used the same method as before. If we now substitute the last expression
in Eqn. (3.30), we obtain:

h b
a (Zb)

· + aa

(
1

3
Θ2 + 2

(
σ2 − ω2

)
− A+

1

2
(ρ+ 3P − 2V )

)
+ Zb(σ

b
a + ωba) + ΘZa+

+ h b
a

(
2∇b(σ

2 − ω2)− Ab

)
+

1

2
(Xa + 3Ya − 2Va) = 0 . (3.34)

Expanding the time derivative of Za:

h b
a (Za)

· = h b
a

(
ȧZb + a

(
Zb

)·)
, (3.35)

and substituting in the above we arrive at:

(Za)
· = −2

3
ΘZa − aaa

(
1

3
Θ2 + 2

(
σ2 − ω2

)
− A+

1

2
(ρ+ 3P − 2V )

)
−Zb(σ

b
a + ωba)+

− a
(
2 (3)∇a(σ

2 − ω2)− Aa

)
− 1

2
(ρDa − 3aYa + 2aVa) , (3.36)

from which we finally obtain:

(Za)
· = −2

3
ΘZa −

1

2
(ρDa + aVa)−Zb(σ

b
a + ωba)+

+ a
(
aaR∗ + Aa − 2 (3)∇a

(
σ2 − ω2

))
. (3.37)

The difference between the quantity R in Eqn. (2.63) and R∗ is the replacement of the
constant Λ with the varying vacuum energy V .†

Let us now compute the time evolution of the comoving fractional density gradient Da.
In order to do so, we exploit its definition as in the following:

Da =
aXa

ρ
⇒ (Da)

· =
a

ρ
(Xa)

· +
ȧ

ρ
Xa −

a

ρ2
ρ̇Xa (3.38)

=
a

ρ
(Xa)

· +

(
4

3
+ w

)
ΘDa +

Q

ρ
Da , (3.39)

†Notice that if the vacuum energy V is constant, V = Λ/8πGN , then the interacting vacuum
equations reduce, as expected, to the expressions of Chapter 2.
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where we now have, w.r.t. to the ΛCDM case, an additional term Q coming from the
background interaction. Projecting the above with h a

c and inserting Eqn. (3.27) in place
of the time derivative of Xa we arrive at:

(Da)
· = −(1 + w)Za + wΘDa +

V̇

ρ
Da −

4

3

a

ρ
ΘVa −

a

ρ
(Va)

·

−Db(σ
b
a + ωba)−

a

ρ
Vb(σ

b
a + ωba) . (3.40)

Finally one can compute the time evolution of Ca from Eqn. (3.28):†

Ca = −4

3
Θa2Za + 2a2ρDa + 2a3Va + 2a3 (3)∇a(σ

2 − ω2) . (3.41)

Notice that all the above equations are written in terms of CGI variables, hence they
are exact. In the following sections, we are going to linearise the above equations and
consider two cases of physical interest: the inhomogeneous vacuum where fµ ̸= 0, and
the homogeneous vacuum where fµ = 0.

3.3 Inhomogeneous vacuum model

In this general case we keep vacuum inhomogeneities Va = −fa ̸= 0, i.e. we have non-
zero momentum transfer between vacuum and CDM; as we will later discuss in Section
3.4, neglecting it may lead to false interpretations of cosmological observations.
At the very base of the interacting vacuum scenario is the aim to give a description of
the possible interaction between the two dark components of our Universe, namely cold
dark matter (CDM) and vacuum. In this context, we are going to expand the above
equations at first-order following the same procedure used in Chapter 2. In particular,
since we are dealing with pressure-less CDM in a flat FLRW background the following
simplifications are in order:

P = 0 , K = 0 . (3.42)

We now go on with the linearisation procedure, from Section 3.2.1 we then have:

(Da)
· =

Q

ρ
Da −Za −

4

3

a

ρ
ΘVa −

a

ρ
(Va)

· (3.43)

(Za)
· = −2

3
ΘZa −

1

2
ρDa −

a

2
Va +

a

ρ
(3)∇a

(3)∇2V , (3.44)

†The expression for (Ca)· is not so enlightening; hence we will not present its exact form here.
However, in the linear case and under some particular conditions, it does acquire some physical insight,
as we will later see.
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where the spatial laplacian term in Za comes from the following linearisation in the
P = 0 case:

aa =
Va
ρ

⇒ A =
∇aV

a

ρ
⇒ Aa =

1

ρ
(3)∇a

(3)∇2V . (3.45)

Taking the expression for Aa and comparing it with the one in Eqn. (2.74), we im-
mediately realise that the two equations have the same form with opposite signs. The
presence of vacuum causes a positive acceleration whose action, unlike pressure, is to
counteract gravity.
The time evolution of Ca can now be explicitly derived starting from Eqn. (3.41). After
some calculations we end up with:

(Ca)· = −4

3

a3

ρ
Θ (3)∇a

(3)∇2V . (3.46)

Notice that the above has the same form of the ΛCDM Eqn. (2.73), in the case we there
set K = 0.† Notice further that Ca is conserved on large scales. Using the linearized
version of Eqn. (3.41) we can write Za as:

Za = −3

4
Θ−1a−2Ca +

3

2
Θ−1ρDa +

3

2
Θ−1aVa , (3.47)

from which we finally obtain the time evolution of Da:

(Da)
· =

(
Q

ρ
− 3

2
Θ−1ρ

)
Da +

3

4
Θ−1a−2Ca −

(
3

2
Θ−1a+

4

3

a

ρ
Θ

)
Va −

a

ρ
(Va)

· ,

=

(
Q

ρ
− 3

2
Θ−1ρ

)
Da +

3

4
Θ−1a−2Ca+

−
(
3

2
Θ−1a+

4

3

a

ρ
Θ+ a

Q

ρ2
− 1

3

a

ρ
Θ

)
Va −

a

ρ
Qa ,

(3.48)

where in the above we have used for the time derivative of Va:

(Va)
· = aaV̇ +Qa −

1

3
ΘVa

=
Va
ρ
Q+Qa −

1

3
ΘVa .

(3.49)

We have defined the energy transfer spatial gradient as Qa ≡ (3)∇aQ = (3)∇aV̇ . What we
have here presented is the first order expansion of the CGI interacting vacuum dynamics.
This corresponds to a CGI ‘translation’ of the work done by Borges et al. in [32].

†This again suggests that the action of vacuum on the curvature is the same as a negative pressure.
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The main result of his paper is the derivation of a second order equation for the dark
matter density contrast δ, in the comoving gauge. Such a result is obtained assuming
a particular ansatz for the vacuum interaction δV ∼ Va, in the case of a decomposed
generalized Chaplygin gas. In our treatment we have remained completely generic and
we have assumed no explicit form for the momentum transfer Va. However, an ansatz
for the latter quantity is obviously required if one wants to obtain a solution for Da.
In the following we are going to discuss the geodesic CDM model, where we have no
vacuum perturbations, i.e. Va = −fa = 0.

3.4 Homogeneous vacuum model

In this case, like in the above, we consider pressure-less cold dark matter (CDM) in-
teracting with vacuum. However, this time we describe the interaction in a simplified
manner; namely we consider a pure energy exchange in the CDM frame wherein fa = 0
and so Qa = Qua.†

Notice that the momentum transfer a.k.a. 4-force fa is related to the 4-acceleration
aa = ub∇bu

a by:
fa = aaρ . (3.50)

Since we set fa = 0, it follows that aa = 0 by construction (since also P = 0), meaning
there is no acceleration in a frame comoving with CDM due to both, pressure gradients
and the interaction with vacuum, as can be seen from Eqn. (3.18). Hence CDM remains
geodesic. We may call this interacting scenario the geodesic CDM scenario, see [28, 27].
A remarkable fact, concerning geodesic CDM models, e.g. ΛCDM, is that they have, for
matter perturbations, a vanishing speed of sound. This fact implies that the dynamical
equations are scale independent, see Eqn. (2.79).

Irrotational cold dark matter

This case, as we have previously mentioned, has a very important consequence following
from the assumption of pure energy exchange, Qa = Qua or equivalently ǔa = ua. In fact,
from Eqn. (3.7) the cold dark matter 4-velocity ua defines a potential flow ua ∝ ∇aV .
This means that CDM is described by an irrotational fluid. We expect this to be a
good description of cold dark matter at early times and on large scales where the initial
density field is set by primordial scalar perturbations.
This is sufficient for a linear perturbative treatment where only scalar perturbations are
relevant for the initial growth of structures, but at late times we would expected the
non-linear growth of structures to develop vorticity and indeed to develop rotationally
supported dark matter haloes. Thus we expect the geodesic approximation to break

†Remember that the energy-momentum tensor of a pure matter fluid is characterized by P = 0,
thus T a

b = ρuaub.
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down below some length scale. Otherwise truly irrotational CDM would have distinctive
observational consequences. In fact, if fa = 0, i.e. for vanishing vorticity, CDM collapses
too easily leading to problems in the process of structure formation [30].

In this context, we are going to expand the above equations at first-order following
the same procedure outlined in Chapter 2. In particular, since we are now dealing with
geodesic CDM we have the additional simplification w.r.t. the previous case:

P = 0 , K = 0 , fa = 0 . (3.51)

From the inhomogeneous case we now obtain:

(Da)
· =

Q

ρ
Da −Za , (3.52)

(Za)
· = −2

3
ΘZa −

1

2
ρDa , (3.53)

(Ca)· = 0 . (3.54)

The scalar part of Eqn. (3.52) is the CGI analogue of the equation for δ̇ in [27]; where,
in the mentioned paper the author has chosen a comoving and synchronous gauge, see
Appendix B.2. Taking also the linearised geodesic CDM case of Eqn. (3.27) we notice
two things:

• For fa = 0, i.e. if we consider a frame comoving with CDM, then vacuum in-
teractions do no explicitly appear. This is immediate in the CGI approach, in
accordance with [24, 25].

• To describe matter perturbations one usually considers the density contrast δ =
δρ/ρ. Using this quantity, the interaction is then re-introduced via the evolution
of the background ρ, which, now, is that of an interacting vacuum cosmology [27].

The last point cannot be stressed enough, as it shows that the interaction has an effect
also on the perturbations and not just on the background. This, in turn, has important
implications for the cosmological growth of structures. We will explicitly discuss this in
the upcoming Chapter 4.
Going back to our set of Eqns. (3.52) - (3.54), using the linearized version of Eqn. (3.41)
we can write Za as:

Za = −3

4
Θ−1a−2Ca +

3

2
Θ−1ρDa , (3.55)

which can be used to write the time derivative of Da in the following manner:

(Da)
· =

(
Q

ρ
− 3ρ

2Θ

)
Da +

3

4a2Θ
Ca . (3.56)
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Considering the corresponding scalar quantities Da → ∆, Za → Z and Ca → C as done
in Chapter 2 we obtain:

∆̇ =

(
Q

ρ
− 3ρ

2Θ

)
∆+

3

4a2Θ
C . (3.57)

We now adopt Borges & Wands notation [31] and introduce the dimensionless interaction
parameter g defined as:

g ≡ −aQ
Hρ

, (3.58)

in this way we can write the above as:

H∆′ +
(1
2
a2ρ+ gH2

)
∆− 1

4
C = 0 , (3.59)

from which, performing a time derivative, we finally obtain:

∆′′ + (1 + g)H∆′ +
(
(gH)′ + gH2 − 1

2
a2ρ

)
∆ = 0 . (3.60)

It is standard practice to write the general solution of the above equation as a linear
combination of a growing mode and a decaying mode:

∆(η,x) = C1(x)∆+(η) + C2(x)∆−(η) . (3.61)

We can relate these solutions with C through the first integral in Eqn. (3.59). The
decaying mode ∆− is the solution of the homogeneous part while the growing mode ∆+

is the solution corresponding to the particular part with source term C ̸= 0. Hereafter,
we discard the decaying mode and in what follows we are left with the growing mode
driven by the nonzero CGI scalar curvature C:

∆(η,x) = C1(x)∆+(η) . (3.62)

Fixing the initial conditions at a given initial moment from (3.59) we have:

C1(x)

[
d∆+

da
4aH2 + 4aH2∆+

(3
2
a−1Ωm + g a−1

)]
I

= C , (3.63)

we so obtain:

C1(x) =
C

4H2
I∆I

(
fI +

3

2
Ωm,I + gI

)−1
, (3.64)

where we have introduced the linear growth rate defined as:

f =
∆′

+

H∆+

. (3.65)
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From the above we can now write ∆(η,x) in (3.61) as:

∆(η,x) =
C

4H2

(
f +

3

2
Ωm + g

)−1

. (3.66)

We remind the reader that up to this point we still haven’t fixed any gauge. Let’s now
proceed with the choice of a synchronous gauge comoving with the fluid 4-velocity of
CDM ua, fixed by setting ϕ = v = B = 0. Let us now expand at, first-order, the exact
matter continuity Eqn. (3.17):†

δρ′ + a δΘρ+ 3Hδρ = 0 , (3.67)

using the following identity, [
δρ

ρ

]′
=
δρ′

ρ
− ρ′

ρ
δ , (3.68)

we can then write:
δ′ + gHδ + aδΘ = 0 . (3.69)

Substituting the growing mode solution (3.62) and (3.65) in the continuity equation
(3.69) we obtain the following expression for the expansion perturbation δΘ:

δΘ = −(f + g)Hδ . (3.70)

In Section 4.5.2, we will use the latter expression to study redshift-space distortions.
In order to find explicit solutions for the growing mode ∆+(a) from Eqn. (3.60), we need
a physical model for vacuum interactions, i.e. a given form of the energy transfer Q.
This is precisely what we are going to discuss in the next and final chapter.

†Note that we are here fixing the gauge just for coherence with the literature in [31, 27]. One could
have equivalently kept our covariant notation describing peculiar velocities by means of the scalar CGI
variable Z.
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Chapter 4

Interacting vacuum models

Before going into the details of what has been obtained in this final chapter, let’s have
a look back at what we have done so far in this thesis. In Chapter 1, we have presented
the standard theory of cosmological perturbations, following Bardeen approach, for the
ΛCDM model. In Chapter 2 we have used the Ellis & Bruni CGI one based on the
covariant approach to cosmology. In Chapter 3 we have presented a possible alternative
to the ΛCDM model. In the interacting vacuum scenario we allow an interaction between
the two dark components, namely CDM and vacuum energy. As done for Chapter 2, we
have then ‘translated’ the standard cosmological perturbation theory into the CGI one,
showing the equivalence of the two approaches in Appendix B.
We now apply all the previously discussed theoretical background in the present chapter.
We consider as our starting point the second order dynamical differential equation for
∆+(a) in Chapter 3 and solve it numerically for three different geodesic CDM interacting
vacuum models. The first one is the linear vacuum model, where the energy transfer
Q is proportional to the vacuum energy V . The second and the third models come
from the decomposition into interacting CDM and vacuum of preexisting unified dark
matter models: the generalized Chaplygin gas and the Shan-Chen dark energy models,
respectively. The aim being to see how the growth rate f(a), describing how much
cosmological structures grow, is affected by these different types of interactions. We
further confront the three interacting vacuummodels with the ΛCDM case, using relevant
values for the parameters Ωm0, q, α and q∗ from [27, 29, 37]. In the final Section 4.5.2
we, additionally, present an analytical approximation for the growth rate f(a) proposed
by Borges & Wands [31].
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4.1 Growth of structures in an interacting vacuum

scenario

In this section we recover and elaborate the linear geodesic CDM results obtained at the
end of Chapter 3; we start from Eqn. (3.60):

∆′′ + (1 + g)H∆′ +
(
(gH)′ + gH2 − 1

2
a2ρ

)
∆ = 0 . (4.1)

One can rephrase the latter equation as a function of the scale factor a(t) by means of
the following relation between η and a derivatives:

d

dη
≡ aH d

da
. (4.2)

Inserting the Friedmann Eqns. (3.13) and (3.14) in the above, we get:

d2

da2
∆+ a−1

(
3 + g − 3

2
Ωm

) d

da
∆+

(
(aH)−1 d

da
(gH) + a−2(g − 3

2
Ωm)

)
∆ = 0 , (4.3)

where we have used Ωm(a) ≡ a2ρ/3H2. The expressions for g, Ωm and H can be derived
using the continuity and Raychaudhuri equations; obviously they will depend on the
chosen form for the energy transfer Q.
Let’s derive these background expressions first for the non interacting case. In such a
framework, Q = 0 → g = 0, vacuum energy neither decays nor grows, in fact since
V̇ = Q = 0, it remains constant both in time and space, i.e. V = Λ/8πGN . This case is
equivalent to a cosmological constant; hence we go back to ΛCDM. In this context, from
the Raychaudhuri background equation:

H′ =
1

2
(2− 3Ωm)H2 , (4.4)

we get

H(a) = aH0

[
1− Ωm0 +

Ωm0

a3

]1/2
. (4.5)

While from the continuity equation for the density parameter Ωm:

Ω′
m = [−3(1− Ωm) + g]HΩm , (4.6)

we obtain

Ωm(a) =
Ωm0

Ωm0 + (1− Ωm0)a3
. (4.7)

The subscript ‘0’ refers to the present value (a0 = 1) and the density parameters obey
the relation Ωm + ΩV = 1.
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For early times, a ≪ 1, we have a matter-dominated epoch, i.e. a Einstein de Sitter
cosmology with Ωm ≈ 1. At late times, a ≫ 1, a de Sitter vacuum dominated epoch is
obtained, in which case ΩV ≈ 1.
In the following we consider three geodesic cold dark matter models where g ̸= 0, i.e. we
take different parameterisations for the energy transfer Q and we impose the geodesic
condition, i.e. we neglect the momentum exchange by setting fa = 0, as in Section (3.4).
In particular, the models we are going to discuss are: linear vacuum interacting model,
generalised Chaplygin gas interacting model and Shan Chen interacting model.
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4.2 Linear vacuum interacting model

4.2.1 Linear vacuum interacting background

This geodesic CDM model is characterized by a simple parameterisation of the energy
transfer Q, i.e. Q = qHV as in [26, 27, 31]. The constant q is a dimensionless parameter
that describes the strength of the CDM-vacuum energy coupling. Such a form for Q
allows us to obtain simple analytical solutions for both V and ρ.
In fact, from the two continuity Eqns. (3.11) and (3.12) we obtain for the two background
energy densities ρ and V :

ρ =
3H2

0

3 + q

(
(q + 3Ωm0)a

−3 − qΩV 0a
q
)
, (4.8)

V = 3H2
0ΩV 0a

q . (4.9)

In particular, from the latter expression of the vacuum energy density V it is immediate
to realise that:

• for q > 0 the vacuum grows, i.e. we have an energy transfer from matter to vacuum.

• Conversely, for q < 0 the vacuum decays, hence we have an energy transfer from
vacuum to matter.

Eqns. (4.8) and (4.9) imply the following for the Hubble parameter H(a), the matter
density parameter Ωm(a) and the dimensionless interaction parameter g(a):

H(a) = H0

√
3(1− Ωm0)a3+q + 3Ωm0 + q

(3 + q)a
, (4.10)

Ωm(a) =
3Ωm0 + q − q(1− Ωm0)a

3+q

3Ωm0 + q + 3(1− Ωm0)a3+q
, (4.11)

g(a) = −
(
1− Ωm

Ωm

)
q . (4.12)

The standard matter dominated era, recovered at early times, i.e. a≪ 1 implies Ωm ≈ 1
and g ≈ 0.† Again, the ΛCDM model corresponds to the q = 0 case.
From these background solutions we can then plot the scale factor a(t) as a function of
the cosmic time t for different values of the coupling strength q. From Fig. (4.1) we
immediately understand what is the effect of this interaction on the background:

†Notice that Ωm(a) becomes negative for values q > 0 at large times (a≫ 1).
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Figure 4.1: Scale factor a(t) as a function of the adimensionless cosmic time, H0 = 1, for a two component
cosmology with a linear vacuum-CDM interaction. Five different q values are shown, for all of them
Ωm0 = 0.3. Notice that, for a≪ 1 (matter domination) a ∼ t2/3, while for a≫ 1 (vacuum domination)
a ∼ et.

• for q > 0 we have an enhancement of a(t) w.r.t. ΛCDM.

• The opposite for q < 0.

In other words the vacuum-CDM interaction contributes, depending on the sign of q,
to increase or diminish the accelerated expansion of the Universe. In particular, for a
growing/decaying V , we obtain a Universe which expands more/less rapidly compared
to the non-interacting case (ΛCDM).

4.2.2 Numerical solutions for the linear vacuum model

The above expressions for H(a), Ωm(a) and g(a) are all we need in order to solve the
second order differential equation (4.3).
As one might have guessed, it is not possible to obtain an analytical result for the growing
mode ∆+(a). Hence, we have used Mathematica to find a numerical solution. In order to
obtain the below plots, the initial conditions have been set at very early times: aI ∼ 10−3,
i.e. during a standard matter dominated era, where ΩmI = 1, fI = 1 and gI = 0:

∆+I(aI = 10−3) = 10−3 , (4.13)

∆′
+I(aI = 10−3) = 1 . (4.14)

The initial amplitude ∆+I and ∆′
+I come from the behaviour of the growing mode and

the growth rate in an Einstein de Sitter cosmology, see Section 2.2.5. The effect these
initial conditions have on structures’ growth is evident: at early times (a ≪ 1) we have
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Figure 4.2: Left Panel: First order growing mode ∆+(a) as a function of scale factor a for the linear
vacuum model. We have five different curves corresponding to five different values of the coupling
strength: q = +0.2 (yellow curve, top), q = +0.1 (red curve), q = 0 (Λ black curve), q = −0.1 (blue
curve) and q = −0.2 (green curve, bottom). For all of them Ωm0 = 0.3. Right Panel: First order
growth rate f(a), as a function of scale factor a for the aforementioned coupling strength values of the
linear vacuum model.

a matter dominated behaviour, i.e. ∆+(a) ∼ a; only at later times (a ≃ 1) we start
having a significant departure from the Einstein de Sitter case. This is precisely what we
expect, given the very recent domination of the dark energy component. The solution
for both, the first order growing mode ∆+(a) and the first order growth rate f(a) have
been plotted in Fig. (4.2). In this plot we have considered five different values for the
dimensionless coupling q.†

In the q < 0 case, vacuum decays into CDM. In this context, the first order growing
mode is suppressed w.r.t. the ΛCDM case, for a given value of the nowadays Ωm0, see
Fig. (4.2). This is because CDM is lower at early times when we fix its density today.
In other words, since V decays into CDM, we need less matter in the past in order to
reach the same value of Ωm0 today. As a consequence, since the growth of structures
depends mainly on Ωm(a) [41], this leads to a suppression in the growing mode ∆+(a)
w.r.t. ΛCDM case.
Conversely, when we have an energy flow from cold dark matter to the vacuum, i.e. when
q > 0, cold dark matter is annihilated. In this case there is enhancement in both the
first order growing mode ∆+(a) and the first order growth rate f(a). The reason for this
following from the same principle that has led to an enhancement of ∆+(a) and f(a)
in the q < 0 case. We remark that, this fact that may appear counterintuitive, if one
looks at the BG evolution in Fig. (4.1), is instead simply a consequence of the initial
conditions, set during matter domination.

†Notice that in the q = 0 case we go back to the ΛCDM model.
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Constraints on the linear vacuum growth rate

What we do now, is to use the constraints imposed on the parameters Ωm0 and q, from
the Cfix case in Martinelli et al. [27].
In particular, we want to see how both, the first order growing mode ∆+(a) and the
first order growth rate f(a) behave w.r.t. the ΛCDM model. We have taken the two
parameters in the below one σ range, values obtained in [27] using Planck+Low-z data.†

We have then plotted ∆+(a) and f(a) for both the interacting Q = qHV , and the non

q Ωm0

0.4 ± 0.10 0.2674 ± 0.0250

interacting Q = 0 (i.e. ΛCDM) cases, see Fig. (4.3). Considering the largest possible
intervals for both the quantities ∆+(a) and f(a), we see from Fig. (4.3) that the ΛCDM
values are well inside the linear vacuum model range. From the below numerical results
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Figure 4.3: Left Panel: First order growing mode ∆+(a) as a function of scale factor a for the linear
vacuum model. Right Panel: First order growth rate f(a) as a function of scale factor a for the
linear vacuum model. In both graphs we have considered the largest possible intervals coming from
the previous constraints on the parameters. For ΛCDM, even if they are not distinguishable, we have
plotted 3 curves corresponding to the one σ range of the Ωm0 parameter.

we extrapolate the values in Tab. (4.1) for aeq(q); i.e. the value of the scale factor
corresponding to CDM-vacuum energy equality, and the growth rate f(a) calculated
respectively at aeq and a0.
We notice from Tab. (4.1) that aeq grows with q: let’s explain this feature for the
q > 0 case (q < 0 being exactly the opposite). As a consequence of taking a positive q

†More precisely Planck 2015 measurements of the CMB temperature and polarization and the BAO
scale measurement from the SDSS DR7 Main Galaxy Sample, see [27] and references therein.
The constraint placed on the ΛCDM parameter Ωm0 comes instead from the more recent Planck2018
data, see Aghanim et al. [36].
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q+ = +0.14 qbf = +0.04 q− = −0.06 ΛCDM

aeq 0.769 0.723 0.668 0.711
feq 0.815 0.720 0.626 0.683
f0 0.829 0.585 0.276 0.478

Table 4.1: aeq, feq and f0 as a function of the coupling strength q for the linear vacuum model.

(following the same reasoning as before) we have that CDM is annihilated into vacuum
energy; this means that, in order to have the same amount of CDM today Ωm0 (our fixed
initial condition), we should have had more CDM in the past. This, in turn, implies a
longer matter dominated phase w.r.t. the standard q = 0 case.
By the same token, one can see that the growth rate f(a) grows with the coupling
strength q as well. In particular, for the best fit values, we notice that the growth rate
decreases less rapidly w.r.t. the ΛCDM case.
Let us now focus on another interacting vacuum model, the generalised Chaplygin gas
interacting model.
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4.3 Generalised Chaplygin gas interacting model

The generalised Chaplygin gas interacting vacuum (geodesic CDM) model is character-
ized by a simple parameterisation of the energy transfer Q:

Q = 3αH
( ρV

ρ+ V

)
. (4.15)

as in [24, 28, 31, 32]. Again, ρ and V are the CDM and vacuum energy densities,
respectively; H is the Hubble parameter. The constant α is a dimensionless parameter
that describes the strength of the vacuum-CDM energy coupling, just like the previous
case.
However, before going on with the interacting vacuum scenario, let us briefly discuss
the generalised Chaplygin gas model, from which the above energy transfer has been
obtained.

4.3.1 Generalised Chaplygin Gas

The discovery that the expansion of the Universe is accelerating [33], and the dominance
of dark energy and dark matter in the present cosmological energy density has led many
people to seek a unified description in terms of a single dark component, referred to as
unified dark matter. This dark component should explain both the current accelerated
expansion of the Universe and the role of non-baryonic dark matter in structure forma-
tion.
One candidate from this kind of models is the generalized Chaplygin gas (GCG) [34].
The GCG model is described by a perfect fluid, defined by an exotic equation of state:

P = − A

ρα
, (4.16)

with parameters α and A.† Inserting the above equation of state, for the Chaplygin gas
(α = 1 case), into the relativistic energy conservation equation leads to the following
energy density:

ρ =

√
A+

B

a6
, (4.17)

where a is the scale factor and B is an integration constant. By choosing a positive value
for B we see that for small a (i.e. a6 ≪ B/A) Eqn. (4.17) is approximated by:

ρ ∼
√
B

a3
, (4.18)

†The GCG model with α = 1 reduces to the original Chaplygin gas (CG), firstly proposed by
Kamenshchik et al. [35].
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Figure 4.4: Cosmological evolution of a Universe described by a generalized Chaplygin gas equation of
state.

that corresponds to a Universe dominated by dust-like matter. For large values of a we
instead have:

ρ ∼
√
A , P ∼ −

√
A , (4.19)

which, in turn, corresponds to a Universe dominated by a cosmological constant
√
A. We

have just showed that this simple and elegant model smoothly interpolates between an
Einstein de Sitter phase where ρ ≃

√
Ba−3, and a de Sitter phase where P = −ρ = −

√
A.

This transition is not discrete but it takes place gradually via an intermediate regime.
In fact, if one considers the subleading terms in Eqn. (4.17) for large values of a, then
one obtains the following expressions for ρ and P :

ρ ≃
√
A+

√
B2

4A
a−6 , (4.20)

P ≃ −
√
A+

√
B2

4A
a−6 . (4.21)

The above equations describe a mixture between a cosmological constant
√
A and a type

of matter known as “stiff” matter, described by the equation of state P = ρ, see [35].
Let’s see now the GCG case, where α is now unfixed. Solving the continuity equation
we have:

ρ =

(
A+

B

a3(1+α)

) 1
1+α

, (4.22)

with limiting cases given by:

a≪ 1 ⇒ ρ ∼ B
1

1+α

a3
, (4.23)

a≫ 1 ⇒ ρ ∼ A
1

1+α . (4.24)
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The effective equation of state in the intermediate regime, between the dust dominated
phase and the de Sitter phase, can be obtained expanding Eqn. (4.22) at subleading
order in a, like the CG case:

ρ ≃ A
1

1+α +

(
1

1 + α

)
B

A
1

1+α

a−3(1+α) , (4.25)

P ≃ −A
1

1+α +

(
1

1 + α

)
B

A
1

1+α

a−3(1+α) . (4.26)

The above corresponds to a mixture of vacuum energy density and matter described this
time by the “soft” equation of state, P = αρ [34].
As mentioned above, this unified dark matter model is able to describe both a matter
dominated phase and a vacuum energy dominated phase. What we are going to do now
is to decompose this perfect fluid into two interacting components: a pressureless cold
dark matter with energy density ρ and a vacuum term V with equation of state P̌ = −V ,
as in [24, 25].

4.3.2 GCG interacting background

In general, any dark energy fluid energy–momentum tensor:

T µν = (ρde + P de)u
µuν + P deδ

µ
ν , (4.27)

can be described by pressureless matter, with density ρ and velocity uµ, interacting with
the vacuum V , such that ρde = ρ+ V . The corresponding matter and vacuum densities
are given by

ρ = ρde + P de V = −P de , (4.28)

while the energy flow is Qµ = ∇µP de. In an FLRW cosmology this corresponds to
Q = −Ṗ de. For a generic decomposition into two interacting barotropic fluids such that
ρde = ρ1 + ρ2, one would end up doubling the d.o.f. unless one of these fluids is the
vacuum.
In the GCG we have:

PgCg = − A

ρα
⇒ ρgCg =

(
A+

B

a3(1+α)

) 1
1+α

, (4.29)

from which, following the above decomposition, one obtains:

ρ = ρgCg − V , (4.30)

V = Aρ−αgCg . (4.31)
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Expanding the latter expression we get:

V = A(A+Ba−3(1+α))−
α

1+α ⇒ A = (ρ+ V )αV . (4.32)

The form of the FLRW solution suggests then a simple interaction:

Q = 3αH
( ρV

ρ+ V

)
. (4.33)

In the vacuum or matter dominated limits this reduces to an interaction of the form
Q ∝ Hρ or Q ∝ HV where the latter one corresponds to the studied linear vacuum case.
As for the previous model, from V̇ = Q we notice that:

• for α > 0 the vacuum grows, i.e. we have an energy transfer from matter to
vacuum.

• Conversely, for α < 0 the vacuum decays, hence we have an energy transfer from
vacuum to matter.

Fixing the parameters A and B at present time:

A = (3H2
0 )
αV0 , (4.34)

B = (3H2
0 )

1+α
[
1− V0

3H2
0

]
, (4.35)

we can now obtain, solving the background Eqn. (4.4) (usingMathematica), the following
expressions for the Hubble parameter H(a), the matter density parameter Ωm(a) and
the dimensionless interaction parameter g(a):

H(a) = aH0

[
1− Ωm0 +

Ωm0

a3(1+α)

] 1
2(1+α)

, (4.36)

Ωm(a) =
Ωm0

Ωm0 + (1− Ωm0)a3(1+α)
, (4.37)

g(a) = −3α(1− Ωm) . (4.38)

The standard matter era is recovered at early times, i.e. a≪ 1 with Ωm ≈ 1 and g ≈ 0.
As usual, the ΛCDM model corresponds to taking α = 0 in the above equations. In the
special case α = −1/2 we have from Eqn. (4.36) the following Hubble rate:

H(a) = aH0

[
1− Ωm0 +

Ωm0

a3/2

]
, (4.39)
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and thus from Eqn. (4.37):
H ′

H
= −3

2
HΩm . (4.40)

Comparing the above with V ′ = aQ, for Q as in Eqn. (4.33), we see that V ′/V = H ′/H.
Thus the vacuum density decays linearly with the Hubble rate, e.g. V = 2ΓH, and
matter is produced at a constant rate ρ̇+ (3H − Γ)ρ = 0.
From these background solutions we can then plot the scale factor a(t) as a function of
the cosmic time t as done for the previous case. Fig. (4.5) shows seven different α values.
From the plot we see that vacuum-CDM interaction leads, depending on the sign of α,
to an enhanced or reduced acceleration for the scale factor, just like the previous linear
vacuum model. In particular, notice the behaviour of the two cyan lines: the dashed
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Figure 4.5: Scale factor a(t) as a function of the adimensionless cosmic time, H0 = 1, for a two component
cosmology with a GCG vacuum-CDM interaction. Seven different α values are shown, where for all the
solid curves Ωm0 = 0.3. The dashed curve corresponds instead to Ωm0 = 0.45.

one Ωm0 = 0.45, grows more w.r.t. to the solid one Ωm0 = 0.3, at early times (matter
domination); but later on (vacuum domination), it is this latter that ‘wins’, thanks to a
lower value of Ωm0.

4.3.3 Numerical solutions for the generalised Chaplygin gas

Inserting the expressions for H(a), Ωm(a) and g(a) in the second order differential equa-
tion (4.3) and using Mathematica, we find different numerical solutions for ∆+(a) de-
pending on the given α coupling values. Once again, the initial conditions have been
set at very early times. The solution for both, the first order growing mode ∆+(a) and
the first order growth rate f(a) have been plotted in Fig. (4.6). In this plot we have
considered seven different values for the dimensionless coupling α.†

†Notice that for α = 0 we go back to the ΛCDM model.
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In the α < 0 case, vacuum decays into CDM. In this context, the first order growing
mode ∆+(a) and the first order growth rate f(a) are both suppressed w.r.t. the ΛCDM
case, for a given value of the present Ωm0. The explanation of the behaviours of ∆+(a)
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Figure 4.6: Left Panel: First order growing mode ∆+(a) as a function of scale factor a for the GCG
interacting model. We have seven different curves corresponding to seven different values of the coupling
strength: α = +0.2 (yellow curve, top), α = +0.1 (red curve), α = 0 (Λ black curve), α = −0.1 (blue
curve), α = −0.2 (green curve), where we have used Ωm0 = 0.3. For α = −0.5 we adopted Ωm0 = 0.45
(cyan dashed curve) and Ωm0 = 0.3 (solid curve, bottom). Right Panel: First order growth rate f(a),
as a function of scale factor a for the aforementioned coupling strength values of the GCG interacting
model.

and f(a) for different values of α is the same as in the linear vacuum model, we refer so to
Section 4.2.2. However, it is worth explaining why the dashed cyan curve (Ωm0 = 0.45)
grows more w.r.t. the solid one (Ωm0 = 0.3). Once more, the explanation follows the
same reasoning of the aforementioned section. In this case α is fixed, i.e. α = −0.5 and
we have two different Ωm; where a bigger Ωm0 (dotted cyan curve) simply requires more
matter in the past to be reached w.r.t a smaller Ωm0 (solid cyan curve).
Hence, since the growth of structures depends mainly on Ωm(a) [41], ∆+(a) and f(a) are
enhanced for a higher present matter density parameter Ωm0.
In Section 4.5.2 we will compare the present numerical results with an analytical approx-
imation proposed by Borges % Wands in [31].

Constraints on the interacting GCG growth rate

Once again the aim is to see how both, the first order growing mode ∆+(a) and the first
order growth rate f(a) behave w.r.t. the ΛCDM model using some constraints imposed
on the parameters Ωm0 and α.†

We take the two parameters in the below one σ range, taken from Wang et al. [29]

†The constraint placed on the ΛCDM parameter Ωm0 = 0.2645±0.0052 comes from the Planck2018
data, see Aghanim et al. [36].
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constraints using Planck2015+WP+BAO data.† We have so plotted ∆+(a) and f(a) for

α Ωm0

0.011 ± 0.054 0.2533 ± 0.0179

both the interacting Q = 3αH(ρV )/(ρ+V ) and the non-interacting Q = 0 (i.e. ΛCDM)
cases, see Fig. (4.7). Considering the largest possible intervals for both the quantities
∆+(a) and f(a), coming from α and Ωm0 one σ limits, we see from the below plots that
the ΛCDM values are well inside the interacting GCG range. From the below plots we

α∈[-0.043,+0.065]

α=+0.011

α=0 (ΛCDM)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

a

Δ+

α∈[-0.043,+0.065]

α=+0.011

α=0 (ΛCDM)

0.0 0.2 0.4 0.6 0.8 1.0
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

a

f

Figure 4.7: Left Panel: First order growing mode ∆+(a) as a function of scale factor a for the GCG
interacting model. Right Panel: First order growth rate f as a function of scale factor a for the
GCG interacting model. In both graphs we have considered the largest possible intervals coming from
the previous constraints on the parameters. For ΛCDM, even if they are not distinguishable, we have
plotted 3 curves corresponding to the one σ range of the Ωm0 parameter.

extrapolate the following values for aeq(α); i.e. the value of the scale factor corresponding
to vacuum-CDM energy equality, and the growth rate f(a) calculated respectively at aeq
and a0. We notice from Tab. (4.2) that both aeq and f grow with α as in the linear

α+ = +0.065 αbf = +0.011 α− = −0.043 ΛCDM

aeq 0.734 0.700 0.663 0.711
feq 0.773 0.699 0.623 0.683
f0 0.617 0.489 0.355 0.478

Table 4.2: aeq, feq and f0 as a function of the coupling strength α for the GCG interacting model.

vacuum model. In particular, unlike the linear vacuum model, we can see from Fig. (4.7)
that the best fit f(a), i.e. for α = αbf, is basically indistinguishable from ΛCDM.

†For a more detailed description about how the constraints have been imposed check Wang papers
[28, 29].
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4.4 Shan-Chen interacting model

As we have already seen, the validity of the cosmological constant’s use as the dark energy
has long been questioned, and many alternatives have been proposed. In the previous
sections, we have considered two interacting vacuum models: the linear vacuum [27], and
the GCG [28, 29].
We now consider a more exotic case, namely the interacting Shan-Chen (SC) model
following the recent work of Hogg & Bruni [37]. As for the GCG, before presenting its
interacting vacuum analogue, we consider the original unified dark matter SC model.
This model describes a Universe filled with a cosmological fluid characterized by the SC
equation of state, i.e. a non-ideal e.o.s. with ‘asymptotic freedom’. This equation of
state corresponds to an ideal gas behavior (i.e. we have no interaction among the gas
constituents) at both low and high density regimes, with a liquid-gas coexistence phase
in between (i.e. a region of temperature and pressure in which the fluid can be in both
the liquid and gas state).
The idea of an ‘asymptotic free’ non-ideal equation of state was first proposed by Shan
& Chen (SC) in the context of lattice kinetic theory [38], this is why in the above we
have used some atypical terms. In particular, the term ‘asymptotic freedom’ refers to the
fact that attraction among particles becomes vanishingly small beyond a given density
threshold; and since high density implies short spatial separation we then understand
the use of such term.
For a detailed discussion we refer to [38, 39, 40]; what we need to know is that this model
was successfully applied in the cosmological context by Bini et al. [39, 40]. In fact, they
have found that a dark energy fluid with a Shan–Chen equation of state naturally evolves
towards a Universe with a late time accelerating expansion without the presence of a
cosmological constant.

4.4.1 The Shan-Chen equation of state

The nonlinear Shan-Chen equation of state is:

P = wρ∗

[
ρ

ρ∗
+
g

2
ψ2

]
, (4.41)

where ρ is the energy density of the fluid and ψ is given by:

ψ = 1− e−α
ρ
ρ∗ , (4.42)

where ρ∗ is a characteristic energy scale and w, g and α are free (dimensionless) param-
eters of the model.
In the Shan-Chen model of dark energy introduced by Bini et al. [39, 40], the matter-
energy content of the Universe is assumed to be a perfect fluid which obeys the equation
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of state (4.41), ρ∗ being identified with the critical density today: ρ∗ = ρcrit,0 = 3H2
0 ,

where H0 is the value of the present Hubble parameter.
We can then define the effective equation of state parameter weff as:

weff =
P (ρ)

ρ
= w +

wgρ∗
2ρ

(
1− e−α

ρ
ρ∗

)2

. (4.43)

Clearly, this only depends on x = ρ/ρ∗. Although the energy scale ρ∗ is physically
meaningful, in that it determines at which energies the nonlinear term in (4.42) becomes
relevant, it has no influence on the qualitative behaviour of the Shan–Chen effective
equation of state, see [37].
Around ρ∗ the fluid is not ideal, while in the limits ρ ≫ ρ∗ and ρ ≪ ρ∗ we get P = wρ
and the usual linear equation of state is thus recovered. In general, several different dark
energy models can be obtained from Eqn. (4.42); for a more complete description of
such an equation of state see once again [37, 40].

SC interacting model

Let’s present now, as we have done for the GCG case, the (geodesic CDM) interacting
SC model. We can recast the above SC model as a parameterisation of the coupling Q
between the vacuum and cold dark matter, starting from:

ρ̇ = −3H(ρ+ P (ρ)) , (4.44)

we insert P from Eqn. (4.41) and replace ρ with the vacuum energy density V . In this
way we obtain an expression for the energy transfer Q between vacuum and cold dark
matter which is given by:

Q = V̇ = −3Hq

[
(1 + β)V +

βg

2
ρ∗

(
1− e−α

V
ρ∗

)2
]
. (4.45)

To avoid confusion with the dark energy case, we have renamed the parameter w as β.
Additionally, we have also introduced the dimensionless parameter q which controls the
overall strength of the interaction. When q = 0, there is no interaction and we therefore
return to ΛCDM.
Notice that we have a number of additional free parameters in the SC interacting vacuum
model with respect to ΛCDM: q, α, g, β and ρ∗. In the simplified case we are going to
examine we will fix α, g, β to the best fit values of Bini et al. [39]: α = 2.7, g = −8.0,
β = 1/3.
q is instead free to vary and ρ∗, the characteristic energy scale, is fixed at the critical
density today in ΛCDM, i.e. ρ∗ = ρcrit,0, as we are interested in the effects the interaction
may have at late times.
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For later convenience we define an effective equation of state for the Shan-Chen inter-
acting vacuum, which we call wint. In analogy with Eqn. (4.43) we can rewrite (4.45)
as

Q̂ = (V̂ )· = Hx(1 + wint) , (4.46)

where we define

wint = q∗

[
(1 + β) +

βg

2x

(
1− e−αx

)2
]
− 1 . (4.47)

Where now x = V/ρ∗ and the hatted quantities have been divided by ρ∗, i.e. Q̂ = Q/ρ∗
and V̂ = V/ρ∗. In addition, we have scaled the parameter q such that q∗ ≡ −q/3. In this
manner, for β = 0, we go back to the notation in [31]. In the case wint = −1, i.e. V̇ = 0,
we return once again to the ΛCDM case. In the following we have plotted wint(x), where
have kept fixed, at their best fit values, all the parameters except q∗. From Fig. (4.8) we
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Figure 4.8: Behaviour of wint as a function of x = V/ρ∗ for different values of q∗ for the interacting SC
model. The black wint = −1 line separates growing vacuum models from the decaying ones.

can see the effect of changing both the magnitude and sign of the interaction strength q∗.
In particular, changing its sign simply mirrors curves with same parameter values about
the wint = −1 line. In all cases shown there are two cosmological constants where the
curves cross the wint = −1 line. In general, at high energies (i.e. x≫ 1) wint behaves as
a constant, then the nonlinear term in Eqn. (4.47) becomes dominant for x ≃ 1.
For models above the wint = −1 line (dark yellow and red lines) V grows from high
energies to the cosmological constant on the right, or to zero from the cosmological
constant on the left. For models below the wint = −1 line (dark blue and dark green
lines) V decays from the cosmological constant on the right to high energies, or from
zero to the cosmological constant on the left.
Models in between the two cosmological constants, grow or decay between the two for
wint > −1 and wint < −1 respectively. For a complete analysis of wint where also β, g
and α are left free, see [37].
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4.4.2 Numerical solutions for the Shan Chen model

We now focus on the Id case in Hogg & Bruni [37] where we fix α, g and β to the Bini
et al. best fit values: α = 2.7, g = −8.0, β = 1/3 with ρ∗ = ρcrit,0 = 3H2

0 . The only free
parameter being the adimensional coupling strenght q∗. Unlike the previous cases, where
we had a linear equation of state, we are now facing a model with the more complicated
interaction parameter Q̂:

Q̂ = q∗Hx

[
(1 + β) +

βg

2x

(
1− e−αx

)2
]
. (4.48)

The non-linear term in Q̂, makes even the simpler dynamical equations for ρ̂ and x an-
alytically unsolvable. Therefore, unlike the linear vacuum and GCG interacting models,
we had to solve everything numerically (always using Mathematica) from the beginning.
Inserting the numerical results for H(a), Ωm(a) and g(a) in the second-order differential
equation (4.3), we then find different numerical solutions for the first order growing mode
∆+(a) depending on the given coupling strength values q∗.
The initial conditions have been set at very early times as for the previous cases; the
solution for both, the first order growing mode ∆+(a) and the first order growth rate
f(a) have been plotted in Fig. (4.9). Notice that the behaviour of both ∆+(a) and f(a)
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Figure 4.9: Left Panel: First order growing mode ∆+(a) as a function of scale factor a for the SC
interacting model. We have five different curves corresponding to five different values of the coupling
strength: q∗ = 0.2 (yellow curve, bottom), q∗ = 0.1 (red curve), q∗ = 0 (Λ black curve), q∗ = −0.1 (blue
curve), q∗ = −0.2 (green curve, top), where we have used Ωm0 = 0.3. Right Panel: First order growth
rate f(a), as a function of scale factor a for the SC interacting model. The coupling strength values
being the same as before.

is the opposite w.r.t. to the previous two cases. In fact for q∗ > 0 we have this time a
suppression of ∆+(a) and f(a) w.r.t. the ΛCDM case. The reason being the negative
value of the square bracket term in Eqn. (4.48), due to the best fit parameters.
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This, in turn, implies an energy transfer:

• from CDM to vacuum, Q̂ > 0 (growing vacuum) for q∗ < 0,

• and from vacuum to CDM Q̂ < 0 (decaying vacuum) for q∗ > 0.

Constraints on the interacting SC growth rate

We now use the constraints imposed on the parameters Ωm0 and q∗ to plot the first
order growing mode ∆+(a) and the first order growth rate f(a). The aim being to
compare the present SC case to the ΛCDM model.† We take the two parameters in
the below one σ range, obtained by Hogg & Bruni [37] using Planck2018+BAO+SDSS
data.‡ Considering the largest possible intervals for both ∆+(a) and f(a), coming from

q∗ Ωm0

0.017 ± 0.02 0.2408 ± 0.0202

q∗ and Ωm0 one σ limits, we see from Fig. (4.10) that the ΛCDM values are slightly above
the interacting SC range. This time the explanation for this has nothing to do with the
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Figure 4.10: Left Panel: First order growing mode ∆+(a) as a function of scale factor a for the SC
interacting model. Right Panel: First order growth rate f(a) as a function of scale factor a for the
SC interacting model. In both graphs we have considered the largest possible intervals coming from
the previous constraints on the parameters. For ΛCDM, even if they are not distinguishable, we have
plotted 3 curves corresponding to the one σ range of the Ωm0 parameter.

adimensional interacting parameter q∗, whose range includes also the non-interacting

†The constraint placed on the ΛCDM parameter Ωm0 = 0.2645±0.0052 comes from the Planck2018
data, see Aghanim et al. [36].

‡For a more detailed description about how the constraints have been imposed check [37].
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q∗ = 0 case. The motivation comes instead from the almost total non-overlapping of the
Ωm0 ΛCDM and SC parameters. This is also the reason why, in this best fit plot, we
have the q∗ > 0 dashed line above the q∗ < 0 one, unlike Fig. (4.9) and like the two
previously discussed interacting cases in Sections 4.2.2, 4.3.3.
From the plots in Fig. (4.10) we extrapolate the following values for aeq(q∗); i.e. the
value of the scale factor corresponding to CDM-vacuum energy equality, and the growth
rate f(a) calculated respectively at aeq and a0. We notice from Tab. (4.3) that both aeq

q∗,+ = +0.037 q∗bf = +0.017 q∗,− = −0.003 ΛCDM

aeq 0.707 0.682 0.657 0.711
feq 0.682 0.683 0.683 0.683
f0 0.473 0.453 0.431 0.478

Table 4.3: aeq, feq = f(aeq) and f0 = f(a0) as a function of the coupling strength q∗ for the SC
interacting case.

and f0 grow with q∗ as in the previous models.† The almost non-overlapping one σ ranges
of the ΛCDM and SC parameters Ωm0 and the non-linear term in Q̂ make the range of
the growth rate interacting SC values to only slightly overlap with ΛCDM, unlike the
two previous cases. From the plots in Fig. (4.10), we can state that the whole range
of growth rate values f(a), coming from the constraints on the parameters, for this SC
interacting model, decreases more rapidly than the ΛCDM one.

†Pay attention to the fact that feq is actually f(aeq), aeq changing with q∗ as in Tab. (4.3). This
means that, unlike for f0, we are calculating f(a) at different scale factor values.
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4.5 An analytical approximation

In this section we are going to present an analytical approximation proposed by Borges
& Wands in [31]. Since the approximation involves the quantity f rsd, i.e. the redshift-
space distortion growth rate, before going into further details of the approximation, let
us briefly discuss redshift-space distortions.

4.5.1 Redshift-space distortions

Redshift-space distortions (RSD) arise from peculiar velocities of galaxies. If we use
redshift as distance, the inferred distance to a galaxy is related to its redshift z, by:

s = cz . (4.49)

This distance is usually referred to as the redshift distance of the galaxy. The true
distance expressed in velocity units is:

r = H0d , (4.50)

which we will refer to as the real distance of the galaxy.† s and r are related by:

s = r + vr , (4.51)

where vr = v · r̂ is the peculiar velocity along the line-of-sight. Peculiar velocities
introduce a radial anisotropic distortion in redshift-space via a Doppler effect. This
observed anisotropy provides information about the formation of large-scale structures.
In the linear regime (i.e. on sufficiently large scales), the distortion is a ‘squashing’ in
the radial (line of sight) direction, while in the nonlinear regime there is a stretching
(‘finger of god’) effect.
On large scales, the peculiar velocity of an infalling shell is small compared to its radius,
and the shell appears squashed. On smaller scales, not only is the radius of a shell
smaller, but also its peculiar infall velocity tends to be larger. For the shell that is
just at turnaround, its peculiar velocity cancels the Hubble expansion, and it appears
collapsed to a single velocity in redshift space. On even smaller scales, shells that are
collapsing in proper coordinates appear inside out in redshift space. The combination
of collapsing shells with previously collapsed, virialised shells, gives rise to the ‘finger-of-
god’ shape, see Fig. (4.11).
In the interacting model RSDs constrain structure growth; in fact the divergence of the
peculiar velocity field, ∇ · vr ∼ a δΘ, is related to the density contrast δ by Eqn. (3.70)
that we here report:‡

δΘ = −(f + g)Hδ . (4.52)

†We assume that all galaxies are local enough that a linear mean Hubble relation is appropriate.
‡Notice that we are now in a synchronous gauge comoving with the CDM 4-velocity ua (as at the

end of Chapter 3). The scalar part of the CGI variable ∆ then reduces simply to ∆ = a2δ.
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Figure 4.11: An illustration of how peculiar velocities distort the galaxy distribution in redshift-space
in different regimes.

In a standard ΛCDM cosmology, where the dimensionless interaction parameter g = 0,
the variance of the expansion is characterized by:〈δΘ2

H2

〉1/2

= f(a)σ8(a) , (4.53)

where f(a) is the linear growth rate and σ8(a) = ⟨δ(a)2⟩1/2 is the rms mass fluctuation
in a sphere with comoving radius 8h−1Mpc which is used to describe the amplitude of
density perturbations.†

More generally, for interacting models, the dimensionless interaction parameter g(a)
contributes explicitly in (4.52) for redshift-space distortions. If we assume that galaxies
still trace the motion of the underlying dark matter then the variance of the expansion
(4.52) is given by: 〈δΘ2

H2

〉1/2

= f rsd(a)σ8(a) , (4.54)

where
f rsd(a) = f(a) + g(a) . (4.55)

We remark the fact that, in principle, independent measurements of the RSD parameter
f rsd and the linear growth rate for the density contrast f could reveal the effective dark

†The 8h−1Mpc value for the comoving radius is due to the fact that galaxy distributions are strongly
inhomogeneous on scales approximately ≤ 8h−1Mpc, but starts to approach homogeneity on significantly
larger scales.
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matter interaction, namely if the dimensionless interacting parameter g vanishes or not.
Now that we have sketched the effect that RDSs have on the growth of structures, we
can discuss the analytical approximation of Borges & Wands [31].

4.5.2 An analytical approximation for the growth rate

The second order differential equation (4.1) for the density contrast:

δ′′ + (1 + g)Hδ′ +
(
(gH)′ + gH2 − 1

2
a2ρ

)
δ = 0 , (4.56)

can be written as a first-order differential equation for the redshift-space distortion pa-
rameter f rsd, substituting in the above equation, Eqn. (4.55). After some lengthy calcu-
lations we get:

2H−1f ′
rsd + (2f rsd + 4− 3Ωm − 2g)f rsd = 3Ωm . (4.57)

In the conventional matter-dominated era for a≪ 1 with Ωm = 1 and the dimensionless
interaction parameter g = 0, we have a solution corresponding to the standard growing
mode with f rsd = f = 1 and the linear growing mode is proportional to the scale factor,
δ+ ∝ a.† This describes the early growing mode at high redshifts as g → 0 and Ωm → 1
in the linear vacuum and GCG interacting models, as well as ΛCDM.
More generally, when vacuum energy contributes to the total density (Ωm < 1) we can
express the first-order equation (4.57) for the RSD parameter as a function of the density
parameter, written in terms of ΩV = 1− Ωm.

2(3ΩV − g)(1− ΩV )
d

dΩV

f rsd + (2f rsd + 1 + 3ΩV − 2g)f rsd = 3(1− ΩV ) , (4.58)

where we have used

H−1 d

dη
= (3ΩV − g)(1− ΩV )

d

dΩV

. (4.59)

Note that g(ΩV ) is a given function of the density parameter ΩV , in both the linear
vacuum and GCG interaction models. In the case Ωm = 1 (also ΩV = 0), from Eqns.
(4.12) and (4.38) it follows that g = 0.
We then expand the dimensionless interaction parameter g = 0 as a Taylor series about
the standard matter-dominated (Ωm = 1, ΩV = 0) solution, namely:

g(ΩV ) ≃ g(0) +
dg

dΩV

∣∣∣∣
ΩV =0

ΩV + · · · (4.60)

g(ΩV ) ≃ g1ΩV + · · · . (4.61)

†There is also a solution f rsd = f = −3/2 corresponding to the standard decaying mode.
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We can do the same thing for the RSD parameter:

f rsd(ΩV ) = f(ΩV ) + g(ΩV ) (4.62)

f rsd(ΩV ) ≃ f(0) + g(0) +
d(f + g)

dΩV

∣∣∣∣
ΩV =0

ΩV + · · · (4.63)

f rsd(ΩV ) ≃ f rsd,0 + f rsd,1ΩV + · · · . (4.64)

This approximation is justified by the fact that, as found by Lahav & Lilje in [41], f rsd

depends mainly on Ωm(a) at any epochs.†

Let us now apply the above approximation to Eqn. (4.58). Order by order in ΩV we get:

0-th order ⇒ (1 + 2f rsd,0)f rsd,0 = 3 , (4.65)

1-st order ⇒ (3− 2g1 + 2f rsd,1)f rsd,0+

+ (1 + 2f rsd,0)f rsd,1 + 2(3− g1)f rsd,1 = −3 . (4.66)

For the ΛCDM case with g = 0 we have from the above:

(1 + 2f rsd,0)f rsd,0 = 3 , (4.67)

(3 + 2f rsd,1)f rsd,0 + (1 + 2f rsd,0)f rsd,1 + 6f rsd,1 = −3 . (4.68)

This gives either f rsd,0 = −3/2 (decaying mode) or f rsd,0 = 1 (growing mode) and
then, for the first order growing mode, f rsd,1 = −6/11, corresponding to the well known
approximation in [41, 42]:

f = f rsd ≃ Ω6/11
m , (4.69)

More generally, we can give a similar approximation for the RSD parameter in terms of
Ωm when g ̸= 0. For the models in Sections 4.2, 4.3 we can as well write:

f + g = f rsd ≃ Ω γ
m . (4.70)

Linear vacuum case

For the linear vacuum case we have g = −qΩV (1 − ΩV )
−1 hence g1 = −q, then from

Eqns. (4.65)-(4.66) we obtain f rsd,0 = 1 and f rsd,0 = −γ where γ is:

γ =
6 + 2q

11 + 2q
. (4.71)

†Intuitively, the growth rate of matter density perturbations has to depend on the matter content
of the Universe Ωm.
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Figure 4.12: Left Panel: First order growth rate fB(a) as a function of scale factor a for the illustrated
(linear vacuum model) q values. Dotted lines stand for the analytical approximation while the solid
ones for numerical solutions. Right Panel: Relative percentage difference between the analytical
approximation fB and its numerical solutions for the linear vacuum model. Notice that the errors
remain under 3.5% for |q| ≤ 0.2.

Generalised Chaplygin gas

For the GCG case we have g = −3αΩV hence g1 = −3α, then from Eqns. (4.65)-(4.66)
we obtain f rsd,0 = 1 and f rsd,0 = −γ where γ this time is:

γ =
6 + 6α

11 + 6α
. (4.72)

As shown in Figs. (4.12) and (4.13), the analytical formula (4.70) for the RSD parameter
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Figure 4.13: Left Panel: First order growth rate fB(a) as a function of scale factor a for the illustrated
(GCG interacting model) α values. Dotted lines stand for the analytical approximation while the solid
ones for numerical solutions. Right Panel: Relative percentage difference between the analytical
approximation fB and its numerical solutions for the GCG interacting model. Notice that the errors
remain under 1.5% for |α| ≤ 0.5.
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can be used as a good approximation for both the interacting models. For the linear
vacuum case, shown in Fig. (4.12) the expression (4.70) with the growth index (4.71) is
a good approximation with errors below 3.5% for |q| ≤ 0.2.
For the GCG case, shown in Fig. (4.13) the expression (4.70) with the growth index
(4.72) is an even better approximation with errors below 1.5% for |α| ≤ 0.5.
In both cases, the approximations for f rsd become extremely accurate at early times
where (1−Ωm) = ΩV ≪ 1. In accordance with the fact that we have initially expanded
f rsd around Ωm = 1.
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Conclusions

In this elaborate we have shown, for three different models, how the growth rate of cosmic
structures, f(a), is affected in the case we allow an interaction in the dark sector, namely
between CDM and vacuum energy. But let’s make a step back and sum up what we
have done from the beginning. In Chapter 1 we have lied the foundations of the ΛCDM
model, which is based on the homogeneous and isotropic FLRW spacetimes. Later in
this chapter, we have analysed, from both the differential geometry point of view and
the physical point of view, the standard theory of cosmological perturbations; which
has been developed perturbing the aforementioned symmetric spacetimes. In Chapter
2, we have instead discussed an alternative way, w.r.t. the Bardeen one, of dealing with
cosmological perturbations, which is both covariant and gauge-invariant. This is the
CGI approach to cosmological perturbations developed by Ellis & Bruni. Adopting this
latter formalism, we have presented, in Chapter 3, an alternative to the ΛCDM model
generically known as the interacting vacuum scenario. This class of models is based on the
possible existence of a dark sector interaction, namely an energy-momentum exchange
between the two unknown dark components: CDM and a dark energy with w = −1
e.o.s., i.e. a vacuum energy. This as many other alternative models are motivated by the
lack of physical interpretation of the cosmological constant Λ, and the both theoretical
and observational issues of ΛCDM.
In the final Chapter 4, we have obtained numerical solutions for the growing mode of
the scalar comoving density contrast ∆+(a), this being the part that best reflects the
formation of cosmic structures. The numerical solutions have been obtained for three
relevant geodesic CDM (no momentum exchange allowed) interacting vacuum models: a
linear vacuum, the generalised Chaplygin gas (GCG) and the Shan-Chen (SC) interacting
models. All of them, in the case we fix the matter density parameter today Ωm0, display
the same behaviour: for a growing vacuum, i.e. Q > 0, the growth rate f(a) decreases
less rapidly than the non-interacting limit (ΛCDM); while for a decaying vacuum, i.e.
Q < 0, the growth rate f(a) decrease faster than ΛCDM. We have then considered the
constrained parameters of these models and found that the best fit range of the growth
rate f(a) of the first two mentioned interacting models overlaps with the entire set of
values of ΛCDM. However, in the SC interacting case, due to its non-linear equation of
state, we have found a very small overlap between the SC and ΛCDM best fit growth
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rate range.
In conclusion we want to remark the fact that, as stated in Section 4.5.2, the existence
of this vacuum-CDM interaction could, in principle, be detected through independent
measurements of the redshift-space-distortions parameter f rsd and the linear growth rate
of the density contrast f .
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Appendix A

Some useful CGI relations

A.1 Scalar relations

For a generic scalar f we have the following relation:(
(3)∇af

)·
= ∇c

(
(3)∇af

)
uc (A.1)

= ∇c

(
h b
a ∇bf

)
uc (A.2)

= ∇ch
b
a u

c∇bf + h b
a ∇c∇bfu

c (A.3)

=
(
∇cuau

cub + ua∇cu
buc

)
∇bf + (3)∇aḟ (A.4)

= aaḟ + ua a
b (3)∇bf + (3)∇aḟ − (3)∇b(σ

b
a + ωba)−

1

3
Θ (3)∇af . (A.5)

At linear order: (
(3)∇af

)·
= aa

˙̄f + (3)∇aḟ −H (3)∇af . (A.6)

A.2 Vector relations

For a generic tensor Xb we have the following relation at linear order:

a (3)∇a(Ẋb) = a (3)∇a(uc∇cXb) (A.7)

= a (3)∇auc(∇cXb) + a (3)∇a(∇cXb)uc (A.8)

= a
(
h d
a h

e
c (∇due)∇cXb +

(3)∇a(∇cXb)uc

)
(A.9)

= a
(
H (3)∇aXb + ((3)∇aXb)

·
)

(A.10)

=
(
ȧ (3)∇aXb + a((3)∇aXb)

·
)

(A.11)

= (a (3)∇aXb)
· , (A.12)
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where the second term in (A.8) has been written at first order:

(3)∇a(∇cXb)uc =
(3)∇a(∇c)Xbuc +∇c (3)∇a(Xb)uc (A.13)

= ((3)∇aXb)
· . (A.14)

We then see that

a (3)∇a(Ẋ
a) = a

(
H (3)∇aX

a + ((3)∇aX
a)·

)
(A.15)

= HX + a(Xa−1)· (A.16)

= Ẋ . (A.17)

The same goes for the second time derivative of Xb

a (3)∇a(Ẍb) = a (3)∇a(uc∇cẊb) (A.18)

= ȧ (3)∇aẊb + a((3)∇aẊb)
· , (A.19)

implying thus

a (3)∇a(Ẍ
a) = ȧ (3)∇aẊ

a + a((3)∇aẊ
a)· (A.20)

= HẊ + a(Ẋa−1)· (A.21)

= Ẍ . (A.22)
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Appendix B

Equivalence between the standard
and covariant approaches

B.1 From Ellis & Bruni to Bardeen GI variables

The standard approach to cosmological perturbation theory is based on the Bardeen
GI variables [4]. These variables are nothing else than linear combination of gauge-
dependent first-order quantities constructed ad hoc to be GI first-order variables. This
approach, unlike the CGI one is based on coordinates; therefore most of these Bardeen
GI variables acquire a physical or geometrical significance only once a specific gauge is
chosen. Expanding the E&B CGI variables [1, 2], at first-order, we expect to recover
Bardeen first-order variables; this is indeed the case. We show this equivalence for our
key GI quantity Da, we refer to [2] for a complete list. In the following calculations we
have used the metric:

ds2 = −(1 + 2ϕ)dt2 + 2a∂iB dt dxi + a2(t)[(1− 2ψ)δij + 2∂i∂jE]dx
idxj . (B.1)

The inhomogeneous linear, scalar perturbations are given by

ρ(t, xi) = ρ̄(t) + δρ(t, xi) (B.2)

P (t, xi) = P̄ (t) + δP (t, xi) (B.3)

V (t, xi) = V̄ (t) + δV (t, xi) , (B.4)

the four-velocity of matter is given by:

uµ = [1− ϕ, a−1∂iv] , uµ = [−1− ϕ, ∂iθ] , (B.5)

with θ = a(v +B).
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Spatial metric

h b
a = δ b

a + uaub (B.6)

h̄ b
a + δh b

a = δ b
a + ūaū

b + ūaδu
b + δuaū

b (B.7)

δh b
a = ūaδu

b + δuaū
b . (B.8)

Spatial gradient of a scalar quantity

(3)∇af ≡ h b
a ∇bf (B.9)

=
(
δ b
a + ūaū

b + ūaδu
b + δuaū

b
)
∇b(f̄ + δf) (B.10)

= h̄ b
a ∇b(f̄ + δf) + ūaδu

b∇bf̄ + ūbδua∇bf̄ (B.11)

= h̄ 0
a (f̄ + δf)· + h̄ j

a ∂j(f̄ + δf) + ūaδu
0 ˙̄f + δua

˙̄f (B.12)

= h̄ j
a ∂jδf + ūaδu

0 ˙̄f + δua
˙̄f (B.13)

=

[
ϕ ˙̄f − ϕ ˙̄f,

(
δ j
i + ūiū

j
)
∂jδf + ∂iθϕ

˙̄f

]
(B.14)

=

[
0, ∂i

(
δf + θ ˙̄f

)]
. (B.15)

From this generic expression we can write:

Da ≡
a

ρ
(3)∇aρ =

[
0, a ∂i

(
δ + θ

ρ̇

ρ

)]
(B.16)

=

[
0, ∂i

(
a δ − 3Hθ(1 + w)− aθQ

ρ

)]
(B.17)

If we now consider the Bardeen GI density contrast defined in Section 1.4:

∆B = δ +
ρ′

ρ
(v +B) , (B.18)

we immediately realize the below relation:

Da = aχa = a (3)∇a∆B . (B.19)

Namely, the GI Bardeen variable ∆B is the first order ‘scalar’ potential for the CGI
comoving density gradient Da. Notice that Da = [0, ∂i(a δ)] = a [0, ∂i∆B] in the case we
choose the comoving orthogonal gauge, where v = B = θ = 0.
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B.2 Standard and CGI interacting vacuum scenario

Let’s show explicitly the equivalence between our equations from Section 3.2.1 and the
ones in [24, 25, 27]. Be begin by expanding some relevant kinematical quantities:

Expansion scalar

Θ ≡ ∇au
a = ∂au

a + Γaabu
b (B.20)

= ūaa + Γ̄aabū
b + δuaa + Γaabδu

b + δΓaabū
b (B.21)

= Θ̄− ϕ̇+ a−1∇2v − ϕΓ̄aa0 + a−1∂ivΓaai + δΓaa0 (B.22)

= Θ̄ + a−1∇2v − Θ̄ϕ+∇2Ė − 3ψ̇ (B.23)

= Θ̄ + δΘ . (B.24)

where ∇2 is a spatial laplacian, i.e. ∇2 = ∂i∂i.

Acceleration

aa ≡ ub∇bua =
(
∇bua − Γcabuc

)
ub (B.25)

=
(
∂būa + ∂bδua − Γ̄cabūc − Γ̄cabδuc − δΓcabūc

)
(ūb + δub) (B.26)

= ∂būaδu
b + ∂bδuaū

b − Γ̄cabūcδu
b − Γ̄cabδucū

b − δΓcabūcū
b (B.27)

= ˙δua + a−1∂ivΓ̄0
ai − ∂iθΓ̄

i
a0 + δΓ0

a0 (B.28)

=

[
− ϕ̇+ ϕ̇, ∂iθ̇ + a−1∂jv a2Hδij − ∂jθHδ

j
i + ∂iϕ+ ∂iBȧ

]
(B.29)

=

[
0, ∂i(θ̇ + ϕ)

]
. (B.30)

From momentum conservation we can also write the above as:

aa =

[
0, (ρ̄+ P̄ )−1∂i

(
− δP − θ ˙̄P + δV + θ ˙̄V

)]
. (B.31)

B.2.1 Interacting vacuum equations

We can now expand our CGI energy-momentum conservation equations and show the
equivalence at first order with [24, 25, 27]. From the energy conservation Eqn. (3.27) at
linear order:

(Xa + Va)
· +

4

3
Θ(Xa + Va) + (ρ+ P )Za = 0 , (B.32)
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using the above relations we obtain:

aaρ̇+
(3)∇aρ̇−H (3)∇aρ+ aaV̇ + (3)∇aV̇ −H (3)∇aV+

+ 4H (3)∇aρ+ 4H (3)∇aV + (ρ+ P ) (3)∇aΘ = 0 (B.33)

[
− δP + δV + θ(−Ṗ + V̇ )

]
(ρ+ P )−1(ρ̇+ V̇ ) +

[
δ̇ρ+ ˙δV + θ(ρ̈+ V̈ )

]
+

+ 3H
[
δρ+ δV + θ(ρ̇+ V̇ )

]
+ (ρ+ P )(δΘ+ θΘ̇) = 0 (B.34)

δ̇ρ+ 3H(δρ+ δP )− 3(ρ+ P )ψ̇ + (ρ+ P )
∇2

a2
(θ + a2Ė − aB) = − ˙δV . (B.35)

From Q = V̇ we have:

Q̄+ δQ = uµ∇µV (B.36)

= (ūµ + δuµ)∇µ(V̄ + δV ) (B.37)

= ˙̄V + ˙δV − ϕ ˙̄V + a−1∂iv ∂iV̄ , (B.38)

thus at first order:
δQ = ˙δV − ϕQ . (B.39)

We remark the fact that the time derivative of V along the fluid flow, Eqn. (B.36), is
valid in general for every scalar quantity:

ḟ ≡ uµ∇µf (B.40)

= (ūµ + δuµ)∇µ(f̄ + δf) (B.41)

= ˙̄f + ˙δf − ϕ ˙̄f . (B.42)

We remark once more the fact that the splitting of a given tensorial quantity (a scalar in
this case) into a background plus a small perturbation is not a covariant procedure, i.e.
coordinate independent. This leads to a gauge (coordinate) dependence which can be

noticed from the ϕ ˙̄f term. Only once we have fixed a particular gauge, e.g. a synchronous
gauge (ϕ = 0 = B), the latter term vanishes and we obtain the expected splitting:

ḟ = ˙̄f + ˙δf . (B.43)

From the momentum conservation Eqn. (3.18) at linear order:

aa(ρ+ P ) + Ya − Va = 0 (B.44)[
(θ̇ + ϕ)(ρ+ P ) + δP + θṖ − δV − θV̇

]
= 0 (B.45)

(ρ+ P )θ̇ + θρ̇c2s − θV̇ + (ρ+ P )ϕ+ δP = δV . (B.46)
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From Va = −fa we have:

Va = −fa (B.47)[
0, ∂i(δV + θV̇ )

]
= −

[
0, ∂if

]
(B.48)

thus at first order:
δV = −f − θQ , (B.49)

from which we recover

(ρ+ P )θ̇ − 3c2sH(ρ+ P )θ + (ρ+ P )ϕ+ δP = −f + c2sQθ . (B.50)

Following the same procedure for the homogeneous vacuum model (fµ = 0) in Section
3.4, starting from:

(Da)
· =

Q

ρ
Da −Za , (B.51)

we obtain:

δ̇ =
Q

ρ
δ + 3ψ̇ − ∇2

a2
(θ + a2Ė − aB) . (B.52)

B.2.2 Remark on the CGI approach

In the CGI approach scalars like ρ, that do not vanish in the background, cannot be
gauge-invariantly split into a perturbation and a background value. In this approach, we
avoid this gauge problem by not directly using perturbations of scalars (e.g. δρ), but in-
stead by using their spatial gradients (e.g. (3)∇aρ). Since these vanish in the background,
they are automatically GI. However, the CGI approach is not frame independent, since
it depends on a choice of fundamental 4-velocity ua. A change of fundamental 4-velocity
(a linearized Lorentz boost):

ua → ũa = ua + va , uava = 0 (B.53)

leads to the transformations:

ρ̃ = ρ , P̃ = P , Θ̃ = Θ + (3)∇av
a (B.54)

ω̃ab = ωab +
(3)∇[avb] , σ̃ab = σab +

(3)∇⟨avb⟩ (B.55)

where the angle brackets in (3)∇⟨avb⟩ stands for its symmetric and traceless part. This
is the CGI analogue of a gauge transformation in the standard formalism.
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