Arrè, Lidiana
(2022)
Design, fabrication and mechanical characterization studies on Wire and Arc Additively Manufactured (WAAM) diagrid elements.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Civil engineering [LM-DM270]
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (9MB)
|
Abstract
The design approach changed in the last decades with the innovation offered by software for Computer-Aided Design (CAD), three-dimensional computer modelling and digital fabrication methods enabling new forms. The development in digital fabrication techniques led to the application of automatic processes in the structural engineering sector through Additive Manufacturing (AM) based technologies. It offers numerous benefits over conventional manufacturing methods, such as design of more complex and optimized components due to greater freedoms in shape and geometry, therefore bringing to a reduced material usage and shortened build times. The focus of this research is on the metal additive manufacturing methods, in particular, the adopted technique is the Wire-and-Arc Additive Manufacturing (WAAM), which best suits the possibility to realize large-scale metal structures and to allow new geometric forms. WAAM advantages compared to the other processes are fast large-scale production, freedoms in shape and geometry, structural efficiency with reduced material usage. The current research comprises the overarching process from the computational design to the mechanical characterization of the WAAM-produced elements, through the fabrication step. The computational design and fabrication stages were carried out at Technische Universität Braunschweig. There is still limited research focused on the characterization of WAAM-produced metal elements for structural engineering applications, therefore the research carried out at University of Bologna was focused on the establishment of 3D-outcome mechanical properties, pointing up the influence of surface roughness and imperfections on the mechanical response, together with the study on how the intersection between WAAM-produced bars influences the overall behavior of the specimen.
Abstract
The design approach changed in the last decades with the innovation offered by software for Computer-Aided Design (CAD), three-dimensional computer modelling and digital fabrication methods enabling new forms. The development in digital fabrication techniques led to the application of automatic processes in the structural engineering sector through Additive Manufacturing (AM) based technologies. It offers numerous benefits over conventional manufacturing methods, such as design of more complex and optimized components due to greater freedoms in shape and geometry, therefore bringing to a reduced material usage and shortened build times. The focus of this research is on the metal additive manufacturing methods, in particular, the adopted technique is the Wire-and-Arc Additive Manufacturing (WAAM), which best suits the possibility to realize large-scale metal structures and to allow new geometric forms. WAAM advantages compared to the other processes are fast large-scale production, freedoms in shape and geometry, structural efficiency with reduced material usage. The current research comprises the overarching process from the computational design to the mechanical characterization of the WAAM-produced elements, through the fabrication step. The computational design and fabrication stages were carried out at Technische Universität Braunschweig. There is still limited research focused on the characterization of WAAM-produced metal elements for structural engineering applications, therefore the research carried out at University of Bologna was focused on the establishment of 3D-outcome mechanical properties, pointing up the influence of surface roughness and imperfections on the mechanical response, together with the study on how the intersection between WAAM-produced bars influences the overall behavior of the specimen.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Arrè, Lidiana
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Structural Engineering
Ordinamento Cds
DM270
Parole chiave
Wire-and-Arc Additive Manufacturing,experimental tests,computational design,Additive Manufacturing,mechanical response,tensile tests,fabrication
Data di discussione della Tesi
22 Marzo 2022
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Arrè, Lidiana
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Structural Engineering
Ordinamento Cds
DM270
Parole chiave
Wire-and-Arc Additive Manufacturing,experimental tests,computational design,Additive Manufacturing,mechanical response,tensile tests,fabrication
Data di discussione della Tesi
22 Marzo 2022
URI
Statistica sui download
Gestione del documento: