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Abstract

Lo studio dell’evaporazione da parte di specchi d’acqua in ambiente urbano può con-
tribuire alla comprensione dei fenomeni micrometeorologici e allo sviluppo di soluzioni
per migliorare il comfort delle città. Questo problema è stato affrontato usando una
simulazione fluidodinamica di un canyon urbano al cui centro è stato posto un canale
d’acqua. Per le simulazioni è stato usato un modello di fluidodinamica computazionale
sviluppato usando OpenFOAM. Come approccio numerico è stata usata una large-eddy
simulation. Tale approccio ha permesso di simulare l’evoluzione del sistema e di analiz-
zarne le variabili medie e turbolente. Il modello è basato su un solutore fluidodinamico
in approssimazione di Boussinesq a cui sono state aggiunte le equazioni di avvezione
diffusione del vapore e lo scambio termico provocato dall’evaporazione. Inoltre sono
state implementate delle condizioni al contorno che potessero modellizzare l’evaporazione
d’acqua dal canale. Il modello è stato validato simulando un canale piano usando diversi
modelli di turbolenza. Sono state eseguite due simulazioni del canyon urbano, una prima
in cui il canale ha una temperatura maggiore dell’aria circostante, e una seconda in cui
la temperatura del canale è inferiore all’aria. In entrambe le simulazioni la presenza del
canale ha influenzato fortemente sia le variabili medie che turbolente. L’evaporazione
d’acqua dal canale e il conseguente galleggiamento ha portato un aumento dell’intensità
della velocità all’interno del canyon. Si è assistito inoltre ad un abbassamento delle
temperature su tutto il dominio, in particolare nel caso col canale freddo, all’interno del
canyon, si è raggiunto un raffreddamento del 10-20% rispetto alla differenza di temper-
atura tra il canale e la temperatura ambientale iniziale. Si è inoltre osservato un aumento
dell’energia cinetica turbolenta in tutto il dominio, e un aumento di flussi turbolenti di
quantità di moto soprattutto all’interfaccia tra il canyon e l’aria esterna.



Abstract

The study on waterbodies evaporation in an urban environment can contribute to the
understanding of micrometeorological phenomena and the development of solutions to
improve the urban comfort. This problem was addressed using a fluid dynamics simu-
lation of an urban canyon with a water channel in the middle. A computational fluid
dynamics (CFD) model developed using OpenFOAM was used for the simulations. For
the numerical approach, a large-eddy simulation (LES) was used. This approach made
it possible to simulate the evolution of the system and to analyse its mean and turbulent
variables. The model is based on a fluid dynamics solver in the Boussinesq approxi-
mation, to which the equations of vapor advection-diffusion and heat transfer caused
by evaporation have been implemented. In addition, boundary conditions were imple-
mented to model the evaporation of water from the channel. The model was validated
by simulating a flat channel using different turbulence models. Two simulations of the
urban canyon were performed, a first one in which the channel has a higher temperature
than the surrounding air, and a second one in which the temperature of the channel is
lower than the air. In both simulations the presence of the channel strongly influenced
both the mean and turbulent variables. The evaporation of water from the channel and
the resulting buoyancy led to an increase in the velocity intensity within the canyon.
There was also a lowering of temperatures over the entire domain, in particular in the
case of the cold channel, inside the canyon, a 10-20% cooling was achieved regarding the
temperature difference between the channel and the initial ambient temperature. An
increase in turbulent kinetic energy was also observed throughout the domain, and an
increase in turbulent momentum fluxes was observed especially at the interface between
the canyon and the outside air.
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Introduction

Nowadays, more than half of the human population lives in urban areas and the percent-
age is estimatedto rise to 68% by 2050, acording to the world urbanization prospect of
the United Nations [3]. It is well known that urban temperature is usually warmer than
surrounding rural areas, this phenomenon is called urban heat island (UHI). The causes
of UHI are several from the street geometry, to the presence of artificial surface with high
emissivity, and the presence of anthropogenic heat source. Climate change is expected to
worsen the situation with higher temperatures and more frequent and intense heatwaves.
there is a wide litterature on possible solutions to improve urban comfort [25] to reduce
morbidity and mortality in urban settlements. An important ensemble of strategies to
mitigate the UHI are the natural-based solutions (NBS) that are inspired by, supported
by or copied from nature, including for example threes and water basins in the urban
texture. To insert water bodies may reduce the temperature due to the evaporation, but
may also increase the urban humidity and changes the dynamics producing a buoyancy
effect. Understanding the behaviour of evaporation in urban areas and the dynamics of
moisture is important to gain knowledge about the impact of the existing water bodies
and to predict the consequences of the implementation of water basins in the urban
planning of the new neighbourhood.

Some articles were published, which adress the problem from different points of view,
using numerical modelling, field measures, laboratory experiments and scale models.
Hathway et al. [10] have studied the impact of an urban river in England using field
measures and showing a cooling effect of 1.5 ◦C during the spring period. This effect is
smaller during the summer season due to the high water temperature. Theeuwes et al.
[23] have studied a simulation of a circular city surrounded by a rural area performed with
the weather research and forecasting (WRF) model. Inside the city they have set some
water basins of different sizes and forms. They found that greater lakes produce greater
impact but only near the edge and in the downwind area, instead of many small lakes
producing smaller impact but involving greater areas. They also noticed that during
the night the water temperature may be higher than the air temperature heating the
environment. Tominaga et al. [24] used a model which combine a Reynolds-averaged
Navier-Stokes equations (RANS) simulation and a radiative model. After the validation
of the model using a model of buildings array and a river in a wind tunnel, they have
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simulated a residential area in Japan that contain a pound, and they compared the
simulation with the field measurements. They found a maximum temperature decrease
of 2 ◦C at the pedestrian level, with an extension of 100 m with a wind of 10 m/s at 3
m high. Montazeri et al. [15] studied the effect of a water spray used in a courtyard
in the Netherlands during a heatwave in 2006, using a RANS simulation comparing
it with fields and satellite measurements, obtaining a temperature reduction of about
7 and 5 ◦C at pedestrian level. Since the 1970s one of the most important research
topics in the context of urban micrometeorology is the study of street canyons [18, 17].
Pearlmutter et al. [19] have created a scale model of an array of street canyons with
evaporation pans that simulate vegetative areas to study the evapotranspiration impact.
Syafii et al. [11] have created a scale model of buildings array with some water pounds
in different positions and of different forms. They found better thermal environments
in presence of the pounds, but also an increase in absolute humidity which may worsen
the pedestrian comfort. They also founded a more efficient cooling effect with pounds
oriented parallel to prevailing winds. Kubilay et al. [13] worked on a RANS simulation
of a street canyon in which water evaporates from the surfaces of buildings which are
wet from the rain. They found that the increase in the rainfall intensity does not change
the reduction in surface temperature, but extends the duration of the cooling effect.
They also have studied the impact of materials founding that the moisture permeability,
moisture capacity and thermal diffusivity, affected the thermal comfort. Zhao et al. [27]
in their review point out that, for the study of street canyon dynamics, it would be
better to use models that take into account the temporal evolution such as large-eddy
simulations (LES) and unsteady RANS (URANS) simulations instead of the more used
RANS. However, dealing with the phase change of water in a fluid dynamic simulation
is not a simple thing because turbulent flows with a high Reynolds number, are complex
nonlinear systems. Today no a LES is treating the evaporation and the moisture role in
a street canyon.

Cintolesi et al. [6] proposed a model to simulate the evaporation from a water film in
a turbulent flow using a LES. In the present work, such an evaporation model is applied
to an urban street canyon with an evaporating waterbody. This allows the investigation
of effects of evaporation and vapour concentration in the air circulation. Two different
simulation are performed with different temperature of the water to simulate a diurnal
configuration with the waterbody colder than the air, and a nocturnal configuration
with the waterbody warmer than the air. The model is implemented using the software
toolbox OpenFOAM [26, 2, 1], which is a computational fluid dynamic open source soft-
ware written in C++. It is used the OpenFOAM solver buoyantBoussinesqPimpleFoam,
which simulate the motion of a fluid in Boussinesq approximation with buoyancy due to
temperature and humidity change. That solver is changed to simulate the evaporation
from the waterbody and to take into account the vapour concentration diffusion and
buoyancy contribution.

The first chapter will show the mathematical models used to model the dynamic of
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the system and the evaporation, and the numerical approaches used to model turbulence.
In the second chapter, the numerical implementation of the mathematical models will
be shown with particular attention to the boundary conditions used to simulate the
evaporation of the water film. In the third chapter, the model will be validated using
the archetype case of channel flow which is well known and studied in depth [16]. Three
different turbulence models have been used the Smagorinsky, the wall adapting local
eddy-viscosity model (WALE) [9] and the dynamic Lagrangian [14]. Wall functions
proposed by desoutter et al. [8] will be used to validate the evaporation model. The
fourth chapter will be shown the analysis of the simulations made on the street canyon
and the results obtained. Finally, in the fifth chapter, the conclusions drawn from this
work are reported.
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Chapter 1

Theoretical models

1.1 Mathematical models

1.1.1 Navier-Stokes equations

The motion of a fluid is described by the Navier-Stokes equations, which is a system
of equations including the conservation of mass and the conservation of momentum.
According to the Boussinesque approximation, the variation of density will be neglected
except in the gravitational term.
For an incompressible fluid, the equation of mass conservation is:

∂ui
∂xi

= 0 (1.1)

where u is the fluid velocity, and x is the cartesian coordinate.
The momentum conservation equation is:

∂ui
∂t

+ uj
∂ui
∂xj

= − 1

ρ0

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

− ρ

ρ0

gδi3 (1.2)

where t is the time, ρ0 is the reference density, p is the pressure, ν is the kinematic
viscosity, ρ is the density and g is the gravitational acceleration.
The vapour concentration ω is Defined as the ratio between the mass of vapour mv and
the sum of the masses of vapour and dry air ma:

ω =
mv

ma +mv

. (1.3)

The density ρ is supposed to be a linear function of the temperature T and the vapour
concentration:

ρ

ρ0

= 1− βT (T − T0)− βω(ω − ω0) (1.4)
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where βT and βω are respectively the expansion coefficients for the temperature and
vapour concentration.
The density depends on both T and ω which are active scalar, and are diffused and
transported following the advection-diffusion equation:

∂T

∂t
+ uj

∂T

∂xj
= αT

∂2T

∂xj∂xj
+ S (1.5)

∂ω

∂t
+ uj

∂ω

∂xj
= αω

∂2ω

∂xj∂xj
(1.6)

where αT and αω are the coefficients of diffusion for T and ω, and S is a source term due
to the energy exchange produced by evaporation as explained in the next section.

1.1.2 Evaporation model

To describe the evaporation of water, is used a mathematical model yet used in other
research [6, 7, 20]. The waterbody is modelled as an evaporating film with constant
physical properties. The only property of the water film that changes in time is the
height.The model considers only the evaporation and condensation which take place in
the boundary in contact with the water film.
Using the molar masses M and the number of moles n for vapour (subscript v) and dry
air (subscript a), it is possible to express omega as a function of atmospheric pressure
patm and vapour pressure e

ω =
mv

ma +mv

=
Mvnv

Mana +Mvnv
=
Mvnv
Mana

(
1

1 + Mvnv

Mana

)

=
Mv

Ma

(
e

patm − e

)(
1

1 + Mv

Ma

e
patm−e

)
=
Mv

Ma

(
e

(patm − e) + Mv

Ma
e

)
. (1.7)

The vapour pressure may be replaced by the vapour pressure at saturation multiplied
for the relative humidity. Assuming that in contact with the water film the water is
saturated is possible to compute the value of the concentration of vapour at the interface

ωΓ =
Mv

Ma

(
es

patm − (1− Mv

Ma
)es

)
. (1.8)

The saturation pressure (es) is computed using the Buck’s equation

es(TΓ) = 611.85 exp

(
17.502TΓ

240.9 + TΓ

)
. (1.9)
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The velocity of evaporation may be estimated by Fick’s law for the diffusion of vapour.
Since ω includes both the mass of vapour and air it is necessary to divide the diffusion
flow of omega by the mass of dry air (1− ωΓ)

Uω = − αω
1− ωΓ

(
dω

dn

∣∣∣∣
Γ

)
n̂. (1.10)

From Uω is computed the heat flux vector:

q = ρ∗LhUω. (1.11)

where ρ∗ is the sum of the density of air and water, and Lh is the latent heat of vapor-
ization, both are considered constant. The divergence of q represents the energy stored
in an air particle near the water film, dividing it by heat capacity is possible to compute
the source term in the temperature equation (1.5):

S = − 1

ρCp
∇ · q. (1.12)

Evaporation, therefore, behaves like a temperature sink that acts on the cells adjacent
to the boundary with the water film.
The evolution of the height (H) of the water film is computing using Uω

∂H

∂t
=
ρa
ρw

Uω (1.13)

where ρa is the density of the air and ρw is the density of water, while ρa/ρw = 0.001,
following Ref. [20].

1.2 Large-eddy simulation

In order to resolve the Navier-Stokes equation, in a finite computational grid, a spatial
filter has been apply. The spatial filter is defined by a filtering operation:

u(x, t) =

∫
G(r,x)u(x− r, t)dr

where G is a filter function.
The momentum conservation equation becomes:

∂ui
∂t

+
∂ujui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

. (1.14)
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The equation depends both on ui and uiuj so the system is not closed. Introducing the
residual stress tensor:

τRij = uiuj − uiuj
which may be divided into an anisotropic and an isotropic part:

τRij = τ rij +
2

3
krδij.

The isotropic part may be included in the pressure therm, so the equation (1.14) becomes

∂ui
∂t

+
∂ujui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

−
∂τ rij
∂xi

.

Than modelling τ rij the problem may be closed. different modelization of τ rij exist, in
this work there will be used the Smagorinsky, the WALE and the dynamic Lagrangian.
These three turbulence models will be explained in the next section.

1.3 Turbulence models

1.3.1 Smagorinsky model

The Smagorinsky model is based on the hypothesis that the subgrid-scale (sgs) shear
stress is linearly related to the resolved rate of the strain tensor.

τ sgsij = −2νsgsSij (1.15)

This hypothesis is known as the linear eddy-viscosity model and treats the effect of
turbulence in the subgrid-scale as a viscosity acting on the grater scale motion. The eddy
viscosity of the residual motion νsgs is computed using the mixing length hypothesis

νsgs = l2s
∣∣S∣∣ (1.16)

where ls is the Smagorinsky mixing-length

ls = (Cs∆) (1.17)

where ∆ is the linear dimension of the cell, and Cs is the Smagorinsky constant. So νsgs
becomes

νsgs = (Cs∆)2
∣∣S∣∣ (1.18)

The OpenFOAM implementation of the Smagorinsky model, used in this work, is
a bit more complex and will be explained in the following. It starts dividing the SGS
stress tensor (τij) into an isotropic and an anisotropic part

τij =
1

3
τkkδij +

(
τij −

1

3
τkkδij

)
(1.19)
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The isotropic part is proportional to the SGS kinetic energy (ksgs) while the anisotropic
part is assumed to behave as a viscosity proportional to the resolved rate of strain tensor
(Dij) following the eddy viscosity approximation.

τij =
2

3
ksgsδij − 2νsgs dev

(
S
)
ij

(1.20)

where νsgs is the SGS viscosity, computed as

νsgs = Ck∆
√
ksgs (1.21)

where Ck is a constant. ksgs is computed assuming that the subgrid-scale are in local
equilibrium so the energy production is in balance with the dissipation

Sijτij + Cε
k1.5
sgs

∆
= 0 (1.22)

Solving that equation using the definition of νsgs

Sij

(
2

3
ksgsI − 2νsgs dev

(
S
))

ij

+ Cε
k

3/2
sgs

∆
= 0

Sij

(
2

3
ksgsI − 2Ck∆

√
ksgs dev

(
S
))

ij

+ Cε
k

3/2
sgs

∆
= 0

√
ksgs

(
Cε
∆
ksgs +

2

3
tr
(
S
)√

ksgs− 2Ck∆
(
dev

(
S
)
ij
Sij

))
= 0

(1.23)

The last equation may be rewritten as

aksgs + b
√
ksgs − c = 0 (1.24)

where a, b and c are defined as

a =
Cε
∆

b =
2

3
tr
(
S
)

c = 2Ck∆
(
dev

(
S
)
ij
Sij

) (1.25)

So the equation (1.24) has the solution

ksgs =

(
−b+

√
b2 + 4ac

2a

)2

(1.26)
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for an incompressible fluid, S is traceless so dev(S) = S and

b = 0

c = Ck∆|S|2
(1.27)

so ksgs and νsgs become

ksgs =
Ck∆

2|S|2

Cε

νsgs = Ck

√
Ck
Cε

∆2|S|
(1.28)

wich is equal to the equation (1.18) where

C2
s = Ck

√
Ck
Cε
. (1.29)

Using cells of different shapes and sizes, the linear dimension ∆ of each cell is com-
puted as the cube root of the volume.

In real turbulent flows, near a wall, a viscous sublayer forms. In this sublayer, the
viscous forces dominate over the inertial ones producing a laminar boundary layer, and
the turbulence viscosity should go to zero near the wall. But in the Smagorinsky model,
the large velocity gradients produce a value of Sij and therefore of νsgs different from
zero. It is, therefore, necessary to introduce a correction to ls so that it goes to zero as
it approaches the wall:

ls = Cs∆f(z+) (1.30)

where z+ is the non-dimensional wall-normal coordinate, defined as

z+ =
u∗z

ν
(1.31)

with ν viscosity, uτ friction velocity and z wall-normal direction. In this work is used a
Van Driest dumping function

f(z+) =
√

(1− e−z+/A)3 (1.32)

where A is an empirical constant set to 25.

1.3.2 Wall adapting local eddy-viscosity model

The wall adapting local eddy-viscosity model (WALE) was proposed by Nicoud and
Ducros in 1999 [9] in order to improve the Smagorinsky model. It includes the contri-
bution of the rotation rate to the subgrid-scale stress tensor, and the turbulent viscosity
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goes to zero approaching the wall. As the Smagorinsky, the WALE model assumes that
the SGS turbulent viscosity is proportional to the square root of the SGS turbulent
kinetik energy:

νsgs = Ck∆
√
ksgs (1.33)

but as invariable to compute the subgrid turbulent kinetic energy is used the traceless
symmetric part of the square of the velocity gradient

Sdij =
1

2

(
∂uk
∂xi

∂uj
∂xk

+
∂uk
∂xj

∂ui
∂xk

)
− 1

3
δij
∂uk
∂xl

∂ul
∂xk

(1.34)

ksgs is then computed from Sdij and Sij as

ksgs =

(
C2
w∆

Ck

)2
(
SdijS

d
ij

)3((
SijSij

)5/2
+
(
SdijS

d
ij

)5/4
)2 . (1.35)

Finally, the subgrid turbulent viscosity becomes

νsgs = (Cw∆)2

(
SdijS

d
ij

)3/2(
SijSij

)5/2
+
(
SdijS

d
ij

)5/4
. (1.36)

It is possible to show [9] that approaching a wall,
(
SdijS

d
ij

)3/2
behaves like d3 (where d is

the distance from the wall) and therefore approaches zero. This means that this model
does not need a damping function near the walls.

1.3.3 Dynamic Lagrangian model

Another turbulence model for large-eddy simulations was proposed by Meneveau et al.
in 1994 [14]. It is called dynamic Lagrangian and is based on the Smagorinsky model
with the difference that Cs is non an empirical parameter but is computed during the
simulation using information from the resolved scales. Taking into account a grid with
cells size double than that used in the simulation, ∆̂ = 2∆ is possible to apply a spatial
filter based on this grid. It is introduced Lij which is the difference between the stress
tensor of the two scales

Tij − τ̂ij = ûiuj − ûiûj ≡ Lij. (1.37)

That difference may be estimated using the Smagorinsky model

Tij − τ̂ij ' Cs2∆2
( ̂|S|Sij − 4|Ŝ|Ŝij

)
≡ CsMij (1.38)

The error between the two previous approaches is

eij = Lij − CsMij (1.39)
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The error in function of Cs is minimised in a last-square sense, along the particle trajec-
tories covered in a time T:

∂

∂Cs

∫ t

−∞
eij(x, t

′)eij(x, t
′)

1

T
e
−(t−t′)

T dt′ = 0. (1.40)

Replacing eij with equation (1.39), and resolving in Cs it becomes

Cs =
ILM
IMM

(1.41)

where ILM and IMM are defined as

ILM =

∫ t

−∞
LijMij

1

T
e
−(t−t′)

T dt′, (1.42)

IMM =

∫ t

−∞
MijMij

1

T
e
−(t−t′)

T dt′. (1.43)

It is possible to show that ILM and IMM are solutions of the following equations

∂ILM
∂t

+ u∇ILM =
1

T
(LijMij − ILM), (1.44)

∂IMM

∂t
+ u∇IMM =

1

T
(MijMij − IMM), (1.45)

using as characteristic time

T = 1.5∆(ILMIMM)−1/8. (1.46)

This is, generally, a more accurate model than the Smagorinsky but need more compu-
tational time because it resolves two auxiliary fields ILM and IMM .
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Chapter 2

Numerical implementation

2.1 Solver description

The mathematical models described in the previous chapter, are implemented using
the software toolbox OpenFOAM 6 from The OpenFOAM Foundation [26, 2, 1]. The
OpenFOAM’s solver buoyantBoussinesqPimpleFoam is used to resolve the equations of
motion. It use uses the Boussinesq approximation, taking into account the contribution
of buoyancy due to the thermal variation.
The solver has been modified to take into account the ω equation (1.6), its contribution
in the buoyancy, and the evaporation model. The evaporation model was previously [6,
7, 20] written for a different solver (coupledHeatVapourFoam) on a different OpenFOAM
version (v2.1). The files which described the evaporation model are rewritten in order
to be compatible with the solver used and implemented in it.
The solver thus obtained was called humidityBuoyantBoussinesquePimpleFoam.

2.1.1 PISO algorithm

The pressure implicit with splitting of operators (PISO) algorithm proposed by Issa [12]
is used in this work . From the discretization of equation (1.2) is computed the predicted
values of velocity u∗ from the values of velocity, pressure and density at the previous
time steps (un,pn, ρn). The general form of this equation is:

Cu∗ = r−∇pn + ρng (2.1)

where r is an explicit source term excluding pressure and buoyancy.
Then the first corrected velocity (u∗∗) is computed from the following equation:

Au∗∗ + H′U∗ = r−∇p∗ + ρng (2.2)

where A and H′ are the diagonal and the off-diagonal parts of the matrix C (C = A +
H′), and p∗ is the first corrected pressure which is still unknown. Since A is diagonal it
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is simply invertible and the equation becomes

u∗∗ = A−1H−A−1∇p∗ + A−1ρng (2.3)

where H is r−H′u∗. Knowing that for the continuity equation the velocity field must
be solenoidal, is possible to find p∗ imposing ∇u∗∗ = 0.

∇2
(
A−1p∗

)
= ∇

(
A−1H + A−1ρng

)
(2.4)

from p∗ is found u∗∗ and using the same A and H is possible to repeat the last two
equations to find the second and following corrector steps.

2.1.2 Solver structure

The main structure of the solver is the same as buoyantBoussinesqPimpleFoam with
some additions because the original solver does not take into account the temperature
source, the ω equation and the boundary condition to describe the evaporation.

For each cell, at each time step is defined the Courant number as:

Co =
u∆t

∆x
(2.5)

where u is the magnitude of the velocity, ∆t is the time interval, and ∆x is the cell linear
dimension. Following the Courant convergence condition, there is a maximum value
Comax that can be reached to preserve system stability. At each time step, the solver
computes ∆t to have a max courant number Comax of 0.5 using the scripts CourantNo.H
and setDeltaT.H.

85 while (runTime.run())

86 {

87 #include "readTimeControls.H"

88 #include "CourantNo.H"

89 #include "setDeltaT.H"

90

91 runTime++;

92

93 Info<< "Time = " << runTime.timeName() << nl << endl;

Then the temperature (1.5) and humidity (1.6) equations and the evaporation model are
resolved using the scripts TEqn.h and omegaEqn.H. TEqn.h and omegaEqn.H will be
explained in detail in the following sections.

95 #include "TEqn.H"

96 #include "omegaEqn.H"

The PISO algorithm described in section 2.1.1 is implemented with the scripts UEqn.H
and pEqn.H. The solver may be used with different turbulence models. After each step
of the PISO loop, the turbulence parameters are updated.
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101 // --- Pressure-velocity PIMPLE corrector loop

102

103 while (pimple.loop())

104 {

105 #include "UEqn.H"

106

107 // --- Pressure corrector loop

108 while (pimple.correct())

109 {

110 #include "pEqn.H"

111 }

112

113 if (pimple.turbCorr())

114 {

115 laminarTransport.correct();

116 turbulence->correct();

117 }

118

119 }

At the end of the PISO loop, the temperature and humidity equations are recomputed
to improve the coupling with the velocity and pressure equations.

121 #include "TEqn.H"

122 #include "omegaEqn.H"

123

124

125 runTime.write();

126

127 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

128 << " ClockTime = " << runTime.elapsedClockTime() << " s"

129 << nl << endl;

130 }

In the next sections will be described TEqn.H and omegaEqn.H in detail.
UEqn.h and pEqn.H will not be treated in this work as they have not undergone signif-
icant changes compared to the original solver.

2.1.3 Temperature equation

At the start of the TEqn.H script, before resolving the temperature equation, the bound-
ary fields are updated. The evaporation model are implemented through the function
updateCoeffs(), the details of the function for each boundary are shown in subsequent
sections.

157 forAll(omega.boundaryField(),b)

158 {

159 omega.boundaryFieldRef()[b].updateCoeffs();

160 }

161

162

163 forAll(Uomega.boundaryField(),b)

164 {

165 Uomega.boundaryFieldRef()[b].updateCoeffs();

166 }

167

168
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169 forAll(EvCoHF.boundaryField(),b)

170 {

171 EvCoHF.boundaryFieldRef()[b].updateCoeffs();

172 }

173

174

175 forAll(H.boundaryField(),b)

176 {

177 H.boundaryFieldRef()[b].updateCoeffs();

178 }

following the Reynold analogy, the turbulent thermal diffusivity (alphat) is propor-
tional to the turbulent viscosity (nut), and the proportional constant is the inverse of
the turbulent Prandtl number (Prt).

184 alphat = turbulence->nut()/Prt;

185 alphat.correctBoundaryConditions();

The thermal diffusivity is computed using the Prandtl number and it is summed to
the turbulent thermal diffusivity to obtain the efficient thermal diffusivity (alphaEff)

187 volScalarField alphaEff("alphaEff", turbulence->nu()/Pr + alphat);

The source term in eq. (1.5) is computed using the eq. (1.12) where the norm of q is
implemented as a scalar field named EvCoHF. The computation of EvCoHF is described
in detail in the section about his boundary condition.

189 surfaceScalarField EvCoSource ( fvc::interpolate(EvCoHF/(rho*Cp)) * mesh.magSf() );

Then is defined the matrix TEqn which describe the eq. (1.5)

191 fvScalarMatrix TEqn

192 (

193 fvm::ddt(T)

194 + fvm::div(phi, T)

195 - fvm::laplacian(alphaEff, T)

196 ==

197 radiation->ST(rhoCpRef, T)

198 + fvOptions(T)

199 + fvc::div(EvCoSource)

200 );

201

202 TEqn.relax();

203

204 fvOptions.constrain(TEqn);

205

206 TEqn.solve();

207

208 radiation->correct();

209

210 fvOptions.correct(T);

Finally, the equation (1.5) is resolved using the function solve() of the object TEqn.
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2.1.4 Vapour concentration equation

The script which resolves the ω equation (1.6) is omegaEq.H. It is similar to TEq.H
but there is no update of the boundary conditions of the evaporation model and the
computing of the source therm, which is absent in eq (1.6). As the first thing, it is
computed the turbulent diffusion, dividing the eddy viscosity to the turbulent Schmidt
number. In the program the Schmidt number is called PrOmega for the formal similarity
with the Prandtl number in the temperature diffusivity, as the other variable which as
the name of the analogous in the TEqn.H adding Omega at the end.

157 alphaOmegat = turbulence->nut()/PrOmegat;

158 alphaOmegat.correctBoundaryConditions();

159

160 alphaOmegaEff = turbulence->nu()/PrOmega + alphaOmegat;

Is creating the object omegaEqn which is a matrix created using the discretization
schemes for the differential operators. The equation is resolved using the method of
omegaEqn solve().

165 fvScalarMatrix omegaEqn

166 (

167 fvm::ddt(omega)

168 + fvm::div(phi, omega)

169 - fvm::laplacian(alphaOmegaEff, omega)

170 );

171

172 omegaEqn.relax();

173

174 fvOptions.constrain(omegaEqn);

175

176 omegaEqn.solve();

At the end of the scripts the density is updated taking into account the temperature and
humidity contributions using the equation (1.4).

185 rhok = 1.0 - beta*(T - TRef) - betaOmega * (omega - omegaRef);

2.2 Evaporation boundary condition

2.2.1 Vapour concentration

The value of vapour concentration at the interface (ωΓ) described in eq (1.8) is com-
puted using the boundary condition of ω. The boundary condition is implemented in
OpenFoam using the mixedFvPatchScalarField which is a boundary condition obtained
from a combination of a constant value (refValue) and a constant gradient (refGrad),
weighted by the fraction (valueFraction).

When the function updateCoeffs() is called for the ω boundary conditions the neces-
sary parameters and variables (Mv/Ma, H, T and Psat) are initialized
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157 void Foam::vaporConcentrationFvPatchScalarField::updateCoeffs()

158 {

159 if (updated())

160 {

161 return;

162 }

163

164 Info << "*** updating omega "<< patch().name() << endl;

165

166 fixesValue_ = true;

167

168 scalar Mfrac=Mv()/Ma();

169

170 scalarField _Height = Height();

171

172 scalarField Tred = Temperature() - 273.15;

173

174 scalarField _ps = (611.85 * exp ( 17.502 * Tred / (240.9 + Tred) ));

For each cell is checked the value of the fields H, if it is grater than 0 the value of ω at
the interface is computed following the eq. (1.8)

176 forAll(patch_.faceCells(),fi){

177 if(_Height[fi] > 0){

178 (*this)[fi]=(

179 Mfrac * _ps[fi]

180 /

181 ( Patm_ - ((1.0 -Mfrac) * _ps[fi]) )

182 );

183 if((*this)[fi]<0) (*this)[fi] = 0;

The variable refValue is set ugual to ωΓ for all the face cells and valueFraction is set to
1 wich means that the boundary will behave as a fixed value boundary condition.

186 this->refValue()[fi] = (*this)[fi];

187 this->refGrad()[fi] = 0.0;

188 this->valueFraction()[fi] = 1.0;

If H is not greater than 0 refGrad and valueFraction are set to 0 so the boundary condition
will work as a von Neumann b.c.

189 }else{

190 this->refValue()[fi] = 0.0;

191 this->refGrad()[fi] = 0.0;

192 this->valueFraction()[fi] = 0.0;

193 fixesValue_ = false;

194

195 }

196 }

When refValue, refGrad and valueFraction are set for both the conditions on H, the
boundary is updated using the OpenFoam class mixedFvPatchScalarField

198 mixedFvPatchScalarField::updateCoeffs();

199

200 }
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When valueFraction is set to 1 the function set the value of the face cells at the value
refValue, and when valueFraction is 0 the function set the gradient on the boundary at
the value refValue.

2.2.2 Evaporation/condensation velocity

The velocity of evaporation Uω is defined as a vector field which is 0 in all the domain
except in the boundaries where it may assume different values. When the boundaries
are updated all the variables needed for the computation of Uω are initialized

246 void Foam::velocityEvaporationCondensationFvPatchVectorField::updateCoeffs()

247 {

248 Info << "*** updating Uomega " << patch().name() << endl;

249

250 scalarField _omega ( omega());

251 scalarField _Domega (Domega());

252 scalarField _omegaGrad (omegaGrad());

253 scalarField _H (H());

The value of Uω is computed using eq. (1.10)

255 scalarField evaporationVelocity = -( _Domega/(1.0-_omega))*_omegaGrad;

In each face cells in wich H is 0 or less, Uω is set to 0

257 forAll(patch_.faceCells(),c){

258 if (_H[c] <= 0){

259 evaporationVelocity[c] = 0;

260 }

261 }

Uω is set to be a vector normal to the surface

263 const vectorField n(patch_.nf());

264 vectorField::operator=(evaporationVelocity * n);

The boundary is updated using the OpenFoam class fixedValueFvPatchVectorField wich
set the value of Uω equal to the variables evaporationVelocity.

266 fixedValueFvPatchVectorField::updateCoeffs();

267 }

2.2.3 Evaporation/condensation heating flux

As shown in the explanation of TEqn.H, the source term is implemented using a scalar
field EvCoHF which corresponds to the norm of q. Before updating the EvCoHF, the
Uω and H variables are initialized. Only the component of Uω normal to the boundary
is used.

309 scalarField ha (H());

310

311 tmp<scalarField> UomegaNormal (Uomega() & patch().nf() );
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newGradient is a scalar field defined as the product of Lρ and Uω.

311 scalarField newGradient (Lrho_ * UomegaNormal());

If H is not greater than 0 there can not be evaporation so newGradient is set to 0
(SMALL is a OpenFoam’s constant defined as 1e-6).

314 forAll(newGradient,fi)

315 {

316 if( ha[fi] < SMALL)

317 {

318 newGradient[fi] = 0;

319 }

320 }

At the end, the boundary of EvCoHF is updated as a fixed value boundary condition,
using the value of newGradient

314 fvPatchScalarField::operator=(newGradient);

315

316 fixedValueFvPatchScalarField::updateCoeffs();

2.2.4 Film thickness

The field H, which described the film thickness, is used to define in which boundary cells
evaporation is possible. This field is null in all the domain except in the boundary with
the water film, where evaporation takes place. Here H has the value of the height of the
water film. The value of the boundarys of H is updated using the function updateCoeffs().
If the value of H is greater than 0 the evaporation and condensation may occur so the
function read the value of Uω and the value of dt and with that compute the value of dh
using the formula

dH = Uω · n̂
ρair
ρwater

dt. (2.6)

100 void filmThicknessFvPatchScalarField::updateCoeffs()

101 {

102 Info << "*** updating H "<< patch().name()<<endl;

103

104 const fvPatch& p = patch();

105 const label & thispatch = p.index();

106 vectorField n = p.nf();

107 const fvPatchVectorField& U_interface = db().lookupObject<volVectorField>(UName_).boundaryField()[thispatch];

108 const fvMesh& mesh = internalField().mesh();

109 scalar ratio = 0.001; // rho_air/rho_water

110 scalarField dh (this->size());

111 forAll(*this,c){

112 if ((*this)[c] <= 0) dh[c]=0;

113 else dh[c] = (U_interface[c] & n[c])*ratio*mesh.time().deltaT().value();

114 }

Then it updates the value of H.
115 scalarField::operator += (dh);

116 }
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Chapter 3

Validation of the simulation
approach

3.1 Channel flow settings

For the validation of the model is used the data from a DNS of a turbulent channel flow
with a Reτ = 395, reported by Moser et al.[16]. Reτ is the friction Reynolds number,
defined as

Reτ =
uτδ

ν
(3.1)

where uτ is the friction velocity, defined in therm of wall shear stress τ

uτ =

√
τ

ρ
. (3.2)

The DNS is done on a channel flow with dry air without evaporation, to compare
that with the simulation done with humidityBuoyantBoussinesquePimpleFoam g is set
to 0 so that there is no buoyancy effect.
In this way, it is possible to validate the dynamical part of the solver, for the validation
of the evaporation model were used the wall function proposed by Desouter et al. [8].
The case is an infinite channel between two walls on the top and bottom, perpendicular
to the y-direction, and a body force along the x-direction. The simulation is made in a
domain of 2π × 2× π, divided in a grid of 50 cells along the x coordinate, 90 along the
y and 70 along the z.

The coordinate of the ξth cell follows the equation:

~x = ~x (~s (ξ)) . (3.3)

The s(ξ) function change for each direction, along the x and z coordinates the distribution
of points is linear:

s (ξ) =
ξ

I
(3.4)
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β 3.3e-3 [1/K] βω 0.63 -
Tref 297.5 [K] ωref 0 -
Pr 114.038 - Sc 76.950 -
Prt 0.7 - Sct 0.7 -
ρ 1.165 [kg/m3] cp 1.0051̇03 [J/(kg K)]
uτ 1 [m/s] ν 2.53165e-03 [m2/s]
g 0 [m/s2]

Table 3.1: Parameters used in the simulation of the channel flow for the validation of
the model

where I is the number of points along the direction.
In the y coordinate (which is the direction perpendicular to the walls) is used a double-
sided hyperbolic stretch, and the s(ξ) function becomes:

s (ξ) = 1/2

(
1 +

tanh (δ (ξ/I − 1/2))

tanh (δ/2)

)
(3.5)

where δ is a parameter set to 5.
The choise of the grid parameters is so that the first point along the y coordinate is
within y+ = 1 and there are 9 points within y+ = 10, where y+ is defined as

y+ = y
uτ
ν

= y ·Reτ . (3.6)

The distance from two adiacent points in the plus coordinates parallel to the wall (defined
analogously to y+) is ∆x+ = 49.6372, ∆z+ = 17.7276.

The parameters used for the simulation are shown in table 4.1.5. uτ is set to 1 m/s
introducing a body force of 1 m/s2. This is possible because the wall shear stress is
proportional to the pressure gradient,

−∂p
∂x

=
τw
H
. (3.7)

In this case H = 1m, so for the definition of uτ , (3.2), the value of the body force (F) is
equal to the value of u2

τ :

F = −1

ρ

∂p

∂x
=

1

ρ

u2
τρ

H
(3.8)

The initial conditions of velocity, pressure, turbulent viscosity and vapour concentration
are set to 0. The temperature on the top wall is set to 285 K and the bottom wall is set
to 310 K, while the points inside the domain start from 297.5 K.
The boundary conditions are set cyclic for the lateral boundaries. On the walls, the
boundary conditions are set: no slip for the velocity; constant values for the temper-
ature; for the field which described the evaporation are used the boundary condition
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Figure 3.1: Copmputational domain, from top to bottom: the entire domain; the yz face;
the xy face; the xz face.
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Smagorinsky
Ck 0.026
Cε 1.0
Cs 0.065

WALE
Cw 0.325

Table 3.2: Parameter used in the turbulence models

described in Chapter 2; and for the other fields are set to zero gradient.
The case was run with three different turbulence models Smagorinsky, WALE and dy-
namic Lagrangian, in Table 3.1, are reported the values of the parameters used in the
turbulence models.

3.2 Validation of turbulence models

The channel flow is a well-known case study for the analysis of turbulent flows near a
wall. As shown by Piomelli [21] near the wall the flux is divided into three different
layers. For y+ < 5 there is the viscous sublayer, where U+ (which is the mean velocity
divided by the friction velocity) have a linear profile. Above the viscous layer, up to
about 30 y+, is the buffer layer, where the peak of the kinetic energy is located. Over
30 y+ there is the logarithmic layer where U+ follow a logarithmic profile.
Figure 3.2 shows the profile of U+ of the simulation with the three different turbulence
models.
All the data produced by the simulations are averaged over all the domain in the x and
z direction, and over 150 time steps of 0.1 s each.
For y+ < 5, the profile is fitted with a linear function:

U+(y+) = a+ by+ (3.9)

with a = 0.019 and b = 0.97.
For 60 < y+ < 110, the profile is fitted with a loarithmic function:

U+(y+) = c+ d log(y+) (3.10)

with c = 5.2 and d = 2.5.
In the viscous layer, the profile of the DNS is well reproduced by the simulations. In
the logarithmic layer, where the grid points are further away from each other, there
is a greater difference between the simulations profile and the DNS. In the centre of
the channel the velocity of the simulations is greater than the DNS, so the turbulent
viscosity is underestimated. There could be several causes of the underestimation of
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Figure 3.2: Profiles of U+ in function of y+ for the three turbulence models and the
DNS, the x-axis is on a logarithmic scale, the fitted lines are plotted in black
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turbulent viscosity, as turbulence plays a fundamental role in channel flow dynamics.
Nevertheless, the qualitative behaviour of u is reproduced by the simulations, where the
three different layers (viscous, buffer and logarithmic) can be clearly seen.
Figure 3.3 shows the profile along y of the Reynolds stresses diagonal component, 〈u′2i 〉,
comparing the three different turbulence models to the DNS. In the streamwise direction,
the Reynolds stresses are an order of magnitude greater than in the other direction, and
the turbulence models produce greater Reynolds stresses than the DNS, this is probably
due to the underestimation of the turbulent viscosity which produces faster motion with
greater fluctuation. In the other directions, there is an underestimate of the Reynolds
stresses. The turbulence model which better reproduce the profile is the Smagorinsky
which is known to be a high dissipative model so it compensates for the underestimation
of viscosity better.

3.3 Validation of the evaporation model

In order to test the evaporation model in the running case, the two walls of the channel
flow have different temperatures (310K e 285K) and are covered with a film of water
in which may occur evaporation and condensation. In the simulation is ignored the
buoyancy contribution so g = 0. In Figure 3.4 are shown the profile of ω and T ,
obtained with the Smagorinsky turbulent model, which is the one that better reproduces
the dynamic inside the channel. For a turbulent flow over a boundary with an evaporating
liquid film, Desouter [8] proposed wall function of the type:

y+ < y+
T : ζ = aζ + bζ y

+ (3.11)

y+ > y+
T : ζ = cζ + dζ log(y+) (3.12)

where ζ is the concentration of the evaporating fluid (in this case ω) and y+
T is a threshold

value that divides the linear and logarithmic regions.
For y+ < 5 the profile is fitted with a linear function, eq. 3.11, obtaining aζ = 0.39 and
bζ = −95 · 104.
For 60 < y+ < 110 the profile is fitted with a logarithmic function, eq. 3.12, obteining
cζ = 0.031 and dζ = −0.001.
Figure 3.4 show the profile of ω with the two fitting line, in function of y+, the vertical axis
is inverted because it is the profile near the bottom wall where the water is evaporating
from the hot wall, so ω decrease with height.

In the same article, Desouter [8] proposed also a wall function for the temperature
(T) of the type:

y+ < y+
T : T = aT + bT y

+ (3.13)

y+ > y+
T : T = cT + dT log(y+). (3.14)
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Figure 3.3: Profile along y of the diagonal term of the reynolds stress, for the DNS and
the three turbulence models: top 〈u′u′〉; middle 〈v′v′〉; bottom 〈w′w′〉.
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Figure 3.4: Profile of T (top) and ω (bottom) in function of y+, the x axis is in logarithmic
scale, the fitted lines are plotted in black.
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Figure 3.4 shows the profile of the temperature near the bottom wall (the vertical axis
is inverted).
The temperature profile is fitted with a linear funcion, eq. 3.13, for y+ < 5 obteining
aT = 309, bT = −0.80. For 60 < y+ < 110, the temperature profile is fitted with a
logarithmic function, eq 3.14, obtaining cT = 303 and dT = −0.78.
Both the temperature and vapour concentration follow a linear profile in the viscous
sublayer, and a logarithmic profile in the logarithmic sublayer.

The model has been validated using the wall functions due to the lack of experimental
data or DNS evaporation model. The model correctly reproduced the temperature and
vapour behaviour near the wall, so it has correclty reproduced the evaporation from a
water film in a turbulent flow.
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Chapter 4

Street canyon simulations and
results

4.1 Case study description

The case study is an infinite array of urban street canyons. Each canyon consists of
two square buildings delimit a road of infinite lenght, at the center of the road there
is an urban channel. Above the canyon, a wind current is imposed perpendicular to it.
This simplified setting is intended to reproduce an urban area crossed by a waterbody.
The presence of the evaporating waterbody can change the temperature and vapour
concentration of the air. Both temperature and vapour concentration are treated as
active scalars, which can therefore influence the dynamics of the system.
Two different configurations have been studied: one in which the water temperature is
higher than that of the air, and another in which the water is colder than air. The first
could represent a nocturnal situation in which the air undergoes rapid cooling due to
the cessation of solar radiation while the thermal inertia of the water causes it to remain
at a higher temperature. The second could represent a diurnal situation in which rapid
heating due to solar radiation causes the air to have higher temperatures than water.

4.1.1 Geometry

Figure 4.1 outlines the geometry of the case. The road and the buildings wide is W = 1m
and the buildings high is H = 1m. The aspect ratio, which is the ratio between W and
H, of the canyon is a = 1. The streamwise direction, perpendicular to the street, is
x, the spanwise direction is y and the vertical direction is z. z = 0 is the plan of the
street and x = 0 is a plan that cuts one of the two buildings in half along the streemwise
direction. The system is symmetrical along the y direction. The computational domain is
a parallelepiped starting from the origin (x = 0, y = 0, z = 0) long 2H in the streamwise
direction, deep 2H in the spanwise direction and high 3H in the vertical direction. The
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Figure 4.1:

street is located at 0.5 < x/H < 1.5 and z/H = 0. The channel is 0.7m wide, located in
the middle of the street at 0.65 < x/H < 1.35 and z/H = 0. The boundary conditions
on the front plane y/H = 0 and the back plane y/H = 2 are set cyclic to simulate
a system of infinite depth in the spanwise direction. The boundary conditions on the
inflow plan x/H = 0 and outflow plan x/H = 2 are set cyclic to simulate an infinite
array of canyons. The top boundary is located at z/H = 3.

4.1.2 Computational grid

The computational domain is discretised using a grid with 1,592,562 cells. Figure 4.2
shows the computational mesh used. Near the solid surfaces the mesh is denser so that
the first cell center is at y+ < 1 (where y+ is computed in the direction normal to the
surface).

4.1.3 Boundary conditions

The boundary conditions of the velocity field are: no slip for the street, the channel,
the buildings surfaces, and fixed at the value U0 = (0.2, 0, 0)m/s at the top boundary.
The boundary conditions of the pressure field are set to zero gradient for the street,
the channel, the buildings surfaces and the top boundary. The boundary conditions of
the subgrid-scale eddy viscosity are set zero gradient for the street, the channel, the
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Figure 4.2: Overview of the computational mesh.

buildings surfaces and the top boundary. The boundary conditions of the temperature
field are set fixed to the value T0 = 25◦C for the street, the buildings surfaces and the top
boundary. For the channel the temperature boundary condition is different for the two
configuration: in the hot channel case the temperature is fixed at Thot = 27.5◦C while in
the cold channel case the temperature is fixed at Tcold = 22.5◦C. In both configurations,
there is an absolute difference of temperature ∆T = 2.5◦C. The boundary conditions of
vapour concentration are set at zero gradient for the street and the buildings surfaces,
while in the top boundary is fixed at the constant value ω0 = 0. For the channel boundary
condition of the vapour concentration is used the boundary condition described in section
2.2.1. The field used for simulate the evaporation: film height, evaporation velocity and
evaporation heating flux; are defined only on the channel boundary and the boundary
conditions used are described in sections 2.2.2, 2.2.3, 2.2.4.

4.1.4 Initial conditions

Velocity and subgrid-scale eddy viscosity fields fully developed in the same geometry
without the presence of the channel and evaporation, are used as initial conditions of
that fields. The temperature field initial condition is T0 in the entire domain. The vapour
concentration field initial condition is ω0 in the entire domain.
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4.1.5 Physical parameters

The parameters used in the simulations are shown in Table 4.1.5. From the parameters

βT 3.3× 10−3 [1/K] βω 0.63 -
T0 298.15 [K] ω0 0 -
Pr 2.220× 10−5 - Sc 3.29× 10−5 -
Prt 0.7 - Sct 0.7 -
ρ 1.165 [kg/m3] cp 1.005× 103 [J/(kg K)]
g 9.81 [m/s2] ν 1.568× 10−5 [m2/s]

Table 4.1: Parameters used in the simulation of the street canyon

used is possible to define some non-dimensional numbers in order to describe the dynam-
ical and thermal regimes of the simulations. The turbulent state of the air is described
by the Reynolds number, which is computed using the air viscosity, the wind velocity at
the top of the domain and the building height (H):

Re =
U0H

ν
. (4.1)

In that simulations, the Re = 2.0 × 104 which is smaller than the normal atmospheric
value (it is used smaller building and velocity), however, as Lup Wai et al. [4] have
shown, the canyons with aspect ratio a = 1 are independent of Re for Re > 12, 000.
The Reynolds number does not take into account the thermal effect and the natural
convection produced by the buoyancy due to the temperature and moisture. To describe
the thermal contribution in the natural convection is used the Grashof number:

GrT =
gβT∆TH3

ν2
. (4.2)

That definition of GrT takes into account only the thermal contribution to the natural
convection. In that simulations also ω contributes to the buoyancy. The ω difference
(∆ω) in the system is estimated using the difference between ω value at saturation at T0,
ωs = 0.02, and ω0. Than the Grashof number for the vapour concentration contribution
may be defined as:

Grω =
gβω∆ωH3

ν2
. (4.3)

From the Reynolds and the Grashof numbers is possible to compute the Richardson
number, which describes the ratio of the buoyancy and inertial terms:

Ri =
g (βT∆T + βωω0)H

U2
0

=
GrT +Grω

Re2
. (4.4)
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Three different convection regimes are defined by the Richardson number: for Ri � 1
there is the forced convection regime, where the flow is driven by the inertial force, and
natural convection is suppressed; for Ri � 1 there is the free convection regime, where
dominates the buoyancy force; for Ri ∼ 1 there is the mixed convection regime, where
both buoyance and inertial therm are significant.
In that simulations GrT = 8.2·108 and Grω = 5.5·108, so the Ri = 3.4 so the contribution
from inertial and buoyancy therm are both important to determine the evolution of the
flow.

4.1.6 Numerical

The simulations are performed using the program humidityBuoyantBoussinesquePim-
pleFoam which is described in chapter 2. As turbulence model is used the Smagorinsky,
which has produced better results in the validation reported in chapter 3. The maximum
Courant noumber used is Comax = 0.5. For the time derivative is used the OpenFOAM
scheme backward which is a second order implicit scheme. For the spatial derivatives
(gradients, divergences and laplacians) is used the OpenFOAM scheme Gauss linear,
wich is a finite volume discretisation scheme which use a linear interpolation to compute
the values at the faces centres from the cells centres.

4.2 First order statistic

In the following section are reported the results of the simulations for the two different
configurations: the hot channel case, where the channel has a temperature of 27.5◦C;
and the cold channel case where the channel has a temperature of 22.5◦C. The data
of a simulation made by Cintolesi et al. [5], computed using the same geometry and
parameters but in isothermal condition and withot the evaporating channel are also
reported. This last case without the channel is used as referrence to investigate the
impact of the channel.
All the data are averaged on all the cells in the spanwise direction along which the
dynamic system is invariant. The time average is computed on 300 time steps of 1 s
each.
The cases are described divinding it into four regions: the pedestrian region for z/H <
0.2; the internal region for 0.2 < z/H < 0.8; the interface region for 0.8 < z/H < 1; and
the external region for z/H > 1.

4.2.1 Velocity field

For each case, the magnitude of the velocity field will be shown on a vertical section
perpendicular to the spanwise direction, and the profiles of velocity components along
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three vertical lines. Each velocity is divided by the velocity at the top of the domain
U0 and the each lenght is divided by the height of the buildings H, to make that non-
dimensional. Figure 4.3 shows the streamlines of the velocity field and the magnitude
of the velocity in the canyon, for the three cases: hot channel, cold channel and without
channel. In the case without the channel, the dynamic inside the canyon is dominated
by the main vortex with three smaller vortexes at the bottom-right, bottom-left and
top-left, which rotate in the opposite direction to the main vortex. This configuration
is typical of the urban canyons with an aspect ratio of 1 and the forcing of the upper
wind [18]. In the two cases with the channel, the general dynamics is similar to the case
without channel, with higher horizontal velocity in the pedestrian and interface regions
for 0.8 < x/H < 1.2, and higher vertical velocity in the interface region near the walls,
x/H < 0.7 and x/H > 1.3. This show that the contribution of vapour concentration to
the buoyancy (that will be shown is following sections) increase the intensity of the main
vortex. In the cold channel case, the corner vortex at the top left does not develop.

Figure 4.4 displays the vertical profiles of the mean adimensional horizontal velocity
for three different values of x, the first is halfway between the left wall and the channel
at x/H = 0.575, the second is at the centre of the canyon at x/H = 1, the third is
halfway the channel and the right wall at x/H = 1.425. The second profile is over the
channel, while the others two are outside it. Overall, in the lower part of the canyon
z/H < 0.5, all the cases exhibit horizontal motion in an opposite direction than the
outside stream . In the higher part of the canyon, 0.5 < z/H < 1, there are horizontal
motion streamward, which become more intense in the external regions z/H > 1. In the
hot channel case, are developed more intense velocities than the other cases, in particular
in the pedestrian and the interface regions. In the left and right profiles over the floor at
x/H < 0.05, the hot cannel case, shows areas of positive velocity related to the presence
of secondary vortex. In the right profile at 0.7 < z/H < 1, the hot channel case shows
values that tend to zero, this is due to the right side of the top left vortex which is
intersected from the line x/H = 0.575. In the cold channel case, in the pedestrian and
interface regions, the velocties are more intense than the case without the channel but
lesser than the hot channel case. In the right profile under x/H = 0.1 there are positive
values due to the bottom right vortex. Outside the canyon, the velocity of the hot cannel
and the cold channel cases are similar and are both greater than the case without the
channel, so the vapour concentration increases the horizontal velocity also in the region
outside the canyon.

Figure 4.5 shows the plofiles of the vertical velocity, for the same lines of the previous
figure. All the cases exhibit the same qualitative behaviour, with high velocity in the
internal region near the wall, and almost zero velocity in the middle of the canyon (x = 1)
and outside the canyon. This is due to the main vortex, which has an upstream along
the left wall, and a downstream along the right wall. The hot and cold channel cases
have greater velocity near the lateral walls than the case without the channel due to the
buoyancy produced by ω which will be shown in following sections. So higher value of
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Figure 4.3: Stream lines (black lines), and magnitude values (background color) of the
velocity fields, from top to bottom: the case withot the channel; the hot channel case;
the cold channel case.
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Figure 4.4: Vertical profiles of orizzontal mean adimensional velocity for the three cases:
hot channel (red lines), cold channel (blue lines), without channel (green lines); for three
different position: near the left wall (left plot), centre of the canyon (middle plot), near
the right wall (right plot).
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Figure 4.5: Vertical profiles of vertical mean adimensional velocity for the three cases:
hot channel (red lines), cold channel (blue lines), without channel (green lines); for three
different position: near the left wall (left plot), centre of the canyon (middle plot), near
the right wall (right plot).

vapour concentration increase the upstream curent and then the circulation of the main
vortex producing higher velocity inside the canyon.
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4.2.2 Temperature field

The temperature field is made non-dimensional subtracting the initial environment tem-
perature, T0, and dividing for the absolute value of the difference between the channel
temperature and T0.

T ∗ =
〈T − T0〉

∆T
(4.5)

Figure 4.6 shows the values of the temperature inside the canyons for the hot and cold
channel cases. In both cases there is a strong gradient immediately over the channel, due
to the cooling effect of the evaporation, then the cold air is transported along the left
wall by the upstream and diffused over the whole domain, where have uniform values.
There is no positive value, so in both cases the presence of the channel produce a cooling
effect on the environmental temperature. In all the domain, the cold channel case shows
lower values than the hot channel case.

Figure 4.7 displays the profiles of T for the two cases with the channel at the same
values of x/H used in the previous section. In the central profile, over the channel
z/H ' 0, both cases show temperature colder than the initial temperature T0. This
means that also in the case with the hot channel the temperature sink in equation (1.5)
due to the evaporation, dominates over the diffusive term. This produces a discontinuity
with the boundary, where the temperature is set constant at the channel temperature,
and the first computational cell, where the sink therm produces colder themperatures.
That discontinuity is not physical and it is due to the model hypothesis used. In the rest
of the domain, the impact of this effect should be reduced by the coupling of temperature
and momentum equations. In the hot channel case the cooling effect of the evaporation
in opposed to the heating effect of the channel temperature. This produce difference
between 2-3% of ∆T from the starting temperature T0. In the central profile, the cold
channel case shows values T ∗ < −1 near the water surface. This is due to the evaporation
which cooled the air below the channel temperature T ∗cold = −1. In the left profile the
cold channel case shows lower temperatures than the right profile, this is due to the main
vortex which transport cold air from over the channel to the updraft near the left wall.
Inside the canyon, the cold channel case shows a difference between 10-20% of ∆T from
the starting temperature T0. Outside the canyon, the cold channel case shows a uniform
difference of 7.5% of ∆T from the starting temperature T0, so the presence of the cannel
impact also the temperature outside the canyon.
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Figure 4.6: Values of the temperature fields of the hot channel case (top), and the cold
channel case (bottom).
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Figure 4.7: Vertical profiles of adimensional temperature for the two cases: hot channel
(red lines), cold channel (blue lines); for three different position: near the left wall (left
plot), centre of the canyon (middle plot), near the right wall (right plot).
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4.2.3 Vapour concentration

The values of the vapour concentration field are divided to the vapour concentration at
saturation ωs at the temperature T0, to made it non-dimensional.

ω∗ =
〈ω〉
ωs

(4.6)

Figure 4.8 shows the vapour concentration distribution in the domain for the two cases
with the channel. Overall, all the cases exhibit the highest values near the water surface,
where the air is at saturation. On the rest of the domain the fields shows a rapid decrease,
with higher values along the upstream near the left wall. The spatial distribution of the
vapour concentration is qualitatively similar to the distribution of temperature, except in
contact with the street and buildings surfaces, where the different boundary conditions
show different behaviour.

Figure 4.9 shows the profiles of ω for three different values of x/H used also in the
previous sections. In the central profile, immediately over the channel, both the cases
shows values ω∗ ' 1 because in contact with the water the air is at saturation, then the
profiles rapidly decrease due to the advection and turbulent diffusion. In the internal
region and in the interface region, the values of ω∗, are uniform along the vertical, and
higher in the left profiles than the right ones. Outside the canyon, both the cases shows
uniform values smaller than that inside the canyon. In the left profile, where the values
of ω∗ inside the canyon are greater, the difference with values of the external region is
greater than the other profile than the other two profiles. In all the profiles, the hot
channel case show greater values of vapour concentration than the cold channel case.
The warmer temperature of the channel produces more evaporation, than the vapour
concentration is diffused from the motion producing higher values on the entire domain.
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Figure 4.8: Values of the vapour concentration fields of the hot channel case (top), and
the cold channel case (bottom).
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Figure 4.9: Vertical profiles of vapour concentration for the two cases: hot channel (red
lines), cold channel (blue lines); for three different position: near the left wall (left plot),
centre of the canyon (middle plot), near the right wall (right plot).
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4.2.4 Buoyancy force

The buoyancy force (ρ/ρ0)g is divided by g to made it non-dimensional. As show in
equations (1.2) and (1.4), the buoyancy force depends on both temperature and vapour
concentration. Only the vertical component of the buoyancy force is not zero, so only
that component will be discussed in this section. Figure 4.10 displays the values of
the buoyancy force in the two cases with the channel. As shown in section 4.2.2, the
difference between the hot channel case temperatures and the initial temperature T0

are of the order of 2-3% ∆T . Section 4.2.3 show that the hot channel case have high
values of vapour concentration. The high vapour concentration and low temperature
values means that the buoyancy force, in the hot channel case, is possibly dominated
by the ω contribution. The cold channel case show lower values of the buoyancy force,
than the hot channel case. That case show high buoyancy values in contact with the
left wall. This efect is probably due to the different idealized boundary conditions used
for the temperature and vapour concentration fields. Indeed the temperature on the
left building surface is set constant to T0, while vapour concentration field has a zero
gradient boundary condition. These high buoyancy values concentrated in a small region
in contact with the wall 0.50 < x < 0.52/H, could be the cause of the absence of the top
left corner vortex in the cold channel case in Figure 4.3.

Figure 4.11 shows the vertical profiles of the buoyancy for the two cases with the
channel at the values of x/H used in the previous sections. All the profiles shows
uniform values in the internal and external region, in according with the profile of T
and ω reported in Fiugure 4.7 and 4.9. The hot channel case show higher values in the
left profile than the right profile. So in the left side, the buoyancy reduce the gravitational
acceleration increasing the intensity of the updraft and the whole main vortex, as shown
in section 4.2.1. The cold channel case, in the internal region, does not shows difference
from left and right profiles. As shown previously in Figure 4.10, in that case the high
values of buoyancy wich may contribute to the main vortex dynamics, are confined in a
small region. That region does not intersect the line along which the profile are computed
x/H = 0.575, except at z/H = 1 where the high buoyancy regions is deviated rightward
by the external stream. At this hight the left profile shows a peak of buoyancy.
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Figure 4.10: Values of the buoyancy force fields of the hot channel case (top), and the
cold channel case (bottom).
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Figure 4.11: Vertical profiles of buoyancy force for the two cases: hot channel (red lines),
cold channel (blue lines); for three different position: near the left wall (left plot), centre
of the canyon (middle plot), near the right wall (right plot).
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4.3 Second order statistic

4.3.1 Streamwise velocity variance

The streamwise velocity variance fields will be discussed in this section. For all the cases,
the averaged field will be shown on a vertical section perpendicular to y, and the profiles
of variances along three vertical lines. Each value is made non-dimensional dividing by
U2

0 .
Figure 4.12 displays the values of the variaces of streamwise components of the nor-

malized velocity. In all the cases there are high values of variance immediately over the
interface region, 1 < z/H < 1.1. In the hot channel case, there are also high values in
the pedestrian level at the left side of the channel, 0.6 < x/H < 0.8. In the cold channel
case, the peak over the interface region is shifted towards the right side of the canyon,
x/H > 1.

Figure 4.13 shows the profile of < u′u′ > /U2
0 for three different values of x/H for

the three cases with hot and cold channel and without channel. All the profiles show
their maximums over the interface region at 1 < z/H < 1.1. In the hot channel case,
the profile near the left wall shows a secondary peak in the pedestrian region, this peak
is evident also in the other profiles of the same case, but with lower intensity. In the
cold channel case, the variances are lesser intense than the hot channel case except the
peak over the interface in the middle and right profiles, that shows higher values then
the hot channel case. In both cases with the channel, the variances are greater than the
case without the channel, so the increase of vapour concentration and buoyancy produce
more fluctuations in the streamwise velocity.
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Figure 4.12: Values of the fields of variances of streamwise velocities, from top to bottom:
the case withot the channel; the hot channel case; the cold channel case.
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Figure 4.13: Vertical profiles of streamwise velocity variance for the three cases: without
the channel (green lines), hot channel (red lines), cold channel (blue lines); for three
different position: near the left wall (left plot), centre of the canyon (middle plot), near
the right wall (right plot).
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4.3.2 Spanwise velocity variance

The spanwise velocity variance fields has divided by U2
0 to made it non-dimensional.

Figure 4.14 shows the values of the spanwise normalized velocity variance, for the three
cases.
In all the cases there is a maximum variance in the interface region near the right wall.
In the cases with the channel, there is a secondary peak of variance, more evident in the
hot channel case, immediately over the right side of the channel at 1.2 < x/H < 1.4.

Figure 4.15 displays the profiles of the normalized spanwise velocity variance, for
three different values of x/H. The profiles show two main peaks, one over the interface
region, which is greater in the left profile, and one in the pedestrian region which have
higher values in the right profile. The vertical line along the profile are plotted does not
intersect the peak in the interface region near the right wall, which cannot be seen in
the graphs.
The hot channel case shows higher values of the variance than the cold channel case,
wich have greater values than the case without channel, this suggest the contribution of
vapour concentration and so of buoyancy force in the increase of velocity variance.
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Figure 4.14: Values of the fields of variances of spnawise velocities, from top to bottom:
the case withot the channel; the hot channel case; the cold channel case.
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Figure 4.15: Vertical profiles of spanwise velocity variance for the three cases: without
the channel (green lines), hot channel (red lines), cold channel (blue lines); for three
different position: near the left wall (left plot), centre of the canyon (middle plot), near
the right wall (right plot).
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4.3.3 Vertical velocity variance

The vertical velocity variance fields has divided by U2
0 to made it non-dimensional. Figure

4.16 displays the value of normalized vertical velocity variance. In all the cases there are
high values on the left side of the canyon at x/H < 1.3.
In the case without the channel, the peak on the right side is located between the interface
and internal regions at 0.7 < z/H < 0.9, where the horizontal motion are deflected inside
the canyon.
In the hot channel case, the peak near the right wall is shifted down between internal
and pedestrian regions at 0.05 < z/H < 0.45. There are also high values of variance on
the left side of the interface region. That difference may be due to the higher vertical
velocity which produces more variances where the updraft and downdraft change the
direction of motion.
In the cold channel case, the right peak of variances is located in the internal and
pedestrian region near the right wall at 0.1 < z/H < 0.8, which is at a greater height
than the hot channel case, where the vertical motions are stronger, and a lower height
than the case without channel where the vertical motions are weaker.

Figure 4.17 shows the vertical profiles of the variances of the vertical velocity for
three different points along the x axis.
In the hot channel case, there is the main peak near the right wall in the pedestrian
region, and a secondary peak near the left wall in the interface region.
In the cold channel case, there is only one peak at the bottom of the internal region
(z/H < 0.3) of less intensity than the hot channel case.
In both the cases with the channel, the values are greater than the case without the
channel, also in the region outside the channel, showing the contribution of buoyancy in
the production of variances of vertical velocity.
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Figure 4.16: Values of the fields of variances of vertical velocities, from top to bottom:
the case withot the channel; the hot channel case; the cold channel case.
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Figure 4.17: Vertical profiles of vertical velocity variance for the three cases: without the
channel (green lines), hot channel (red lines), cold channel (blue lines); for three different
position: near the left wall (left plot), centre of the canyon (middle plot), near the right
wall (right plot).
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4.3.4 Turbulent kinetic energy

In this section, the turbulent kinetic energy field will be discussed. The turbulent kinetic
energy is defined as the sum of the variances of the three velocity component divided by
2, in this analisis the TKE will be divided it by U2

0 to make it non-dimensional:

TKE =
1

2

〈u′u′〉+ 〈v′v′〉+ 〈w′w′〉
U2

0

. (4.7)

Figure 4.18 shows the vertical sections of the mean TKE spatial distribution, for the
three cases: without the channel, with the hot channel and with the cold channel. All
the cases show high values over the canyon at 1 < z/H < 1.1. In the case without the
channel, there are high-values in the top right corner of the canyon, until a height of
z/H > 0.8. In the cold channel case values are higher than the previous, and the high
value region near the right wall extends along the entire internal region, z/H > 0.2. In
the hot channel case, the values are higher than the other cases, and the regions of high
values extend on all the left side and continue leftward in the pedestrian region following
the main vortex. The presence of the channel produces so higher turbulent motion, more
intense in the hot channel case where buoyancy is stronger.

Figure 4.19 displays the profiles of the normalized turbulent kinetic energy, for three
different values of x/H. The profiles in the different parts of the domain show similar
behaviour, with high value in the pedestrian region and immediately over the interface.
In the pedestrian region, the hot and cold channel cases show a peak that is greater near
the right wall. Over the interface at 1 < z/H < 1.1, all the cases have peaks in all the
profiles, showing that in this region, the interaction between the main vortex and the
external current produce turbulent motions. In all three profiles, the hot channel case
have greater turbulent kinetic energy than the cold channel case which is greater than
the case without channel. This show a strong contribution of buoyancy produced by
vapour concentration in the production of turbulent motion in all the domain, also in
the regions where the increasing of the medium velocity is not evident or absent.
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Figure 4.18: Values of the fields of turbulent kinetic energy, from top to bottom: the
case withot the channel; the hot channel case; the cold channel case.
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Figure 4.19: Vertical profiles of trbulent kinetic energy for the three cases: without the
channel (green lines), hot channel (red lines), cold channel (blue lines); for three different
position: near the left wall (left plot), centre of the canyon (middle plot), near the right
wall (right plot).
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4.3.5 Covariance of horizontal and vertical velocity

Following the turbulent-viscosity hypotheses (for reference see [22]) the covariance of
vertical and horizontal velocity may be interpreted as turbulent fluxes of momentum
that may be modelled by the gradients of the mean velocity:

〈u′v′〉 ' −νt
(
∂〈u〉
∂y

+
∂〈v〉
∂x

)
(4.8)

For all the cases, the averaged field will be shown on a vertical section perpendicular to y,
and the profiles of temperature along three vertical lines. Each value is adimensionalized
dividing by U2

0 .
Figure 4.20 shows the values of covariance of horizontal and vertical velocity. In all

the case immidiately over the interface, there are high negative values, in these regions
the vertical motion are weak so using eq. (4.8), it may be interpreted as a transmission
of horizontal momentum upward, from the main vortex to the region outside the canyon.
In the cases with the channel, where the vertical motion is stronger, the peak in the right
side is shifted downward at z/H = 0.1. The peaks in the bottom right corner and the
peak that the hot channel case show in the top left corner are difficult to interpret due to
the complex dynamics in that region characterized by a strong gradient in both vertical
and horizontal direction and the presence of secondary vortex that affect the motion.

Figure 4.21 displays the covariance of horizontal and vertical velocity for three dif-
ferent value of x/H. The negative peak over the interface is evident in all the profiles.
The hot channel case show two positive peaks one in the right profile in the pedestrian
region, and the other in the left profile in the interface region. All the features of the
profile are stronger in the cases with the channel than the case without it, showing the
contribution of vapour concentration in increasing the turbulent fluxes of momentum.
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Figure 4.20: Values of the fields of covariances of streamwise and vertical velocities, from
top to bottom: the case withot the channel; the hot channel case; the cold channel case.
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Figure 4.21: Vertical profiles of covariance of streamwise and vertical velocity for the
three cases: without the channel (green lines), hot channel (red lines), cold channel
(blue lines); for three different position: near the left wall (left plot), centre of the
canyon (middle plot), near the right wall (right plot).
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4.3.6 Horizontal temperature turbulent fluxes

Following the gradient-diffusion hypothesis (for reference see [22]) the covariance of ve-
locity and a general scalar φ may be interpreted as turbulent fluxes of that scalar that
may be modelled by the gradients of the mean quantity:

〈u′iφ′〉 ' −αt
(
∂〈φ〉
∂xi

)
(4.9)

This may be used to interpret the temperature fluxes, using T instead of φ.
Each value is adimensionalized dividing by U0∆T . Figure 4.22 shows the values of the
covariance of horizontal velocity and temperature. The hot channel case does not show
any feature except imidiately over the channel and imidiately over the floor at the left
side of the channel. In the cold channel case, the regions of negative and positive fluxes
over the channel and the floor are more evident. There are also highly positive values
over the canyon at 0.6 < x/H < 1.3.

Figure 4.23 displays the profiles of the covariance of horizontal velocity and temper-
ature. Over the channel, in the central profile, in both cases the fluxes are negative and
of similar intensity, which means cold air is transported leftward. In the internal region,
the profiles are almost uniform. In the hot channel case near the bottom boundary in
the left plot, the profile rapidly changes from negative to positive values, it is difficult to
say if it is due to the secondary vortex or to the change in the boundary condition from
the channel to the floor. In the cold channel case over the interface, there is a peak of
positive value, more intense in central and right profiles, which means that the turbulent
fluxes are cooling the region outside the canyon.
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Figure 4.22: Values of the fields of covariances of streamwise velocities and temperatures,
of the hot channel case (top), and cold channel case (bottom).
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Figure 4.23: Vertical profiles of covariance of streamwise velocity and temperature for the
two cases: hot channel (red lines), cold channel (blue lines); for three different position:
near the left wall (left plot), centre of the canyon (middle plot), near the right wall (right
plot).
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4.3.7 Vertical temperature fluxes

The covariance of vertical velocity and temperature will be discussed in this section.
Using the eq. (4.9) the vertical turbulent fluxes may be interpretedas a diffusion of
temperature along the vertical direction. Each value is adimensionalized dividing by
U0∆T .

Figure 4.24 shows the values of covariance of vertical velocity and temperature. In
the hot channel case the main gradients are located over the bottom boundary on the left
side of the channel, 0.6 < x/H < 0.8. In the cold channel case, there are negative values
over the canyon at z/H = 1, so the turbulent fluxes are cooling the outside regions. In
the pedestrian region, there are negative values due to the cooling effect of the channel
which produces turbulent fluxes that cool the upper air. In the pedestrian region at the
corners, x/H < 0.6 and x/H > 1.5, there are small regions of positive values, in which
the air is cooled downward, prossibly related to the corner vortex.

Figure 4.25 shows the profiles of adimensional turbulent vertical thermal fluxes, for
three different points of x/H. In the hot channel case, in the central profile, there is a
negative peak over the channel at z/H < 0.1, that describes the cooling of the upper
air from the channel, in the internal regions the fluxes are not appreciable, at z/H = 1
there are negative values meaning the turbulent fluxes are cooling upward. In the left
profile in the lower pedestrian region, at z/H < 0.1 there are high positive values which
describe the turbulent fluxes are cooling downward and it is possibly due to the bottom
left vortex. In the cold channel case, all the profiles show negative values at z/H = 1,
meaning that the turbulent fluxes are cooling upward the air outside the canyon. In the
internal region, there are negative values in the left and right profiles, so the turbulent
fluxes are cooling the air upward. In the pedestrian region in the central profile, there
are negative values showing the cooling effect of the channel on the upper air.
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Figure 4.24: Values of the fields of covariances of vertical velocities and temperatures, of
the hot channel case (top), and cold channel case (bottom).
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Figure 4.25: Vertical profiles of covariance of vertical velocity and temperature for the
two cases: hot channel (red lines), cold channel (blue lines); for three different position:
near the left wall (left plot), centre of the canyon (middle plot), near the right wall (right
plot).
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4.3.8 Horizontal vapour concentration fluxes

Using the eq. (4.9) the horizontal turbulent fluxes may be interpreted as a diffusion of
the vapour concentration along the x direction. For all the cases, the averaged field will
be shown on a vertical section perpendicular to y, and the profiles of covariance along
three vertical lines. Covariance of horizontal velocity and ω is made non-dimensional
dividing it by U0ωs.

Figure 4.26 shows the values of turbulent adimensionalized horizontal fluxes. Over
the interface, in both cases, there is a region with high negative values, which shows a
streamwise transport of humidity into the external region due to the turbulent motions.
In both cases, over the channel, there are positive values of turbulent fluxes, which means
that humidity is transported leftward. In both bottom corners, in the cold channel case,
and the left bottom corners, in the hot channel case, there are small regions of negative
values, that may be related to the secondary vortex, in the velocity field.
Figure 4.27 displays the profiles of turbulent adimensional horizontal fluxes of ω for
three different values of x/H. In all the profiles are evident the negative peak over the
interface, in both cases. In the central profile, there is a positive peak immidiately over
the channel, which is more intense in the hot channel case due to the higher evaporation.
In both cases, in the lateral profiles, at the bottom of the pedestrian region, there are
small negative profiles. In the hot channel case, the left bottom peak is greater than the
right one.
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Figure 4.26: Values of the fields of covariances of streamwise velocities and vapour con-
centrations, of the hot channel case (top), and cold channel case (bottom).

71



Figure 4.27: Vertical profiles of covariance of streamwise velocity and vapour concen-
tration for the two cases: hot channel (red lines), cold channel (blue lines); for three
different position: near the left wall (left plot), centre of the canyon (middle plot), near
the right wall (right plot).
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4.3.9 Vertical vapour concentration fluxes

The covariance of the vertical velocity component and ω has divided by U0ωs to make it
non-dimensional. Using the eq. (4.9) the vertical turbulent fluxes may be interpreted as
a diffusion of the vapour concentration along the z direction.

Figure 4.28 shows the values of adimensional turbulent vertical fluxes of ω. In the
hot channel case, there are two regions of high positive flux, one over the interface, and
the other over the channel spreading along the updraft. In the cold channel case, the
regions with the higher fluxes are the region over the interface, and the internal region
near the right wall spreading leftward on the downdraft. The positive values are one
order of magnitude greater than the negative values, showing that upward diffusion of
moisture dominates the entire system.
Figure 4.29 shows the profiles of adimensional turbulent vertical humidity fluxes for three
different values of x/H. Near the left wall, both the profiles have positive values all along
the canyon, which are greater in the hot channel case. In the central profile, there are
two peaks, one at z/H = 1 where the humidity is transported to the drier external air,
the other over the channel where water evaporates upward. The profiles near the right
wall show different behaviour, in the hot channel case, the peak is over the interface,
while in the cold channel case the peak is between the internal and pedestrian region.
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Figure 4.28: Values of the fields of covariances of vertical velocities and vapour concen-
trations, of the hot channel case (top), and cold channel case (bottom).
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Figure 4.29: Vertical profiles of covariance of vertical velocity and vapour concentration
for the two cases: hot channel (red lines), cold channel (blue lines); for three different
position: near the left wall (left plot), centre of the canyon (middle plot), near the right
wall (right plot).
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Chapter 5

Conclusions

The present work has shown the impact of an evaporating waterbody in an urban canyon.
This phenomenon has been investigated through numerical simulation using a computa-
tional fluid dynamic (CFD) model. A large-eddy simulation (LES) has been chosen as
numerical approach, to resolve the evolution of the system by modeling the small scale
motions. The model resolves the equations of motion in Boussinesq approximation and
the equations of advection and diffusion of temperature and vapour concentration. An
evaporation model which describes the evaporation from a water film has been chosen
and implemented in the fluid dynamic model. Due to the lack of experimental data to
validate the model, it has been tested on a turbulent channel flow with Retau = 395, with
different turbulence models. The Smagorinsky model gave the best results and is used
in the subsequent simulations. The model is then used in the simulation of an urban
street canyon of aspect ratio H/W = 1, with H height of the buildings and W width of
the street. In the centre of the canyon, an evaporating channel has been placed. Two
simulations are performed, with two different channel temperature, one higher than the
air temperature and the other lower. The large-eddy simulation approach has permitted
to observe the spatial distributions of the mean and turbulent variables.

The results of the simulations show strong interaction between the mechanical and
thermodynamical variables. The main vortex developed inside the canyon diffuses the
temperature and vapour concentration inside the canyon, and the buoyancy due to the
vapour concentration increases the intensity of the vortex. In the hot channel case, the
high water temperature has produced high evaporation and so high vapour concentration
values in the system. This caused an increase of up to 375% in the horizontal velocity
values and up to 300% in the vertical velocity values, these percentages have been com-
puted comparing the maximum velocity values in various regions to the values of the case
without the channel In the cold channel case the colder temperature values and lower
vapour concentrations have produced weaker effect on the buoyancy, than the previous
case, reaching a maximum increase of 130% on the horizontal velocities and of 160% in
the vertical velocities. In both cases the presence of the channel has reduced the tem-
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perature in the whole domain. In the hot channel case, where the cooling effect of the
evaporation opposes the warming effect of thermal diffusion, the temperature reduction
was 2-3% of the difference between the channel temperature and the initial air temper-
ature. In the cold channel case, where the cooling effect was greater, the temperature
reduction was 10-20% inside the canyon and 7.5% outside. Also the turbulence variables
have been changed by the presence of the evaporation. The turbulent kinetic energy
in both cases shows higher values than the case without the channel. Turbulent fluxes
of momentum show higher values than the case without channel, in particular near the
interface between the canyon and the external air, vertical turbulent fluxes of vapour
show high values on the left side of the interface. This is particularly interesting because
usually, in street canyons, that is a region with high pollutant concentration. So, high
turbulence fluxes could contribute to diffuse the pollutant to outside the canyon and
reduce the internal concentration.

This work has some limitation due to the model hypothesis used and the simplified
setting. The temperature discontinuity on the channel surface may be resolved imple-
menting a model which couples the temperature of the channel to the air temperature.
The cold channel case shows the dependence of the buoyancy fields from the boundary
conditions of the left building wall, further simulation may study that dependence us-
ing different boundary condition and taking in account other physical property of the
building facades. The model could be validated using laboratory or scale model data,
simulating more complex geometry.
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