
Alma Mater Studiorum · Università di Bologna

Scuola di Ingegneria e Architettura

Dipartimento di Informatica - Scienza e Ingegneria (DISI)

Corso di Laurea Magistrale in Ingegneria Informatica

Tesi di Laurea
in

Computer Vision and Image Processing

Improving the Convergence Speed of
NeRFs with Depth Supervision and

Weight Initialization

Relatore:
Prof. Luigi Di Stefano
Correlatori:
PhD. Daniele De Gregorio
PhD. Luca De Luigi

Candidato:
Damiano Bolognini

Anno Accademico: 2020/2021

A tutte le persone che mi hanno accompagnato durante questi anni

universitari, che mi sono state sempre vicine, nonostante le difficoltà. In

particolare ai miei genitori, senza di voi questo sogno non si sarebbe potuto

realizzare.

Grazie

Abstract

Neural rendering is a new and developing field where computer graphics and

deep learning techniques are combined to generate photo-realistic images using

deep neural networks.

In particular, Neural Radiance Fields (NeRF) is able to synthesise novel

views of a scene with unprecedented quality by fitting a Multi-Layer Perceptron

(MLP) to RGB images. However, training this network requires plenty of time

and computation even on modern GPUs, making this new technology hardly

employable on practical specialized applications.

In this project, we show that employing the known depth of the scene as

an additional supervision during the training, and starting from pre-trained

weights of other scene with similar setups, instead of from scratch, leads to a

convergence speed 3 to 5 time faster.

Sommario

Il neural rendering è un settore emergente che combina concetti di computer

graphics e di deep learning per generare immagini fotorealistiche tramite reti

neurali.

In particolare, NeRF, acronimo di Neural Radiance Fields, è in grado di

sintetizzare nuove viste di una scena con qualità mai vista prima, usando un

Multi-Layer Perceptron (MLP) allenato su immagini RGB. Tuttavia, allenare

questa rete richiede molto tempo e computazione anche sulle GPU più moder-

ne, rendendo questa nuova tecnologia difficilmente utilizzabile in applicazioni

pratiche specializzate.

In questo progetto, dimostriamo che sfruttare la profondità nota della scena

come supervisione aggiuntiva durante l’allenamento, e che partire da pesi pre-

allenati di altre scene con una struttura simile, invece che da zero, porta a una

velocità di convergenza da 3 a 5 volte più veloce.

Contents

Introduction 1

1 Introduction to Neural Rendering 3

1.1 Scene Representations . 5

1.1.1 Surface Representations 6

1.1.2 Volume Representations 7

1.2 Image Formation . 7

1.2.1 Rasterization . 9

1.2.2 Ray Casting . 10

1.2.3 Ray Tracing . 11

1.2.4 Surface Rendering . 12

1.2.5 Volume Rendering . 13

1.3 MLP: Multi-Layer Percepetron 14

2 Neural Radiance Fields 16

2.1 NeRF . 16

2.1.1 Scene Representation . 17

2.1.2 Volume Rendering . 20

2.1.3 Optimizations . 21

2.1.4 Pros and Cons of NeRF 22

2.2 KiloNeRF . 23

2.2.1 The Network Architecture 25

2.2.2 The Teacher-Students Model 25

2.2.3 The Sampling Technique 26

2.2.4 Pros and Cons of KiloNeRF 28

2.3 DS-NeRF . 28

2.3.1 The Depth Loss . 29

2.3.2 Pros and Cons of DS-NeRF 30

2.4 MetaNeRF . 30

2.4.1 The Meta-Learning Method 31

2.4.2 Pros and Cons of MetaNeRF 32

3 NeRF Model and Experiments 33

3.1 The Lego Dataset . 33

3.2 The Model . 35

3.3 Experiments . 36

3.3.1 Number of Images . 36

3.3.2 Depth Supervision . 36

3.3.3 Weight Initialization . 37

4 Results 38

4.1 Number of Images . 39

4.2 Depth Supervision . 47

4.3 Weight Initialization . 55

5 Conclusion and Future Works 64

List of Figures 66

List of Tables 71

Bibliography 72

Introduction

Rendering photo-realistic images of a real-world scene has always been one of

the hot topic of computer graphics and computer vision. Over the years, several

methods have been developed to estimate the physical properties of a real-world

scene from its observations, such as images and videos, necessary to achieve

photo-realistic synthesis on novel views. However, this estimation task, known

as inverse rendering, is extremely challenging and it often fails to reach the

wanted image quality.

In contrast, in the past few years, a new and innovative field has emerged:

the neural rendering, which combines classical computer graphics techniques

with recent advancements in deep learning. In particular, Neural Radiance

Fields (NeRF) is an unprecedented and disruptive technology able to represent

real-world scenes with photo-realistic image quality with just few megabytes.

The main idea behind it is to employ a deep neural network, a Multi-Layer

Percepetron (MLP), to synthesise novel views images of a real-world or synthetic

scene by fitting on its observation, such as RGB images and videos.

The results are stunning, but this new technology is far away from being

used for everyday user applications, since training and interrogating the network

requires a lot of time and computation, which are never enough. The aim of

this work is to find a way to speed up the training phase of this technology.

For our project we have combined two ideas: the depth supervision and

the weight initialization: the former consists in using the known depth of the

scene to help the network understand the undergoing geometry, while the latter

1

consist in training the network starting from pre-trained weights of different

scenes with similar setups to accelerate the training phase.

We show that this combination leads to a convergence speed 3 up to 5 times

faster, with a better trade-off between training time and image quality, over

different synthetic scenes of Lego models.

Our results have been used by the Eyecan s.r.l. company, which believes that

deep learning will be the center of the industry of the future, to take part to

the annual OpenCV Spatial AI Contest.

Outline

This work is divided in five Chapters. Firstly in Chapter 1, we will explain

in details the fundamentals of neural rendering necessary to understand NeRF,

which will be described in Chapter 2, along with few related papers concerning

the acceleration of training and rendering time.

Then, in Chapter 3, we present our NeRF model based on weight initial-

ization and depth supervision techniques to boost the convergence speed of the

network; the qualitative and quantitative results of our experiments are reported

in Chapter 4.

Finally, in Chapter 5, we reported the conclusions and possible future im-

provements which could be made.

2

Chapter 1

Introduction to Neural

Rendering

Computer graphics has born in the fifties, and since then it has been developed

and used for several tasks such as video games, phone and computer displays,

art and many specialized tasks.

One of its main topic has always been synthesising controllable and photo-

realistic images and videos. In the last decades, the main approach to this

problem has been trying to model real cameras, materials and global illumina-

tion. These models are based on physics laws, therefore, to render a scene, all

the physical parameters must be known, which it is not possible or feasible in

certain applications.

To overcome these models’ complexity, several methods, based on nontrivial

mathematical approximations, have been formalized to simulate the real-world

models, such as triangular meshes and heuristics. However, even with these

techniques, rendering novel views of a known objects remains challenging, lead-

ing to a low realism.

A much harder and related problem is rendering photo-realistic novel views

of a real-world object, where the physical parameters are not known, and must

3

be estimated, through inverse rendering [1], from observations of the scene, such

as images and videos, which is often challenging.

Therefore the following question arises, is there another way to render photo-

realistic images and videos of a real-world scene? The answer is yes, and it is

called "Neural Rendering", which has been defined by Tewari et al. as:

"[...] a rapidly emerging field which allows the compact representation of scenes,

and rendering can be learned from existing observations by utilizing neural net-

works. The main idea of neural rendering is to combine insights from classical

(physics-based) computer graphics and recent advances in deep learning. Sim-

ilar to classical computer graphics, the goal of neural rendering is to generate

photo-realistic imagery in a controllable way. This, for example, includes novel

viewpoint synthesis, relighting, deformation of the scene, and compositing." [2]

In this way, the neural network approximates internally all the physical pa-

rameters for the rendering, without the need of knowing them directly. There-

fore, the problem is reduced to find the best network architecture for the given

task, which can be challenging, but in less than four years there have been many

improvements, and now neural rendering can be used for novel view synthesis,

relighting, pose estimation, generative models and many other specialized tasks.

It is a new and developing field, one of the first publications which gave the

name to neural rendering was written in 2018 [3], but only in 2020, with the arti-

cle "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

by Mildenhall et al. [4], the neural rendering gained more and more interest, so

much that this phenomenon has been defined as "The NeRF Explosion"[5].

The main concept behind neural rendering is the disentanglement of the

camera capturing process and the scene representation during the training of

the neural network. The disentanglement gives consistency while rendering new

images with the network, but to achieve it, it is necessary to simulate the camera

acquisition process of the scene.

There are several image formation models from computer graphics, there-

4

fore, in this chapter, we will describe how we can describe a scene (surfaces

and volumes), render it (the image formation models) and finally which neural

network is the most used for neural rendering.

1.1 Scene Representations

In computer graphics, many different ways have been defined to describe a

scene. The most known is without doubt triangle meshes, but also voxel grids,

point clouds, implicit or parametric surfaces are commonly used. There are two

categories of representations: surface and volumetric, Figure 1.1.1.

Figure 1.1.1: Different ways to represent a scene [2].

Both have their pros and cons (it depends on the task), in general, volu-

metric representations can be used to describe surfaces too, but not vice-versa.

Additionally, volumetric representations can store several properties of the scene

such as density, radiance, occupancy, along with the classical features such as

colors. Surface representations are instead more "limited", because they can

store properties only of the surface of the object they are describing. These rep-

resentations can be discretized or continuous, the latters are particularly used

in neural rendering, because they provide an analytic gradient, therefore they

lend themselves well to neural networks.

5

1.1.1 Surface Representations

A surface can be described in two ways, explicitly and implicitly.

In the former way, the surface is described by an explicit function, fexplicit(x, y)

in the Euclidean space, an example could be the height maps z = f(x, y). This

representation can be useful, because it is easy to explicitly calculate tangents

surfaces, normals and curvature, which are used for rendering.

In the latter way instead, the surface is described by an implicit function,

fimplicit(x, y, z) = 0 in the Euclidean space, an example could be the Signed

Distance Fields (SDF), where it is easy to check on which side of the surface a

point is located just by looking at the sign of the function in the given point,

but it is not easy to enumerate points on the surface and to piece-wise join them

maintaining continuity and smoothness.

In general, the function can be any function, for easy ones, such as planes, a

linear function is sufficient, but for complex shapes more advanced techniques

are needed, such as Taylor series.

The most common ways to approximate the surface function are point clouds

and meshes.

A point cloud discretize a surface into a set of sample points of the Euclidean

space (x, y, z), they are usually obtained from a 3D scan of a real world object.

Other than their positions, each point can store additional attributes such as

normals (oriented point cloud) and colors. Since a point cloud is a set of elements

of the Euclidean space, they can approximate volumes too, by storing additional

attributes such as density and opacity.

A polygonal mesh instead is a linear piece-wise approximation of a surface.

It is the most common way in computer graphics to approximate a surface, in

particular triangle meshes are considered a standard, and rendering pipelines

are able to process billions of triangles in seconds. Each vertex of a triangle can

store attributes such as normals and colors, but a common strategy is to employ

2D texture maps to store them. The coordinates of the texture are attached to

the vertices of the mesh, in this way, texture coordinates can be computed for

6

any point of the mesh using barycentric interpolation, and the attributes of the

point can be obtained from the texture with bilinear interpolation. Textures are

included in the standard graphics pipeline, making their usage easy and fast.

1.1.2 Volume Representations

Similarly to surfaces, volumes can be described by a function too, in this case

it describes properties in the entire space: fvol(x, y, z), and the most common

way to approximate it is a voxel grid.

A voxel is the equivalent of a pixel in a three-dimensional space, but other

than colors, a voxel can store more attributes, such as occupancy, density and

transparency. A voxel grid is a collection of voxels, it is usually obtained by

a CT scan of a real world object and it is used as a discretized description of

a volume. The final appearance of the scene is obtained by interpolating the

attributes of the voxels with a rendering technique called volume rendering,

which will be discussed later in this chapter, Section 1.2.5.

Voxel grids are a powerful way to store volume descriptions, but they require

a large storage, thus they are difficult to share on a normal user bandwidth.

1.2 Image Formation

We have seen how we can describe and store the 3D geometry of a scene, now

we will see how we can generate images from these representations through

rendering. The best rendering method is to trace every light particle in the scene,

but for obviously reason this is impossible, it would take an enormous amount

of computation and time, therefore several algorithms have been researched to

obtain an image in a reasonable amount of time without loosing too much image

quality. In particular, three families of algorithms are used in rendering:

• rasterization: the scene representation is projected into the image plane;

• ray casting: it simulates the camera acquisition process by casting rays

into the scene;

7

• ray tracing: it is the evolution of ray casting employing more advanced

simulations to obtain more realistic results.

Rendering methods are based on the pinhole camera model, where the basic

intercept theorem describe how a 3D world point is projected into the 2D image

plane. This projection is described by a non-injective function, therefore it is

not easily invertible.

The pinhole model is described by a parameter matrix for the projection,

called intrinsic matrix K; it contains the focal lens normalized by pixel size f =

[αx, αy], the axis skew γ, which is usually zero, and the center point c = [cx, cy]:

K =

αx γ cx 0

0 αy cy 0

0 0 1 0

From the homogeneous coordinates of a scene point p′ = [x, y, z, 1], we can

find its projection in pixel q′ = [u, v, 1] with the intercept theorem:

q′ = K · p′ (1.2.1)

The center of the projection is at the coordinate origin and the camera is axis-

aligned. For arbitrary camera positions, an homogeneous 4× 4 roto-translation

matrix can be used, which is called extrinsic matrix, or pose:

E =

R3×3 t3×1

01×3 1

where R is a rotation matrix and t is a translation vector, such that pc =

R · pw + t, where pw is the point in world coordinates and pc in camera

coordinates.

In computer vision this model is commonly used, and it is referred to as

"world-to-cam" mapping, while in computer graphics the inverse "cam-to-world"

mapping is more frequent. In the "world-to-cam" mapping the final full projec-

tion of a real world point pw to its corresponding pixel qp becomes:

qp
′ = K ·E · pw

′. (1.2.2)

8

which is without doubt extremely fast and efficient since it is just a sequence of

matrix multiplications.

To correctly model the camera, it is necessary to model the lens too, be-

cause they add distortion effects to the projection function. Modeling the lens

is trivial, because a camera calibration is needed and they are modeled through

polynomials up to degree five, therefore they are not easily invertible. Anyway

there are modern approaches for camera calibration which use many more pa-

rameters to achieve a better accuracy and make it invertible and differentiable

[6].

1.2.1 Rasterization

Rasterization is usually faster than the ray-based techniques, and it is the ren-

dering method used by all graphics cards. The main idea behind rasterization

is to project the geometric primitives of the scene, which are usually meshes,

into the image plane, Figure 1.2.1. It is usually faster because it focuses only

Figure 1.2.1: In rasterization the scene primitives are projected into the image

plane [2].

on the primitives, therefore the empty areas are automatically ignored, while in

the ray-based methods all the areas are checked. In addition, contiguous pixels

are usually occupied by the same primitive, therefore it is possible to reduce re-

dundant computations. The pixels’ color is given by the primitive, and different

9

approaches can be used.

Since it is faster, it is generally used when interactive rendering is required,

i.e. video games and simulations, but usually the image quality is worse than

the ray-based techniques and it is less versatile because it is based on several

image assumptions.

1.2.2 Ray Casting

Ray casting is the easiest ray-based rendering technique, which instead of start-

ing from the primitives to obtain the final image, it starts from the pixels. Ray

casting simulates the camera acquisition process by casting rays from the cam-

era center into the scene passing through the pixels, usually one ray per pixel,

Figure 1.2.2. Each ray is then sampled, and for each sample the corresponding

radiance, which is the quantity of light coming from the ray direction, is com-

puted. Finally, the contributions of each sample are accumulated into the final

color value. Ray casting assumes that the rays follow a straight path without

Figure 1.2.2: In ray casting the image is generated by casting and sampling rays

[2].

bouncing, therefore the light effects usually are not sophisticated as other ray-

based rendering techniques, but it is faster and it was commonly used in early

nineties video games, such as Wolfestein and Doom.

10

1.2.3 Ray Tracing

Ray tracing is a more sophisticated ray-based rendering method, it aims to

simulate the flow of light particles. It is the method that achieve the better

quality, but it is also the slower because a larger number of rays is needed.

In general, for each pixel several rays are shot, and when a ray hits an object,

other rays from the intersection are shot, such as shadow rays to see the direct

light interaction, refraction rays if the object is refractive, reflected rays if the

object is reflective and so on .

Figure 1.2.3: In ray tracing the image is generated by casting rays and combing

their contributions [7].

Finally, the contributions of each ray are combined to obtain the final pixel

color. The bounces of the rays allow to obtain a photo-realistic light interaction,

but it comes with a cost, casting more rays means more computation.

Since it is computational demanding, the number of bounces is usually lim-

ited, for example in path tracing only a single ray, or none, is fired at each

intersection.

Ray tracing is a brute force method, thus it is rarely used for real-time

applications since it is too slow, but in the last few years there have been several

attempt, especially in the video games industry, to make it real-time, with

11

promising results.

1.2.4 Surface Rendering

Polygonal Meshes The most common way to render a polygonal mesh is

through rasterization. First of all, the polygons are divided into triangles, if

it is not already a triangle mesh, then each vertex of the mesh is transformed

into camera coordinates by using the extrinsic matrix E. The points that are

outside the view frustum or have a wrong normal orientation are not considered,

because they are not visible from the camera, and this reduce the amount of

faces to process. After the culling, the projections of the vertices are found by

using the Equation 1.2.2.

Finally, the pixels of each triangle are found from the pixel locations of

its vertices, this can be done with different algorithms, such as the Bresenham

algorithm; for the pixels final color there are different techniques too, for example

linear interpolation of the vertices colors. To respect the right depth order of

the triangles, the depths can be stored in a z-buffer, in this way only the visible

triangles are rendered to screen.

The ray-based rendering techniques can be used with polygonal meshes too,

the main idea is to find the intersection of the rays with the faces. Using ray

tracing leads to better results, but rasterization remains faster and it is still the

most used method for real-time applications.

Point Clouds Point clouds are usually converted into other surface represen-

tations such as polygonal meshes and NURBS surfaces. The conversion can be

done in several ways, some of them create a network of triangles from the points

of the point cloud, such as the Delaunay triangulation, others convert the point

cloud into a volumetric distance field and then the implicit surface is obtained

through a marching cubes algorithm.

12

1.2.5 Volume Rendering

We have previous said that voxel grids can be rendered through volume render-

ing. Volume rendering is based on ray casting, and the scene is seen not as a

collection of hard surfaces, such as polygonal meshes, but as a continuous field

of volume densities. Each 3D point x in the scene has its density σ(x), which

can be seen as the differential probability of a ray terminating at an infinitesimal

particle at location x, and color c(x, d), where d is the viewing direction.

This information are usually given by voxel grids, where each voxel has its

density and color, used for volume rendering. As we said before, to render an

image, rays are shot from the optical center into the scene, one ray per pixel.

The final color of a pixel, with its corresponding camera ray r(t) = o+ td, with

o the origin and d its direction, with near and far bounds tn and tf , is given by

the integral:

C(r) =

∫ tf

tn

T (t) σ(r(t)) c(r(t), d) dt;

where T (t) = exp

(
−

∫ t

tn

σ((s)) ds

)
.

(1.2.3)

The function T (t) indicates the accumulated transmittance, which is the

probability of the ray to not hit anything in [tn, t].

The continuous integral is then discretized with the quadrature rule[8]:

Ĉ(r) =

N∑
i = 1

Ti(1− exp(−σiδi))ci;

where Ti = exp

 −
i−1∑
j=1

σj δj

 .

(1.2.4)

where σi = ti+1 − ti is the distance between two adjacent samples.

This function is differentiable and it can be seen as traditional alpha blending

with α = 1− exp (−σiδi).

13

1.3 MLP: Multi-Layer Percepetron

Earlier we said that surfaces and volumes can be described by a function, which

can be approximated in different ways. In neural rendering, the main idea is to

approximate this function with a neural network, in particular with the Multi-

Layer Perceptron (MLP), which is know to behave as an Universal Function

Approximator [9].

The multi-layer perceptron is one of the oldest and simplest fully-connected

neural network, it has at least three layers: the input layer, the hidden layer

and the output layer, and each node is a perceptron [9]. Except for the input

layer, the nodes are activated by a nonlinear activation function, usually the

Rectified Linear Unit (ReLU).

Figure 1.3.1: The Multi-Layer Perceptron.

MLPs work like every deep neural network: first there is the feed forward

phase, where from a given input the network computes a certain output through

a series of weighted sums. Then, the weights of the networks are updated in

the backpropagation phase in the opposite direction of the gradient, given by

the loss function, which is usually the mean squared error between the output

of the network and the expected value.

In our use case, the MLP takes as input the coordinates of a 3D point in the

14

space and the viewing direction, and gives as output some values corresponding

to that point, such as colors and density. This type of networks is known as co-

ordinate based neural network, and this scene representation is called coordinate

based scene representation [2].

To obtain the best from the network, a procedure, called positional encoding,

is performed, where the input is mapped to a higher dimensional space using

high frequency functions, such as goniometric functions. This is needed because

the MLP performs poorly at representing high-frequency variation in color and

geometry, and positional encoding enables better fitting of data that contains

high frequency variation [10].

15

Chapter 2

Neural Radiance Fields

In the previous chapter we have described the fundamentals of neural rendering,

now in this chapter we will see how they are used to generated photo-realistic

images of a real world scene. The most relevant article on the subject is without

doubt: "NeRF: Representing Scenes as Neural Radiance Fields for View Syn-

thesis" [4]; since its publication, several articles have been published each week,

and this phenomenon has been called "The NeRF explosion" [5]. Even if neural

radiance fields are extremely powerful tools for many different specialized ap-

plications, they are very slow both at training and inference time, making them

unfeasible for real time application.

In this chapter we will first explain what is NeRF, then we will focus on few

articles containing good ideas on how we could speed it up.

2.1 NeRF

NeRF stands for Neural Radiance Fields:

• neural: because it is a neural network;

• radiance: because the network describes the radiance of the scene;

16

• fields: because the network is able to return the radiance of any point of

the scene, i.e. it is a continuous representation, not discrete.

In other words, NeRF is a neural network able to perform impressive photo-

realistic novel views synthesis of a real-world or synthetic scene (view synthesis

results are best viewed as videos, so we recommend to visit the official NeRF

website: https://www.matthewtancik.com/nerf to see them).

The main idea behind NeRF is simple: train a neural network over a dataset

of images of a scene taken from multiple point of views, and once that the

network is trained, it is able to generate images of the scene from novel views,

Figure 2.1.1.

Input Images Optimize NeRF Render new views

Figure 2.1.1: From a dataset of images of the scene, NeRF is able, once trained,

to generate novel views of the scene with photo-realistic quality [4].

Obviously, the images of the dataset should be taken uniformly all around

the scene, otherwise the network will learn correctly only the views that has

seen the most.

2.1.1 Scene Representation

In the last chapter, we have said that an MLP can approximate the scene

representation function. In NeRF, the scene is represented by a 5D vector-

valued function, whose input is a 3D point of the scene x = (x,y, z) and a 2D

viewing direction d = (θ,ϕ) (which in practice is a 3D Cartesian unit vector)

and whose output is the emitted color c = (r,g,b) and volume density σ of

the point. In other words, this continuous function, given a point of a scene

17

https://www.matthewtancik.com/nerf

and from where it is seen, gives as output the color of the input point and its

density.

The function is approximated using an MLP FΘ, where its weights Θ en-

code the scene representation, each scene will have its set of weights, while the

network structure remains unchanged.

To render an image from the MLP, a ray for each pixel is shot from the

camera center into the scene, then the ray is sampled and each sample is given

as input to the network. The final color of the pixel is computed by combining

the outputs of the network with volume rendering, Section 1.2.5. Therefore, the

pose and the camera parameters of each image are needed to cast the rays, and

if they are not available they can still be retrieved using Structure-From-Motion

(SFM) solvers like COLMAP.

To train the network, the procedure is similar, given the final color of the

pixel, the rendering loss is simply the mean squared error of the output color

Ĉ(r) and the ground truth value C(r), Figure 2.1.2:

L =
∑
r∈R

∥Ĉ(r)− C(r)∥22 (2.1.1)

(x,y,z,θ,ϕ)

FΘ

(RGBσ)

5D Input
Position + Direction

Output
Color + Density

Volume
Rendering

Ray 1σ

σ

Rendering
Loss

g.t.

g.t.

2

2

2

2

Ray 2

Ray 1

Ray Distance

(b)(a) (c) (d)

Ray 2

Figure 2.1.2: The camera rays are sampled (a), the samples are fed to the

network to obtain their colors and densities (b), volume rendering composes the

colors and densities of the camera ray to obtain the final pixel color (c). Since

the rendering function is differentiable, the scene is optimized by minimizing

the mean squared error of the output color and ground truth [4].

The multi-view consistency is enforced by the network structure, Figure

18

2.1.3: the volume density σ depends only on the spatial location x, while the

color c depends on both location and viewing direction d. To achieve this, the

network first takes as input only the 3D location x and processes it with 8

fully-connected layers, using ReLU activation and 256 channels each, to obtain

the volume density σ and a 256-dimensional feature vector. The feature vector

is concatenated with the viewing direction d and is given as input to the last

fully-connected layer, still using ReLU activation and 128 channels. Finally, the

point color c is obtained with a sigmoid activation. The main idea is to make

the network focus more on the density (with more layers), and only at the end

the viewing direction is used to obtain the color, in this way the MLP is able

to represent reflections more effectively.

RGB
�(x)

<latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="C39OhB+IczRcjLNINXH29e9lt8M=">AAAB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCpTN+pOcOOygmML7VAymTttaCYzJHeEMvQFXLhRfDB3vo3pz0KtBwIf5yTk3hMXSloKgi+vtrW9s7tX3/cPGv7h0XGz8WTz0ggMRa5y04+5RSU1hiRJYb8wyLNYYS+e3i3y3jMaK3P9SLMCo4yPtUyl4OSs7qjZCtrBUmwTOmtowVqj5ucwyUWZoSahuLWDTlBQVHFDUiic+8PSYsHFlI9x4FDzDG1ULcecs3PnJCzNjTua2NL9+aLimbWzLHY3M04T+zdbmP9lg5LS66iSuigJtVh9lJaKUc4WO7NEGhSkZg64MNLNysSEGy7INeO7Djp/N96E8LJ90w4eAqjDKZzBBXTgCm7hHroQgoAEXuDNm3iv3vuqqpq37uwEfsn7+Aap5IoM</latexit><latexit sha1_base64="hQhj+CULGdG3QS0LVa1KRUGPisw=">AAAB73icbVA9T8MwFHwpX6UUCF1ZLCqkslQJC7AhsTAWidBKbVQ5rtNatZ3IdlCrKH+FhQEQ/4aNf4PTdoCWkyyd7t7TO1+UcqaN5307la3tnd296n7toH54dOye1J90kilCA5LwRPUirClnkgaGGU57qaJYRJx2o+ld6XefqdIskY9mntJQ4LFkMSPYWGnoNgZjLARuDQQ2kyjOZ8XF0G16bW8BtEn8FWnCCp2h+zUYJSQTVBrCsdZ930tNmGNlGOG0qA0yTVNMpnhM+5ZKLKgO80X2Ap1bZYTiRNknDVqovzdyLLSei8hOlhH1uleK/3n9zMTXYc5kmhkqyfJQnHFkElQWgUZMUWL43BJMFLNZEZlghYmxddVsCf76lzdJcNm+aXsPHlThFM6gBT5cwS3cQwcCIDCDF3iDd6dwXp2PZVsVZ1VbA/7A+fwB4CiSuw==</latexit><latexit sha1_base64="hQhj+CULGdG3QS0LVa1KRUGPisw=">AAAB73icbVA9T8MwFHwpX6UUCF1ZLCqkslQJC7AhsTAWidBKbVQ5rtNatZ3IdlCrKH+FhQEQ/4aNf4PTdoCWkyyd7t7TO1+UcqaN5307la3tnd296n7toH54dOye1J90kilCA5LwRPUirClnkgaGGU57qaJYRJx2o+ld6XefqdIskY9mntJQ4LFkMSPYWGnoNgZjLARuDQQ2kyjOZ8XF0G16bW8BtEn8FWnCCp2h+zUYJSQTVBrCsdZ930tNmGNlGOG0qA0yTVNMpnhM+5ZKLKgO80X2Ap1bZYTiRNknDVqovzdyLLSei8hOlhH1uleK/3n9zMTXYc5kmhkqyfJQnHFkElQWgUZMUWL43BJMFLNZEZlghYmxddVsCf76lzdJcNm+aXsPHlThFM6gBT5cwS3cQwcCIDCDF3iDd6dwXp2PZVsVZ1VbA/7A+fwB4CiSuw==</latexit><latexit sha1_base64="Wrp6sfGRkT1YIiwCAWhsM6HtC1M=">AAAB+nicbVA9T8MwFHzhs5SvUEaWiAqpLFXKAmwVLIxFIrRSE1WO67RWbSeyHdQqyl9hYQDEyi9h49/gtBmg5SRLp7v39M4XJowq7brf1tr6xubWdmWnuru3f3BoH9UeVZxKTDwcs1j2QqQIo4J4mmpGeokkiIeMdMPJbeF3n4hUNBYPepaQgKORoBHFSBtpYNf8EeIcNXyO9DiMsml+PrDrbtOdw1klrZLUoURnYH/5wxinnAiNGVKq33ITHWRIaooZyat+qkiC8ASNSN9QgThRQTbPnjtnRhk6USzNE9qZq783MsSVmvHQTBYR1bJXiP95/VRHV0FGRZJqIvDiUJQyR8dOUYQzpJJgzWaGICypyergMZIIa1NX1ZTQWv7yKvEumtdN996tt2/KNipwAqfQgBZcQhvuoAMeYJjCM7zCm5VbL9a79bEYXbPKnWP4A+vzBz63lBw=</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit>

�(x)
<latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="C39OhB+IczRcjLNINXH29e9lt8M=">AAAB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCpTN+pOcOOygmML7VAymTttaCYzJHeEMvQFXLhRfDB3vo3pz0KtBwIf5yTk3hMXSloKgi+vtrW9s7tX3/cPGv7h0XGz8WTz0ggMRa5y04+5RSU1hiRJYb8wyLNYYS+e3i3y3jMaK3P9SLMCo4yPtUyl4OSs7qjZCtrBUmwTOmtowVqj5ucwyUWZoSahuLWDTlBQVHFDUiic+8PSYsHFlI9x4FDzDG1ULcecs3PnJCzNjTua2NL9+aLimbWzLHY3M04T+zdbmP9lg5LS66iSuigJtVh9lJaKUc4WO7NEGhSkZg64MNLNysSEGy7INeO7Djp/N96E8LJ90w4eAqjDKZzBBXTgCm7hHroQgoAEXuDNm3iv3vuqqpq37uwEfsn7+Aap5IoM</latexit><latexit sha1_base64="hQhj+CULGdG3QS0LVa1KRUGPisw=">AAAB73icbVA9T8MwFHwpX6UUCF1ZLCqkslQJC7AhsTAWidBKbVQ5rtNatZ3IdlCrKH+FhQEQ/4aNf4PTdoCWkyyd7t7TO1+UcqaN5307la3tnd296n7toH54dOye1J90kilCA5LwRPUirClnkgaGGU57qaJYRJx2o+ld6XefqdIskY9mntJQ4LFkMSPYWGnoNgZjLARuDQQ2kyjOZ8XF0G16bW8BtEn8FWnCCp2h+zUYJSQTVBrCsdZ930tNmGNlGOG0qA0yTVNMpnhM+5ZKLKgO80X2Ap1bZYTiRNknDVqovzdyLLSei8hOlhH1uleK/3n9zMTXYc5kmhkqyfJQnHFkElQWgUZMUWL43BJMFLNZEZlghYmxddVsCf76lzdJcNm+aXsPHlThFM6gBT5cwS3cQwcCIDCDF3iDd6dwXp2PZVsVZ1VbA/7A+fwB4CiSuw==</latexit><latexit sha1_base64="hQhj+CULGdG3QS0LVa1KRUGPisw=">AAAB73icbVA9T8MwFHwpX6UUCF1ZLCqkslQJC7AhsTAWidBKbVQ5rtNatZ3IdlCrKH+FhQEQ/4aNf4PTdoCWkyyd7t7TO1+UcqaN5307la3tnd296n7toH54dOye1J90kilCA5LwRPUirClnkgaGGU57qaJYRJx2o+ld6XefqdIskY9mntJQ4LFkMSPYWGnoNgZjLARuDQQ2kyjOZ8XF0G16bW8BtEn8FWnCCp2h+zUYJSQTVBrCsdZ930tNmGNlGOG0qA0yTVNMpnhM+5ZKLKgO80X2Ap1bZYTiRNknDVqovzdyLLSei8hOlhH1uleK/3n9zMTXYc5kmhkqyfJQnHFkElQWgUZMUWL43BJMFLNZEZlghYmxddVsCf76lzdJcNm+aXsPHlThFM6gBT5cwS3cQwcCIDCDF3iDd6dwXp2PZVsVZ1VbA/7A+fwB4CiSuw==</latexit><latexit sha1_base64="Wrp6sfGRkT1YIiwCAWhsM6HtC1M=">AAAB+nicbVA9T8MwFHzhs5SvUEaWiAqpLFXKAmwVLIxFIrRSE1WO67RWbSeyHdQqyl9hYQDEyi9h49/gtBmg5SRLp7v39M4XJowq7brf1tr6xubWdmWnuru3f3BoH9UeVZxKTDwcs1j2QqQIo4J4mmpGeokkiIeMdMPJbeF3n4hUNBYPepaQgKORoBHFSBtpYNf8EeIcNXyO9DiMsml+PrDrbtOdw1klrZLUoURnYH/5wxinnAiNGVKq33ITHWRIaooZyat+qkiC8ASNSN9QgThRQTbPnjtnRhk6USzNE9qZq783MsSVmvHQTBYR1bJXiP95/VRHV0FGRZJqIvDiUJQyR8dOUYQzpJJgzWaGICypyergMZIIa1NX1ZTQWv7yKvEumtdN996tt2/KNipwAqfQgBZcQhvuoAMeYJjCM7zCm5VbL9a79bEYXbPKnWP4A+vzBz63lBw=</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit><latexit sha1_base64="6F05rQ6IIUhALFsWYUmKYX8h5zw=">AAAB+nicbVBPS8MwHE3nvzn/1Xn0EhzCvIxWBPU29OJxgnWDtYw0S7ewJC1JKhulX8WLBxWvfhJvfhvTrQfdfBB4vPf78Xt5YcKo0o7zbVXW1jc2t6rbtZ3dvf0D+7D+qOJUYuLhmMWyFyJFGBXE01Qz0kskQTxkpBtObgu/+0SkorF40LOEBByNBI0oRtpIA7vujxDnqOlzpMdhlE3zs4HdcFrOHHCVuCVpgBKdgf3lD2OcciI0ZkipvuskOsiQ1BQzktf8VJEE4Qkakb6hAnGigmyePYenRhnCKJbmCQ3n6u+NDHGlZjw0k0VEtewV4n9eP9XRVZBRkaSaCLw4FKUM6hgWRcAhlQRrNjMEYUlNVojHSCKsTV01U4K7/OVV4p23rlvO/UWjfVO2UQXH4AQ0gQsuQRvcgQ7wAAZT8AxewZuVWy/Wu/WxGK1Y5c4R+APr8wc/95Qg</latexit>

�(d)
<latexit sha1_base64="Z+u0Yue3pS9TMvqDyVRY2E+Un5Q=">AAAB+nicbVBPS8MwHE39O+e/Oo9egkOYl9GKoN6GXjxOsG6wlpGm6RaWpCVJxVH6Vbx4UPHqJ/HmtzHdetDNB4HHe78fv5cXpowq7Tjf1srq2vrGZm2rvr2zu7dvHzQeVJJJTDycsET2Q6QIo4J4mmpG+qkkiIeM9MLJTen3HolUNBH3epqSgKORoDHFSBtpaDf8EeIctXyO9DiM86g4HdpNp+3MAJeJW5EmqNAd2l9+lOCME6ExQ0oNXCfVQY6kppiRou5niqQIT9CIDAwViBMV5LPsBTwxSgTjRJonNJypvzdyxJWa8tBMlhHVoleK/3mDTMeXQU5Fmmki8PxQnDGoE1gWASMqCdZsagjCkpqsEI+RRFibuuqmBHfxy8vEO2tftZ2782bnumqjBo7AMWgBF1yADrgFXeABDJ7AM3gFb1ZhvVjv1sd8dMWqdg7BH1ifPyGTlAw=</latexit><latexit sha1_base64="Z+u0Yue3pS9TMvqDyVRY2E+Un5Q=">AAAB+nicbVBPS8MwHE39O+e/Oo9egkOYl9GKoN6GXjxOsG6wlpGm6RaWpCVJxVH6Vbx4UPHqJ/HmtzHdetDNB4HHe78fv5cXpowq7Tjf1srq2vrGZm2rvr2zu7dvHzQeVJJJTDycsET2Q6QIo4J4mmpG+qkkiIeM9MLJTen3HolUNBH3epqSgKORoDHFSBtpaDf8EeIctXyO9DiM86g4HdpNp+3MAJeJW5EmqNAd2l9+lOCME6ExQ0oNXCfVQY6kppiRou5niqQIT9CIDAwViBMV5LPsBTwxSgTjRJonNJypvzdyxJWa8tBMlhHVoleK/3mDTMeXQU5Fmmki8PxQnDGoE1gWASMqCdZsagjCkpqsEI+RRFibuuqmBHfxy8vEO2tftZ2782bnumqjBo7AMWgBF1yADrgFXeABDJ7AM3gFb1ZhvVjv1sd8dMWqdg7BH1ifPyGTlAw=</latexit><latexit sha1_base64="Z+u0Yue3pS9TMvqDyVRY2E+Un5Q=">AAAB+nicbVBPS8MwHE39O+e/Oo9egkOYl9GKoN6GXjxOsG6wlpGm6RaWpCVJxVH6Vbx4UPHqJ/HmtzHdetDNB4HHe78fv5cXpowq7Tjf1srq2vrGZm2rvr2zu7dvHzQeVJJJTDycsET2Q6QIo4J4mmpG+qkkiIeM9MLJTen3HolUNBH3epqSgKORoDHFSBtpaDf8EeIctXyO9DiM86g4HdpNp+3MAJeJW5EmqNAd2l9+lOCME6ExQ0oNXCfVQY6kppiRou5niqQIT9CIDAwViBMV5LPsBTwxSgTjRJonNJypvzdyxJWa8tBMlhHVoleK/3mDTMeXQU5Fmmki8PxQnDGoE1gWASMqCdZsagjCkpqsEI+RRFibuuqmBHfxy8vEO2tftZ2782bnumqjBo7AMWgBF1yADrgFXeABDJ7AM3gFb1ZhvVjv1sd8dMWqdg7BH1ifPyGTlAw=</latexit>

�
<latexit sha1_base64="PHtNjW6na207435B/B6JIWe5ANM=">AAAB7HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvQi8cIbhJIljA7mU3GzGOZmRXCkn/w4kHFqx/kzb9xkuxBEwsaiqpuurvilDNjff/bW1ldW9/YLG2Vt3d29/YrB4dNozJNaEgUV7odY0M5kzS0zHLaTjXFIua0FY9up37riWrDlHyw45RGAg8kSxjB1knNrmEDgXuVql/zZ0DLJChIFQo0epWvbl+RTFBpCcfGdAI/tVGOtWWE00m5mxmaYjLCA9pxVGJBTZTPrp2gU6f0UaK0K2nRTP09kWNhzFjErlNgOzSL3lT8z+tkNrmKcibTzFJJ5ouSjCOr0PR11GeaEsvHjmCimbsVkSHWmFgXUNmFECy+vEzC89p1zb+/qNZvijRKcAwncAYBXEId7qABIRB4hGd4hTdPeS/eu/cxb13xipkj+APv8wcIeY72</latexit><latexit sha1_base64="PHtNjW6na207435B/B6JIWe5ANM=">AAAB7HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvQi8cIbhJIljA7mU3GzGOZmRXCkn/w4kHFqx/kzb9xkuxBEwsaiqpuurvilDNjff/bW1ldW9/YLG2Vt3d29/YrB4dNozJNaEgUV7odY0M5kzS0zHLaTjXFIua0FY9up37riWrDlHyw45RGAg8kSxjB1knNrmEDgXuVql/zZ0DLJChIFQo0epWvbl+RTFBpCcfGdAI/tVGOtWWE00m5mxmaYjLCA9pxVGJBTZTPrp2gU6f0UaK0K2nRTP09kWNhzFjErlNgOzSL3lT8z+tkNrmKcibTzFJJ5ouSjCOr0PR11GeaEsvHjmCimbsVkSHWmFgXUNmFECy+vEzC89p1zb+/qNZvijRKcAwncAYBXEId7qABIRB4hGd4hTdPeS/eu/cxb13xipkj+APv8wcIeY72</latexit><latexit sha1_base64="PHtNjW6na207435B/B6JIWe5ANM=">AAAB7HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvQi8cIbhJIljA7mU3GzGOZmRXCkn/w4kHFqx/kzb9xkuxBEwsaiqpuurvilDNjff/bW1ldW9/YLG2Vt3d29/YrB4dNozJNaEgUV7odY0M5kzS0zHLaTjXFIua0FY9up37riWrDlHyw45RGAg8kSxjB1knNrmEDgXuVql/zZ0DLJChIFQo0epWvbl+RTFBpCcfGdAI/tVGOtWWE00m5mxmaYjLCA9pxVGJBTZTPrp2gU6f0UaK0K2nRTP09kWNhzFjErlNgOzSL3lT8z+tkNrmKcibTzFJJ5ouSjCOr0PR11GeaEsvHjmCimbsVkSHWmFgXUNmFECy+vEzC89p1zb+/qNZvijRKcAwncAYBXEId7qABIRB4hGd4hTdPeS/eu/cxb13xipkj+APv8wcIeY72</latexit>+

+

60
256 256 256 256 256 256 256 256

60

24

256 128

Figure 2.1.3: The network architecture. Input vectors are shown in green,

intermediate hidden layers are shown in blue, output vectors are shown in red,

and the number inside each block signifies the vector’s dimension. All layers

are standard fully-connected layers, black arrows indicate layers with ReLU

activation, orange arrows indicate layers with no activation, dashed black arrows

indicate layers with sigmoid activation, and “+” denotes vector concatenation.

The γ(·) indicates positional encoding [4].

According to Zhang et al. [11], NeRF is overparameterized: the function

takes as input five parameters (three for the position and two for the view-

ing direction) to describe the radiance fields, therefore there are five degrees of

19

freedom, but radiance fields can be described by just four parameters [12] [13],

basically because the radiance is constant when the ray travels in free space and

it changes only on surfaces, which are two dimensional, therefore just four pa-

rameters are sufficient. In NeRF we have the illusion that the radiance changes

when the ray travels in free space, consequently we have an additional degree of

freedom along the ray which is redundant and illusory. In theory, NeRF should

be able to render correctly only the training images, since there are infinite

"wrong" solutions which explains them, thanks to the extra degree of freedom,

but NeRF is able to always choose the "right" solution, and the novel views are

coherent with the scene, so why does it work?

The reason behind this has to be searched inside the network architecture:

we have said that the MLP takes as input only the position, and just at the

end, for just one layer, it takes as input the viewing direction; in this way, the

majority of the layers depends only on three parameters: the network is starved,

reducing the probability of overfitting.

2.1.2 Volume Rendering

As we said in Section 1.2.5, we can use volume rendering to render the final

color of a pixel given the samples along its corresponding ray.

In NeRF, the samples are not a fixed discrete set of locations, because it

would limit the representation’s resolution, but instead, the ray’s bounds [tn, tf]

are partitioned into N evenly-spaced bins, and then a random sample is taken

from each bin:

ti ∼ U
[
tn +

i− 1

N
(tf − tn), tn +

i

N
(tf − tn)

]
. (2.1.2)

This discrete set of samples is then fed to the network, and the outputs are

used to compute the final pixel color with the Equation 1.2.4.

20

2.1.3 Optimizations

To achieve high resolution in complex scenes, the core components we have

described are not sufficient, in particular two optimization are needed: the first

one is positional encoding, already cited in Section 1.3, while the second one is

hierarchical sampling.

Positional Encoding Without positional encoding, the network is not able

to learn high frequency variations in color and geometry, because deep networks

are predisposed to learn lower frequency functions [14]. Therefore, the input is

mapped into a higher dimensional space using high frequency functions. The

mapping is done with the function γ(·), which maps the input from R to R2L,

where L is a tunable hyper-parameter:

γ(p) =
(
sin

(
20πp

)
, cos

(
20πp

)
, . . . , sin

(
2L−1πp

)
, cos

(
2L−1πp

))
(2.1.3)

the positional encoding is applied to both point x and viewing direction d.

Tuning L is fundamental, if it is too low the network underfit, leading to

oversmoothed interpolation, if it is too high the network overfit, leading to noisy

interpolation.

In the original NeRF implementation, the high frequency functions for the

positional encoding are simply sines and cosines, but better results can be

achieved by using Random Fourier Features instead, as explained in the ar-

ticle "Fourier Features Let Networks Learn High Frequency Functions in Low

Dimensional Domains" by Tancik et al.[10].

Hierarchical Sampling We said that the samples along the ray are taken

randomly from evenly-spaced bins, but this sampling technique can be improved

with the hierarchical sampling. The main idea is to take more samples in the

regions where the density is higher, because those are the samples that have

a bigger influence on the final rendering, and it is where the visible content is

present.

21

Therefore, two networks are used, one "coarse" and one "fine". The "coarse"

network evaluates the samples taken with the sampling technique we have al-

ready described, to have an idea on how the density is distributed along the ray.

Then, given the output of the "coarse" network, more samples are taken in the

regions where the density seems to be higher.

To achieve this, the alpha composited color from the coarse network, Equa-

tion 1.2.4, is rewritten as a weighted sum of all sampled colors ci along the ray:

Ĉc(r) =

Nc∑
i=1

wici, wi = Ti(1− exp(−σiδi)). (2.1.4)

A piecewise-constant PDF along the ray is obtained by normalizing this weights

as ŵi =
wi∑Nc

j=1 wi
.

The additional samples are taken from this distribution using inverse trans-

form sampling. Finally the "fine" network Ĉf is evaluated at all the sampled

points to obtain the final color.

The loss is given by the mean squared error between the true color and the

rendered one of both "fine" Ĉf and "coarse" Ĉc networks:

L =
∑
r∈R

[
∥ Ĉc(r)− C(r)∥22 + ∥ Ĉf (r)− C(r)∥22

]
(2.1.5)

where R is the set of rays in each batch and C(r) is the ground truth. Even if

the final color is given only by the "fine" network, the loss of the "coarse" one

is minimized too, in this way its weight distribution can be used to choose the

samples for the "fine" network.

2.1.4 Pros and Cons of NeRF

NeRF is without doubt a powerful way to represent a scene for several reasons:

• it allows novel views synthesis with photo-realistic quality;

• the scene representation, i.e. the network weights, requires little storage,

only 5 megabytes per scene;

22

• it does not need complex hardware, a single NVIDIA V100 GPU is suffi-

cient;

• the images of the dataset can be taken by a normal cell phone.

Even if NeRF achieves incredible results, several improvements are needed

before it could be used for practical applications:

• it can render only static scenes;

• it takes up to two days to correctly train the network on a NVIDIA V100

GPU;

• it takes up to twenty seconds to render a frame on a NVIDIA V100 GPU,

therefore it cannot be used for real-time applications;

• a large number of training images is needed to avoid artifacts on novel

views;

• it is not possible to change the scene properties, such as the light, because

the radiance is strictly bonded to the image conditions.

Several improvements have already been made to overcome these limita-

tions, and now neural radiance fields can be used for many different specialized

tasks[2].

2.2 KiloNeRF

One of the main advantages of NeRF is that the scene representation requires

little storage, therefore it can be easily streamed on a normal user bandwidth,

but the inference time remains slow, therefore it cannot be used by the user for

real-time applications.

To overcome this problem, Reiser et al., in the article "KiloNeRF: Speeding

up Neural Radiance Fields with Thousands of Tiny MLPs" [15], proposed to

increase the rendering speed of NeRF by using a large number of independent

23

small networks, where each one of them represents only a fraction of the scene,

instead of a single wide and deep MLP, Figure 2.2.1.

KiloNeRFNeRF

0.02s56s
 2548x faster

Figure 2.2.1: Instead of using a single wide and deep MLP, the scene is repre-

sented by thousands of tiny MLPs. This allows to render a scene three orders

of magnitude faster [15].

This technique allows to have the same image quality of the original NeRF

model, while the rendering time is three orders of magnitude faster, allowing

real time rendering. The downside is that the training phase is longer because

a three-stage training strategy is used: first a regular NeRF is trained, then the

tiny MLPs are trained to match the outputs of the regular NeRF, finally the

tiny MLPs are fine tuned on the original training images. This teacher-students

model is much slower to train, but the advantages can be seen at rendering time.

24

2.2.1 The Network Architecture

In KiloNeRF, the scene is assumed to be contained inside an axis aligned bound-

ing box, with bmin and bmax its minimum and maximum bounds. The scene

is subdivided into an uniform grid of resolution r = (rx, ry, rz), (16, 16, 16) at

most, and a tiny MLP, with its own set of weights Θ(i), is assigned to each cell

of the grid, with index i = (ix, iy, iz).

Given a 3D point x to evaluate, the corresponding tiny MLP index is ob-

tained through spatial binning g(·):

g(x) = ⌊(x− bmin)/((bmax − bmin)/r)⌋ (2.2.1)

then the color and density of the point, with viewing direction d, is computed

by its corresponding tiny MLP:

(c, σ) = fΘ(g(x))(x, d) (2.2.2)

The tiny MLP architecture is a downscaled version of the original NeRF

MLP architecture, Figure 2.2.2: the network first takes as input only the 3D

location x and process it with 2 fully-connected layers, using ReLU activation

and 32 channels each, to obtain the volume density σ and a feature vector. The

feature vector is concatenated with the viewing direction d and is given as input

to the last fully-connected layer, still using ReLU activation and 32 channels.

Finally, the point color c is obtained with a sigmoid activation.

2.2.2 The Teacher-Students Model

The teacher-students model is used in KiloNeRF because training the tiny MLPs

from scratch leads to artifacts, so even if it is faster at rendering time, the image

quality is worse. The three-stage training pipeline is composed of the following

phases:

• pretrain phase: a regular NeRF is trained on the scene, the network model

is the same we have described in Section 2.1, with the exception that the

hierarchical-sampling is not performed;

25

Figure 2.2.2: The tiny MLP architecture is a downscaled version of the original

NeRF’s architecture. In this way, a forward pass requires only 1/87th of the

floating point operations (FLOPs) of the original architecture [15].

• distillation phase: the knowledge of the teacher is distilled into the stu-

dents;

• finetune phase: the students are fine tuned on the training images.

To distill the knowledge of the teacher into the students, for each of the tiny

networks, random samples with random viewing directions are taken from its

corresponding grid cell, and the tiny network is trained to match the outputs

of the teacher. Therefore, during the distillation phase, no volume rendering or

training images are used.

Finally, the students are trained over the training images in the finetune

phase, this is necessary because otherwise the rendering quality of KiloNeRF

would be upper bounded by the rendering quality of the regular NeRF. All this

pipeline can be seen as a way to provide a strong and solid weight initialization

to KiloNeRF.

2.2.3 The Sampling Technique

Using thousands of tiny MLPs improves the rendering speed, but it is not enough

to have a real-time rendering, therefore two sampling technique are used at

rendering time to avoid unnecessary extra computation: empty ray skipping

(ESS) and early ray termination (ERT), Figure 2.2.3. Hierarchical sampling is

not performed in KiloNeRF because it is costlier than ESS.

26

Empty Space Skipping The main idea of ESS is to avoid querying the

network in empty space. A second uniform grid with higher resolution, called

occupancy grid, is generated, and each cell has a binary value to indicate if the

cell is empty or not. The occupancy grid is generated by dividing each cell of the

previous grid into a 3x3x3 subgrid, then the teacher network is evaluated inside

each sub-cell to mark it as occupied or empty: a cell is marked as occupied if

any of the evaluated densities is above a threshold.

During the rendering, only the samples which are inside a cell marked as

occupied are evaluated, reducing the computation time.

Early Ray Termination The main idea of ERT is to avoid computing the

last samples of a ray if the transmittance falls below a threshold during volume

rendering. If the transmittance has a peak and then becomes close to zero

along the ray, it means that the ray intercepted something and then went into

an empty space, therefore computing more samples can be avoided.

NeRF
Pretrain phase

KiloNeRF
Distillation phase

NeRF
Occupancy

KiloNeRF
Finetune Phase

Real-time
Rendering

Images, camera poses and
bounding box

Images, camera poses and
bounding box

Camera poses
and bounding box

Output
images

weights weights

kilonerf
weights

occupancy
grid

kilonerf
weights

Figure 2.2.3: During the pretrain phase the regular NeRF is trained, then it

is used to train the tiny MLPs in the distillation phase and to generate the

occupancy grid, finally the tiny MLPs are fine tuned during the finetune phase

and they can be used to perform real time rendering.

27

2.2.4 Pros and Cons of KiloNeRF

KiloNeRF is an evolution of NeRF to achieve real-time rendering, but it comes

with a cost, the training is much slower: on an NVIDIA GTX 1080 Ti, the

pretrain phase takes 2 days, the distillation phase 8 hours, computing the oc-

cupancy grid 4 hours, and the finetune phase 17 hours, for a total of more than

3 days, against the 1-2 days of the regular NeRF.

2.3 DS-NeRF

We have seen how we can speed up the rendering time with KiloNeRF, but what

about the training time?

Deng et al. proposed DS-NeRF (Depth-Supervised NeRF) [16], where the

main idea is to add depth supervision to the regular NeRF to make it converge

faster with fewer training images. The depth supervision helps NeRF to learn

the scene geometry, avoiding overfitting, but ground truth values for the depth

are rarely available.

The depth could be provided by depth sensors, or can be estimated with

stereo-cameras. Another solution is to use Structure-From-Motion solvers like

COLMAP, since they are already used to estimate the camera parameters neces-

sary to train NeRF, because they provide a sparse 3D point cloud of keypoints

of the scene and the re-projection errors between detected 2D keypoints and

projected 3D points, which can be used for depth supervision.

The main idea behind DS-NeRF is to compute the estimated depths of sparse

3D points with COLMAP and then use them in an additional loss which ensures

that the depth obtained from the network is close to the observed one. In this

way, the training is 2-6x faster, it requires fewer images without loosing in image

quality.

28

2.3.1 The Depth Loss

COLMAP provides for each image i, its camera pose Pi and intrinsics Ki, in ad-

dition, it also estimates 3D keypoints X : x1, x2, ... ∈ R3 across multiple views,

and their scene occlusions, in this way it explicitly identifies the subsets of key-

points visible from a particular camera i: Xi ⊂ X. The depth of the keypoints

in camera j is obtained by reprojecting them using Pj before projecting the

result onto its unit camera axis [0, 0, 1].

The depth estimated by the network is obtained with volume rendering by

just integrating the density σ of the samples along the ray. Given a ray r(t) =

o+ td, with o its origin and d its direction, with near and far bounds tn and tf ,

the depth is computed by the integral:

D̂(r) =

∫ tf

tn

T (t)σ(t)tdt (2.3.1)

where T (t) is the same of Equation 1.2.3.

While the RGB supervision can be used everywhere, the depth supervision

can be used only for the 3D keypoints estimated by the SFM. For each keypoint

i, a ray is shot from the camera j: rij(t) = oj + Fj(xi − oj)t, which samples

points lying between camera j’s center of projection oj and keypoint xi; Fj is

a function which scales the ray to have lenght 1 along j’s camera axis.

Finally, the depth supervision loss is given by the mean squared error be-

tween the depth estimated by the network and the one estimated by the SFM,

multiplied by the confidence wi weight of the keypoint xi:

LDepth =
∑

xi∈Xj

wi∥D̂(rij)− (Pjxi) · [0, 0, 1]∥22 (2.3.2)

The confidence weights are needed because SFM could produce spurious

correspondences and/or unreliable keypoints. Therefore, the keypoints xi are

weighted according to their reprojection error eij estimated by the SFM, which

is the distance in pixels between projected image coordinates KjPjxi and the

detected keypoint in 2D. The confidence weight of a particular keypoint xi is

then computed using the its total reprojection error ei =
∑

j eij :

29

wi = exp

(
−
(ei
e

)2
)

(2.3.3)

where e is the average absolute error over all keypoints in a scene.

The final training loss is given by the sum of the color loss, Equation 2.1.1,

and the depth supervision loss:

L = LColor + λDLDepth (2.3.4)

where λD is an hyper-parameter to balance the two losses.

2.3.2 Pros and Cons of DS-NeRF

DS-NeRF offers an easy and effective way to speed up the training time and

to reduce the number of training images. The only con of DS-NeRF is that

it works uniquely with Structure-From-Motion solvers, which are useless if we

already have the camera parameters and the depth.

However, the depth supervision loss leads to better performances and it can

be implemented in different ways, with or without COLMAP.

2.4 MetaNeRF

Another interesting solution to speed up the training phase of NeRF has been

proposed by Tancik et al. in the article "Learned Initializations for Optimiz-

ing Coordinate-Based Neural Representations" [17], where the main idea is to

employ meta-learning techniques to learn the initial weight parameters for the

network, for this reason their work is usually referred to as MetaNeRF.

The training phase of a neural network is usually slow because it has to

solve an optimization problem which takes a large number of steps of gradient

descent, but it has been proven that meta-learning can reduce the number of

steps, reducing the training time [18].

The main concept behind meta-learning is to "learn how to learn" : using

learned values for the initial weights, instead of standard random initialization,

enables a faster convergence and better generalization.

30

2.4.1 The Meta-Learning Method

The two meta-learning algorithms employed are Model-Agnostic Meta Learning

(MAML) [19] and Reptile [20], since they are easy to implement and use com-

mon standard gradient-based optimization, such as SGD (Stochastic Gradient

Descent) and Adam [21].

Given a dataset of observations of signals T from the distribution T , the task

is to find the initial weights Θ∗
0 which leads to the lowest final loss L(Θm) when

optimizing a network fΘ to represent a new unseen signal from the distribution

T :

Θ∗
0 = argmin

Θ0

ET∼T [L(Θm(Θ0, T))] (2.4.1)

Given the task T , computing the weights Θm(Θ0, T) requires m optimization

steps, which are collectively referred to as inner loop. Normally, the initial

weights Θ0 are randomly chosen, but with MAML and Reptile algorithms, an

outer loop of meta-learning is wrapped around the inner loop, in order to find

a better initialization. Then, each outer loop samples a signal Tj from T and

applies an update rule.

MAML applies the update rule:

Θj+1
0 = Θj

0 − β∇ΘL(Θm(Θ, Tj))|Θ=Θj
0

(2.4.2)

while Reptile applies a rule which does not require calculating second-order

gradients:

Θj+1
0 = Θj

0 − β
(
Θm

(
Θj

0, Tj

)
−Θj

0

)
(2.4.3)

Given a fixed number of iterations, MAML is able to find a better initial-

ization than Reptile but it is more memory-intensive, therefore, Reptile can be

unrolled for more inner loop steps in the same amount of time, which means it

can focus over more different observations, leading to a better generalization.

In summary, this method is articulated over two phases:

• meta-learning phase: where MAML or Reptile are used with a training

dataset of example tasks to optimize initial network weights for that class

of signals;

31

• test-time optimization: where standard gradient-based optimization is

used to fit the weights of a network to observations of a previously unseen

signal from the same class.

MetaNeRF uses a simplified NeRF model which does not feed in the viewing

direction and does not use the hierarchical sampling, while the MLP architecture

remains the same of the regular NeRF. Furthermore, meta-learning techniques

can be used not only for view synthesis, but for every coordinate-based networks

such as image regression and CT reconstruction [17].

2.4.2 Pros and Cons of MetaNeRF

The main advantage of MetaNeRF is that the same set of meta-learned weights

can be used to recover new objects of the same class with much less iterations

and with better generalization. In addition, MAML and Reptile algorithms are

easy to implement since they require just to add the outer loop, so they can be

layered on top of existing implementations with few lines of code. The biggest

limitation is that it requires a dataset of considerable size of example signals

from the target distribution to obtain valuable initial weights, which it is hardly

available for the majority of the use cases.

32

Chapter 3

NeRF Model and

Experiments

In the previous chapter, we have seen what is NeRF and few related works on

how the training and rendering time could be improved; now we will combine

the above ideas to obtain a NeRF model less computationally demanding as

possible during the training phase.

Firstly, we will describe the setup for our experiments, including the training

data and network model; then, we will address the experiments that we have

performed.

3.1 The Lego Dataset

For our experiments, we have generated a synthetic dataset of eight scenes using

Blender and BlenderProc[22], Figure 3.1.1.

For all the scenes we used the same setup: an object above a stand located

inside a box. We have chosen to use this setup because in this way we are sure

that the results of our experiments do not depend on the geometry of the scene,

but just on the method applied.

33

For each scene we have generated its corresponding bounding box, the in-

trinsics and 200 RGB images, each one with its pose and depth map, taken from

different point of views from a dome located over the stand. The image resolu-

tion is low: 256x256; but in this way we have been able to perform more tests in

less time, since we are interested in the convergence speed of our experiments,

not the image quality.

(a) Lego Bike (b) Lego Bulldozer (c) Lego Car

(d) Lego Plane (e) Lego Trooper (f) Lego Truck

(g) Empty scene (h) Lego brick

Figure 3.1.1: The eight scenes used in our experiments.

34

3.2 The Model

Since we want to reduce both training and rendering time, for our model we

have chosen to start from the work proposed by Reiser et al. in KiloNeRF [15],

Section 2.2, since it already offers an efficient and effectively way to achieve

real-time rendering.

We focused mainly on trying to accelerate the pretrain phase, which is the

main bottleneck of all the pipeline, where a regular NeRF model, without hi-

erarchical sampling, is trained for then be used as teacher in the distillation

phase.

Our network architecture is thus the one described in Section 2.2.1, with an

exception: we have modified the loss function to consider the depth too during

the training, similarly to DS-NeRF[16], Section 2.3.

However, DS-NeRF has access to just a small set of pixels with known depth:

the ones estimated by COLMAP, therefore the depth supervision is not em-

ployed everywhere, while in our model, since we have generated our dataset

with the depth maps, Section 3.1, we can use a simplified depth loss function,

which is the mean squared error between the depth estimated by the network

D̂(r), Equation 2.3.1, and the ground truth value D(r):

LDepth = ∥D̂(r)−D(r)∥22 (3.2.1)

The final loss function is given by the Equation 2.3.4, with λD = 1.

Additionally, our model has been incorporated inside an automated pipeline

to automatically train several NeRFs of different scenes in succession, in this

way it is easy to generate a dataset of NeRFs without human intervention.

Each NeRF has been trained for 300k iterations, 256 rays per iteration and 384

samples per ray, for about five hours on a Nvidia GeForce RTX 2080 Ti, an

Intel i9-9900K CPU and 64GB RAM.

35

3.3 Experiments

To find the best way to speed up the convergence speed, we have proceeded

with the following experiments: first we have trained the NeRFs with a differ-

ent number of training images without depth supervision, to find how big the

training dataset should be and to have the baseline results.

Then, we have trained the same scenes with depth supervision, using the

optimal number of training images, to find out how much the convergence speed

is improved.

Finally, we have trained the scenes, with depth supervision, starting from

pre-trained weights of different scenes, to see how it influences the training.

3.3.1 Number of Images

NeRF requires a large set of training images from different point of views to

correctly learn the geometry of the scene, otherwise it overfits and the novel

views present several artifacts. The training images must be taken uniformly

around the scene, otherwise the network will be able to correctly synthesise just

the novel views around the training images it has seen the most.

For this experiment, we have trained six different scenes: the Lego Bike,

Figure 3.1.1a, the Lego Car, Figure 3.1.1c, the Lego Bulldozer, Figure 3.1.1b,

the Lego Plane, Figure 3.1.1d, the Lego Truck, Figure 3.1.1f and the Lego

Trooper, Figure 3.1.1e.

Each scene has been trained with 20, 50 and 100 images. Our goal is to

find the number of images necessary to train correctly our NeRFs, the less the

better.

3.3.2 Depth Supervision

We have seen in DS-NeRF[16], Section 2.3, that the depth supervision helps the

network to understand the geometry of the scene, leading to a faster convergence

speed. We want to check if employing the depth supervision to all the pixels of

36

the scene, and not just a subset, leads to similar results.

For this experiment, we have trained the same six scenes of the experiment

described in Section 3.3.1, with 100 RGB images, including their depth maps

for the depth supervision.

We expect that the scenes trained with depth supervision should converge

faster with a better understanding of the geometry of the scene.

3.3.3 Weight Initialization

We have seen that meta-learning is able to accelerate the convergence speed

of NeRF [17], Section 2.4, but it can be used only if several scenes of different

objects belonging to the same class are available.

For our experiment we have tried something similar yet different: we have

trained from scratch, with depth supervision, the NeRFs of the Empty, Figure

3.1.1g and the Lego Brick, Figure 3.1.1h, scenes; then we have trained the six

scenes of the previous experiments starting from their pretrained weights.

The main idea is that the networks should converge faster since it already

starts from learned weights of scenes with similar setups.

37

Chapter 4

Results

For each of our experiments, we report in this chapter the qualitative and quan-

titative results for each scene, along with the related plots.

During the training phases of the networks, a test set composed of ten novel

views, not employed at training time, is evaluated every ten thousands itera-

tions.

At each evaluation, the RGB image, with its corresponding depth map, is

generated for each test view, and different metrics are computed to measure the

gap between the ground truth and the images generated.

We have employed three different metrics to establish the quality of the

RGB images generated by the networks with respect to the ground truth: the

"Peak Signal-to-Noise Ratio" (PSNR), the higher the better, the "Structural

Similarity Index Measure" (SSIM) [23], the higher the better, and the "Learned

Perceptual Image Patch Similarity" (LPIPS) [24], the lower the better.

We have reported just the final quantitative and qualitative results, while

the intermediate ones have been employed to generate the plots.

38

4.1 Number of Images

The quantitative results of the number of images experiment are reported in

Table 4.1, while the qualitative results and the related plots of the different

scenes are shown in Figures 4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.1.5 and 4.1.6.

As we can see from the reported results, with just 20 images the network

overfits and struggles to correctly understand the geometry of scene leading to

several artifacts while rendering novel views never seen before.

However, between 50 and 100 images the results are similar, the network

does not overfits and it is able to correctly render the novel views. With 100

images, rather than 50, the results are slightly better in general, but the gap

between the results with 50 and 100 images is not as wide as the one between

20 and 50 images.

In conclusion, we have discovered that, for our setup, at least 50 images are

needed to correctly train NeRF; but for the following experiments we will use

100 images, since it is the number of images which achieved the best results.

39

PSNR ↑

Scene 20 Images 50 Images 100 Images

Lego Bike 25.44 30.68 35.05

Lego Bulldozer 23.23 31.90 35.02

Lego Car 24.19 32.58 32.20

Lego Plane 24.85 30.70 32.60

Lego Trooper 22.98 31.05 33.19

Lego Truck 23.47 31.69 32.46

LPIPS ↓

Scene 20 Images 50 Images 100 Images

Lego Bike 0.07771 0.03245 0.02377

Lego Bulldozer 0.08185 0.02573 0.01910

Lego Car 0.07558 0.02720 0.02907

Lego Plane 0.07071 0.03190 0.02756

Lego Trooper 0.13830 0.03158 0.02487

Lego Truck 0.06781 0.03253 0.03421

SSIM ↑

Scene 20 Images 50 Images 100 Images

Lego Bike 0.8376 0.9068 0.9350

Lego Bulldozer 0.8201 0.9234 0.9448

Lego Car 0.8084 0.9221 0.9244

Lego Plane 0.8397 0.9155 0.9291

Lego Trooper 0.7871 0.9122 0.9338

Lego Truck 0.8383 0.9148 0.9172

Table 4.1: Quantitative results of the number of images experiment for the

number of images experiment.

40

(a) GT (b) 20 Images (c) 50 Images (d) 100 Images

(e) GT (f) 20 Images (g) 50 Images (h) 100 Images

Figure 4.1.1: Qualitative results and related plots for the Lego Bike scene for

the number of images experiment. First row: GT and generated novel views

from the same pose of the GT. Second row: GT depth map and generated

depth maps from the same pose of the GT. Third and fourth rows: plots of the

different metrics on the test set.
41

(a) GT (b) 20 Images (c) 50 Images (d) 100 Images

(e) GT (f) 20 Images (g) 50 Images (h) 100 Images

Figure 4.1.2: Qualitative results and related plots for the Lego Bulldozer scene

for the number of images experiment. First row: GT and generated novel views

from the same pose of the GT. Second row: GT depth map and generated

depth maps from the same pose of the GT. Third and fourth rows: plots of the

different metrics on the test set.
42

(a) GT (b) 20 Images (c) 50 Images (d) 100 Images

(e) GT (f) 20 Images (g) 50 Images (h) 100 Images

Figure 4.1.3: Qualitative results and related plots for the Lego Car scene for the

number of images experiment. First row: GT and generated novel views from

the same pose of the GT. Second row: GT depth map and generated depth maps

from the same pose of the GT. Third and fourth rows: plots of the different

metrics on the test set.
43

(a) GT (b) 20 Images (c) 50 Images (d) 100 Images

(e) GT (f) 20 Images (g) 50 Images (h) 100 Images

Figure 4.1.4: Qualitative results and related plots for the Lego Plane scene for

the number of images experiment. First row: GT and generated novel views

from the same pose of the GT. Second row: GT depth map and generated

depth maps from the same pose of the GT. Third and fourth rows: plots of the

different metrics on the test set.
44

(a) GT (b) 20 Images (c) 50 Images (d) 100 Images

(e) GT (f) 20 Images (g) 50 Images (h) 100 Images

Figure 4.1.5: Qualitative results and related plots for the Lego Trooper scene

for the number of images experiment. First row: GT and generated novel views

from the same pose of the GT. Second row: GT depth map and generated

depth maps from the same pose of the GT. Third and fourth rows: plots of the

different metrics on the test set.
45

(a) GT (b) 20 Images (c) 50 Images (d) 100 Images

(e) GT (f) 20 Images (g) 50 Images (h) 100 Images

Figure 4.1.6: Qualitative results and related plots for the Lego Truck scene for

the number of images experiment. First row: GT and generated novel views

from the same pose of the GT. Second row: GT depth map and generated

depth maps from the same pose of the GT. Third and fourth rows: plots of the

different metrics on the test set.
46

4.2 Depth Supervision

The quantitative results of the depth supervision (DS) experiment are reported

in Table 4.2, while the qualitative ones, and the related plots, are reported in

Figures 4.2.1, 4.2.2, 4.2.3, 4.2.4, 4.2.5 and 4.2.6.

We can see that the scenes trained with depth supervision achieve in general

a slightly better quality than the ones trained from scratch.

The depth maps without depth supervision are completely wrong and present

several artifacts, which means that the network is not able to retrieve the un-

dergoing geometry of the scene, in particular on the background and the floor,

resulting in a longer training to reach the same quality.

In conclusion, we have discovered that employing the depth supervision leads

to a slightly faster convergence speed, as reported in the plots, therefore, we will

use the depth supervision also for our next and final experiment.

47

PSNR ↑

Scene Without DS With DS

Lego Bike 35.05 35.50

Lego Bulldozer 35.02 34.87

Lego Car 32.20 33.19

Lego Plane 32.60 35.08

Lego Trooper 33.19 33.77

Lego Truck 32.46 33.40

LPIPS ↓

Scene Without DS With DS

Lego Bike 0.02377 0.02024

Lego Bulldozer 0.01910 0.02116

Lego Car 0.02907 0.02563

Lego Plane 0.02756 0.02212

Lego Trooper 0.02487 0.02552

Lego Truck 0.03421 0.02773

SSIM ↑

Scene Without DS With DS

Lego Bike 0.9350 0.9430

Lego Bulldozer 0.9448 0.9411

Lego Car 0.9244 0.9361

Lego Plane 0.9291 0.9418

Lego Trooper 0.9338 0.9346

Lego Truck 0.9172 0.9339
.

Table 4.2: Quantitative results of the depth supervision experiment

48

(a) GT (b) Without DS (c) With DS

(d) GT (e) Without DS (f) With DS

Figure 4.2.1: Qualitative results and related plots for the Lego Bike scene for

the depth supervision experiment. First row: GT and generated novel views

from the same pose of the GT. Second row: GT depth map and generated

depth maps from the same pose of the GT. Third and fourth rows: plots of the

different metrics on the test set.
49

(a) GT (b) Without DS (c) With DS

(d) GT (e) Without DS (f) With DS

Figure 4.2.2: Qualitative results and related plots for the Lego Bulldozer scene

for the depth supervision experiment. First row: GT and generated novel views

from the same pose of the GT. Second row: GT depth map and generated

depth maps from the same pose of the GT. Third and fourth rows: plots of the

different metrics on the test set.
50

(a) GT (b) Without DS (c) With DS

(d) GT (e) Without DS (f) With DS

Figure 4.2.3: Qualitative results and related plots for the Lego Car scene for the

depth supervision experiment. First row: GT and generated novel views from

the same pose of the GT. Second row: GT depth map and generated depth maps

from the same pose of the GT. Third and fourth rows: plots of the different

metrics on the test set.
51

(a) GT (b) Without DS (c) With DS

(d) GT (e) Without DS (f) With DS

Figure 4.2.4: Qualitative results and related plots for the Lego Plane scene for

the depth supervision experiment. First row: GT and generated novel views

from the same pose of the GT. Second row: GT depth map and generated

depth maps from the same pose of the GT. Third and fourth rows: plots of the

different metrics on the test set.
52

(a) GT (b) Without DS (c) With DS

(d) GT (e) Without DS (f) With DS

Figure 4.2.5: Qualitative results and related plots for the Lego Trooper scene

for the depth supervision experiment. First row: GT and generated novel views

from the same pose of the GT. Second row: GT depth map and generated

depth maps from the same pose of the GT. Third and fourth rows: plots of the

different metrics on the test set.
53

(a) GT (b) Without DS (c) With DS

(d) GT (e) Without DS (f) With DS

Figure 4.2.6: Qualitative results and related plots for the Lego Truck scene for

the depth supervision experiment. First row: GT and generated novel views

from the same pose of the GT. Second row: GT depth map and generated

depth maps from the same pose of the GT. Third and fourth rows: plots of the

different metrics on the test set.
54

4.3 Weight Initialization

The scenes for this experiment have been trained starting from the pre-trained

weights of the Lego Brick and Empty scene. These two scenes have been trained

just like the scenes of the depth supervision experiment, and their final results

are reported in Table 4.3. We can see that the results are in line with the ones

previously reported.

PSNR ↑

Scene With DS

Lego Brick 36.08

Empty 35.21

LPIPS ↓

Scene With DS

Lego Brick 0.01826

Empty 0.02119

SSIM ↑

Scene With DS

Lego Brick 0.9438

Empty 0.9409

.

Table 4.3: Quantitative results of the Lego Brick and Empty scenes trained with

depth supervision.

The quantitative results of the weight initialization (WI) experiment are

reported in Table 4.4, while the qualitative ones, and the related plots, are

reported in Figures 4.3.1, 4.3.2, 4.3.3, 4.3.4, 4.3.5 and 4.3.6.

The results are impressive, from the plots we can see that the scenes trained

with weight initialization reach the same results of the previous experiments, but

3 to 5 times faster (30 minutes against 5 hours at the best results). Furthermore,

we can see from the table that the final results achieve better outcomes too;

in particular, the scenes trained from the Lego Brick perform slightly better,

55

probably because the network has already learned that the density is higher in

that region.

In conclusion, starting from initialized weights of different scenes with a sim-

ilar setup increase considerably the convergence speed on new scenes, reaching

a higher quality for the same number of iterations.

56

PSNR ↑

Scene Without DS With DS WI from Empty WI from Brick

Lego Bike 35.05 35.50 36.58 36.93

Lego Bulldozer 35.02 34.87 35.69 36.18

Lego Car 32.20 33.19 34.84 35.26

Lego Plane 32.60 35.08 35.45 36.03

Lego Trooper 33.19 33.77 36.58 36.88

Lego Truck 32.46 33.40 36.18 36.51

LPIPS ↓

Scene Without DS With DS WI from Empty WI from Brick

Lego Bike 0.02377 0.02024 0.01572 0.01480

Lego Bulldozer 0.01910 0.02116 0.01697 0.01567

Lego Car 0.02907 0.02563 0.02107 0.01889

Lego Plane 0.02756 0.02212 0.01882 0.01725

Lego Trooper 0.02487 0.02552 0.01588 0.01517

Lego Truck 0.03421 0.02773 0.01728 0.01618

SSIM ↑

Scene Without DS With DS WI from Empty WI from Brick

Lego Bike 0.9350 0.9430 0.9524 0.9538

Lego Bulldozer 0.9448 0.9411 0.9488 0.9521

Lego Car 0.9244 0.9361 0.9395 0.9437

Lego Plane 0.9291 0.9418 0.9485 0.9507

Lego Trooper 0.9338 0.9346 0.9508 0.9524

Lego Truck 0.9172 0.9339 0.9499 0.9512
.

Table 4.4: Quantitative results of the weight initialization experiment

57

(a) GT (b) Without DS (c) WI from Empty (d) WI from Brick

(e) GT (f) Without DS (g) WI from Empty (h) WI from Brick

Figure 4.3.1: Qualitative results and related plots for the Lego Bike scene for

the weight initialization experiment. First row: GT and generated novel views

from the same pose of the GT. Second row: GT depth map and generated

depth maps from the same pose of the GT. Third and fourth rows: plots of the

different metrics on the test set.
58

(a) GT (b) Without DS (c) WI from Empty (d) WI from Brick

(e) GT (f) Without DS (g) WI from Empty (h) WI from Brick

Figure 4.3.2: Qualitative results and related plots for the Lego Bulldozer scene

for the weight initialization experiment. First row: GT and generated novel

views from the same pose of the GT. Second row: GT depth map and generated

depth maps from the same pose of the GT. Third and fourth rows: plots of the

different metrics on the test set.
59

(a) GT (b) Without DS (c) WI from Empty (d) WI from Brick

(e) GT (f) Without DS (g) WI from Empty (h) WI from Brick

Figure 4.3.3: Qualitative results and related plots for the Lego Car scene for the

weight initialization experiment. First row: GT and generated novel views from

the same pose of the GT. Second row: GT depth map and generated depth maps

from the same pose of the GT. Third and fourth rows: plots of the different

metrics on the test set.
60

(a) GT (b) Without DS (c) WI from Empty (d) WI from Brick

(e) GT (f) Without DS (g) WI from Empty (h) WI from Brick

Figure 4.3.4: Qualitative results and related plots for the Lego Plane scene for

the weight initialization experiment. First row: GT and generated novel views

from the same pose of the GT. Second row: GT depth map and generated

depth maps from the same pose of the GT. Third and fourth rows: plots of the

different metrics on the test set.
61

(a) GT (b) Without DS (c) WI from Empty (d) WI from Brick

(e) GT (f) Without DS (g) WI from Empty (h) WI from Brick

Figure 4.3.5: Qualitative results and related plots for the Lego Trooper scene for

the weight initialization experiment. First row: GT and generated novel views

from the same pose of the GT. Second row: GT depth map and generated

depth maps from the same pose of the GT. Third and fourth rows: plots of the

different metrics on the test set.
62

(a) GT (b) Without DS (c) WI from Empty (d) WI from Brick

(e) GT (f) Without DS (g) WI from Empty (h) WI from Brick

Figure 4.3.6: Qualitative results and related plots for the Lego Truck scene for

the weight initialization experiment. First row: GT and generated novel views

from the same pose of the GT. Second row: GT depth map and generated

depth maps from the same pose of the GT. Third and fourth rows: plots of the

different metrics on the test set.
63

Chapter 5

Conclusion and Future Works

Neural Radiance Fields will be probably deeply used in the future, since they are

able to store with photo-realistic quality both synthetic and real-world scenes

just with few megabytes, much less than the storage needed to store their train-

ing images.

However, training a NeRF requires time and computation, which are never

enough; therefore, in this project we have proposed a solution to obtain a train-

ing pipeline less computationally needing as possible, from the training images

to the final result. Our tests showed how many images are needed to correctly

train a NeRF, in this way we can save time while generating the dataset of the

scenes, and how we can speed up the training time by using weight initialization

and depth supervision techniques. Instead of focusing on custom code to achieve

the best from the hardware, we have found general ideas which can work under

any hardware architecture, therefore more generally applicable.

We have shown that depth supervision is a cheap and easy way to boost the

training speed, but it can be performed only if the ground truth of the depth is

available, which could be given by stereo cameras, depth sensors and so on.

In addition, we have shown that it is not necessary to start from scratch each

time we want to create a NeRF, instead, we can just train one NeRF and use it

as starting point for all the others, especially if we want to create a dataset of

64

NeRFs of different objects starting from similar setups.

However, there is still a lot of work to do: even with our solution, training a

NeRF remains a slow procedure which require both custom code and ideas like

ours to make NeRF an every-day user technology.

For example, DONeRF [25] by Neff et al. employs a "depth oracle network"

to guide sample placement, in this way less samples are necessary along the rays

and the computation time is reduced. Alternatively, AutoInt [26] by Lindell et

al. computes the volume rendering integral in a more efficient way, improving

the trade-off between rendering speed and image quality.

All these ideas, and more, could be combined in one NeRF model, able to

train and render NeRFs in just few minutes or seconds, making this technology

suitable for modern day applications.

65

List of Figures

1.1.1 Different Scene Representations 5

1.2.1 Rasterization . 9

1.2.2 Ray Casting . 10

1.2.3 Ray Tracing . 11

1.3.1 MLP . 14

2.1.1 NeRF Main Idea . 17

2.1.2 NeRF Pipeline . 18

2.1.3 NeRF Architecture . 19

2.2.1 KiloNeRF Teaser . 24

2.2.2 KiloNeRF and NeRF architectures 26

2.2.3 KiloNeRF Pipeline . 27

3.1.1 The eight scenes used in our experiments. 34

4.1.1 Qualitative results and related plots for the Lego Bike scene for

the number of images experiment. First row: GT and generated

novel views from the same pose of the GT. Second row: GT depth

map and generated depth maps from the same pose of the GT.

Third and fourth rows: plots of the different metrics on the test

set. 41

66

4.1.2 Qualitative results and related plots for the Lego Bulldozer scene

for the number of images experiment. First row: GT and gener-

ated novel views from the same pose of the GT. Second row: GT

depth map and generated depth maps from the same pose of the

GT. Third and fourth rows: plots of the different metrics on the

test set. 42

4.1.3 Qualitative results and related plots for the Lego Car scene for

the number of images experiment. First row: GT and generated

novel views from the same pose of the GT. Second row: GT depth

map and generated depth maps from the same pose of the GT.

Third and fourth rows: plots of the different metrics on the test

set. 43

4.1.4 Qualitative results and related plots for the Lego Plane scene for

the number of images experiment. First row: GT and generated

novel views from the same pose of the GT. Second row: GT depth

map and generated depth maps from the same pose of the GT.

Third and fourth rows: plots of the different metrics on the test

set. 44

4.1.5 Qualitative results and related plots for the Lego Trooper scene

for the number of images experiment. First row: GT and gener-

ated novel views from the same pose of the GT. Second row: GT

depth map and generated depth maps from the same pose of the

GT. Third and fourth rows: plots of the different metrics on the

test set. 45

4.1.6 Qualitative results and related plots for the Lego Truck scene for

the number of images experiment. First row: GT and generated

novel views from the same pose of the GT. Second row: GT depth

map and generated depth maps from the same pose of the GT.

Third and fourth rows: plots of the different metrics on the test

set. 46

67

4.2.1 Qualitative results and related plots for the Lego Bike scene for

the depth supervision experiment. First row: GT and generated

novel views from the same pose of the GT. Second row: GT depth

map and generated depth maps from the same pose of the GT.

Third and fourth rows: plots of the different metrics on the test

set. 49

4.2.2 Qualitative results and related plots for the Lego Bulldozer scene

for the depth supervision experiment. First row: GT and gener-

ated novel views from the same pose of the GT. Second row: GT

depth map and generated depth maps from the same pose of the

GT. Third and fourth rows: plots of the different metrics on the

test set. 50

4.2.3 Qualitative results and related plots for the Lego Car scene for

the depth supervision experiment. First row: GT and generated

novel views from the same pose of the GT. Second row: GT depth

map and generated depth maps from the same pose of the GT.

Third and fourth rows: plots of the different metrics on the test

set. 51

4.2.4 Qualitative results and related plots for the Lego Plane scene for

the depth supervision experiment. First row: GT and generated

novel views from the same pose of the GT. Second row: GT depth

map and generated depth maps from the same pose of the GT.

Third and fourth rows: plots of the different metrics on the test

set. 52

4.2.5 Qualitative results and related plots for the Lego Trooper scene

for the depth supervision experiment. First row: GT and gener-

ated novel views from the same pose of the GT. Second row: GT

depth map and generated depth maps from the same pose of the

GT. Third and fourth rows: plots of the different metrics on the

test set. 53

68

4.2.6 Qualitative results and related plots for the Lego Truck scene for

the depth supervision experiment. First row: GT and generated

novel views from the same pose of the GT. Second row: GT depth

map and generated depth maps from the same pose of the GT.

Third and fourth rows: plots of the different metrics on the test

set. 54

4.3.1 Qualitative results and related plots for the Lego Bike scene for

the weight initialization experiment. First row: GT and gener-

ated novel views from the same pose of the GT. Second row: GT

depth map and generated depth maps from the same pose of the

GT. Third and fourth rows: plots of the different metrics on the

test set. 58

4.3.2 Qualitative results and related plots for the Lego Bulldozer scene

for the weight initialization experiment. First row: GT and gen-

erated novel views from the same pose of the GT. Second row:

GT depth map and generated depth maps from the same pose of

the GT. Third and fourth rows: plots of the different metrics on

the test set. 59

4.3.3 Qualitative results and related plots for the Lego Car scene for the

weight initialization experiment. First row: GT and generated

novel views from the same pose of the GT. Second row: GT depth

map and generated depth maps from the same pose of the GT.

Third and fourth rows: plots of the different metrics on the test

set. 60

4.3.4 Qualitative results and related plots for the Lego Plane scene for

the weight initialization experiment. First row: GT and gener-

ated novel views from the same pose of the GT. Second row: GT

depth map and generated depth maps from the same pose of the

GT. Third and fourth rows: plots of the different metrics on the

test set. 61

69

4.3.5 Qualitative results and related plots for the Lego Trooper scene

for the weight initialization experiment. First row: GT and gen-

erated novel views from the same pose of the GT. Second row:

GT depth map and generated depth maps from the same pose of

the GT. Third and fourth rows: plots of the different metrics on

the test set. 62

4.3.6 Qualitative results and related plots for the Lego Truck scene for

the weight initialization experiment. First row: GT and gener-

ated novel views from the same pose of the GT. Second row: GT

depth map and generated depth maps from the same pose of the

GT. Third and fourth rows: plots of the different metrics on the

test set. 63

70

List of Tables

4.1 Quantitative results of the number of images experiment for the

number of images experiment. 40

4.2 Quantitative results of the depth supervision experiment 48

4.3 Quantitative results of the Lego Brick and Empty scenes trained

with depth supervision. 55

4.4 Quantitative results of the weight initialization experiment . . . 57

71

Bibliography

[1] Gustavo Patow and Xavier Pueyo, «A survey of inverse rendering prob-

lems», in Computer graphics forum, Wiley Online Library, vol. 22, 2003,

pp. 663–687.

[2] Ayush Tewari, Justus Thies, Ben Mildenhall, et al., «Advances in neural

rendering», arXiv preprint arXiv:2111.05849, 2021.

[3] SM Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, et al., «Neural

scene representation and rendering», Science, vol. 360, no. 6394, pp. 1204–

1210, 2018.

[4] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Bar-

ron, Ravi Ramamoorthi, and Ren Ng, «Nerf: Representing scenes as neural

radiance fields for view synthesis», in European conference on computer

vision, Springer, 2020, pp. 405–421.

[5] Frank Dellaert and Lin Yen-Chen, «Neural volume rendering: Nerf and

beyond», arXiv preprint arXiv:2101.05204, 2020.

[6] Thomas Schops, Viktor Larsson, Marc Pollefeys, and Torsten Sattler,

«Why having 10,000 parameters in your camera model is better than

twelve», in Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, 2020, pp. 2535–2544.

[7] Gerd Marmitt, «Interactive volume ray tracing», 2008.

72

[8] Nelson Max, «Optical models for direct volume rendering», IEEE Trans-

actions on Visualization and Computer Graphics, vol. 1, no. 2, pp. 99–108,

1995.

[9] Kurt Hornik, Maxwell Stinchcombe, and Halbert White, «Multilayer feed-

forward networks are universal approximators», Neural networks, vol. 2,

no. 5, pp. 359–366, 1989.

[10] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, et al., «Fourier fea-

tures let networks learn high frequency functions in low dimensional do-

mains», Advances in Neural Information Processing Systems, vol. 33, pp. 7537–

7547, 2020.

[11] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun, «Nerf++:

Analyzing and improving neural radiance fields», arXiv preprint arXiv:2010.07492,

2020.

[12] Marc Levoy and Pat Hanrahan, «Light field rendering», in Proceedings

of the 23rd annual conference on Computer graphics and interactive tech-

niques, 1996, pp. 31–42.

[13] Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F Co-

hen, «The lumigraph», in Proceedings of the 23rd annual conference on

Computer graphics and interactive techniques, 1996, pp. 43–54.

[14] Nasim Rahaman, Aristide Baratin, Devansh Arpit, et al., «On the spec-

tral bias of neural networks», in International Conference on Machine

Learning, PMLR, 2019, pp. 5301–5310.

[15] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger, «Kilo-

nerf: Speeding up neural radiance fields with thousands of tiny mlps»,

in Proceedings of the IEEE/CVF International Conference on Computer

Vision, 2021, pp. 14 335–14 345.

[16] Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ramanan, «Depth-

supervised nerf: Fewer views and faster training for free», arXiv preprint

arXiv:2107.02791, 2021.

73

[17] Matthew Tancik, Ben Mildenhall, Terrance Wang, et al., «Learned initial-

izations for optimizing coordinate-based neural representations», in Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2021, pp. 2846–2855.

[18] Vincent Sitzmann, Eric Chan, Richard Tucker, Noah Snavely, and Gor-

don Wetzstein, «Metasdf: Meta-learning signed distance functions», Ad-

vances in Neural Information Processing Systems, vol. 33, pp. 10 136–

10 147, 2020.

[19] Chelsea Finn, Pieter Abbeel, and Sergey Levine, «Model-agnostic meta-

learning for fast adaptation of deep networks», in International conference

on machine learning, PMLR, 2017, pp. 1126–1135.

[20] Alex Nichol, Joshua Achiam, and John Schulman, «On first-order meta-

learning algorithms», arXiv preprint arXiv:1803.02999, 2018.

[21] Diederik P Kingma and Jimmy Ba, «Adam: A method for stochastic op-

timization», arXiv preprint arXiv:1412.6980, 2014.

[22] Maximilian Denninger, Martin Sundermeyer, Dominik Winkelbauer, et

al., «Blenderproc», arXiv preprint arXiv:1911.01911, 2019.

[23] Jim Nilsson and Tomas Akenine-Möller, «Understanding ssim», arXiv

preprint arXiv:2006.13846, 2020.

[24] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver

Wang, «The unreasonable effectiveness of deep features as a perceptual

metric», in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2018, pp. 586–595.

[25] Thomas Neff, Pascal Stadlbauer, Mathias Parger, et al., «Donerf: Towards

real-time rendering of compact neural radiance fields using depth oracle

networks», in Computer Graphics Forum, Wiley Online Library, vol. 40,

2021, pp. 45–59.

74

[26] David B Lindell, Julien NP Martel, and Gordon Wetzstein, «Autoint:

Automatic integration for fast neural volume rendering», in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2021, pp. 14 556–14 565.

75

	Introduction
	Introduction to Neural Rendering
	Scene Representations
	Surface Representations
	Volume Representations

	Image Formation
	Rasterization
	Ray Casting
	Ray Tracing
	Surface Rendering
	Volume Rendering

	MLP: Multi-Layer Percepetron

	Neural Radiance Fields
	NeRF
	Scene Representation
	Volume Rendering
	Optimizations
	Pros and Cons of NeRF

	KiloNeRF
	The Network Architecture
	The Teacher-Students Model
	The Sampling Technique
	Pros and Cons of KiloNeRF

	DS-NeRF
	The Depth Loss
	Pros and Cons of DS-NeRF

	MetaNeRF
	The Meta-Learning Method
	Pros and Cons of MetaNeRF

	NeRF Model and Experiments
	The Lego Dataset
	The Model
	Experiments
	Number of Images
	Depth Supervision
	Weight Initialization

	Results
	Number of Images
	Depth Supervision
	Weight Initialization

	Conclusion and Future Works
	List of Figures
	List of Tables
	Bibliography

