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Abstract
Exponential potentials can be associated both with expanding and collapsing cos-
mologies: whereas power-law inflation can be obtained for a nearly flat exponential
potential, a stable contracting cosmology (which, by the way, can solve the hori-
zon problem) can be obtained for a negative sufficiently steep exponential potential.
Motivated by these results, we study the Einstein equation for a scalar field with
an exponential potential in a static and spherically symmetric spacetime. For the
same parameters which describe a stable contracting cosmology, we find a non-
asymptotically flat black hole and we study its properties.
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INTRODUCTION

Modern Cosmology is based on three main assumptions: General Relativity, the
assumption of isotropy and homogeneity, and a description of main matter con-
stituents as perfect fluids. Observations seem to agree with these principles which
are the pillars of the standard Hot Big Bang model to a good approximation. Fur-
thermore, they point in the direction of an almost flat Universe. The Hot Big Bang
theory faces several conceptual problems, which are solved in an elegant and effective
way by the inflationary theory. It describes an early period of extraordinary rapid
and accelerated expansion of the Universe. The simplest framework is the so called
Canonical Single Field Slow Roll Inflation (henceforth simply slow roll inflation),
where a minimally coupled homogeneous scalar field, i.e. the inflaton, is introduced,
on top of the usual Einstein-Hilbert action. So far, slow roll inflation is consistent
with observations. However, inflation is not the only possible tool in order to deal
with the drawbacks of the Hot Big Bang theory. For example, a solution to the hori-
zon problem is also provided by a contracting universe. In this thesis, we will study
scalar field cosmologies where the considered potential has an exponential form: the
sign and the slope of the potential determine whether we are dealing with power-law
inflation (or in general expanding cosmologies) or with collapsing cosmologies.
In a complementary way, we will study the same Einstein equations for a scalar field
with an exponential potential in a static and spherically symmetric spacetime and
will discuss the properties of the solutions found.
This work is structured as follows: in chapter 1 we will review the basic concepts
of Cosmology, in particular the principles and fundamental equations related to the
Standard Cosmological Model. In chapter 2 we will deal with inflationary cosmol-
ogy. First of all, we will present two of the main problems afflicting the HBB theory,
i.e. the horizon problem and the flatness problem. Then we will introduce inflation
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and show how it is able to solve them, and we will give a rough estimate about
its duration. Finally, we will discuss slow roll inflation. In chapter 3 we present a
phase-space analysis of a scalar field cosmology with an exponential potential whose
sign is left arbitrary and eventually we will discuss a "cosmic no-hair theorem" for
contracting cosmologies. In chapter 4 we solve Einstein equations in a static and
spherically symmetric spacetime for a cosmology featured by an exponential poten-
tial for the scalar field and we will discuss the properties of our solution. Finally, in
chapter 5 we will outline the conclusions and possible future outlooks.
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CHAPTER 1

BASICS OF COSMOLOGY

Physical Cosmology is a branch of physics which aims at describing the large-scale
structure of our Universe, along with its origin, evolution and its ultimate destiny.
In this first chapter we are going to give a quick discussion of the Standard Cos-
mological Model which is the basis of Modern Cosmology. Therefore, this lies the
foundations for all the discussions we are going to face throughout the following
chapters.

1.1. The Principles of Cosmology

Our description of the Universe, and therefore the whole Modern Cosmology, relies
on the Standard Cosmological Model, which includes two principles:

1. The Copernican Principle
This principle states that we are not preferred observers in the Universe.

2. The Cosmological Principle
The Cosmological Principle asserts that the Universe is homogeneous and
isotropic. Obviously, this cannot be true if we stick to small scales, but as long
as we observe the Universe at large scales, matter seems to be isotropically
distributed on average. Homogeneity is then a consequence of the Copernican
Principle, isotropy being independent of the observational point.
Actually, the Cosmological Principle can be tested: in particular, the transi-
tion scale to homogeneity is of order ∼ 100 Mpc [12]. This result quantifies
what we mean with "large scales". On top of this, the isotropy of the Cosmic
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Microwave Background (henceforth CMB) is a further key observation which
strengthen the Cosmological Principle.

Observations seem to support the Standard Cosmological Model so far. This means
that it is a working assumption somehow, in the sense that we assume it, we build
our models and eventually we check whether they are consistent with observations
or not. In fact, it is the model itself which tells us how signals propagates towards
us, and basically these signals are what we turn into observations.
Let us just point out one thing: when we state that the Universe is homogeneous
and isotropic we are saying that it is a spacetime solution to Einstein field equations
and it is possible to foliate it with 3D spatial hypersurfaces Σt such that on each of
them we have homogeneity and isotropy.

1.2. The Friedmann-Lemaître-Robertson-Walker

spacetime

The Cosmological Principle turns out to be very important because it fixes uniquely
the form of our metric: for a homogeneous and isotropic spacetime the metric is
given by the well-known Friedmann-Lemaître-Robertson-Walker (FLRW) solution1

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
(1.1)

where

• t is the proper time of an observer comoving with the cosmic fluid (which is
how we idealise galaxies/clusters on large scales) at r, θ, φ constant.

• a(t) is the scale factor.

• k is the curvature constant which can take three values, i.e. k = 0,±1.

According to the value of k, we can have three different scenarios:

1) Flat Universe (k = 0)
In this case, r looks like the usual radial coordinate in R3: spacelike foliations
are 3D Euclidean spaces

dσ2 = dr2 + r2dΩ2 = dx2 + dy2 + dz2 .

Hence, the Universe is flat.
1We will adopt the mostly plus convention for the metric signature.
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2) Closed Universe (k = 1)
If k = 1 we set r = sin(X) and the spatial hypersurfaces are

dσ2 = dX2 + sin2(X)dΩ2

which are 2-spheres and that is why we say the Universe is closed.

3) Open Universe (k = −1)
In this case, we change coordinates via r = sinh(ψ) so as to have

dσ2 = dψ2 + sinh2(ψ)dΩ2

meaning Σt is a hyperboloid and the Universe is open.

1.3. Cosmic fluids

Assuming a FLRW spacetime, homogeneity and isotropy force the energy-momentum
(EM) tensor to be

Tµν = diag(−ρ, p, p, p) (1.2)

where both ρ and p are in general time-dependent (being homogeneously and isotrop-
ically distributed). In particular, the energy-momentum tensor obeys the covariant
continuity equation

∇µTµν = 0 (1.3)

and if we look at the 00-th component, we find the energy conservation equation
given by

ρ̇+ 3H(ρ+ p) = 0 (1.4)

where
H =

ȧ

a
(1.5)

is the Hubble parameter.
Now, it is customary to assume an equation of state, that is to say a relation between
the energy density and the pressure. A well-known choice is the form of a perfect
barotropic fluid, namely

p = ωρ . (1.6)

This is mainly done for two reasons: first of all, it helps us to cover different phys-
ical scenarios; secondly, it enables us to solve equations. For instance, combining
Eqs. (1.4) and (1.6) we get

ρ̇ = −3Hρ(1 + ω) (1.7)
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whose solution is given by

ρ(t) = ρ0

(a0

a

)3(1+ω)
. (1.8)

We are used to distinguishing three cases:

1. Dust
In this case, we are dealing with matter with zero pressure. Basically, the only
interaction here is provided by gravity.
Being p = 0, the equation of state entails ω = 0 and from Eq. (1.8) we have

ρm ∝ a−3 . (1.9)

For instance, stars, galaxies and clusters can be seen as dust particles comoving
with the cosmic fluid, which means they are at fixed values of r, θ and φ. On
top of this, only gravity has an effect on them, and this implies dust moves
along geodesics, since trajectories of constant r, θ, φ are geodesics.

2. Radiation
For radiation, the trace of the EM tensor is vanishing, so that p = ρ/3, sug-
gesting that ω = 1/3. Therefore

ργ ∝ a−4 . (1.10)

3. Cosmological constant or Vacuum energy or Dark Energy
A third possibility is given by a fluid with the following equation of state:

ρΛ = −p =
Λ

8πG
,

i.e. ω = −1. We can see how the energy density does not vary with the scale
factor, and this is the reason why we call this vacuum energy.

1.4. The Friedmann equations

If we consider the FLRW metric and the EM tensor for a perfect fluid, Einstein equa-
tions produce the so called Friedmann equations. In particular, the 00-th component
of the field equations yields

3

[(
ȧ

a

)2

+
k

a2

]
= 8πGρ , (1.11)
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whereas from the ii-th component we get

3
ä

a
= −4πG(ρ+ 3p) . (1.12)

These equations are not independent: one can show that, starting from the time
derivative of Eq. (1.11) and using the conservation law (1.4), we can find again
Eq. (1.12).
The Friedmann equation is very important because, provided we are able to solve
it, we can find the behaviour of the scale factor. If we consider a matter-dominated
(so Eq. (1.9) holds) flat (i.e. k = 0) Universe, then Eq. (1.11) yields

ȧ2

a2
∼ 1

a3
⇔
√
a da ∼ dt ,

i.e.
a ∼ t2/3 .

Similarly, for a radiation-dominated flat Universe one can see that

a ∼ t1/2 .

Finally, for a flat Universe with only vacuum energy, ρΛ ∼ Λ and the Friedmann
eq. (1.11) reads

ȧ

a
∼
√

Λ

3
≡ H0

yielding
a ∼ eH0t ,

which represents a deSitter Universe which is exponentially expanding, where H0 is
called Hubble constant.

1.5. The expansion of the Universe

Whenever we have a model in our hands, we must try to find a contact with ob-
servation. In other words, we shall have some observables in our model which can
prove it or not (or actually we had better say that a model can only be falsifiable:
this is the principle of falsifiability by the philosopher of science Karl Popper).

1.5.1 The cosmological redshift

Imagine we have a source and a receiver that are comoving with the cosmic fluid.
The former is located at r = r1 whereas the latter at r = r2. A first signal is sent
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from the source at a time t1 and is received at t = t2. Then, a second signal leaves
the source at t = t1 + δt1 reaching the receiver at t = t2 + δt2. They both travel at
θ, φ = const. so, being for them ds2 = 0, Eq. (1.1) entails∫ t2

t1

dt

a(t)
=

∫ r2

r1

dr√
1− kr2

=

∫ t2+δt2

t1+δt1

dt

a(t)
.

Let us consider the equality between the leftmost and the rightmost side of the
previous equation and let us split the integrals as follows:∫ t2

t1

=

∫ t1+δt1

t1

+

∫ t2

t1+δt1

=

∫ t2+δt2

t1+δt1

.

Hence, moving
∫ t2
t1+δt1

to the right side we have

∫ t1+δt1

t1

dt

a(t)
=

∫ t2+δt2

t2

dt

a(t)
.

It is reasonable to assume that δt1,2 are small enough in such a way that a(t) does not
change appreciably. This is not strange, if we think of δt as the period of oscillation
of the source emitting electromagnetic waves. Therefore, we get

δt1
a(t1)

=
δt2
a(t2)

.

Thanks to this equation, we have a connection between δt1 (the inverse of the
frequency of the source as seen by the source itself) and δt2 (the same as before, but
seen by the receiver) which reads2

ν(t1)

ν(t2)
=
a(t2)

a(t1)
≡ ao

as
. (1.13)

This effect is known as the cosmological redshift. However, for historical reasons, it
is usually expressed in terms of wavelengths as

z =
λo − λs

λs
=
ao

as
− 1 , (1.14)

where the quantity z is called redshift. Still, keep in mind that the actual redshift
is given by z + 1.
It is important to remark that the cosmological redshift is a consequence of the
spacetime expansion and it is a measurable quantity.

2With the subscripts o and s we refer respectively to the observer/receiver and to the source.

6



1.5.2 The luminosity-distance relation

The luminosity-distance relation provides a way to estimate distances. Let us con-
sider the flux of energy F (i.e. energy per unit time and area) measured by an
observer. Let us call L = E/T the luminosity, i.e. the energy per unit time which
crosses any concentric sphere. Now, if we imagine our spacetime is Minkowskian,
there is no redshift at all, and the luminosity we observe is the same as the one
we would measure directly at the source, that we call L0 = E0/T0. Then, the flux
associated with a sphere of radius R is

F =
L

A
=

L0

4πR2
.

We call R = dL which is the luminosity-distance; for Minkowski it is clearly given
by d2

L = L0/(4πF ). Obviously, we are not able to measure L0 so there must be a
way to estimate it (see for example the standard candles: they are a class of sources
whose luminosity is known).
What about if we consider FLRW? Setting the source at r = 0, the 2-sphere line ele-
ment is a2r2dΩ2. This means the area of a concentric 2-sphere is given by 4π(aor)

2,
where ao is the scale factor at the time of observation. Now, recall that L = E/T ;
therefore, we have to take into account two things: first of all, the energy redshifts
like 1/(1 + z), as a consequence of Eq. (1.13). Then, if we look at T as the time
between two discrete emissions, in an expanding Universe they will be detected as
two signals separated by a time (1 + z)T . Thus, L ' L0/(1 + z)2, meaning that

F =
L

A
' L0

4π(aor)2(1 + z)2
≡ L0

4πd2
L

,

that is to say
dL = aor(1 + z) .

1.5.3 The Hubble law

The Hubble law is an important result since it shows that the Universe is expanding.
It connects the distance and the redshift z through an (almost) linear relation.
In order to see where it comes from, let us consider a radial photon in a FLRW
spacetime. We have seen it redshifts according to Eq. (1.14), which we rewrite as

z(ts) =
ao
a(ts)

− 1 .

For not so distant objects, the photon does not take too much time to reach us, i.e.
the quantity (to − ts) is small. Therefore, we can expand a(ts) around to as
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a(ts) = ao + ȧo(ts − to) + ... , so that

z(ts) =
ao
ao

[1 +Ho(ts − to) + ...]−1 − 1 ' Ho(to − ts) .

Since we are considering a radial photon, we have dt2 = dr2 which means the travel
time is equal to the distance to the emitter, i.e. to− ts = r. We then get the Hubble
law:

z = Hor (1.15)

which holds for z � 1. The further we go, the larger the redshift is, meaning that
distant galaxies are receding faster with respect to closer ones.
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CHAPTER 2

INFLATIONARY COSMOLOGY

Nowadays, the most widely adopted cosmological model for the description of the
evolution of our Universe is the so called Hot Big Bang theory (HBB). Its validity
is backed by many experimental data, such as the abundances of light elements ac-
cording to Big Bang Nucleosynthesis (BBN), the CMB (see Appendix A) and so on.
Yet, we shall draw our attention to the fact that, quoting Jim Peebles’s1 words, such
a model is describing "how our Universe is evolving, not how it began". The point
is that the HBB model suffers for several problems. One of the possible proposals to
fix this is the Inflationary theory : basically, during inflation the Universe underwent
an extremely rapid expansion in such a way its size increased enormously. It is able
to solve many of the problems afflicting the HBB theory in an elegant way.
The purpose of this chapter is to give a brief introduction to some of the HBB
drawbacks and describe the inflationary theory thereafter.

2.1. The horizon problem

We have said that our Universe is highly homogeneous and isotropic on large scales.
The best measure of this fact is provided by the CMB temperature anisotropy: the
average value of the CMB temperature today is given by (see [7])

T0 = 2.7260± 0.0013 K . (2.1)
12019 Nobel Prize in Physics.
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The CMB anisotropy is of the order

δT

T0
' 10−4 ÷ 10−5

which is very small with respect to T0. The point is that this scenario seems to
be extremely unlikely: in fact, within the HBB model, the sky is made up of a
large number of causally disconnected patches, as we are going to see in a while.
Therefore, this clashes with the degree of homogeneity of the CMB. This issue is
what is called horizon problem.
To begin with, we aim to investigate the causal structure of the spacetime so as to
understand how different and causally disconnected parts of the sky are at the same
temperature without any exchange of information. To this end, we consider a radial
(dΩ2 = 0) photon (ds2 = 0) propagating in a flat FLRW spacetime. Furthermore,
we exploit the definition of the conformal time τ given by

dt = a dτ . (2.2)

Thus, the FLRW line element looks like

dr = dτ

whose integration yields

∆r = ∆τ =

∫ t

ti

dt′

a(t′)
. (2.3)

This is the definition of the radial maximal distance a photon can travel between ti
and t > ti. Now, within the HBB, the Big Bang corresponds to ti = 0 with a(ti) = 0,
and this let us define the Comoving particle horizon as 2

∆rmax(t) =

∫ t

0

dt′

a(t′)
= τ(t)− τ(0) . (2.4)

Using both (1.8) and the Friedmann eq. (1.11) with k = 0 one can get

a
3
2

(1+ω) ∝ t (2.5)

which turns Eq. (2.4) into
∆rmax ∝ a

1
2

(1+ω) . (2.6)
2Note the presence of a singularity (physical quantities diverge for a radiation dominated Uni-

verse, such as ρ, if t→ 0). Usually the starting time is taken to be the Plank time tp necessary to
avoid quantum effects of gravity.
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This result shows how the comoving particle horizon is actually finite; as a conse-
quence, in the HBB there were regions that were not in causal contact in the past.
In spite of this, they are measured to have the same temperature with a precision of
10−4÷10−5. However, it is not strange to find this: even in Minkowski we would get
a finite result. Most importantly, we have the explicit dependence of the comoving
particle horizon on the scale factor from Eq. (2.6).
We could deal with the horizon issue in a more quantitative way by considering
Figure 2.1: we want to compute dhor and dA in order to have an idea of the angular
scale θhor of the comoving horizon at recombination.

Figure 2.1

For θhor small, we have

θhor '
dhor

dA
=
τrec − τi
τo − τrec

where τrec refers to recombination, τi = 0 to the Big Bang and τo to today. The
computation of both the numerator and denominator proceeds via Eq. (2.3); avoiding
some mathematical details, a numerical estimate of those integral yields

θhor ' 1.16◦ .

Considering that the points B and C in Figure 2.1 are not in causal contact, we can
say that any couple of points on the LSS separated by θ > θc ≡ 2θhor ' 2.3◦ '
0.04 rad was never in causal contact. Since the LSS corresponds to a solid angle of
4π, it is made up of approximately 4π/(0.04)2 ∼ 104 causally disconnected patches
which, however, are at the same temperature. So, to rephrase the horizon problem,
how is this possible considering that there was not enough time, between the initial
singularity and recombination, to exchange information?
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2.2. The flatness problem

The flatness problem deals with the extremely high tuned initial conditions that
would be required in order to observe the current curvature of the Universe from
experiments.
More specifically, from observations we find the following bound:

Ω− 1 < 0.02 today, (2.7)

where Ω is basically the density of matter and energy and will be defined in a
moment. It sounds good to start from this and go backward in time so as to check
the required initial conditions that have led to Eq.(2.7).
First of all, the Friedmann eq. (1.11) can be written as

H2 =
8πG

3

∑
i

ρi −
k

a2
. (2.8)

Then, we define the i-th density parameter as

Ωi ≡
8πG

3H2
ρi =

ρi
ρc

where ρc ≡ 3H2/(8πG) is the critical density. The total density parameter is

Ω ≡
∑
i

Ωi

and Eq. (2.8) reads

Ω− 1 =
k

(aH)2
. (2.9)

We now compare Eq. (2.9) between today and the Planck time, keeping in mind the
bound (2.7):

Ω(to)− 1

Ω(tP )− 1
=

(aH)2
∣∣
tP

(aH)2|to
=

(
a(tP )

a(to)

)2(H(tP )

H(to)

)2

, (2.10)

where to refers to today and tP is the Planck time. We then exploit the following
relations:

H(tP ) ∼MP

TP ∼MP

a(T ) ∼ 1

T
for a gas of photons ,
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where now TP is the Planck temperature, T is a generic temperature and MP is the
Planck Mass, defined as M2

P = (8πG)−1. Then, Eq. (2.10) becomes

Ω(to)− 1

Ω(tP )− 1
=

(
To
MP

)2(MP

Ho

)2

=

(
To
Ho

)2

.

Experimental data provide us with To ' 2.7 K and Ho ' 10−60MP , which means

Ω(to)− 1

Ω(tP )− 1
' 1058 .

Taking Eq. (2.7) into account, we need to tune

Ω(tP )− 1 ≤ 10−60 , (2.11)

which is an extreme fine tuning.

2.3. The shrinking comoving Hubble radius: a

possible way out

If we look carefully at the treatment we have just done, we can already guess that a
possible way out of these problems has to do with the factor (aH)−1, which is called
comoving Hubble radius (CHR). In fact, it appears in Eq. (2.4) if we write it as

τ =

∫
d ln(a)(aH)−1 , (2.12)

and also in Eq. (2.9). In particular, Eq. (2.12) shows how the elapsed conformal time
is connected to the evolution of the CHR. We are going to see that a given behaviour
of the CHR is able to solve our previous problems.
To begin with, one can invert Eq. (2.5) and ultimately find that

(aH)−1 ∝ a
1
2

(1+3ω) . (2.13)

Familiar energy sources satisfy the strong energy condition (SEC), which reads
1 + 3ω > 0. Thus, Eq. (2.13) entails that, for SEC-obeying sources, the CHR in-
creases as the Universe expands, or in other terms

d(aH)−1

dt
> 0 if SEC is satisfied .
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Now, if we solve the integral in Eq. (2.12) using Eq. (2.13), we get

τ ∝ 2

1 + 3ω
a

1+3ω
2 . (2.14)

The initial singularity a(τi) = 0 within the HBB model is located at τi = 0, and
τ ∈ [0,+∞) when the SEC holds. However, things change dramatically if we allow
for a SEC-violating source. In this case, ω < −1/3 and consequently the CHR
decreases as the Universe expands. Moreover, Eq. (2.14) implies that the initial
singularity a = 0 is dragged back to τi = −∞. Let us check how this solves both
the horizon and the flatness problems.

2.3.1 Solution to the horizon problem

Figure 2.2: Structure of the CMB light cones for a standard FLRW cosmology.
τ0 refers to today.
c© Copyright [1].

First of all, let us focus on the horizon problem. From Fig. 2.2 we can clearly see
how different patches on the LSS were not in causal contact. Nevertheless, if we let
τi → −∞ via a SEC-violating matter source, then we get what is shown in Fig. 2.3:
basically, the amount of elapsed conformal time between the initial singularity and
recombination is increased. This makes sure that points of the CMB that were not
in causal contact according to our previous treatment have now overlapping past
light cones. In this scenario, τ = 0 correspond to the end of inflation, which is
also known as reheating.3 Inflation would therefore be a period of the evolution of
our Universe where the latter was dominated by a matter source which violated the

3The reheating is the transition period where the inflationary media is supposed to be converted
into ordinary matter.
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SEC. In this respect, it is important to point out that we know the condition to solve
the problem (i.e. a decreasing CHR or SEC-violating source, equivalently), but we
still need to find what kind of matter gives this result.

Figure 2.3: Structure of the CMB light cones for inflationary cosmology.
c© Copyright [1].

2.3.2 Solution to the flatness problem

Moving to the flatness problem, we had seen how we needed an extreme tuning at
early times (see Eq. (2.11)) in order to explain what we observe today concerning
Ω−1. However, let us focus on Eq. (2.9): it is manifest that Ω−1 evolves according
to the square of the CHR. As a consequence, when we consider a SEC-obeying
source, (aH)−1 increases with the expansion of the Universe, letting Ω−1 grow. On
the other hand, when we take inflation into account (aH)−1 decreases and Ω = 1 is
what is called an attractor during inflation. In this way, a decreasing CHR solves
the flatness problem, as well.

2.3.3 Equivalent conditions for inflation

We have just seen which conditions enable us to solve dinamically the problems
related to the HBB model. However, those conditions can be recast in a different
fashion; in other words, we are going to list different but equivalent conditions for
inflation:

1) Decreasing CHR
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2) SEC violating source

3) Matter source with negative pressure
This follows immediately from the requirement that SEC must be violated and
from the equation of state (1.6), upon requiring ρ > 0.

4) Accelerated expansion of the Universe
Let us consider the flat Friedmann eq. (set now for simplicity 8πG = 1)

H2 =
ρ

3
,

which can be written as

ȧ =

√
ρ

3
a . (2.15)

Let us take the time derivative in order to get the acceleration related to the
scale factor:

ä = ȧ

√
ρ

3
+

aρ̇

2
√

3ρ
=
ρ

3
a− a

2
√

3ρ
3Hρ(1 + ω) ,

where in the last equality we have employed Eqs. (2.15) and (1.7). Writing
H =

√
ρ/3 we get

ä =
ρ

3
a− a

2
ρ(1 + ω) = −ρa

6
(1 + 3ω) . (2.16)

Then, the condition ω < −1/3 clearly results into ä > 0.

5) Slowly varying Hubble parameter
Starting from the definition of H we can easily get

Ḣ

H2
=
äa

ȧ2
− 1 .

By means of Eqs. (2.15) and (2.16) we have

Ḣ

H2
= −3

2
(1 + ω) .

Let us define the first slow roll parameter (or Hubble slow roll parameter ; we
are going to come back on this in a moment when we discuss slow roll inflation)
as

εH ≡ −
Ḣ

H2
=

3

2
(1 + ω) . (2.17)

The SEC-violating condition enforces εH < 1, which means the Hubble param-
eter H has to vary slowly.
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2.3.4 Duration of inflation: a minimum estimate

We can give a rough estimate about the duration of inflation. To this end, let us
introduce a quantity called number of e-foldings, given by

N ≡ ln(a) . (2.18)

It is adopted as a time variable and it turns out to be useful, especially during
inflation. In general, an e-folding is the amount of time required by an exponentially-
growing quantity to increase by a factor of e. In fact, the definition (2.18) shows
how, in Ne e-folds, the Universe expanded by a factor eNe .
Now, in order to have an idea of the duration of inflation, let us go back to the
treatment of the flatness problem and recast Eq. (2.10) as follows:

Ω(t)− 1

Ω(to)− 1
=

(
aoHo

a(t)H(t)

)2

,

with to and t corresponding to the present time and the start of inflation respectively.
It is reasonable to expect that the quantity Ω(t) − 1 ≡ Ωcurv(t) ∼ o(1) so that the
bound (2.7) ensures the LHS of the previous equation is a large number, that is to
say (

aoHo

a(t)H(t)

)2

� 1 .

Next, we introduce aend and Hend as the scale factor and the Hubble parameter
evaluated at the end of inflation and we manipulate the previous result:(

ao
aend

)2(aend

a(t)

)2( Ho

Hend

)2(Hend

H(t)

)2

� 1 .

During inflation, the Hubble parameter varies very slowly; hence, it comes natural
to assume Hend ∼ H(t) and take the logarithm of the previous inequality to get

ln

(
ao
aend

)
+ ln

(
aend

a(t)

)
+ ln

(
Ho

Hend

)
� 0 .

Now, during inflation the Universe expanded by a factor aend
a(t) = eNtot , where Ntot is

the total number of e-folds associated with inflation, so it is exactly what we would
like to estimate. To do so, we consider that ρrad ∼ a−4 ∼ T 4, i.e. a ∼ 1/T , so that 4

aend ∼
1

Treh
ao ∼

1

To
,

4Recall that the end of inflation is also called reheating.
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where To ' 2.73 K. With this at hand, we get

Ntot > ln

(
Hend

Treh

)
+ ln

(
To
Ho

)
.

Recalling Ho ' 10−60MP and Hend ∼ Hinf we find

Ntot & 66 + ln

(
Hinf

Treh

)
= N

(min)
tot . (2.19)

The second term sitting the RHS in Eq. (2.19) is model-dependent, but eventually
the range is N (min)

tot ' 70 ÷ 100. Anyway, more accurate discussions let us safely
assume Nmin

tot ' 60 for a standard inflationary model, even though for particular
models one has to be more careful (see, for instance, [14]).
A further step would produce an estimate of the time elapsed between the beginning
and the end of inflation. We have seen that the total number of e-folds during
inflation is Ntot = ln(aend/a(t)), which can be written as

Ntot =

∫ aend

a(t)
d ln(a) =

∫ tend

t
H(t)dt .

Assuming, as usual, a constant Hubble parameter during inflation, we can write the
following approximation:

Ntot ' Hinf

∫ tend

t
dt = Hinf∆tinf .

According to the model, one eventually has

∆t
(min)
inf ' 10−42 ÷ 10−9s (2.20)

which is a clear signal of an extraordinary rapid event during which the scale factor
became something like 1025 times larger than it was when inflation began.5 Thus, the
volume of the Universe grew of a factor which is approximately given by (1025)3 =

1075.

2.4. Slow-roll inflation

So far we have seen a way to overcome the problems associated with the HBB model,
and we have called it inflation. However, note that we have actually pointed out
inflation has to happen, how long it has to last, but we have not explained how it has
to occur yet. In other words, we still have to answer the following question: "What

5Here, again, we are assuming 60 e-foldings.
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kind of matter do we need in order to generate such an accelerated expansion of the
Universe?".
At first glance, we might take into consideration the model represented by the cos-
mological constant. It is indeed a toy model satisfying the condition for inflation,
being ω = −1 for instance. In addition, we have also described how it is related to
a dS Universe which is exponentially expanding. Still, if we think about it carefully,
the dS Universe is empty and eternal. This clashes with inflation, since we want it
to last for a very tiny (and therefore finite) amount of time. Moreover, when we say
empty it means there is no other form of matter embedded inside the EM tensor
and this is in contradiction with current observations. In short, a dS Universe is not
a good model for inflation.
The model we are going to present is known as slow roll inflation. We consider
the usual Einstein-Hilbert action and a minimally coupled scalar field φ called the
inflaton (by the way, we assume a homogeneous inflaton, φ = φ(t)), namely

S =

∫
d4x
√
−g
[
M2
P

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

]
, (2.21)

where R is the Ricci scalar and −g is the absolute value of the determinant of the
metric gµν ; V (φ) is still an arbitrary function. This is the minimum set-up so as to
get SRI. The general expression for the EM tensor in GR is given by

Tµν =
−2√
−g

δSM
δgµν

= −2
∂LM
∂gµν

+ gµνLM , (2.22)

where the subscript M refers to the matter part of the action/Lagrangian. Hence,
for the action (2.21) we get

Tµν = ∂µφ∂νφ+ gµνLM . (2.23)

We assume a flat FLRW background metric and, recalling that the inflaton depends
only on t, it is easy to check that Eq. (2.23) yields

T00 = ρ =
φ̇2

2
+ V (φ) , (2.24)

Tii = a2

(
φ̇2

2
− V (φ)

)
= a2p . (2.25)

The time evolution of the inflaton can be obtained from the action and is given by
the following Klein-Gordon (KG) equation

φ̈+ 3Hφ̇ = −∂φV . (2.26)
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The Friedmann eq. is straightforward from Eq. (2.24)

H2 =
ρ

3M2
P

=
1

3M2
P

(
φ̇2

2
+ V

)
. (2.27)

Let us now consider the eq. of state (1.6):

ω =
p

ρ
=

φ̇2

2 − V
φ̇2

2 + V
. (2.28)

The idea behind SRI is to have a sort of deformation of a dS Universe, i.e. something
very close to a cosmological constant which has a finite extension in time. Hence,
requiring ω ' −1 implies from Eq. (2.28) φ̇2

2 � V . This condition reflects on the
first SR parameter defined in Eq. (2.17) as

εH � 1 (2.29)

which is called slow roll condition. It has to be true as long as inflation is operating.
The inequality φ̇2/2 � V is the reason why we call such a model SRI: the scalar
field is slowly rolling down its potential and the dominant contribution to the ener-
gy/pressure is given by the potential rather than the kinetic energy.
We now define the second slow roll parameter ηH, which keeps track of the variation
of εH:

ηH ≡
d ln(εH)

dN
=

ε̇H
HεH

, (2.30)

where the straightforward relation

d

dt
= H

d

dN
(2.31)

has been employed. We require ηH � 1 (second slow roll condition) in order for
inflation to keep going. Let us clarify this: the first SR condition makes sure ω ' −1

holds, and from the equation of state we have a constant energy density like a
cosmological constant, so that we have an exponential expansion. Then, in order
to make inflation long enough, the second SR condition ensures that we stay for a
sufficient amount of time in the phase defined by the first SR condition. We could
go on and define a third SR parameter, but it is sufficient to stop here and just point
out the fact that when the SR parameters are no longer small, inflation ends.
Let us recast the SR conditions εH, ηH � 1 as conditions on the potential V (φ). We
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define the so called potential slow roll parameters as

εV ≡
M2
P

2

(
∂φV

V

)2

, (2.32)

ηV ≡M2
P

∂φφV

V
. (2.33)

One can show that
εH = εV , (2.34)

ηH = −2ηV + 4εV . (2.35)

Therefore, the SR conditions become

∂φV

V
� 1

∂φφV

V
� 1 , (2.36)

i.e. an almost flat potential during inflation.
Let us conclude this discussion with a recap/better clarification of the idea at the
basis of SRI: we have a quasi dS Universe, i.e. a deformed dS Universe where we
introduce a scalar field (the scalar field is the easiest option). Why do we act like
this? The introduction of a homogeneous field whose energy density is constant
during inflation (we have seen it is dominated by a quasi flat potential) ensures
we have an exponential expansion. Yet, this expansion must end at some point of
the history of the Universe: in order to put an end to inflation, some mechanism
must occur, and this is what we call reheating. Forget about the machinery behind
reheating (this goes far beyond our purposes), the scalar field somehow disappears
generating ordinary matter. The presence of the cosmological constant, associated
with a constant vacuum energy, enables the exponential expansion to work at late
time as well, whereas the energy density of matter in the Universe decreases as it is
expanding.
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CHAPTER 3

SCALAR FIELD COSMOLOGY
WITH AN EXPONENTIAL

POTENTIAL

In the previous chapter we have introduced the inflationary theory; in particular,
we have discussed SRI, which is based on the action (2.21). However, we have not
seen any specific model, being V (φ) arbitrary so far.
In this chapter we would like to study a given cosmology whose potential takes an
exponential form as follows

V (φ) = V0 e
−λ φ

MP , (3.1)

where M2
P = (8πG)−1 is the gravitational coupling and λ is a dimensionless con-

stant associated with the slope of the potential. Let us stress that, a priori, we are
not dealing with an inflationary model. Exponential potentials have been adopted
for the study of various situations, such as period of early inflation, but also for the
ekpyrotic Universe or pre Big Bang collapse.1

Our goal here is to study the dynamics of such a cosmology in the phase-space using
a system of dimensionless dynamical variables. We will investigate the different sce-
narios related to the sign of the potential, which can be either positive or negative.
To conclude this chapter, we discuss a so called "cosmic no-hair theorem" for con-
tracting universes so as to show that contracting cosmologies are important not only
for a FLRW spacetime.

1The ekpyrotic scenario describes a slowly contracting Universe with a subsequent bounce.
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3.1. Dynamical equations

We consider the following matter Lagrangian for our scalar field

LM = −1

2
∂µφ∂

µφ− V (φ) (3.2)

with V (φ) as in Eq. (3.1). We leave the sign of the potential implicitly arbitrary by
means of V0 (the standard case is V0 > 0). We will face the cases ±V > 0 later on.
Our background is given by a flat FLRW Universe, so that the KG equation for
our scalar field and the Hubble parameter are provided by Eqs. (2.26) and (2.27)
respectively. As anticipated before, we consider the following set of dimensionless
variables

x ≡ φ̇

MP

√
6H

, (3.3)

y ≡
√
|V |

MP

√
3H

(3.4)

which enable us to write down the Friedmann equation (2.27) as

x2 ± y2 = 1 . (3.5)

Basically, x2 measures the contribution of the kinetic energy density of our scalar
field to the expansion; on the other hand, ±y2 embodies the contribution of the
potential energy density. The ± sign in front of y2 accounts for the possibility for
V of being respectively positive or negative (i.e. ±V > 0).
With these dimensionless variables, we are able to write down the dynamical equa-
tion as an autonomous system (see Appendix B.1)

x′ = −3x(1− x2)± λ
√

3

2
y2 , (3.6)

y′ = xy

(
3x− λ

√
3

2

)
. (3.7)

The prime refers to the derivative with respect to the number of e-foldings. This
system is actually connected to a one-dimensional phase-space because of the con-
straint (3.5). This is what we are going to study in the following section.
Without loss of generality, we can consider λ ≥ 0, since the system is symmetric
under λ→ −λ and x→ −x.
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3.2. One-dimensional phase-space

We have just seen how the introduction of the dimensionless variables x and y let
us write down the dynamical equation as an autonomous system which is associated
with a one-dimensional phase-space. The latter corresponds to a unit circle when
V ≥ 0 and to a hyperbola when V ≤ 0 (see the constraint (3.5)). Now our goal
is to discuss (following [13]) the critical points of this system and their stability.
In particular, we stick to the part of the phase-plane associated with y ≥ 0: this
corresponds to expanding cosmologies with H > 0, but trajectories are actually
symmetrical under time reversal, i.e. H → −H (which is the reflection symmetry
x → x, y → −y). In other words, early time expanding solutions look the same as
late time collapsing ones.

3.2.1 Critical points and stability

Critical points (xi, yi) of a dynamical system are defined as those such that both x′

and y′ are vanishing. If we consider the differential equation (B.2) and we solve it
for the scale factor, for all the critical points such that xi is a non-vanishing constant
we have

a(t) ∝ |t|p, p =
1

3x2
i

,

that is a power-law solution. With this at hand, we go on and consider the possible
fixed points of our autonomous system. It admits at most three fixed points:

• Kinetic-dominated solutions
No matter the form of the potential, the points

A+ = (1, 0) A− = (−1, 0)

are critical points and correspond to the so called kinetic-dominated solutions,
since the actual contribution is given by xA± = ±1. In this case, the scale
factor evolves like a ∝ t1/3.
The study of the stability starts from linear perturbations about the critical
points, i.e. xi → xi + δxi and yi → yi + δyi. By substituting this into the
autonomous system and exploiting the Friedmann constraint (3.5), one can
get the system of differential equation for the perturbations δxi and δyi. To
first order in the perturbations, one has(

δx′i
δy′i

)
= A

(
δxi

δyi

)
.

Ultimately one can find the evolution of the perturbations, which are strictly
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connected to the eigenvalues mj of the matrix A.
For the case at hand, one can check that perturbations evolve as δxi ∝ em±N ,
where m+ =

√
6(
√

6 − λ) is associated with xA+ and m− =
√

6(
√

6 + λ) is
related to xA− . Since stability requires the real part of the eigenvalues to be
negative, we can conclude that the point A− is always unstable, while A+ is
stable for λ2 > 6 but unstable for λ2 < 6.

• Potential-kinetic-scaling solution
A second possible solution is provided by the point

B =

(
λ√
6
,

√
±
(

1− λ2

6

))
.

It is the so called potential-kinetic-scaling solution, where the kinetic contribu-
tion and the potential contribution are similar. This solution is allowed only
when ±(6 − λ2) > 0, λ2 < 6 corresponding to positive and sufficiently flat
potentials and λ2 > 6 to negative steep potentials.2 The exponent p = 2/λ2

depends on whether we are dealing with the former or the latter: p > 1, i.e.
λ2 < 2 (and H > 0) corresponds to power-law inflation solutions, whereas
p� 1 , i.e. λ� 1 (and H < 0) is associated to an accelerated collapse.
As far as stability is concerned, linear perturbations evolve according to the
eigenvalue m = (λ2 − 6)/2; hence, for a positive flat potential we always have
stability, but it is unstable if we consider a negative potential.

3.2.2 Qualitative evolution in the phase-space

Figure 3.1: 1D phase-space for flat positive potentials. Arrows indicate the
evolution with respect to cosmic time t. In the lower part of the plane, where
H < 0, this has the opposite sense to the number of e-folds N .
c© Copyright [13].

2Remember that the upper sign is for V > 0 whereas the lower sign is for V < 0.
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At this stage we are able to discuss what happens in the phase-space according to
the features of the potential.

1. Flat positive potentials (V > 0, λ2 < 6)
We know that for flat positive potentials all critical points are allowed; in
particular, B is a stable late time attractor whereas A+ and A− are unstable
repellors. As shown in Fig. 3.1, generic solutions starts in a kinetic-dominated
regime, approaching the kinetic-potential-scaling solution B at late times. Dif-
ferent physical scenarios are collected in Fig. 3.5.

2. Steep positive potentials (V > 0, λ2 > 6)
In this case, solution B does not exist, and we can consider only A+ and A−

Figure 3.2: 1D phase-space for steep positive potentials.
c© Copyright [13].

which are respectively stable and unstable. Hence, as we can see from Fig. 3.2,
generic solutions live in a kinetic-dominated regime, starting from A− and
evolving to A+ at late times. Just to give the whole picture, in the upper half
plane we start from a Big Bang in A− and we expand towards future infinity
represented by A+. On the other hand, if one looks at it in the lower plane,
where the sense of N is opposite, we start from past infinity A+ and collapse
towards a Big Crunch in A−.

3. Flat negative potentials (V < 0, λ2 < 6)
Also here, solution B is not present. A± are instead both unstable repellors.
We see from Fig. 3.3 that we start from one of the kinetic-dominated solution
and we go out to infinity, but we recollapse to the other kinetic-dominated
solution. This is connected to the fact that, when H changes sign, x and y

change sign as well. Therefore, trajectories which exit top-right in Figures 3.3
and 3.4 are connected to those entering bottom-left, and similarly top-left are

26



Figure 3.3: 1D phase-space for flat negative potentials.
c© Copyright [13].

connected to bottom-right. Just to have a physical grasp, we start from a Big
Bang in A±, the Universe expands and then recollapses to a Big Crunch in
A∓.

4. Steep negative potentials (V < 0, λ2 > 6)
Here all the three critical points come into play, but only A+ is a stable late-

Figure 3.4: 1D phase-space for steep negative potentials.
c© Copyright [13].

time attractor. This fact is responsible for the various scenarios that can take
place, which have been listed in Fig. 3.5.

27



Figure 3.5: Possible evolutions of 1D systems according to the sign and the slope
of the potential.
c© Copyright [13].

3.3. Two-dimensional phase-space

In what follows, we would like to perform the same study we have just seen but
considering an additional component (whose density and pressure are denoted with
ργ and pγ respectively) which is not explicitly coupled to the scalar field. It only
enters the Friedmann constraint, which reads

H2 =
1

3M2
P

(
φ̇2

2
+ V (φ) + ργ

)
,

ργ obeying the continuity equation

ρ̇γ = −3H(ργ + pγ) . (3.8)

We consider a barotropic fluid whose equation of state is pγ = (γ−1)ργ ; γ is simply
a constant such that, for conventional fluids, γ ∈ (0, 2). For instance, if we consider
dust γ = 1 or for radiation we have γ = 4/3. The KG equation (2.26) still holds for
the evolution of the scalar field.
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The idea is to proceed following the same steps as before. Therefore, on top of the
dimensionless variables x and y we had in Eqs. (3.3) and (3.4) respectively, we define
a new one associated with ργ :

w ≡
√
ργ√

3MPH
. (3.9)

The evolution equations turn into an autonomous system given by

x′ = −3x
(

1− x2 − γ

2
w2
)
± λ

√
3

2
y2 , (3.10)

y′ = y

(
3x2 − λ

√
3

2
x+

3γ

2
w2

)
, (3.11)

w′ =
3

2
w
(
−γ + 2x2 + γw2

)
. (3.12)

In addition, the Friedmann constraint becomes

x2 ± y2 + w2 = 1 (3.13)

so that the system is reduced to a 2D phase-space corresponding to a unit sphere
for V ≥ 0 or to a hyperboloid for V ≤ 0.
We will stick to the case H > 0, corresponding to the upper quadrant y ≥ 0 and
w ≥ 0, noting that our system is symmetric under t→ −t, H → −H, y → −y and
w → −w.

3.3.1 Critical points

Just like before, critical points are the ones for which x′ = y′ = w′ = 0. One can
check there are at most five fixed points: three are represented by A± and B we
have seen before (clearly wi = 0, i = A±, B for all of them); on top of these, we
have

• Fluid-dominated solution

C = (0, 0, 1)

i.e. only wC is non-vanishing. This solutions is always present, irrespective of
the potential.
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• Fluid-potential-kinetic-scaling solution3

D =

(√
3

2

γ

λ
,

√
±3

2

(2− γ)γ

λ2
,

√
1− 3γ

λ2

)
As we can see from yD and wD, this solution exists only for positive potentials
which are sufficiently steep (in this case we mean λ2 > 3γ).

3.3.2 Stability

If we consider the w = 0 subspace, the study of the stability of the points A± and
B is the same as in the previous section. Instead, if we consider fluid perturbations,
they evolve as δwi ∝ emN where m = 3(2x2

i − γ)/2. This means:

• Stability of A± to fluid perturbations
For A± we have m = 3(2 − γ)/2. Being γ < 2, kinetic-dominated solutions
are always unstable to fluid perturbations.

• Stability of B to fluid perturbations
In this case,m = (λ2−3γ)/2. This entails the kinetic-potential-scaling solution
is stable for sufficiently flat potentials (λ2 < 3γ), but unstable for sufficiently
steep potentials.

• Stability of C and D
The fluid-dominated solution has two eigenmodes of the kind δxi ∝ emxN and
δyi ∝ emyN , with mx = −3(2 − γ)/2 and my = 3γ/2. Hence, it is stable
to kinetic energy perturbations being γ < 2, but it is unstable to potential
energy perturbations, being γ > 0. We have a saddle point which is unstable
to generic perturbations.
Point D is always a stable late-time attractor when it exists [4].

3.3.3 Qualitative evolution in the phase-space

1. Flat positive potentials (V > 0, λ2 < 3γ)
We have four critical points: A± are unstable repellors, C is the unstable
saddle point and B is the stable late-time attractor. This means generic
solutions start from the kinetic-dominate regime A+ or A− ending in the
potential-kinetic scaling regime represented by B, as shown in Fig. 3.6. There
is the possibility for such solutions to approach C in their way to the kinetic-
potential-scaling solution.

3Hereafter we simply call it scaling solution.
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Figure 3.6: 2D phase-space for flat positive potentials.
c© Copyright [13].

2. Intermediate positive potentials (V > 0, 3γ < λ2 < 6)
All critical points are allowed here. Fig. 3.7 shows that generic solutions begin

Figure 3.7: 2D phase-space for intermediate positive potentials.
c© Copyright [13].

in the kinetic-dominated regime (A+ or A−), can approach either the fluid-
dominated solution C or the kinetic-potential scaling solution B, which are
both unstable, and eventually reach the scaling solution D at late times, which
is a stable attractor.

3. Steep positive potentials (V > 0, λ2 > 6)
Now the kinetic-potential-scaling solution is not present. We have only four
critical points corresponding to A±, C and D. A± are as usual unstable
repellors, C is the unstable saddle point, while D is instead the stable late-
time attractor. Thus, solutions start out kinetic-dominated and eventually
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Figure 3.8: 2D phase-space for steep positive potentials.
c© Copyright [13].

reach the scaling solution, approaching or not the fluid-dominated solution in
their way towards D.

4. Flat negative potentials (V < 0, λ2 < 6)
Now we have only three critical points at our disposal, that is to say A±

Figure 3.9: 2D phase-space for flat negative potentials.
c© Copyright [13].

(unstable repellors) and the unstable C. As we can see from Fig. 3.9, generic
solutions start out kinetic-dominated and go to infinity along x = −y. Then,
they can either approach C or not, and eventually recollapse to A+.

5. Steep negative potentials (V < 0, λ2 > 6)
Finally, steep negative potentials enable the existence of four critical points.
If we look at Fig. 3.10 we have the following situations: generic solutions begin
either in the kinetic-dominated regime A− (if φ̇ < 0) or in the kinetic-potential-
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Figure 3.10: 2D phase-space for steep negative potentials.
c© Copyright [13].

scaling regime B (if φ̇ > 0); then, the former can approach the fluid-dominated
solution C before going to infinity along x = −y and recollapsing towards
the late-time attractor B. Instead, the latter can approach both the fluid-
dominated solution C and the kinetic-dominated solution A+, which are both
unstable, before going to infinity and recollapsing towards B.

3.4. Final considerations

Let us give a quick recap about the possible outcomes we have found. Basically, we
have performed the study of the phase-space according to the nature of the expo-
nential potential, which could be positive or negative, flat or steep.
In particular, we have seen how positive and sufficiently flat potentials are featured
by a potential-kinetic scaling solution (i.e. B) were the contributions of the kinetic
energy density and of the potential energy density remain proportional; they de-
scribe expanding cosmologies (or contracting cosmologies if we look at them in the
lower plane). The potential-kinetic scaling solution does not show up for steep pos-
itive potentials, which are describing only expanding cosmologies.
The kinetic-potential-scaling solution is also missing for flat negative potentials,
which are associated with a behaviour of the kind "Big Bang → expansion → recol-
lapse → Big Crunch". Thus, for flat negative potentials we always have collapsing
cosmologies.
However, negative potentials which are sufficiently steep present both expanding so-
lutions (those starting close to the kinetic-pontential scaling solution and approach-
ing at late times the kinetic solution) and Big Bang-Big Crunch solutions.
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3.5. A "Cosmic No-Hair Theorem" for

contracting cosmologies

An important matter when studying cosmologies with a Big Crunch/Big Bang tran-
sition is the behaviour of the Universe as it approaches the crunch. We are going to
discuss the possible situations that can arise according to the value taken by ω in
the equation of state (1.6). We will focus on a contracting Universe for which the
transition Big Crunch/Big Bang occurs at t = 0, where t→ 0− is basically what we
are intrested in eventually, i.e. the crunch. In other words, we consider the range
t ∈ (−∞, 0−] where the Universe is contracting towards a t→0−−→ 0. In particular, we
will first discuss the curvature-free case and then we will briefly tell what happens
when curvature is taken into account.
The first thing to point out is the form of the metric. A known result in literature is
that the dynamics of the metric near the crunch are ultralocal : this means that the
evolution of adjacent spatial point decouples since spatial gradients increase more
slowly than other terms in the equations of motion. From a mathematical point of
view, this translates into the following form of the metric near the singularity and
at a fixed spatial coordinate x0

ds2 = −dt2 + a2(t,x0)
∑
i

e2βi(t,x0)
(
σ(i)(x0)

)2
(3.14)

with the constraint
3∑
i=1

βi = 0 . (3.15)

The metric in Eq. (3.14) is a Kasner-like metric. We now suppress the dependence
on x0 for simplicity: σ(i) are linearly independent one-forms; a(t) is a common
scale factor, similarly to a FLRW metric, but the effective scale factor along the
i-th direction is a eβi , so that each βi describes the contraction or expansion of the
associated direction with respect to the overall volume contraction. Therefore, we
are taking into account a general anisotropic contraction, and the dynamics of an
inhomogeneous universe at a fixed spatial point can be approximated, close to the
singularity, by that of a homogeneous, even though curved and anisotropic, universe.
σ(i) and a eβi account for differences in curvature and anisotropy at different x0.
The freedom to rescale each σ enables us to pick a time t0 for which a(t0) = 1 and
βi(t0) = 0. When we meet a quantity with a subscript zero, they will refer to their
values at t0.
Before we move on to study the curvature-free case, there is one more issue to point
out: if we look at the evolution equation (1.8) of the energy density for a component
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with equation of state p = ωρ, for an expanding universe the component with the
largest value of ω redshifts away more slowly that the others so that it dominates
in the end. On the other hand, for a contracting universe, the component with the
largest value of ω will take over. This let us safely ignore any other perfect fluid
with ωi < ω and consider just the one which dominates near the crunch.

3.5.1 The curvature-free case

Let us first consider the case of flat spatial 3-surfaces. In this case, Einstein equations
yield

3

(
ȧ

a

)2

− 1

2

(
β̇2

1 + β̇2
2 + β̇2

3

)
= ρ , (3.16)

β̈i + 3
ȧ

a
β̇i = 0 . (3.17)

Now, if we integrate Eq. (3.17) we find

β̇i = cia
−3 (3.18)

for which the constraint (3.15) becomes

c1 + c2 + c3 = 0 . (3.19)

Hence, it is easy to see how Eq. (3.16) becomes the Friedmann equation

3

(
ȧ

a

)2

= ρ(a) +
σ2

a6
=

ρ0

a3(1+ω)
+
σ2

a6
, (3.20)

where the curvature term is absent (k = 0) but we have a so called anisotropy term
σ2/a6 with

σ2 ≡ 1

2
(c2

1 + c2
2 + c2

3) . (3.21)

As we will see, the effective contribution of anisotropy is a different expansion/con-
traction in different spatial directions. Let us consider the fractional energy densities

Ωρ =
ρ(a)

ρ(a) + σ2/a6
, (3.22)

Ωσ =
σ2/a6

ρ(a) + σ2/a6
, (3.23)

representing respectively the contribution of the perfect fluid and anisotropy to the
critical density.
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One can now find an expression for βi(a) starting from Eq. (3.18) and using Eq. (3.20):

βi(a) = ci
√

3

∫ 1

a

da′

a′
(
ρ(a′)a′6 + σ2

)−1/2
, (3.24)

where the endpoints of integration are chosen so as to have βi(1) = 0. With this at
hand, one can study different situations related to the value taken by ω.

ω < 1

In this case, ρ(a)a6 ∼ a2 so it is negligible in Eq. (3.24) as a → 0. This means the
solution corresponds to the vacuum Kasner Universe during contraction given by

a(t) =

(
t

t0

)1/3

, (3.25)

βi(t) =
ci

σ
√

3
ln

(
t

t0

)
. (3.26)

This Kasner Universe is parametrised by the so called Kasner exponents

pi =
1

3
+

ci

σ
√

3
(3.27)

so that the effective scale factors are

a eβi =

∣∣∣∣ tt0
∣∣∣∣pi . (3.28)

Therefore, we see how the Kasner exponent pi basically describes how the Universe
is expanding/contracting in the i-th direction, and in turn this is strictly connected
to the anisotropy contribution expressed by the presence of σ in Eq. (3.27).
Note that the relations (3.19) and (3.21) now read respectively

p1 + p2 + p3 = 1 (3.29)

p2
1 + p2

2 + p2
3 = 1 , (3.30)

which are the so called Kasner conditions. They are related to the Kasner circle,
i.e. the intersection between the Kasner plane and the Kasner sphere (with unit
radius for this particular case where ω < 1). The Kasner circle contains all the
allowed valued of pi. If we look at Figure 3.11, for ω < 1 the Kasner circle is the
outermost one, associated with Ωσ = 1. On that particular circle, the black dots
correspond to the case where one single Kasner exponent is equal to one and all the
others are vanishing; the dashed part of the circle contains points where one Kasner
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exponent is negative, meaning the direction associated with it is not contracting
but expanding. Therefore, we have an overall contraction, but a single scale factor
related to the negative Kasner exponent is expanding, so that the Universe becomes
increasingly anisotropic as we approach the crunch. The isotropic solution where all
the pi = 1/3 is indeed not compatible with the Kasner conditions.

ω = 1

By looking at the evolution equation (1.8), for ω = 1 we have ρ ∼ a−6.4 This is
telling us that the matter density and the anisotropy term scale with the same power
of the scale factor a. Solutions for a and βi in this case are given by

a(t) =

(
t

t0

)1/3

, (3.31)

βi(t) =
ci√

3(σ2 + ρ0)
ln

(
t

t0

)
. (3.32)

It is similar to the ω < 1 case so we define the Kasner exponents as

pi =
1

3
+

ci

σ
√

3

(
1 +

ρ0

σ2

)−1/2
. (3.33)

However, Kasner conditions here are different and given by

p1 + p2 + p3 = 1 (3.34)

p2
1 + p2

2 + p2
3 = 1− q2 =

1

3
+

2

3
Ωσ , (3.35)

where
q2 ≡ 2

3
(1− Ωσ) =

2

3

ρ0

σ2 + ρ0
. (3.36)

So, for ω = 1 we have different Kasner circles according to the value of Ωσ. Let us
look at Figure 3.11: the degenerate solution is the innermost circle, i.e. the point
corresponding to the perfectly isotropic case where Ωσ = 0. In fact, the Kasner
conditions here are compatible with pi = 1/3 ∀i. Then, as long as Ωσ < 1/4

(corresponding to the white region but only within the larger solid circle inscribed
in the triangle) all the Kasner exponents are positive and so the Universe contract
smoothly to the crunch but the effective scale factors decrease at different rates,
since Kasner exponents do not take the same value. For Ωσ > 1/4 (see for example
the third largest circle, which shows solid parts inside the white region but also
dashed parts outside) some points on the Kasner circle have one negative Kasner

4Keep in mind that ρ0 appearing in Eq. (1.8) is not the same we are dealing with in this section.
However, what we are interested in, as far as Eq. (1.8) is concerned, is just the scaling of ρ with a.
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exponent, so we have the same situation as the ω < 1 case. Therefore, we still have,
in general, a smooth but anisotropically contraction to the crunch, except for the
special case Ωσ = 0.

Figure 3.11: The Kasner plane represented by
∑
i pi = 0 and the itersections,

called Kasner circles, with different spheres
∑
i p

2
i = 1 − q2. The vacuum Kasner

solution corresponds to Ωσ = 1, i.e. q = 0, which is the outermost circle. Other
circles are relevant for the case ω = 1 and Ωσ < 1. White regions are associated
with all positive Kasner exponents, whereas in the grey regions one exponent is
negative.
c© Copyright [5].

ω > 1

If ω > 1 then ρ(a) ∼ a−x with x > 6 so it dominates over the the anisotropic part
and Ωρ → 1 as a→ 0. The solution is

a(t) =

(
t

t0

) 2
3(1+ω)

, (3.37)

βi(t) = ci
2√
3ρ0

1

ω − 1

[(
t

t0

)ω−1
ω+1

− 1

]
. (3.38)

From Eq. (3.38) we see how βi ∼ tα with α > 0 for ω > 1. As a consequence,
when we approach the crunch βi tends to a constant, so that the Universe becomes
isotropic. This is what we call a "cosmic no-hair theorem" for universes with no
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spatial curvature: when ω < 1 the Universe is more and more anisotropic as we get
closer to the crunch (i.e. Ωσ → 1 as a→ 0). For ω = 1, Ωσ remains fixed; however,
there is an anisotropically but still smooth contraction towards the crunch, where we
mean there is no jump between one Kasner-like solution to another (this is known as
mixmaster behaviour, and it is experienced when curvature is taken into account).
Finally, for ω > 1 the initial anisotropy disappears as we approach the crunch, where
the Universe becomes isotropic.

3.5.2 Curvature

When we consider the presence of curvature, things get messier. We will not go into
details just list what happens for different values of ω.
For ω < 1 the spatial curvature is responsible for a chaotic mixmaster behaviour
where the Universe jumps an infinite numer of times between different Kasner-like
epochs. The Universe becomes extremely inhomogeneous as we approach a→ 0.
The chaotic behaviour is softened when ω = 1. In particular, if Ωσ < 1/4 some
choices of the pi have one pi < 0 and the system still jumps between different pi’s;
we call these points unstable. However, the number of jumps now is finite, and the
Universe hits a point belonging to the open subset of stable pi. Starting from here,
there is a smooth contraction, with no more jumps, towards a stable point as a→ 0.
These models are called non-chaotic.
As for the curvature-free case, when ω > 1 the curvature does not affec the contrac-
tion, and the solution converges to the isotropic one. Thus, a generalisation of the
"cosmic no-hair theorem" which includes the presence of curvature is possible: an
initially anisotropic and inhomogeneous universe with spatial curvature collapses to
a flat, homogeneous and isotropic universe if it contains energy with ω > 1, whereas
it collapses to a flat, homogeneous but anisotropic universe if ω = 1. For ω < 1 the
universe is highly inhomogeneous and the no-hair theorem does not hold anymore.
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CHAPTER 4

STATIC SPHERICALLY
SYMMETRIC SOLUTION WITH AN

EXPONENTIAL POTENTIAL

In the previous chapter we have studied the properties of a cosmological solution
associated with an exponential potential whose sign is left arbitrary. This fact, along
with the slope of the potential (i.e. the value taken by λ), produces several physical
scenarios that we have discussed.
Now we consider again a scalar field with a KG kinetic term and an exponential po-
tential of the kind (3.1) but in a static and spherically symmetric (SSS) spacetime.
We will find the solution to Einstein equations. As expected, since we are dealing
with a SSS spacetime, we get the definition of its related horizon. Therefore, we will
check it is a coordinate singularity (just like for the Schwarzschild radius) and we
will eventually discuss the properties of our solution.

4.1. Equations of motion and their solution in a

static and spherically symmetric spacetime

Let us consider the following Lagrangian for our model

L = − ε
2
∇µφ∇µφ− V0e

−λ φ
MP . (4.1)
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Clearly, for a scalar field φ the covariant derivative reduces to the usual partial
derivative, so Eq. (4.1) is nothing else than Eq. (3.2) up to a sign represented by
ε = ±1, where ε = +1 corresponds to the standard normalization for the kinetic
term and ε = −1 to the non-standard normalization. The sign of the pontential is
still left arbitrary.
Now, our goal is to find the solution to equations of motion in a SSS spacetime. To
this end, we write the metric as follows

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dΩ2 , (4.2)

where dΩ2 = dθ2+sin2 θ dϕ2 and eν(r), eλ(r) are unknown functions to be determined
once we solve Einstein equations. With this at hand, equations of motion read

e−λ
[

1

r2
− λ′

r

]
− 1

r2
= −χ

[ ε
2
e−λφ′

2
+ V (φ)

]
, (4.3)

λ′ + ν ′

r
= χ εφ′

2
, (4.4)

φ′′ − 1

2
φ′
(
λ′ − ν ′ − 4

r

)
− ε ∂φ V (φ)eλ = 0 , (4.5)

where χ = 8πG. The solution is then given by1

eν(r) =

(
r

r0

)2(1−γ)/γ 1

2γ − 1

[
1 + (2γ − 1)

C

r0

(r0

r

)1/γ
]

=

(
r

r0

)2(1−γ)/γ 1

2γ − 1

[
1− (2γ − 1)

2M

r0

(r0

r

)1/γ
]
, (4.6)

eλ(r) =
2γ − 1

γ2

(
1 + (2γ − 1)

C

r0

(r0

r

)1/γ
)−1

=
2γ − 1

γ2

(
1− (2γ − 1)

2M

r0

(r0

r

)1/γ
)−1

(4.7)

and

φ(r) = ±a(γ) ln(r/r0) + φ(r0) , (4.8)

where C = −2M is a dimensionful constant [C] = [L], γ is a dimensionless parameter
whereas [r0] = [L]. We rewrite the considered potential for φ as

V (φ) = V0e
2b φ . (4.9)

1The most general solution with a potential of the kind (3.1) is not known. However, if we
assume eλ(r) · eν(r) to be a power of r, then we can find our solution.
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The quantity a(γ) is defined by

a(γ) = [2(1− γ)/(εχγ)]1/2 (4.10)

Furthermore, in order for Eqs. (4.6)-(4.8) to be solutions, the following constraint
on b

∓b a(γ) = 1 (4.11)

and on V0

V0e
2b φ(r0) =

1

χ r2
0

(γ − 1)

(2γ − 1)
(4.12)

have to be satisfied.
We also note that our solution can be written as

ds2 = −U(r)dt2 +
1

U(r) γ2

(
r

r0

)2(1−γ)/γ

dr2 + r2dΩ2 . (4.13)

with

U(r) =

(
r

r0

)−2+1/γ
(

1

2γ − 1

(
r

r0

)1/γ

+
C

r0

)

=

(
r

r0

)2(1−γ)/γ 1

2γ − 1

[
1 + (2γ − 1)

C

r0

(r0

r

)1/γ
]

(4.14)

Our solution can hide a horizon, which is not something strange when we deal with
a SSS spacetime. Therefore, let us define it as

rS ≡ r0

[
2M

r0
(2γ − 1)

]γ
(4.15)

so that we can write Eqs. (4.6) and (4.7) respectively as

eν(r) =

(
r

r0

)2(1−γ)/γ 1

2γ − 1

[
1−

(rS
r

)1/γ
]

(4.16)

and

eλ(r) =
2γ − 1

γ2

(
1−

(rS
r

)1/γ
)−1

. (4.17)

Therefore, it is natural to check whether our solution is regular or not near the
horizon itself, at least for the values of the parameter γ for which it exits (see
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Section 4.4), that is 1/2 < γ < 1. Therefore, let us stick to this subset of γ for the
time being.

4.1.1 Curvature invariants

We also give the expression for curvature invariants. In particular, we have:

• Ricci scalar R = Rαα

R =
2(γ − 1)

r2

(
2− γ
2γ − 1

− Cγ

r0

(r0

r

)1/γ
)
. (4.18)

• Ricci square R2 = RαβRαβ

R2 =
4(γ − 1)2

r4

[
1

4
+

3

4(2γ − 1)2
+
Cγ

r0

(r0

r

)2/γ
(
Cγ

r0
+

(
r

r0

)1/γ
)]

.(4.19)

• Riemann square or Kretschmann invariant K = RαβµνRαβµν

K =
4

r4(1− 2γ)2

[(r0

r

)2/γ
((

C

r0

)2

(1− 2γ)2γ2(2 + γ(−6 + 7γ))+

+2
C

r0
(−1 + γ)γ(2γ − 1)(1 + γ(−6 + 7γ))

(
r

r0

)1/γ

+(γ − 1)2(2 + γ(−6 + 7γ))

(
r

r0

)2/γ
)]

. (4.20)

Note that in the limit γ → 1 the Schwarzschild invariants are recovered

R −→γ→1 0 (4.21)

R2 −→γ→1 0 (4.22)

K −→γ→1 12C2/r6 (4.23)

4.2. Relation to Mann solution

In what follows we are going to show how our solution belongs to a class of charged
dilaton BH solution studied in [3] by Mann and collaborators. In particular, Mann
solution is a charged BH solution with an anusual asymptotic behaviour which is
neither flat nor dS.
Mann solution is given by

ds2 = −U1(r)dt2 +
dr2

U1(r)
+R2(r)dΩ2 (4.24)
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with

R(r) = αrN (4.25)

where α is a dimensionful constant such that [α] = [L1−N ]. For Q = 0,

U1(r) = r
2a2

1+a2

(
1 + a2

(1− a2)α2
− 2(1 + a2)M

α2r

)
. (4.26)

N is defined through the relation

N =
1

1 + a2
. (4.27)

Therefore

U1(r) = r2(1−N)

(
1

(2N − 1)α2
− 2M

α2rN

)
. (4.28)

Using r = ( 1
αR)1/N and calling C = −2M we have

U1(R) = R2(1−N)/N 1

α2(1−N)/N

[
1

(2N − 1)α2
+

Cα1/N

α2NR1/N

]

= R2(1−N)/N 1

2N − 1

1

α2/N

[
1 +

2N − 1

N

Cα1/N

R1/N

]
. (4.29)

Given
dr2 =

1

N2
R2(1−N)/N 1

α2/N
dR2

We finally have

ds2 = −U1(R)dt2 +
1

U1(R)N2
R2(1−N)/N 1

α2/N
dR2 +R2dΩ2 (4.30)

Upon renaming N → γ, R → r and α → r1−γ
0 we get Eq. (4.13) up to a 1

N factor
present in the last term in Eq. (4.29). The reader can easily check by substitution
that it still satisfies equations of motion.

4.3. Kruskal extension

In GR, Kruskal coordinates represent a set of coordinates whose purpose is to show
that the Schwarzschild radius is just a coordinate singularity. In other words, by
changing coordinates in the Schwarzschild solution, one is able to show that there
is no singularity at all in r = RS , where RS is the Schwarzschild radius. The new
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set of coordinates where this happens is precisely the Kruskal one.2

The aim of this section is to show the regularity of our solution near the horizon rS
starting from Mann solution (4.24). To this purpose, following the same procedure
as for the Schwarzschild solution, we are going to find the Kruskal extension for
ours, proving in an alternative way Mann’s thesis.
First of all, we find radial null directions by setting ds2 = 0 and θ, φ = const. in
Eq. (4.24). We get

dt = ± dr

U1(r)
≡ ±dr∗ . (4.31)

Let us rewrite U1(r) in Eq. (4.28) as

U1(r) = r2(1−N) 1

(2N − 1)α2

(
1− rS

r

)
(4.32)

where
rS ≡

2M(2N − 1)

N
= −C(2N − 1)

N
.

Then, we expand U1(r) about rS as

U1(r) ' dU1(r)

dr

∣∣∣∣
rS

(r − rS) .

We compute U ′1(r):

dU1(r)

dr
=

1

(2N − 1)α2

[
2(1−N)r1−2N

(
1− rS

r

)
+ r2(1−N)

(rS
r2

)]
=

1

(2N − 1)α2

[
2(1−N)r1−2N

(
1− rS

r

)
+ rS r

−2N
]

Hence

U1(r) '
r1−2N
S

(2N − 1)α2
(r − rS) . (4.33)

Considering the definition of the coordinate r∗ in Eq. (4.31), upon integration we
have

r∗ =
(2N − 1)r2Nα2

2F1(1, 2N ; 1 + 2N ; r/rS)

2NrS

where 2F1(a, b; c; z) is the Gaussian or ordinary hypergeometric function whose ex-
pression is

2F1(a, b; c; z) = 1 +
ab

c

z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2!
+ . . .

2To be more precise, the Kruskal extension is not the only one which enables us to solve the
problem of the singularity in r = RS . Kruskal coordinates are related to Eddington-Finkelstein
coordinates which are null coordinates, so they are associated with propagation of light. On the
other hand, one can look, for example, at the Painlevé-Gullstrand coordinates, which are instead
based on timelike geodesic observers.
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For the sake of simplicity, we adopt the approximation of U1(r) in Eq. (4.33) in order
to find an easier formulation of the Kruskal coordinates. Therefore, we get

r∗ ' (2N − 1)α2

r1−2N
S

ln(r − rS) . (4.34)

We then define the Eddington-Finkelstein (E-F) coordinates u and v through the
relations

t =
u+ v

2
r∗ =

v − u
2

so that
dt =

du+ dv

2
dr∗ =

dv − du
2

i.e.

dr '
r1−2N
S

(2N − 1)α2
(r − rS)

dv − du
2

.

These coordinates provides us with the double-null form of Mann solution

ds2 = −U1(r)dudv + r2(u, v)dΩ2 .

Now, in order to find the Kruskal extension, we need the surface gravity κ. There-
fore, we consider the Killing vector associated with time-translation invariance ξµ =

(1, 0, 0, 0), whose norm is given by ξµξµ = g00ξ
0ξ0 = −U1(r). Then, we study the

following vector:

lµ =
(

0, ∂r(
√
−U1(r)), 0, 0

)
=

(
0,

√
r1−2N (rS − r)
(2N − 1)α2

[−2(N − 1)r + (2N − 1)rS ]

2r(rS − r)
, 0, 0

)
.

Its norm is

lµl
µ = grr(lr)

2 = −r
−4N [2(N − 1)r + (1− 2N)rS ]2

4(1− 2N)2α4
.

Thus, the surface gravity is given by3

κ =
√
|lµlµ|

∣∣∣∣
horizon

=

√
r2
S(−2 + 2N + 1− 2N)2

4r4N
S (1− 2N)2α4

=
r1−2N
S

2(2N − 1)α2
. (4.35)

At this stage, we are able to write down the Kruskal coordinates as

U = −1

κ
e−κu V =

1

κ
eκv

3Recall that the horizon is at r = rS and that 1/2 < N < 1 (see Sec. 4.4).
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and the Kruskal extension is obtained starting from the E-F double-null form as

ds2 = −U1(r)
du

dU

dv

dV
dUdV + r2(U, V )dΩ2 ,

where

du

dU

dv

dV
= e−κ(v−u) = e−2κr∗ ' exp

{
ln

[
(r − rs)

−2κ
α2(2N−1)

r1−2N
S

]}
= (r − rS)−1 .

Thus, considering the approximation (4.33) and the above result, the Kruskal ex-
tension turns out to be

ds2 = − r1−2N
s

(2N − 1)α2
dUdV + r2(U, V )dΩ2 (4.36)

which clearly holds only near the horizon but shows explicitly that the solution
(4.24) is regular at r = rS .

4.4. Parameter Analysis

Since we are complying with the signature (−,+,+,+), ε must be positive so as to
have the standard kinetic term in our Lagrangian (4.1). Now, from Eqs. (4.10) and
(4.11) we have

b2 = ε
χ γ

2(1− γ)
.

In order to keep ε > 0, since b2 > 0 we find that 0 < γ < 1. This range in γ

can be further divided depending on the sign of V0. From Eq. (4.12) we can see
that V0 ∝ (γ − 1)/(2γ − 1); hence, for 0 < γ < 1/2 we have that V0 > 0 and for
1/2 < γ < 1 we have V0 < 0.
So, 1/2 < γ < 1 entails V0 < 0 and our solution is a BH. Conversely, if we consider
0 < γ < 1/2 we have a positive potential. In this case, 2γ−1 ∈ (−1, 0) which means
2γ − 1 < 0. As a consequence, −(rS/r)

1/γ in our solution is a positive quantity. In
short, this implies there is no horizon at all, and r = 0 becomes a naked singularity.
This is confirmed by [3] (see the case a2 > 1 ⇔ 0 < N < 1/2).

4.5. Comparison between SSS solution and de

Sitter Universe

We would like to figure out whether our SSS solution is the dS Universe up to a
change of coordinates or an independent solution. To this end, we shall consider a
quantity which does not vary under a coordinate transformation, that is a scalar.
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In particular, we will compare the Ricci scalar of the dS solution to the one related
to our SSS solution given in Eq. (4.18) (henceforward we call this RSSS).
For a dS Universe, the line element is given by

ds2 = −dt2 + e2H0t
(
dr2 + r2dΩ2

)
. (4.37)

We are considering a dS universe since the previous line element can be recast in a
static form [8]

ds2 = −(1−H2
0 r̄

2)dt̄2 +
dr̄2

1−H2
0 r̄

2
+ r̄2dΩ2 . (4.38)

where the transformation between the two line elements is

r = eH0 t̄ r̄√
1− r̄2H2

0

, t = t̄+
1

2H0
ln
(
1−H2

0 r̄
2
)
.

Now, irrespective of the coordinates we use to write the dS line element, the Ricci
scalar is given by

Rd̊S = 12H2
0 . (4.39)

4.6. Comparison between SSS solution and the

stable collapsing cosmology

To conclude, we would like to check if there is the possibility for our solution to
be the stable collapsing FLRW as seen by another observer. We adopt the same
procedure as for the dS Universe in the previous section.
The expression for the Ricci scalar is given by

RFLRW = 6
(
Ḣ + 2H2

)
= 6

(
ä

a
+
ȧ2

a2

)
. (4.40)

For a contracting cosmology, we shall consider a(t) ∼ |t|p with t ∈ (−∞, 0−] where
t = 0− corresponds to the crunch. Hence, a(t) ∼ (−t)p. Thus, Eq. (4.40) reads

R
(contr)
FLRW = 6

2p2 − p
t2

. (4.41)

The sign of this scalar depends on the value taken by p. In particular, for p < 1/2

Eq. (4.41) is negative, so its sign is the same as the Ricci scalar for our SSS solution.
Conversely, for p > 1/2 the sign is positive.
Thus, we can safely say that for p > 1/2 our SSS solution is independent of the
stable contracting FLRW solution, but for p < 1/2 it has to be explicitly checked.
In particular, the relation between p and λ is p = 2/λ2; λ2 < 6 corresponds to
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negative potentials associated with contracting cosmologies, i.e. p < 1/3. Therefore,
the regime p < 1/2 contains the whole regime of stable collapsing solutions, and so
it requires a further investigation.
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CHAPTER 5

CONCLUSIONS AND OUTLOOKS

To summarize, we have seen how a scalar field with an exponential potential pro-
vides us with several different physical cosmologies which depend both on the sign
and the exponent of the potential itself. In particular it is known that a positive
(negative) and sufficiently flat (steep) exponential potential lead to stable expand-
ing (contracting) cosmologies. This is the main toy-model for power-law inflation
(ekpyrotic Universe).
It is therefore interesting to study in a complementary perspective a static and spher-
ically symmetric spacetime, always with a scalar field with an exponential potential.
By solving Einstein equations we confirm two possible cases depending on the pa-
rameter γ, and so on the sign of the potential: a naked singularity for γ ∈ (0, 1/2),
which corresponds to a positive potential, and a BH solution for γ ∈ (1/2, 1) associ-
ated with a negative potential. We checked that our BH solution belongs to a class
of charged dilaton BH solution with an unusual asymptotic behaviour obtained in
[3]. We further confirmed, via the Kruskal extension, the regularity of the metric
near the horizon. We have then demonstrated explicitly that this BH solution is not
a coordinate transformation of the de Sitter Universe, whereas there is a range of
the power-law exponent p for which a connection between our SSS solution and the
stable collapsing FLRW solution might exist.
In the future it would be interesting to understand if this BH solution has phe-
nomenological implications in the context of the ekpyrotic proposal or if it is nothing
else than a coordinate transformation of the stable contracting cosmology.
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APPENDIX A

CONNECTING INFLATION TO
OBSERVABLES: CMB ANISOTROPY

A.1. Introduction

Cosmological perturbation theory during inflation enables to find a connection be-
tween the inflationary theory itself and observables represented by the angular dis-
tribution of CMB temperature anisotropy.
Let us imagine that CMB photons are coming from a given direction ~n on the ce-
lestial sphere and let us call T0(~n) their temperature. We know, from observational
data, that the average value is given by Eq. (2.1). We would like to study the devia-
tion from the average value T0, i.e. δT0(~n) ≡ T0(~n)−T0, or equivalently the relative
temperature fluctuation δT0(~n)/T0.
The equation describing the different physical effects contributing to CMB temper-
ature anisotropy is given by the following Sachs-Wolfe equation

δT

T
(τ0, ~n) =

1

4
δγ(τrec) + Φ(τrec) +

∫ τ0

τrec

dτ(Φ′ −Ψ′) + ~n ·~v(τrec) , (A.1)

where

• τrec is the recombination time;

• τ0 is the present time;

• δγ(τrec)/4 accounts for photon density perturbation at the LSS; Φ(τrec) de-
scribes scalar perturbation of the metric at the LSS. Together, they form the
so called Sachs-Wolfe term.
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•
∫ τ0
τrec

dτ(Φ′ − Ψ′) is the so called Integrated Sachs-Wolfe effect : it takes into
account the photons’ loss of energy when they fall into a gravitational potential
in their trajectory towards us.

• ~n ·~v(τrec) is a Doppler contribution due to the movement of the plasma at the
LSS.

Now, let us focus δT0(~n)/T0 as observed today: basically, we are observing a scalar
field from a specific frame, which is given essentially by the Earth. So, we are
observing a scalar field on a 2-sphere; this let us to expand the relative temperature
fluctuation in spherical harmonics, since these form a complete orthonormalised set
of functions on a unit sphere. Therefore, we have

δT0

T0
(~n) =

∞∑
l=1

l∑
m=−l

almYlm(~n) (A.2)

Hence, the coefficients alm are going to be our observables, in a way. Their magnitude
gives us an idea of the amplitude of temperature fluctuations.
Being our Universe isotropic on average, the coefficients alm satisfy the following
relation

〈alma∗l′m′〉 = Cl δll′ δmm′ , (A.3)

where

Cl =
1

2l + 1

l∑
m=−l

〈alma∗lm〉 . (A.4)

These coefficients Cl determine completely the CMB temperature anisotropy. Notice
that 〈...〉 denotes the so called cosmic average: we are averaging over an hypotetical
ensemble of Universes. Clearly, we have only one Universe where we can perform ob-
servations, and a way to elude this problem would be to average over observations of
different observers spread throughout our Universe, which is again impossible. The
only thing we can do is to consider the relation ϑ = π/l between the angular scale ϑ
and the order of the multipole l. For large multipoles, we can divide the surface of
the 2-sphere we are observing our Universe from into many little squares of area ϑ2,
so that we have many measurements. There is still a difference between the actual
cosmic average and our result which is estimated by ∆Cl/Cl ' 1/

√
l + 1/2; as you

can see, this relative statistical error decreases as l increases.
These coefficients determine the two-point correlation function of the relative tem-
perature fluctuations, which is eventually given by (for large l)〈(

δT0

T0
(~n)

)2
〉
'
∫
d ln(l)

l(l + 1)

2π
Cl . (A.5)
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A useful quantity that characterises temperature fluctuations at a given angular
scale l is given by the total angular spectrum

Dl ≡ T 2
0

l(l + 1)

2π
Cl (A.6)

To conclude this section, we just give the expression of Cl in terms of the primordial

Figure A.1: Behaviour of Dl as a function of l compared to CMB temperature
anisotropy data. The horizontal axis is logarithmic at l ≤ 500 and linear at higher
l.

power spectrum and of the transfer function. Given Θ(~n) ≡ δT (~n)/T0 and assuming
instantaneous recombination1, we have

Cl = 4π

∫
dk

k
PΦ(k)Θ2

l (k) =
2

π

∫
dk k2PΦ(k)Θ̃(k)Θ̃∗(k)[jl(kr∗)]

2 , (A.7)

where PΦ(k) = k3PΦ(k)/(2π2), with PΦ(k) the primordial power spectrum at re-
combination, whereas Θ̃(k)Θ̃∗(k)[jl(kr∗)] is the transfer function. Θ̃ is defined by
the relation Θl(k) ≡ Θ̃(k)jl(kr∗).
Our next goal is to study the behaviour of Cl at different angular scales.

A.2. Large angular scales

First of all, we consider contributions to temperature anisotropy on large angular
scale (that is to say low values of l), meaning we are studying perturbations that
are superhorizon at recombination (i.e. kτrec < 1).

1Instantaneous recombination entails that the LSS is located at a constant angular diametral
distance from us given by r = r∗.
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If we assume for the primordial power spectrum the following power law

PΦ = AΦ

(
k

k∗

)ns−1

where AΦ and ns are respectively the amplitude and the spectral index, then even-
tually one has

CSWl ' 18π

100

AΦ

l(l + 1)
, (A.8)

for flat primordial power spectrum (i.e. ns ' 1). In order to get Eq. (A.8), one
neglects the contribution of the ISW effect and of the Doppler term, which are not
relevant at these angular scales, as we are going to discuss in a moment. The only
contribution we have taken into account is that of the Sachs-Wolfe term. Therefore,
if we look at Eq. (A.6), we see how Dl is independent of l. This mirrors its behaviour
for low l in Figure A.1.
Now, let us discuss about the ISW and the Doppler term contribution. First of all,
the Doppler term is negligible since it is proportional to the velocity of the baryon-
photon component at recombination, and this velocity turns out to be small for
superhorizon modes. On the other hand, we can find the ISW contribution and see
that it is small except for very low multipoles. To do so, let us neglect the difference
between Φ and (−Ψ) in the ISW term inside Eq. (A.1) and let us use the momentum
representation to write

ΘISW(~n) ' 2

∫ τ0

τrec

dτ

∫
d3kΦ′(τ,~k)ei

~k ·~n(τ0−τ) .

Under our assumptions, one can use the following expression:

Φ(τ,~k) = g(τ)
9

10
Φ(~k, τi) ,

where Φ(~k, τi) is the gravitational potential at radiation phase, which is constant on
superhorizon scales after inflation. We also exploit the expansion of the exponential
in terms of Legendre polynomials

eix cos θ =
∞∑
l=0

(2l + 1)(i)ljl(x)Pl(cos θ)

so that

ΘISW (~n) =
9

5

∑
l

∫ τ0

τrec

dτ

∫
d3k g′(τ)Φ(~k, τi)i

l(2l + 1)jl[(τ0 − τ)k]Pl(cos θ) .
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We then compare this result with the expression

Θ(~n) =
∑
l

il(2l + 1)

∫
d3kΘl(~k)Pl(cos θ)

=
∑
l

il(2l + 1)

∫
d3k Θ̃l(k)Φ(~k, τi)Pl(cos θ) ,

(where we have extracted the dependence on the initial gravitational potential via
Θl(~k) = Θ̃l(k)Φ(~k, τi)) to get

Θ̃ISW
l (k) =

9

5

∫ τ0

τrec

dτ g′(τ)jl[(τ0 − τ)k] , (A.9)

which is the contribution to the multipole of order l given by modes of momentum
k. It is not possible to evaluate the previous integral analytically but we can give
an approximate solution. We insert Eq. (A.9) into Eq. (A.7) (use the first equality)

CISWl = 4π

∫
dk

k
PΦ(k)

(
81

25

∫ τ0

τrec

dτ g′(τ)jl[(τ0 − τ)k]

∫ τ0

τrec

dτ̃g′(τ̃)jl[(τ0 − τ̃)k]

)
= 4π

81

25

1

2π2

∫
dk k2PΦ(k)

∫ τ0

τrec

dτ g′(τ)jl[(τ0 − τ)k]

∫ τ0

τrec

dτ̃g′(τ̃)jl[(τ0 − τ̃)k] ,

where again we have used PΦ(k) = k3PΦ(k)/(2π2). Now we exploit the following
approximate formula (which holds only for l & 5)∫

dk k2f(k)jl(kτ)jl(kτ
′) ≈ π

2τ2
f

(
l + 1/2

τ

)
δ(τ − τ ′) ,

with f(k) arbitrary smooth function. Hence

CISWl ≈ 4
81

100

∫ τ0

τrec

dτ

∫ τ0

τrec

dτ̃ g′(τ)g′(τ̃)PΦ

(
l + 1/2

τ0 − τ

)
1

(τ0 − τ)2
δ[(τ0 − τ)− (τ0 − τ̃)]

= 4
81

100

∫ τ0

τrec

dτ

(
g′(τ)

τ0 − τ

)2

PΦ

(
l + 1/2

τ0 − τ

)
(A.10)

We then proceed with a change of integration variable from τ to ξ = τ/τ0. Further-
more, in the case at hand we have

PΦ = AΦ

(
k

k∗

)ns−1

= AΦ

(
l + 1/2

k∗(τ0 − τ)

)ns−1

,
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so that

PΦ =

(
τ0 − τ
l + 1/2

)3

2π2AΦ

(
l + 1/2

k∗(τ0 − τ)

)ns−1

= 2π2(l + 1/2)ns−4AΦ

(
1

k∗(τ0 − τ)

)ns−1

(τ0 − τ)3

= 2π2τ3
0 (1− ξ)3AΦ(l + 1/2)ns−4

(
1

k∗(τ0 − τ)

)ns−1

. (A.11)

By inserting Eq. (A.11) inside Eq. (A.10) with the previous change of variable, we
get

CISWl ≈ 8π2 81

100
AΦ

(
l +

1

2

)ns−4 ∫ 1

τrec
τ0

dξ

[
τ4

0

(
∂g

∂ξ

)2(∂ξ
∂τ

)2( 1

τ0

)2( 1

1− ξ

)2

×

× 1

kns−1
∗

1

τns−1
0

(1− ξ)3

(1− ξ)ns−1

]

= 8π2 81

100
AΦ

(
1

k∗τ0

)ns−1(
l +

1

2

)ns−4 ∫ 1

τrec
τ0

dξ (1− ξ)2−ns
(
∂g

∂ξ

)2

.

For flat Primordial Power Spectrum (ns = 1)

CISWl ≈ 8π2 81

100

AΦ

(l + 1/2)3

∫ 1

τrec
τ0

dξ (1− ξ)
(
∂g

∂ξ

)2

. (A.12)

From Eqs.(A.12) and (A.6) we can see how the contribution to Dl of the ISW effect
decays when l increases, i.e. for large angular scales. This is the reason why we had
neglected its contribution to get the result in Eq. (A.8).
Actually, the ISW contribution becomes relevant only for the lowest multipoles.

To see this, we first consider a numerical solution to Eq. (A.12) given by

CISWl ' 1.2 · AΦ

(l + 1/2)3
. (A.13)

Then, we compare Eq. (A.13) to Eq. (A.8) and we get

CISWl

CSWl
' 2.17 · l(l + 1)

(l + 1/2)3
(A.14)

As we can see from Eq. (A.14), the two contributions are comparable only for l very
small, i.e. for the lowest multipoles, as we were saying before. Furthermore, this
result is in agreement with what is shown in Figure A.2.
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Figure A.2: Different contributions to temperature anisotropy.

A.3. Intermediate angular scales

Let us now consider the contribution of perturbations at intermediate angular scales;
in terms of angular armonics we have

l . 1000 ,

i.e. kτrec & 1. As for the previous section, we are going to analyse the contribution
to temperature anisotropy given by the SW, Doppler and ISW terms, neglecting the
interference among them, which will be discussed later.
Let us begin with the SW term: avoiding mathematical details, the contribution to
the multipoles Θl(~k) coming from the SW term is given by

ΘSW
l (~k) =

(
Φ(τrec) +

1

4
δγ(τrec)

)
jl[k(τ0 − τrec)] , (A.15)

where the expression inside round brackets turns out to be

Φ(τrec) +
1

4
δγ(τrec) = {A(τrec) cos[krs(τrec)]−B(k, τrec)}Φ(k, τi) (A.16)

with A(τ) and B(k, τ) positive functions slowly varying in time, and

rs(τ) =

∫ τ

0

dτ̄√
3(1 +RB(τ̄))

, RB =
3ρB
4ργ
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We can already see from Eq. (A.15) that there is an oscillating contribution to the
angular spectrum. However, the actual SW contribution is determined by Cl, which
contains the quantity ΘSW

l squared, which means that the position of the maxima
in Cl are given by the position of both maxima and minima of the cosine in ΘSW

l .
Eventually, the computation of CSWl yields

CSWl =
2π

l2
AΦ

{
1

2
c1A

2 +
8

15
c2B

2

+

∫ ∞
1

du

u2
√
u2 − 1

[
1

2
A2 cos

(
2
lrs
τ0
u

)
− 2AB cos

(
2
lrs
τ0
u

)]}
,

(A.17)

where c1 and c2 are constants of order 1, and u = kτ0/l. The first two terms are
monotonically decreasing with l, whereas the integral is responsible for the oscillatory
behaviour of CSWl . We can give an estimate as follows: the integral is saturated in
a region close to u = 1, where u−2 ' 1 and

√
u2 − 1 '

√
2
√
u− 1. With this at

hand, we can exploit the know integral∫ ∞
1

du√
u− 1

cos(αu) =

√
π

α
cos
(
α+

π

4

)
in order to write∫ ∞

1

du

u2
√
u2 − 1

[
1

2
A2 cos

(
2
lrs
τ0
u

)
− 2AB cos

(
2
lrs
τ0
u

)]
'
√
πl(r)

2l

[
1

2
√

2
A2 cos

(
2
l

l(r)
+
π

4

)
− 2AB cos

(
l

l(r)
+
π

4

)]
, (A.18)

where we have defined l(r) ≡ τ0/rs.
Now let us study the contribution of the Doppler term, given by

ΘD
l (~k) = −kvB(τrec)j

′
l[k(τ0 − τrec)] (A.19)

where the prime refers to the derivative of the spherical Bessel function with respect
to its argument and kvB(τ) is called "photon density contrast" and is given by

kvB(τ) = −3usΦ(k, τi)A(k, τ) sin

(
k

∫ τ

0

dτ̄√
3(1 +RB(τ̄))

)
(A.20)

with

3us ≡
√

3

1 +RB(τrec)
.
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The computation of the coefficient CDl , assuming flat primordial power spectrum,
yields

CDl =
2π

l2
AΦ

[
3us
2
c3A

2 −
∫ ∞

1
du

√
u2 − 1

u4

(3us)
2

2
A2 cos

(
2
l

l(r)
u

)]
(A.21)

where c3 is again a constant of order 1. Once more, we would like to give an estimate
of the oscillatory behaviour. Since the argument of the integral in Eq. (A.21) is small
where u ' 1, the oscillating part is suppressed by the factor l(r)/l. Thus, we integrate
by parts setting A ≈ const. and we get to the leading order in l(r)/l2

−
∫ ∞

1
du

√
u2 − 1

u4

(3us)
2

2
A2 cos

(
2
l

l(r)
u

)
' (3us)

2

2
A2 l

(r)

2l

∫ ∞
1

du

u3
√
u2 − 1

sin

(
2
l

l(r)
u

)
.

Near u ' 1 we can consider u−3 ' 1 and
√
u2 − 1 '

√
2
√
u− 1 and finally we get

−
∫ ∞

1
du

√
u2 − 1

u4

(3us)
2

2
A2 cos

(
2
l

l(r)
u

)
' (3us)

2

4
A2 l

(r)

l

1√
2

√
πl(r)

2l
cos

(
2
l

l(r)
− π

4

)
=

(3us)
2l(r)

2l

A2

4

√
πl(r)

l
cos

(
2
l

l(r)
− π

4

)
. (A.22)

Let us just briefly mention what happens for the ISW effect. Here the only contribu-
tion is due to the early ISW effect.3 This is relevant for kτrec ∼ 1 which lies exactly
in our region, in particular near the first peak in Fig. A.2. However, its contribution
to Cl turns out to be suppressed by the factor(

ρrad

ρM
(τrec)

)2

' 0.12 .

Finally, let us quickly discuss how there is interference between the different con-
tributions to temperature anisotropy. To begin with, let us recall that the total

anisotropy is given by the integral over momenta of
∣∣∣ΘSW

l (~k) + ΘISW
l (~k) + ΘD

l (~k)
∣∣∣2:

therefore, it is clear from this expression that we have interference between the dif-
ferent pieces. In particular, if we look at the expression of the ISW contribution to

2Remember that A is a function of k = l/τ0 so it can be seen as a function of l as well.
3People distinguish between the early ISW effect, which takes place just after recombination,

and late ISW effect, which is due to the fact that Ωm ' 0.3, meaning that there is presence of dark
matter and dark energy in the model at hand.

59



the multipoles

ΘISW
l (~k) =

1

l
√
u(u2 − 1)1/4

×

×
{

cos

[(
l +

1

2

)
φ(u)

]
IISWc + sin

[(
l +

1

2

)
φ(u)

]
IISWs

}
, (A.23)

where

φ(u) =
√
u2 − 1− arccos

(
1

u

)
− π

4

IISWc = 2

∫ τ0

τrec

dτ Φ′ cos

(
l
τ

τ0

√
u2 − 1

)
IISWs = 2

∫ τ0

τrec

dτ Φ′ sin

(
l
τ

τ0

√
u2 − 1

)
,

we have that the oscillating terms in Eq. (A.23) associated with IISWc and IISWs have
the same phase as jl[k(τ0 − τrec)] and j′l[k(τ0 − τrec)] (in Eqs. (A.15) and (A.19))
respectively, meaning that those terms interfere with the SW and the Doppler effect.

A.4. Small angular scales

Our last topic is the discussion of the behaviour of temperature anisotropy at small
angular scales (l & 1000). The point here is that we have to give up two assumptions,
i.e. the instantaneous photon decoupling and the tight coupling approximation. 4We
must consider at least four important effects that we are going to list:

1. The Silk damping.

2. The finite thickness of the Last Scattering Surface.

3. The weak gravitational lensing.5

4. The Sunyaev-Zeldovich effect.

The first two take place during recombination and last scattering epoch respectively.
In addition, structures in the late Universe are responsible for the modification of the

4Due to intense scattering of photons off electrons and Coulomb interactions between electrons
and baryons, the baryon-photon plasma is considered to be a single medium, meaning that the
velocities of baryons and photons coincide.

5In GR we distinguish among three different categories of lensing: strong, weak and microlensing.
Strong lensing occurs when the source and the gravitational lens are relatively close to each other;
moreover, in order to have strong lensing, two conditions must be satisfied: the lens must be very
massive and the source must be almost exactly behind the lens. Strong lensing is responsible for
extreme distortion of the light coming from the source. On the other hand, weak lensing still
requires a massive lens, but it is not necessary for the source to be exactly behind the lens. The
distortion is not as large as in strong lensing. Finally, microlensing is a kind of lensing where the
brightness of the source changes when it passes behind a small object which behaves as a lens.
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CMB spectrum at small angular scales and this is encoded in the last two effects,
which generate a so called secondary anisotropy : with this terminology we mean
that the phenomenon acting on CMB photons does not take place at the LSS. In
the case at hand, for instance, CMB photons just feel the presence of structure in
the late Universe.

A.4.1 The Silk damping

Let us begin with the discussion of the Silk damping. This effect takes place during
recombination and deals with the suppression of acoustic oscillations in the baryon-
photon plasma. Basically, during recombination we have few free electrons and the
mean free path of photons is very large. Even when they scatter off electrons, there
is no change in photons’ energy so that they can travel from overdense regions to
underdense regions, transferring their energy in such a way that they remove density
fluctuations.
When one translates this into a mathematical language, the result is a suppression
factor for acoustic oscillations of perturbations of momentum k of the kind e−(k/kS)2

where kS ≡ kS(τrec) ∼ a0· 0.1Mpc−1. This factor goes along with the oscillating
parts we have seen in the previous section. Since those oscillating parts are related
to δγ and vγ squared, the actual damping factor is e−2(k/kS)2

= e−(l/lS)2 , where

lS =
kSτ0√

2
∼ 1000

so that the suppression becomes relevant already at l & lS . Basically, the main effect
introduced by the Silk damping is the replacement of the amplitude A in Eqs. (A.17)

and (A.21) with A· e−
l

2lS .
On top of that, there is still the non-oscillating part of perturbations, represented by
the amplitude B in Eq. (A.17), which is not affected by the Silk damping. However,
the dependence of B on k is such that

B ∼ 1

k2

so that the whole angular anisotropy decreases with l for l & 1000.

A.4.2 The finite thickness of the LSS

So far, we have assumed that photons decoupled instantaneously after recombina-
tion, but actually the sphere of last scattering has a finite width, bringing about a
further damping. Let us give an approximate description of this phenomenon.
If we reject the simultaneous decoupling, then we shall consider different times τj
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at which photons last scattered. From a mathematical perspective, this entails that
the functions Φ(τrec), δγ(τrec) and vγ(τrec) are replaced by convolutions with a so
called visibility function. Leaving aside technical details, this function can be ap-
proximated by a Gaussian in τj centered at τj = τrec with width ∆τrec.
For example, let us consider the pure SW term: for a perturbation of momentum ~k

to temperature anisotropy in the direction ~n, one has

Θ(~k ·~n, k) =

∫
dτj N e

−(τj−τrec)2

2∆τ2rec ei
~k ·~n(τ0−τj) {A cos[krs + kus(τj − τrec)]−B}Φ(~k, τi) ,

where N is a normalisation factor for the Gaussian. Given that A and B are slowly
varying functions in the variable τ , one can set A = A(τrec) and B = B(τrec). Upon
solving the integral, the final expression would be

Θ(~k ·~n, k) = ei
~k ·~n(τ0−τrec)

{
A

2

[
e−

∆τ2
rec
2

(~k ·~n−kus)2
eikrs

+e−
∆τ2

rec
2

(~k ·~n−kus)2
e−ikrs

]
− e−

∆τ2
rec
2

(~k ·~n)2
B

}
Φ(~k, τi) .

(A.24)

Eq. (A.24) shows that the finite thickness of the LSS generally brings about an
exponential suppression which however depends on the direction of propagation of
the perturbation. Perturbations associated with B undergo no suppression if they
propagate normally to the line of sight. This finds an explanation if we recall that
B is a slowly varying function in the argument τ ; thus, if it depends weakly on time,
perturbations with momenta normal to the line of sight essentially look the same
along the line of sight in the interval ∆τrec.
Also, perturbations related to A are not suppressed for particular directions (i.e.
those such that ~k ·~n − kus = 0). However, this is not the case for the oscillating
terms in Eq. (A.17), for which ~k ·~n ∼ 1

l � 1. Therefore, the associated suppression
factor is

C
(osc)
l ∝ e−(kus∆τrec)2

= e−
l2

∆l2 , (A.25)

where
∆l =

τ0

us∆τrec
' 2800 . (A.26)

Eqs. (A.25) and (A.26) show that, on top of the Silk damping, there is a strong
suppression of oscillations in the angular spectrum for l & 2800 due to the finite
thickness of the LSS.
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A.4.3 The weak gravitational lensing and the Sunyaev-Zeldovich
effect

Structures in the late Universe like galaxies or cluster of galaxies can slightly deflect
CMB photons due to weak gravitational lensing. As small as it may be, this effect
must be taken into account at small angular scales since it generates secondary
anisotropy.
Finally, let us discuss the Sunyaev-Zeldovich effect. It is still due to cluster of
galaxies which are rich in hot ionized gas: in fact, when CMB photons pass through
clusters, they can scatter off hot electrons. As a result, the photons are heated
up. Therefore, not only they generate a secondary anisotropy, but they also modify
the Planck spectrum when we look at it the direction of the clusters themselves,
since those photons basically move from lower to higher frequencies. By the way,
the frequency signature of this effect enabled the development of new techniques to
study clusters of galaxies.

A.5. Conclusions

First of all, the analysis performed for large angular scales (l . 20) has shown how
the actual contribution to temperature anisotropy comes from the pure SW term
inside Eq. (A.1): the Doppler term is negligible due to the small value of the velocity
of the baryon-photon component; on the other hand, the effect of the ISW term is
negligible with respect to the pure SW term as shown by Eq. (A.14), even though
the ISW effect achieves its highest value only for very large angular scales (i.e. for
l→ 0) as we can clearly see from Eq. (A.13).
We have then moved to the study of intermediate angular scales, where Eqs. (A.18)
and (A.22) show a clear oscillating behaviour of the SW and Doppler contribution
respectively. Moreover, if we compare Eq. (A.20) to (A.16) we see that the phase of
oscillation is shifted by π/2. Hence, the maxima of the Doppler contribution to Cl
are shifted with respect to the maxima of the SW contribution, and this is exactly
what is observed in Figure A.2. We also notice that the oscillatory pattern of the
spectrum in Figure A.2 is dominated by the SW part, in spite of the fact that its
original magnitude is comparable to the one associated with the Doppler effect (see
respectively Eqs. (A.16) and (A.20)). To explain this, one should recall the fact that
the Doppler contribution of a perturbation with momentum ~k is proportional to the
projection of the velocity on the line of sight, that is to say to ~n ·~nk = cos θ. This
means that the oscillations associated with the Doppler effect are partially removed.
As far as the ISW effect is concerned, we have seen that only the early ISW part
has to be considered, even though it is small and it is present only close to the first
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peak. Also, Eq. (A.23) decays for large values of l, showing how the ISW effect gives
no contribution for higher l.
Finally, we have investigated what happens for small angular scales. We have seen
how there is a general suppression of the multipoles due to four differen effects, two
of which related to recombination and the finite thickness of the LSS, whereas the
other two are connected to structures in the late Universe. Once again, there is
concordance between what we have discussed and Figure A.1.
To sum up, the study we have carried out reproduces the behaviour of the angular
spectrum of temperature anisotropy: first of all, for large angular scales the main
contribution is given by the SW effect; in particular, Eq. (A.13) makes sure that, for
low values of l, the angular spectrum is basically flat, and this is where the so called
Sachs-Wolfe plateau in Figure A.1 comes from. Then, the oscillating behaviour of
the angular spectrum at intermediate angular scales is provided essentially by the
SW, the Doppler term, and by the interference between them and the ISW term.
This is the reason why we observe the acoustic peaks in Figure A.1. Furthermore,
all of these contributions decay when l increases, and this is another feature of
the angular spectrum we can find in Figure A.1. Finally, the oscillations and the
whole angular spectrum are quickly suppressed as we move to small angular scales
(l & 1000), and this is in agreement with our discussion in Section A.4.
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APPENDIX B

ABOUT SCALAR FIELD
COSMOLOGY WITH AN

EXPONENTIAL POTENTIAL

B.1. Autonomous system for a FLRW cosmology

with an exponential potential

We shall derive the autonomous system (3.6)-(3.7) containing the evolution equation
for a FLRW cosmology with a scalar field featured by an exponential potential.
First of all, we derive an expression for Ḣ we are going to use in a while. We take
the derivative with respect to time of Eq. (2.27):

2HḢ =
1

3M2
P

(
φ̇φ̈+

dV

dt

)
.

Considering the potential (3.1) and keeping in mind that we are assuming an homo-
geneous scalar field φ = φ(t), we have

dV

dt
= − λφ̇

MP
V (φ) ,

so that

Ḣ =
φ̇

6M2
PH

(
φ̈− λ

MP
V

)
.
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Then, we exploit the KG equation (2.26) for φ̈ in order to get

Ḣ =
φ̇

6M2
PH

(
−3Hφ̇− ∂φV −

λ

MP
V

)
.

Given −∂φV = V λ/MP , we have

Ḣ =
φ̇

6M2
PH

(
−3Hφ̇+

λ

MP
V − λ

MP
V

)
= − φ̇2

2M2
P

. (B.1)

Considering the definition (3.3) of the dimensionless variable x, we finally get

Ḣ = −3x2H2 . (B.2)

Next, we shall see how to get the autonomous system. To begin with, we invert
Eq. (3.3) so that φ̇ =

√
6MPHx, and we compute the second derivative of φ with

respect to time:
φ̈ =
√

6MP (Ḣx+Hẋ) .

Recalling the relation (2.31) and using Eq. (B.2), we have

φ̈ =
√

6MP

(
−3H2x3 +H2x′

)
, (B.3)

where a prime denotes a derivative with respect to the number of e-foldings. We
then invert Eq. (B.1) so as to get an expression for φ̇ and we plug it inside the KG
equation (2.26), along with Eq. (B.3), yielding

√
6MP

(
−3x3H2 +H2x′

)
+ 3H2

√
6MPx+ ∂φV = 0 .

We use again ∂φV = V (−λ)/MP . Thus,

√
6MPH

2
[
(−3x3 + x′) + 3x

]
− λ

MP
V = 0 ,

i.e.
x′ = −3x(1− x2) + λ

V√
6M2

PH
2
.

From the definition (3.4) of the dimensionless variable y we get y2 = ±V/(3M2
PH

2),
where the ± accounts for the possibility for V of being positive or negative. Hence
we get the first equation of the autonomous system

x′ = −3x(1− x2)± λ
√

3

2
y2 .
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The next step is the derivation of the equation for the variable y. Considering once
again the relation (2.31), we write

y′ =
1

H
ẏ =

1

H

(
−

√
|V |√

3MPH2
Ḣ +

1√
3MPH

1

2
√
|V |

d|V |
dt

)
.

Using Eqs. (B.2) and (3.4) we have

y′ = 3x2y +
1√

3MPH2

1

2
√
|V |
|V |
V

dV

dt
.

The time derivative of V is V̇ = −φ̇λV/MP , so that

y′ = 3x2y +
1√

3MPH2

1

2

√
|V | 1

V

(
−λV φ̇

MP

)
.

Combining Eqs. (B.2) and (B.1), we have φ̇ =
√

6MPxH, which we plug into the
previous expression in order to get

y′ = 3x2y − λ
√
|V |√

3MPH

1√
2

√
3x = 3x2y − λ

√
3

2
xy

i.e.

y′ = xy

(
3x− λ

√
3

2

)
which is the second equation of the autonomous system.
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