
Alma Mater Studiorum · Università di
Bologna

SCUOLA DI SCIENZE

Corso di Laurea in Matematica

QUANTUM COMPUTING
AND

POST-QUANTUM CRYPTOGRAPHY

Tesi di Laurea in Meccanica Quantistica e Crittografia

Relatore:

Chiar.mo Prof.

Marco Lenci

Correlatrice:
Chiar.ma Dott.ssa
Simona Chiarelli

Presentata da:
Giuseppe Murolo

Sessione unica
a. a. 2020-2021

Abstract

One of the main practical implications of quantum mechanical theory is quan-
tum computing, and therefore the quantum computer. Quantum computing
(for example, with Shor’s algorithm) challenges the computational hardness
assumptions, e.g., of the factoring problem and the discrete logarithm prob-
lem, that anchor the safety of cryptosystems. So the scientific community is
studying how to defend cryptography. There are two defense strategies: the
quantum cryptography (which involves the use of quantum cryptographic al-
gorithms on quantum computers) and the post-quantum cryptography (based
on classical cryptographic algorithms, but resistant to quantum computers).
For example, the National Institute of Standards and Technology (NIST)
is collecting and standardizing post-quantum ciphers, as it established DES
and AES as symmetric cipher standards in the past.
In this thesis we start by giving an introduction on quantum mechanics, in
order to introduce quantum computing and analyze Shor’s algorithm. The
differences between quantum and post-quantum cryptography are then ana-
lyzed. Subsequently the focus was given to certain mathematical problems
assumed to be resistant to quantum computers. To conclude, we study and
compare post-quantum digital signature cryptographic algorithms selected
by NIST.

2

Contents

Introduzione 7

Introduction 11

1 Quantum Computing 15

1.1 Quantum bit . 18

1.2 Measurement problem . 19

1.3 Physical interpretation of the qubit 20

1.4 Quantum register . 21

1.5 Entangled states . 23

1.6 Quantum logic gate . 24

1.7 Quantum circuits . 29

1.8 Quantum Parallelism . 32

1.9 Mathematical structure of quantum mechanics 35

2 Shor’s algorithm and its Impact on cryptography 39

2.1 RSA public-key cryptosystem 40

2.2 Shor’s algorithm . 46

2.2.1 Reduction of factorization to order calculation 46

2.2.2 The quantum algorithm to calculate the order: a par-
ticular case . 48

2.2.3 The quantum discrete Fourier transform 52

2.2.4 The most general case 57

2.3 Impact on cryptography . 62

3

4 CONTENTS

3 Quantum cryptography 67

3.1 BB84: quantum key exchange protocol 68

4 Post-Quantum Cryptography 75

4.1 Standardization: the NIST challenge 80

5 Post-Quantum Cryptography hard problems 83

5.1 Hard Problems in Lattices for cryptography 85

5.2 Hash function for cryptography 90

5.3 Code-based cryptography . 94

5.4 Multivariate-equation-based cryptography 99

5.5 Supersingular isogeny-based cryptography 103

5.5.1 Elliptic curves . 105

5.5.2 Supersingular isogeny Diffie-Hellman key exchange: SIDH111

5.5.3 Post-Quantum hard problems on elliptic curves 114

6 Post-quantum Cryptography in embedded world 117

6.1 Winternitz signature scheme 118

6.1.1 A possible attack protected by a checksum 124

6.1.2 Key re-using: a problem for WOTS 125

6.2 XMSS and LMS . 128

6.2.1 Long-term public key economize: Merkle tree 128

6.2.2 XMSS: The eXtended Merkle Signature Scheme 130

6.3 Comparison of digital signature algorithms for practical use . . 136

6.3.1 A comparison between XMSS and LMS 136

6.3.2 A comparison of NIST’s finalist digital signature schemes142

Conclusion 155

Appendices 157

A Continued Fractions 159

CONTENTS 5

B The group structure of an elliptic curve 163

B.1 Geometric interpretation of the sum between two points . . . 163
B.2 Coordinates of the sum between two points 167
B.3 Elliptic Curve Discrete Logarithm Problem 169

C Algebraic varieties 171

Bibliography 177

List of figures 185

Introduzione

Il tema centrale sviluppato in questa tesi è l’evoluzione della crittografia
conseguente allo sviluppo del computer quantistico.
È infatti diventato di ampio interesse ricercare valide alternative agli attuali
algoritmi crittografici (usati da ognuno di noi nella vita di tutti i giorni, per
esempio nei cellulari, nei computer, etc.) che sono minacciati da un poten-
ziale sviluppo in larga scala del computer quantistico.
Un articolo datato Aprile 2016, pubblicato dal NIST (National Institute of
Standards and Technology), asserisce che il progressivo sviluppo delle tec-
nologie quantistiche renderà insicuro il comunissimo algoritmo RSA entro
il 2030. Di conseguenza è nata la necessità di standardizzare primitive crit-
tografiche — che sono algoritmi crittografici di basso livello, consolidati, usati
per costruire protocolli crittografici — resistenti anche ai computer quantis-
tici. Poiché si è visto che la maggior parte dei sistemi a chiave privata sono
facilmente modificabili in modo da ottenere algoritmi quanto-resistenti, gli
sforzi della comunità scientifica (e di questa tesi) si sono concentrati sulla
crittografia a chiave pubblica.
Nel 2016 il NIST ha annunciato la Post-Quantum Cryptography Standardiza-
tion (dove con "post-quantum" si intendono algoritmi che girano su computer
classici, ma che sono di resistenza quantistica). È una competizione promossa
dal NIST, che ha il fine di standardizzare algoritmi post-quantistici.
Nello sviluppo di questa tesi, la mia attenzione si è in particolare rivolta
agli algoritmi post-quantistici di firma digitale, essendo questi ultimi negli
interessi della Marelli, l’azienda che ha supportato questo studio. In partico-

7

8 Introduzione

lare, la Marelli sta cercando un algoritmo post-quantistico di firma digitale
da implementare sulle ECU (le unità di controllo elettronico delle automo-
bili, conosciute più comunemente come "centraline elettroniche") di loro pro-
duzione. Questo algoritmo andrà a sostituire i precedenti, i quali andranno
in disuso.
Una buona parte di questa tesi, specialmente nei Capitoli 4,5,6, è stata ri-
cavata da documenti del NIST, o documenti prodotti per la competizione
promossa dal NIST.

Questa tesi si struttura in 6 capitoli.
Il primo presenta le basi della meccanica quantistica necessarie alla com-
putazione quantistica. L’algoritmo di Shor è quindi studiato nel secondo
capitolo: il suo avvento ha profondamente rivoluzionato il mondo della crit-
tografia. Infatti, tanti dei problemi la cui intrattabilità è alla base dei molti
algoritmi classici, verrebbero risolti in tempo polinomiale.
È interessante osservare che, per trattare la crittografia post-quantistica, non
è necessario studiare preliminarmente la meccanica quantistica e quindi la
computazione quantistica. Tanti libri classici sulla crittografia post-quantistica,
infatti, adottano questo approccio.
I Capitoli 3 e 4 introducono i concetti, rispettivamente, di crittografia quan-
tistica (ovverosia, un tipo di crittografia che utilizza, dalla sua, la com-
putazione quantistica) e crittografia post-quantistica. In particolare, nel
Capitolo 3, è studiato il protocollo BB84 di scambio di chiavi, come esempio
di crittografia quantistica.
Il Capitolo 5 analizza molti dei problemi — creduti essere quanto-resistenti
— alla base degli attuali sistemi di crittografia post-quantistica.
Nel Capitolo 6 gli algoritmi di firma digitale post-quantistica sono studiati
dal punto di vista di una potenziale applicazione. Dopo aver introdotto gli
schemi XMSS e LMS, si sviluppa infatti un confronto circa le performance,
le dimensioni dei parametri e la sicurezza, degli algoritmi di firma selezionati
dal NIST (che sono: Rainbow, Falcon, Crystals-Dilithium).

Introduzione 9

Questa tesi si conclude con 3 Appendici contenenti particolari temi in qualche
modo correlati agli argomenti trattati nella tesi, ma la cui spiegazione avrebbe
distolto il lettore dal flusso del discorso generale.

Questa tesi offre, oltre alle basi della computazione quantistica, una ampia
visione sul mondo della crittografia post-quantistica, nella sua più recente
evoluzione.

10 Introduzione

Introduction

The central theme of this thesis is the analysis of the evolution of cryp-
tography, consequent to the development of the quantum computer.
In fact it is of wide interest to find alternatives to current cryptographic al-
gorithms, because most of today’s systems (which we use in everyday’s life,
for example in mobile phones, in computers, etc.) are jeopardized from a
potential development and use of the quantum computer on a large scale.
A NIST (National Institute of Standards and Technology) report, published
in April 2016, cites experts who state that the quantum technology could
render the commonly used RSA algorithm insecure by 2030. As a result, the
need to standardize quantum-secure cryptographic primitives — which are
well-established, low-level cryptographic algorithms frequently used to build
cryptographic protocols — was pursued. Since most symmetric primitives
are relatively easy to modify in a way that makes them quantum resistant,
efforts were focused on public-key cryptography.
For these reasons, the commitment of the scientific community on this issue
is constantly growing. In 2016 the NIST announced the Post-Quantum Cryp-
tography Standardization (where "post-quantum" indicates non-quantum al-
gorithms which run on classical computers, but are supposed to be resistant
to quantum computers as well). It is a program and competition to update
NIST standards to include post-quantum cryptography.
In the interests of Marelli, the company that supported my thesis, my at-
tention has been placed on digital signature algorithms supposed to be resis-
tant to quantum computers. In particular, Marelli is looking for performing

11

12 Introduction

post-quantum digital signature algorithms, to be implemented in the ECUs
(engine control unit) of their production. These algorithms would replace
the old systems that will go into disuse.
Most of this thesis, especially the topics in Chapters 4,5,6, is taken from
documents by NIST, or documents produced for the NIST competition.

This thesis is structured in 6 chapters.
The first chapter presents the basics of quantum mechanics that are needed
for quantum computing. Shor’s algorithm is then explained in the second
chapter; it is an algorithm that has revolutionized the world of cryptogra-
phy. In fact, it has shown that famous problems whose hardness is at the
basis of classical cryptography (such as the factoring problem and the discrete
logarithm problem) are solved in a reasonable time with the use of quantum
computers.
It is interesting to note that it is not necessary to know quantum computing
in detail to study the functioning of post-quantum algorithms: this approach
is in fact chosen by numerous post-quantum cryptography books.
In Chapters 4 and 3 the differences between, respectively, post-quantum cryp-
tography and quantum cryptography (cryptography resistant to quantum
computers which makes use of quantum computers) are highlighted. In par-
ticular, in Chapter 3, the BB84 quantum key exchange protocol is reported
as an example of quantum cryptography.
Chapter 5 analyzes most of the problems (believed to be quantum-resistant)
at the basis of current post-quantum cryptographic systems.
In Chapter 6, post-quantum cryptography (and in particular certain digi-
tal signature algorithms) are studied from the point of view of a potential
application. After introducing and analyzing two hash-based signature al-
gorithms (XMSS and LMS), the analysis moves to a comparison of all the
performances, parameter sizes, and security of the shortlisted digital signa-
ture algorithms selected by the NIST (wich are Rainbow, Falcon, Crystals-
Dilithium).

Introduction 13

The thesis is concluded by 3 Appendices, which contain topics in a way or
another related to subjects covered in the thesis, the explanation of which
would have diverted the reader’s attention from the general discourse.

In addition to the basics of quantum computing, this thesis offers in a
very broad vision on the world of post-quantum cryptography with its recent
evolution.

Chapter 1

Quantum Computing

Everyon has heard about certain "supercomputers" called Quantum Com-
puters, but what are they more precisely? What are the mysteries behind
their functioning? Do they exist physically or only conceptually? What con-
sequences would they have in our lives? Let us try to give some answers.
A computation process is essentially a physical process that is performed on
a machine whose operation obeys certain physical laws. The classical theory
of computation is based on an abstract model of a universal machine (the
Universal Turing Machine) that works according to a set of rules and prin-
ciples set out by Alan Turing in 1936 and subsequently elaborated by John
von Neumann in the 1940s. These principles have remained essentially un-
changed since then, despite the enormous technological advances that make
it now possible to produce far more powerful devices than those that could
be achieved in the first half of the twentieth century. The tacit assump-
tion behind these principles is that a Turing machine idealizes a mechanical
computing device (with potentially infinite memory) that obeys the laws of
classical physics.
Quantum computing was born as an alternative paradigm based on the prin-
ciples of quantum mechanics. These are the only ones able to justify the
physical phenomena that occur at the microscopic level, such as inside an
atom. These phenomena will be essential in the construction of electronic

15

16 Quantum Computing

computers in the near future, if Moore’s law continues to apply, as expected.
This law, formulated as early as the 1960s, predicted that the computational
power of the best performing avaible computer would approximately double
every two years.
In practice this law has proved its validity up to now, and currently quan-
tum effects begin to interfere in the functioning of electronic devices as their
dimensions become smaller.
The idea of realizing a computation model as an isolated quantum system
began to emerge in the early 1980s, when P. Benioff, starting from consid-
erations previously elaborated by C. Bennet, defined the reversible Turing
machine: a computation can always be performed in such a way as to return
to the initial state by retracing the various computation steps backwards.
Subsequently, R. Feynman argued that no classical Turing machine could
simulate certain physical phenomena without incurring in an important slow-
down in its performance. Conversely, a "universal quantum simulator" could
perform the simulation more efficiently.
In 1985 D. Deutsch formalized these ideas in his Universal Quantum Turing
Machine, which represents in quantum computational theory exactly what
the Universal Turing Machine represents for classical computing and has led
to the modern concept of quantum computation. Of course, the effects of the
introduction of the new computational model were also felt in the field of
computational complexity (as predicted by Feynman). In fact, in 1994, P.
Shor demonstrated that the problem of the factorization of prime numbers
(classically considered intractable) can be solved efficiently (i.e., in polyno-
mial time) with a quantum algorithm [54].
These considerations, combined with the technological ones mentioned pre-
viously, have led to the emergence of a research field now known as quantum
computing.
A quantum computer is therefore a device that can perform quantum com-
putations.
However, it should be pointed out that the road leading to the construction

Quantum Computing 17

of the quantum computer has not been immediate, and has not yet been fully
run: scientists are still working on it. Let us make a small overview of the
most important events on the development of the quantum computer.
The first idea of a quantum computer was exposed in two papers published
by physicists Paul Benioff and Yuri Manin in 1980. As we have already
mentioned, the development of the quantum computer accelerated after the
publication of the Shor’s algorithm in 1994 [54]. In 1996, DiVincenzo pub-
lished an article on the requirements that a quantum computer must satisfy
[24], but it was only five years later, in 2001, that Shor’s algorithm was first
used to factor the number 15 [62]. However, one had to wait until 2011 for
larger integers, such as 21 or even 143, to be factored by some rudimentary
implementation of a quantum computer ([40] and [66]). A year later, a re-
search group led by Australian engineers manages to create the first working
qubit, based on a silicon atom. In 2013, Google announced the birth of the
Quantum Artificial Intelligence Lab, a research laboratory with the aim of
studying the quantum computer in the context of machine learning. Two
years later, the laboratory published a paper in which it claims to have made
a quantum algorithm work on its machine. In 2016, IBM announced the first
IBM cloud computing quantum cloud service. In 2017, it is again IBM that
created the first 56-qubit system, which was however surpassed the follow-
ing year by Google’s 72-qubit processor testing. In early 2019, IBM created
the first quantum computer to be used outside the laboratory, which how-
ever still seems to be far from becoming commercially available. In January
2020 IBM announced the largest Quantum Volume ever (the Quantum Vol-
ume is a metric that measures the capabilities and error rates of a quantum
computer), equal to 32, on a 28 qubit quantum processor, confirming the an-
nual doubling trend of the power of its quantum computers. In April 2020,
QuTech launched Quantum Inspire, the first quantum processor based on
"spin qubits" controlled by lock-In amplifier technology.

18 Quantum Computing

1.1 Quantum bit

The fundamental concept of classical computation is the bit. Quantum
computing is based on an analogous concept, the quantum bit, or qubit in
short, whose fundamental properties are described below, underlining the
differences with the classical bit.
Before giving a mathematical interpretation of the qubit, it is useful to in-
troduce the Dirac notation, from the name of the famous English physicist,
pioneer of quantum theory, who introduced it. It represents the standard
notation in quantum mechanics for representing the elements of a complex
vector space.
According to this notation, |v⟩ (or ket) indicates a generic element of the
vector space and |i⟩ indicates the i-th element of the canonical orthonormal
basis.
If |v⟩ and |w⟩ are two vector of the vector space, their scalar product is
indicated with:

⟨v|w⟩ := (v∗1, ..., v
∗
n)

w1

...
wn

(where the apex ∗ indicates the complex conjugate of the complex number).
In general the row vector (v∗1, ..., v∗n) is denoted as ⟨v|, so that ⟨v|w⟩ forms a
bra-ket.
The state of a classic bit is described by the values 0 and 1. The more direct
way to represent the state of a qubit is by means of a unit vector in a complex
two-dimensional vector space. The vectors |0⟩ and |1⟩ form an orthonormal
basis for this vector space, known as the standard computational basis. Using
the classical notation of linear algebra, we can represent |0⟩ with the column
vector (1, 0)T and |1⟩ with the column vector (0, 1)T , where T indicates the
transpose. The states |0⟩ and |1⟩ of a qubit can be seen as the correspondents
of the states 0 and 1 of a classic bit.
The difference between bits and qubits is that a qubit can also be found in

Quantum Computing 19

other states than |0⟩ and |1⟩. In fact, any linear combination

|ψ⟩ = α|0⟩+ β|1⟩,

where α, β ∈ C such that |α|2 + |β|2 = 1, is a possible state for a bit. In
classical notation, |ψ⟩ corresponds to:(

α

0

)
+

(
0

β

)
=

(
α

β

)
These states are often called superpositions of pure qubits.
We are going to use (C-)vector spaces. In fact, for our purpose (quantum
computing) it is sufficient, but actually, to represent quantum states, Hilbert
Spaces are used rather than simple vector spaces; in effect, what is generally
needed, is the presence of a scalar product. To be more precise, in general,
the projective spaces of Hilbert spaces are used, where the concept of norm
makes no sense: this is why, for reasons of convenience, we represent states
as vectors of norm 1.

1.2 Measurement problem

While for a classical bit we can always determine its state and establish
precisely whether it is 0 or 1, for a qubit we cannot determine its quantum
state with equal precision, that is, the values of α and β. Quantum mechanics
tells us that when we measure a qubit |ψ⟩ = α|0⟩+ β|1⟩, we can only obtain
the state |0⟩ with a probability equal to |α|2 or the state |1⟩ with a probability
equal to |β|2.
For this reason the values α and β are called probability amplitudes and the
sum |α|2 + |β|2 must be 1.
Geometrically this means that the states of a qubit are normalized, i.e.n unit,
vectors.
We have therefore established that a qubit possesses in a number of states
which is infinitely greater than that of the possible states of a classical bit.

20 Quantum Computing

It will be seen later that the physical realization of a qubit does not allow to
observe these states directly: the "measurement" of a qubit will always give
as a result the state |0⟩ or the state |1⟩.
However, it should be noted that the result of the measurements strictly
depend on the specific properties of the state (in particular, the values of α
and β) on which the transformations have been carried out: this is where the
power of quantum computing essentially resides.

1.3 Physical interpretation of the qubit

The abstract description of a qubit as a vector in a complex two-dimensional
space has a correspondent in the real world. In particular, any physical sys-
tem with at least two discrete and sufficiently separated energy levels is an
appropriate candidate to represent a qubit.
To physically make a qubit the three most common approaches are those
based on:

• the two different polarizations of a photon;

• the alignment of a nuclear spin in a uniform magnetic field;

• two energy levels of an electron orbiting a single atom. (In an atom the
energy levels of the various electrons are discrete. Two of them can be
selected to represent the logical values 0 and 1. These levels correspond
to specific states excitation of electrons in the atom.)

Figure 1.1: Qubit represented by an electron in a hydrogen atom

Quantum Computing 21

For example, using the third approach, we can consider the system con-
stituted by the hydrogen atom H. In this system, the state |0⟩ of the qubit
can be represented by the first energy level (n = 0), corresponding to the
ground state of the electron, and the state |1⟩ from the second energy level
(n = 1) corresponding to the first excited state of the electron, as in Figure
1.1.
The passage of the electron from one state to another can be achieved by
subjecting the electron to a laser pulse of appropriate intensity, duration and
length wave. By appropriately reducing the duration, it is possible to carry
out the transition of an electron initially in the state |0⟩ to a state that is
"in the middle" between |0⟩ and |1⟩, corresponding to a superposition.
When we observe a qubit, however, the result can only be 0 or 1. As a matter
of fact, the measurement we made changes the state of the qubit, causing
it to collapse from its superposition to the specific state consistent with the
measurement result.
These properties are explained by the principles of quantum mechanics, ex-
plained in Section 1.9.

1.4 Quantum register

With two classic bits we can form four possible states: 00, 01, 10, 11. In
general, with n bits it is possible to construct 2n distinct states.
How many states can be obtained with n qubits? The vector space of states
generated by a system of n qubits has dimension 2n: each normalized vector
in this space represents a possible computational state, which we will call n
qubit quantum register.
This exponential growth in the number of qubits in the dimensions of the
state space suggests the potential ability of a quantum computer to process
information at an exponentially higher speed than that of a classical com-
puter. Note that for n = 300 we obtain a number that is greater than the
number of atoms in the universe.

22 Quantum Computing

Formally, a quantum register of n qubits is an element of a 2n-dimensional
complex Hilbert space, with a computational basis formed by 2n n-qubit
registers:

|i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |in⟩ with ij ∈ {0, 1}, for all 1 ≤ j ≤ n

For convenience, we write this basis vector |i1⟩|i2⟩ . . . |in⟩ or simply |i1i2 . . . in⟩.
The symbol ⊗ stands for tensor product.
We define the tensor product between two vectors to be the following func-
tion:

⊗ : Ck × Cl −→ Ckl

where

v ⊗ w :=

v1w

v2w
...

vkw

(vjw is the multiplication of the vector w by the scalar vj).

Example 1 (2-qubit case). Let consider the case of 2 qubit. The computa-
tional basis of the states space is {|00⟩, |01⟩, |10⟩, |11⟩}. In algebrical notation
these vectors corespond to:

1

0

0

0

 ,

0

1

0

0

 ,

0

0

1

0

 ,

0

0

0

1

A quantum register of 2 qubits has the form:

|ψ⟩ = α00|00⟩+ α01|01⟩+ α10|10⟩+ α11|11⟩

with the condition:
∑

i∈{0,1}2 |αi|2 = 1.
Similary at the single qubit case, the measuring result of |ψ⟩ will be one of

Quantum Computing 23

the states i ∈ {0, 1}2 with probability |αi|2.
It is interesting that in an n qubit system it is also possible to measure only
a subset of the n qubits. For example, in the case of a two-qubit register,
we can measure the first qubit and obtain as a result 0 with probability of
|α00|2 + |α01|2. After this mensuration, the state will collapse to

|α00|2|00⟩+ |α01|2|01⟩√
|α00|2 + |α01|2

,

wich is the projection of the initial state on span{|00⟩, |01⟩}, i.e., the subset
of the space corresponding to the first spin equal to 0. This is a general
property of quantum computers.
Note that the state is re-normalized to have length 1.

1.5 Entangled states

An important property of n-qubit quantum registers is that it is not
always possible to factor them into the states of the component qubits. States
of this type are called entangled and enjoy properties that cannot be found
in any object of classical physics.
The spin of an entangled collection do not have their own individual status,
only the entire collection corresponds to a well-defined status. Entangled
spins behave as if they were closely connected to each other regardless of the
distance that separates them. For example, a measurement of one of the two
members (spins) of an entangled pair provides simultaneously information
about the other. This property is the basis for solutions of information-
processing problems that cannot be reproduced classically.
Formally: consider two arbitrary quantum systems A and B, with respective
Hilbert spaces HA and HB. The Hilbert space of the composite system is the
tensor product HA ⊗HB.
Fixing a basis {|i⟩A}i for HA and a basis {|j⟩B}j for HB, the most general

24 Quantum Computing

state in HA ⊗HB is of the form:

|ψ⟩AB =
∑
i,j

ci,j|i⟩A ⊗ |j⟩B

Some of these states can be represented as

|ψ⟩AB = |ϕ⟩A ⊗ |δ⟩B =

(∑
i

ai|i⟩A
)
⊗
(∑

j

bj|j⟩B
)

where |ϕ⟩A ∈ HA and |δ⟩B ∈ HB. States of this type are called separable
states.
Unfortunately (or fortunately!) not all states are separable; the states that
are not separable are called entangled states.

Example 2 (Entanglement). It is a quick check to show that the state |00⟩+
|11⟩ is not separable in the tensor product of two indipendent qubit; i.e., ∄
a1, a2, b1, b2 ∈ C such that:

|00⟩+ |11⟩ = (a1|0⟩+ b1|1⟩)⊗ (a2|0⟩+ b2|1⟩).

1.6 Quantum logic gate

We have studied the quantum description of the states of a computation.
let us now see how these states evolve giving rise to a quantum computation.
Similarly to classical computers, a quantum computer is made of quantum
circuits made up of elementary quantum logic gates.
In the classic case, there is a single (non-trivial) one-bit logic gate, the NOT
gate, which implements the logical negation operation defined by means of a
truth table in which 1→ 0 and 0→ 1 .
To define an analogous operation on a (single) qubit, we cannot limit our-
selves to establishing its action on the basis states |0⟩ and|1⟩, but we must
also specify how a qubit that is in a superposition of the states these two.
Intuitively, the NOT should swap the roles of the two ground states and

Quantum Computing 25

transform α|0⟩ + β|1⟩ into β|0⟩ + α|1⟩. Clearly |0⟩ would turn into |1⟩ and
|1⟩ into |0⟩. The operation that implements this type of transformation is a
linear operation and, as we will see, this is a general property of quantum
mechanics that is experimentally justified. A convenient way to represent
linear operations is by means of matrices.
The matrix corresponding to the quantum NOT is called for historical rea-
sons X, and is defined by:

X =

[
0 1

1 0

]
In fact, it is easy to check that:

X

(
α

β

)
=

(
β

α

)

In general, an operation on a single qubit can be specified by a 2×2 matrix.
However, not all 2×2 matrices define “legal” operations on qubits. Recall
that the qubit requires normalization condition, so the same condition must
also apply to the status that is obtained after carrying out the operation. In
algebra, matrices which preserve the norm of the vector they multiply, are
called unitary matrices.

Definition 1 (Unitary matrix). A complex square matrix U is unitary if its
conjugate transpose U † is also its inverse, that is, if:

U †U = UU † = I

Or equivalently:

Definition 2 (Unitary matrix). U is unitary if and only if it preserves the
scalar products:

⟨Uu|Uv⟩ = ⟨u|v⟩ ∀u, v ∈ Cn

Theorem 1. A linear function transforms a qubit into a qubit (i.e., pre-
serves normalized vectors) if and only if it is represented by a 2× 2 complex
unitary matrix.

26 Quantum Computing

Definition 3 (One-Qubit quantum logic Gate). A one-qubit quantum logic
gate is a transformation represented by a 2× 2 complex unitary matrix.

Example 3 (Pauli matrices). The following matrices are known as Pauli’s
matrices, and are unitary matrices:

X =

[
0 1

1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0

0 −1

]

In particular, the Z gate only acts on the component |1⟩ of the vector, chang-
ing its sign.

Example 4 (Hadamard matrix). The following unitary matrix is called Hadamard
Matrix :

H =
1√
2

[
1 1

1 −1

]
This matrix is one of the most useful operations in quantum circuits. Its
effect is to transform one basis state in an another which results, after a
measurement in the computational basis, to be |0⟩ or |1⟩ with equal proba-
bility.
E.g., applying H to |0⟩ we obtain:

H

(
1

0

)
=

1√
2

(
1

1

)
=
|0⟩+ |1⟩√

2

Operations on quantum registers of two or more qubits are necessary to
describe the transformations of compound states and in particular of the
entangled states: we have seen that a register of two qubits is not always
decomposed into the tensor product of the single component qubits. Conse-
quently, in these cases we cannot simulate an operation on the two qubits by
means of operations on each component qubit.
Operations on qubit registers also correspond to unitary transformation, as
in the case of a single qubit, but via matrices of higher dimension.
The most important logic gates that implement classic two-bit operations
are the AND, OR, XOR, NAND and NOR (summarised in table of Figure

Quantum Computing 27

Figure 1.2: NOT, AND, NAND, OR, NOR, XOR, XNOR gates.

1.2) gates.
The NOT and AND gates form a universal set : any Boolean function can
be realized through a combination of these two operations. Note that XOR
alone or even together with NOT is not universal: since, for its definition, it
is a parity generator (which means that preserves total bit parity, i.e., if the
sum of the two inputs is even, it returns 0, otherwise 1), only a subset of the
Boolean functions are representable by this operation. More precisely, com-
bining parity generator we will necessarily obtain parity generator; therefore
we have the impossibility of obtaining the gates that are not parity genera-
tors, such as OR (for which: 1 OR 1 = 1). A similar argument can be made
for the XOR and NOT couple.
The quantum analog of XOR is the CNOT (controlled-NOT) gate that op-
erates on two qubits: the first is called the control qubit and the second is
the target qubit. If the check is zero then the target is left unchanged; if the
control is one, then the target is negated, that is:

|00⟩ 7→ |00⟩, |01⟩ 7→ |01⟩, |10⟩ 7→ |11⟩, |11⟩ 7→ |10⟩.

Equivalently, CNOT can be seen as the transformation

|A,B⟩ 7→ |A,B ⊕ A⟩,

where A is the control qubit, B is the target and ⊕ is the sum modulo2,
i.e., the classical XOR operation. The CNOT gate is usually represented

28 Quantum Computing

graphically by the circuit in Figure 1.3.

Figure 1.3: CNOT gate

Formally:

Definition 4 (CNOT gate). The CNOT is a two-qubit quantum logic gate
representated by the unitary matrix:

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

(where the matrix is written in the basis {|00⟩, |01⟩, |10⟩, |11⟩}).

It is important to note that the CNOT, like all unitary transformations,
is invertible: the input can always be obtained from the output. This is
not true for XOR and NAND logic gates: in general, classic operations are
irreversible.
The CNOT gate and the one-qubit gates represent prototypes of all quantum
logic gates. In fact, it is possible to show that, taken together, they form a
universal set.
In general: the quantum version of the classic logic gate

f(x) : {0, 1} → {0, 1}

(Boolean function) is a unitary transformation of the form:

Uf : |x, y⟩ 7→ |x, y ⊕ f(x)⟩

where x, y ∈ {0, 1}, x is the input and y is the register intended to contain
the output. In this way, in fact, we have defined the action of Uf on the

Quantum Computing 29

elements of the base |00⟩, |01⟩, |10⟩, |11⟩; this action can therefore be extended
by linearity.
To find exactly f(x) in the second register of the output, just choose y = 0.
Graphically the Uf transformation is represented in Figure 1.4.

Figure 1.4: Uf representation

Note that the registers x and y can also have more than one component: in
the case of x = x1 . . . xm, y = y1 . . . yk and:

f(x) : {0, 1}m → {0, 1}k

the form and the representation of Uf does not change.
The transformation Uf is considered the reversible standard circuit for the
quantum evaluation of f . Uf is "reversible" because U2

f = I. In fact:

UfUf : |x, y⟩ 7→ |x, y ⊕ f(x)⊕ f(x)⟩ = |x, y ⊕ 0⟩ = |x, y⟩

1.7 Quantum circuits

A simple example of a quantum circuit is given in Figure 1.5.

The circuit, usually known as swap, realizes the exchange of the states of two
qubits. Given in input the register of two qubits |a, b⟩, a CNOT is performed
with control qubits a. As a result b is replaced by a⊕b. The latter is taken as
a control of a second CNOT with target a. The effect is that a is replaced by
a⊕ (a⊕ b) = b. A last CNOT with control b and target a⊕ b finally realizes

30 Quantum Computing

Figure 1.5: Swapping circuit realization, and schematic symbol

the exchange by replacing a ⊕ b with a. Given any unitary operation U on
n qubits, the controlled-U circuit can be defined as the natural extension of
the CNOT gate (cf. Figure 1.6).

Figure 1.6: controlled-U gate

The line with the black dot indicates the control qubit, while the target
qubits are the n inputs of U . According to this convention, controlled-NOT
is nothing more than a controlled-U with U = X.
Another important operation is represented by the symbol in Figure 1.7 and
consists in the measurement of a qubit |ψ⟩ = α|0⟩ + β|1⟩. As we know, the
result is a classic bit M (indicated with a double line) which will be 0 or 1
with probability, respectively, |α|2 and |β|2.

Figure 1.7: Circuit symbol for measurement.

It is interesting to know that there are quantum circuits capable of trans-

Quantum Computing 31

porting quantum states from one place to another (Quantum teleportation).
If instead we ask ourselves if it is possible to build a circuit that makes the
copy of a qubit, unfortunately the answer is no, as we are going to explain.
One could think of using a CNOT with control qubit containing the qubit
|x⟩ to be copied and the target register initially placed at |0⟩ (see Figure 1.8).
The result would be copying x to the target. Actually this is true for classical

Figure 1.8: CNOT: a wrong circuit to "copy" a qubit.

bits (or for the states of the computational basis) but not for a generic qubit
|ψ⟩ = a|0⟩ + b|1⟩. In fact, consider the circuit consisting of a CNOT which
has as input the qubits |ψ⟩ (as control) and |0⟩ (as target), i.e., the register
|ψ⟩|0⟩. Our goal is to obtain |ψ⟩|ψ⟩ as result.
We observe that

|ψ⟩|ψ⟩ = a2|00⟩+ ab|01⟩+ ab|10⟩+ b2|11⟩.

This state, unless ab = 0, is in general different from the result of our circuit:

CNOT (|ψ⟩|0⟩) =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

a

0

b

0

 =

a

0

0

b

 = a|00⟩+ b|11⟩

So this circuit does not copy a qubit.
This quantum property is called no-cloning. Let us present it in the form of
a theorem.

Theorem 2 (No-cloning). There is no unitary transformation M such that,
M(|ψ⟩|0⟩) = |ψ⟩|ψ⟩, for each state |ψ⟩.

32 Quantum Computing

Proof. Let us suppose by absurdity that M as in the statement exists. So
we can choose two states |ψ⟩ and |ϕ⟩ such that 0 < ⟨ψ|ϕ⟩ < 1. They exist:
for example |0⟩ and 1√

2
(|0⟩+ |1⟩).

Then we get that:

M(|ψ⟩|0⟩) = |ψ⟩|ψ⟩ and M(|ϕ⟩|0⟩) = |ϕ⟩|ϕ⟩.

Multiplying the two vectors, we obtain:

⟨M(|ψ⟩|0⟩) |M(|ϕ⟩|0⟩)⟩ = ⟨|ψ⟩|ψ⟩ | |ϕ⟩|0⟩⟩

Using now that M is unitary for the first member, and the distributive prop-
erty of the tensor product with respect to the scalar product (it is in fact
easy to verify that: ⟨v ⊗ w|v′ ⊗ w′⟩ = ⟨v|v′⟩⟨w|w′⟩) for the first and the
second member, we find:

⟨ψ|ϕ⟩⟨0|0⟩ = ⟨ψ|ϕ⟩⟨ψ|ϕ⟩.

But now, using ⟨0|0⟩ = 1, we have a contradiction, because
0 < ⟨ψ|ϕ⟩ < 1 by assumption.

1.8 Quantum Parallelism

On a quantum computer one can evaluate a function f(x) on different
values of x at the same time, with "just one application". This is a funda-
mental feature of quantum circuits.
Let us consider a Boolean function of the form:

f(x) : {0, 1} → {0, 1}

To calculate f(x) by means of a quantum computation, the transformation
f(x) must be defined as a unitary transformation Uf . As seen previously, this
can be done by applying on the input state |x⟩ ⊗ |y⟩ = |x, y⟩ an appropriate
sequence of quantum logic gates (which we will indicate with a "black box"
called Uf) that transforms |x, y⟩ into the state |x, y⊕f(x)⟩, called the target

Quantum Computing 33

register. If y = 0 then the final state of the second qubit will contain exactly
the value of f(x).
In the circuit in Figure 1.9, the input is

|x⟩|y⟩ = |x⟩ ⊗ |y⟩ where x :=
|0⟩+ |1⟩√

2
, y := |0⟩

so, the value of x is a superposition of 0 and 1, and y = 0. Applying Uf to

Figure 1.9: Quantum circuit to evaluate f(0) and f(1) simultaneously.

this data register we obtain

|0, f(0)⟩+ |1, f(1)⟩√
2

This state contains, implicitly, information about both the f(0) value and
the f(1) value.
We then evaluated f simultaneously on x = 0 and x = 1. This effect is called
quantum parallelism. This type of parallelism is different from the classical
parallelism where several circuits (each of which calculates f(x) for a single
value of x) are executed simultaneously.
We can generalize this procedure to compute functions on an arbitrary num-
ber of bits using a generalization of the Hadamard gate known as the Walsh-
Hadamard transform. This operation consists of n Hadamard gates acting
in parallel on n qubits. For example:

Example 5 (Walsh-Hadamard for n=2). The Walsh-Hadamard transforma-
tion for n = 2, is denoted by H⊗2 := H ⊗ H, and applied to two qubits

34 Quantum Computing

prepared in the state |0⟩ gives as a result:

H⊗2(|00⟩) = (H|0⟩)⊗(H|0⟩) = |0⟩+ |1⟩√
2
⊗|0⟩+ |1⟩√

2
=
|00⟩+ |01⟩+ |10⟩+ |11⟩

2

In general, it is easy to verify that the result of H⊗n applied to n qubits
in the state |0⟩ is:

H⊗n|0⟩⊗n =
1√
2n

∑
x∈{0,1}n

|x⟩

where x can be interpreted as the binary representation of a number from 0

to 2n−1. Hence, the Walsh-Hadamard transform, produced an equiprobable
superposition of all the states of the computational basis of n qubits. We
observe that to obtain a superposition of 2n states, only n logic gates H are
needed.
Any transformation of the form Uf = |x, y⟩ 7→ |x, y ⊕ f(x)⟩ for a classic
Boolean function f is linear and therefore acts on a superposition

∑
x ax|x⟩

of input values as follows:

Uf :
∑
x

ax|x, 0⟩ 7→
∑
x

ax|x, f(x)⟩

Consider the effect of applying Uf to the superposition of values from 0 to
2n − 1 obtained from the Walsh-Hadamard transformation:

Uf : (H⊗n|0⟩)|0⟩ = 1√
2n

∑
x∈{0,1}n

|x⟩|0⟩ 7→ 1√
2n

∑
x∈{0,1}n

|x⟩|f(x)⟩

After only one application of Uf , the superposition now contains all of the
2n function values f(x) entangled with their corresponding input value x.
This effect is the general version of the quantum parallelism.
Since n qubits enable us to work simultaneously with 2n values, quantum
parallelism in some sense circumvents the time/space trade-off of classical
parallelism through its ability to hold exponentially many computed values
in a linear amount of physical space. However, this effect is less powerful
than it may initially appear.
In fact it is possible to gain only limited information from this superposition:

Quantum Computing 35

these 2n values of f are not independently accessible. We can gain infor-
mation only from measuring the states, but measuring in the standard basis
will project the final state onto a single input /output pair |x, f(x)⟩, and a
random one at that.

1.9 Mathematical structure of quantum mechan-

ics

So far we have talked about quantum systems, quantum states, evolution
and measurement of quantum states, etc., but we have not yet defined these
terms in a formal way. The mathematical structure at the base of quantum
computing is the quantum theory. Let us introduce it.
A physical system is generally described by three basic ingredients: its states,
its observables (i.e., all quantities which can be measured about the current
state of physical system) and its dynamics (the law where by the state of a
sistem changes in time).
Quantum mechanics provides the most accurate and complete description of
the laws that govern the physical world. The mathematical formalism on
which it is based and the physical reality it describes are related by means
of some fundamental postulates.

Postulate 1: States

Each isolated physical system has an associated space (called the state
space of the system), that is the projective of a complex Hilbert space. The
system is completely described by its state vector, which is a unit vector in
the state space.
The state space of a composite physical system is the tensor product space
tensor of spaces of the single components. If the system is composed of n
subsystems and the i-th component is in the state |ψi⟩, then the state of the

36 Quantum Computing

total system is |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩. This describes how to construct the
state space of a quantum system composed of two or more distinct physical
systems starting from the state spaces of the component systems. In partic-
ular, in addition to each separable state (obtained with a vector product of
elementary states), there are the superposition of these (the so-called entan-
gled states), fundamental in the field of quantum computation.
The simplest isolated physical system is the qubit. The associated Hilbert
space is C2. The computational basis formed by |0⟩ and |1⟩ is an orthonormal
basis and the condition that every vector |ψ⟩ = a|0⟩+ b|1⟩ (with a, b ∈ C) is
a unit vector is equivalently expressed by |a|2 + |b|2 = 1, or by means of the
inner product from ⟨ψ|ψ⟩ = 1 (where a and b are called the amplitudes of
the vector |0⟩ and of the vector |1⟩, respectively). We also postulate that a
state of a quantum system is actually an equivalence class of vectors which
differ by multiplication of a complex unitary scalar; the unit vector is the
representative of this class. Hence the state eiθ|ψ⟩, where |ψ⟩ is a state and θ
is a real number, is equivalent to |ψ⟩. The factor eiθ is called the global phase
factor. This identification of states with different global phases is justified
by the fact that the measurement statistics (cf. Postulate 3) of these states
are the same. For example, we identify a|ψ⟩+ b|ψ⟩ with eiθ(a|ψ⟩+ b|ψ⟩) but
not with a|ψ⟩+ beiθ|ψ⟩.

Postulate 2: Observables

In quantum mechanics, observables are identified by self-adjoint opera-
tors A on H. This requirement is due to the fact that these operators are
"diagonalizable", with a positive spectrum (spectral theorem). For further
information: [65].
More precisely, assuming for simplicity that A has a discrete spectrum, we
know that the eigenvalue equation

A|ψm⟩ = m|ψm⟩

Quantum Computing 37

admits only real eigenvalues m ∈ R, and that the corresponding eigenvectors
form an orthonormal basis for H.
We can rephrase these properties in terms of projection operators: if we
define Pi as the projection on the eigenspace relative to the eigenvalue m,
then we find

A =
∑
m

mPm.

Furthermore, the Pm operators satisfy the completeness equation 1.1:∑
m

Pm = I, (1.1)

where I is the identity operator on H.

Postulate 3: (Discrete) Time Evolution

We provide a more simplified version of the most refined version of the
third postulate: we are going to describe a closed quantum system, in a
discrete time evolution (it is sufficient for us, because in quantum computing
we study systems only before and after certain computational operations; so
for the purposes of our study, the dynamics will be discrete).
The discrete evolution of a closed quantum system is described by a unitary
transformation: the state |ψ⟩ of the system at time t1 is in relation to the
state |ψ′⟩ of the system at time t2 by means of a unitary operator U which
depends only on t1 and t2,

|ψ′⟩ = U |ψ⟩.

The version for a closed quantum system in continuous time is slightly
more complex: the evolution of a quantum state is described by the famous
Schrödinger equation (for more details, see [46, 21]).
In particular, if H does not depend on time t, it is possible to reformulate the
Schrödinger equation, obtaining that there must exist an evolution operator
Ut (depending on t ∈ R) so that:

ψ(t) = Utψ0,

where ψ0 is the initial state.

38 Quantum Computing

Postulate 4: Measure

The only possible results of a measurement of the observable M corre-
spond to the eigenvalues m of M .
After a measurement of M in the state |ψ⟩, the probability of obtaining the
result m is:

p(m) = ⟨ψ|Pm|ψ⟩ = ∥Pm|ψ⟩∥2.

After this measurement, with its results m, the state collapse immediately
in the state:

Pm|ψ⟩√
p(m).

The completeness equation (1.1) expresses the fact that the sum of the prob-
abilities of the results of a measurement must be 1. In fact:

1 = ⟨ψ|ψ⟩ = ⟨ψ|(
∑
m

Pm)|ψ⟩ =
∑
m

⟨ψ|Pm|ψ⟩ =
∑
m

p(m)

This type of measurement is often called complete projective measurement
(or Von Neumann measurement) because the observable M is determined by
any set of orthogonal projection operators Pm which satisfy the completeness
relation and such that PmPm′ = δmm′Pm.
Measuring in the orthonormal basis |m⟩, means performing a projective mea-
surement with projection operators = |m⟩⟨m| (which a convenient notation
for Pm. Notice in fact that Pm|ψ⟩ = |m⟩⟨m|ψ⟩ = ⟨m|ψ⟩|m⟩).

Chapter 2

Shor’s algorithm and its Impact

on cryptography

In this Chapter we are interested in studying and analyzing a funda-
mental result of computational quantum mechanics: the Shor’s algorithm,
conceived by the scientist in 1994. As already mentioned, this algorithm
has provided a boost in the interest of quantum computers and, in general,
quantum computing. This is because, through the use of this algorithm (on a
quantum computer), most of the cryptographic systems used on a large scale
today (such as the famous public-key cryptosystem RSA) are "broken", in
the sense that they are solved in acceptable times. In fact, the Shor’s al-
gorithm allows to solve some classical computational problems, considered
difficult to be solved having only classical computers available, such as, for
example, the "factoring problem" (see Definition 5: the security of RSA re-
lies on this problem) in polynomial time. The impact of Shor’s algorithm on
cryptography, and of quantum-computing in general, is deepened in Section
2.3.
Before starting to study Shor’s algorithm, let us start by describing, in the
next Section, the famous RSA algorithm, that Shor would break. This is
useful for getting an idea of how public key cryptography works and how a
cryptographic algorithm exploits "hard" math problems.

39

40 Quantum Computing

2.1 RSA public-key cryptosystem

Suppose there are two individuals, Alice and BoB, who want to exchange
a secret message, but also want to exchange it encrypted, because it is poten-
tially exposed on an insecure transmission channel. This encrypted message
must be untranslatable by a potential attacker, but must be decryptable for
the two individuals. One way to do this is to use a sistem based on the
public-key cryptography.
Public-key cryptography, or asymmetric cryptography, is a cryptographic
system that uses pairs of keys. Each pair consists of a public key (which
may be known to others) and a private key (which may not be known by
anyone except the owner). The generation of such key pairs depends on
cryptographic algorithms which are based on mathematical problems termed
one-way functions. Effective security requires keeping the private key private;
the public key can be openly distributed without compromising security.
In such a system, any person can encrypt a message using the intended re-
ceiver’s public key, but that encrypted message can only be decrypted with
the receiver’s private key.
This scheme has the advantage of not having to manually pre-share symmet-
ric keys (a fundamentally difficult problem) while gaining the higher data
throughput advantage of symmetric-key cryptography.
Public key algorithms are fundamental security primitives in modern cryp-
tosystems, including applications and protocols which offer assurance of the
confidentiality, authenticity and non-repudiability of electronic communica-
tions and data storage.
RSA is an important public-key cryptosystem that is widely used for se-
cure data transmission. It is also one of the oldest. The word "RSA" is an
acronym, and it comes from the surnames of Ron Rivest, Adi Shamir and
Leonard Adleman, who publicly described the algorithm in 1977.
An RSA user creates and publishes a public key based on two large prime
numbers, along with an auxiliary value. The prime numbers are kept secret.
Messages can be encrypted by anyone, via the public key, but can only be

Quantum Computing 41

decoded by someone who knows the prime numbers.
The security of RSA relies on the practical difficulty of factoring the product
of two large prime numbers, the "factoring problem":

Definition 5 (Factoring problem). Given n ∈ N, such that there exist two
large prime numbers p, q ∈ N, for which n = p ·q, the problem is to find these
two primes, given only n.

Breaking RSA encryption is known as the RSA problem. There are no
published methods to defeat the system if a large enough key is used.
The RSA algorithm involves four steps: key generation, key distribution, en-
cryption, and decryption.
A basic principle behind RSA is the observation that it is practical to find
three very large positive integers e, d, and n, such that with modular expo-
nentiation for all integers m (with 0 ≤ m < n):

(me)d = m (mod n)

and that knowing e and n, or even m, it can be extremely difficult to find d.
RSA involves a public key and a private key. The public key can be known by
everyone and is used for encrypting messages. The intention is that messages
encrypted with the public key can only be decrypted in a reasonable amount
of time by using the private key. The public key is represented by the integers
n and e, and the private key by the integer d (although n is also used during
the decryption process, so it might be considered to be a part of the private
key too). m represents the message (previously prepared with a certain
technique explained below).

KEY GENERATION

The keys for the RSA algorithm are generated in the following way:

1. Choose two distinct (large) prime numbers p and q.

42 Quantum Computing

• For security purposes, the integers p and q should be chosen at
random and should be similar in magnitude but differ in length
by a few digits to make factoring harder. Prime integers can be
efficiently found using a primality test

• p and q are kept secret.

2. Compute n = pq.

• n is used as the modulus for both the public and private keys. Its
length, usually expressed in bits, is the key length.

• n is released as part of the public key.

3. Compute λ(n), where λ is Carmichael’s totient function1. Since n = pq,
λ(n) = lcm(λ(p), λ(q)) (where "lcm" is the least common multiple), and
since p and q are prime, λ(p) = ϕ(p) = p−1 (where ϕ is Euler’s totient
function2), and likewise λ(q) = q − 1. Hence λ(n) = lcm(p− 1, q − 1).

• λ(n) is kept secret.

• The lcm may be calculated through the Euclidean algorithm, since
lcm(a, b) = |ab|/GCD(a, b), where GCD stands for the greatest
common divisor.

4. Choose an integer e such that 1 < e < λ(n) and GCD(e, λ(n)) = 1;
that is, e and λ(n) are coprime.

• e having a short bit-length and small Hamming weight3 results in
more efficient encryption - the most commonly chosen value for

1In number theory, a branch of mathematics, the Carmichael function λ(n) of a positive
integer n is the smallest positive integer m such that am = 1 (mod n)

2In number theory, Euler’s totient function counts the positive integers up to a given
integer n that are relatively prime to n. It is also be called Euler’s phi function. In other
words, it is the number of integers k in the range 1 ≤ k ≤ n for which the greatest common
divisor GCD(n, k) is equal to 1.

3The Hamming weight of a string is the number of symbols that are different from the
zero-symbol of the alphabet used. It is thus equivalent to the Hamming distance from
the all-zero string of the same length. For the most typical case, a string of bits, this is

Quantum Computing 43

e is 216 + 1 = 65537. The smallest (and fastest) possible value
for e is 3, but such a small value for e has been shown to be less
secure in some settings.

• e is released as part of the public key.

5. Determine d as d = e−1 (mod λ(n)); that is, d is the modular multi-
plicative inverse of e modulo λ(n).

• This means: solve for d the equation d·e = 1 (mod λ(n)); d can be
computed efficiently by using the extended Euclidean algorithm4,
since, thanks to e and λ(n) being coprime, said equation is a form
of Bézout’s identity, where d is one of the coefficients.

• d is kept secret as the private key exponent.

Finally, the public key consists of the modulus n and the public (or encryp-
tion) exponent e.
The private key consists of the private (or decryption) exponent d, which
must be kept secret. p, q, and λ(n) must also be kept secret because they
can be used to calculate d. In fact, they can all be discarded after d has been
computed.

KEY DISTRIBUTION

Suppose that Bob wants to send information to Alice. If they decide to
use RSA, Bob must know Alice’s public key to encrypt the message, and
Alice must use her private key to decrypt the message.

the number of 1’s in the string, or the digit sum of the binary representation of a given
number and the l1 norm of a bit vector. In this binary case, it is also called the population
count, popcount, sideways sum, or bit summation.

4In arithmetic and computer programming, the extended Euclidean algorithm is an
extension to the Euclidean algorithm, and computes, in addition to the greatest common
divisor of integers a and b, also the coefficients of Bézout’s identity, which are integers x

and y such that: ax+ by = GCD(a, b).

44 Quantum Computing

To enable Bob to send his encrypted messages, Alice transmits her public
key (n, e) to Bob via a reliable, but not necessarily secret, route. Alice’s
private key (d) is never distributed.

ENCRYPTION

After Bob obtains Alice’s public key, he can send a message M to Alice.
To do it, he first turnsM (strictly speaking, the un-padded plaintext) into

an integer m (strictly speaking, the padded plaintext), such that 0 ≤ m < n

by using an agreed-upon reversible protocol known as a padding scheme. He
then computes the ciphertext c, using Alice’s public key e, corresponding to

c = me (mod n)

This can be done reasonably quickly, even for very large numbers, using
modular exponentiation. Bob then transmits c to Alice.

DECRYPTION

Alice can recover m from c by using her private key exponent d by com-
puting

cd = (me)d = m (mod n).

Given m, she can recover the original message M by reversing the padding
scheme.

Using RSA: an example

Here is an example of RSA encryption and decryption. The parameters
used here are artificially small.

1. Choose two distinct prime numbers: p = 61, q = 53.

2. Compute n = pq = 3233.

3. Compute the Carmichael’s totient function of the product as λ(n) =

lcm(p− 1, q − 1) giving λ(3233) = 780.

Quantum Computing 45

4. Choose any number 1 < e < 780 that is coprime to 780. Choosing a
prime number for e leaves us only to check that e is not a divisor of
780. Let e = 17.

5. Compute d, the modular multiplicative inverse of e(mod λ(n)), yielding
d = 413, as 1 = (17× 413) mod 780.

The public key is (n = 3233, e = 17). For a padded plaintext message m, the
encryption function is:

c(m) = me (mod n) = m17 (mod 3233).

The private key is (n = 3233, d = 413). For an encrypted ciphertext c, the
decryption function is:

m(c) = cd (mod n) = c413 (mod 3233).

For instance, in order to encrypt m = 65, we calculate

c = 6517 (mod 3233) = 2790.

To decrypt c = 2790, we calculate

m = 2790413 (mod 3233) = 65.

Both of these calculations can be computed efficiently using the square-and-
multiply algorithm for modular exponentiation. In real-life situations the
primes selected would be much larger; in our example it would be trivial to
factor n = 3233 (obtained from the freely available public key) back to the
primes p and q. e, also from the public key, is then inverted to get d, thus
acquiring the private key.
Practical implementations use the Chinese remainder theorem to speed up
the calculation using modulus of factors (for example, see [48]).

46 Quantum Computing

2.2 Shor’s algorithm

Let us describe the famous Shor’s quantum algorithm for finding the
prime factors of a composite number N , in polynomial time, undermining
the security of much of today’s classic cryptography.
Think of a large number, such as one with 300 digits in decimal notation
(since such numbers are used in cryptography). Despite N is large, the
number of qubits necessary to store it is relatively small. Considering that in
general log2N is not an integer, let us define the number of qubits necessary
to store N , as:

n = ⌈log2N⌉

A quantum computer with n qubits can store N or any other smaller positive
integer. Obviously, the number of prime factors of N is at most n (N = 2n).
In the next paragraph we see a problem whose resolution implies the reso-
lution of the factoring problem. Shor’s algorithm solves factoring problem
using this observation.

2.2.1 Reduction of factorization to order calculation

In this Subsection, we see that, to solve the problem of factoring N (we
can suppose that N is odd: if N is even, we can keep dividing by 2 until
the result turns out to be odd), we can reduce it to finding the order of a
random integer x less than N . The order of x modulo N is defined as the
least positive integer r such that:

xr ≡ 1 mod N.

Taking x < N , obviously if x and N have common factors, then GCD(x,N)

(where "GCD" stands for the greatest common divisor) gives a factor of N .
In summary, if we pick up at random a positive integer x less than N and
calculate GCD(x,N), either we have a factor of N or we learn that x is
coprime to N .

Quantum Computing 47

In particular, we are going to show that, in the latter case, if x satisfies the
conditions:

• (i) its order r is even

• (ii) xr/2 − 1 ̸≡ 0 (mod N), xr/2 + 1 ̸≡ 0 (mod N)

then GCD(xr/2 − 1, N) and GCD(xr/2 + 1, N) yield factors of N we were
looking for.
If one of the conditions is not true, we start over until finding a proper
candidate x.
The method would not be useful if these two assumptions were too restrictive,
but fortunately that is not the case.
So let us take a random x < N coprime with N , and let us suppose (i) and
(ii); since r is even, we can define y by

xr/2 ≡ y mod N.

Note that y satisfies y2 ≡ 1 mod N , or equivalently (y−1)(y+1) ≡ 0 mod N ,
which means that N divides (y − 1)(y + 1).
Since (ii) holds, the factors y − 1 and y + 1 satisfy

0 < y − 1 < y + 1 < N.

So N cannot divide y − 1 nor y + 1 "separately", but both y − 1 and y + 1

have factors of N . In other words, we found that in this case GCD(y− 1, N)

and GCD(y + 1, N) yield non trivial factors of N .
If N has other factors besides GCD(y − 1, N) and GCD(y + 1, N), they can
be calculated applying the algorithm recursively.

Example 6 (N=21). Consider N = 21 as an example. The next sequence of
modulo N equivalences show that the order of x = 2 modulo 21 is r = 6:

24 ≡ 16 mod 21

25 ≡ 11 mod 21

26 = 11× 2 ≡ 1 mod 21

48 Quantum Computing

Therefore, y ≡ 23 ≡ 8 modulo 21. GCD(y − 1, N) yields the factor 7 and
GCD(y + 1, N) yields the factor 3 of 21.

Actually, this method sistematically fails if N is a power of an odd
prime, but an alternative efficient classical algorithm for this particular case
is known.
It remains to apply the method for odd composite integers that are not a
power of some prime number.
It is possible to prove that the probability of finding x coprime to N sat-
isfying the conditions (i) and (ii) is high; in fact the following Proposition
holds:

Proposition 3 (High probability of picking x with good proprieties). If N is
odd composite integer that is not a power of a prime number, the probability
of finding x < N such that satisfies the conditions (i) and (ii) is:

1− 1

2k−1

where k is the number of prime factors of N .

In the worst case (N has 2 factors), the probability is greater than or
equal to 1/2.
The prof of the Proposition is cumbersome. The more curious readers can
read it in Appendix B of [26].
At first sight, it seems that we have just described an efficient classical algo-
rithm to find a factor of N .
That is not true, since an efficient classical algorithm to calculate the order
of an integer x modulo N is not known. On the other hand, there is (after
Shor’s work) an efficient quantum algorithm. Let us describe it.

2.2.2 The quantum algorithm to calculate the order: a

particular case

Consider the circuit of Fig. 2.1. It calculates the order r of the positive

Quantum Computing 49

Figure 2.1: Quantum circuit for finding the order of the positive integer x
modulo N .

integer x less than N , coprime to N . Vx is the unitary linear operator

Vx(|j⟩|k⟩) = |j⟩|k + xj⟩

where |j⟩ and |k⟩ are the states of the first and second registers, respectively.
The arithmetical operations are performed modulo N , so 0 ≤ k + xj < N .
DFT is the Discrete Fourier Transform operator which will be described in
Subsection 2.2.3.
The first register has t qubits, where t is generally chosen such that

N2 ≤ 2t < 2N2.

As an exception, if the order r is a power of 2, then it is enough to take
t = n. In this subsection we consider this very special case and leave the
general case for next Subsection 2.2.4. We will keep the variable t in order
to generalize the discussion later on.
The states of the quantum computer are indicated by |ψ0⟩, . . . , |ψ5⟩ in Fig.

50 Quantum Computing

2.1. The initial state is:

|ψ0⟩ = |0 . . . 0⟩︸ ︷︷ ︸
t

|0 . . . 0⟩︸ ︷︷ ︸
n

.

The application of the Hadamard operator H on each qubit of the first register
yields

|ψ1⟩ =
1√
2t

2t−1∑
j=0

|j⟩|0⟩. (2.1)

The first register is then in a superposition of all states of the computational
basis with equal amplitudes given by 1√

2t
. When we apply Vx to |ψ1⟩:

|ψ2⟩ =Vx|ψ1⟩

=
1√
2t

2t−1∑
j=0

Vx(|j⟩|0⟩)

=
1√
2t

2t−1∑
j=0

|j⟩|xj⟩.

The state |ψ2⟩ is a remarkable one. Because Vx is linear, it acts on all for
2t values of j, so this generates all powers of x simultaneously (quantum
parallelism). Some of these powers are 1, which correspond to the states

|0⟩|1⟩, |r⟩|1⟩, |2r⟩|1⟩, . . . , |
(
2t

r
− 2

)
r⟩|1⟩, |

(
2t

r
− 1

)
r⟩|1⟩. (2.2)

This explains the choice for Vx.
At the quantum level, the values of j that yield xj ≡ 1 modulo N are
“known”. But this quantum information is not fully available at the classical
level: a classical information of a quantum state is obtained by practical
measurements and, at this point, it does not help if we measure the first
register, since all states in the |ψ2⟩ superposition have equal amplitudes.
The first part of the strategy to find r is to observe that the first register of
the states 2.2 is periodic. So the information we want is a period.

Quantum Computing 51

In order to simplify the calculation, let us measure the second register. Before
doing this, we will rewrite |ψ2⟩ collecting equal terms in the second register.
Since xj is a periodic function with period r, substitute ar + b for j in |ψ2⟩
superposition, where 0 ≤ a ≤ (2t/r) − 1 and 0 ≤ b ≤ r − 1. Recall that we
are supposing that t = n and r is a power of 2, therefore r divides 2t. So
|ψ2⟩ is rewritten as:

|ψ2⟩ =
1√
2t

r−1∑
b=0

 2t

r
−1∑

a=0

|ar + b⟩

 |xb⟩. (2.3)

In the second register, we have substituted xb for xar+b, since xr ≡ 1 modulo
N . Now the second register is measured. Any output x0, x1, . . . , xr−1 can be
obtained with equal probability. Suppose that the result is xb0 .
The state of the quantum computer is now collapsed in:

|ψ3⟩ =
√
r

2t

 2t

r
−1∑

a=0

|ar + b0⟩

 |xb0⟩. (2.4)

Note that after the measurement, the constant before the sum is renormal-
ized, since there are 2t/r terms in the sum.
Fig. 2.2 shows the probability of obtaining the states of the computational
basis upon measuring the first register.
The probabilities form a periodic function with period r. Their values are
zero except for the states

|b0⟩, |r + b0⟩, |2r + b0⟩, . . . , |2t − r + b0⟩.

How can one find out the period of a function efficiently? The answer is in
the Fourier transform.
The Fourier transform of a periodic function with period r is a new periodic
function with period proportional to 1/r. This makes a difference for finding
r.
The Fourier transform is the second part of the strategy. The whole method

52 Quantum Computing

Figure 2.2: Probability distribution of |ψ3⟩ measured in the computational
basis (for the case b0 = 3 and r = 8). The horizontal axis has 2t points. The
number of peaks is 2t/r and the period is r.

relies on an efficient quantum algorithm for calculating the Fourier transform,
which is not available classically. We will not analize it in this work in order
not to be too dispersive in the explanation of Shor’s algorithm, but it is
possible to read it for example in Chapter 8 of [35].

2.2.3 The quantum discrete Fourier transform

Definition 6 (DFT). The Discrete Fourier transform (DFT) of the function
F : {0, . . . , N − 1} → C is a new function F̃ : {0, . . . , N − 1} defined as:

F̃ (k) =
1√
N

N−1∑
j=0

e2πijk/NF (j). (2.5)

We can apply the Fourier transform either on a function or on the states of
the computational basis. The Fourier transform applied to the state |k⟩ of

Quantum Computing 53

the computational basis |0⟩, . . . , |N − 1⟩ is:

DFT (|k⟩) = |ψk⟩ =
1√
N

N−1∑
j=0

e2πijk/NF |j⟩. (2.6)

The Fourier transform is a unitary linear operator. So, if we know how it
acts on the states of the computational basis, we also know how it acts on a
generic state:

|ψ⟩ =
N−1∑
a=0

F (a)|a⟩.

Proposition 4. The set {DFT (|0⟩), . . . , DFT (|N−1⟩)} = {|ψ0⟩, . . . , |ψN−1⟩}
from 2.6, forms a new orthonormal basis. In other words, the Fourier trans-
form is a unitary operator.

The Proof of orthonormality in Proposition 4 is easy, let us see it. Our
goal is to show that:

⟨ψk′|ψk⟩

where k, k′ ∈ {0, . . . , N − 1}; we can use the identity:

1

N

N−1∑
j=0

e2πij(K)/N =

1 if K is a multiple of N

0 otherwise
(2.7)

which is useful in the context of Fourier transforms. So:

⟨ψk′ |ψk⟩ =
1

N

N−1∑
j=0

e2πij(k−k′)/N =

1 if k − k′ is a multiple of N

0 otherwise
(2.8)

Note that the only the only way for k′−k to be a multiple of N is for k = k′.
It is easy to verify that the identity (2.7) is true. If K is a multiple of N ,
then each addendum e2πijK/N = 1 and the first case of the identity follows.
If K is not a multiple of N , (2.7) is true even if N is not a power of 2; to
better understand why, let us look at the Fig. 2.3. This figure shows each
term e2πijK/N (j = 0, ..., 6) for the case K = 1 and N = 7, as vectors in the
complex plane. Note that the sum of vectors must be zero by a symmetry

54 Quantum Computing

Figure 2.3: Vectors e2πij/7, (j = 0, . . . , 6) in the complex plane. Their sum is
zero by symmetry arguments. This is an example of Eq. (2.7) for N = 7, k
= 1.

argument: the distribution of vectors is isotropic.
Usually it is said that the interference is destructive in this case.
Using the identity (2.7), we can define the inverse Fourier transform, which
is similar to that in Definition (6), just with a minus sign on the exponent.
Note that DFT−1 = DFT †, since DFT is a unitary operator.
For the details of a quantum circuit to perform efficiently the Fourier trans-
form, as mentioned above, see Chapter 8 of [35].
Now we will continue the calculation process of the circuit of Fig. 2.1, left at
|ψ3⟩: we are ready to find out the next state of the quantum computer |ψ4⟩.
Applying the inverse Fourier transform only on the first register, using the

Quantum Computing 55

definition of DFT and the linearity of DFT †, we obtain:

|ψ4⟩ = DFT †(|ψ3⟩) = DFT−1(|ψ3⟩) =

=

√
r

2t

2t

r
−1∑

a=0

(
1√
2t

2t−1∑
j=0

e−2πij(ar+b0)/2t|j⟩

)
|xb0⟩.

Inverting the summation order, we have

|ψ4⟩ =
1√
r

2t−1∑
j=0

 1

2t/r

2t

r
−1∑

a=0

e
−2πija

2t/r

 e−2πijb0/2t |j⟩

 |xb0⟩. (2.9)

Using identity (2.7), we see that the expression in square brackets is not zero
if and only if j is a multiple of 2t/r, and so if and only if j = k2t/r with
k = 0, . . . , r − 1.
When j takes such values, the expression in the square brackets is equal to
1. So, removing the j rewritten then in terms of k, and re-indexing the first
sum in k, we have:

|ψ4⟩ =
1√
r

(
r−1∑
k=0

e−2πi k
r
b0

∣∣∣∣k2tr
〉)
|xb0⟩ (2.10)

In order to find r, the expression for |ψ4⟩ has two advantages over the ex-
pression for |ψ3⟩ (Eq. (2.4)): r is in the denominator of the ket label and the
random parameter b0 moved from the ket label to the exponent occupying
now a harmless place.
Fig. 2.4 shows the probability distribution of |ψ4⟩ measured in the compu-
tational basis.
Measuring the first register, we get the value k02t/r, where k0 can be any
number between 0 and r − 1 with equal probability (the peaks in Fig. 2.4).
If we obtain k0 = 0, we have no clue at all about r, and the algorithm must
be run again.
If k0 ̸= 0, we divide k02t/r by 2t,obtaining k0/r. Neither k0 nor r are known.
If k0 is coprime to r, we simply select the denominator.
If k0 and r have a common factor, the denominator of the reduced fraction

56 Quantum Computing

Figure 2.4: Probability distribution of |ψ4⟩ measured in the computational
basis. The horizontal axis has 2t points, only the non-null terms are shown.
The number of peaks is r and the period is 2t/r.

k0/r is a factor of r but not r itself.
Suppose that the denominator is r1. Let r = r1r2. Now the goal is to find
r2, which is the order of xr1 .
We run again the quantum part of the algorithm to find the order of xr1 . If
we find r2 in the first round, the algorithm halts, otherwise we apply it recur-
sively. The recursive process does not last, because the number of iterations
is less than or equal to log2 r.

Example 7. Take N = 15 as an example, which is the least nontrivial com-
posite number.
The set of numbers less than 15, coprime to 15 is {1, 2, 4, 7, 8, 11, 13, 14}.
The numbers in the set {4, 11, 14} have order 2 and the numbers in the
set {2, 7, 8, 13} have order 4. Therefore, in any case r is a power of 2 and
the factors of N = 15 can be found in a 8-bit quantum computer (because
t+ n = 2⌈log2 15⌉ =8).

Quantum Computing 57

2.2.4 The most general case

In the previous subsections, we have considered a special case when the
order r is a power of 2 and t = n (t is the number of qubits in the first
register—see Fig. 2.1-and n = ⌈log2N⌉).
We present the most general case by analyzing it in an example, in order to
better follow the discussion. So in this section, we consider the factorization
of N = 21, that is the next nontrivial composite number.
We must choose t such that 2t is between N2 and 2N2, which is always
possible [54]. For N = 21, the smallest value of t is 9. This is the simplest
example allowed by the constraints, but enough to display all properties
of Shor’s algorithm. The first step is to pick up x at random such that
1 < x < N , and to test whether x is coprime to N . If not, we easily find
a factor of N by calculating GCD(x,N). If yes, the quantum part of the
algorithm starts. Suppose that x = 2 has been chosen. The goal is to find
out that the order of x is r = 6. The quantum computer is initialized in the
state

|ψ0⟩ = |0⟩|0⟩,

where the first register has t = 9 qubits and the second has n = 5 qubits.
Next step is the application of H⊗9 on the first register yielding (see Eq.
(2.1))

|ψ1⟩ =
1√
512

511∑
j=0

|j⟩|0⟩.

The next step is the application of Vx (defined in the previous Subsection),
which yields:

|ψ2⟩ =
1√
512

511∑
j=0

|j⟩|2i mod N⟩

=
1√
512

(
|0⟩|1⟩+ |1⟩|2⟩+ |2⟩|4⟩+ |3⟩|8⟩+ |4⟩|16⟩+ |5⟩|11⟩+

|6⟩|1⟩+ |7⟩|2⟩+!8⟩|4⟩+ |9⟩|8⟩+ |10⟩|16⟩+ |11⟩|11⟩+

|12⟩|1⟩+ . . .

)

58 Quantum Computing

Notice that the above expression has the following pattern: the states of the
second register of each “column” are the same. Therefore we can rearrange
the terms in order to collect the second register:

|ψ2⟩ =
1√
512

[
(|0⟩+ |6⟩+ |12⟩+ · · ·+ |504⟩+ |510⟩)|1⟩ +

(|1⟩+ |7⟩+ |13⟩+ · · ·+ |505⟩+ |511⟩)|2⟩ +

(|2⟩+ |8⟩+ |14⟩+ · · ·+ |506⟩)|4⟩ +

(|3⟩+ |9⟩+ |15⟩+ · · ·+ |507⟩)|8⟩ +

(|4⟩+ |10⟩+ |16⟩+ · · ·+ |508⟩)|16⟩ +

(|5⟩+ |11⟩+ |17⟩+ · · ·+ |509⟩)|11⟩
]
.

(2.11)

This feature was made explicit in Eq. (2.3). Because the order is not a power
of 2, here there is a small difference: the first two lines of Eq. (2.11) have 86
terms, while the remaining ones have only 85.
Now one measures the second register, yielding one of the following numbers
equiprobably: {1, 2, 4, 8, 16, 11}. Suppose that the result of the measurement
is 2, then

|ψ3⟩ =
1√
86

(|1⟩+ |7⟩+ |13⟩+ · · ·+ |505⟩+ |511⟩)|2⟩ (2.12)

Notice that the state |ψ3⟩ was renormalized in order to have unit norm. It
does not matter what is the result of the measurement; what matters is the
periodic pattern of (2.12) .
The period of the states of the first register is the solution to the problem
and the Fourier transform can reveal the value of the period. So, the next
step is the application of the inverse Fourier transform on the first register

Quantum Computing 59

of |ψ3⟩:

|ψ3⟩ =DFT †(|ψ3⟩)

=DFT †
(

1√
86

85∑
a=0

|6a+ 1⟩
)
|2⟩

=
1√
512

511∑
j=0

([
1√
86

85∑
a=0

e−2πi 6ja
512

]
e−2πi j

512 |j⟩
)
|2⟩, (2.13)

where we have used Eq(2.6) and have rearranged the sums. The last equation
is similar to Eq. (2.9), but with an important difference. In previous Sub-
section, we were assuming that r divides 2t. This is not true in the present
example (6 does not divide 512), therefore we cannot use the identity (2.7)
to simplify the term in brackets in Eq. (2.13). This term never vanishes, but
its main contribution is still around j = 0, 85, 171, 256, 341, 427, which are
obtained rounding 512k0

6
for k0 from 0 to 5; compare to the discussion that

follows Eq. (2.10).
To see this, let us plot the probability of getting the result j (in the interval
0 to 511) by measuring the first register of the state |ψ4⟩. From (2.13), we
have that the probability is:

Prob(j) =
1√

512× 86

∣∣∣∣∣
85∑
a=0

e−2πi 6ja
512

∣∣∣∣∣
2

. (2.14)

The plot of Prob(j) is shown in Fig. 2.5. We see the peaks around
j = 0, 85, 171, 256, 341, 427, indicating a high probability of getting one of
these values, or some value very close to them. In between, the probability
is almost zero. The sharpness of the peaks depends on t (number of qubits
in the first register). The lower limit 2t ≥ N2 ensures a high probability in
measuring a value of j carrying the desired information. A careful analysis
of the expression (2.14) is performed in [38] and a meticulous study of the
peak form is performed in [25].
Let us analyze the possible measurement results.
If we get j = 0 (first peak), the algorithm has failed in this round. It must

60 Quantum Computing

Figure 2.5: Plot of Prob(j) against j. Compare to the plot of Fig. 2.4, where
peaks are not spread and have the same height.

be run again.
We keep x = 2 and rerun the quantum part of the algorithm.
The probability of getting j = 0 is low: from Eq. (2.14) we have that
Prob(0) = 86/512 ≈ 0.167. Now suppose we get j = 85 (or any value in the
second peak). We divide by 512 yielding 85/512, which is a rational approx-
imation of k0/6, for k0 = 1. How can we obtain r from 85/512?
The method of continued fraction approximation allows one to extract the
desired information (see Appendix A). A general continued fraction expan-
sion of a rational number j1/j2 has the form

j1
j2

= a0 +
1

a1 +
1

···+ 1
ap

(2.15)

usually represented as [a0, a1, . . . , ap], where a0 is a non-negative integer and
a1, . . . , ap are positive integers. The q-th convergent (0 ≤ q ≤ p) is defined as
the rational number [a0, a1, . . . , aq]. It is an approximation to j1/j2 and has
a denominator smaller than j2. This method is easily applied by inversion of
the fraction followed by integer division with rational remainder. Inverting
85/512 yields 512/85, which is equal to 6 + 2/85.

Quantum Computing 61

We repeat the process with 2/85 until we get numerator 1. The result is:

85

512
=

1

6 + 1
42+ 1

2

. (2.16)

So, the convergents of 85/512 are 1/6, 42/253, and 85/512. We must select
the convergents that have a denominator smaller than N = 21 (since r < N

)5. This method yields 1/6, and then r = 6. We check that 26 ≡ 1 modulo
21, and the quantum part of the algorithm ends with the correct answer.
The order r = 6 is an even number, therefore GCD(2(6/2) ± 1, 21) gives two
non trivial factors of 21.
A straightforward calculation shows that any measured result in the second
peak (say 81 ≤ j ≤ 89) yields the convergent 1/6.
Consider now the third peak, which corresponds to k0/6, k0 = 2. We apply
again the method of continued fraction approximation, which yields 1/3, for
any j in the third peak (say 167 ≤ j ≤ 175). In this case, we have obtained
a factor of r (r1 = 3), since 23 ≡ 8 ̸≡ 1 modulo 21. We run the quantum part
of the algorithm again to find the order of 8. We eventually obtain r2 = 2,
which yields r = r1r2 = 3× 2 = 6.
The fourth and fifth peaks yield also factors of r. The last peak is similar to
the second, yielding r directly.
The general account of the succeeding probability is as follows. The area
under all peaks is approximately the same: ≈ 0.167. The first and fourth
peaks have a nature different from the others—they are not spread.
To calculate their contribution to the total probability, we take the basis
equal to 1. The area under the second, third, fifth, and last peaks are calcu-
lated by adding up Prob(j), for j running around the center of each peak.
So, in approximately 17% cases, the algorithm fails (1st peak). In approx-

5The inequality r < N comes from the two inequalities r ≤ ϕ(N) ≤ N , where ϕ(.) is
the Euler function (ϕ(N) gives the number of positive integers less than N , coprime to
N). In particular, the first inequality follows from the Euler’s theorem: xϕ(N) ≡ 1 mod N,

where x is a positive integer coprime to N . The second inequality follows easily from the
definition of ϕ.

62 Quantum Computing

imately 33% cases, the algorithm returns r in the first round (2nd and 6th
peaks). In approximately 50% cases, the algorithm returns r in the second
round or more (3rd, 4th, and 5th peaks).
Now we calculate the probability of finding r in the second round. For the
3rd and 5th peaks, the remaining factor is r2 = 2. The graph equivalent to
Fig. 2.5 in this case has 2 peaks, then the algorithm returns r2 in 50% cases.
For the 4th peak, the remaining factor is r = 3 and the algorithm returns
r2 in 66.6% cases. This amounts to 2×50%+66.6%

30
of 50%, which is equal to

around 22%.
In summary, the success probability for x = 2 is around 55%.

2.3 Impact on cryptography

With interest growing in developing universal quantum computers, ana-
lyze the security of a cryptographic algorithm from the point of view of a
quantum computer is of vital importance to the security of our data.
Nowadays, we are aware that some cryptosystems, believed to be safe against
classical computers, are vulnerable to quantum computers: there are in fact
quantum algorithms that are able to break current cryptographic systems,
efficiently (in polynomial time, in the number of digits of the integer).
The main example of a quantum algorithm killer of many classical cryp-
tosystems is the Shor’s algorithm: the quantum-computer discrete-logarithm
algorithm that breaks for example RSA, Diffie-Hellman, elliptic curve Diffie-
Hellman (ECDH), DSA and ECDSA. In fact, since the birth of this algo-
rithm, the integer factorization problem, the discrete logarithm problem or
the elliptic-curve discrete logarithm problem can be solved in a polynomial
time on a sufficiently powerful quantum computer running Shor’s algorithm.
Another quantum algorithm, Grover’s algorithm ([29, 10]), does have some
applications to these systems; but Grover’s algorithm is not as shockingly
fast as Shor’s algorithm. Grover’s algorithm is able to boost the search
speed in an unsorted database. Grover’s algorithm is an algorithm that can

Quantum Computing 63

potentially affect all cryptosystems, for instance it can boost a brute force
attack, i.e., an attack that looks for a key, recursively trying all the possible
combinations until the right one is found.
This particular quantum attack, however, can be avoided simply by increas-
ing the size of the keys in all cryptographic systems: this is why Groove’s
algorithm had less impact on today’s cryptography, than Shor’s one.
So, the question is: is cryptography dead?
A closer look reveals, fortunately, that there is no justification for the leap
from "quantum computers destroy RSA and some other cryptosystem" to
"quantum computers destroy cryptography". There are many important
classes of classic cryptographic systems based on different mathematical
phenomena. All of these systems are believed to resist classical comput-
ers and quantum computers. Nobody has figured out a way to apply Shor’s
or Grover’s algorithm to solve this problems.
Can any other quantum attack be successfully be carried out on these sys-
tems? Perhaps. This is a familiar risk in cryptography, which is why the
community invests huge amounts of time and energy in cryptanalysis. Some-
times cryptanalysts find a devastating attack, demonstrating that a system
is useless for cryptography; for example, every usable choice of parameters
for the Merkle-Hellman knapsack public-key encryption system [34] is easily
breakable. Sometimes cryptanalysts find attacks that are not so devastating
but that force larger key sizes. Sometimes cryptanalysts study systems for
years without finding any efficient attacks, and the cryptographic community
begins to build confidence that the best possible attack has been found—or
at least that real—world attackers will not be able to come up with anything
better.

Consider, for example, the following three factorization attacks against
RSA [11]:

• 1978: The original paper by Rivest, Shamir, and Adleman mentioned a
new algorithm, Schroeppel’s "linear sieve," that factors any RSA mod-

64 Quantum Computing

ulus n - and thus breaks RSA - using 2(1+o(1))(log(n))1/2(log(log(n)))1/2 simple
operations. Here log = log2. Forcing the linear sieve to use at least 2b

operations means choosing n to have at least (0.5+o(1))b2/ log(b) bits.
Warning: 0.5 + o(1) means something that converges to 0.5 as b→∞.
It does not say anything about, e.g., b = 128. Figuring out the proper
size of n for b = 128 requires looking more closely at the speed of the
linear sieve.

• 1988: Pollard introduced a new factorization algorithm, the "number-
field sieve." This algorithm, as subsequently generalized by Buhler,
Lenstra, and Pomerance, factors any RSA modulus n using
2(1.9...+o(1))(log(n))1/3(log(log(n)))2/3 simple operations. Forcing the number-
field sieve to use at least 2b operations means choosing n to have at
least (0.016... + o(1))b3/(log(b))2 bits. Today, twenty years later, the
fastest known factorization algorithms for classical computers still use
2(constant+o(1))(log(n))1/3(log(log(n)))2/3 operations. There have been some
improvements in the constant and in the details of the o(1), but one
might guess that 1/3 is optimal, and that choosing n to have roughly
b3 bits resists all possible attacks by classical computers.

• 1994: Shor introduced an algorithm [54] that factors any RSA modulus
n using (log(n))2+o(1) simple operations on a quantum computer of size
log(n)1+o(1). Forcing this algorithm to use at least 2b operations means
choosing n to have at least 2(0.5+o(1))b bits an intolerable cost for any
interesting value of b.

Consider, for comparison, attacks on another thirty-year-old public-key cryp-
tosystem, namely McEliece’s hidden-Goppa-code encryption system [42]. The
original McEliece paper presented an attack that breaks codes of "length n"
and "dimension n/2" using 2(0.5+o(1))n/ log(n) operations. Forcing this attack
to use 2b operations means choosing n at least b(2+o(1)) log(b). Several sub-
sequent papers have reduced the number of attack operations by an impres-
sively large factor, roughly n log(n) = 2(log(n))

2

, but (log(n))2 is much smaller

Quantum Computing 65

than 0.5n/ log(n) if n is large; the improved attacks still use 2(0.5+o(1))n/ log(n)

operations. One can reasonably guess that 2(0.5+o(1))n/ log(n) is best possible.
Quantum computers do not seem to make much difference, except for reduc-
ing the constant 0.5. If McEliece’s cryptosystem is holding up so well against
attacks, why are we not already using it instead of RSA? The answer, in a
nutshell, is efficiency, specifically key size. McEliece’s public key uses roughly
n2/4 ≈ b2(log(b))2 bits, whereas an RSA public key-assuming the number-
field sieve is optimal and ignoring the threat of quantum computers-uses
roughly (0.016...)b3/(log(b))2 bits. If b were extremely large then the b2+o(1)

bits for McEliece would be smaller than the b3+o(1) bits for RSA; but real-
world security levels such as b = 128 allow RSA key sizes of a few thousand
bits, while McEliece key sizes are closer to a million bits.
In addition to looking for classical algorithms resistant to quantum comput-
ers we have a second lifeline: in a world where the opponent has a quantum
computer at their disposal, we too, potentially, can have one, and it would
therefore be possible to implement quantum cryptographic algorithms (on
quantum computer) resistant to quantum computing.
Let us briefly summarize these two strategies, known as Post-Quantum Cryp-
tography and Quantum respectively:

• Post-Quantum Cryptography : it is based on the use of classical cryp-
tographic algorithms, to be implemented, therefore, on classical com-
puters, (possibly strengthened by choices of more robust parameters)
which are thought to be resistant also to a quantum computer.

• Quantum Cryptography : the idea is to use (in the scenario in which they
are available to us) quantum computers (and other quantum devices) to
create quantum algorithms resistant to quantum (and classical) attacks;

Post-quantum cryptography and quantum cryptography are fundamentally
different, but both have their place in strengthening security in a potential
future where we have large quantum computers.
These two strategies, however, will be explored in the next chapters of this

66 Quantum Computing

thesis.

Chapter 3

Quantum cryptography

Quantum cryptography actually uses quantum mechanical principles as
the basis of the security.
For example, quantum key distribution uses these quantum mechanical prop-
erties to create a shared key and distribute it, while being certain that a third
party has not eavesdropped. For quantum states, we have several properties
of nature that gives quantum information an extra level of security, first of
all: quantum states collapse when they are measured. If an attacker tried to
read out information in an entanglement based protocol, the quantum states
would no longer be in a superposition. Additionally, the no-cloning theorem
for quantum mechanics states that it’s impossible to copy a quantum state.
So, an attacker could not copy the quantum information being transmitted
and do operations on their copy. If someone tries to eavesdrop, Alice and
Bob will know.
Quantum cryptography is based on physical laws similar to those listed above,
and not our knowledge and understanding of mathematics and hard prob-
lems. This means that it will remain secure no matter how much (quantum
or classical) computing power grows over the years, and it does not matter
how much mathematics develops finer resolution methodologies for mathe-
matics problems (like factorization).
So why don’t we just use quantum cryptography if it’s so secure?

67

68 Quantum cryptography

Quantum cryptography requires specialized equipment. For example, you
need photon detectors, beamsplitters, and other equipment to make it work.
We cannot put all of this into a small device like your phone.
Also, just because the encryption itself is fundamentally secure by the laws
of physics, that doesn’t mean no attacks can ever occur.
Even without quantum computers, intrusion does occur even on currently
secure classical cryptographic algorithms. It’s not because some computer
can break the encryption. Side channel attacks can occur. These happen
because of weakness in the implementation of the cryptosystem instead of
a weakness in the algorithm itself. Even though you can be sure that no
one has directly intercepted the photons in the process of creating the key
in the quantum key distribution protocols, side channel attacks do exist in
quantum cryptography as well.
The hardware requirements make it very difficult to use quantum cryptogra-
phy everywhere. So, we will still need a post-quantum cryptographic protocol
to secure the majority of devices.

Long distance quantum communication utilizes quantum properties.
BB84 and E91 (entanglement-based) are the most famous communication
protocols for quantum key exchange. These protocols generate a shared
secure key.

To better understand what we are talking about, let us analyze how BB84
works.

3.1 BB84: quantum key exchange protocol

BB84 is a quantum key distribution scheme developed by Charles Bennett
and Gilles Brassard in 1984. It is the first quantum cryptography protocol
invented. The protocol is provably secure [55], relying on two conditions:

i) the quantum property that information eavesdroping is only possible
at the expense of disturbing the signal, if the two states one is trying

Quantum cryptography 69

to distinguish are not orthogonal (see no-cloning Theorem and Mea-
surement problem in Chapter 1);

ii) the existence of an authenticated public classical channel in which to
communicate.

In the BB84 scheme, Alice wishes to send a private key to Bob, let us see
how she does it.

1. Alice starts by choosing two strings of bits, a and b, each n bits long.
The first string will be the message to send to Bob, while the second,
chosen randomly, represents the basis in which to encode each bit of
the first string.

2. She then encodes these two strings of bits as a tensor product of n
qubits:

|ψ⟩ =
n⊗

i=1

|ψaibi⟩ = |ψa1b1 , . . . , ψanbn⟩

where ai and bi are the i-th bits of a and b respectively, and |ψaibi⟩
represents the state obtained by encoding the bit ai in the basis given
by the bit bi in the following way: if bi = 0 Alice will use the stan-
dard computational basis ({|0⟩, |1⟩}), while if bi = 1 she will use the
Hadamard basis ({|+⟩, |−⟩} := {H(|0⟩), H(|1⟩})} = { |0⟩+|1⟩√

2
, |0⟩−|1⟩√

2
}).

More specifically, all possible cases are the following:

|ψ00⟩ =|0⟩,

|ψ10⟩ =|1⟩,

|ψ01⟩ =
|0⟩+ |1⟩√

2
= |+⟩,

|ψ11⟩ =
|0⟩ − |1⟩√

2
= |−⟩.

The qubits are now in states that are not mutually orthogonal, and
thus it is impossible to distinguish all of them with certainty without
knowing b.

70 Quantum cryptography

The process just described allows Alice to encode a string of bits a into
a string of qubits |ψ⟩, using the information of the bits string b.

3. Alice sends |ψ⟩ over a public and authenticated quantum channel to
Bob.

4. Bob receives a state ϵ(|ψ⟩), where ϵ represents both the effects of noise
in the channel and eavesdropping by a third party we will call Eve.
After Bob receives the string of qubits, both Bob and Eve have their
own states. However, since only Alice knows b, it makes it virtually
impossible for either Bob or Eve to distinguish the states of the qubits.
Also, after Bob has received the qubits, we know that Eve cannot be in
possession of a copy of the qubits sent to Bob, by the no-cloning Theo-
rem, unless she has made measurements. Her measurements, however,
risk disturbing a particular qubit with probability of 0.5 if she guesses
the wrong basis.

5. Bob proceeds to generate a string of random bits b′ of the same length
as b. Then, for each i, he measures the i-th qubit he has received from
Alice ϵ(|ψai,bi⟩), using the standard computational basis if b′i = 0, using
the Hadamard basis otherwise. So he obtain a bits string a′.
The idea is to think of this Bob’s measurement of ϵ(|ψ⟩) as a process
of decoding |ψ⟩ into a′ using the information contained in b′. When
Bob’s choice of measurement base coincides with that of Alice’s coding
base (for example, when they both use the Hadamard one), the result
of the measurement must be the same, whereas where they use differ-
ent bases, there is no correlation between its result and Alice’s original
choice.
We observe in particular that when (with probability of 1/2) Bob
chooses the same measurement base as Alice, then, assuming that there
are no interceptors or disturbances, they share the same bit. When in-
stead (with probability 1/2) Bob chooses a measurement base other
than Alice, the resulting bit agrees with the bit sent by Alice only half

Quantum cryptography 71

of the time.
At this point, Bob announces publicly that he has received Alice’s
transmission (from now on Alice and Bob exchange only classic infor-
mation through a public communication channel).

6. Alice, as a measurement of |ψ⟩ was made, knows she can now safely
announce b , i.e., the bases in which the qubits were coded.
Bob communicates over a public channel with Alice to determine which
bi and b′i are not equal.
Both Alice and Bob now discard the bits in a and a′ where b and b′

do not match. Now they know that, except for the effects of ϵ, the
remaining bits are the same: so they are sharing a percentage of bits
of a.

7. From this remaining k bits where both Alice and Bob measured in the
same basis, Alice randomly chooses a part of the key, say k/2 bits,
and discloses her choices over the public channel. Both Alice and Bob
announce these bits publicly and run a check to see whether more than
a certain number of them agree, calculating the percentage error R
caused by ϵ.

8. If the percentage R is too high, Alice and Bob restart the protocol
from the beginning; otherwise they take the remaining bits, which are
a raw key ("RK"), and which will form the future secret key. Then they
proceed with refining the two RK in order to correct any errors between
them, and in order to make the key as secure as possible. For this
purpose they use information reconciliation and privacy amplification
techniques on the remaining bits of their RK. Let us describe these
two techniques.

9. The reconciliation of information is a classic error correction code: the
aim is to identify and correct the unequal bits between the Alice’s and
Bob’s RK, obviously without giving useful information to Eve. Alice

72 Quantum cryptography

and Bob divide the remaining bits of the RK into subsets of length l,
chosen in such a way that there is a very low probability that there
is more than 1 error per subset. This choice will be an important as-
sumption for the continuation of the scheme.
For each subset, Alice and Bob do the parity check (the parity P of a
binary string b1 . . . bl is defined as P = b1 ⊕ ... ⊕ bl). Since Alice and
Bob will exchange these parities, in order not to give Eve information
about the bits present in the substrings of length l of the RK, both
eventually eliminate each time the last bit of the substring from the
RK.
If for a substring the parities match (thanks to the assumption of the
improbability of having more than 1 error per string) Alice and Bob
assume that the l bits are equal; then the first l−1 bits of the substring
are kept in the RK.
If for a substring the parity test does not give a positive result, then,
through a binary search for parity, the different bit is identified and
eliminated. Also in this phase it is important that, every time the
parity is counted and shared with the other, the last bit of the tested
string is eliminated from the RK by Alice and Bob, in order not to
give information to Eve from their checks of parity.
At the end of this phase, with very high probability, Alice and Bob
have the same bit in their RK string.

10. Privacy amplification is a method for reducing (and effectively elimi-
nating) Eve’s partial information about Alice and Bob’s key. This par-
tial information could have been gained both by eavesdropping on the
quantum channel during key transmission (thus introducing detectable
errors), and on the public channel during information reconciliation
(where it is assumed Eve gains all possible parity information). Pri-
vacy amplification uses Alice and Bob’s RK to produce a new shorter
key, in such a way that Eve has only negligible information about the

Quantum cryptography 73

new key. This can be done using a hash function, chosen at random
from a publicly known set of such functions, which takes as its input a
binary string of length equal to the key and outputs a binary string of a
chosen shorter length. The amount by which this new key is shortened
is calculated, based on how much information Eve could have gained
(the percentage R) about the old key, in order to reduce the probability
of Eve having any knowledge of the new key to a very low value.
This new key obtained is the secret key sought, now shared between
Alice and Bob.

The Figure 3.1 shows an example of how BB84 works (before the use of
information reconciliation and privacy amplification techniques).

Figure 3.1: BB84 quantum key exchange protocol.
The channel represented in the figure, for simplicity, is considered to be noise-
free, and also the absence of Eve is assumed (in other words ϵ is the identity
function). To facilitate the reading of the scheme, the value 0 of the bit bi (or
b′i) has been indicated with "st" (for Standard Computational Basis), while
the value 1 with "H" (Hadamard Base). When the i-th bit of a, ai, was found
to be shared with probability 1, (i.e., when bi = b′i), it is value is reported in
the last line. Otherwise a "?" is returned, which means "unacceptable bit".

74 Quantum cryptography

Chapter 4

Post-Quantum Cryptography

From a technological point of view there is still a severe limitation coming
from the extreme difficulty of producing single photons, and thus quantum
bits. So far they are produced with highly attenuated lasers but that in turn
can also produce couples of correlated photons.
They are easily exploited to mount an attack, since a measurement on one
photon of the couple doesn’t reveal an alteration when the other photon is
measured, and recover the secret key entirely or partially.
It is exactly for this reason that quantum cryptography "fails" in the em-
bedded world, and post-quantum cryptography comes into play. We cannot
afford to underestimate the progresses made in the realization of quantum
computer. We need an alternative in case the quantum computer will be-
come reality in the next decade or so, or before quantum cryptography will
be reliable.
Among the numerous classes of classical cryptographic algorithms, there are
many that are believed to be resistant to quantum attacks. The strategy of
using these classical quantum computer-resistant algorithms is called post-
quantum cryptography, and the algorithms are termed post-quantum secure.
Let us give an overview of the different approaches that are used in post-
quantum cryptography (before going into more detail in Chapter 5):

• Lattice-based cryptography. This type of cryptography builds its

75

76 Post-Quantum cryptography

own security on the difficulty of solving certain problems in multidimen-
sional lattices, or on the difficulty of recognizing perturbed equations
from unperturbed ones, that is in the same spirit of the code-based
algorithm but in a lattice framework.
The most important lattice-based computational problem is the Short-
est Vector Problem (SVP), which asks us to approximate the minimal
Euclidean length of a non-zero lattice vector. See Section 5.1.
The example of this algorithm class that has perhaps attracted the
most interest, not the first example historically, is the Hoffstein-Pipher-
Silverman “NTRU”[30] public-key-encryption system (1998).

• Hash-based cryptography. Is the generic term for cryptographic
algorithm based on the security of hash functions (non-invertible func-
tions, such that the search for a pre-image is computationally intractable).
See Section 5.2.
The classic example is Merkle’s hash-tree public-key signature system
(1979) (topic that has been deepened in Chapter 4), building upon a
one-message-signature idea of Lamport and Diffie.

• Code-based cryptography. Is the area of research that focuses on
the study of cryptosystems based on error-correcting codes, following
the seminal work of McEliece’s, hidden Goppa-code public-key encryp-
tion system (1978) (see Section 5.3).
These algorithms are inspired to the telecommunication-engineering
problem of recovering the correct signal transmitted over a noisy chan-
nel. The signal is encoded with a particular ”code”, prior to the sending.
This allows to correct up to a certain number of errors. Encoding a
message is simply adding a certain number of parity/check bits to the
message. A parity bit could be, for example, the sum modulo 2 of a
couple of bits, therefore it helps in retrieving the original values of the
bits if one error occurred in the communication.

Post-Quantum cryptography 77

• Multivariate-equations cryptography. Is a kind of asymmetric1

cryptographic based on multivariate (usually quadratic) polynomials
over a finite field. This class of algorithm builds its own security on
solving simultaneously a random set of quadratic equations in more
than one indeterminate. The encryption/decryption is mainly based
on the evaluation of such equations at particular points.
See Section 5.4.

• Supersingular isogeny-based cryptography In this case, the se-
curity is based on computing isogenies between supersingular elliptic
curves. To better understand what we are talking about, see Section
5.5 in which the theme is widely discussed.
The proposal of isogeny-based cryptography as post-quantum cryptog-
raphy, although promising, is however relatively recent, and therefore
still little studied and far from being standardized. This is generally
a cons, because cryptographic schemes before being accepted as resis-
tant (especially quantum resistant) must survive years of study and
attempted forcing by the scientific community.
The most famous post-quantum cryptosystem based on supersingular
isogenies is the supersingular isogeny Diffie-Hellman (SIDH) key ex-
change by Jao and De Feo [31].

1Asymmetric cryptography is another name for indicate "Public-key cryptography"; an
asymmetric-key cryptographic system uses pairs of keys. Each pair consists of a public key
(which may be known to others) and a private key (which may not be known by anyone
except the owner). The generation of such key pairs depends on cryptographic algorithms
which are based on mathematical problems termed one-way functions. Effective security
requires keeping the private key private; the public key can be openly distributed without
compromising security. On the other hand, a Symmetric-key algorithms are algorithms for
cryptography that use the same cryptographic keys for both the encryption of plaintext and
the decryption of ciphertext. The keys, in practice, represent a shared secret between two
or more parties that can be used to maintain a private information link. The requirement
that both parties have access to the secret key is one of the main drawbacks of symmetric-
key encryption.

78 Post-Quantum cryptography

• Zero-knowledge based cryptographic schemes use the idea of
zero-knowledge proofs where one party (the prover) can prove to an-
other party (the verifier) that a given statement is true while the prover
avoids conveying any additional information apart from the fact that
the statement is indeed true. The essence of zero-knowledge proofs is
that it is trivial to prove that one possesses knowledge of certain infor-
mation by simply revealing it; the challenge is to prove such possession
without revealing the information itself or any additional information.
A zero-knowledge proof of some statement must satisfy three proper-
ties:

– Completeness: if the statement is true, the honest verifier (that
is, one following the protocol properly) will be convinced of this
fact by an honest prover.

– Soundness: if the statement is false, no cheating prover can con-
vince the honest verifier that it is true, except with some small
probability.

– Zero-knowledge: if the statement is true, no verifier learns any-
thing other than the fact that the statement is true. In other
words, just knowing the statement (not the secret) is sufficient to
imagine a scenario showing that the prover knows the secret. This
is formalized by showing that every verifier has some simulator
that, given only the statement to be proved (and no access to the
prover), can produce a transcript that "looks like" an interaction
between the honest prover and the verifier in question.

The first two of these are properties of more general interactive proof
systems. The third is what makes the proof zero-knowledge.
Zero-knowledge proofs are not proofs in the mathematical sense of the
term because there is some small probability, the soundness error, that a
cheating prover will be able to convince the verifier of a false statement.
In other words, zero-knowledge proofs are probabilistic "proofs" rather

Post-Quantum cryptography 79

than deterministic proofs. However, there are techniques to decrease
the soundness error to negligibly small values.

Example 8 (A zero-knowledge proof). Imagine your friend is red-green colour-
blind (while you are not) and you have two balls: one red and one green, but
otherwise identical. To your friend they seem completely identical and he is
skeptical that they are actually distinguishable. You want to prove to him
they are in fact differently-coloured, but nothing else; in particular, you do
not want to reveal which one is the red and which is the green ball.
Here is the proof system. You give the two balls to your friend and he puts
them behind his back. Next, he takes one of the balls and brings it out from
behind his back and displays it. He then places it behind his back again and
then chooses to reveal just one of the two balls, picking one of the two at
random with equal probability. He will ask you, "Did I switch the ball?"
This whole procedure is then repeated as often as necessary.
By looking at their colours, you can, of course, say with certainty whether
or not he switched them. On the other hand, if they were the same colour
and hence indistinguishable, there is no way you could guess correctly with
probability higher than 50%.
Since the probability that you would have randomly succeeded at identify-
ing each switch/non-switch is 50%, the probability of having randomly suc-
ceeded at all switch/non-switches approaches zero ("soundness"). If you and
your friend repeat this "proof" multiple times (e.g. 20 times), your friend
should become convinced ("completeness") that the balls are indeed differ-
ently coloured.
The above proof is zero-knowledge because your friend never learns which
ball is green and which is red; indeed, he gains no knowledge about how to
distinguish the balls.

80 Post-Quantum cryptography

4.1 Standardization: the NIST challenge

Several standardization bodies have recognized the urgency of switching
to cryptosystems that remain secure against attacks by quantum computers.
This is an important development because many applications of cryptogra-
phy require all parties to use the same cryptographic system: standardization
is thus a prerequisite for widespread deployment. Sometimes de-facto stan-
dards are set without standardization bodies, but formal standardization
processes are widely viewed as reducing cryptographic risks.
The National Institute of Standards Technology (NIST)2 has launched, in
2016, a post-quantum algorithms standardization program and competition
[6], called NIST Post-Quantum Cryptography Standardization.
23 signature schemes and 59 encryption/KEM (Key encapsulation mecha-
nisms) schemes were submitted by the initial submission deadline at the end
of 2017, of which 69 total were deemed complete and proper and partici-
pated in the first round. The main characteristics on which the algorithms
are evaluated are: security, efficiency and parameters sizes.
The NIST aims to complete this analysis by early 2022 and confirm the can-
didates for standardization.
Nowadays, there have been 3 rounds of selections. A total of 7 algorithms,
of which 3 are signature schemes, have advanced to the third round. In
addition to the 7 finalist algorithms, the NIST has included 8 other differ-
ent algorithms among the "alternative candidates": they are algorithms that
have not been completely discarded and are still under study, to which, how-
ever, the finalists are preferred today.

2The National Institute of Standards and Technology (NIST) is a physical sciences
laboratory and non-regulatory agency of the United States Department of Commerce. Its
mission is to promote American innovation and industrial competitiveness. NIST’s activi-
ties are organized into laboratory programs that include nanoscale science and technology,
engineering, information technology, neutron research, material measurement, and phys-
ical measurement. From 1901 to 1988, the agency was named the National Bureau of
Standards.

Post-Quantum cryptography 81

Figure 4.1: Finalists and Alternative Candidates of NIST Post-Quantum
Cryptography Standardization Program Selection, round three.

In Figure 4.1 there are two tables containing the names of the finalists
and the alternative candidates at the third round of NIST competition, to-
gether with the type of cryptography on which the algorithms are based, and
the use of each (PKE stands for Public-Key cryptography Encryption).
It is interesting to note that among the finalist algorithms there are no Hash-
based algorithms; this is because NIST has carried out a parallel standard-
ization process for hash-based digital signature (HBS) quantum resistant
algorithms [7].
In detail, the HBS algorithms of interest in this thesis are XMSS and LMS

82 Post-Quantum cryptography

[19], discussed later in Section 6.2.
Significant interest was manifested in the standardization of such schemes at
that time, because the underlying technology was well understood. In partic-
ular, the security of an HBS scheme, when implemented properly, relies only
on the preimage resistance of its component cryptographic hash function.
This property is already the basis for the security of many NIST-approved
cryptographic algorithms and protocols, and no quantum computing algo-
rithms are known that would pose a practical threat in the foreseeable future.

Chapter 5

Post-Quantum Cryptography

hard problems

The post-quantum schemes are, by definition, post-quantum secure. In
this Chapter we start by discussing what is meant by this.
To define security of a (post-quantum) cryptographic scheme the following
is required. Firstly, there must be a protection goal that the cryptographic
scheme is supposed to achieve. For example, encryption schemes protect con-
fidentiality and digital signature schemes provide integrity, authenticity, and
non-repudiation (for details see [43]). Secondly, there must be an adversary
model that describes the goals of a potential adversary and the capabilities
and resources that the adversary can use. For example, in the ciphertext-only
security model for encryption schemes, the adversary searches for plaintexts
that correspond to given ciphertexts and can only see ciphertexts; in the
chosen ciphertext model, the adversary can encrypt plaintexts of her choice
(for more information about this topic, see the Subsection 6.1.2). Thirdly,
the time period for which a cryptographic scheme is supposed to achieve its
security goals must be known. For example, one-time passwords only need to
be kept confidential until they have been used while conventional passwords
must be protected until they expire.

83

84 Post-Quantum Cryptography hard problems

We now describe how the security of a cryptographic scheme S is estab-
lished. An algorithmic problem P is selected whose hardness guarantees the
security of S. No polynomial time algorithm for solving P must be known as
in this case P would be considered easy to solve. In all classical cryptogra-
phy, and in particular in the post-quantum one, the security of the schemes
is based on "hard" algorithmic problems (which we will see in this chapter).
For example, in the case S is RSA algorithm, P is the integer factoring prob-
lem.
Once quantum computers reach maturity, integer factoring, along with some
other problems, can no longer be used as the security basis of cryptographic
schemes since polynomial-time algorithms for their resolution will be avail-
able.
If P cannot be solved in polynomial time, an instance1 of S is selected that
achieves the desired security level. Such an instance is determined by choos-
ing the necessary parameters and keys. For example, the RSA encryption
scheme is instantiated (i.e., an instance is created) by choosing two param-
eters: the RSA-modulus and the RSA-encryption exponent. Likewise, the
underlying algorithmic problem can be instantiated. In the case of the in-
teger factorization problem, an instance is determined by the number to be
factored.
Each instance IS of S is associated with an instance IP of P whose intractabil-
ity guarantees the security of IS in the chosen security model. In order for IS
to be secure for a sufficiently long time period, the instance IP must remain
intractable during this time period. So there are two tasks in this context.
First, connecting IS to some IP and second, determining the hardness of
the instances of P . The first task is either addressed using a mathematical
reduction proof or, if this is not possible, by applying heuristical arguments.

1An instance of an algorithm based (resp. of a computational problem underlying the
algorithm) is formed by the input parameters of the algorithm (resp. of the problem).
The same algorithm (resp. the computational problem), changing the choice of its initial
parameters, can present a more or less complex resolution: for example RSA (resp. the
factoring problem) with parameters of few digits is simple to carry out.

Post-Quantum Cryptography hard problems 85

In the case of RSA and the relevant security models, no reduction proof is
known. The second task is to analyze the hardness of P . Such an analysis
provides a lower bound for the computational resources required to solve a
given instance of P . There are different models for measuring the resources.
As the necessary technical details about quantum computers are still un-
known, such a more detailed analysis of post-quantum security is not yet
possible. This is why post-quantum security currently refers to a crypto-
graphic scheme being associated in the above sense to a computational prob-
lem that is not solvable in polynomial time on a quantum computer. This
includes the impossibility of solving this problem on a conventional computer.
Throughout this chapter, we will expose several computational problems be-
lieved to be intractable (not solvable in polynomial times) even by quantum
computers. There will be computational problems from different fields of
mathematics.
For each of the problems exposed, there exist many post-quantum crypto-
graphic algorithms that base their security on the intractability of the related
problem.

5.1 Hard Problems in Lattices for cryptogra-

phy

The discussion that follows leads us to the following conjecture:

Conjecture: There is no polynomial time quantum algorithm that approx-
imates lattice problems (that will be exposed) to within polynomial factors.

Latex-based post-quantum algorithms are numerous, and in general they
appear to be very promising. For example, among the 15 finalists/alternative
candidates of the Nist competition, 7 are latex-based (see Figure 4.1).
Among these, those of digital signature (such as Crystals-Dilithum and Fal-
con) will be better analyzed in Chapter 6.

86 Post-Quantum Cryptography hard problems

Let us now define in detail the main latex-based computational problems of
quantum strength.

Definition 7 (Lattices). Let b1, . . . , bn be n linearly independent vectors in
Rn (the basis for the lattice). A lattice of rank n is defined as the set of all
integer combinations:

L(b1, . . . , bn) =

{
n∑

i=1

xibi

∣∣∣∣∣ xi ∈ Z for 1 ≤ i ≤ n

}
(5.1)

A basis can be represented by the matrix B = [b1, . . . , bn] ∈ Rn×n having
the basis vectors as columns. Using matrix notation, the lattice generated
by a matrix B ∈ Rn×n can be defined as L(B) = {Bx | x ∈ Zn}.
It is not difficult to see that if U is a unimodular matrix (i.e., an integer
square matrix with determinant ±1), the bases B and BU generate the same
lattice. More precisely, the following Proposition holds:

Proposition 5. Let B and C two bases. Then L(B) = L(C) if and only if
there exists a unimodular matrix U such that B = CU .

Proof. First assume B = CU for some unimodular matrix U . Notice that if
U is unimodular, then U−1 is also unimodular. In particular, both U and U−1

are integer matrices, and B = CU and C = BU−1. Since U and its inverse
are two bijections of Zn, it follows that L(B) ⊆ L(C) and L(C) ⊆ L(B), i.e.,
the two matrices B and C generate the same lattice.

Now assume B and C are two bases for the same lattice L(B) = L(C).
Then, by definition of lattice, using the two inclusions that form the equality
between the two lattices, there exist integer square matrices V and W such
that B = CW and C = BV . We have to show that they have a unitary
determinant.
Combining these two equations we get B = BVW , or equivalently, B(I −
VW) = 0. Since the columns of B are linearly independent, ker(B) = {0},
so it must be I − VW = 0, i.e., VW = I. In particular, det(V)det(W) =

det(VW) = det(I) = 1. Since matrices V and W have integer entries,
det(V), det(W) ∈ Z, and it must be det(V) = det(W) ∈ {±1}.

Post-Quantum Cryptography hard problems 87

In particular, any lattice admits several bases, and this fact is at the core
of many cryptographic applications.

Definition 8 (Minimum lenght). Let L a lattice. For a fixed norm, we can
define the minimum lenght:

λ1 = min
0̸=x∈L

∥x∥ = min
x,y∈L,y ̸=x

∥x− y∥

Let us now describe the most well-known computational problems on
lattices, supposed to be post-quantum hard problem.

Definition 9 (Shortest Vector Problem, SVP). Given a lattice L(B), find a
(nonzero) lattice vector Bx (with x ∈ Zn) of length ∥Bx∥ = λ1.

SVP is one of the best known and most used lattice problem, and many
cryptosystems, such as NTRU [30], are secure under the assumption that
SVP is hard.
In fact, one typically considers the approximation variant of SVP where the
goal is to output a lattice vector whose length is at most some approximation
factor γ(n) times the length of the shortest nonzero vector, where n is the
dimension of the lattice:

Definition 10 (Approximated Shortest Vector Problem, SVPγ). Given a
lattice L(B) ⊆ Rn and fixed a factor γ = γ(n) ≥ 1, find a (nonzero) lattice
vector Bx (with x ∈ Zn) of length at most ∥Bx∥ ≤ γλ1.

It is clear that the closer the γ is to 1, the closer the problem comes to
being the exact version of SVP.
This type of problem weakening can also be done for the other problems
presented in this section. The modus operandi is completely analogous, so
we will avoid describing these generalizations.

Definition 11 (Closest Vector Problem, CVP). Given a lattice L(B) and a
target point t ∈ Rn (not necessarily in the lattice), find a lattice vector Bx
within distance ∥Bx− t∥ = min

Bx′∈L
∥Bx′ − t∥ =: µ from the target.

88 Post-Quantum Cryptography hard problems

Definition 12 (Shortest Independent Vectors Problem, SIVP). Given a lat-
tice L(B), find n linearly independent lattice vectors S = [s1, . . . , sn] =

[Bx1, . . . , Bxn] minimizing the quantity: maxi ∥si∥.

Figure 5.1: 2-dimensional SVP example

Figure 5.2: 2-dimensional CVP example

The problems defined above are not unrelated. For example, the closest
vector problem is a generalization of the shortest vector problem (we will
write SVP≤ CVP): this means that solving the CVP implies being able to
solve the SVP.
The naive method to find the shortest vector by calling the CVP to find the

Post-Quantum Cryptography hard problems 89

Figure 5.3: 2-dimensional SIVP example

closest vector to 0 does not work because 0 is itself a lattice vector and the
algorithm could output 0.
An idea of the reduction from SVP to CVP follows. Let us start by saying
that we are going to reduce the shortest vector problem to the solution of n
instances of the closest vector problem.
Suppose that the input to the SVP is the basis for lattice generated by
B = [b1, b2, . . . , bn]. Consider the basis Bi = [b1, . . . , 2bi, . . . , bn] and let xi be
the vector returned by CVP(Bi, bi). The claim is that the shortest vector in
the given lattice L(B) is the shortest vector in the set {xi − bi|i = 1, . . . , n}
(which can be easily found with a simple check between n vectors). In con-
clusion, we therefore affirm that this reduction has a polynomial cost in n.
To learn more about these topics, the reader is referred to the book [44],
which, for example, provides a detailed explanation of the reduction men-
tioned above.
The most well-known and widely studied algorithm for lattice problems is
the LLL algorithm, developed in 1982 by Lenstra, Lenstra, and Lovász [37].
This is a polynomial time algorithm for SVP (and for most other basic lattice
problems) that achieves an approximation factor of γ(n) = 2O(n). As bad as
this might seem, the LLL algorithm is surprisingly useful, with applications
ranging from factoring polynomials over the rational numbers, to integer pro-
gramming, as well as many applications in cryptanalysis (such as attacks on

90 Post-Quantum Cryptography hard problems

knapsack-based cryptosystems and special cases of RSA).
In 1987, Schnorr presented an extension of the LLL algorithm [52] leading to
somewhat better approximation factors at the price of an increased running
time.
Several variants of Schnorr’s algorithm exist. Unfortunately, all these vari-
ants achieve more or less the same exponential approximation guarantee.
If one insists on an exact solution to SVP, or even just an approximation
to within poly(n) factors, the best known algorithm has a running time of
2O(n) [9]. The space requirement of this algorithm is unfortunately also ex-
ponential which makes it essentially impractical. Other algorithms require
only polynomial space, but run in exponential time.

5.2 Hash function for cryptography

Post-quantum algorithms based on hash functions appear to be very
promising, so much so that NIST has decided to start an early and alternative
selection, in which the XMSS and LMS algorithms have been standardized;
to depen these algorithm, refer to the Chapter 6.
Their functioning is relatively simple, as are the assumptions about their
safety. In a sense that we will now go into, the thing that is required is that
hash functions used are "difficult to reverse".

A hash is a particular function which produces a sequence of bits, called
a digest, (or a string) that is related to the incoming data.

Definition 13. (Hash function) Let Σ be an alphabet, n ∈ N fixed, h is
called a hash function (of length n) if:

h :Σ∗ → Σn

x 7→ h(x)

Post-Quantum Cryptography hard problems 91

Where Σ∗ indicate the set of strings composed of symbols of Σ of any length
(including the null one), while with Σn the set of strings of length n.

Hash is a non-invertible function (for cardinality reasons is not 1-1) that
maps a string of arbitrary length to a string of predefined length. There are
several algorithms that implement hash functions with particular properties
that depend on the application. For example, it is known how to build hash
functions starting from lattice problems (see [51]).
There is no 1-1 correspondence between the hash result and the initial input,
since the possible input are more than the possible hashed digest, and so,
according to the pigeonhole principle, at least one hashed digest will corre-
spond to more texts. When two texts produce the same hash, it is called a
collision:

Definition 14 (Collision). Let h an hash function. The couple (x, x′) ∈
Σ∗ × Σ∗ is a collision if x ̸= x′ and h(x) = h(x′).

In the cryptographic field, the quality of a hash function is measured
directly by the difficulty in identifying two texts that generate a collision. To
discourage the use of hashing algorithms previously considered safe, it was in
fact sufficient for a single group of researchers to generate a collision. This is
what happened for example for the SNEFRU, MD2, MD4, MD5 and SHA-1
algorithms.
In particular in cryptographic applications the hash function, in addition
to asking for that for all input message x in Σ∗ is easy (has polynomial
complexity) to calculate its image h(x), is required to have the following
properties:

• resistance to preimage or one-way: the search for an input string that
gives a hashed string equal to a given hashed string is computationally
intractable. Formally: h is one-way if ∀y ∈ Σn one can efficiently find
x such that h(x) = y with negligible probability.

• resistance to the second preimage: it is computationally intractable to
search for an input string that gives a hashed string equal to that of a

92 Post-Quantum Cryptography hard problems

given string. Formally: h is second preimage resistant if ∀x ∈ Σ∗ one
can efficiently find x′ such that h(x) = h(x′) with negligible probability.

• collision resistance: it is computationally intractable to search for a
collision. Formally: one can efficiently find a collision (x, x′) with neg-
ligible probability.

So, a cryptographically secure hash function should not allow to go back,
in a time comparable with the use of the hash itself, to a text that can
generate it.
Let us note, with the next proposition, that being a one-way function does
not imply being a collision resistant function.

Proposition 6. There exist one-way functions that are not collision resis-
tant.

Proof. An example of a non-collision resistant one-way function is the fol-
lowing:

h :Σ∗ → Σm

x 7→ h(x) := x2 mod n

where n = pq, p and q are prime numbers, Σ = {0, 1} (and so one can think
at Σ∗ as the binary version of integer numbers, with a bit that gives us the
information about the sign).
This h is one-way function because making the preimage of it is equivalent
to solving the problem of extracting square roots of x modulo n = pq, which
is a well-known algebra problem equivalent to the factorization of n = pq, to
solve which they have not been found (not quantum) polynomial algorithms.
Obviously h is not resistant to collisions because it is easy to find a collision
∀x ∈ Σ∗. Just take the decimal equivalent x0 ∈ Z of the binary x ∈ Σ∗, set
y0 := −x0 and take y ∈ Σ∗, the binary version of y0. It turns out that (x, y)

is a collision for h.

Post-Quantum Cryptography hard problems 93

There is an obvious reduction from Collision to Second preimage.
Suppose that "FindSecondPreimage" is any algorithm for solving efficiently
the search of Second preimage. If we choose x ∈ X at random and run
FindSecondPreimage(x), then we obtain a collision with non negligible prob-
ability. Thus we obtain the following well-known and easy result.

Theorem 7. Collision resistance ≥ Resistance to the second preimage.

In [58] it is shown that it is possible to obtain a “good” reduction also
from Collision to Preimage for a given hash function h : X → Y , provided
that either of the following two assumptions are satisfied:

• the hash function h is “close to uniform”2, or

• there is an oracle3 that solves the Preimage problem with a “good”
2A hash function h is an uniform hash function if an adversary cannot distinguish the

output from f with a uniform distribution over its range. If the domain of h is of finite
cardinality, for example h : {0, 1}k → {0, 1}n, asking the uniformity is reduced to asking
that |h−1(y)| = k/n.

3The oracle, in this context, is an abstract entity capable of solving some problem,
which for example may be a decision problem or a function problem. The problem does
not have to be computable; the oracle is not assumed to be a Turing machine or computer
program. The oracle is simply a "black box" that is able to produce a solution for any
instance of a given computational problem:
•A decision problem is represented as a set A of natural numbers (or strings). An instance
of the problem is an arbitrary natural number (or string). The solution to the instance is
"YES" if the number (string) is in the set, and "NO" otherwise.
•A function problem is represented by a function f from natural numbers (or strings) to
natural numbers (or strings). An instance of the problem is an input x for f . The solution
is the value f(x).
In other words, an oracle is something which can immediately give you the answer to some
problem, usually an infeasible or impossible problem. For example, a "Halting-problem
Oracle" could tell you immediately whether a certain program on a certain input halts
or not, even though the halting problem is uncomputable to us mere mortals. However,
sometimes it is possible to prove some useful properties by pretending certain oracles exist.
In cryptography, for instance, oracles are most often used to show that, even if our attackers
had access to some seemingly-impossible oracle, they still wouldn’t have any (significant)
advantage to breaking the scheme security.

94 Post-Quantum Cryptography hard problems

success probability for every possible input y ∈ Y (in other words, it is
assumed the possibility of solving the Preimage problem).

Neither of these assumptions are entirely satisfactory. The first assumption
is likely to be true with high probability for random hash functions; however,
it seems to be impossible to verify for hash functions used in practice. The
second assumption ignores the possibility that there could exist practical
preimage-finding algorithms that are successful on some (but not all) inputs.
In light of these results, is advisable that it is best to require both collision
resistance and preimage resistance as necessary properties for a hash function
to be considered secure, due to the lack of a completely satisfactory reduction
from the problem of finding collisions to the problem of finding preimages.
Hash functions are the basis of various cryptographic algorithms of post-
quantum interest. To learn more, see Chapter 6.

5.3 Code-based cryptography

Linear Codes are originally used for Digital Communication and based
on Coding Theory. Coding theory is an important study which attempts to
minimize data loss due to errors introduced in transmission from noise, inter-
ference or other forces. Data to be transmitted is encoded by the sender as
linear codes which is decoded by the receiver. Data encoding is accomplished
by adding additional information to each transmitted message to enable the
message to be decoded even if errors occur.
Different codes are being studied to provide solutions for various problems
occur ring in applications. The most prominent type of error-correcting codes
are called linear codes. The linear codes can be represented by matrices. It
is computationally difficult to decode messages without knowing the under-
lying linear code. This hardness underpins the security of the code-based
(post-quantum) cryptosystem which includes all cryptosystems, symmetric
or asymmetric, whose security relies, partially or totally, on the hardness of
decoding in a linear error correcting code, possibly chosen with some partic-

Post-Quantum Cryptography hard problems 95

ular structure or in a specific family of linear codes.
Before talking more specifically about these cryptosystems, let us start re-
calling some basic definitions, and then listing some difficult problem cases
in code theory for (post-quantum) cryptography.

Definition 15 (Linear Code). Let Fq be a finite field of order q. An (n, k)−
code over Fn

q is a k-dimensional linear subspace C of the linear space Fn
q .

Elements of Fq are called words, and elements of C are codewords. We call n
the length, and k the dimension of C.

Definition 16 (Hamming distance, weight). The Hamming distance d(x, y)
between two words x, y is the number of coordinates in which x and y differ.
That is, d(x, y) = |{i : xi ̸= yi}|, where x = (x1, ..., xn) and y = (y1, ..., yn).
In particular, w(x) := d(x, 0) is called the Hamming weight of x, where 0 is
the vector containing n zeros. The minimum distance of a linear code C is
the minimum Hamming distance between any two distinct codewords in C.

Definition 17 (Generator matrix). A generator matrix of an (n, k)-linear
code C is a k × n matrix G whose rows form a basis for the vector subspace
C. We call a code systematic if it can be characterized by a generator matrix
C of the form G = (Ik×k∥Ak×(n−k)), (concatenation of two matrices) where
Ik×k is the k × k identity matrix and A, an k × (n− k) matrix.

Definition 18. (Parity-check matrix) A parity-check matrix of an (n, k)-
linear code C is an (n − k) × n matrix H whose rows form a basis of the
orthogonal complement of the vector subspace C, i.e., it holds that,

C = {c ∈ Fn
q : HcT = 0}

Definition 19 (Syndrome of a vector). Let C be an (n, k)-linear code over
Fq and let H be a parity-check matrix for C. For any w ∈ Fn

q , the syndrome
of w is the word S(w) = wHT ∈ Fn−k

q . (Strictly speaking, as the syndrome
depends on the choice of the parity-check matrix H, it is more appropriate to
denote the syndrome of w by SH(w) to emphasize this dependence. However,
for simplicity of notation, the subscript H is dropped whenever there is no
risk of ambiguity.)

96 Post-Quantum Cryptography hard problems

Definition 20 (Goppa code). Let g(z) =
∑t

i=0 giz
i ∈ Fqm [z], and let L =

{a1, . . . , an} ⊆ Fqm such that, for all ai ∈ L, g(ai) ̸= 0. Then the code defined
by {

c = (c1, . . . , cn) ∈ Fqm

∣∣∣∣∣
n∑

i=1

ci
z − ai

≡ 0 mod g(z)

}
is called Goppa code with parameters g(z) and L.

In what follows, we recall 4 hard problems in coding theory which are
supposed to have the property that they cannot be solved in polynomial
time in the worse case. In other words, this property ensures the existence
of some hard instances, not the hardness of every instance. These problems
provide the foundation for code-based cryptography.

Definition 21 (General decoding problem). Given an (n, k) code C over Fq,
an integer t0 and a word x, find a codeword c ∈ C with d(x, c) ≤ t0.

Definition 22 (Syndrome Decoding (SD) Problem). Given a matrix H and
a vector s (a word), both over Fq, and a nonnegative integer t0, find a vector
x ∈ Fn

q with Hamming weight w(x) = t0 such that HxT = sT .

Definition 23 (Goppa Parameterized Syndrome Decoding (GPSD) prob-
lem). Given a binary matrix H of size 2m × r and a syndrome s, decide
whether there exists a codeword c of weight r/m such that HcT = sT .

Definition 24 (Goppa Code Distinguishing (GD) problem). Given an r×n
matrix H, decide whether H is the parity check matrix of a Goppa code.

To learn more about what you have just read, see [56].
Code-based cryptography is one of the main post-quantum techniques avail-
able. Robert McEliece proposed the fist code-based cryptosystem in 1978
[42]. It belongs to a very narrow class of public-key primitives4 that have
resisted all cryptanalytic attempts up to now, despite its large key size.
The McEliece public-key encryption scheme was proposed almost 40 years

4Cryptographic primitives are well-established, low-level cryptographic algorithms that
are frequently used to build cryptographic protocols for computer security systems.

Post-Quantum Cryptography hard problems 97

ago and hasn’t been threatened essentially since then. McEliece’s original
idea was to use as ciphertext a word of a carefully chosen linear error-
correcting code (a binary Goppa code, in this case) to which random errors
were added. An arbitrary basis of the code — a generator matrix — is the
public key, allowing anyone to encrypt (see Figure 5.4).

Figure 5.4: Code-based public-key encryption. The ciphertext is a noisy code
word that only the legitimate user can correct to recover the cleartext.

Legitimate users who know a secret trapdoor — a fast (that is, polynomial
time) decoding algorithm for the code — can remove the errors and recover
the cleartext.
Adversaries are reduced to a generic decoding problem, which is believed to
be hard on average, including against quantum adversaries.
The McEliece’s scheme security relies on two computational assumptions
(previously defined):

• hardness of decoding in a random linear code (General decoding prob-
lem);

• the public key (a generator matrix) is hard to distinguish from a random
matrix (Goppa Code Distinguishing problem).

The first problem, the hardness of generic decoding, is an old problem of
coding theory for which only exponential time solutions are known; is also
believed to be hard on average. An improvement is possible and would then
require an increase in system parameters, but a signifcant breakthrough is un-
likely. Much like factoring and discrete logarithms for number theory–based

98 Post-Quantum Cryptography hard problems

cryptosystems, research on this topic must be maintained at the highest level
to ensure enough confidence in the system and adjust its parameters when
needed.
The second problem, public-key indistinguishability, is much more open. To
state it properly, the system must be instantiated. For instance, McEliece
proposed using the family of binary Goppa codes, for which the indistin-
guishability assumption holds so far. For some other families, Reed-Solomon
codes, concatenated codes, low-density parity check codes, and so on, the
assumption doesn’t hold and the corresponding instances of McEliece are
unsafe. Providing families of codes for which the indistinguishability as-
sumption holds is a key issue in code-based cryptography.
A quantum resistance of the McEliece scheme is also assumed at the moment.
There is a quantum attack strategy against the McEliece public key cryp-
tosystem (McEliece PKC for short), which uses, in the "research step", the
Groover’s quantum algorithm; however this attack would either require an
iterative application of the algorithm (which is not possible) or a memory of
size of the whole search space. Thus there is no possibility to significantly
speed-up the search step by Grover’s algorithm.
Table in Figure 5.5 gives an overview for the advantage of quantum comput-
ers over classical computers in attacking the McEliece PKC. One can see,
that the expected advantage does not lead to significantly different security
estimations for the McEliece PKC.

Figure 5.5: Attacking the McEliece PKC. Table from [47].

Post-Quantum Cryptography hard problems 99

Public-key encryption can also be achieved with the Niederreiter scheme
[45], which is equivalent to the McEliece scheme in terms of security.
In addition, two other important functionalities can be achieved from codes:
zero-knowledge authentication and digital signatures.
The first Zero-knowledge authentication protocol was proposed by Jacques
Stern in 1993 [57]. Some variants have followed, and all amount to the same
idea: one party picks a code word x, keeps it secret, and publishes a noisy
version of it, say y = x + e, with e of small weight. Then, this party can
prove interactively to another party that it knows a code word close to the
public word y without ever revealing any information about x.
There’s a generic way to produce digital-signature schemes from zero-knowledge
protocols using the Fiat-Shamir paradigm [27]. This can be achieved using
the Stern protocol. Note that, against quantum adversaries, the construction
requires some modifications [61]. The resulting digital signature scheme is
easy to implement and enjoys relatively small key sizes (a few hundred bytes)
but produces rather large signatures (one or a few hundred kilobytes).
Another method to build digital signatures is the “hash and sign” paradigm
in which users consider the digest of the message to be signed as a ciphertext
and produce the corresponding cleartext as the signature.
In this scenario, the public key can be used to check the signature’s validity.
Unfortunately, the McEliece encryption primitive is not invertible (isn’t sur-
jective) and therefore it cannot be used for authentication or for signature
schemes. Moreover, the scheme uses large public keys, has significant signing
complexity, and doesn’t scale very well.

5.4 Multivariate-equation-based cryptography

A multivariate public key cryptosystem (MPKC for short) has a set of
nonlinear (usually quadratic) polynomials over a finite field as its public
map. Its main security assumption is backed by the hardness of the problem
to solve nonlinear equations over a finite field. The corresponding mathe-

100 Post-Quantum Cryptography hard problems

matical structure to a system of polynomial equations, is the ideal generated
by those polynomials, so, philosophically speaking, multivariate cryptogra-
phy relate to mathematics that handles polynomial ideals, namely algebraic
geometry.
This family is considered as one of the major families of PKCs that could
resist potentially even the powerful quantum computers of the future. There
has been fast and intensive development in Multivariate Public Key Cryp-
tography in the last two decades. The original idea of MPKC was presented
by Matsumoto and Imai [41], and their scheme is commonly referred to as
the MI scheme. After MI scheme was proposed, several encryption systems
were proposed. Unfortunately, most of them, including MI, were broken af-
ter several security analyses, but, on the other hand, other constructions
are still viable. For example, the Rainbow (multivariate-quadratic-equation
based) scheme for digital signatures [22] is one of the finalists in the NIST
post-quantum cryptosystems competition.
Let us analyze the question more formally.
As envisioned by Diffie and Hellman, a public key cryptosystem depends on
the existence of class of “trapdoor one-way functions”. A trapdoor function is
a function that is easy to compute in one direction, yet difficult to compute
in the opposite direction (finding its inverse) without a special information,
called the trapdoor.

In the Multivariate (Public-Key) Cryptography the trapdoor one-way func-
tion takes the form of a multivariate quadratic polynomial map over a finite
field. Namely the public key is in general given by a tuple P of m nonlinear
(usually quadratic) multivariate (in w = (w1, . . . , wn)) polynomials:

P = (p1(w), . . . , pm(w))

where

zk = pk(w) :=
∑
i

Pikwi +
∑
i

Qikw
2
i +

∑
i>j

Rijkwiwj

Post-Quantum Cryptography hard problems 101

Figure 5.6: The idea of trapdoor function. A trapdoor function f with its
trapdoor t can be generated by an algorithm. f can be efficiently computed,
i.e., in probabilistic polynomial time. However, the computation of the in-
verse of f is generally hard, unless the trapdoor t is given.

with all coefficients and variables in K = Fq, the field with q elements. The
evaluation of these polynomials at any given value corresponds to either the
encryption procedure or the verification procedure (in the case of digital sig-
natures scheme).
Inverting a multivariate quadratic map is equivalent to solving a set of
quadratic equations over a finite field, or the following problem:

Definition 25 (Multivariate quadratic problem (MQ)). Solve the system
p1(w) = p2(w) = · · · = pm(w) = 0, where each pi is a quadratic in w =

(w1, . . . , wn). All coefficients and variables are in K = Fq.

There is the analogous version of the problem in which the nonlinear
polynomials pi are not only quadratic, but of any other degree, and this is
called the MP problem (multivariate-polynomials problem).
MQ and MP are in general hard problems (not solvable in polynomial time).
The one who is communicating using an MPKC will have to know a par-
ticular trapdoor that allows him to invert easily the polynomials in P . Of
course, a random set of quadratic equations would not have a trapdoor and
hence not be usable in an MPKC, so one has to "choose" which maps to use,
in order to know the trapdoor.
Since we are no longer dealing with “random” or “generic” systems, but sys-

102 Post-Quantum Cryptography hard problems

tems where specific trapdoors exist, the security of MPKCs is then not totally
guaranteed by the hardness of MQ, and effective attacks may exist for any
chosen trapdoor. The history of MPKCs therefore evolves as we understand
more and more about how to design secure, to "hide", multivariate trap-
doors.
Even if we restrict ourselves to cryptosystems for which the public key is a
m-tuple of polynomials P = (p1, . . . , pm) in variables w = (w1, . . . , wn) where
all variables and coefficients are in Fq, the way to hide the trapdoor is not
unique.
We are now going to describe a standard construction of an MPKC scheme.
The way used in this construction to "hide" the trapdoor, is a classical one;
it is based on the following problem, supposed hard to be solved:

Definition 26 (Extended Isomorphism of Polynomials problem (EIP)). Given
a class C of multivariate nonlinear maps (named central maps) from Kn to
Km, and a map P expressible as P = T ◦Q◦S, where T and S are invertible
affine maps (resp. over Km and over Kn) and Q ∈ C, find a decomposition
of P of the form P = T0 ◦Q0 ◦ S0, with affine invertible maps S0 and T0 and
Q0 ∈ C.

So let us take as public key the quadratic multivariate map P = T ◦
Q ◦ S : Kn → Km, where Q is a central map belonging to a certain class of
quadratic maps whose inverse can be computed relatively easily, hidden by
the composition with S and T :

P : Kn S−→ Kn Q−→ Km T−→ Km

w 7→ x 7→ y 7→ z

where:

Q(x1, . . . , xn) = Q(x) = (q1(x), . . . , qm(x)) = y = (y1, . . . , ym)

Post-Quantum Cryptography hard problems 103

and in particular, because of affinity of S and T maps:

x = (x1, . . . , xn) = S(w) =Msw + cs

z = (z1, . . . , zm) = T (y) =Mtw + ct

where Ms and Mt are full-rank square matrix, and cs, ct are the translation
vectors.
The xj are called the central variables. The polynomials giving yi in x are
called the central polynomials. The key of a MPKC is the design of the
central map Q.
The public key consists of the polynomials in P . In practice, this is always
the collection of the coefficients of the pi’s, compiled in some order conducive
to easy computation.
The secret key consists of the informations in S, T , and Q. That is, we
collect (M−1

s , cs), (M
−1
t , ct) and whatever parameters there exist in Q.

To verify a signature or to encrypt a block, one simply computes z = P (w).
To sign or to decrypt a block, one computes y = T−1(z), x = Q−1(y) and
w = S−1(x) in turn (in other words, he calculates P−1(z)). Here, calculate
Q−1(y) means finding one (of the possibly many, because in general Q is not
injective) pre-images of x under the central map Q.

5.5 Supersingular isogeny-based cryptography

In this Section, we focus on the supersingular elliptic curve isogeny-based
cryptography as a post-quantum candidate. We will first give a brief general
overview of the isogeny-based cryptography; then we will present the ques-
tion more formally, providing the mathematical prerequisites useful to deal
with the subject (in the Subsection 5.5.1), exposing the problems based on
elliptic curves considered "difficult" to be solved even by quantum computers
(in the Subsection 5.5.3), describing SIDH, the most famous cryptographic

104 Post-Quantum Cryptography hard problems

scheme based on elliptic curves, supposed to be quantum-resistant (in the
Subsection 5.5.2).
Among the earliest Elliptic Cryptography (ECC) systems, there are those
based on the Elliptic Curve Discrete Logarithm Problem (ECDLP5; for more
details about this Problem, see the Appendix B, Section B.3).
ECDLP is much more difficult than the problem of factorising prime num-
bers, with the same field size, and therefore with the same security, this
cryptography requires smaller public keys, and therefore more easily usable
than those used by the RSA method. Despite this, however, ECDLP did not
resist Shor’s quantum algorithm.
Couveignes [20] and Stolbunov [59] independently discovered a cryptosystem
that relies on the computational difficulty of finding isogenies between ordi-
nary6 elliptic curves. Soon after Childs et al. [18] found a quantum subex-
ponential attack on this cryptosystem, due to the communitative structure
of the endomorphism ring in the ordinary setting. In order to circumvent
this attack, De Feo, Jao and Plût [31] proposed to use isogenies between
supersingular elliptic curves, because the supersingular endomorphism rings
are not commutative: thus the SIDH (Supersingular isogeny Diffie–Hellman)
key exchange scheme was born. In addition, in supersingular elliptic curves
there is the useful property that its ring of endomorphisms on the algebraic
closure of a field is particularly large.
De Feo, Jao and Plût proposed also to transmit auxiliary information, that
is conjectured not to compromise the security of the scheme. In fact, this
cryptosystem remains secure to this day, with the best known attack requir-
ing exponential time with both classical and quantum computers.
Furthermore, it should be noted that the performance of the supersingular

5ECDLP consists in, fixed an elliptic curve on a finite field and two points P , Q on it,
to find an integer k such that Q = k · P . In particular, the meaning of the multiplication
k · P will become clear by reading this section.

6Elliptic curve can be of two types: ordinary or supersingular. These two opposing
attributes, together with other definition (like "isogeny"), will be specified in the course
of this Section.

Post-Quantum Cryptography hard problems 105

protocol outperforms the ordinary protocol.

5.5.1 Elliptic curves

In this section we assume that the reader is familiar with the basics of
abstract algebra and geometry (especially projective geometry).
Throughout this section we denote by K a field, and by K̄ its algebraic
closure. We also let char(K) denote the characteristic of K.
What is written in this section, from now on, is mainly taken from [60], where
there are the sources to deepen each topic and the proof of the theorems
(which have been omitted here).

Definition 27 (Elliptic curve). An elliptic curve E over a field K, denoted
by E/K, is given by the non-singular (non-singularity means that an elliptic
curve does not intersect itself) projective curve of the form:

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a3X
2Z + a4XZ

2 + a6Z
3,

for a1, a2, a3, a4, a6 ∈ K, along with a base point OE of (projective) coordi-
nates OE = [X, Y, Z] = [0, 1, 0], which is referred to as the point at infinity.

So elliptic curves are particular projective curves with a special base point.
Throughout this text we will be using the compact short Weierstrass equation
form for elliptic curves over K; in fact, if we assume that the characteristic
of K is different than 2 and 3 (which is always the case for isogeny-based
cryptography), it can be shown that one can transform the elliptic curve
equation into:

Definition 28 (Weierstrass Equation). An elliptic curve defied over K is
the locus in P2(K̄) of an equation of the form:

E : Y 2Z = X3 + aXZ2 + bZ3

with a, b ∈ K and 4a3 + 27b2 ̸= 0 (to ensure non-singularity), where OE =

[0, 1, 0].

106 Post-Quantum Cryptography hard problems

The point at infinity is the only point on the line Z = 0, all other points
have coordinates [x, y, 1]. The pairs (x, y) are the solutions of an affine equa-
tion, and are defined as x = X/Z and y = Y/Z. Hence, we can rewrite the
previous equation in its affine form:

E : y2 = x3 + ax+ b.

An important invariant of an elliptic curve is its discriminant ∆, which is a
quantity associated with the cubic equation describing the elliptic curve. As
far as our study is concerned, we can reduce ourselves to considering only
the short Weierstrass form equations. In this case the discriminant can be
defined as:

∆ = −16(4a3 + 27b2).

One can check the non-singularity condition by computing the discriminant
of the equation of the curve, since a cubic polynomial has only simple roots
over K̄ if and only if the discriminant is non-zero.
This also explains why the condition 4a3+27b2 ̸= 0 in the previous definition
is necessary for an elliptic curve.

Theorem 8 (Bézout’s theorem). Suppose that V and W are two plane pro-
jective curves defined over a field K that do not have a common component
(this condition means that W and V are defined by polynomials, which are
not multiples of a common non constant polynomial; in particular, this holds
for a pair of "generic" curves). Then the total number of intersection points
of W and V with coordinates in an algebraically closed field which contains
K, counted with their multiplicities, is equal to the product of the degrees of
W and V .

Since an elliptic curve is non-singular and it is defined by a cubic equation,
Bézout’s theorem tells us that any straight line in P2(K̄) intersects the curve
in exactly three points.
By requiring that three co-linear points sum to zero, we can define a group
law that provides elliptic curves with a natural group structure. The group

Post-Quantum Cryptography hard problems 107

law can be expressed by rational polynomials with coefficients in K, and
allows us to "add" and "subtract" points, and also to multiply a point by an
integer.

Definition 29 (Group law "+"). Let E : y2 = x3 + ax + b be an elliptic
curve. Let P1 = (x1, y1) and P2 = (x2, y2) be two points on E different from
the point at infinity; then we can define a group law "+" on E as follows:

• P +OE = OE + P = P for any point P ∈ E;

• If x1 = x2 and y1 = −y2, then P1 + P2 = OE (this allows us to define
the inverse of a point P : −P = −(x, y) := (x,−y));

• Otherwise, set

λ :=

{
y2−y1
x2−x1

if P1 ̸= P2

2x2
1+a

2y1
if P1 = P2

then the point P1 + P2 = (x3, y3) is defined by

x3 := λ2 − x1 − x2, y3 := −λx3 − y1 + λx1.

One can show that the above law produces an Abelian group, which we
denote by E(K), with OE acting as the identity element. The k-th scalar
multiple of a point P , k · P = P + · · ·+ P , will be denoted by [k]P .
Although we have avoided showing where the group law comes from, it ex-
ploits the Bézout’s theorem, and it has important geometric bases, that can
help make the law more "visual" and intuitive; the more interested reader
can deepen these arguments in Appendix B.

Definition 30 (Multiplication map). Let E be an elliptic curve over a field
K, and let P ∈ E(K̄). For any m ∈ Z, define the map [m] : E(K̄)→ E(K̄)

to be the multiplication-by-m map, where [m]P := P + · · ·+ P .
The multiplication map can be defied in a similar way for negative integers:
[−m]P := [m](−P), where −P is the inverse of P .

108 Post-Quantum Cryptography hard problems

Definition 31 (The m-torsion subgroup). For any m ∈ Z, and an elliptic
curve E(K), the set

E[m] :=
{
P ∈ E(K̄)

∣∣ [m]P = OE

}
is a subgroup of E(K), called the m-torsion subgroup of E(K), and an ele-
ment P ∈ E[m] is called an m-torsion point.
The m-torsion subgroup can be viewed as the kernel of the multiplication-
by-m map, while all the points in E[m] have order dividing m.

Theorem 9. Let E be an elliptic curve over a field K, and let m be a positive
integer. If char(K) = 0 or char(K) does not divide m, then

E[m] ∼= Z/mZ⊕ Z/mZ.

It follows from this Theorem that there are points P,Q ∈ E[m] such that
linear combinations of P and Q generate all of the group E[m] as

{aP + bQ| a, b ∈ Z/mZ} = E[m].

This property will be useful to define the SIDH keys exchange scheme.
For P,Q ∈ E, we denote the set of all linear combinations of P and Q by
⟨P,Q⟩.
Now we are going to study the algebraic relationships, and different kinds of
maps, between elliptic curves.

Definition 32 (Morphism of elliptic curve). Let E and E ′ be two elliptic
curves over K. A morphism ϕ : E → E ′ over K is a polynomial mapping
with coefficients from K. If the curves are in projective coordinates we can
write it as:

ϕ([X, Y, Z]) = [ϕ0[X, Y, Z], ϕ1[X, Y, Z], ϕ2[X, Y, Z]]

where ϕ0, ϕ1, ϕ2 are homogeneous polynomials of equal degree satisfying the
defining equation of E ′.

Post-Quantum Cryptography hard problems 109

If we are using Weierstrass coordinates, a morphism ϕ becomes a rational
map:

ϕ(x, y) =

(
ϕ0[x, y, 1]

ϕ2[x, y, 1]
,
ϕ1[x, y, 1]

ϕ2[x, y, 1]

)
.

Each morphism has an integer degree, such that a degree m morphism implies
that the kernel of the morphism has cardinality m. That is, the morphism
is m-to-1 from E to E ′.

Definition 33 (Homomorphism of elliptic curve). Let E and E ′ be two
elliptic curves over K. A homomorphism ϕ : E → E ′ over K is a morphism
of elliptic curves such that:

ϕ(P +Q) = ϕ(P) + ϕ(Q),

for all P,Q ∈ E(K). That is, ϕ respects the group law and structure of the
curve.

Theorem 10. Let E and E ′ be two elliptic curves, and ϕ : E → E ′ a
morphism. Then, ϕ is a homomorphism ⇔ ϕ(OE) = OE′.

Proposition 11. The map [m] , ∀m ∈ Z, defines an homomorphism from
E to itself (we say that [m] is an endomorphism). The degree of [m] is m2.

Another important type of morphism is isomorphism, which we can think
of as an invertible homomorphism, and can define as follows:

Definition 34 (Isomorphism of elliptic curves). Let E and E ′ be two elliptic
curves. An isomorphism of elliptic curves ϕ : E → E ′ is an isomorphism over
K̄ of algebraic varieties (see Appendix C)7 such that ϕ(OE) = OE′ . If there
is an isomorphism from E to E ′, then we write E ∼= E ′ and we say that E
and E ′ are isomorphic elliptic curves.

Isomorphism classes of elliptic curves, are labeled by an invariant, called
the j-invariant, whose origins can be traced back to complex analysis.

7In order to speak about isomorphisms between algebraic varieties (affine or projective)
it is necessary to give a certain amount of background. We do not do it here, lest it divert
attention from the study of elliptic curves. We include in the Appendix C.

110 Post-Quantum Cryptography hard problems

Definition 35 (j-invariant: j(E)). Let E/K : y2 = x3+ax+b be an elliptic
curve defied over a field K, define

j(E) = 1728
4a3

4a3 + 27b2
∈ K

to be the j-invariant of E.

Theorem 12. The quantity j(E) is invariant for a K-isomorphism class of
elliptic curves. The converse if also true for an algebraically closed field.
So, two curves are isomorphic over K̄ if and only if they have the same
j-invariant.

Definition 36 (Isogeny). Let ϕ : E → E ′ be a map between elliptic curves.
These conditions are equivalent:

• ϕ is a surjective group morphism,

• ϕ is a group morphism with finite kernel,

• ϕ is a non-constant algebraic map of projective varieties such that
ϕ(OE) = OE′ .

If they hold, ϕ is called an isogeny. Two curves are called isogenous if there
exists an isogeny between them.

Using Theorem 10, we can see that the isogenies are homomorphisms.
Additionally, by definition of endomorphism, we see that an endomorphism
is an isogeny from a curve E to itself. Perhaps, the simplest examples of
isogenies are the so-called pointed isomorphisms, which are basically isomor-
phisms that preserve the point at infinity of the two curves.

Example 9. On any elliptic curve, an isogeny from E to itself is the map [m],
for m ̸= 0. So being isogenous is, for example, a reflexive relation.
It may be interesting for the reader to know that being isogenous is actually
an equivalence relation.

For elliptic curves over finite fields, Tate showed that being isogenous is
equivalent to having the same cardinality.

Post-Quantum Cryptography hard problems 111

Theorem 13 (J. Tate). Let n ∈ N, q = pn, where p is a prime number; also
let E/Fq and E ′/Fq be elliptic curves. Then, E and E ′ are isogenous over
Fq if and only if

#E(Fq) = #E ′(Fq)

Definition 37 (Supersingular and Ordinary elliptic curve). Let E/K be an
elliptic curve, where K = Fq, q = pr, p prime number, 1 ≤ r ∈ N. Then one
can show that either:

E[pr] ∼= {0} or E[pr] ∼= Z/prZ.

In the first case, E is called supersingular. Otherwise it is called ordinary.
In other words, an elliptic curve is supersingular if and only if the group of
geometric points of order p is trivial.

Theorem 14. Let ϕ : E → E ′ be an isogeny. E is supersingular if and only
if E ′ is supersingular. E is ordinary if and only if E ′ is ordinary.

5.5.2 Supersingular isogeny Diffie-Hellman key exchange:

SIDH

SIDH PARAMETERS:

Before explaining the SIDH protocol, we need to establish the common
public parameters used in these protocols as part of the setup procedure.

• Choose a prime p of the form leAA leBB f ± 1, where f is a small cofactor.
Primes of this form are known to be dense, therefore, for any choice
of natural numbers lA, lB, eA, eB, the prime number theorem in arith-
metic progression guarantees that only O(log(p)) trials are needed in
expectation before a suitable prime is found. It should be noted that
generally we take lA = 2 and lB = 3. Currently, the most commonly
used prime is p = 23723239 − 1.

112 Post-Quantum Cryptography hard problems

• Choose a supersingular curve E over the field Fp2 , which has cardinality
(p ∓ 1)2 = (leAA leBB f)2. Such a curve can be computed efficiently using
the Bröker’s algorithm (see [12]).

• Choose torsion basis {PA, QA} of E[leAA] and {PB, QB} of E[leBB] (we are
using Theorem 9). This can be computed via a simple randomized al-
gorithm that scales random points of E, and tests linear independence
using an argument called Weil pairing (see [60]). This approach suc-
ceeds with a very high probability. It should be noted that the choice
of basis has no effect on the security.

The parameters p, E, lA, eA, lB, eB, PA, QA, PB and QB, compose the public
parameters of the system.

SIDH PROTOCOL:

Alice and Bob want to securely exchange a secret key sk.

1. Alice randomly chooses two elements mA, nA ∈ Z/leAA Z not both con-
gruent to 0, and computes a secret isogeny ϕA : E → EA with ker(ϕA) =

= ⟨RA⟩ = ⟨[mA]PA + [nA]QA⟩. To do this, Alice uses formulas due to
Vélu which allow to build an isogeny from its ker (see [63]). She trans-
mits to Bob EA along with the auxiliary input ϕA(PB), ϕA(QB), the
image of the other torsion base under the secret isogeny.

2. Bob randomly chooses two elements mB, nB ∈ Z/leBB Z not both con-
gruent to 0, and computes, using Vélu’s formulas, a secret isogeny
ϕB : E → EB with ker(ϕB) = ⟨RB⟩ = ⟨[mB]PB + [nB]QB⟩. He trans-
mits to Alice, EB along with the auxiliary input ϕB(PA), ϕB(QA).

3. Using the auxiliary input, Alice computes (using Vélu) an isogeny
ϕ′
A : EB → EAB with ker(ϕ′

A) = ⟨SA⟩ = ⟨[mA]ϕB(PA) + [nA]ϕB(QA)⟩.
Bob proceeds analogously to compute an isogeny ϕ′

B : EA → EBA with
ker(ϕ′

B) = ⟨SB⟩ = ⟨[mB]ϕA(PB) + [nB]ϕA(QB)⟩.

Post-Quantum Cryptography hard problems 113

4. It can be seen that the two curves EAB and EBA are isomorphic (ϕ′
A ◦

ϕB
∼= ϕ′

B ◦ϕA), and in particular have the same j-invariant. Hence, the
shared key is sk = j(EAB) = j(EBA).

Figure 5.7: Scheme of the SIDH protocol

Figure 5.8: Isogeny-Diagram at the base of the SIDH protocol

Note that all the elliptic curves involved are supersingular (using Theorem
14). It should be noted that the auxiliary inputs provide an eavesdropper
with the ability to evaluate ϕA on all of E[leBB] (respectively, ϕB on all of
E[leAA]). Though, it is conjectured that this leakage does not affect the secu-
rity of the protocols in any critical way, and essentially no information about

114 Post-Quantum Cryptography hard problems

ϕA or ϕB is revealed. The key exchange is schematized in Figure 5.7 and
depicted in the diagram of the Figure 5.8.

5.5.3 Post-Quantum hard problems on elliptic curves

In this subsection we study computational problems that supersingular
isogeny-based post-quantum cryptography is based on, which are the prob-
lems related to the SIDH key exchange.
We are using the same notation of the SIDH protocol.

Definition 38 (Supersingular Computational DiffiHellman (SSCDH) Prob-
lem). Given the curvesEA, EB and the points ϕA(PB), ϕA(QB), ϕB(PA), ϕB(QB),
find the j-invariant of E/⟨[mA]PA + [nA]QA, [mB]PB + [nB]QB⟩.

Definition 39 (Supersingular Decisional DiffiHellman (SSDDH) Problem).
Given a tuple sampled with probability 1/2 from one of the following two:

• (EA, EB, ϕA(PB), ϕA(QB), ϕB(PA), ϕB(QA), EAB), where

EAB
∼= E/⟨[mA]PA + [nA]QA, [mB]PB + [nB]QB⟩

• (EA, EB, ϕA(PB), ϕA(QB), ϕB(PA), ϕB(QA), EC), where

EC
∼= E/⟨[m′

A]PA + [n′
A]QA, [m

′
B]PB + [n′

B]QB⟩

where m′
A, n

′
A are chosen at random from Z/leAA Z and not both divisible

by lA, and similarly for m′
B, n

′
B,

determine from which distribution the tuple is sampled.

These problems are conjectured to be computationally infeasible (in poly-
nomial time) also by quantum computers.
The SIDH key exchange protocol provides some auxiliary information, there-
fore, these problems are not the most natural isogeny problems. Hence, it
is important to contrast them with the more general isogeny computation
problem, which does not give any auxiliary information.

Post-Quantum Cryptography hard problems 115

Definition 40 (General Isogeny Computation Problem). Given j, j′ ∈ Fp2 ,
find an isogeny ϕ : E → E ′, if it exists, where j(E) = j and j(E ′) = j′.

Comparing the SIDH problems with the above more general isogeny prob-
lem, we notice that the SIDH problems contain much auxiliary information.

116 Post-Quantum Cryptography hard problems

Chapter 6

Post-quantum Cryptography in

embedded world

This chapter studies, from several points of view, post-quantum digital
signature schemes selected among the algorithms chosen by NIST for the final
phase of its post-quantum competition, and among algorithms selected in
another parallel selection made by NIST for hash-based algorithms [19]. The
reason for this parallel standardization is that NIST specifically stated that
stateful1 schemes were not allowed in the NIST post-quantum competition,
because they could not be implemented using the API (Application Program
Interfaces) that NIST has defined (which does not allow any state). That
would appear to be reasonable, as stateful hash based signature methods do
need extra care to implement safely.
The focus on digital signature algorithms is due to the fact that it was in
the interests of Marelli, the company that supported this thesis, to have a
broad overview of these, with the aim of being able to choose one of these to
implement on their engine control unit (ECU).
A digital signature is a mathematical scheme for verifying the authenticity
of digital messages or documents. Digital signatures employ asymmetric

1The meaning of the words "stateful" and "stateless" will be clairified in the Subsection
6.1.2.

117

118 Post-quantum Cryptography in embedded world

cryptography. A valid digital signature, where the prerequisites are satisfied,
ensures that:

• the message was created by a known sender (authenticity property);

• the message was not altered in transit (integrity property);

• the signer cannot successfully claim they did not sign a message (non-
repudiation property).

This chapter begins with the study of the Winternitz signature scheme: it
is a famous hash-based digital signature scheme quantum resistant. It is also
at the base of XMSS and LMS digital signature protocols: two post-quantum
schemes selected by NIST for an early standardization (see [19]).
In the last section of this chapter a comparison between the post-quantum
signature algorithms proposed by NIST is provided, in order to select them
for a practical use.

6.1 Winternitz signature scheme

Winternitz One Time Signature (WOTS) is a famous quantum resistant
digital signature scheme. As it is a one-time signature (OTS) scheme, the
key can be used to securely sign only one message.
The study of this scheme is important for us since some digital signature
algorithms make use of variants of the Winternitz signature scheme.
In the Winternitz signature scheme, the message to be signed is hashed to
create a digest for making attacks significantly harder (as specified in [13])
and to have a standard length of the digest to work on. Then each digit of
the digest is signed using a hash chain.
Let us describe the scheme.

Suppose Alice wants to digitally sign her message to Bob.
First of all Alice hashes the message m (using for example the hash func-
tion H = SHA-256) which produces a (256-bit) digest: H(m). This digest

119

is encoded as base b number (where b is a fixed integer called the Winter-
nitz parameter ; often the letter w is used for b). So the digest is H(m) =

N0|N1|...Nk|... where every Nk is a digit with its value in {0, 1, .., b− 1}.
In the Figure 6.1 we can see how a 256-bit digest is encoded in base b = 16:

Figure 6.1: 256-bit digest encoded in base b = 16

Once obtained the message digest, the signing process (for every digit of
the digest) can be explained in 3 steps: Key Generation, Signature Genera-
tion and Signature Verification.

120 Post-quantum Cryptography in embedded world

Key Generation:

1. Alice needs to create a key pair for every digit of the digest: private
and public key.

2. To create the private key for the k−th digit of the message digest,
Alice uses a random number generator to obtain a random number xk
of a fixed length (number of bits): for the parameter sets approved by
the NIST recommendation in [19], xk will be either 192 or 256 bits in
length. So we assume for example 256 bits.
This private key xk is known only to Alice.

3. To create the public key, the k−th private key xk is hashed using an
hash function H (a common choice, also suggested by the NIST in [19],
is to take H = SHA-256) b− 1 times to obtain another number: so for
every xk we have its public key: Hb−1(xk) (also of 256-bit). This total
public key (the concatenation of previous)Hb−1(x0)|Hb−1(x1)|...Hb−1(xk)|...
is shared with Bob.
Unfortunately, the size of similar keys may not be comfortable enough:
in fact the length of these key is 256 times the number of digits ob-
tained.
For example, if we take b = 4 or b = 16 (that are common choices) we
will have the total public keys of length respectively 128*256=32768
bits (about 4 kilobyte) and 64*256=16384 bits (about 2 kilobyte).

In the figure 6.2 we can observe how to obtain 64 public keys from 64
private keys. These keys will be used for signing a message digest of 256 bit,
composed of 64 digits in base b = 16.

121

Figure 6.2: 64 keys generation in base b = 16

122 Post-quantum Cryptography in embedded world

Signature Generation:

The k−th digit of the digest, Nk, is signed by Alice by applying the hash
function Nk−times to the k−th digit of the private key xk.
So the signature for the digit Nk is: sk = HNk(xk). After doing this for each
digest Nk, the digital signature for m is generated:

s0|s1|...sk|... = HN0(x0)|HN1(x1)|...HNk(xk)|... (6.1)

Regarding the signature length, it is the same as the public key.
Figure 6.3 shows (like in the previous example, for b = 16) how the signature,
sk, is generated.

Figure 6.3: Generation of signature for 64 digits in base b = 16

Signature Verification :
Bob knows Alice’s public key, and we suppose he reads the digest message.

1. Bob, like Alice did, hashes the message using SHA-256 to produce the
digest: H(m) = N0|N1|...Nk|... (encoded in base b).

2. Bob then hash every signature value sk, b−1−Nk times: Hb−1−Nk(sk).

3. Bob compares the result with Alice’s public key, checking ifHb−1−Nk(sk) ==

Hb−1(xk) for every k. If they are a match, the signature is valid.

123

Figure 6.4 shows (like in the previous example, for b = 16) how the signature,
sk, can be verified. For the first digit N0, the hash function, H, is applied to
s0 = HN0(x0), 15 − N0 times, and if the resulting value is the same as the
public key H15(x0), then the signature is valid:

Figure 6.4: Signature check for N0 in base b = 16

Next figure 6.5 shows an example of a signature for a 32-bit hashed mes-
sage digest using b = 16 (so the digest has 8 digits). The digest of H(m) is
written as eight hexadecimal digits in the first row.
A separate hash chain is used to sign each digit with each hash chain having
its own private key.

Figure 6.5: A signature for a digest in base b = 16 (from [19])

124 Post-quantum Cryptography in embedded world

6.1.1 A possible attack protected by a checksum

Simply signing the individual digits of the digest is not sufficient because
an attacker would be able to generate valid signatures for other message di-
gests.
For example, given sk = HNk(xk) read by an attacker, he would be able to
generate a signature for a message digest with a k-th digit of Nk +1 (instead
of Nk) by applying H to sk once, or to a message digest with a kth digit of
Nk + 2 by applying H to sk twice.
An attacker could not, however, generate a signature for a message digest
with a kth digit minor than Nk as this would require finding some value y
such that H(y) = sk, which would not be feasible as long as H is preimage-
resistant.
In order to prevent the above attack, the Winternitz signature scheme com-
putes a checksum of the message digest and signs the checksum along with
the digest. For an n-digit message digest, the checksum is computed as:

n−1∑
k=0

(b− 1−Nk) (6.2)

The checksum is designed so that the value is non-negative, and any increase
in a digit in the message digest will result in the decreasing of the checksum.
This prevents an attacker from creating an effective forgery from a message
signature since the attacker can only increase values within the message digest
and cannot decrease values within the checksum.
If we compute the checksum for the example in Figure 6.5, we obtain the
situation of Figure 6.6:

125

Figure 6.6: Example of a signature and its checksum (from [19])

6.1.2 Key re-using: a problem for WOTS

As we said, the Winternitz scheme is One-Time-Signature scheme: the
keys must be ‘disposable’.
This creates memory problems since one always have to create new keys. In
particular, it is necessary to worry about using new keys that are always
different from the previous ones, and therefore you have to worry about the
previous "state"; in this sense we will say that the OTS schemes, therefore
the WOTS, are stateful.
In the embedded world this memory problem could be uncomfortable for
some users. The first question that comes to mind is: could the ‘ONE’-Time
Keys become ‘FEW’-Times Keys? Can we re-use these keys more thane once
without running into problems? Without making these schemes weaker and
exposing us to possible attacks?
Unfortunally the answer is no: measures have to be taken that prevent OTS-
key reuse in any case. This answer is given to us by [13] in which a study
was carried out about this question. In particular they studied the case of
just a double re-use of a OTS-key.
For WOTS with a Winternitz parameter of w = 16 for a 256-bit message
digest, if we use as a unit of measurement of the complexity of the attack,
the computations of a hash function, there’s, for example, an attack with an
attack complexity of 234 hash function computations. This can be done on a
modern computer within few days, if not hours. For bigger values of w, the

126 Post-quantum Cryptography in embedded world

attack complexity goes down even further.
However, as soon as we are considering attacks on quantum-computers, com-
plexities drop at least by a square-root factor.
In [13] is analyzed the problem of how to define security for a signature
scheme. Security notions are splitted into the goals an adversary (giving a
name, Eva) has to achieve and the attack capabilities given to Eva.
For the goals, the relevant notions are (NB: strong unforgeability is omitted
as it is irrelevant for this context):

• Full break (FB): Eva can compute the secret key.

• Universal forgery (UU): Eva can forge a signature for any given mes-
sage. Eva can efficiently answer any signing query.

• Selective forgery (SU): Eva can forge a signature for some message of its
choice. In this case Eva commits itself to a message before the attack
starts.

• Existential forgery (EU): Eva can forge a signature for one arbitrary
message. Eva might output a forgery for any message for which it did
not learn the signature from a oracle during the attack.

On the other hand, for the attacks we got (key-only attacks are omitted
as these allow for no signature queries at all):

• Random message attack (RMA): Eva learns the public key and the
signatures on a set of random messages.

• Adaptively chosen message attack (CMA): Eva learns the public key
and is allowed to adaptively ask for the signatures on messages of its
choice.

Theoretical results of the computational complexity for two-message at-
tacks against the Winternitz OTS are expressed in figure 6.7. The letter w

127

is used for the Winternitz parameter, the letter m for the message digest
length.

Figure 6.7: Theoretical results of the computational complexity for two-
message attacks against the Winternitz OTS. If the success probability of an
attack is not constant in terms of complexity, the attack complexity is given
to achieve a success probability of 1/2. (Table from: [13])

For example, take the EU-RMA (Existential forgery-Random message
attack) case: the adversary gets a signature of two random messages (M1,M2)

and has to find a third messageM3 that is covered byM1,M2. (The difference
to the CMA case is that Eva cannot optimize the choice of M1,M2).
How many message the adversary has to search, to forge a third signature?
It turns out that two messages cover a third one with probability of:

P [break(M1,M2,M3) = 1] ≈

(
(w + 1)(4w − 1)

6w2

)m+logm
logw

(6.3)

This means that when an attacker receives two signatures of two random

messages, it has to compute about
(

(w+1)(4w−1)
6w2

)m+logm
logw messages to find a

128 Post-quantum Cryptography in embedded world

covered third message.
For the common choises of m = 256 and w = 16, this number is approxi-
mately 234, which can be done within a few days on today’s CPUs.

6.2 XMSS and LMS

There are two famous WOTS-based post quantum digital signature schemes
selected by NIST in [19]: XMSS [15] and LMS [36].
At a high level, XMSS and LMS are very similar. They each consist of
two components: a one time signature scheme (a variant of WOTS) and a
method for creating a single, long-term public key from a large set of OTS
public keys.
While a single, long-term public key for a OTS scheme could be created from
a large set of OTS public keys by simply concatenating the keys together, the
resulting public key would be unacceptably large. Let us now examine the
second part of the schemes, the one relating to the creation of the long-term
key.

6.2.1 Long-term public key economize: Merkle tree

Instead of concatenating the OTS public keys, it could be used a Merkle
hash tree (like XMSS and LMS do), which allow for the long-term public key
to be shorter in exchange for requiring an additional amount of information
to be provided with each OTS key.
To create this tree, the OTS public keys are hashed once to form the leaves of
the tree, and these hashes are then hashed together (concatenated in pairs)
to form the next level up. Those hash values are then hashed together in
pairs, the resulting hash values are hashed together, and so on until all of
the public keys have been used to generate a single hash value (the root of
the tree), which will be used as the long-term public key.
The figure 6.8 depicts a hash tree that contains eight OTS public keys
k0, k1, . . . , k7.

129

The eight keys are each hashed to form the leaves of the tree h0, ..., h7, and
the eight leaf values are hashed concatenated in pairs to create the next level
up in the tree: h01, h23, h45, h67. These four hash values are again hashed in
pairs to create h0−3 and h4−7, which are hashed together to create the long-
term public key: h0−7. This long-term public key (the root) is the trusted
point and it must be known to the verifier Bob.
The authenticity of Alice’s i-th key can be tested by retracing the tree, re-
calculating the hashes necessary, up to the root and then verifying their
equivalence with the known root.
For example if Bob received by Alice h0−7 as long-term public key, and he
wants to verify a message signed using k2 (also communicated before by Alice
with Bob), Alice would need to provide h3, h01, and h4−7 in addition to k2.
The verifier Bob, would compute h′2 := H(k2), h′23 := H(h′2∥h3), h′0−3 :=

H(h01∥h′23), and h′0−7 := H(h′0−3∥h4−7).
If h′0−7 is the same as h0−7, then k2 may be used to verify the message sig-
nature.

Figure 6.8: A Merkle Hash Tree

The idea of hashes tree could be generalized to form a multi-Merkle-tree:
a tree of several layers of Merkle trees. Both XMSS and LMS define single
tree and multi-tree variants of their signature schemes.
The trees on top and intermediate layers are used to sign the root nodes of
the trees on the respective layer below. Only the bottommost tree (on the

130 Post-quantum Cryptography in embedded world

lowest layer) is used to sign messages.
In an instance that involves two levels of trees, as shown in Figure 6.9, the
OTS keys that form the leaves of the top-level tree sign the roots of the trees
at the bottom level, and the OTS keys that form the leaves of the bottom-
level trees are used to sign the messages.
The root of the top-level tree is the long-term public key for the signature
scheme.
As described in Section 7 of [19], the use of two levels of trees can make it
easier to distribute OTS keys across multiple cryptographic modules in order
to protect against private key loss. A set of OTS keys can be created in one
cryptographic module, and the root of the Merkle tree formed from these keys
can be published as the public key for the signature scheme. OTS keys can
then be created on multiple other cryptographic modules with a separate
Merkle tree created for the OTS keys of each of the other cryptographic
modules, and a different OTS key from the first cryptographic module can
be used to sign each of the roots of the other cryptographic modules.
While there are benefits in the use of a two-level tree, it results in larger
signatures and slower signature verification as each message signature will
need to include two OTS signatures.
For example, if a message were signed using the OTS key kb,6 in Figure 6.9,
the signature would need to include the signature on rootb,1 using ka,1 in
addition to the signature on the message using kb,6.

This possible strategy to economize on the size of the keys, however, does
not lighten the Winternitz scheme enough: this is why LMS and XMSS are
still practically not very usable in most real situations.

6.2.2 XMSS: The eXtended Merkle Signature Scheme

Since XMSS and LMS are very similar signature scheme, and have similar
performances at a high level, in this thesis it was chosen to deepen only one
of them: XMSS. This subsection is studied from [15].

131

Figure 6.9: Multi level Merkle’s tree

The parameters of XMSS are the following:

• n ∈ N, the security parameter,

• ω ∈ N, ω > 1, the Winternitz parameter,

• m ∈ N, the message length in bits,

• Fn = {fK : {0, 1}n −→ {0, 1}n|K ∈ {0, 1}n} a function family,

• H ∈ N, the tree height. XMSS allows to make 2H signatures using one
keypair,

• hK , a hash function, chosen randomly with the uniform distribution
from the family Hn = {hK : {0, 1}2n −→ {0, 1}n|K ∈ {0, 1}n},

• x ∈ {0, 1}n, chosen randomly with the uniform distribution. The string
x is used to construct the one-time verification keys.

Those parameters are supposed publicly known.
In this thesis, is written log for log2.
As mentioned above, in XMSS it is used WOTS in a slightly modified ver-
sion proposed in [14], sometimes called WOTS-PRF (from Pseudo-Random
Function).

132 Post-quantum Cryptography in embedded world

For K, x ∈ {0, 1}n , e ∈ N and fK ∈ Fn , f e
K(x) is defined as follows.

We set f 0
K(x) := K and for e > 0 we define K ′ := f e−1

K (x) and f e
K(x) :=

fK′(x).
In contrast to previous versions of WOTS this is a (random) walk through
the function family instead of an iterated evaluation of a hash function. This
modification allows to eliminate the need for a collision resistant hash func-
tion family. Also, define:

l1 =

⌈
m

log(ω)

⌉
, l2 =

⌊
log(l1(ω − 1))

log(ω)

⌋
+ 1, l = l1 + l2.

The secret signature key of WOTS consists of l n−bit strings ski, 1 ≤ i ≤ l

chosen uniformly at random. The public verification key is computed as:

pk = (pk0, pk1, . . . , pkl) := (x, fω−1
sk1

(x), . . . , fω−1
skl

(x)),

with fw−1 as defined above.
WOTS signs messages of binary length m. They are processed in base w
representation. They are of the formM = (M1, . . . ,Ml1),Mi ∈ {0, . . . , ω−1}.
The checksum C =

∑l1
i=1 (ω − 1−Mi) in base ω representation is appended

to M . It is of length l2. The result is M∥C =: (b1, . . . , bl). The signature of
M is

σ = (σ1, . . . , σl) := (f b1
sk1

(x), . . . , f bl
skl
(x)).

The signature is verified by constructing (b1, . . . , bl) and checking if:

(fω−1−b1
σ1

(pk0), . . . , f
ω−1−bl
σl

(pk0)) == (pk1, . . . , pkl).

The sizes of signature, public, and secret key are ln.
For more detailed information see [14].
Let us now study the use of Merkle Hash Trees in XMSS.
It utilizes the hash function hK . The XMSS tree is a binary tree. Denote its
height by H. It has H + 1 levels. The leaves are on level 0. The root is on
level H. The nodes on level j, where 0 ≤ j ≤ H, are denoted by Nodei,j,
where 0 ≤ i ≤ 2H−j. The construction of the leaves is explained below. Level

133

j for 1 ≤ j ≤ H is constructed using a bitmask (bl,j∥br,j) ∈ {0, 1}2n chosen
uniformly at random. The nodes are computed as:

Nodei,j := hK((Node2i,j−1 ⊕ bl,j)∥(Node2i+1,j−1 ⊕ br,j))

for 1 ≤ j ≤ H (the operator ⊕ is used to indicate XOR bitmasking). The
usage of the bitmasks is the main difference to the other Merkle tree con-
structions. It allows to replace the collision resistant hash function family.
Figure 6.10 shows the construction of the XMSS tree.

Figure 6.10: The XMSS tree construction

We explain the computation of the leaves of the XMSS tree. The XMSS
tree is used to authenticate 2H WOTS verification keys, each of which is
used to construct one leaf of the XMSS tree. The construction of the keys is
explained at the end of this subsection. In the construction of a leaf another
XMSS tree is used. It is called L-tree. The first l leaves of an L-tree are the
l bit strings (pk0, pk1, . . . , pkl) from the corresponding verification key. As l
might not be a power of 2 there are not sufficiently many leaves. Therefore
the construction is modified. A node that has no right sibling is lifted to a
higher level of the L-tree until it becomes the right sibling of another node.
In this construction, the same hash function as above but new bitmasks are
used. The bitmasks are the same for each of those trees. As L-trees have
height ⌈log(l)⌉, additional ⌈log(l)⌉ bitmasks are required. The XMSS public
key PK contains the bitmasks and the root of the XMSS tree.

134 Post-quantum Cryptography in embedded world

To sign the ith message, the ith WOTS key pair is used. The signature
SIG = (i, σ, Auth) contains the index i, the WOTS signature σ, and the au-
thentication path for the leafNode0,i. It is the sequenceAuth = (Auth0, . . . , AuthH−1)

of the siblings of all nodes on the path from Node0,i to the root. Figure 6.11
shows the authentication path for leaf i. To compute the authentication path
is used the tree traversal algorithm from [16] as it allows for optimal balanced
runtimes using very little memory.

Figure 6.11: The authentication path for leaf i

To verify the signature SIG = (i, σ, Auth), the string (b0, . . . , bl) is com-
puted as described in the WOTS signature generation. Then the ith verifi-
cation key is computed using the formula

(pk1, . . . , pkl) = (fω−1−b1
σ1

(pk0), . . . , f
ω−1−bl
σl

(pk0)).

The corresponding leaf Node0,i of the XMSS tree is constructed using the
L-tree. This leaf and the authentication path are used to compute the path
(p0, . . . , pH) to the root of the XMSS tree, where p0 = Node0,i and

pj =

hK((pj−1 ⊕ bl,j)∥(Authj−1 ⊕ br,j)), if ⌊i/2j⌋ ≡ 0 mod 2

hK((Authj−1 ⊕ bl,j)∥(pj−1 ⊕ br,j)) else
(6.4)

for 0 ≤ j ≤ H.
If pH is equal to the root of the XMSS tree in the public key, the signature
is accepted. Otherwise, it is rejected.

135

Let us now see the Signature Key Generation.
The WOTS secret signature keys are computed using a seed Seed ∈ {0, 1}n,
the pseudorandom function family Fn, and the pseudorandom generator
GEN which for λ ∈ N, µ ∈ {0, 1}n yields

GENλ(µ) = fµ(1)∥ . . . ∥fµ(λ).

For i ∈ {1, . . . , 2H} the i−th WOTS signature key is

ski ←− GENl(fSeed(i)).

The XMSS secret key contains Seed and the index of the last signature i.
The bit lenght of the XMSS public key is (2(H + ⌈log(l)|⌉ + 1)n an XMSS
signature has length (l +H)n and the length of the XMSS secret signature
key is < 2n.
In [15] it is also shown that XMSS is provably secure in the standard model
and it is discussed the minimality of the used assumptions. In particular
the following two theorems are proved: the first one ensecures th EU-CMA
security; the second one ensecures the forward secrecy.
The forward secrecy is a feature of specific key agreement protocols that
gives assurances that session keys will not be compromised (all signatures
created before remain valid) even if long-term secrets used in the session key
exchange are compromised. Obviously, this notion is only meaningful for key
evolving signature schemes that change their secret key over time. From an
attack based point of view this translates to: if an attacker learns the actual
secret key ski, he is still not able to forge a signature under a secret key skj,
with j < i. This is a desirable property, especially in the context of long
term secure signatures, as it allows to remove the need for timestamps and
a online trusted third party.

Theorem 15. If Hn is a second preimage resistant hash function family (
i.e., given y, for h ∈ Hn, an adversary can find an x such that h(x) = y

with a negligible probability) and Fn a pseudorandom function family, then

136 Post-quantum Cryptography in embedded world

XMSS is existentially unforgeable under chosen message attacks (EU-CMA
security).

Theorem 16. If Hn is a second preimage resistant hash function family and
Fn a pseudorandom function family, then XMSS (with the slightly modified
key generation described in 4th section of [15]) is a forward secure digital
signature scheme.

6.3 Comparison of digital signature algorithms

for practical use

6.3.1 A comparison between XMSS and LMS

The caveat of XMSS and LMS is that a private key can be used only once
to sign a message.
Instead of concatenating the OTS public keys, it could be used a Merkle
hash tree, as we saw earlier, which allow for the long-term public key to be
shorter in exchange for requiring an additional amount of information to be
provided with each OTS key.
The maximum number of messages an HBS (Hash Based Signatures) tree
can sign is 2Htree , where Htree is the height of the tree.
For a tree of height Htree = 40 or more, key generation would be completely
impractical, as the entire tree would need to be generated in order to form
the root.
So the proposal is to concatenate, in turn, several Merkle hash trees, in order
to create a Multi level Merkle’s tree.
The maximum number of signed messages of the multi-level tree is
2(Htree1+Htree2+...+HtreeZ

), where Htree1 , Htree2 , ..., HtreeZ are the heights of the
subtrees at level 1, 2, ..., Z.
With a multi-level tree the height of each tree remains reasonable.
Key generation can be done in time O(2Htree1 + O(2Htree2 + ... + O(2HtreeZ)

hashes computation (the count of the number of hash compression done

137

in these algorithms, is a good parameter to study the performance of the
schemes), which is considerably smaller than the number of signatures that
can be generated. Signing and verifying can also be done with a relatively
small cost increase.
On the other hand, multi-level trees do increase the length of the signature:
the new signature consists of the OTS signature, and now we include an OTS
signature for each tree level.
In fact one important disadvantage of post-quantum signatures is their size.
In particular, stateful hash based signatures schemes (like XMSS and LMS,
that are OTS) have large signatures that make them impractical in some
scenarios.
LMS and XMSS use different notation to specify the same parameters.
We will use a common notation for various parameters which is summarized
in Figure 6.12.

Figure 6.12: Meanings for parameteres used in this Subsection.

The public key and signature sizes for LMS and XMSS and their corre-

138 Post-quantum Cryptography in embedded world

sponding multi-level version are shown in Figure 6.13. Currently, the size of
the public keys depends on only the hash function.
Even though it is not obvious at first, the signature sizes of LMS are slightly
bigger that XMSS, but not significantly.

Figure 6.13: Sizes (in bytes) of HBS schemes based on schemes parameters.

To quantify the public key and signature sizes differences between LMS
and XMSS, we use the tables in Figure 6.14. The tables summarize sizes for
the two schemes that can sign the same amount of total messages, at the
same security level with the same OTS signature length.

Figure 6.14: Sizes (in bytes) of HBS schemes based for various parameters,
and n = m = 32.

In particular: in table (a), both schemes (XMSS, LMS) can sign 210 mes-

139

sages, and their multi-level version (XMSSMT ,HSS) (2 level-tree) can sign 220

messages; in table (b), both schemes (XMSS,LMS) can sign 220 messages, and
their multi-level version (XMSSMT ,HSS) (2 level-tree) can sign 240 messages;
similarly, tables (c) and (d), provide the public key and signature sizes for
more (260) total multi-level signed messages and a tree height of 20 and 10
respectively (3 levels and 6 levels multi tree respectively).

In these schemes most of the time used for the algorithm is spent doing
hash compressions. In [32], they made measurements of the percentage of
time spent; these can be seen in Figure 6.15. This suggests that the count of
the number of hash compression done in the algorithm, is a good parameter
to study the performance of the schemes.

Figure 6.15: Percentage of time spent doing hash compression operations
during an OTS computation.

In particular, Figure 6.16 contains the count of the number of compression
hashes performed by the algorithms, and the ratio for comparing XMSS and
LMS.

To experimentally confirm their performance analysis, in [32] they mea-
sured the overall performance on the LMS and XMSS implementations (mea-
suring the time per operation). The ratios measured are mostly in line with
their analysis. The XMSS signature operations are somewhat more expensive
than expected, but well within the range they would expect from implemen-
tation details.

140 Post-quantum Cryptography in embedded world

Figure 6.16: Number of hash compression operations expected for various
OTS operations SHA-256, w = 16.

The LMS and XMSS standards are similar. They address the same issues
and provide post-quantum secure digital signatures that could find different
applications in practice. Thus, various protocols and implementers might
find it hard to decide between the two in order to pick the more suitable
scheme for their usecase.
Both XMSS and LMS make similar assumptions on their hash function; for
both LMS and XMSS, a second preimage attack on the hash function would
allow a single forgery, and a preimage attack that allowed the attacker to
specify all but n bits would allow the attacker to generate his own Merkle
tree based on a public key, allowing him to sign as many messages as he
wished.
Where they differ is that XMSS strives to provide the hash function with
random independent inputs for every hash evaluation; while LMS has inputs
with predictable changes. This difference allows a tighter proof model for
XMSS’ tree hierarchy (because the attacker has to find a preimage of a hash
of random inputs).
On the other hand, both systems achieve the same security level during
the initial message hashing (with both LMS and XMSS providing an unpre-
dictable prefix); as this requires a stronger assumption of the hash function
(second preimage resistance), it’s debatable whether XMSS’ tighter proof
model for the tree hierarchy is important.
Other factors to consider when making a decision between XMSS and LMS

141

are the signature and public key sizes, and the computation time. As seen
above, only XMSSMT has slightly smaller signature sizes than HSS, while
LMS performs significantly faster. In addition, while we have studied them
in isolation, they need to be considered together. There are parameter sets
that reduce the signature size at the cost of computation; LMS (with its
cheaper computation) may make such a trade-off more acceptable, and such
a reduction in signature size might more than make up the slightly larger
LMS signature encoding.
To give a concrete example, in [32] made a comparison using two similar
parameter sets. The results of this comparison are in Figure 6.17. This table
shows that LMS (with these settings) is measured to perform moderately
slower than XMSS; however the LMS signature size is almost half of the
XMSS signature. One could define an equivalent XMSS parameter set with
w = 256; however that would drastically increase the amount of computation
required.

Figure 6.17: Comparison of LMS (w = 256) and XMSS (w = 16).

In summary, XMSS with equivalent multilevel parameter sets has slightly
smaller signature sizes than LMS. However, LMS performs significantly bet-
ter, which allows us more options when selecting parameter sets that fit
within the application constraints.
To learn more about this topic, please refer to [32].
In addition, in [17], a comparison was made between XMSS and LMS (and
their variants) on the specific platform ARM Cortex-M4.

142 Post-quantum Cryptography in embedded world

There is a substantial difference between these two algorithms and other fi-
nalst: XMSS and LMS are OTS. This is a big drawback for XMSS and LMS
in computational terms.
Furthermore both algorithms differ considerably depending on the parame-
ters chosen, the size of the trees used, number of multi-level trees, and the
size of the hash functions used, and this makes a comparison between these
two algorithms and the other finalists more complicated.

6.3.2 A comparison of NIST’s finalist digital signature

schemes

Let us start by saying that in this section we will discuss a comparison
between only the digital signature algorithms; for the other algorithms one
can refer for example to the recent study done in [53].
In the third round of NIST selection, the remaining algorithms for digital
signature are: Falcon [5], Crystals-Dilithium [2, 3], Rainbow [23, 39, 8].
As already mentioned, Falcon and Crystals-Dilithium are lattice-based algo-
rithms, while Rainbow is multivariate-based.
NIST has dictated 5 security levels, of increasing quality explained in Figure
6.18.

Figure 6.18: 5 different security levels in NIST competition.

So each algorithm will have different specifications depending on the re-
quired security level.

143

Falcon

Falcon offers the following features:

• Security: a true Gaussian sampler is used internally, which guarantees
negligible leakage of information on the secret key up to a practically
big number of signatures (more than 264).

• Compactness: thanks to the use of NTRU lattices, signatures are sub-
stantially shorter than in any lattice-based signature scheme with the
same security guarantees, while the public keys are around the same
size.

• Speed: use of fast Fourier sampling allows for very fast implementa-
tions, in the thousands of signatures per second on a common computer;
verification is five to ten times faster.

• Scalability: operations have cost O(n log(n)) for degree n, allowing the
use of very long-term security parameters at moderate cost.

• RAM Economy: the enhanced key generation algorithm of Falcon uses
less than 30 kilobytes of RAM, a hundredfold improvement over pre-
vious designs such as NTRUSign. Falcon is compatible with small,
memory-constrained embedded devices.

While resistance to quantum computers is the main drive for the design
and development of Falcon, the algorithm may achieve significant adoption
only if it is also reasonably efficient in our current world, where quantum
computers do not really exist. Using the reference implementation on a
common desktop computer (Intel® Core i5-8259U at 2.3 GHz, TurboBoost
disabled), Falcon achieves the performances expressed in Figure 6.19:

Sizes (key generation RAM usage, public key size, signature size) are ex-
pressed in bytes. Key generation time is given in milliseconds. Private key

144 Post-quantum Cryptography in embedded world

Figure 6.19: Falcon performance on an Intel® Core® i5-8259U CPU (“Cof-
fee Lake” core, clocked at 2.3 GHz). Sizes of pub length and signature length
in bytes.

size (not listed above) is about three times that of a signature, and it could
be theoretically compressed down to a small PRNG seed (say, 32 bytes), if
the signer accepts to run the key generation algorithm every time the key
must be loaded.
To give a point of comparison, Falcon-512 is roughly equivalent, in classical
security terms, to RSA-2048, whose signatures and public keys use 256 bytes
each. On the specific system on which these measures were taken, OpenSSL’s
thoroughly optimized assembly implementation achieves about 1140 signa-
tures per second; thus, Falcon’s reference implementation, which is portable
and uses no inline assembly on x86 CPUs, is already more than five times
faster, and it scales better to larger sizes (for long-term security).
In conclusion, the main advantage of Falcon is its compactness. Stateless
hash-based signatures often have small public keys, but large signatures.
Conversely, some multivariate schemes achieve very small signatures but re-
quire large public keys. Lattice-based schemes can offer the best of both
worlds, but no NIST candidate gets |pk|+ |signature| to be as small as Fal-
con does.
Farther, the signature generation and verification procedures are very fast.
This is especially true for the verification algorithm, but even the signature al-
gorithm can perform more than 1000 signatures per second on a moderately-
powered computer.
The main drawbacks of Falcon, on the other hand, are: the key genaration
and signing remain complex; it has a delicate implementation: both the key

145

generation procedure and the fast Fourier sampling are non-trivial to under-
stand and delicate to implement, and constitute the main shortcoming of
Falcon (on the bright side, the fast Fourier sampling uses subroutines of the
fast Fourier transform as well as trees, two objects most implementers are
familiar with); Key generation and Signing rely on floating-point arithmetic,
which, in some cases, can be problematic. Signing procedure uses floating-
point arithmetic with 53 bits of precision. While this poses no problem for
a software implementation, it may prove to be a major limitation when im-
plementation on constrained devices – in particular those without a floating-
point unit –will be considered.

Crystals-Dilithium

In contrast to other signature proposals, Crystals-Dilithium samples from
a uniform distribution avoiding the complex and inefficient sampling from a
discrete Gaussian distribution.
The modular structure of Dilithium ensures that polynomial multiplication
is always performed in the same ring regardless of security level, which makes
it easy to switch between these levels.
Multiplication can be performed efficiently due to its NTT friendly parame-
ters. Applying a trick to compress the public key with a factor 2, Dilithium
could have the smallest public key plus signature size of lattice-based schemes
that use uniform sampling.

A study on a Crystals-Dilithium implementation on Cortex-M3 and Cortex-
M4 can be found in [28].

Rainbow

Rainbow digital dignature scheme has (relatively) small signatures (e.g.
about 66 Bytes at SL I) and the signing and verification algorithms are

146 Post-quantum Cryptography in embedded world

Figure 6.20: Crystals-Dilithium sizes, relatively to different security levels,
on Skylake platform.

(relatively) fast.
Rainbow uses only linear algebra over very small finite fields, which makes it
suitable for implementing the scheme on low-cost devices, without the need
for a cryptographic coprocessor.
On the other hand, the public keys are rather large (e.g. 158 KB at SL I). It
is possible to compress the public key size by almost a factor 3 at the expense
of slower signing times.
Furthermore, the security analysis of Rainbow cannot be considered stable,
because, at the moment, it has no security proof.
Rainbow offers three different versions of the same algorithm:

• Standard Rainbow;

• CZ-Rainbow;

• Compressed Rainbow.

In CZ-Rainbow the key generation process of standard Rainbow it’s re-
versed: instead of computing the public key from the private key, it’s fixed

147

major parts of the public key and then computed the central Rainbow map
from the public key.
The CZ-Rainbow scheme is exactly based on this idea of reversing the key
generation process of Rainbow.
Since a part of the public key can be randomly selected anyway, the key idea
in the CZ-Rainbow scheme is to use a cryptographic PRNG to generate that
part of the public key.
Using the PRNG it’s possibile to reduce the public key size of the Rainbow
scheme by a factor of up to 70%.
However since, during the verification process, it’s necessary to decompress
the public key before evaluating it, the verification process of the scheme is
slowed down significantly.
Besides the standard and the CZ variant, is also propose a Rainbow variant
with a “compressed” key.
This compressed Rainbow variant works very similar to CZ-Rainbow, but
uses additionally a seed from which two linear maps, used in the algorithm,
are generated.

NIST required to evaluate the performance of the algorithms on a specific
platform.
The data of this platform are given as follows:
-Processor: Intel(R) Xeon(R) CPU E3-1275 v5 @ 3.60GHz (Skylake);
-Clock Speed: 3.60GHz;
-Memory: 32GB (2x16) ECC DIMM DDR4 Synchronous 2133 MHz (0.5 ns);
-Operating System: Linux 4.8.15, GCC compiler version 9.3.
The NIST reference platform makes no use of special processor instructions.
We now provide, in Figura 6.23, Figura 6.24 and Figura 6.25, the perfor-
mances of the 3 different Rainbow on the platform indicated by NIST.

148 Post-quantum Cryptography in embedded world

Figure 6.21: In the first table, we have the parameters and the signature size
in relation to the NIST security category; these parameters are equal in the
3 different version of Rainbow.
In the second table we have the sizes for Rainbow in its 3 different versions.
In particular |pk| and |sk| are in expressed kB.

Figure 6.22: Performance (cycles) for Rainbow in its 3 different versions (on
Linux/Skylake using AVX2 istructions).

Comparison

To obtain a comparison between Falcon and Crystals-Dilithium, we pro-
vide the following tables (from Figure 6.26 to Figure 6.27) taken from the
Crystals-Dilithium presentation [4] at round 3 of NIST selection.

A recommended study on security comparisons and performance analyses
of post-quantum signature algorithms was conducted in [50].

149

Figure 6.23: Performance for standard Rainbow on the NIST platform.

Figure 6.24: Performance for CZ-Rainbow on the NIST platform.

Figure 6.25: Performance for Compressed Rainbow on the NIST platform.

We therefore provide, from Figure 6.28 to Figure 6.31, some Tables (taken
from [1]) for a final and complete comparison between the finalist NIST post-
quantum digital signature algorithms, with also the alternative candidates:

150 Post-quantum Cryptography in embedded world

Figure 6.26: Comparison between Crystals-Dilithium and Falcon sizes.

Figure 6.27: Comparison between Crystals-Dilithium and Falcon perfor-
mance on Cortex M3 and Cortex M4 platforms.

there were the sizes of some classical (no post-quantum) digital signature
algorithms as a term of comparison, the sizes (of signature, and of public
and private key) of the post-quantum algorithms (finalists and alternative
candidates), the performances and the memory used.

151

Figure 6.28: Sizes and security levels for ECDSA, RSA, Ed25519 and Ed448
(useful as a term of comparison with post-quantum schemes).

Figure 6.29: Sizes (in byte) for post-quantum digital signature schemes.

In conclusion:

- Rainbow is an interesting candidate, versatile thanks to its 3 different
formulations, but there are no math proof on its security, and this could
prove to be a problem in the future. It also has the public key and
private key sizes that are much larger than those of Crystals-Dilithium
and Falcon.

- Falcon is the most compact algorithm (for sizes and performances), and
that makes it an attractive algorithm for the embedded world, but Key
Generation and Signing are complex and delicate.

152 Post-quantum Cryptography in embedded world

Figure 6.30: Performance on M4 (ARM Cortex-M4 dev) measured in CPU
operations per second. The data in this table were taken from [33]. Note,
no Rainbow assessment has been performed in [33], so LUOV (an Oil-and-
Vinegar method) has been used to give an indication of performance levels.

Figure 6.31: Stack memory size on an ARM Cortex-M4 device (data from
[33]) and measured in bytes. Note, no Rainbow assessment has been per-
formed in [33], so LUOV (an Oil-and-Vinegar method) has been used to give
an indication of performance levels.

- Chrystal-Dilithium could be a good compromise between security and
compression, despite it being the one that, among the three under
examination, has the worst performance.

According to the information we have today, listed above, among the three
post-quantum digital signature algorithms (finalists in the NIST competition)
Falcon, Crystals-Dilithium and Rainbow no one stands out who is better than

153

the others on all fronts. Based on the characteristics one is looking for, he
can choose which of the three to use (for example if one is looking for an
algorithm that has the smallest possible length of public key and private key,
he can use Falcon; if one is looking for a short signature, Rainbow; if one is
looking for the lowest stack memory size, Crystal-Dilithium).
We conclude by saying that it is difficult to make a comparison between these
three algorithms and the previous XMSS or LMS, because the latter two are
OTS and strongly depend on the numerous parameters that can be chosen
(NIST has not made a big selection of these). It is no coincidence that NIST
has carried out a parallel standardization for XMSS and LMS, and that in
the literature it is difficult to find comparisons with the other finalists.

154 Post-quantum Cryptography in embedded world

Conclusion

In this thesis I analyzed quantum computing and the way in which cryp-
tography, to defend itself, is evolving: in particular with post-quantum cryp-
tography (which opposes quantum cryptography).
Thanks to attempts to standardize post-quantum algorithms, primarily the
work of NIST, a selection phase has begun with the aim of obtaining algo-
rithms that are as safe and usable as possible.
I then analyzed the problems which "hardness" underlies the security of post-
quantum algorithms. Among the current 7 finalist algorithms, in particular,
5 are lattice-based: the problems based on lattices, to date, seem to be an
excellent basis for creating algorithms, that can be implemented on classical
computers, and which are also resistant to quantum computers.
In the last Chapter I analyzed the post-quantum digital signature algorithms
selected by NIST (in particular the hash-based XMSS and LMS, which NIST
proposed to the community in a parallel selection, since they are OTS algo-
rithms). Furthermore, I made a comparison between them from the point of
view of security, performance and parameter sizes, to have a picture of these
for anyone who is evaluating which algorithm to implement. What emerged
is that there is no digital signature algorithm that is better than the others
on all aspects: based on the features sought, everyone can choose which al-
gorithm to implement. For example: if one is looking for an algorithm that
has the smallest possible length of public key and private key, he can use
Falcon; if one is looking for a short signature, Rainbow; if one is looking for
the lowest stack memory size, Crystal-Dilithium.

155

156

Appendices

157

Appendix A

Continued Fractions

Definition 41 (Continued Fractions). A continued fraction is a fraction of
the type:

a0 +
1

a1 +
1

···+ 1
ap

(A.1)

where a0 ∈ Z, and the others ai are positive integers.
We will refer to the fraction A.1 with the notation:

[a0, a1, . . . , ap]

To each real number c, an expansion in continued fractions is associated
in the following way. Starting from c, the sequences {aj}j≥ and {rj}j≥0 are
recursively constructed taking:

a0 = ⌊c⌋

r0 = c− a0

aj = ⌊ 1
rj−1
⌋ ∀ j ≥ 1

rj =
1

rj−1
− ⌊ 1

rj−1
⌋ ∀ j ≥ 1

(A.2)

obtaining:

a0 +
1

a1 +
1

···+ 1
aj

+rj

(A.3)

159

160 Appendix A

The rational number [a0, a1, . . . , aj] is called jth convergent of c.
It is possible to prove that

[a0, a1, . . . , aj]
j→∞−−−→ c

and so every [a0, a1, . . . , aj] is an approximation of c (the larger a term is
in the continued fraction, the closer the corresponding convergent is to the
irrational number being approximated; this explains the choice of the name
"jth convergent of c").
In particular: the successive approximations generated in finding the contin-
ued fraction representation of a number, that is, by truncating the continued
fraction representation, are, in a certain sense, the "best possible" if one
choose to define a best rational approximation to a real number c as a ratio-
nal number n

d
, d > 0, that is closer to c than any other approximation with

a smaller or equal positive denominator.
If ∃ j s.t. rj = 0, then the expansion ends with aj and we obtain the equiv-
alence:

c = [a0, a1, . . . , aj]

In this case, c was in Q.
The following useful results hold.

Proposition 17. The expansion in continued fractions of a real number c
ends if and only if c is a rational number.

The following proposition allows us to derive the numerator and denom-
inator of a rational number c from its expansion into continued fractions.

Proposition 18. The rational number [a0, a1, . . . , an] has the form pn
qn

where
p0 = a0, q0 = 1, p1 = 1 + a0a1, q1 = a1 and ∀i s.t. n ≥ i ≥ 2:

pi = aipi−1 + pi−2, and qi = aiqi−1 + qi−2.

Furthermore GCD(pn, qn) = 1 and so the fraction is always reduced.

Appendix A 161

Corollary 19. The expansion in continued fractions of a rational positive
number p

q
can be obtained in O(m3) operations, if p and q are integers on m

bits.

Theorem 20 (Sufficient condition to be a convergent). Suppose that x and
p
q

are rational numbers such that |x− p
q
| ≤ 1

2q2
.

Then p
q

is a convergent of the continued fraction for x.

162 Appendix A

Appendix B

The group structure of an elliptic

curve

In this appendix it is assumed that the reader has already read Subsection
5.5.1, from which the main definitions and results are inherited.
Furthermore, in the following, for illustrative purposes, we refer to the case
where the field K is R, but the arguments made are valid for any field.
We consider a non-singular cubic E of P2(K) (refer to Definition 27) in
the case in which the characteristic of the field is different from 2 and 3.
We make this assumption only to have the possibility of representing each
elliptic curve in the Weierstrass form (see Definition 28), but also in the cases
of characteristic 2 or 3 the group law continues to exist.

B.1 Geometric interpretation of the sum be-

tween two points

The sum rule "+" in the elliptic curves (see Definition 29), is also called
the "tangent-chord rule" and has a very intuitive geometric explanation.
Let P = (x1, y1) and Q = (x2, y2) be two distinct points on the curve E.
Then the sum R = P +Q is defined.

163

164 Appendix B

• Take r(P,Q), the line that contains P and Q. This line intersects
(necessarily, by — Bézout’s — Theorem 8) the curve at a third point
R.

• Identify the symmetrical point to R with respect to the x axis (i.e.,
change the sign of the y coordinate) and thus obtain R′ = −R := P+Q.

The second point of the procedure can also be stated in the following equiv-
alent way:

• Let OE be the point at infinity of E. Then we construct the line
through OE and R, r(OE, R). By Bézout’s theorem, this will intersect
E at a third point R′, which will then verify R′ := P +Q.

In other words, if:

∗ :E × E −→ E

(P,Q) 7→ P ∗Q = r(P,Q) ∩ E \ {P,Q}

then:

+ :E × E −→ E

(P,Q) 7→ P +Q = P ∗Q ∗ OE

The law ∗ is clearly commutative.
For the laws ∗ and + just defined, the closing property obviously holds; in
fact if A, B ∈ E, also A+B ∈ E. Moreover, since ∗ is commutative, also +
is commutative.
The procedure for summing two points on an elliptic curve is represented

in Figure B.1. In particular in case a) the two points P,Q are distinct, while
in case b) a doubling is calculated, that is, we find P + P . In this case the
line r(P, P) must be a line that "passes twice" in the point P ; therefore this
line is the only line tangent to E at the point P .

Theorem 21. With the sum law +, the set of points of the cubic E(K) with
coordinates on an algebraically closed field is an abelian group whose null
element is OE, and ∀P = (x, y) ∈ E, the inverse of P is −P = (x,−y).

Appendix B 165

Figure B.1: Group Law: sum of two distinct points in a), doubling of point
P in b).

The commutative property, the existence of the neutral element and of
the inverse element are obvious. Demonstrating associativity is not easy.
The reader is referred to [64]. However, we give a graphical verification of
the associative property in the example in Figure B.2.

Remark 22 (Alignment equation). Since P ∗Q = R has the point P +Q as
its inverse, we can write P +Q = −R and therefore:

P +Q+R = 0

which is the equation of alignment of the three points P,Q,R.

Figure B.3 shows what was observed in the previous Remark. In other
words: (P+Q)+(P ∗Q) = (P+Q)+[−(P+Q)] = OE, so −(P+Q) = (P ∗Q)
and therefore P + Q is obtained by mirroring the point P ∗ Q around the
abscissa axis.
This implies that, for each point A, its inverse −A is obtained with the
procedure: A = A+OE =⇒ −A = −(A+OE) = A ∗ OE (see Figure B.4a).
In the event that A and B are vertically aligned (figure B.4b), we have that
the sum A+B corresponds to OE, which is the third intersection point with

166 Appendix B

E of the vertical line. Therefore A is the inverse of B.
On the other hand, Figure B.4c shows the case in which A is added to itself;
since in this case the tangent in A to E (the point A has double multiplicity
of intersection with the straight line) is vertical, A + A = OE, and we get
A = −A; here therefore A is the inverse of itself.
The last case, corresponding to Figure B.4d, is the one in which the point
OE is added to itself, that is OE + OE = OE. Since the point OE is an
inflection point, the intersection cardinality of a vertical line in it is equal to
3; therefore there are no other points on the curve touched by the line.

Figure B.2: Associativity for the Group Law.

Figure B.3: Allignment equation in 4 cases.

Appendix B 167

Figure B.4: Group Law: case of two points living on the same vertical line.

B.2 Coordinates of the sum between two points

We now want to provide the equations that explicitly define the coordi-
nates of the + law, previous introduced. In other words, let us see how to get
the coordinates of P +Q, starting from the coordinates of P and Q. We will
do the construction only in the cases char(K) ̸= 2, 3. A similar argument
can be made for characteristics 2 and 3 as well.
In particular, fixing char(K) ̸= 3, 2 and using the Weierstrass form y2 =

x3 + Ax + B for the elliptic curve E, there are four different cases. Let be
P = (x1, y,1), Q = (x2, y,2) ∈ E:

1. P ̸= Q and P,Q ̸= OE. If x1 ̸= x2 the line r := r(P,Q) has equation

y = m(x− x1) + y1 (B.1)

where m = y2−y1
x2−x1

. To find the intersection between r and E, we sub-
stitute (B.1) in the equation of E, finding

(m(x− x1) + y1)
2 = x3 + Ax+B, (B.2)

which can be rewritten in the form:

x3−m2x2+(A+2mx1−2my1)x+(B−m2x21+2my1x1−y21) = 0. (B.3)

168 Appendix B

The three roots of this cubic are the abscissas of the three points of
intersection of r with E.
In particular, x1, x2 are two of the roots. Let x3 be the third. We factor
the first member of the previous equation into:

(x−x1)(x−x2)(x−x3) = x3−(x1+x2+x3)x2+(x2x3+x1x3+x1x2)x−x1x2x3.

Therefore, from (B.3), it follows that x3 = m2 − x1 − x2 and therefore
the coordinates of point P +Q are:x3 =

(
y2−y1
x2−x1

)2
− x1 − x2,

y3 = −y1 +
(

y2−y1
x2−x1

)
(x1 − x3).

If instead of x1 ̸= x2, we have x1 = x2, the line r intersects E in OE.
Therefore, in this case, we have that P +Q = OE.

2. P = Q ̸= OE. In this case, the tangent line t in P to E has equation:

fx(x1, y1)(x− x1) + fy(x1, y1)(y − y1) = 0,

where fx and fy are the partial derivative of the Weierstrass form
f(x, y) := y2 − x3 +−Ax−B. And so we find:

(−3x21 − A)(x− x1) + 2y1(y − y1) = 0.

If y1 ̸= 0, then the equation of the tangent line becomes (B.1) with
m =

3x2
1+A

2y1
. Now, reasoning in a similar way to the previous case and

bearing in mind that here we have x1 = x2, we find that the coordinates
of P + P are: x3 =

(
−3x2

1+A

2y1

)2
− 2x1,

y3 = −y1 +
(

−3x2
1+A

2y1

)
(x1 − x3).

We note that, if y1 = 0, then:

P + P = 2P = OE.

Appendix B 169

3. P ̸= Q and P = OE. (respectively Q = OE). In this case, the in-
tersection between the straight line x = x2 (respectively x = x1) and
the curve E contains P,Q and −Q = (x2,−y2) (respectively −P =

(x1,−y1)). Therefore we define P +Q = Q (respectively P +Q = P).

4. P = Q = OE. In that case, by definition, we have:

OE +OE = OE.

B.3 Elliptic Curve Discrete Logarithm Prob-

lem

Once the sum between points in an elliptic curve E has been defined, the
multiplication by an integer k also makes sense: kP := [k]P = P + · · ·+ P .
Observe that if k is very large it is not convenient to add P with itself k times;
in this case, the expedient of the sum of the doubling is used, which allows to
reduce the number of operations. For example, if we want to calculate 23P

we will proceed as follows:

2P = P + P, 4P = 2P + 2P, 8P = 4P + 4P

16P = 8P + 8P, 23P = 16P + 4P + 2P + P

which requires only 7 sums. In general it is necessary to decompose k
in positional notation into base 2 and verify for which exponents of 2 the
coefficient is equal to 1; in the case of 23 we have:

23 =
n∑

i=0

ai2
i = 1 · 24 + 1 · 22 + 1 · 21 + 1 · 20

This method allows to save on the number of operations, passing from an
algorithm of complexity O(k) to one of O(log2 k), in the case in which both
the sum and the doubling are considered of complexity O(1). The only
difficulty that remains, independent of the method used to make the product,
is that the coordinates of the points can grow very rapidly and unexpectedly

170 Appendix B

as k increases when working on infinite fields. However, if we use a finite
field this is no longer a problem, since for any value of k, the coordinates are
always confined within the elements of the field, which are finite.
So we have an efficient way to calculate the multiplication of a point of a
elliptic curve by an integer.
The multiplication by an integer constitutes an important one-way function:

Definition 42 (Direct function associated with elliptic curves). Given a
point P ∈ E(K) and an integer k, find a point Q such that Q = kP .

In fact, while adding the points to obtain the integer product as is rela-
tively simple, performing the inverse operation (defined below), in the case
of finite field, is not at all:

Definition 43 (Inverse function associated with elliptic curves). given two
points Q,P ∈ E(K), find an integer k such that Q = kP .

This inverse problem is known in the literature as "the problem of the
discrete logarithm on elliptic curves" (even if in reality we are not using
exponentiation here, but only multiplication).
In fact, there are currently no known classical efficient algorithms to be able
to reverse the operation. Hence, the inverse function associated with elliptic
curves is presumably intractable when it is referred to an elliptic curve E(K)

with K finite field.
This problem is therefore the basis of various cryptographic applications.
The problem of the discrete logarithm used in elliptic curve cryptography is
much more difficult than the problem of the factorization of prime numbers,
for the same field size, and therefore for the same security this cryptography
requires smaller public keys, and therefore more easily usable than those used
by the RSA method.
Unfortunately, the hardness of this problem is not also of quantum nature,
as it is efficiently solved by Shor’s algorithm [49].

Appendix C

Algebraic varieties

Definition 44 (Polynomial ring). The polynomial ring, K[x], in x over a
field (or, more generally, a commutative ring) K can be defined in several
equivalent ways. One of them is to define K[X] as the set of expressions,
called polynomials in x, of the form

p = p0 + p1x+ p2x
2 + · · ·+ pm−1x

m−1 + pmx
m

where p0, p1, . . . , pm, the coefficients of p, are elements of K, pm ̸= 0 if m > 0,
and x, x2, ..., are symbols, which are considered as "powers" of x, and follow
the usual rules of exponentiation: x0 = 1, x1 = x, and

xk · xl = xk+l

for any nonnegative integers k and l. The symbol x is called an indeterminate
or variable.
Two polynomials are equal when the corresponding coefficients of each xk

are equal. The polynomial ring in X over K is equipped with an addition, a
multiplication and a scalar multiplication.

Definition 45 (V (S), affine algebraic set). Let S ⊆ K[x]. Define

V (S) =
{
P ∈ K̄n

∣∣ f(P) = 0 ∀f ∈ S
}

If S = f1, ..., fm then we write V (f1, ..., fm) for V (S). An affine algebraic set
is a set X = V (S) ⊆ K̄n where S ⊆ K[x].

171

172 Appendix C

Let K ′ be an algebraic extension of K. The K ′-rational points of X = V (S)

are:
X(K ′) = X ∩K ′ n = {P ∈ K ′ n : f(P) = 0 ∀f ∈ S}

.

Definition 46 (Projective zeroes, projective V (S), projective algebraic set).
Let f ∈ K[x] = K[x0, x1, . . . , xn] be a homogeneous polynomial. A point
[x0, x1, ..., xn] ∈ Pn(K) is a zero of f if f(x0, ..., x1) = 0 for some (hence,every)
point (x0, ..., xn) in the equivalence class [x0, ..., xn]. We therefore write
f(P) = 0. Let S be a set of polynomials and define:

V (S) = {P ∈ Pn(K̄) | P is a zero of f(x) ∀ f(x) ∈ S}.

A projective algebraic set is a set X = V (S) ⊆ Pn(K̄) for some S ⊆ K[x].
Such a set is also called a projective K-algebraic set.

Definition 47 (Zariski topology on X ⊆ Kn). Let X be an algebraic set
in Kn (respectively, Pn[K]). The Zariski topology is the topology on X

defined as follows: the closed sets are X ∩ Y for every algebraic set Y ⊆ Kn

(respectively, Y ⊆ Pn[K]).

Definition 48 (Affine variety, Projective variety). An affine K-algebraic set
X ∈ Kn is K-reducible if X = X1 ∪X2 with X1 and X2 being K-algebraic
sets and Xi ̸= X for i = 1, 2. An affine algebraic set is K-irreducible if there
is no such decomposition. An affine algebraic set is geometrically irreducible
if X is K̄-irreducible. An affine variety over K is a geometrically irreducible
K-algebraic set defined over K.
A projective K-algebraic set X ∈ Pn[K] is K-irreducible (resp. geometrically
irreducible) if X is not the union X1 ∪ X2 of projective K-algebraic sets
X1, X2 ⊆ Pn[K] (respectively, projective K-algebraic sets) such that Xi ̸=
X for i = 1, 2. A projective variety over K is a geometrically irreducible
projective K-algebraic set defined over K.
Let X be a variety (affine or projective). A subvariety of X over K is a
subset Y ⊆ X that is a variety (affine or projective) defined over K.

Appendix C 173

This definition matches the usual topological definition of a set being
irreducible if it is not a union of proper closed subsets.

Definition 49 (Ideal over a set). The ideal over X of a set X ∈ K̄n is:

IK(X) = {f ∈ K[x] : f(P) = 0 ∀ P ∈ X(K̄)}.

Similarly we can define for any set X ⊆ Pn[K̄], the ideal over X:

IK(X) = {f ∈ K[x0, ..., xn] : f is homogeneous and f(P) = 0 ∀P ∈ X}.

Definition 50 (Affine and Homogenous coordinate ring). The affine coor-
dinate ring over K of an affine algebraic set X ⊆ Kn defined over K is the
quotient:

K[X] = K[x1, ..., xn]/IK(X).

If X is a projective algebraic set defined over K, then the homogenous coor-
dinate ring of X over K is:

K[X] = K[x0, ..., xn]/IK(X).

Note that elements of K[X] are not necessarily homogeneous polynomials.

Definition 51 (Function field K(X)). Let X be an affine variety defined
over K. The function field K(X) is the set:

K(X) = {f1/f2 : f1, f2 ∈ K[X], f2 /∈ IK(X)}

of classes under the equivalence relation f1/f2 ≡ f3/f4 if and only if f1f4 −
f2f3 ∈ IK(X). In other words, K(X) is the field of fractions of the affine
coordinate ring K[X] over K.
Let us now look at the projective case. Let X be a projective variety. The
function field is:

K(X) = {f1/f2 : f1, f2 ∈ K[X] homogeneous of the same degree, f2 /∈ IK(X)}

with the equivalence relation f1/f2 ≡ f3/f4 if and only if f1f4−f2f3 ∈ IK(X).
Elements of K(X) are called rational functions.

174 Appendix C

Definition 52 (Function regularity). Let X be a variety and let f1, f2 ∈
K[X]. Then f1/f2 is defined or regular at P if f2(P) ̸= 0. An equivalence
class f ∈ K(X) is regular at P if it contains some f1/f2 with f1, f2 ∈ K[X]

(if X is projective then necessarily deg(f1) = deg(f2)) such that f1/f2 is
regular at P .
Note that there may be many choices of representative for the equivalence
class of f , and only some of them may be defined at P .

Definition 53 (Rational map). Let X be an affine or projective variety over
a field K and Y an affine variety in over K. Let ϕ1, . . . , ϕn ∈ K(X). A map
ϕ : X → Kn of the form

ϕ(P) = (ϕ1(P), ..., ϕn(P))

is regular at a point P ∈ X(K̄) if all ϕi, for 1 ≤ i ≤ n, are regular at P .
A rational map ϕ : X → Y defined over K is a map of the form ϕ(P) =

(ϕ1(P), ..., ϕn(P)) such that, for all P ∈ X(K̄) for which ϕ is regular at P ,
then ϕ(P) ∈ Y (K̄).
Let us now look at the projective version of the same definitions.
Let X be an affine or projective variety over a field K and Y a projective
variety in Pn[K] over K. Let ϕ1, ..., ϕn ∈ K(X). A map ϕ : X → Pn[K] of
the form

ϕ(P) = [ϕ0(P), ..., ϕn(P)]

is regular at a point P ∈ X(K̄) if there is some function g ∈ K(X) such that
all gϕi, for 0 ≤ i ≤ n, are regular at P and, for some 0 ≤ i ≤ n, one has
(gϕi)(P) ̸= 01.
A rational map ϕ : X → Y defined over K is a map of the form ϕ(P) =

[ϕ0(P), ..., ϕn(P)] such that, for all P ∈ X(K̄) for which ϕ is regular at P ,
then ϕ(P) ∈ Y (K̄).

Definition 54 (Morphism and isomorphism between (subsets of) varieties).
Let X and Y be varieties over K and let U ⊆ X be open sets. A rational

1This last condition is to prevent ϕ mapping to [0, ..., 0], which is not a point in Pn[K].

175

map ϕ : U → Y over K which is regular at every point P ∈ U(K) is called
a morphism over K.
Let U ⊆ X and V ⊆ Y be open. If ϕ : U → Y is a morphism over K and
ψ : V → X is a morphism over K such that ϕ ◦ ψ and ψ ◦ ϕ are the identity
on V and U respectively, then we say that U and V are isomorphic over K,
and ϕ, ψ are isomorphisms. If U and V are isomorphic we write U ∼= V .

Bibliography

[1] asecuritysite.com post-quantum digital signature schemes, link
: https://asecuritysite.com/pqc/falcon01#:~:text=With%

20Falcon%2D512%20(which%20has,signature%20size%20of%201%

2C280%20bytes., note : Accessed: 2022-02-16.

[2] Crystals-dilithium: A lattice-based digital signature scheme, link :
https://eprint.iacr.org/2017/633.pdf, note : Accessed: 2022-02-
12.

[3] Crystals-dilithium algorithm specifications and supporting doc-
umentation, link : https://pq-crystals.org/dilithium/data/

dilithium-specification-round3-20210208.pdf, note : Accessed:
2022-02-12.

[4] Crystals-dilithium presentation, 3rd round nist, link
: https://csrc.nist.gov/CSRC/media/Presentations/

crystals-dilithium-round-3-presentation/images-media/

session-1-crystals-dilithium-lyubashevsky.pdf, note : Ac-
cessed: 2022-02-12.

[5] Falcon: Fast-fourier lattice-based compact signatures over ntru, link :
https://falcon-sign.info/falcon.pdf, note : Accessed: 2022-02-
12.

[6] Post-quantum cryptography standardization, link : https:

//csrc.nist.gov/Projects/post-quantum-cryptography/

177

https://asecuritysite.com/pqc/falcon01#:~:text=With%20Falcon%2D512%20(which%20has,signature%20size%20of%201%2C280%20bytes.
https://asecuritysite.com/pqc/falcon01#:~:text=With%20Falcon%2D512%20(which%20has,signature%20size%20of%201%2C280%20bytes.
https://asecuritysite.com/pqc/falcon01#:~:text=With%20Falcon%2D512%20(which%20has,signature%20size%20of%201%2C280%20bytes.
https://eprint.iacr.org/2017/633.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://csrc.nist.gov/CSRC/media/Presentations/crystals-dilithium-round-3-presentation/images-media/session-1-crystals-dilithium-lyubashevsky.pdf
https://csrc.nist.gov/CSRC/media/Presentations/crystals-dilithium-round-3-presentation/images-media/session-1-crystals-dilithium-lyubashevsky.pdf
https://csrc.nist.gov/CSRC/media/Presentations/crystals-dilithium-round-3-presentation/images-media/session-1-crystals-dilithium-lyubashevsky.pdf
https://falcon-sign.info/falcon.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization

178 BIBLIOGRAPHY

post-quantum-cryptography-standardization, note : Accessed:
2021-12-15.

[7] Post-quantum cryptography standardization, link : https://csrc.

nist.gov/projects/stateful-hash-based-signatures, note : Ac-
cessed: 2021-12-15.

[8] Rainbow - algorithm specification and documentation, link : https:

//troll.iis.sinica.edu.tw/by-publ/recent/Rainbow3round.pdf,
note : Accessed: 2022-02-12.

[9] Miklós Ajtai, Ravi Kumar, and Dandapani Sivakumar. A sieve algorithm
for the shortest lattice vector problem. In Proceedings of the thirty-third
annual ACM symposium on Theory of computing, pages 601–610, 2001.

[10] Dave Bacon. Cse 599d-quantum computing grover’s algorithm. Depart-
ment of Computer Science & Engineering. University of Washington.
University of Washington, Washington, 16, 2006.

[11] Daniel J Bernstein. Introduction to post-quantum cryptography. In
Post-quantum cryptography, pages 1–14. Springer, 2009.

[12] Reinier Bröker. Constructing supersingular elliptic curves. J. Comb.
Number Theory, 1(3):269–273, 2009.

[13] Leon Groot Bruinderink and Andreas Hülsing. “oops, i did it again”–
security of one-time signatures under two-message attacks. In Inter-
national Conference on Selected Areas in Cryptography, pages 299–322.
Springer, 2017.

[14] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas Hülsing, and
Markus Rückert. On the security of the winternitz one-time signa-
ture scheme. International Journal of Applied Cryptography, 3(1):84–96,
2013.

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/stateful-hash-based-signatures
https://csrc.nist.gov/projects/stateful-hash-based-signatures
https://troll.iis.sinica.edu.tw/by-publ/recent/Rainbow3round.pdf
https://troll.iis.sinica.edu.tw/by-publ/recent/Rainbow3round.pdf

BIBLIOGRAPHY 179

[15] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. Xmss-a prac-
tical forward secure signature scheme based on minimal security assump-
tions. In International Workshop on Post-Quantum Cryptography, pages
117–129. Springer, 2011.

[16] Johannes Buchmann, Erik Dahmen, and Michael Schneider. Merkle
tree traversal revisited. In International Workshop on Post-Quantum
Cryptography, pages 63–78. Springer, 2008.

[17] Fabio Campos, Tim Kohlstadt, Steffen Reith, and Marc Stöttinger. Lms
vs xmss: Comparison of stateful hash-based signature schemes on arm
cortex-m4. In International Conference on Cryptology in Africa, pages
258–277. Springer, 2020.

[18] Andrew Childs, David Jao, and Vladimir Soukharev. Constructing el-
liptic curve isogenies in quantum subexponential time. Journal of Math-
ematical Cryptology, 8(1):1–29, 2014.

[19] David A Cooper, Daniel C Apon, Quynh H Dang, Michael S Davidson,
Morris J Dworkin, and Carl A Miller. Recommendation for stateful
hash-based signature schemes. NIST Special Publication, 800:208, 2020.

[20] Jean Marc Couveignes. Hard homogeneous spaces. IACR Cryptol.
ePrint Arch., 2006:291, 2006.

[21] Gian Fausto Dell’Antonio. Aspetti matematici della meccanica quantis-
tica. Bibliopolis, 2011.

[22] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polyno-
mial signature scheme. In International conference on applied cryptog-
raphy and network security, pages 164–175. Springer, 2005.

[23] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polyno-
mial signature scheme. volume 3531, pages 164–175, 06 2005.

180 BIBLIOGRAPHY

[24] David P DiVincenzo. Topics in quantum computers. In Mesoscopic
electron transport, pages 657–677. Springer, 1997.

[25] Göran Einarsson. Probability analysis of a quantum computer. arXiv
preprint quant-ph/0303074, 2003.

[26] Artur Ekert and Richard Jozsa. Quantum computation and shor’s fac-
toring algorithm. Reviews of Modern Physics, 68(3):733, 1996.

[27] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Conference on the theory
and application of cryptographic techniques, pages 186–194. Springer,
1986.

[28] Denisa OC Greconici, Matthias J Kannwischer, and Daan Sprenkels.
Compact dilithium implementations on cortex-m3 and cortex-m4. IACR
Transactions on Cryptographic Hardware and Embedded Systems, pages
1–24, 2021.

[29] Lov K Grover. A fast quantum mechanical algorithm for database
search. In Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, pages 212–219, 1996.

[30] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Ntru: A ring-
based public key cryptosystem. In International algorithmic number
theory symposium, pages 267–288. Springer, 1998.

[31] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies. In International Workshop
on Post-Quantum Cryptography, pages 19–34. Springer, 2011.

[32] Panos Kampanakis and Scott Fluhrer. Lms vs xmss: Comparion of two
hash-based signature standards. Cryptology ePrint Archive, 2017.

BIBLIOGRAPHY 181

[33] Matthias J Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stof-
felen. pqm4: Testing and benchmarking nist pqc on arm cortex-m4.
2019.

[34] Jeffrey C Lagarias. Knapsack public key cryptosystems and diophantine
approximation. In Advances in cryptology, pages 3–23. Springer, 1984.

[35] C Lavor, LRU Manssur, and R Portugal. Shor’s algorithm for factoring
large integers, 2008, da. arXiv preprint quant-ph/0303175.

[36] Frank T Leighton and Silvio Micali. Large provably fast and secure
digital signature schemes based on secure hash functions, July 11 1995.
US Patent 5,432,852.

[37] Arjen K Lenstra, Hendrik Willem Lenstra, and László Lovász. Fac-
toring polynomials with rational coefficients. Mathematische annalen,
261(ARTICLE):515–534, 1982.

[38] SJ Lomonaco. Shor’s quantum factoring algorithm. In Proceedings of
Symposia in Applied Mathematics, volume 58, pages 161–180, 2002.

[39] Le Van Luyen et al. An improved identity-based multivariate signature
scheme based on rainbow. Cryptography, 3(1):8, 2019.

[40] Enrique Martin-Lopez, Anthony Laing, Thomas Lawson, Roberto Al-
varez, Xiao-Qi Zhou, and Jeremy L O’brien. Experimental realization
of shor’s quantum factoring algorithm using qubit recycling. Nature
photonics, 6(11):773–776, 2012.

[41] Tsutomu Matsumoto and Hideki Imai. Public quadratic polynomial-
tuples for efficient signature-verification and message-encryption. In
Workshop on the Theory and Application of of Cryptographic Tech-
niques, pages 419–453. Springer, 1988.

[42] Robert J McEliece. A public-key cryptosystem based on algebraic. Cod-
ing Thv, 4244:114–116, 1978.

182 BIBLIOGRAPHY

[43] Alfred J Menezes, Scott A Vanstone, and Paul C Van Oorschot. Hand-
book of applied cryptography (special indian edition), 2010.

[44] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice prob-
lems: a cryptographic perspective, volume 671. Springer Science & Busi-
ness Media, 2002.

[45] Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding
theory. Prob. Contr. Inform. Theory, 15(2):157–166, 1986.

[46] Michael A Nielsen and Isaac L Chuang. Quantum computation and
quantum information. Phys. Today, 54(2):60, 2001.

[47] Raphael Overbeck and Nicolas Sendrier. Code-based cryptography. In
Post-quantum cryptography, pages 95–145. Springer, 2009.

[48] Dingyi Pei, Arto Salomaa, and Cunsheng Ding. Chinese remainder the-
orem: applications in computing, coding, cryptography. World Scientific,
1996.

[49] John Proos and Christof Zalka. Shor’s discrete logarithm quantum al-
gorithm for elliptic curves. arXiv preprint quant-ph/0301141, 2003.

[50] Manohar Raavi, Simeon Wuthier, Pranav Chandramouli, Yaroslav Ba-
lytskyi, Xiaobo Zhou, and Sang-Yoon Chang. Security comparisons and
performance analyses of post-quantum signature algorithms. In Interna-
tional Conference on Applied Cryptography and Network Security, pages
424–447. Springer, 2021.

[51] Oded Regev. Lattice-based cryptography. In Annual International Cryp-
tology Conference, pages 131–141. Springer, 2006.

[52] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduc-
tion algorithms. Theoretical computer science, 53(2-3):201–224, 1987.

BIBLIOGRAPHY 183

[53] Jose-Antonio Septien-Hernandez, Magali Arellano-Vazquez, Marco An-
tonio Contreras-Cruz, and Juan-Pablo Ramirez-Paredes. A comparative
study of post-quantum cryptosystems for internet-of-things applications.
Sensors, 22(2):489, 2022.

[54] Peter W Shor. Algorithms for quantum computation: discrete loga-
rithms and factoring. In Proceedings 35th annual symposium on foun-
dations of computer science, pages 124–134. Ieee, 1994.

[55] Peter W Shor and John Preskill. Simple proof of security of the bb84
quantum key distribution protocol. Physical review letters, 85(2):441,
2000.

[56] Harshdeep Singh. Code based cryptography: Classic mceliece. arXiv
preprint arXiv:1907.12754, 2019.

[57] Jacques Stern. A new identification scheme based on syndrome decoding.
In Annual International Cryptology Conference, pages 13–21. Springer,
1993.

[58] Douglas R Stinson. Some observations on the theory of cryptographic
hash functions. Designs, Codes and Cryptography, 38(2):259–277, 2006.

[59] Anton Stolbunov. Constructing public-key cryptographic schemes based
on class group action on a set of isogenous elliptic curves. Advances in
Mathematics of Communications, 4(2):215, 2010.

[60] Erkan Tairi. Isogenies for Post-Quantum Cryptography/submitted by
Erkan Tairi, BSc. PhD thesis, Universität Linz, 2018.

[61] Dominique Unruh. Non-interactive zero-knowledge proofs in the quan-
tum random oracle model. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 755–784.
Springer, 2015.

184 BIBLIOGRAPHY

[62] Lieven MK Vandersypen, Matthias Steffen, Gregory Breyta,
Costantino S Yannoni, Mark H Sherwood, and Isaac L Chuang.
Experimental realization of shor’s quantum factoring algorithm using
nuclear magnetic resonance. Nature, 414(6866):883–887, 2001.

[63] Jacques Vélu. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris,
Séries A, 273:305–347, 1971.

[64] Lawrence C Washington. Elliptic curves: number theory and cryptogra-
phy. CRC press, 2008.

[65] Joachim Weidmann. Linear operators in Hilbert spaces, volume 68.
Springer Science & Business Media, 2012.

[66] Nanyang Xu, Jing Zhu, Dawei Lu, Xianyi Zhou, Xinhua Peng, and
Jiangfeng Du. Quantum factorization of 143 on a dipolar-coupling nmr
system. arXiv preprint arXiv:1111.3726, 2011.

List of Figures

1.1 Qubit represented by an electron in a hydrogen atom 20

1.2 NOT, AND, NAND, OR, NOR, XOR, XNOR gates. 27

1.3 CNOT gate . 28

1.4 Uf representation . 29

1.5 Swapping circuit realization, and schematic symbol 30

1.6 controlled-U gate . 30

1.7 Circuit symbol for measurement. 30

1.8 CNOT: a wrong circuit to "copy" a qubit. 31

1.9 Quantum circuit to evaluate f(0) and f(1) simultaneously. . . 33

2.1 Quantum circuit for finding the order of the positive integer x
modulo N . 49

2.2 Probability distribution of |ψ3⟩measured in the computational
basis (for the case b0 = 3 and r = 8). The horizontal axis has
2t points. The number of peaks is 2t/r and the period is r. . . 52

2.3 Vectors e2πij/7, (j = 0, . . . , 6) in the complex plane. Their sum
is zero by symmetry arguments. This is an example of Eq.
(2.7) for N = 7, k = 1. 54

2.4 Probability distribution of |ψ4⟩measured in the computational
basis. The horizontal axis has 2t points, only the non-null
terms are shown. The number of peaks is r and the period is
2t/r. 56

185

186 List of figures

2.5 Plot of Prob(j) against j. Compare to the plot of Fig. 2.4,
where peaks are not spread and have the same height. 60

3.1 BB84 quantum key exchange protocol.
The channel represented in the figure, for simplicity, is consid-
ered to be noise-free, and also the absence of Eve is assumed
(in other words ϵ is the identity function). To facilitate the
reading of the scheme, the value 0 of the bit bi (or b′i) has
been indicated with "st" (for Standard Computational Basis),
while the value 1 with "H" (Hadamard Base). When the i-th
bit of a, ai, was found to be shared with probability 1, (i.e.,
when bi = b′i), it is value is reported in the last line. Otherwise
a "?" is returned, which means "unacceptable bit". 73

4.1 Finalists and Alternative Candidates of NIST Post-Quantum
Cryptography Standardization Program Selection, round three. 81

5.1 2-dimensional SVP example 88

5.2 2-dimensional CVP example 88

5.3 2-dimensional SIVP example 89

5.4 Code-based public-key encryption. The ciphertext is a noisy
code word that only the legitimate user can correct to recover
the cleartext. 97

5.5 Attacking the McEliece PKC. Table from [47]. 98

5.6 The idea of trapdoor function. A trapdoor function f with its
trapdoor t can be generated by an algorithm. f can be effi-
ciently computed, i.e., in probabilistic polynomial time. How-
ever, the computation of the inverse of f is generally hard,
unless the trapdoor t is given. 101

5.7 Scheme of the SIDH protocol 113

5.8 Isogeny-Diagram at the base of the SIDH protocol 113

6.1 256-bit digest encoded in base b = 16 119

List of figures 187

6.2 64 keys generation in base b = 16 121

6.3 Generation of signature for 64 digits in base b = 16 122

6.4 Signature check for N0 in base b = 16 123

6.5 A signature for a digest in base b = 16 (from [19]) 123

6.6 Example of a signature and its checksum (from [19]) 125

6.7 Theoretical results of the computational complexity for two-
message attacks against the Winternitz OTS. If the success
probability of an attack is not constant in terms of complexity,
the attack complexity is given to achieve a success probability
of 1/2. (Table from: [13]) . 127

6.8 A Merkle Hash Tree . 129

6.9 Multi level Merkle’s tree . 131

6.10 The XMSS tree construction 133

6.11 The authentication path for leaf i 134

6.12 Meanings for parameteres used in this Subsection. 137

6.13 Sizes (in bytes) of HBS schemes based on schemes parameters. 138

6.14 Sizes (in bytes) of HBS schemes based for various parameters,
and n = m = 32. 138

6.15 Percentage of time spent doing hash compression operations
during an OTS computation. 139

6.16 Number of hash compression operations expected for various
OTS operations SHA-256, w = 16. 140

6.17 Comparison of LMS (w = 256) and XMSS (w = 16). 141

6.18 5 different security levels in NIST competition. 142

6.19 Falcon performance on an Intel® Core® i5-8259U CPU (“Cof-
fee Lake” core, clocked at 2.3 GHz). Sizes of pub length and
signature length in bytes. 144

6.20 Crystals-Dilithium sizes, relatively to different security levels,
on Skylake platform. 146

188 List of figures

6.21 In the first table, we have the parameters and the signature
size in relation to the NIST security category; these parame-
ters are equal in the 3 different version of Rainbow.
In the second table we have the sizes for Rainbow in its 3 dif-
ferent versions. In particular |pk| and |sk| are in expressed
kB. 148

6.22 Performance (cycles) for Rainbow in its 3 different versions
(on Linux/Skylake using AVX2 istructions). 148

6.23 Performance for standard Rainbow on the NIST platform. . . 149

6.24 Performance for CZ-Rainbow on the NIST platform. 149

6.25 Performance for Compressed Rainbow on the NIST platform. . 149

6.26 Comparison between Crystals-Dilithium and Falcon sizes. . . . 150

6.27 Comparison between Crystals-Dilithium and Falcon perfor-
mance on Cortex M3 and Cortex M4 platforms. 150

6.28 Sizes and security levels for ECDSA, RSA, Ed25519 and Ed448
(useful as a term of comparison with post-quantum schemes). 151

6.29 Sizes (in byte) for post-quantum digital signature schemes. . . 151

6.30 Performance on M4 (ARM Cortex-M4 dev) measured in CPU
operations per second. The data in this table were taken from
[33]. Note, no Rainbow assessment has been performed in [33],
so LUOV (an Oil-and-Vinegar method) has been used to give
an indication of performance levels. 152

6.31 Stack memory size on an ARM Cortex-M4 device (data from
[33]) and measured in bytes. Note, no Rainbow assessment
has been performed in [33], so LUOV (an Oil-and-Vinegar
method) has been used to give an indication of performance
levels. 152

B.1 Group Law: sum of two distinct points in a), doubling of point
P in b). 165

B.2 Associativity for the Group Law. 166

B.3 Allignment equation in 4 cases. 166

List of figures 189

B.4 Group Law: case of two points living on the same vertical line. 167

190 List of figures

Ringraziamenti

Disclaimer: questi ringraziamenti non verranno letti ad alta voce (ma
nemmanco a voce bassa o sussurrati) dal sottoscritto Murolo Giuseppe, per-
chè sennò poi piango e non riesco a leggere.
Per il medesimo motivo, ogni qualvolta in cui verrà intonato il coro "...di-
sco-rso, di-sco-rso!" si rimanda l’interessato a leggere questo paragrafo.
Continuando a leggerlo, accetterai questa clausola.
NB: non c’è scritto che se non continui a leggere rifiuti la clausola.

Questo percorso per me così arduo è stato reso affrontabile grazie ad al-
cune persone che mi sono state vicino, nei bei momenti quanto nei brutti.
Questo paragrafo è per loro. Chiedo scusa se, come è molto probabile che
sia successo, ho dimenticato qualcuno. Ma se, anche per un breve momento,
mi sei stato vicino o mi hai aiutato, sappi che l’ho notato e ringrazio anche te.

Voglio partire con il ringraziare i miei genitori: grazie mamma, grazie
papà, il vostro amore ed il vostro imperterrito supporto è stato il mio carbu-
rante.
Ringrazio mia sorella Debora, per tutto l’aiuto diretto ed indiretto che mi
ha, sempre, assicurato.
Ringrazio Marcello, praticamente un fratello per me, fin dai tempi del liceo.
Ringrazio Franca e Lucia per esserci sempre state. Voi 3 siete il mio porto
sicuro a Torremaggiore.
Ringrazio quel matto di Mattarello (Mattarello è un vezzeggiativo di matto?):

191

192

un punto di riferimento essenziale qui a Bologna (prima no perchè mi chia-
mavi Moreno). Sei un amico raro e prezioso per me.
Grazie a Puer, amico importante, persona dal cuore d’oro.
Grazie alla Confraternita: oltre al già citato Matteo, ringrazio Ettore e Fed-
erico. Siete gli amici di sempre, so che posso contare in ogni occasione su di
voi. Siete quelli con i quali ho condiviso le avventure più pazze... ad altre
1000 di queste!
Ringrazio i miei amici matematici che ho conosciuto quando mi sono ritrovato
innestato a Bologna: Umberto, Trebe, Nico, Evi, Marco, Forno, Simo, Et-
tore, Gaia, Sacha, Francesco. Siete i coetanei che ho conosciuto dai quali ho
imparato più in assoluto. E, credetemi, non mi riferisco solo alla matematica:
siete un esempio per me.
Ringrazio la seconda tranche di matematici che mi ha accolto una volta ap-
prodato alla magistrale: Chiara, Lorenzo, Sofia, Titta, Anna, Madda, Mary,
Federica, Marco, Davide DG, Laurina, Matteo. Siete persone fantastiche!
Tra queste ho volutamento omesso Davide: sei stato un ottimo coinquilino,
ma soprattutto un ottimo amico. Ho passato bellissimi momenti con te, sei
davvero un pazzo scatenato, grazie di tutto!
Dulcis in fundo: grazie a te che mi hai donato una forza immensa dalla
prima sera che sono uscito con te, che sei disposta a così tanto per me, che
costantemente mi ricordi cos’è l’amore, e come ci si sente ad essere davvero
amati. Grazie Arianna, per tutto quello che hai fatto, che fai, per quello che
rappresenti per me, per il tuo coraggio e la tua determinazione. Ti amo <3.

Gente elencata, vi voglio un sacco bene.

E ora — giocando a far finta di non vivere nel bel mezzo di una pandemia e
di una guerra — beviamo un po’, va’, ca c vo’ !

Giuseppe

	Introduzione
	Introduction
	Quantum Computing
	Quantum bit
	Measurement problem
	Physical interpretation of the qubit
	Quantum register
	Entangled states
	Quantum logic gate
	Quantum circuits
	Quantum Parallelism
	Mathematical structure of quantum mechanics

	Shor's algorithm and its Impact on cryptography
	RSA public-key cryptosystem
	Shor's algorithm
	Reduction of factorization to order calculation
	The quantum algorithm to calculate the order: a particular case
	The quantum discrete Fourier transform
	The most general case

	Impact on cryptography

	Quantum cryptography
	BB84: quantum key exchange protocol

	Post-Quantum Cryptography
	Standardization: the NIST challenge

	Post-Quantum Cryptography hard problems
	Hard Problems in Lattices for cryptography
	Hash function for cryptography
	Code-based cryptography
	Multivariate-equation-based cryptography
	Supersingular isogeny-based cryptography
	Elliptic curves
	Supersingular isogeny Diffie-Hellman key exchange: SIDH
	Post-Quantum hard problems on elliptic curves

	Post-quantum Cryptography in embedded world
	Winternitz signature scheme
	A possible attack protected by a checksum
	Key re-using: a problem for WOTS

	XMSS and LMS
	Long-term public key economize: Merkle tree
	XMSS: The eXtended Merkle Signature Scheme

	Comparison of digital signature algorithms for practical use
	A comparison between XMSS and LMS
	A comparison of NIST's finalist digital signature schemes

	Conclusion
	Appendices
	Continued Fractions
	The group structure of an elliptic curve
	Geometric interpretation of the sum between two points
	Coordinates of the sum between two points
	Elliptic Curve Discrete Logarithm Problem

	Algebraic varieties
	Bibliography
	List of figures

