
Alma Mater Studiorum · University of Bologna

School of Science
Department of Physics and Astronomy

Master Degree in Physics

Unsupervised clustering of MDS data using
federated learning

Supervisor:

Prof. Enrico Giampieri

Co-supervisor:

Prof. Gastone Castellani

Submitted by:

Lorenzo Sani

Academic Year 2021/2022

Abstract

In this master thesis we developed a model for unsupervised clustering on a data set of
biomedical data. This data has been collected by GenoMed4All consortium from patients
affected by Myelodysplastic Syndrome (MDS), that is an haematological disease. The
main focus is put on the genetic mutations collected that are used as features of the
patients in order to cluster them. Clustering approaches have been used in several studies
concerning haematological diseases such MDS. A neural network-based model was used
to solve the task. The results of the clustering have been compared with labels from a
“gold standard” technique, i.e. hierarchical Dirichlet processes (HDP). Our model was
designed to be also implemented in the context of federated learning (FL). This innovative
technique is able to achieve machine learning objective without the necessity of collecting
all the data in one single center, allowing strict privacy policies to be respected. Federated
learning was used because of its properties, and because of the sensitivity of data. Several
recent studies regarding clinical problems addressed with machine learning endorse the
development of federated learning settings in such context, because its privacy preserving
properties could represent a cornerstone for applying machine learning techniques to
medical data. In this work will be then discussed the clustering performance of the
model, and also its generative capabilities.

Contents

1 Introduction 3
1.1 Clustering . 4

1.1.1 Popular clustering Methods . 4
1.1.2 Clustering MDS . 6

1.2 Federated Learning . 7
1.2.1 Main differences w.r.t. distributed learning 8
1.2.2 Cross-device federated learning 8
1.2.3 Cross-silo federated learning . 8
1.2.4 Life cycle of federated learning model 9
1.2.5 Typical federated learning training process 10
1.2.6 Federated learning framework . 12

2 Methods 13
2.1 Federated Clustering . 13

2.1.1 DEC model and our modifications 14
2.1.2 Federated training of our DEC model 21

3 Data 25
3.1 (B)MNIST . 25
3.2 MDS data description . 26

4 Experiments 29
4.1 Centralized approach . 29

4.1.1 TSAE hyperparameters . 30
4.1.2 DEC clustering hyperparameters 31
4.1.3 Generative capabilities of our DEC model 32

4.2 Federated approach . 33

5 Results and Analysis 35
5.1 TSAE hyperparameters . 35
5.2 Clustering step hyperparameters . 38

1

5.3 Analysis of MNIST/BMNIST clustering 39
5.4 Analysis of EUROMDS clustering . 41
5.5 Generative capabilities of our DEC model 44
5.6 Federated implementation results . 45

6 Conclusions 50

A TSDAE hyperparameter tuning 52

B Clustering step hyperparameter tuning 63
B.1 Tuning on MNIST and BMNIST . 63
B.2 Tuning on EUROMDS . 63

C Federated Implementation 69

2

Chapter 1

Introduction

The aim of this work is to solve the clustering problem of a specific data set, namely
EUROMDS, of biomedical data exploiting an emerging decentralized technique of Ma-
chine Learning (ML), i.e. Federated Learning (FL). The motivation for using this novel
technique is that, as I will deeply explain below, it allows the participation of multiple
centers, both at training and inference steps, without having to actually move or see the
data, and then protecting from privacy risks. Moreover FL has shown to be promising
in reaching a ML objective in a decentralized setting without having to touch or see
data, and respects privacy policies introduced for these, e.g. by General Data Protection
Regulation (GDPR) [1] in European Union. FL can be used to resolve privacy issues
and mitigate the risk of a data breach in clinical information, since transfer and central-
ization of data are not required. Privacy protection is particularly beneficial for medical
data analysis, since medical data represents one of the most sensitive types of personal
data. To protect patients’ privacy, deidentification methods have typically been applied
[2, 3, 4]. However, data centralization is required for both deidentifying data and eval-
uating the risk of reidentification. If the data is centralized, the risk of a data breach is
increased. Moreover, when deidentifying the data set, the direct or indirect identifiers
in the medical data must be determined. This is challenging because of the lack of clear
guidelines. The Health Insurance Portability and Accountability Act (HIPAA) in the
United States provides clear deidentification guidance; it defines 18 types of protected
health information to be removed [5]. However, many researchers and social activists
claim that this guidance should be revised to enhance privacy protection [6]. In contrast,
FL does not require the centralization of raw data. As a result, even the FL developers
cannot access the raw data. Therefore, FL can solve privacy or deidentification issues
that occur when using clinical data. We have developed our federated learning context
in a “simulated” mode, where data is being distributed on nodes that cannot see other
nodes’ data. We say “simulated” because we had actually the possibility to see and
touch data, which would not be allowed in a truly federated learning setting. However
our implementation have been developed to be exploited in an actual federated setting.

3

Interest and researches in FL have grown exponentially since it was first introduced,
and, because of its privacy protection features, it represents a solid breakthrough for
medical application of ML. The task chosen for this application, unsupervised cluster-
ing, is motivated by the fact that it is widely used in medical applications for patient
stratification. It is, in fact, often a first step in many medical procedure for diagnosis
and prognosis. The choice of the principal data set for study was motivated by the fact
that in myeloid malignancies classification is an important task, that requires collecting
data from numerous centers. The principal classifications are on the basis of clinical
and morphological criteria, but these are often successfully complemented by introduc-
ing genomic features as these are closer to the disease biology and better capture clinical
pathological entities.

1.1 Clustering

Clustering analysis or, commonly, clustering is the task of grouping a set of objects in
such a way that objects in the same group, i.e. a cluster, are more similar to each other
than those in other groups. It is a main task of exploratory data analysis and a common
technique for statistical data analysis, also used in many fields, including pattern recog-
nition, image analysis, information retrieval, bioinformatics, data compression, computer
graphics and machine learning. This could be achieved by various algorithms that could
differ significantly in identifying what constitutes a cluster and how to effectively find
them. Notions of cluster include groups with small distances between members, dense
areas of data space, intervals or particular statistical distributions. Many of these no-
tions come from an effective definition of distance in data space, density or limiting
values. Therefore clustering can be formulated as a multi-objectives optimization prob-
lem, in fact it usually involves the definition of multiple criteria that drive the decision
of whether to cluster or not data points. Every algorithm or model for clustering comes
with a different definition of cluster, then the appropriate clustering algorithm and pa-
rameter setting to use depends on the data set and on the intended use of the result.
Cluster analysis in not an automatic task, but a process of knowledge discovery that
iteratively tries to optimize the multi-objectives involving trial and failures. It is often
necessary to preprocess data and model parameters in order to achieve a result with the
desired properties.

1.1.1 Popular clustering Methods

Since the notion of “cluster” cannot be precisely defined, different algorithms or models
try to learn the clustering of data based on different definition with a common denomi-
nator: group of data objects. The differences between these methods are reflected in the
properties of the final results. Clustering algorithms can be classified into the following

4

categories, according to the method used in [7]:

Hierarchical clustering methods: these proceed successively by either merging
smaller clusters into larger ones, or by splitting larger clusters and produce the
so called dendrogram. They are also classified as “connectivity-based” clustering
methods. Popular choices are single-linkage clustering, complete linkage clustering,
and UPGMA or WPGMA (“Unweighted or Weighted Pair Group Method with
Arithmetic Mean”) [8]

Partitioning methods: these methods attempt to directly decompose the data set
into a set of disjoint clusters. These are preferable to hierarchical methods in
applications involving large data sets for which the construction of the dendrogram
is computationally prohibitive. Density-based methods are a subcategory of these,
they try to group neighbouring objects into clusters based on density conditions.
Methods of this category depend strongly on the concept of distance and on the
optimization of a cost function measuring the goodness of the decomposition.

Mixture resolving methods: these are based on the assumption that the patterns
to be clustered are drawn from one of several distributions, the goal is to identify
the parameters of each and (perhaps) their number. Mixture Gaussian models are
the most popular.

Nearest neighbours methods: these are based on the notion of nearest neighbour
distance, and share many properties with partitioning methods. They usually as-
sign labels to data iterating a threshold checking on the nearest neighbour distance.
The famous K-means method belongs to this category.

Fuzzy clustering: the main characteristic of these methods is that they allow for
the same object to be included into different clusters with various degree of mem-
berships. They are then strongly dependent on the membership function adopted.

Artificial neural networks methods: these methods are based on neural network
models that try to identify clusters by optimizing a properly defined loss function.
Competitive neural networks, e.g. GANs [9], or deep autoencoders coupled with
other methods, e.g. DEC [10], are used to solve this task.

Evolutionary methods: these, inspired by natural evolution, make use of evolu-
tionary operators and a population of solutions to obtain the globally optimal
partition of the data. The main operators are: selection, recombination, and mu-
tation. The results are evaluated by a fitness function.

Search based methods: these techniques used to obtain the optimal value of the
criterion function using deterministic or stochastic approaches.

5

Moreover, clustering methods can be also classified on the basis of their membership
function. Whenever the method is able to assign a class label exclusively to each data
point we are dealing with“hard clustering”, instead when a data point could be assigned
to more than one cluster (perhaps with probability) we talk about “soft clustering”.
There exist many methods than combine the notions explained above.

A core aspect of clustering is dimensionality reduction, a key concept in machine
learning and data science. Dimensionality reduction is important for feature extraction
and data visualization, especially in the case of high-dimensional data. Among various
methods, we can mention those based on nonlinear projection of high-dimensional data
into a lower dimensional space, such as distributed stochastic neighbor embedding (t-
SNE) [11], and those based on manifold learning, such as uniform manifold approximation
and projection for dimension reduction (UMAP) [12].

To our knowledge, both of these algorithms have not yet been implemented in a
federated way, but they can constitute a valuable benchmark. Because of the limitations
on the use of data in a federated setting, solving a clustering task could become a tricky
task, if not unfeasible, using the standard methods. Since it was first developed, federated
learning has shown promising results to solve machine learning objective consisting in the
optimization of neural networks (NN). Therefore, NN models with a clustering objective
are the most suitable in a federated setting.

1.1.2 Clustering MDS

Clustering techniques in medical context are extensively used for patient stratification.
In general, patients can be stratified according to some features obtained by multi-omics
measurements (genomic, imaging, etc.). After this step, we try to predict some clini-
cal outcome. This approach was applied in several studies concerning haematological
diseases [13]. In [14] is described a specific method for the Myelodysplastic syndrome
(MDS). In this report, the authors used a particular type of clustering: the hierarchical
Dirichlet processes (HDP), a non parametric Bayesian approach to clustering grouped
data. Due to the high number of studies that used this method, and also on the basis of
the numerous clinical validations, the HDP method has become a sort of “gold standard”
for clustering of hematological malignancies. It has to be noted that the choice of HDP
is motivated also by the nature of the data set. As I will specify later, the data set
format is, roughly speaking, formed by (for each patient) a set of genomic measurements
(obtained from a gene panel), a set of cytogenetic measurements and by a third set of
clinical variables. For the sake of simplicity, we will denote the genomic and cytogenetic
measurements with the common term of “mutations”. According to this simplification,
the first two sets of measurements can be coded by using a 0 (absence of mutation) or
a 1 (presence of mutation). In this way, each row (each patient) will be represented as
a realization of a multinomial distribution (the conjugate prior of the Dirichlet distri-
bution). Another advantage of the HDP is that the number of clusters is determined

6

automatically and there is no need of an assignment a priori. Unfortunately, to our
current knowledge, there is no federated implementation for such algorithm, also a “ex
novo” federated implementation is not easy to develop. The current state of the art
in the federated implementation for similar algorithms is the realization of a federated
framework for the so called latent Dirichlet allocation (LDA) [15], a generative statistical
model that has also been used for applications in hematological malignancies. We ob-
serve that the HDP is the non-parametric Bayesian “natural extension” of the LDA, and
that the number of clusters can be learnt from the data. For these reasons, in order to
have a clinical interpretation and translation, all the federated implementations have to
be compared not only with a centralized implementation, but also with the HDP results.

It is now important to highlight the fact that a federated implementation of a ma-
chine learning clustering method could represent a cornerstone in the medical context, in
which data involved is usually highly sensitive and it is very difficult to share because of
privacy restriction. Federated learning methods allow to train on data without actually
“seeing” it, meaning that these algorithms do not need a complex sharing-data proce-
dure, since data could be kept in the same place it was collected (e.g. clinics, hospitals,
even mobile devices). Initial research results show that the performance of a federated
learning algorithm is comparable to its correspondent in a data-sharing context between
medical institutions, at the same time it is much less prone to privacy concerns [16].
Many challenges yet exist to guarantee a completely secure procedure, on the other
hand different approaches have been proposed to tackle some of the issues [17].

1.2 Federated Learning

Federated Learning is a machine learning setting where many clients, or nodes, collabo-
ratively train a model under the orchestration of a central server, or a service provider,
while keeping the training data decentralized [18]. Such clients that participate the
training are usually represented by edge-devices, as smartphones or wearables, or by
whole organizations, as hospitals or consortia. FL embodies the principles of focused
collection and data minimization, and can mitigate many of the systemic privacy risks
and costs resulting from traditional, centralized machine learning. The term federated
learning was introduced in 2016 [19]: “We term our approach Federated Learning, since
the learning task is solved by a loose federation of participating devices (which we refer
to as clients) which are coordinated by a central server.” An unbalanced and non-IID
(identically and independently distributed) data partitioning across a massive number of
unreliable devices with limited communication bandwidth was introduced as the defin-
ing set of challenges. New challenges related to FL have arisen in the last few years
of intense research, e.g. convergence of the optimization algorithms, improved security
regarding data privacy protection, protection against adversial clients or servers, defence
against attacks or failures, guarantee of fairness and effectiveness, provision for local

7

personalization, addressing system challenges.

1.2.1 Main differences w.r.t. distributed learning

Across the whole range of machine learning methods, there existed some for distributing
the learning across clients or nodes before developing federated learning. Those meth-
ods, usually classified as “distributed learning” possess some differences w.r.t. federated
learning that are important to highlight. Usually distributed learning applies to a “flat”
centralized data set that is being distributed among computation nodes for in order to
obtain a more efficient training. Any client can thus read any part of the data set, in fact
algorithms for distributed learning optimize the distribution and the balance of samples
for efficiency. The computation is more often the bottleneck in these situations, while the
communication often happens between different nodes in the same data centers. Clients
are also stateful, meaning that they keep the state of the training at every iteration, and
can be directly addressed to by the orchestrator.

1.2.2 Cross-device federated learning

FL was initially deployed on mobile or edge-devices in a context formally known as
“cross-device””. The characteristics of such context are peculiar. Only a fraction of
clients is available at any given time, often with diurnal or other variations. The set-
ting is massively parallel, in fact large scale applications have reached up to 1010 clients.
Communication is often the primary bottleneck, although it depends on the task, since
wi-fi or slower connections are used. Clients here cannot be indexed, i.e. no use of any
client identifiers, because they are too many, and they are also stateless, meaning that a
fresh sample of never-before-seen clients at each round of computation is assumed. The
state of a federated model is usually represented by the parameters of the model and/or
the state of the optimizer. Clients are highly unreliable, more than 5% of those partici-
pating in a round of computation are expected to fail or drop out. Data partitioning is
fixed and it is usually horizontal, i.e. clients provide different examples of data with the
same shared features. These properties are mainly influenced by the device type used
in such context, in fact mobile or edge-device are usually selected for participating in a
computation round only when they are idle, connected to the network and have a high
level of battery.

1.2.3 Cross-silo federated learning

While some “cross-device” medical applications have been proposed [20], the majority
of biomedical data are collected in hospitals or clinics, not on mobile or edge-devices.
The FL context in which training is performed on siloed data is formally known as
“cross-silo” setting. Clients here are usually organizations, e.g. medical or financial, or

8

geo-distributed data centers. Many applications have been proposed in this context,
e.g. [21, 22, 23, 24]. In these set situations, the local training of the model might be
sufficient, but FL allows to increase the amount of information as many more samples
can be used. This produces more effective and reliable models. Typically these settings
have tens or hundreds of clients, differently from “cross-device”. The primary bottleneck
could be represented not only by the communication, that is in general more reliable
and fast, e.g. fiber optics connections between network-optimized data centers, but also
by computation, since there is much more data involved. Each client has an identity or
name that allows the system to address it specifically. Clients are also stateful, i.e. each
client should be able to participate in every round of computation while keeping at any
time the state of the training. This setting produces relatively few failures since clients
are more reliable. Data partition is fixed, and can be either horizontal or vertical, i.e.
clients provide different features from the same example.

1.2.4 Life cycle of federated learning model

The FL process is usually performed by many actors. Adding to the already mentioned
clients and server, there are an administrator, e.g. a researcher, a model engineer or a
data analyst, and also the external world, i.e. other edge-devices, customers to which the
final trained model could be deployed. Most of these customers are represented by the
clients which participate the training, but there might be many more. The typical top
level workflow of a FL process is:

Task identification. The administrator identifies the task to be solved with FL.

Client set up. When needed, the clients are provided with the resources necessary
to store locally their training data and metadata.

Training simulation. The administrator may simulate using a proxy data set the
FL training procedure for hyperparameters tuning and model architecture opti-
mization.

Actual federated model training. Usually multiple tasks of federated training
are started (in parallel) to train different flavors of the model, i.e. using different
training procedures, hyperparameters.

Model evaluation. Once that the models have trained sufficiently (some metrics
can ensure this), they are analyzed to select good candidates. Analysis of these
models may include metrics computed on proxy data sets, or also federated eval-
uation wherein the models are pushed to held-out clients for evaluation on local
client data.

9

Final deployment. Once a good model has been selected, it undergoes the usual
launch process. This process is independent to the previous steps and it is set by
the owner of the application. In practice, this step is equal to those applied in
traditional centralized approaches.

1.2.5 Typical federated learning training process

It is now important to focus on the training process that is the most different step of
the life cycle w.r.t. traditional centralized ML. FL research has developed many training
algorithms that differ in some of the general procedures involved. Then, the general
procedure will be described in the following, and some focused insights will be discussed.

A server, or a service provider, orchestrates the entire training process, through the
iterative repetition of the following steps until the training is stopped. The stopping
criteria are define at the discretion of the administrator that is monitoring the training
process.

1. Client selection: the server samples from a set of available clients, whose avail-
ability is conditioned by some requirements. These requirements restrict heavily
the eligibility of clients, especially in “cross-device” context, e.g. they may rely on
the wi-fi connection quality, the idle state of the device, or whether the device is
plugged in for charging. In “cross-silo”, however, all the clients may be available
at every iteration, or, alternatively, the administrator may have set for the server
to wait until all the clients are available.

2. Broadcast: the selected clients download the current state of the FL training.
This state consists at least of the model’s parameters, but some training procedure
could also include the optimizer’s state or some state-dependent hyperparameters.

3. Client computation: each selected client locally computes a model update ex-
ecuting locally the training program. This local training has been set up by the
administrator, and it may depend on the federated algorithm chosen, on the model
itself, or on the state of the training. At this stage, one local model for every client
is produced, while the global model is kept only at server place.

4. Aggregation: the server collects an aggregate of the device updates. The ag-
gregation algorithm is crucial in order to reach the convergence of the training
procedure. Many aggregation algorithms have been proposed in the last few years.
These take into account efficiency optimization, secure aggregation for increased
privacy, compression mechanisms, noise addition and update clipping for differen-
tial privacy.

10

5. Model update: the server locally updates the global model based on the aggre-
gated update computed from the clients that effectively participated in the current
round.

The “client selection” step is usually very different between “cross-device” and “cross-
silo” approaches. In the first case, the algorithm must choose from a very high number
of clients those for which the many conditions of reliability are satisfied. Usually it is
important that the device is idle, connected to internet, connected to the charger, but
many other conditions could be pinned causing the number of available clients to be
much lower than the total in the setup. On the other hand “cross-silo” approaches may
not limit in any way the number of clients participating the training as they are often
reliable in terms of network availability and computational capabilities. The nodes in
“cross-silo” are often represented by specialized machines that are devoted to perform
the operations involved in a federated training.

“Client computation” step deserves a further brief discussion. The federated setup,
in fact, must take into account the computational capabilities of the nodes involved dur-
ing training. Thus developing the client computation step for “cross-device” federated
learning might involve simpler and faster calculations than traditional centralized ma-
chine learning because of the computational resources edge-devices usually have. On the
other hand, the computational capabilities of nodes involved in “cross-silo” federated
learning are much greater than “cross-device”, allowing researchers to exploit heavier
pipelines and using the same tools of traditional centralized machine learning.

The aggregation procedure is the true core of federated learning. Despite absent
mathematical guarantees of the convergence of such algorithms in nonconvex functions
minimization, those involved in training neural network models, many proposed algo-
rithms have been successful in applications. The most popular is Federated Averaging
(FedAvg) algorithm, an adaptation of local-update or parallel Stochastic Gradient De-
scent (SGD). Here, each client runs a predetermined number of SGD steps locally, and
then sends back to the server the parameters of its local model. Local models from
clients’ updates are then averaged by the server to form the updated global model. The
pseudo-code in Algorithm 1 summarizes the procedure involving K clients making E
local epochs whose batches size is fixed to B. There exist also other algorithms. Other
algorithms used in this work are FedAdam and FedYogi [25] which will be discussed later
along with their centralized counterpart.

11

Algorithm 1: FedAvg. The K clients are indexed by k; E is the number of
local epochs; η is the learning rate; B is the size of the local batches; w indicates
model parameters, when naked those of global mode, with superscript k those
of kth client, with subscript 0 those from the common initialization, subscripts
t and t+ 1 indicate the current and the next iteration respectively.

Server executes:
initialize w0

for each federated round t = 1, 2, ... do
St ← (select available clients)
for each client k in St do in parallel

wk
t+1 ← ClientUpdate(k, wt)

end

wt+1 ←
∑K

k=1
nk

n
wk

t+1

end

ClientUpdate(k, wt):
B ←(split k-th client’s data set into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈ B do
w ← w − η∇l(w; b)

end

end
return w to server

1.2.6 Federated learning framework

In order to perform experiments or to actually implement a federated learning setup,
it is necessary to use a framework. Federated learning frameworks are composed by a
set of libraries that allows to customize the algorithmic part of the setup, while under
the hood generalities about the training process are shared. Frameworks usually provide
a simple and general pipeline that follows the main steps of a federated learning pro-
cess. We then chose Flower Framework [26], because it provides the necessary coding
structures for performing both simulation and real implementation. It is also scalable
up to millions of clients maintaining a top trending performance. We were thus able to
perform a simulation of a federated setting on a single node using “virtual clients”, and
real federated setting exploiting different nodes in different places.

12

Chapter 2

Methods

In this section, the methods used to assess the main task of the thesis work will presented
and discussed. First the motivation for the choice of the method will be presented and
justified. Then, a complete explanation of chosen the model will be accompanied by our
contributions. These contributions will be explained along with the motivation that led
us to introduce them.

2.1 Federated Clustering

Clustering plays a central role in disease outcome prediction and intervention planning by
bridging the gap between traditional, average based medicine, and a fully personalized
one. Clustering patients through using relevant attributes, e.g. clinical, phenotypical,
demographical and omics, allows us to identify responses to therapy that might have
been overlooked as unpredictable variability before. To make full use of this ability
it is necessary to employ extended clinical studies, with potentially tens of thousands
of patients involved. These kinds of studies are unfeasible for individual centers and,
even when possible, cannot be generalized to a broader population (for example at the
European level) due to biases in socio-demographical and ethnicity characteristics of the
population under study. This means that multi-center studies are indispensable, but
these kinds of studies have issues with privacy and deindentification of patients, as some
of the information cannot be shared due to privacy concerns. These issues are even more
severe if the centers are distributed across different European countries or, even worse,
outside of the EU.

To circumvent these issues, federated methods can be applied to identify cross-
regional clusters without private information leaking between the centers. Sadly, most
clustering methods cannot be directly extended in a federated setting, and even those,
for which this is possible, might need to be modified substantially to accommodate for
the different scenarios.

13

Given the prominence of deep learning (DL) approaches in federated learning, we
chose to explore a clustering model based on DL. The model we developed is based on
the Deep Embedding for Clustering (DEC) model proposed by [10]. We made novel
extensions to original DEC model in order to obtain a federated implementation, for
extend to the MDS problem, and for study its generative capabilities. The federated
implementation was developed using the Flower framework [26]. In the following a
complete explanation for our DEC model is provided. A description will be given for the
many modifications we made both to the structure of the network and to the training
procedure.

2.1.1 DEC model and our modifications

Original DEC model was inspired by parametric t-distributed stochastic neighbor em-
bedding (t-SNE) and it exploited the ability of autoencoders to project real data to the
feature, or hidden, subspace, with a (commonly) strongly reduced dimensionality. This
model is able to simultaneously learn feature representations and cluster assignments,
but we explored also its generative capabilities for producing synthetic data. The main
problem is clustering a set of n points {xi ∈ X}ni=1 into k clusters, each represented by
a centroid µj, withj = 1, . . . , k. Instead of clustering directly in the data space X, the
model first transforms data with a non-linear mapping fθ : X −→ Z, where θ are learn-
able parameters and Z is the latent feature space. The dimension of Z is typically much
smaller than X in order to avoid the “curse of dimensionality”. In order to parametrize
this mapping fθ, deep neural networks are a natural choice. In this data driven approach,
the optimization of this neural network is crucial to obtain reliable results. The model,
in a second stage, trains the mapping fθ coupled with an auxiliary distribution, that
describes the distribution of data points’ distances w.r.t. their estimated cluster center,
minimizing the Kullback-Leibler (KL) divergence. This second step effectively executes
the clustering by assigning probability labels to data points according to the auxiliary
distribution, and it also optimizes at the same time the parameters θ and the clusters’
centroids. In Fig. 2.1, we propose the original image representing DEC model.

DEC training

DEC training is non trivial and subdivided in two main steps:

Step 1. Parameters initialization and feature space identification by training a deep
autoencoder.

Step 2. Parameters optimization, i.e. clustering step, exploiting an auxiliary target dis-
tribution.

14

Figure 2.1: Diagram of the DEC model from the original paper.

During Step 1, the model tries to learn the feature representation of data, i.e. learns
the non-linear mapping fθ. A stacked autoencoder (SAE) was used by the authors be-
cause recent research has shown that these consistently produce semantically meaningful
and well-separated representations on real-world data sets. SAEs are deep neural net-
works (DNN) composed by many stacked densely connected linear layers that can be
separated in half by identifying an “encoding” stack of layers and a “decoding” stack.
The dimensions of the layers in these two stacks are usually the same but in the inverse
order producing a bottleneck in the middle of the structure that represents the feature
space. In this architecture, the output of all the hidden layers is activated by a non-
linear function, except for the bottleneck layer representing feature space. Fig. 2.2 shows
a diagram of such architecture.

Thus the unsupervised representation of the feature space Z, learnt by SAE, facilitates
in a natural way the clustering representation from DEC model. In order to obtain the
best representation possible, the SAE initially undergoes a pretraining where it initializes
its parameters and then a finetuning. Pretraining was performed in a greedy-layer wise
(GLW) fashion, i.e. a series of coupled denoising autoencoders (DAE) composed of two

15

layers only was trained sequentially. DAEs are two layer neural networks defined by:

x̃ ∼ Dropout(x) (2.1)

h = g1W1x̃+ b1 (2.2)

h̃ ∼ Dropout(h) (2.3)

y = g2W2h̃+ b2 (2.4)

where Dropout(·) is a stochastic mapping that randomly sets a portion of its input
dimensions to 0, g1 and g2 are activation functions for encoding and decoding layers
respectively, and θ = {W1, b1,W2, b2} are model parameters. The objective of using
DAEs is to eliminate the risk of learning the so-called “identity function”. Usually the
reconstruction loss to minimize is the Mean-Squared Error (MSE), optimal for real-valued
data, but it has shown reliable results also for other kinds of data.

MSE =

∑n
i=1(yi − xi)

2

n
(2.5)

These networks are optimized using the Stochastic Gradient Descent (SGD) optimizer.
During finetuning, dropout layers are removed and the coupled pretrained DAEs are
stacked together composing a SAE, which is then trained optimizing again the recon-
struction loss. The final result of Step 1 is a multilayer deep autoencoder with a bottle-
neck encoding layer in the middle. After Step 1 is completed, the decoder’s layers are
discarded and only the encoder’s layers will be used as initial mapping between the data
space and the feature space.

I explored a less complex and more reliable training procedure exploiting tied stacked
autoencoders (TSAE), whose main difference w.r.t. SAEs is that the parameters compos-
ing the decoder’s layers are tied to those of the encoder’s layers through a transposition
operation. The Fig. 2.3 shows a diagram of such architecture.

I decided also to test the addition of some hidden dropout layers, that is a very
effective technique for avoiding overfit in this context [27]. Using properly initialized
TSAE, e.g. by “Xavier-Glorot” initialization [28], results in many advantages. They are
explained in the following.

• Thanks to the tying of layers’ parameters, the actual number of parameters to train
is halved, meaning, often, faster training. On the other hand the complexity of the
mapping fθ is conserved and not reduced.

• The training procedure does not need to perform a pretraining step in the GLW
fashion. GLW training is, in general, power and time consuming since the coupled
DAEs must be trained in sequence for many epochs on the entire data set. This
reasoning is even more valid in a federated setting where convergence is usually
slower, therefore more training epochs are needed.

16

• This architecture allows to test modifications to the original loss function for taking
into account the nature of data. One may wonder why this was not possible before,
in fact, technically, one could use different losses in the finetuning of the SAE, but
not in GLW pretraining. This is because the nature of the hidden representation
of data given by the coupled DAEs cannot retain the structure of the data, i.e. if
data is binary, its hidden representation from any DAEs, after having stacked it
in a SAE, will not be. On the other hand, applying different losses during GLW
pretraining and finetuning does not carry many advantages, since GLW pretraining
works as an initializer constraining strongly θ parameters.

• This architecture make use of modern optimization algorithms, e.g. Adam [29],
Yogi [30], these have never been experimented in GLW pretraining coupled with
finetuning.

• This tied architecture allows us to study the generative capabilities of the model
after the clustering step. Since in the next step the decoder will not be trained at
all, it may lose its property of back-projection from feature to data space. In our
case, being its parameters tied to those of the encoder, that is further optimized,
decoder may be able to retain the mapping even after the following step.

Optimizers

Since the modifications in architecture we made, we decided to experiment also on differ-
ent optimizers for training the TSAE. The architecture proposed exploits some modern
artifacts of computer science, and therefore exploiting modern artifact also in the opti-
mization seemed reasonable. We chose to experiment SGD, as used in the original DEC,
but also Adam and Yogi. These are modern adaptive optimization algorithms built on
the basis of SGD. In the following we will give a brief explanation for these optimizers.

Stochastic Gradient Descent. This is an iterative method for optimizing an ob-
jective function with suitable smoothness properties (e.g. differentiable or subdif-
ferentiable). It can be regarded as a stochastic approximation of gradient descent
optimization, since it replaces the actual gradient (calculated from the entire data
set) by an estimate thereof (calculated from a randomly selected subset of the data,
i.e. a batch). Especially in high-dimensional optimization problems this reduces the
computational burden, achieving faster iterations in trade for a lower convergence
rate. Stochastic gradient descent has become one of the most popular optimiza-
tion methods in machine learning. Its iterative procedure can be summarized in
the following equation:

wt+1 := wt − η∇Qi(wt) (2.6)

where wt+1 are the parameters of the NN model at the next iteration t + 1, η
is the learning rate, ∇Qi(wt) is the gradient of the loss function Q(w) computed

17

on the parameter wt at current iteration t on the ith sample. It is often used
“with momentum”, meaning that the current update of the parameter is linearly
combined with the previous updates. This can be summarized by the following
equations:

∆wt := α∆wτ − η∇Qi(wt) wt+1 := wt +∆wt (2.7)

where ∆wτ represents the contribution of earlier updates, and α is an exponential
decay factor between 0 and 1 that determines the relative contribution of the
current gradient and earlier gradients to the parameters change. A suitable value
for α is 0.9.

Adam. Adaptive Moment Estimation (Adam) is an update to the Root Mean Square
Propagation optimizer. In this optimization algorithm, running averages of both
the gradients and the second moments of the gradients are used. Given parameters
w(t) and a loss function Q(t) = Q(w(t)), where t refers to the current training
iteration, Adam’s parameter update is given by:

m̂(t+1)
w ←− β1m

(t)
w + (1− β1)∇wQ

(t) (2.8)

v̂(t+1)
w ←− β2v

(t)
w + (1− β2)(∇wQ

(t))2 (2.9)

m̂w =
m̂

(t+1)
w

1− βt
1

(2.10)

v̂w =
v̂
(t+1)
w

1− βt
2

(2.11)

w(t+1) ←− w(t) − η
m̂w√
v̂w + ϵ

(2.12)

where ϵ > 0 is a small scalar, that we set to 10−8, used to prevent division by 0,
and β1 ≥ 0, that we set to 0.9, and β2 ≤ 1, that we set to 0.999, are the forgetting
factors for gradients and second moments of gradients, respectively. Squaring and
square-rooting is done element-wise.

Yogi. This is essentially a modification of Adam algorithm. The key element behind
Adam is to use an adaptive gradient while ensuring that the learning rate does not
decay quickly. To achieve this, Adam uses an Exponetial Moving Average (EMA)
which is, by nature, multiplicative. This leads to a situation where the past gra-
dients are forgotten in a fairly fast manner. This can especially be problematic in
sparse settings where gradients are rarely nonzero. An alternate approach to reach
the same results as Adam is through additive updates. To this end, a simple addi-
tive adaptive method was proposed in [30], Yogi (name derived from the Sanskrit
word “yuj” meaning “to add”), to improve the stochastic nonconvex optimization

18

problem of our interest. Given parameters w(t) and a loss function Q(t) = Q(w(t)),
where t indexes the current training iteration, Yogi’s parameter update is given by:

m̂(t+1)
w ←− β1m

(t)
w + (1− β1)∇wQ

(t) (2.13)

v̂(t+1)
w ←− β2v

(t)
w + (1− β2) · sign[v̂(t)w − (∇wQ

(t))2] · (∇wQ
(t))2 (2.14)

m̂w =
m̂

(t+1)
w

1− βt
1

(2.15)

v̂w =
v̂
(t+1)
w

1− βt
2

(2.16)

w(t+1) ←− w(t) − η
m̂w√
v̂w + ϵ

(2.17)

where ϵ > 0 is a small scalar, that we set to 10−8, used to prevent division by 0,
and β1 > 0, that we set to 0.9, and β2 < 1, that we set to 0.999, are the forgetting
factors for gradients and second moments of gradients, respectively.

Clustering step

Step 2 is then performed to refine the parameters found so far. The data is passed
through the initialized encoder to get embedded data points and then K-means clustering
is performed in the feature space Z to obtain k initial centroids µj, j = 1, . . . , k. We
explored, in addition to the original procedure, the possibility to re-scale the points in
the feature space, before applying K-means clustering, in order to help the algorithm
understand better the clusters’ distribution. Whenever feature data points have been
re-scaled, we used the empirical centroids computed on the original feature space from
the labels obtained from K-means to initialize the centroids.

Following to this initialization, the training proceeds iterating between two tasks:
computing the auxiliary target distribution, and minimizing the Kullback-Leibler diver-
gence (KLD) loss between the predicted target distribution and the computed target
distribution. We chose the KLD because it describes the information lost by approxi-
mating a distribution with an empirical one. The auxiliary distribution is the kernel of
the DEC model that measures the similarity between embedded points and centroids.
The choice of the Student’s t-distribution seemed natural (including the connection to
the t-SNE encoding). This target distribution is computed as:

qij =
(1 + ||zi + µj||2/α)

α+1
2∑

j′ (1 + ||zi + µj′||2/α)
α+1
2

(2.18)

where zi = fθ(xi) ∈ Z corresponds to xi ∈ X after embedding, α represents the degrees
of freedom of the Student’s t-distribution that is usually proportional to the number of

19

observed clusters minus one, and qij can be interpreted as the probability of assigning
sample i to cluster j (i.e. a soft assignment). Originally, the authors of DEC model
let α = 1, stating that it is not possible to cross-validate α on a validation set in an
unsupervised setting, and learning it is superfluous. In the article that inspired DEC
model, [31], they suggest, however, to try to learn parameter α from data, and they say
also that the best performing value is close to α = N − 1, where N is the number of
clusters.

For an efficient convergence of the model, choosing the proper target distribution P
is very important. It should possess the following properties.

1. Strengthen predictions (i.e. improve cluster purity).

2. Put more emphasis on data points assigned with high confidence.

3. Normalize loss contribution of each centroid to prevent large clusters from distort-
ing the hidden feature space.

During the KLD optimization, the model updates the deep mapping and refines
the cluster centroids by learning from current high confidence assignments using the
computed auxiliary target distribution. Specifically, the model is trained by matching
the soft assignment to the target distribution. The objective is defined as a KL divergence
loss between the soft assignments qi and the auxiliary distribution pi:

L = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

(2.19)

where pij are computed as:

pij =
q2ij/fj∑
j′ q

2
ij/fj′

(2.20)

where fj =
∑

j qij are the computed (soft) cluster frequencies.
The method jointly optimizes cluster centers and encoder’s parameters θ. It originally

used Stochastic Gradient Descent (SDG) with momentum, so that the gradients of KLD
were given by:

∂L

∂zi
=

α + 1

α

∑
j

(
1 +
||zi − µj||2

α

)−1

× (pij − qij)(zi − µj), (2.21)

∂L

∂µj

= −α + 1

α

∑
i

(
1 +
||zi − µj||2

α

)−1

× (pij − qij)(zi − µj). (2.22)

We explored also the possibility to use Adam and Yogi as well for this optimization
step. The gradients ∂L

∂θ
are then passed down to the encoder and used in standard

20

backpropagation to compute gradient for the encoder’s parameter ∂L
∂θ
. For the purpose

of discovering cluster assignments, the procedure is stopped when less than a pre-defined
number of points change cluster assignment between two consecutive iterations, usually
this threshold is set to 0.1%. This training strategy for the clustering step can be seen
as a form of self-training [32]. As in self-training, we take an initial classifier and an
unlabeled data set, then we label the data set with the classifier in order to train on its
own high confidence predictions. Indeed, in experiments the authors observed that DEC
improves upon the initial estimate in each iteration by learning from high confidence
predictions, which in turn helps to improve low confidence ones.

2.1.2 Federated training of our DEC model

Training our DEC model in a federated fashion needs some modifications w.r.t. the
centralized version. Both step 1 of training (initialization of parameters via TSAE) and
the minimization of KLD loss are optimized by exploiting FedAvg [19], i.e. the most
used algorithm for aggregating weights, when the local optimizer is SGD, FedAdam [25]
when Adam is used as local optimizer, FedYogi [25] when Yogi is used as local optimizer.
The computations involved in FedAdam and FedYogi are resumed by the pseudocode in
Algorithm 2. The federated implementation of these optimizers assumes the choice of an
additional set of hyperparameters (ηs, β1s, β2s) referring to server aggregation only. The
local estimate of gradients could be performed, in principle, with any local optimizer.

21

Algorithm 2: FedAdam , and FedYogi algorithms.

Initialization:
x0, v−1 ≥ τ 2, server learning rate ηs, server decay parameters β1s, β2s ∈ [0, 1),
client learning rate ηl
for t = 0, ..., T do

Sample subset S of clients
Set xt

i,0 = xt

for each client i in S do in parallel
for k = 0, ..., K − 1 do

Compute an unbiased estimate gti,k of ∇Fi(x
t
i,k)

xt
i,k+1 = xt

i,k − ηlg
t
i,k

end
∆t

i = xt
i,K − xt

end
∆i =

1
|S|

∑
i∈S ∆

t
i

mt = β1smt−1 + (1− β1s)∆t

vt = vt−1 − (1− β2s)∆
2
t sign(vt−1 −∆2

t) (FedYogi)

vt = β1svt−1 − (1− β2s)∆
2
t∆

2
t (FedAdam)

xt+1 = xt + ηs
mt√
vt+τ

end

Federated aggregation of initial centroids

The initialization of the cluster centroids needs a deeper discussion, in fact it is not guar-
anteed that running K-means at clients’s place will uncover the same clusters centroids
for every client. One has to keep in mind that clusters’ centroids initialization does not
need to be extremely precise because centroids will be optimized during KLD minimiza-
tion step, but on the other hand they cannot be random since DEC model performs
better if clusters are already enough separated in the feature space. In order to solve
the problem of “federating” the clusters’ centroids initialization, we have proposed four
different solutions.

The first solution proposed is an algorithmic procedure described in the following
lines. Every client identifies its clusters’ centroids similarly to the centralized implemen-
tation. Those are then sent to the central node to be aggregated. The server, thus,
receives N set of k centroids, where N is the number of clients, and k is the number
of centroids that locally, i.e. at client place, K-means algorithm has searched for. The
aggregation of centroids is performed “by completion” as follows:

1. one of the N sets of client’s centroids is chosen randomly, let’s denote this client
with letter “i” s.t. its set of centroids is denoted by {µi}j=1,...,k = {µi

1, ..., µ
i
k};

22

2. the first of the k centroids, µi
1, in the set is chosen to initialize the set of aggregated

centroids, denoted with letter “s”: {µs}j=1,...,k = {µs
1, ..., µ

s
k}, s.t. µs

1 = µi
1;

3. the other [k · (N −1)] centroids, those of the clients that are not chosen, along with
the (k− 1) centroids of the client chosen constitute the set of (k ·N − 1) centroids,
denoted by letter “c” {µc}z=1,...,(kN−1) = {µc

1, ..., µ
c
(kN−1)}, that will be chosen for

completing the set of aggregated centroids {µs}j=1,...,k initialized by µs
1 = µi

1;

4. for every centroid in {µc}z=1,...,(kN−1) is computed the euclidean distance w.r.t all
the centroids in {µs}j=1,...,k and only the minimum value is considered, i.e. a set of
distances {dc}z=1,...,(kN−1) is computed s.t. dcz = minj=1,...,k ∥µc

z − µs
j∥;

5. the centroid from {µc}z=1,...,(kN−1) that has the maximum distance dcz is then added
to {µs}j=1,...,k;

6. steps 4 and 5 are iterated until the set {µs}j=1,...,k is completed with k centroids.

In this procedure we are assuming that the distance between a centroid and a set of
centroids could be estimated by getting the minimum between the euclidean distances
of this centroid w.r.t. the centroids in the set. The meaning of the procedure of adding
up to the set of aggregated centroids the centroid that has the maximum distances w.r.t.
the set is that we are trying to take into account the spread of the clusters over the entire
feature space. The the final list of aggregated centroids is sent then back to clients to
initialize the local clustering layer. We can call this procedure “max min”.

Another simpler technique to aggregate those centroids could be the random sampling
of k centroids from the shuffled list of all the N · k centroids. We call this procedure
“random”.

The previous random sampling could be weighted in probability by the number of
data points belonging to centroids’ clusters. We call this procedure “random weighted”.
In this last case, clients should return to server couples (µi

j, n
i
j), where letter i indicates

the ith clients and letter j the jth cluster.
Another interesting aggregation procedure we developed exploits, as before, the cou-

ples (µi
j, n

i
j), but these are used to build a dummy “simulated” feature space. Every

centroid µi
j is repeated once for every ni

j, building a feature space composed of repeated
centroids. This stage could be enhanced by building the feature space with repeated
µi
j + G

j
i , where G

j
i is small additive Gaussian noise, but we have not tested this variant.

Then, once the feature space of centroids has been built, another round of K-means clus-
tering is performed by the server. The centroids found by K-means algorithm compose
the final list of aggregated centroids that is sent then back to clients to initialize the
clustering layer. We call this method “double kmeans”.

23

Figure 2.2: Diagram of a SAE with 3 hidden layers for the encoder and for the decoder
stacks.

Figure 2.3: Diagram of a TSAE with 3 hidden layers for the encoder and for the decoder
stacks.

24

Chapter 3

Data

In this section we will discuss the data sets used in this work. In particular we will
describe those data sets used as a baseline to prepare the way for training our DEC
model on EUROMDS data set. We will describe also EUROMDS data set explaining
which variables and categories we have used in this work. We chose MNIST data set as
a baseline, for the following reasons.

• We were able to perform the clustering analysis having available actual labels from
which we could compute the accuracy of our DEC model.

• It was used by the author of original DEC, thus we had the option to directly
compare the performance of our DEC model w.r.t. the original one.

• With an artificial rounding operation, we were able to build a binarized version of
MNIST, that thus had the same nature of EUROMDS data set.

The final objective was to solve the task of unsupervised clustering on the EUROMDS
data set which is composed of, essentially, binary data, and that is why it was important
to have a baseline data set that was similar to that in nature. Moreover, since we have
made important modifications to the original DEC model, some of them in order to
exploit newer neural network architectures, to manage the binary nature of our data,
and to enable the possibility to use it in a federated setting, it was really important to
test our DEC model performance w.r.t. original DEC. Having a performance comparison
w.r.t. the original DEC model was important to understand if our choices could increase
or not the performance.

3.1 (B)MNIST

MNIST data set is a very popular collection of images, a complete description is available
at [33]. It is composed of a training set of 60,000 examples, and a test set of 10,000

25

examples. These are gray level images of 28× 28 pixels representing handwritten digits
from 0 to 9, and thus composed by 10 classes. The digits have been size-normalized and
centered in a fixed-size image. The sample population is uniform w.r.t. the classes.

In order to have a baseline data set that could be comparable to the EUROMDS
binary data set, we chose to binarize those images. Each image pixel is then scaled in
the range [0, 1], since the values of pixels’ gray levels are provided in the range [0, 255].
Then they are rounded to assume values 0 or 1 with the usual rounding threshold of
0.5. The transformed data set will be then denoted as Binary MNIST (BMNIST). An
example of this is shown by Fig. 3.1

Figure 3.1: This figure shows the transformation from classical MNIST images to BM-
NIST images. The upper ten images were sampled from MNIST and then transformed
in their binarized version represented by the lower ten images.

3.2 MDS data description

The data on Myelodisplastic Syndrome (MDS) that are actually available between the
GenoMed4ALL [34, 35] consortium are a combination of genomic, cytogenetic and clin-
ical data. GenoMed4ALL is an EU-funded project that aims to accumulate evidence
points towards personalised medicine to treat and manage common, rare and ultra-rare
haematological diseases. To address this need and support research further, the project is
developing a data-sharing platform that utilises novel advanced AI models. The project’s
partners are sharing infrastructure, powerful computing facilities, hospital registries and
data processing tools towards this effort. The project is contributing to the exploita-
tion of omics and clinical data in patient-oriented research and decision-making through
advanced statistics and machine learning approaches. These tools are developed in the
hope to obtain improved therapies and better clinical outcomes.

26

I will report here a brief description of EUROMDS data set. The data set is in a
“csv” format and we have that rows represent patients while the columns are the variables
(features). These variables are organized as follows:

• General and demographic variables

– Patient ID, EUROMDS patient labels

– Gender, Male or Female

– Age at data collection, age at diagnosis

• Clinical variables (prognostic scores)

– World Health Organization (WHO) 2016 subtype, WHO disease classification

– International Prognostic Scoring System (IPSS) risk group, disease classifica-
tion according to IPSS

– Revised International Prognostic Scoring System (IPSSR) risk group, disease
classification according to IPSSR

• Clinical-biological variables at diagnosis
These variables are composed of haematochemical tests results on blood (cell counts
and ferritin etc.) and bone marrow (count of bone marrow blasts an sideroblasts
etc.) and a comorbidity score index.

• Follow up and outcome variables

– Leukemia free survival, characterized by two variable: event, and time to
event

– Overall survival: event, and time to event

– Acute Myeloid Leukemia (AML) adjusted overall survival: event, and time to
event

• Cytogenetic variables
These data are grouped in 13 columns where is reported the presence/absence of
a chromosomal alteration. This data is represented by 0 when chromosomal alter-
ation absent, 1 when chromosomal alteration is present, “NaN” if not measured.

• Genomic variables
These variables are composed by the mutational status of 47 selected genes (gene
panel for MDS). This data is represented by 0 where mutation is absent, 1 where
mutation is present, “NaN” if not measured.

27

• HDP components
Patient specific Hierarchical Dirichlet Processes (HDP). The weights across 6 latent
components are listed as reported in [14].

In this work only a part of these variables were used: from the sets of genomic
variables, and cytogenetic variables were extracted those variables for training our DEC
model, precisely the same used in [14] for HDP; follow up and outcome variables were
used to characterize the clusters obtained by our DEC model; HDP components were
used as “ground truth” to evaluate our DEC model clustering results. Since the columns
of variables used in the end were 54, we decided to give simple representation of a patient
as an image 6×9 were every pixel corresponds to a specific variable as described by Table
3.1. These kind of visual representations are often helpful for clinicians because they are
able to recognize features with a look. An example of this representation is given by Fig.
3.2.

ICHR17qort17p IDH2 ETV6 PIGA SF3B1 ATRX

IDH1 NOTCH1 LOCHR13OD13q ASXL1 FLT3 BCOR

LOCHR5OD5qPLUSother BCORL1 TET2 ZRSR2 DNMT3A LOCHR12OD12P12p

RUNX1 SMC1A LOCHR20OD20q MPL BRAF idicXq13

NRAS NF1 SMC3 PHF6 LOCHR7OD7q LOCHR9OD9q

EZH2 U2AF1 GNAS WT1 GNB1 RAD21

SRSF2 TP53 CBL KRAS FBXW7 del5q

LOCHR11OD11q PTPN11 GATA2 KIT NPM1 GOCHR8

JAK2 LOCHRY PRPF40B CEBPA CBLB STAG2

Table 3.1: This table represents how the variables used in this work are arranged as an
image. Each cell corresponds to one pixel of the image, while rows and columns arrange
those pixels to form an image. Mutations are represented with their acronym.

Figure 3.2: Here are shown 5 examples of the image representation of MDS patients.
These are reconstructed synthetic data, and thus do not represent real patients. White
pixels represent the value 1, while black pixels value 0. Gray values represent probabilities
of having 1.

In order to fill those values where the measure could not be accomplished, and thus
represented by “NaN”, we decided to replace “NaN” with the empirical probability of
having value 1 in that column. This empirical probability was estimated by the frequency
of 1s w.r.t. to all the patients that have that column filled with 1 or 0, i.e. excluding
those with “NaN”.

28

Chapter 4

Experiments

In this section we will present all the experiments we performed for clustering the data
sets in the centralized approach. We will present at the end of the chapter the experiment
performed on EUROMDS data set in the federated approach. The reference for clustering
MNIST has the best performance in accuracy from the original DEC, that is 84.30%.
On the other hand, the reference for EUROMDS clustering is given by the hierarchical
Dirichlet processes (HDP), a non parametric Bayesian approach to clustering grouped
data, applied to this set in [14]. Since EUROMDS data set does not come with pre-
assigned truth labels, HDP label assignments will be treated as “ground truth”, i.e.
our clustering evaluation will be in terms of these labels investigating the amount of
information that our DEC model retains about HDP clustering. We will present also
how we decided to evaluate the generative capabilities of the model, for which no reference
exists, since the authors did not investigate these. It is important to say that it was not
expected to achieve generative performances comparable to those of generative adversial
networks (GANs), the “gold standard” for this task. On the other hand, we believed
it was important to uncover potential generative capabilities of our DEC model, since
producing synthetic data is an increasingly demanded task, especially in medical context.

4.1 Centralized approach

The experiments we will present first are those in the centralized approach. It often hap-
pens that a working centralized model is the starting point of a federated implementation,
that is why we decided to find the best hyperparameters for a centralized training of our
DEC model and then translate the implementation to the federated approach. These
experiments will be divided in two parts: those referring to the optimization of the first
step of DEC training, i.e. training the TSAE; and those referring to the optimization
of other hyperparameters involved in the second step of DEC training, i.e. the actual
clustering step.

29

4.1.1 TSAE hyperparameters

The goodness of training the TSAE is related to the value of reconstruction loss, the
lower is the reconstruction loss, the better will be the training. A good training will
guarantee a reliable construction of the feature space onto which the clustering is based.
Having a minimal reconstruction loss would also help with the generative capabilities of
our DEC model, since the clustering step corrupts partially, as we will see, the mappings
of both encoder and decoder.

We tested then three network architectures composed of stacked fully connected tied
layers with different dimensions. These will be listed in the following indicating the
number of dimensions of the stacked layers of the encoder only, since the decoder has
the same, but inverted, dimensions.

• “DEC” architecture has [N, 500, 500, 2000, fDEC = 10].

• “CURVES” architecture has [N, 400, 200, 100, 50, 25, fCURV ES = 6].

• “GOOGLE” architecture has [N, 1000, 500, 250, fGOOGLE = 10].

Letter N represents the dimensionality of the input data space, and letter f the dimen-
sionality of the feature space, that is fixed by the architecture. (B)MNIST data set has
N = 28× 28, while EUROMDS data set has N = 54. The “CURVES” and “GOOGLE”
architectures are those tested in [30], while “DEC” is the original one proposed by the
authors. While “DEC” architecture was trained on every data set studied, “CURVES”
and “GOOGLE” were trained only on EUROMDS data set.

We chose to test also different activation functions between the connected nodes. It
is important to remember that the bottleneck is left without activation since it is used
to represent the feature space. We differentiated the hidden activations between the
stacked layers versus the output activation after the decoder. We chose to test rectified
linear unit (ReLU) and sigmoid functions for both hidden and output activation.

We tested the insertion of hidden dropout layers with 6 different rates from 0.0, i.e.
no dropout, to 0.5, i.e. half of the nodes are dropped out, with steps of 0.1. These were
put before every hidden layer, excluded the one after the bottleneck.

We let the TSAE train for 500 epochs on (B)MNIST, while on EUROMDS for 150
epochs.

We set the batch size in training (B)MNIST to 256 samples, as the original DEC,
while for EUROMDS we tested different values from 8 to 64, using powers of 2.

We tested three different optimizers: stochastic gradient descent (SGD), Adam, and
Yogi. We tuned the learning rate for each optimizer in order to obtain the minimum
loss. We tried also to exploit a learning rate scheduler, that reduces the learning rate
value on the plateau of the loss.

Mean squared error was used as validation loss for the reconstruction error. We tested
also a different training loss when training on EUROMDS that will be described in the

30

following. In order to take into account the binary nature of data, and at the same time
preserving the reconstruction properties of TSAE, we tested a modification of the mean
squared error loss. This is parametrized by a real value β ∈ [0, 1] s.t. the modified loss
function LF could be written as:

LF(X, Y) = (1− β) · ∥Y −X∥2 + β · F(X, Y) (4.1)

where X is the output of the TSAE, i.e. the input of the loss function, Y is the target
of the loss function, i.e. the input of the TSAE since we are reconstructing, and F is a
function applied to both output and target that modifies the loss. The function F was
a combination of binary cross-entropy and dice coefficient:

F(X, Y) = 1− 2|X ∩ Y |
|X|+ |Y |

+
1

N

N∑
j=1

[
xj log yj + (1− xj) log(1− yj)

]
(4.2)

where X = (x1, ..., xN) and Y = (y1, ..., yN).
We also tested two different procedures for noising the input data at training stage.

The first one was the commonly used in denoising autoencoders, and consisted in cor-
rupting some of the input data by setting part of the values to zero. The second one
was the addition of random Gaussian noise to all the input data at every epoch. This
additive Gaussian noise was centered on the value 0.5 with different values for σ. Noised
input was finally truncated in the range [0, 1] in order to keep parto of the binary nature
of data.

4.1.2 DEC clustering hyperparameters

Once we had found the best values for the hyperparameters of TSAE training, we tested
different setups for training the second step of our DEC model. The most important
hyperparameter of the clustering step is the number of clusters k. For (B)MNIST this
was set to 10 since we know there are 10 classes in the data set. For EUROMDS, relying
on the HDP assignment where there are 6 classes, we chose k = 6.

The authors of DEC stated that this model is robust w.r.t. different values for the
update interval λ, i.e. the number of batches to train before updating the auxiliary
distribution. They set the update interval for MNIST to λ = 160 batch loops, i.e. they
update the auxiliary distribution once every ∼ 41000 samples since the batch size was
set to 256. Their choice was made after having tested values for λ from the set 2i×10 for
i = 0, 1, ..., 8. Since we made many modifications to the architecture of the initialization
of parameters before the clustering step, we decided to leave out this parameter λ and to
simply tune the batch size specific to the clustering step. Then the auxiliary distribution
in our implementation was updated at every epoch. We also tested at this stage the
three different optimizers, i.e. SGD, Adam, and Yogi, tuning the learning rate in order
to have the best accuracy.

31

We tried to re-scale the feature space before running K-means algorithm, testing
three different re-scale function. One was the standard scaler that exploits the common
standardization procedure, i.e. it removes the mean value and standardizes the variance
to unit norm. We tested also two normalizers, which scale independently the samples to
unit norm. One of these used L1 norm and the other L2 norm.

We tested different values for the parameter α that describes the degrees of freedom
of the auxiliary distribution. For (B)MNIST we tried α = 1 as the authors of DEC, but
also α = 9 as suggested in [31]. For EUROMDS we tested, similarly, values of α = 1 and
α = k − 1, where k is the number of clusters, initially set to 6.

In order to understand the goodness of the clustering for EUROMDS, for which
ground truth labels there did not exist, we identified some metrics commonly used to
score unsupervised clustering methods. The first metric we chose is the Silhouette Co-
efficient (Sil), that is calculated using the mean intra-cluster distance din and the mean
nearest-cluster distance dnear for each sample as:

Sil =
dnear − din

max(dnear, din)
(4.3)

Its value is constrained in [−1, 1]. We took the average between all the samples. The
metric for computing the distance has to be chosen. We chose to compute the Sil for the
data space using the cosine similarity metric (Cos), a popular metric for binary spaces,
described by:

Cos(A,B) =
A ·B
∥A∥ · ∥B∥

=

∑N
i=1AiBi√∑N

i=1 A
2
i

√∑N
i=1B

2
i

, (4.4)

where A and B represent two elements of the data space, while for the feature space
we chose the euclidean distance. The second score we chose is the Calinski Harabasz
score (CH), also known as Variance Ratio Criterion, that is defined as the ratio between
within-cluster dispersion and the between-cluster dispersion as

CH =

[∑K
k=1 nk∥ck − c∥2

K − 1

]
/

[∑K
k=1

∑nk

i=1 ∥di − ck∥2

N −K

]
, (4.5)

where nk are the number of data points in the kth cluster, ck is the centroid of the kth

cluster, c is the global centroid, N is the total number of data points, and di is the ith

data point. I computed CH score for both data and feature space.

4.1.3 Generative capabilities of our DEC model

In order to evaluate the capabilities of our DEC model to generate synthetic data, we
decided to study two metrics: the reconstruction loss at the end of our DEC model

32

training and the, as we called it, “cycle accuracy” that will be defined in the following.
“Cycle accuracy” is defined as the accuracy of the prediction, given by our DEC model,
on the real data w.r.t. the prediction on the reconstructed data, i.e. we let original data
be reconstructed by the entire TSAE, i.e. encoder and decoder, and then we assign label
prediction feeding our DEC model with reconstructed data. Reconstruction loss is the
most important metric to understand the generative capabilities of the model since it
essentially tells us how “good” the model is for producing simil-real data fed with real
data. We assume the “cycle accuracy” to be informative on how consistent our model
is, since it describes how much the model influences the features of the data it uses for
producing labels, while eating data. The generation of synthetic data could be performed
by our DEC model extracting the decoder from TSAE and feeding it with points in the
feature space. This decoder fed with points of the feature space that are close to any
centroid of any cluster, should produce synthetic data that is similar to the data our
DEC model classified as belonging to that cluster.

4.2 Federated approach

The experiments using federated approach have the objective to understand how consis-
tent the results of the federated model are w.r.t. the centralized one. These experiments
have been conducted only using EUROMDS data set keeping as reference the “ground
truth” labels from HDP, and also comparing federated results of federated DEC w.r.t.
the centralized approach. We have tested different federated setups defined by different
distributions of the samples to the clients. Two methods for distributing samples were
used. The first one was to distribute uniformly the 2043 patients along a predefined
number of clients C. An example of this distribution of samples is given by Fig. 4.1.
The other method used to distribute the samples exploits an histogram, that followed

Figure 4.1: This histogram represents an example on how the 2043 samples from EU-
ROMDS data set are being uniformly distributed between 10 clients.

33

a skewed Gaussian distribution, with a number of bins that was the number of clients.
An example of this distribution of samples is given by Fig. 4.2. We chose to distribute

Figure 4.2: This histogram represents an example on how the 2043 samples from EU-
ROMDS data set are being distributed between 10 clients following a skewed Gaussian
distribution with skewness parameter equal to 4.

the data along C = 10 clients. We used both the two distributive methods described
above. The hyperparameters chosen for the federated training of our DEC were derived
from the centralized approach, this is the common procedure. We took then the best
configurations for each optimizer using “DEC” architecture only. These 3 configurations
were repeated for every distribution of samples and for every method of aggregation of
centroids, i.e. 24 overall configurations.

34

Chapter 5

Results and Analysis

In this chapter we will present and discuss the results of the experiments we made.
First the results on tuning the hyperparameters related to the training of TSAE will
be presented. Then we will show the results on tuning the clustering step with the
comparisons w.r.t. actual labels for (B)MNIST and HDP labels or clustering metrics for
EUROMDS. At the end of the chapter, a deeper analysis on EUROMDS clustering results
and the generative capabilities of our DEC model will be performed. For performing an
efficient hyperparameter tuning, Ray Tune [36] was used along with Async Hyperband
Successive Halving Algorithm (ASHA) [37]. The entire code is in Python exploiting
the PyTorch [38] machine learning framework, everything will be available in a public
repository [39] on GitHub.

5.1 TSAE hyperparameters

The very first hyperparameter tuned was the learning rate of training, for each of the
three optimizes studied, i.e. SGD, Adam, and Yogi. Only “DEC” architecture was
trained on both MNIST and BMNIST sampling 50 values for the learning rate from a
log-uniform distribution between 10−6 and 1, seeking the lowest possible reconstruction
loss. For this tuning, ReLU activation functions were used for both hidden activation
and final activation, hidden dropout was not used, input data was not noised in any way,
no modifications were applied to the reconstruction loss, and the number of epochs was
reduced to 150. Another tuning with learning rate scheduler was performed to verify
whether this procedure is useful or not. The same tuning was performed on EUROMDS,
where we used all architectures, i.e. “DEC”, “CURVES”, and “GOOGLE”. While for
MNIST and BMNIST the batch size in the training of TSAE was fixed to 256, as the
authors of DEC did, for EUROMDS it was set to 8 at this stage. Examples from MNIST
tuning are shown in Fig. A.1 and in Fig. A.2, while examples from BMNIST tuning are
shown in Fig. A.3 and in Fig. A.4. The other results, from EUROMDS, are shown in

35

the Appendix A. As expected, different optimizers perform better for different values of
learning rate. The best values for each learning rate were annotated for the next steps,
and they are tabulated in Appendix A. We also concluded that the use of a learning rate
scheduler is superfluous and does not increase significantly the performance. Moreover,
without using it, the final losses for different optimizers are closer to each other.

The next step was tuning the batch size, for EUROMDS training only. The values
tested were 8, 16, 32, 64. At this stage, for every combination of optimizer, learning rate,
architecture, we set these different values for the batch size and we tested at the same
time all the possible sets of activations, i.e. ReLU and sigmoid functions as hidden and
final activations. Results of this tuning are resumed in Tab. A.4 in Appendix A. The
final values of the reconstruction loss for each configuration suggests that using different
architectures does not change much the performance of the model at this step. Exception
made for “CURVES” that performs in general slightly worse, “DEC” and “GOOGLE”
perform very similarly. We concluded that this model applied to our problem is not
more significantly dependent by the architecture of the TSAE. From these results, we
annotated the best configurations for the next steps.

We then tested the use of hidden dropout with 10 different rates sampled uniformly
in the range [0.0, 0.5]. Since training of TSAE did not show any sign of overfitting, we
decided to test this regularizer only for EUROMDS. This tuning was made for the three
optimizers along with the three network architectures for EUROMDS. Input data was
not noised in any way, no modifications were applied to the reconstruction loss, and
the number of epochs was reduced to 150. An example of this tuning is shown in Fig.
5.1, in Appendix A Tab. A.6 is resuming the best configurations. We decided not to
use this regularizer because the best configurations resulted in a final loss function that
was comparable to other configurations without hidden dropout. Moreover, the best
configurations were often those with a minimal dropout rate. Regularizers as this one
could however be useful for training on more populated data sets, or alternatively on
data sets with more features than EUROMDS.

We also decided to test also another type of regularizer, i.e. noising the input data
during the training step. We tested noising by corruption with 10 different rates of
corruption sampled uniformly from the range [0.0, 0.5]. Here a percentage of the input
data, specified by the corruption rate, is set to 0 before being fed to the network. Only
EUROMDS data set underwent this experiment. An example of this tuning is shown
in Fig. 5.2, in Appendix A Tab. A.5 is resuming the best configurations. We decided
not to use this regularizer because the best configurations gave a final loss function
that was comparable to other configurations without corruption. Moreover, the best
configurations are often those with minimual value of corruption rate. This regularization
is the most popular denoising procedure used in training neural networks. It is often
useful for training on data sets that have a lot of features, only some of which are relevant
to solve the problem. EUROMDS data set has very few features, thus we must consider
all of them important for training.

36

Figure 5.1: These are the results for training TSAE, using hidden dropout layers, with
“DEC” architecture on EUROMDS data set with the three optimizers. Here, x axis
represents the different values of rates used in the hidden dropout layers. The best
configurations (minimal loss) for each optimizer are highlighted by colored dashed lines,
same colors as the scatter points.

We also tested noising with an additive Gaussian noise, as described in 4.1.1, centered
in 0.5 with 10 different values of standard deviation σ sampled from the interval [0.0, 0.2].
When additive Gaussian noise was used, we decided to extend the training for another
step of 150 epochs without applying the noise, as if treating the training with noise was
like a parameter initialization. Only EUROMDS data set underwent this experiment. An
example of this tuning is shown in Fig. 5.3, in Appendix A Tab. A.7 is resuming the best
configurations. We decided not to use this regularizer because the best configurations give
a final loss function that is comparable to other configuration without noise. Moreover,
the best configurations are often those with minimal value of σ. This noising procedure
could be useful for training on data sets whose features’ values oscillate much more than
in EUROMDS where, basically, data is composed of 0s or 1s. This can be viewed as an
alternative denoising procedure.

We tested also the training procedures that used the modified loss, as described in
4.1.1. The parameter to set for these configurations was the value of β, i.e. the weighting
factor for the modified loss. We sampled 10 values from the range [0.0, 0.5]. Only
EUROMDS data set underwent this experiment. An example of this tuning is shown
in Fig. 5.4, in Appendix A Tab. A.8 is resuming the best configurations. Incorporating
data specific information in defining the loss could in principle represent a cornerstone
when solving a specific problem. Studying which elements could be inserted in the loss
function to this aim needs further in-depth discussion.

37

Figure 5.2: These are the results for training TSAE with “DEC” architecture on EU-
ROMDS data set with the three optimizers where the input data has been corrupted as
described above. Here, x axis represents the different values of corruption rate used. The
best configurations (minimal loss) for each optimizer are highlighted by colored dashed
lines, same colors as the scatter points.

5.2 Clustering step hyperparameters

In order to set the hyperparameters of the clustering step, we decided to perform a grid
search between the batch size and the learning rate. For this step we decided to keep the
same optimizer used in the training of the TSAE. The values for the batch size tested
were 64, 128, 256, 512 for MNIST and BMNIST data set, while for EUROMDS they
were 8, 16, 32, 64. The 50 values searched for the learning rate were, as we did before
when tuning the training of TSAE, sampled from a log-uniform distribution in the range
[10−6, 1.0]. For MNIST and BMNIST we chose to use “DEC” architecture only, while for
EUROMDS all three architecture were tested. Then for MNIST and BMNIST we trained
600 configurations per data set, while for EUROMDS we trained 1800 configurations.
The best configuration for MNIST and BMNIST data sets was chosen on the basis of the
accuracy metric, since true labels were given. For the best configuration for EUROMDS
data set an order of importance for the metrics was defined. The metrics were thus
ordered as follows:

1. highest Silhouette Score computed in the data space, because we want the maxi-
mum similarity of real objects in their own clusters (cohesion in real data space)
compared to other clusters (separation in real data space);

2. highest Calinski-Harabasz Score computed in the data space, for the same reasons
as point 1;

3. highest Silhouette Score computed in the feature space, so that the structure of the
feature space is considered but with lower importance w.r.t. the real data space;

38

Figure 5.3: These are the results for training TSAE with “DEC” architecture on EU-
ROMDS data set with the three optimizers where the input data has been noised as
described above. Here, x axis represents the different values of σ used. The best config-
urations (minimal loss) for each optimizer are highlighted by colored dashed lines, same
colors as the scatter points.

4. highest Calinski-Harabasz Score computed in the feature space, for the same rea-
sons as point 3;

5. lowest possible reconstruction error after clustering, to maintain the capability of
our DEC model to be generative as high as possible.

The parameters of the best performing configuration were annotated to be used in the
next studies. Results of this tuning are resumed in Appendix B. From Tab. B.1 to Tab.
B.3, the results for MNIST are shown for every optimizer. BMNIST results are not
reported since they were very similar to those of MNIST. Tab. B.6 and Tab. B.7 show
the results about EUROMDS.

Once the best coupling of batch size and learning rate for every data set using every
optimizer was found, we tested different values of α and tried using scalers. For MNIST
and BMNIST we trained 24 other configurations for both data sets. EUROMDS did
not undergo these tests. Complete tables of these results are available in Appendix B,
Tab. B.4 for MNIST, and Tab. B.5 for BMNIST. The best performance in accuracy
reached is 88.24% for MNIST, and 89.32% for BMNIST. These values are the evidence
that our modifications to the original DEC model have accomplished better results and
have improved the original model.

5.3 Analysis of MNIST/BMNIST clustering

At this stage I will present a deeper discussion about the clustering results on both
MNIST and BMNIST data sets. The original DEC model was improved by our mod-
ifications resulting in higher accuracy. At the same time it is important to study the

39

Figure 5.4: These are the results for training TSAE with “DEC” architecture on EU-
ROMDS data set with the three optimizers which minimize the modified loss for different
values of β. The best configurations (minimal loss) for each optimizer are highlighted by
colored dashed lines, same colors as the scatter points.

causes of failing to climb the wall of 90% accuracy. Studying the confusion matrix could
help us to better understand how the accuracy is distributed along the labels, and also
highlight if exist systematic errors in identifying specific labels. The confusion matrix in
Fig. 5.5 shows that the model has a very good performance in identifying all the clusters
exception made for 4s and 9s for which it performs very badly. The confusion matrix of
the best configuration for BMNIST can be found in Appendix B, Fig. 5.6. The model
cannot distinguish between 4s and 9s.

Figure 5.5: Confusion matrix for the accuracy of the best configuration of our DEC
model on MNIST data set.

A reduced 2-D representation of the feature space shows that two distinct clouds are
identifiable, but 4s and 9s overlap in both clouds. In order to represent the feature space

40

in a 2-D plane we decided to use the t-SNE reduction as DEC model took inspiration
from it. A closer look to these clouds suggests that the model is able to distinguish 4s
and 9s that have a diagonal main segment from those that have a vertical main segment,
as Fig. 5.7 shows. But the same time it is not able to discriminate between 4s and 9s.

(a) (b)

Figure 5.6: This figure represents the 2-D reduction, performed using t-SNE, of the
feature space at the end of the clustering step for the best performing configuration of
our DEC model. On the left (a) points are labelled by actual labels, while on the right
(b) by predicted labels.

Looking at 2-D representation of the feature space of different clustering steps, we are
able to understand how the model separates clusters in the feature space. Consecutive
clustering step iterations are condensing the cloud representing a cluster towards its
centroid, this is also refined by the optimizer. This action explains why the silhouette
score and the CH score in the feature space assume such high values. An example of this
behaviour is shown by Fig. 5.8.

5.4 Analysis of EUROMDS clustering

Similarly as done before, the reduced 2-D representation of the feature space shows us the
structure built the TSAE. Fig. 5.9 shows two reduced features space representations, one
with HDP labels and the other with labels predicted by our DEC model. The clusters’
separations increases at each consecutive clustering step and the clouds are denser and
denser as the clustering proceeds. An example of this is shown in Fig. 5.10. We can

41

(a) (b)

Figure 5.7: This figure shows a selection of 4s (a) and 9s (b) for a 2-D reduced features
space. The data points are represented by their original image to highlight the differences
between the two clouds representing the two different clusters identified by our DEC
model.

assume that this is a general behaviour of the model since it manifests with different
data sets.

The comparison of the metrics chosen for evaluating the clustering w.r.t. HDP labels
shows the quality of the clustering of our DEC model and also the amount of information
that our clustering carries about HDP clustering. The values reported in Tab. B.6 and,
especially, in Tab. B.7 must be therefore compared with the metrics computed using
HDP labels, reported in Tab. 5.1. The values obtained using our DEC model are higher
for every metric. Metrics computed using HDP labels on feature space do not have any
meaning, even though TSAE is able to retain some of the original data structure. On the
other hand these metrics computed using HDP labels on the data space are meaningful,
as HDP method is performed directly on the data space.

Table 5.1: This table reports the values of the metrics chosen to evaluate the clustering
for HDP label assignments.

Silhdata Silhfeat log(CHdata) log(CHfeat)
0.15051924 -0.14816532 1.891993306 1.76427582

We have made another comparison w.r.t. HDP clustering in terms of the outcomes of
patients, those are described in 3.2. Three different events have been collected: leukemia

42

(a) (b)

Figure 5.8: This figure represents the 2-D reduction, performed using t-SNE, of the
feature space for the best performing configuration of our DEC model. On the left (a)
at the end of the clustering step, while on the right (b) at the end of the TSAE training.
Colors are given as a function of the density, brighter colors mean denser region.

free survival, overall survival, acute myeloid leukemia (AML) adjusted overall survival.
For each event, the time at which it appeared (if it appeared) is given along with a
integer value that describes if that event happened (when equal to 1) or not (when equal
to 0). This is the common description that is used in this context in order to fit the
Kaplan–Meier estimator [40], also known as the product limit estimator. This is a non-
parametric statistic used to estimate the survival function from lifetime data. In medical
research, it is often used to measure the fraction of patients living for a certain amount
of time after treatment. The comparisons of these curves between two different label
assignments, HDP and our best performing configuration, are shown in Fig. 5.11, 5.12,
5.13. Our labels have been synchronized with HDP labels by solving the “linear sum
assignment” problem [41] between the two assignments. Using these curves we are able
to perform a comparison between our assignments and HDP assignments on another
level of information: the survival probability. These outcomes are the slice of the data
set that was never fed to our model, i.e. never-seen data. Different classes produced well
separated curves, meaning that our assignments based on the mutations were able to
describe different survival curves. Having different survival curves for different clusters
means that patients belonging to different clusters will be the patients with different
outcomes. Studying the patients belonging to a cluster it is possible to characterize the
cluster by identifying the most frequent mutations among these patients. Characterizing
the clusters using their most frequent mutations is a common procedure that allows to

43

(a) (b)

Figure 5.9: This figure represents the 2-D reduction, performed using t-SNE, of the
feature space at the end of the clustering step for the best performing configuration of
our DEC model. On the left (a) points are labelled by HDP labels, while on the right
(b) by our predictions.

promote these mutation as “drivers” of the cluster, i.e. a sort of fingerprint that clinicians
could exploit in prognosis and/or diagnosis.

5.5 Generative capabilities of our DEC model

We chose to evaluate the generative capabilities of our DEC model studying the final
values of the Cycle Accuracy and the Reconstruction Loss. We did this study on the re-
sults of MNIST and BMNIST data set. In Appendix B, from Tab. B.4 we extracted the
plot of Cycle Accuracy versus the Reconstruction Loss shown in Fig. 5.14. Interpreting
the Cycle Accuracy as the efficiency of our DEC model to consistently classify its syn-
thetic generations, we can say that it is not possible to have an optimal reconstruction
without giving up the efficiency of the model in classifying synthetic data. Examples
of reconstructed images for low and high values of reconstruction loss are shown in Fig.
5.15.

The relation between Cycle Accuracy and Reconstruction Loss, suggests also that the
clustering step corrupts the reconstruction of images in a limited way, in fact our DEC
model seemed to decide which features are important and what value they must have
for representing that cluster. Looking at Fig. 5.16, the final reconstructed images of the
elements of a specific cluster are almost equal to each other, meaning that the model has

44

(a) (b)

Figure 5.10: This figure represents the 2-D reduction, performed using t-SNE, of the
feature space for the best performing configuration of our DEC model. On the left (a)
at the end of the clustering step, while on the right (b) at the end of the TSAE training.
Colors are given as a function of the density, brighter colors mean denser region.

assigned the same specific values to those features, characteristic of that specific cluster.

5.6 Federated implementation results

The following results are meant to highlight that the federated implementation of our
DEC model is consistent with the centralized one. Our results are limited to the config-
urations we were able to test. Federated optimizers were chosen depending on the local
optimizer, s.t. FedAvg was coupled with local SGD, FedAdam with local Adam, and
FedYogi with local Yogi. The local optimizers used had the same hyperparameters of
the best configurations tuned previously. The specific server hyperparameters of FedYogi
and FedAdam were set to ηs = 0.01, β1s = 0.9 and β2s = 0.999. At each step, clients per-
formed one local epoch for each federated epoch. We decided to stop federated training
of TSAE after 500 epochs, since usually the number of federated epochs must be higher
than the centralized counterpart since convergence rates are lower. The aggregation of
the centroids has been extensively described in 2.1.2. We stopped federated training of
the clustering step, i.e. the minimization of the KLD, after 25 epochs. In the following,
Fig. 5.17 some examples of the feature space built by the best federated implementation

45

Figure 5.11: Survival curves produced using Kaplan-Meier estimator for the event of
leukemia free survival. On the left are reported classes from our labels, on the right from
HDP labels.

Figure 5.12: Survival curves produced using Kaplan-Meier estimator for the event of
overall survival. On the left are reported classes from our labels, on the right from HDP
labels.

after training the TSAE and also after the clustering step are shown.
We computed also the metrics obtained by the federated models on the centralized

data set. This is usually not allowed in a truly federated setup since evaluation must
happen at clients’ place on clients’ data sets. The central server could in fact obtain only
the results of a local evaluation and then it could then perform some sort of aggregation.
Sometimes a centralized data set is used for the evaluation at server place, but it must
not contain data from clients. Our objective at this stage was to evaluate the consistency
of the federated implementation w.r.t. the centralized one, and then to treat the final
federated model as a centralized trained model. In Tab. 5.2 and Tab. 5.3 are shown the
five best configurations, the others are available in Appendix C, Tab. C.1 and Tab. C.2.

46

Figure 5.13: Survival curves produced using Kaplan-Meier estimator for the event of
AML overall survival. On the left are reported classes from our labels, on the right from
HDP labels.

Table 5.2: This table reports the metrics of the five best configurations of the federated
implementation of our DEC model between those tested. The first three columns repre-
sent the federated configuration, while the others the final values of the metrics studied.
They are ordered as explained in 5.2.

Samples distr. Optimizers Centroids agg. Recon. Loss Accuracy Cycle Accuracy AE Loss

uniform FEDYOGI max min 8.77262 0.56192 0.98434 0.01759

uniform FEDADAM random 0.04096 0.57024 0.47088 0.01787

skewed Gaussian FEDADAM random 0.04124 0.54185 0.25061 0.0173

skewed Gaussian FEDYOGI random 2.61656 0.60842 0.81351 0.01606

skewed Gaussian FEDYOGI max min 2.80088 0.55605 0.82917 0.01603

Figure 5.14: This plot shows the results of the best configurations of MNIST training,
those in Tab. B.4. Especially the Cycle Accuracy is plotted against the logarithm of
Reconstruction Loss.

47

(a) (b) (c)

Figure 5.15: This is a comparison between different reconstructions. On the left (a) the
original image of a 4 is shown. In the center (b) the reconstructed image from a trained
TSAE with a value of reconstruction loss of 0.014. On the right (c) the reconstructed
image from a trained TSAE with a value of reconstruction loss of 0.13.

(a) (b)

Figure 5.16: This figure shows a part of the 2-D reduced features space. On the left
(a), data points are represented with their reconstructed representation. On the right
(b), data points are represented with their original representation. Data points are
colored by actual label. This shows how the clustering step corrupts the reconstructed
representation of data points.

48

(a) (b)

Figure 5.17: This figure represents the 2-D reduction, performed using t-SNE, of the
feature space for the best performing configuration of our federated DEC model. On the
left (a) at the end of the clustering step, while on the right (b) at the end of the TSAE
training. These results come from the federated implementation. Colors are given as a
function of the density, brighter colors mean denser region.

Table 5.3: This table reports the metrics of the five best configurations of the federated
implementation of our DEC model between those tested. The first three columns repre-
sent the federated configuration, while the others the final values of the metrics studied.
They are ordered as explained in 5.2.

Samples distr. Optimizers Centroids agg. Silhdata Silhfeat log(CHdata) log(CHfeat)

uniform FEDYOGI max min 0.14702 0.69714 4.31038 7.93359

uniform FEDADAM random 0.14518 0.72065 4.24762 8.57021

skewed Gaussian FEDADAM random 0.12026 0.70514 4.14665 8.35007

skewed Gaussian FEDYOGI random 0.10614 0.6342 3.80749 7.65483

skewed Gaussian FEDYOGI max min 0.10446 0.6232 4.03885 7.67925

49

Chapter 6

Conclusions

In this thesis work we have explored the unsupervised clustering problem of a very
important data set of medical data, i.e. EUROMDS. This data represents the genetic
mutations of patients affected by Myelodysplastic Syndrome (MDS), an haematological
disease. In this context, clustering of patients is often one of the preliminary procedures
before completing diagnosis or prognosis, or even to estimate the survival probability.
Since in medical field the data involved is really sensitive and strongly protected under
privacy regulations, we developed a machine learning model that could be trained and
deployed in a federated learning setting. Federated learning is an innovative distributed
machine learning algorithm that is able to achieve the machine learning objective without
having to see or touch data. This is a potential breakthrough for medical application of
machine learning, because it solves many privacy concerns. Some results of this work have
contributed to GenoMed4All European Project productions, especially those referring to
applications of federated learning.

We inspired our model on an unsupervised clustering method, called “DEC”, that
is based on neural networks. Federated learning algorithms are, in the end, methods to
aggregate parameters of neural network models trained locally on clients, and that is
one of the main reasons that led us to choose “DEC”. We decided to modernize “DEC”
model exploiting some novel techniques. The modifications we made to the original
“DEC” were proposed with the objective to achieve some goals, these are discussed in
the following. First, we wanted to simplify the training procedure, especially avoiding a
greedy layer-wise pretraining since it is time consuming and not easy to implement in a
federated setting. This led us to develop TSAE architecture and to explore regularization
techniques. Our architecture could be further improved with a deeper study on the
initialization. Furthermore, we wanted to improve the state of the art performance of
the original “DEC” model on one of the data sets tested by the authors, i.e. MNIST. We
have improved the accuracy by ∼ 6% on MNIST data set, and we have also discovered
that this method is affected by systematic errors in discriminating between 4s and 9s.
Further improvements could be achieved by the use of convolutional neural network

50

(CNN) instead of TSAE to parametrize the mapping fθ. CNNs usage for EUROMDS
data should not have any meaning in principle, except if it was to find a semantically
meaningful ordering principle for “mutations” in order to build an image representation
of a patient, therefore its use was not explored. Third, we wanted to insert in the network
architecture, and inside the training procedure also, some data set specific tools. This is
motivated by the fact that our data set of interest, i.e. EUROMDS, is composed by binary
vectors and not real-valued data. We have tested to this aim a modified mean squared
error loss for training the TSAE. Other modifications could be tested in the future to
further improve both the reconstruction of the data and the projection to the feature
space. The step of TSAE training is fundamental, and exploring the possibility to enable
a partial cluster separation in the feature space already at the end of the pretraining step
would be a breakthrough. Fourth, we have rethought the complex training procedure
in order to enable a federated implementation, in fact this was not possible before. The
critical step for enabling a federated implementation was the aggregation of centroids.
We developed an iterative procedure of aggregation, and we have also proposed simpler
statistical procedures. We tested these obtaining results consistent with the centralized
approach. The best aggregation procedure depends heavily on the distribution of the
samples, and thus may need further study before being applied to our DEC model to
other problems.

We chose two metrics to characterize the quality of our clustering, i.e. Silhouette
Score and Calinski Harabasz Score. The final results were compared with the metrics
computed using HDP labels, the “gold standard” available for this task. Since HDP
method is very different w.r.t. our solution, we compared the metrics on the basis of
how much information our clustering carries about HDP clustering. We also plotted the
survival curves of the outcome events in the data set, showing that their evolution is
quite similar w.r.t. HDP clustering.

We have also explored the generative capabilities of our DEC model. MNIST and
BMNIST data sets helped us in this specific study, since they present an image represen-
tation of very easy interpretation. We chose two metrics that described the generative
capability of our DEC model. We understood that in order to obtain a better recon-
struction we have to accept the compromise of losing the cleverness of our DEC model in
clustering synthetic data. Moreover, the use of variational autoencoders (VAEs) instead
of TSAE could represent a further improvement. VAEs are in fact really promising in
reconstructing real data.

Coupling satisfactory generative capabilities with good clustering performance could
allow for the model to produce synthetic data that belongs to a specific cluster. For
MDS problem, the value representing a synthetic generation should be interpreted as
the probability for the mutation to be present. It should also be possible to study the
topology of the clusters in feature space and more interestingly in real data space. Using
the image representation we presented, it is also possible to provide clinicians with a
litmus paper to be used with new patients.

51

Appendix A

TSDAE hyperparameter tuning

In this section will be reported additional results and graphs from tuning the hyperpa-
rameters of TSAE.

Table A.1: This table resumes the best configurations obtained by tuning the learning
rate (LR) in training the TSDAE on MNIST. The best configurations are given for every
optimizer, with and without the learning rate (LR) scheduler. The final loss resulting is
also reported.

LR scheduler Optimizer LR Loss
True ADAM 0.0007 0.0113
True SGD 0.6546 0.0138
True YOGI 0.0644 0.0115
False ADAM 0.0003 0.0122
False SGD 0.4784 0.0137
False YOGI 0.0369 0.0125

52

Table A.2: This table resumes the best configurations obtained by tuning the learning
rate (LR) in training the TSDAE on BMNIST. The best configurations are given for every
optimizer, with and without the learning rate (LR) scheduler. The final loss resulting is
also reported.

LR scheduler Optimizer LR Loss
True ADAM 0.0007 0.0227
True SGD 0.3999 0.0268
True YOGI 0.0699 0.0232
False ADAM 0.0002 0.0240
False SGD 0.7243 0.0244
False YOGI 0.0241 0.0248

Figure A.1: These are the results for training TSDAE on MNIST data set with the three
optimizers, for different values of the learning rate. The best configurations (minimum
loss) for each optimizer are highlighted by colored dashed lines, same colors as the scatter
points. For these trainings, a learning rate scheduler has been used.

53

Figure A.2: These are the results for training TSDAE on MNIST data set with the three
optimizers, for different values of the learning rate. The best configurations (minimum
loss) for each optimizer are highlighted by colored dashed lines, same colors as the scatter
points. For these trainings, a learning rate scheduler has not been used.

54

Table A.3: This table resumes the best configurations obtained by tuning the learning
rate (LR) in training the TSDAE on EUROMDS. The best configurations are given
for every architecture, for every optimizer, with and without the learning rate (LR)
scheduler. The final loss resulting is also reported.

Architecture LR scheduler Optimizer LR Loss

CURVES False ADAM 0.0001 0.0086

CURVES False SGD 0.0415 0.0103

CURVES False YOGI 0.0010 0.0089

CURVES True ADAM 0.0002 0.0100

CURVES True SGD 0.0373 0.0103

CURVES True YOGI 0.0020 0.0103

DEC False ADAM 9.5743 0.0035

DEC False SGD 0.0036 0.0040

DEC False YOGI 0.0009 0.0032

DEC True ADAM 9.7019 0.0042

DEC True SGD 0.0080 0.0047

DEC True YOGI 0.0003 0.0039

GOOGLE False ADAM 0.0001 0.0042

GOOGLE False SGD 0.0065 0.0043

GOOGLE False YOGI 0.0008 0.0042

GOOGLE True ADAM 4.0641 0.0043

GOOGLE True SGD 0.0140 0.0055

GOOGLE True YOGI 0.0014 0.0047

55

Table A.4: This table resumes the best configurations obtained by tuning activations
and batch size in training the TSDAE on EUROMDS. The best configurations are given
for every architecture, for every optimizer. The final loss resulting is also reported.

Architecture Optimizer Batch Size Hidden Act. Final Act. Loss

CURVES ADAM 8 relu relu 0.0241

CURVES SGD 8 relu relu 0.0362

CURVES YOGI 8 relu relu 0.0272

DEC ADAM 16 relu relu 0.0044

DEC SGD 16 relu relu 0.0195

DEC YOGI 8 relu relu 0.0082

GOOGLE ADAM 8 relu relu 0.0097

GOOGLE SGD 8 relu relu 0.0181

GOOGLE YOGI 8 relu relu 0.0070

Table A.5: This table resumes the best configurations obtained by tuning different input
corruption rates. The best configurations are given for every architecture, for every
optimizer. The final loss resulting is also reported.

Architecture Corruption Rate Optimizer Loss

CURVES 0.06688 ADAM 0.0086

CURVES 0.1453 SGD 0.01373

CURVES 0.08083 YOGI 0.00924

DEC 0.0806 ADAM 0.00306

DEC 0.11924 SGD 0.00479

DEC 0.16963 YOGI 0.00311

GOOGLE 0.17797 ADAM 0.00344

GOOGLE 0.07571 SGD 0.00429

GOOGLE 0.08739 YOGI 0.00336

56

Table A.6: This table resumes the best configurations obtained by tuning different hid-
den dropout rates. The best configurations are given for every architecture, for every
optimizer. The final loss resulting is also reported.

Architecture Dropout Rate Optimizer Loss

CURVES 0.08032 ADAM 0.01305

CURVES 0.02239 SGD 0.01434

CURVES 0.00878 YOGI 0.00973

DEC 0.12112 ADAM 0.00344

DEC 0.03004 SGD 0.00904

DEC 0.04302 YOGI 0.00353

GOOGLE 0.09342 ADAM 0.00317

GOOGLE 0.02184 SGD 0.00586

GOOGLE 0.13257 YOGI 0.00391

Table A.7: This table resumes the best configurations obtained by tuning different values
of σ for the input Gaussian noise. The best configurations are given for every architecture,
for every optimizer. The final loss resulting is also reported.

Architecture σ Optimizer Loss

CURVES 0.14674 ADAM 0.00725

CURVES 0.04856 SGD 0.00882

CURVES 0.15848 YOGI 0.00788

DEC 0.18134 ADAM 0.00274

DEC 0.08128 SGD 0.003

DEC 0.17921 YOGI 0.00309

GOOGLE 0.19483 ADAM 0.00255

GOOGLE 0.09676 SGD 0.00448

GOOGLE 0.19978 YOGI 0.00279

57

Table A.8: This table resumes the best configurations obtained by tuning different values
of β for the modified loss. The best configurations are given for every architecture, for
every optimizer. The final loss resulting is also reported.

Architecture β Optimizer Loss

CURVES 0.101 ADAM 0.01231

CURVES 0.02004 SGD 0.01386

CURVES 0.17995 YOGI 0.01191

DEC 0.1809 ADAM 0.00501

DEC 0.04614 SGD 0.00546

DEC 0.0161 YOGI 0.00398

GOOGLE 0.17598 ADAM 0.00589

GOOGLE 0.0159 SGD 0.00578

GOOGLE 0.00309 YOGI 0.00478

58

Figure A.3: These are the results for training TSDAE on BMNIST data set with the three
optimizers, for different values of the learning rate. The best configurations (minimum
loss) for each optimizer are highlighted by colored dashed lines, same colors as the scatter
points. For these trainings, a learning rate scheduler has been used.

Figure A.4: These are the results for training TSDAE on BMNIST data set with the three
optimizers, for different values of the learning rate. The best configurations (minimum
loss) for each optimizer are highlighted by colored dashed lines, same colors as the scatter
points. For these trainings, a learning rate scheduler has not been used.

59

Figure A.5: These are the results for training TSDAE, in “DEC” configuration on EU-
ROMDS data set with the three optimizers, for different values of the learning rate. The
best configurations (minimum loss) for each optimizer are highlighted by colored dashed
lines, same colors as the scatter points. For these trainings, a learning rate scheduler has
been used.

Figure A.6: These are the results for training TSDAE, in “DEC” configuration on EU-
ROMDS data set with the three optimizers, for different values of the learning rate. The
best configurations (minimum loss) for each optimizer are highlighted by colored dashed
lines, same colors as the scatter points. For these trainings, a learning rate scheduler has
not been used.

60

Figure A.7: These are the results for training TSDAE, in “CURVES” configuration on
EUROMDS data set with the three optimizers, for different values of the learning rate.
The best configurations (minimum loss) for each optimizer are highlighted by colored
dashed lines, same colors as the scatter points. For these trainings, a learning rate
scheduler has been used.

Figure A.8: These are the results for training TSDAE, in “CURVES” configuration on
EUROMDS data set with the three optimizers, for different values of the learning rate.
The best configurations (minimum loss) for each optimizer are highlighted by colored
dashed lines, same colors as the scatter points. For these trainings, a learning rate
scheduler has not been used.

61

Figure A.9: These are the results for training TSDAE, in “GOOGLE” configuration on
EUROMDS data set with the three optimizers, for different values of the learning rate.
The best configurations (minimum loss) for each optimizer are highlighted by colored
dashed lines, same colors as the scatter points. For these trainings, a learning rate
scheduler has been used.

Figure A.10: These are the results for training TSDAE, in “GOOGLE” configuration on
EUROMDS data set with the three optimizers, for different values of the learning rate.
The best configurations (minimum loss) for each optimizer are highlighted by colored
dashed lines, same colors as the scatter points. For these trainings, a learning rate
scheduler has not been used.

62

Appendix B

Clustering step hyperparameter
tuning

In this section are reported the results about tuning the hyper parameters of the clus-
tering step of our model.

B.1 Tuning on MNIST and BMNIST

Table B.1: This table resumes the tuning of learning rate and batch size in the clustering
step on MNIST data set. Here were used SGD optimizer. Here the parameter α was
set to 1, and there was not used any scaler before computing initial centroids with K-
Mmeans algorithm. Only the best four results, in accuracy, are reported. Learning rate
is abbreviated with LR.

LR Batch Size Accuracy Cycle Accuracy Loss Optimizer

0.0427 64.0 0.86775 0.80772 77.65878 sgd

0.02715 64.0 0.8552 0.89512 69.04132 sgd

0.14485 512.0 0.85385 0.99397 3.42269 sgd

0.21511 512.0 0.84913 0.99397 2.88268 sgd

0.16086 256.0 0.84845 0.79875 6.31574 sgd

B.2 Tuning on EUROMDS

63

Table B.2: This table resumes the tuning of learning rate and batch size in the clustering
step on MNIST data set. Here were used Yogi optimizer. Here the parameter α was
set to 1, and there was not used any scaler before computing initial centroids with K-
Mmeans algorithm. Only the best four results, in accuracy, are reported. Learning rate
is abbreviated with LR.

LR Batch Size Accuracy Cycle Accuracy Loss Optimizer

0.00148 64.0 0.8019 0.84267 13.21794 yogi

0.00408 256.0 0.80123 0.8985 3.19888 yogi

0.00155 64.0 0.80015 0.80137 13.05863 yogi

0.00116 64.0 0.79957 0.8577 14.49286 yogi

0.00241 128.0 0.7991 0.94188 6.44391 yogi

Table B.3: This table resumes the tuning of learning rate and batch size in the clustering
step on MNIST data set. Here were used Adam optimizer. Here the parameter α was
set to 1, and there was not used any scaler before computing initial centroids with K-
Mmeans algorithm. Only the best four results, in accuracy, are reported. Learning rate
is abbreviated with LR.

LR Batch Size Accuracy Cycle Accuracy Loss Optimizer

0.00102 256.0 0.85807 0.60787 2.80548 adam

0.00059 128.0 0.85517 0.56227 6.02143 adam

0.00127 512.0 0.85352 0.5123 1.31773 adam

0.00038 128.0 0.85298 0.612 6.38374 adam

0.0003 64.0 0.85085 0.50397 12.97376 adam

64

Table B.4: This table resumes all the results of training our DEC model on MNIST using
the best values for the learning rate and the batch size for each optimizer. During these
24 trainings were used the four different scaler, the two different values of α that we
chose to test. ∆label describes the percentage of variation of labels of the last iteration
w.r.t. to the previous. The results are reported ordered in decreasing order by accuracy.

Alpha Scaler Accuracy Cycle Accuracy Loss ∆label Optimizer

9.0 normal-l1 0.88235 0.98682 14.0735 0.04472 yogi

9.0 none 0.87752 0.92863 15.26898 0.05312 sgd

9.0 normal-l2 0.87182 0.99327 15.41405 0.03305 yogi

9.0 normal-l1 0.86617 0.98727 15.52427 0.07432 sgd

1.0 normal-l2 0.8628 0.58535 2.84652 0.01253 adam

9.0 normal-l2 0.86167 0.98177 17.89363 0.08538 sgd

9.0 standard 0.85697 0.8771 13.07404 0.07412 sgd

9.0 standard 0.85313 0.90305 15.67815 0.04265 yogi

1.0 normal-l1 0.8499 0.64462 12.90239 0.01745 yogi

1.0 normal-l2 0.84943 0.79785 83.94711 0.03705 sgd

1.0 normal-l1 0.84868 0.88817 88.14906 0.03962 sgd

1.0 normal-l1 0.84798 0.3722 2.8952 0.01543 adam

1.0 standard 0.8465 0.50638 2.95308 0.0203 adam

1.0 normal-l2 0.84592 0.81267 13.37499 0.0054 yogi

1.0 none 0.84448 0.70637 60.88186 0.046 sgd

1.0 none 0.8427 0.50768 3.29932 0.03087 adam

9.0 none 0.83842 0.49775 2.70315 0.06738 adam

9.0 normal-l1 0.83508 0.32487 2.73572 0.12912 adam

9.0 normal-l2 0.83287 0.40542 2.67816 0.05003 adam

9.0 standard 0.83203 0.39427 2.67644 0.05823 adam

9.0 none 0.8225 0.99455 17.12021 0.0653 yogi

1.0 standard 0.82223 0.89523 67.49209 0.07438 sgd

1.0 none 0.80033 0.84643 13.79606 0.03992 yogi

1.0 standard 0.79913 0.835 15.08306 0.02552 yogi

65

Table B.5: This table resumes all the results of training our DEC model on BMNIST
using the best values for the learning rate and the batch size for each optimizer. During
these 24 trainings were used the four different scaler, the two different values of α that
we chose to test. ∆label describes the percentage of variation of labels of the last iteration
w.r.t. to the previous. The results are reported ordered in decreasing order by accuracy.

Alpha Scaler Accuracy Cycle Accuracy Loss ∆label Optimizer

9.0 normal-l2 0.89318 0.99375 17.77081 0.02987 yogi

9.0 normal-l1 0.88955 0.9317 15.72735 0.0395 yogi

9.0 none 0.88475 0.9109 19.67695 0.0894 sgd

9.0 normal-l1 0.86998 0.991 18.60929 0.04082 sgd

9.0 standard 0.86592 0.95553 17.28764 0.08655 sgd

9.0 none 0.8651 0.98983 17.85925 0.03165 yogi

1.0 normal-l2 0.8501 0.7277 22.37781 0.01273 sgd

9.0 normal-l2 0.84518 0.9935 17.83402 0.0794 sgd

1.0 normal-l2 0.84272 0.80915 13.82713 0.00323 yogi

1.0 normal-l1 0.83477 0.6138 72.59322 0.05692 sgd

9.0 standard 0.8323 0.98933 24.66313 0.09432 yogi

1.0 normal-l1 0.83032 0.7308 14.61929 0.00248 yogi

1.0 none 0.79293 0.74127 39.69674 0.03415 sgd

9.0 none 0.79088 0.29445 3.53923 0.09833 adam

1.0 standard 0.7902 0.89635 48.61731 0.0445 sgd

9.0 normal-l2 0.78245 0.4991 3.80168 0.10355 adam

1.0 normal-l1 0.76648 0.5639 4.3915 0.0377 adam

9.0 normal-l1 0.75987 0.49943 3.70059 0.11902 adam

9.0 standard 0.74818 0.31305 3.33674 0.10095 adam

1.0 normal-l2 0.72077 0.4259 3.99873 0.03725 adam

1.0 standard 0.71898 0.6246 3.91656 0.0372 adam

1.0 none 0.71257 0.89955 13.73243 0.00903 yogi

1.0 none 0.70258 0.47568 3.83215 0.04055 adam

1.0 standard 0.69265 0.77763 14.5494 0.02408 yogi

66

Figure B.1: Confusion matrix for the accuracy of the best configuration of our DEC
model on BMNIST data set.

67

Table B.6: This table resumes the tuning of learning rate and batch size in the clustering
step on EUROMDS data set. Here were used all the three optimizers, and all the three
architectures. The results are ordered as explained in 5.2. Here the parameter α was set
to 1, and there was not used any scaler before computing initial centroids with K-Mmeans
algorithm. Only the best ten results are reported. Here the metrics of importance
are accuracy, cycle accuracy, ∆label. This last describes the percentage of variation of
labels of the last iteration w.r.t. to the previous. Batch size (BS), learning rate (LR),
architecture, and optimizer are the variables describing the specific configuration.

BS LR Accuracy Cycle Accuracy Loss ∆label Architecture Optimizer

64.0 0.003 0.61527 0.99853 0.46623 0.00098 dec yogi

16.0 3e-05 0.57954 0.7812 0.03438 0.00049 google yogi

64.0 0.00171 0.58101 0.99706 0.1005 0.00049 google yogi

64.0 0.33354 0.58737 1.0 10.58277 0.00049 google sgd

32.0 0.03523 0.56486 0.83994 0.54556 0.00098 google sgd

8.0 6e-05 0.60499 0.98972 0.04661 0.00098 google yogi

16.0 0.00902 0.51884 1.0 2.10777 0.0 google yogi

64.0 0.02881 0.558 0.99755 1.39768 0.00049 dec sgd

64.0 0.15064 0.57954 0.84288 3.64853 0.00098 google sgd

8.0 0.00338 0.51787 1.0 0.94229 0.00049 google yogi

Table B.7: This table resumes the tuning of learning rate and batch size in the clustering
step on EUROMDS data set. Here were used all the three optimizers, and all the three
architectures. The results are ordered as explained in 5.2. Here the parameter α was set
to 1, and there was not used any scaler before computing initial centroids with K-Mmeans
algorithm. Only the best ten results are reported. Here the metrics of importance
are the silhouette scores (in data space, and feature space), the logarithm of Calinski-
Harabasz scores (in data space, and feature space). Batch size (BS), learning rate (LR),
architecture, and optimizer are the variables describing the specific configuration.

BS LR Silhdata Silhfeat log(CHdata) log(CHfeat) Architecture Optimizer

64.0 0.003 0.23511 0.90038 1.5872 2.33196 dec yogi

16.0 3e-05 0.2292 0.60418 1.58101 2.044 google yogi

64.0 0.00171 0.22744 0.87475 1.57643 2.28839 google yogi

64.0 0.33354 0.22653 0.93831 1.58952 2.40162 google sgd

32.0 0.03523 0.22635 0.91555 1.59677 2.36284 google sgd

8.0 6e-05 0.22614 0.79541 1.57575 2.17713 google yogi

16.0 0.00902 0.22578 0.95155 1.60622 2.41199 google yogi

64.0 0.02881 0.22552 0.89419 1.58881 2.3045 dec sgd

64.0 0.15064 0.22385 0.94217 1.59586 2.42799 google sgd

8.0 0.00338 0.22103 0.95283 1.59626 2.44302 google yogi

68

Appendix C

Federated Implementation

Here are shown the final results about the different configurations we tested in the
federated implementation of our DEC model.

Table C.1: This table reports the metrics of all the configurations of the federated im-
plementation of our DEC model between those tested. The first three columns represent
the federated configuration, while the other the final values of the metrics studied. They
are ordered as explained in 5.2.

Samples distr. Optimizers Centroids agg. Recon. Loss Accuracy Cycle Accuracy AE Loss

uniform FEDYOGI max min 8.77262 0.56192 0.98434 0.01759

uniform FEDADAM random 0.04096 0.57024 0.47088 0.01787

skewed Gaussian FEDADAM random 0.04124 0.54185 0.25061 0.0173

skewed Gaussian FEDYOGI random 2.61656 0.60842 0.81351 0.01606

skewed Gaussian FEDYOGI max min 2.80088 0.55605 0.82917 0.01603

skewed Gaussian FEDAVG random weighted 0.57802 0.50367 0.80715 0.01911

skewed Gaussian FEDAVG max min 0.75641 0.51787 0.5766 0.01909

uniform FEDYOGI double kmeans 2.26761 0.50024 0.8977 0.01754

uniform FEDYOGI random 4.2278 0.40088 0.77582 0.01748

uniform FEDAVG random 0.38254 0.48507 0.96916 0.02218

skewed Gaussian FEDYOGI double kmeans 2.2444 0.41801 0.77239 0.01601

skewed Gaussian FEDAVG double kmeans 0.18046 0.55605 0.84043 0.01903

skewed Gaussian FEDYOGI random weighted 1.01715 0.43465 0.744 0.0159

skewed Gaussian FEDADAM double kmeans 0.04124 0.52227 0.29515 0.01723

uniform FEDAVG random weighted 0.14701 0.48654 0.98825 0.02226

skewed Gaussian FEDADAM max min 0.42645 0.52178 0.39892 0.01742

uniform FEDADAM max min 0.04169 0.4836 0.49241 0.01793

uniform FEDADAM random weighted 0.04189 0.48948 0.38326 0.01786

skewed Gaussian FEDADAM random weighted 0.04123 0.54136 0.37445 0.01731

skewed Gaussian FEDAVG random 0.22358 0.4699 0.83554 0.01935

uniform FEDAVG max min 0.07096 0.50857 0.71072 0.02207

uniform FEDADAM double kmeans 0.04124 0.44787 0.34508 0.01786

uniform FEDYOGI random weighted 1.18649 0.48458 0.56975 0.01763

uniform FEDAVG double kmeans 0.05656 0.55702 0.88644 0.02213

69

Table C.2: This table reports the metrics of all the configurations of the federated im-
plementation of our DEC model between those tested. The first three columns represent
the federated configuration, while the other the final values of the metrics studied. They
are ordered as explained in 5.2.

Samples distr. Optimizers Centroids agg. Silhdata Silhfeat log(CHdata) log(CHfeat)

uniform FEDYOGI max min 0.14702 0.69714 4.31038 7.93359

uniform FEDADAM random 0.14518 0.72065 4.24762 8.57021

skewed Gaussian FEDADAM random 0.12026 0.70514 4.14665 8.35007

skewed Gaussian FEDYOGI random 0.10614 0.6342 3.80749 7.65483

skewed Gaussian FEDYOGI max min 0.10446 0.6232 4.03885 7.67925

skewed Gaussian FEDAVG random weighted 0.09398 0.27914 3.40067 6.12165

skewed Gaussian FEDAVG max min 0.08585 0.27174 3.96052 6.19145

uniform FEDYOGI double kmeans 0.08392 0.64788 3.89911 7.9153

uniform FEDYOGI random 0.08195 0.55724 4.00766 7.50386

uniform FEDAVG random 0.08054 0.14137 3.09767 6.01782

skewed Gaussian FEDYOGI double kmeans 0.07746 0.60406 3.93928 7.85986

skewed Gaussian FEDAVG double kmeans 0.07714 0.19629 3.49227 5.82638

skewed Gaussian FEDYOGI random weighted 0.07347 0.7072 3.90681 8.6849

skewed Gaussian FEDADAM double kmeans 0.07332 0.64387 3.93511 8.37466

uniform FEDAVG random weighted 0.06921 0.20613 3.22043 6.14329

skewed Gaussian FEDADAM max min 0.06771 0.61239 3.76844 7.86239

uniform FEDADAM max min 0.06752 0.6755 3.65534 8.00904

uniform FEDADAM random weighted 0.0521 0.51379 3.62878 7.70888

skewed Gaussian FEDADAM random weighted 0.04798 0.652 3.53364 8.37406

skewed Gaussian FEDAVG random 0.04591 0.19776 3.65143 5.81864

uniform FEDAVG max min 0.04477 0.17052 3.7253 5.49092

uniform FEDADAM double kmeans 0.03643 0.69534 3.8747 8.56888

uniform FEDYOGI random weighted 0.02751 0.35708 3.56198 8.24578

uniform FEDAVG double kmeans 0.02604 0.1559 3.59329 5.25829

70

Bibliography

[1] E. Parliament, “General Data Protection Regulation (GDPR),” 2018. [Online].
Available: https://gdpr-info.eu/

[2] K. El Emam, F. K. Dankar, R. Issa, E. Jonker, D. Amyot, E. Cogo,
J.-P. Corriveau, M. Walker, S. Chowdhury, R. Vaillancourt, T. Roffey, and
J. Bottomley, “A globally optimal k-anonymity method for the de-identification
of health data,” Journal of the American Medical Informatics Association :
JAMIA, vol. 16, no. 5, pp. 670–682, 2009, 19567795[pmid]. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/19567795

[3] R. K. Taira, A. A. T. Bui, and H. Kangarloo, “Identification of patient name
references within medical documents using semantic selectional restrictions,”
Proceedings. AMIA Symposium, pp. 757–761, 2002, 12463926[pmid]. [Online].
Available: https://pubmed.ncbi.nlm.nih.gov/12463926

[4] S. M. Thomas, B. W. Mamlin, G. Schadow, and C. J. McDonald, “A successful
technique for removing names in pathology reports using an augmented search and
replace method,” Proceedings. AMIA Symposium, pp. 777–81, 2002.

[5] U. D. of Health & Human Services. (1996) Health information privacy. [Online].
Available: https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/
de-identification/index.html

[6] Institute of Medicine (US) Committee on Health Research and the Privacy of Health
Information: The HIPAA Privacy Rule, Beyond the HIPAA Privacy Rule: Enhanc-
ing Privacy, Improving Health Through Research. Washington (DC): National
Academies Press (US), 2009.

[7] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM
Computing Surveys, vol. 31, no. 3, pp. 264–323, Sep. 1999. [Online]. Available:
https://doi.org/10.1145/331499.331504

[8] R. Sokal, C. Michener, and U. of Kansas, A Statistical Method for
Evaluating Systematic Relationships, ser. University of Kansas science bulletin.

71

https://gdpr-info.eu/
https://pubmed.ncbi.nlm.nih.gov/19567795
https://pubmed.ncbi.nlm.nih.gov/12463926
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
https://doi.org/10.1145/331499.331504

University of Kansas, 1958. [Online]. Available: https://books.google.it/books?id=
o1BlHAAACAAJ

[9] S. Mukherjee, H. Asnani, E. Lin, and S. Kannan, “Clustergan : Latent space
clustering in generative adversarial networks,” CoRR, vol. abs/1809.03627, 2018.
[Online]. Available: http://arxiv.org/abs/1809.03627

[10] J. Xie, R. B. Girshick, and A. Farhadi, “Unsupervised deep embedding for clustering
analysis,” CoRR, vol. abs/1511.06335, 2015.

[11] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of
Machine Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008. [Online]. Available:
http://jmlr.org/papers/v9/vandermaaten08a.html

[12] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold approximation
and projection for dimension reduction,” 2020.

[13] E. Papaemmanuil, M. Gerstung, L. Bullinger, V. I. Gaidzik, P. Paschka, N. D.
Roberts, N. E. Potter, M. Heuser, F. Thol, N. Bolli et al., “Genomic classification
and prognosis in acute myeloid leukemia,” New England Journal of Medicine, vol.
374, no. 23, pp. 2209–2221, 2016.

[14] M. Bersanelli, E. Travaglino, M. Meggendorfer, T. Matteuzzi, C. Sala, E. Mosca,
C. Chiereghin, N. Di Nanni, M. Gnocchi, M. Zampini et al., “Classification and
personalized prognostic assessment on the basis of clinical and genomic features in
myelodysplastic syndromes,” J Clin Oncol., 2021.

[15] T. Matsutani and M. Hamada, “Parallelized latent dirichlet allocation provides a
novel interpretability of mutation signatures in cancer genomes,” Genes, vol. 11,
no. 10, 2020. [Online]. Available: https://www.mdpi.com/2073-4425/11/10/1127

[16] M. Sheller, B. Edwards, G. Reina, J. Martin, S. Pati, A. Kotrotsou, M. Milchenko,
W. Xu, D. Marcus, R. Colen, and S. Bakas, “Federated learning in medicine: facil-
itating multi-institutional collaborations without sharing patient data,” Scientific
Reports, vol. 10, 07 2020.

[17] J. Xu and F. Wang, “Federated learning for healthcare informatics,” CoRR, vol.
abs/1911.06270, 2019. [Online]. Available: http://arxiv.org/abs/1911.06270

[18] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,
K. A. Bonawitz, Z. Charles, G. Cormode, R. Cummings, R. G. L. D’Oliveira,
S. E. Rouayheb, D. Evans, J. Gardner, Z. Garrett, A. Gascón, B. Ghazi, P. B.
Gibbons, M. Gruteser, Z. Harchaoui, C. He, L. He, Z. Huo, B. Hutchinson,
J. Hsu, M. Jaggi, T. Javidi, G. Joshi, M. Khodak, J. Konečný, A. Korolova,

72

https://books.google.it/books?id=o1BlHAAACAAJ
https://books.google.it/books?id=o1BlHAAACAAJ
http://arxiv.org/abs/1809.03627
http://jmlr.org/papers/v9/vandermaaten08a.html
https://www.mdpi.com/2073-4425/11/10/1127
http://arxiv.org/abs/1911.06270

F. Koushanfar, S. Koyejo, T. Lepoint, Y. Liu, P. Mittal, M. Mohri, R. Nock,
A. Özgür, R. Pagh, M. Raykova, H. Qi, D. Ramage, R. Raskar, D. Song, W. Song,
S. U. Stich, Z. Sun, A. T. Suresh, F. Tramèr, P. Vepakomma, J. Wang, L. Xiong,
Z. Xu, Q. Yang, F. X. Yu, H. Yu, and S. Zhao, “Advances and open problems
in federated learning,” CoRR, vol. abs/1912.04977, 2019. [Online]. Available:
http://arxiv.org/abs/1912.04977

[19] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized data,” 2017.

[20] W. de Brouwer. (2019) The federated future is ready for shipping. [Online].
Available: https://doc.ai/blog/federated-future-ready-shipping

[21] EU CORDIS. (2019) Machine learning ledger orchestration for drug discovery.
[Online]. Available: https://cordis.europa.eu/project/rcn/223634/factsheet/en?
WT.mc id=RSS-Feed&WT.rss f=project&WT.rss a=223634&WT.rss ev=a

[22] FeatureCloud. (2019) Featurecloud: Our vision. [Online]. Available: https:
//featurecloud.eu/about/our-vision/

[23] ai.intel. (2019) Federated learning for medical imaging. [Online]. Available:
https://www.intel.ai/federated-learning-for-medical-imaging/

[24] P. Courtiol, C. Maussion, M. Moarii, E. Pronier, S. Pilcer, M. Sefta, P. Manceron,
S. Toldo, M. Zaslavskiy, N. Le Stang, N. Girard, O. Elemento, A. G. Nicholson,
J.-Y. Blay, F. Galateau-Sallé, G. Wainrib, and T. Clozel, “Deep learning-based
classification of mesothelioma improves prediction of patient outcome,” Nat Med,
vol. 25, no. 10, pp. 1519–1525, Oct. 2019.

[25] S. J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečný,
S. Kumar, and H. B. McMahan, “Adaptive federated optimization,” in
International Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=LkFG3lB13U5

[26] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, T. Parcollet, P. P. B. de Gusmão, and
N. D. Lane, “Flower: A friendly federated learning research framework,” 2021.

[27] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal
of Machine Learning Research, vol. 15, no. 56, pp. 1929–1958, 2014. [Online].
Available: http://jmlr.org/papers/v15/srivastava14a.html

[28] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proceedings of the Thirteenth International

73

http://arxiv.org/abs/1912.04977
https://doc.ai/blog/federated-future-ready-shipping
https://cordis.europa.eu/project/rcn/223634/factsheet/en?WT.mc_id=RSS-Feed&WT.rss_f=project&WT.rss_a=223634&WT.rss_ev=a
https://cordis.europa.eu/project/rcn/223634/factsheet/en?WT.mc_id=RSS-Feed&WT.rss_f=project&WT.rss_a=223634&WT.rss_ev=a
https://featurecloud.eu/about/our-vision/
https://featurecloud.eu/about/our-vision/
https://www.intel.ai/federated-learning-for-medical-imaging/
https://openreview.net/forum?id=LkFG3lB13U5
http://jmlr.org/papers/v15/srivastava14a.html

Conference on Artificial Intelligence and Statistics, ser. Proceedings of Machine
Learning Research, Y. W. Teh and M. Titterington, Eds., vol. 9. Chia Laguna
Resort, Sardinia, Italy: PMLR, 13–15 May 2010, pp. 249–256. [Online]. Available:
https://proceedings.mlr.press/v9/glorot10a.html

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,
vol. abs/1412.6980, 2015.

[30] M. Zaheer, S. Reddi, D. Sachan, S. Kale, and S. Kumar, “Adaptive
methods for nonconvex optimization,” in Advances in Neural Information
Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31. Curran Associates,
Inc., 2018. [Online]. Available: https://proceedings.neurips.cc/paper/2018/file/
90365351ccc7437a1309dc64e4db32a3-Paper.pdf

[31] L. van der Maaten, “Learning a parametric embedding by preserving local
structure,” in Proceedings of the Twelth International Conference on Artificial
Intelligence and Statistics, ser. Proceedings of Machine Learning Research, D. van
Dyk and M. Welling, Eds., vol. 5. Hilton Clearwater Beach Resort, Clearwater
Beach, Florida USA: PMLR, 16–18 Apr 2009, pp. 384–391. [Online]. Available:
https://proceedings.mlr.press/v5/maaten09a.html

[32] K. Nigam and R. Ghani, “Understanding the behavior of co-training,” KDD-2000
Workshop on Text Mining, 08 2000.

[33] Yann LeCun and Corinna Cortes and Christopher J.C. Burges. (1998) The mnist
database. [Online]. Available: http://yann.lecun.com/exdb/mnist/

[34] GenoMed4ALL Team. (2021) Genomed4all project. [Online]. Available: https:
//genomed4all.eu/

[35] Cordis, European Commision. (2021) Genomics and personalized medicine for
all though artificial intelligence in haematological diseases, genomed4all. [Online].
Available: https://cordis.europa.eu/project/id/101017549

[36] Ray developers. (2022) Ray tune. [Online]. Available: https://docs.ray.io/en/
latest/tune/index.html

[37] L. Li, K. Jamieson, A. Rostamizadeh, K. Gonina, M. Hardt, B. Recht,
and A. Talwalkar, “Massively parallel hyperparameter tuning,” 2018. [Online].
Available: https://openreview.net/forum?id=S1Y7OOlRZ

[38] PyTorch Developers. (2022) Pytorch. [Online]. Available: https://www.pytorch.
org/

74

https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.neurips.cc/paper/2018/file/90365351ccc7437a1309dc64e4db32a3-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/90365351ccc7437a1309dc64e4db32a3-Paper.pdf
https://proceedings.mlr.press/v5/maaten09a.html
http://yann.lecun.com/exdb/mnist/
https://genomed4all.eu/
https://genomed4all.eu/
https://cordis.europa.eu/project/id/101017549
https://docs.ray.io/en/latest/tune/index.html
https://docs.ray.io/en/latest/tune/index.html
https://openreview.net/forum?id=S1Y7OOlRZ
https://www.pytorch.org/
https://www.pytorch.org/

[39] Lorenzo Sani. (2019) Master thesis project. [Online]. Available: https:
//www.github.com/relogu/Federated-Learning-Project

[40] E. L. Kaplan and P. Meier, “Nonparametric estimation from incomplete
observations,” Journal of the American Statistical Association, vol. 53, no. 282,
pp. 457–481, 1958. [Online]. Available: https://www.tandfonline.com/doi/abs/10.
1080/01621459.1958.10501452

[41] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109

75

https://www.github.com/relogu/Federated-Learning-Project
https://www.github.com/relogu/Federated-Learning-Project
https://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501452
https://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501452
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109

	Introduction
	Clustering
	Popular clustering Methods
	Clustering MDS

	Federated Learning
	Main differences w.r.t. distributed learning
	Cross-device federated learning
	Cross-silo federated learning
	Life cycle of federated learning model
	Typical federated learning training process
	Federated learning framework

	Methods
	Federated Clustering
	DEC model and our modifications
	Federated training of our DEC model

	Data
	(B)MNIST
	MDS data description

	Experiments
	Centralized approach
	TSAE hyperparameters
	DEC clustering hyperparameters
	Generative capabilities of our DEC model

	Federated approach

	Results and Analysis
	TSAE hyperparameters
	Clustering step hyperparameters
	Analysis of MNIST/BMNIST clustering
	Analysis of EUROMDS clustering
	Generative capabilities of our DEC model
	Federated implementation results

	Conclusions
	TSDAE hyperparameter tuning
	Clustering step hyperparameter tuning
	Tuning on MNIST and BMNIST
	Tuning on EUROMDS

	Federated Implementation

