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Abstract

The inferior alveolar nerve (IAN) lies within the mandibular canal, named

inferior alveolar canal in literature. The detection of this nerve is important

during maxillofacial surgeries or for creating dental implants. The poor

quality of cone­beam computed tomography (CBCT) and computed

tomography (CT) scans and/or bone gaps within the mandible increase the

difficulty of this task, posing a challenge to human experts who are going to

manually detect it and resulting in a time­consuming task. Therefore this

thesis investigates two methods to automatically detect the IAN: a non­data

driven technique and a deep­learning method. The latter tracks the IAN

position at each frame leveraging detections obtained with the deep neural

network CenterNet, fined­tuned for our task, and temporal and spatial

information.



Chapter 1

Introduction

In the mandibular canal, named inferior alveolar canal by researchers [13],

resides the inferior alveolar nerve, hereinafter IAN, along with arteries and

veins, starting from the Spix spine (Figure 1.1a) and ending in the mental

foramen (Figure 1.1b). The identification of this nerve is important in order

to avoid damages during maxilofacial surgeries [29] or plants placement [3].

Therefore, before surgery, its position must be estimated with accurate

precision. This task is usually done manually by radiographers therefore it’s

time­consuming and prone to errors. Moreover, bone voids within the

mandible, whose density is similar to the mandibular canal one, hide the real

position of the IAN (Figure 1.1c), requiring to follow the canal, frame by

frame, slowing down the task completion and increasing the chances of

errors.

AI is widely used in the medical domain: analysis of images through

segmentation ([31]) in order to localize lesions or malformations, diseases

diagnosis aided through classifications [16] and drug discovery [18] to name

a few.

Due to the nature of the media used for executing IAN detection (CT scan),
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(a) Spix spine. (b) Mental foramen. (c) IAN in the middle.

Figure 1.1: Coronal view of a CT scan.

computer vision seems ideal for coping with this problem, in particular

computer vision techniques based on machine and deep learning. Despite

being powerful, machine learning techniques require handcrafted features

and heavy preprocessing steps therefore deep learning seems more suitable

due to its ability to find patterns using raw features, in this case pixels.

Hence convolutional neural networks (CNN) are preferred, which reached

very high performances on many specific tasks ( image classifications [8],

object detections [19], super resolution [24], image and panoptic

segmentation [31], depth estimation [32], …) within different domains.

Despite segmentation being an obviuos choice due to different shapes that

IAN could have in its pathway [2], in this thesis we explored an alternative

approch that is object detection: we are not interested in finding, precisly,

voxel belonging to the nerve but we would like to extract its position frame

by frame.

1.1 Related works

Kainmueller et al. [15] computed a surface of the mandibular bone using

statistical shape modelling on top of which a graph is constructed sampling

points on equidistant planes where each weight edge between sampled points

is computed considering image intensity inside a cylinder at sample points

within an inner radius (r < ri), within a border (ri < r < rb) and outside the
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border (r > rb). Then a Dijkstra­based optimization is applied in order to

find the path from source to target in order to detect the ”darkest tunnel”

surrounded by interesting bright borders. For this task mandible bone voxel

annotation are required which means more data to annotate.

Jaskari et al. [14] and Bayrakdar et al. [5] trained a 3D U­Net­like

convolutional network [28] for segmenting voxel inside the input volume.

The former was able to surpass Kainmueller et al. [15] obtaining distances in

millimeters around 0.5 mm for 90% of the primary test data as well as

robustness to label noise.

Liu et al. [21] using segmentation over the axial plane is able to extract a

region of interest that encloses the mandibular canal (MC) and the

mandibular third molar (M3) which is used for cropping CBCT scans. The

cropped region is, then, segmented by a U­Net convolutional network.

Kwak et al. [17] studied IAN segmentation with different 2D and 3D

convolutional neural network (SegNet[4], U­Net, 3D U­Net [6]) showing

how difficult this task can be due to noise and different shapes.



Chapter 2

Methods

Different from works presented in Section 1.1, we tackled on this problem as

an object detection one, following clinical indications, since the precise

segmentation is not required to plan most routinely performed interventions.

Hence, localization of the center of the canal is sufficient in most practical

cases.

In the following sections we are going to present the two methods used for

executing this task: the former is based on a non­data driven technique

which model the canal as a deformable linear object (DLO) and the latter

exploits detections found by a model for object detection, CenterNet,

fine­tuned for this specific problem.

2.1 Background

2.1.1 Ariadne

Ariadne [11] identifies the parameters of Deformable Linear Objects (DLOs)

with a predefined model (b­spline) trying to solve cluttering and occlusion

(as well as self­occlusion) over simple and complex backgrounds.
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The endpoints detection for each DLOs is meant to be an external step.

Ariadne uses a convolutional neural network (YoloV2 [25]) finetuned on the

Eletrical Cable Dataset 1.

The core algorithm find the best path (walk) over an adjaceny graph built

using superpixels.

The superpixels are created using SLIC [1] which apply a modified k­means

clustering on vectors defined by colors in the CIELAB color space and

spatial position (x,y). Each point is compared with the nearest centroid

whose search window overlap its position. Moreover, the distance metric

used takes into account the color similarity and the spatial proximity is

weighted by a parameter that controls the compactness of each superpixel

allowing either compact clusters and/or visually uniform clusters. A graph

G = (V, E) is built, where each region, defined by the vertex vi (centroid), is

connected with adjacent ones, through an edge ei,k (distance vector between

two vertices).

The walk (πi) starts from one seed point (one of the two endpoints found

previously) and iteratevely choses the point vn (Figure 2.1) that maximize

p(π̂i,vn|πi) = pV (π̂i,vn|πi) · pC(π̂i,vn|πi) · pD(π̂i,vn|πi) (2.1)

where π̂i,vn is the path πi with vertex vn and pV (·), pD(·), pC(·) are Visual,

Distance, Curvature likelihood. The Visual and Distance likelihood are

computed normalizing a distance using the Bradford normal distribution:

p(π̂i,vn|πi) = cv

log(1 + cv)(1 + cv(1 − d))
(2.2)

where d is respectively the intersection between two color histograms in the

HSV color space and the spatial distance. The Curvature likelihood
1https://github.com/m4nh/cables_dataset

https://github.com/m4nh/cables_dataset
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Figure 2.1: One step of the algorithm used in Ariadne [11, Fig. 3] where given
a current walk different points are considered for selecting the most probable
one.

considers the angle difference between two consecutive edges in order to

prioritize vertices which allow a smooth path from start to end. It is

computed with the following equation:

pC(π̂i,vn|πi) =
∏
a

M(ϕa − ϕa+1

2
, m) (2.3)

where ϕi is the angle between two consecutive edges and M (·) is the von

Mises distribution.

A walk is ended if it reaches another seed or the distance from the vertex and

the other seed is smaller than a threshold. The best walk is the one whose

curvature likelihood is maximum.

2.1.2 Object detection

Object detection task aims to find for each object in a given image a set of

properties: class and bounding box.

Two stage object detectors at first were using proposals found with Selective

Search [10, 9] then with Region Proposal Network [26] Those were

forwarded to a network, after being wrapped (in case of patches extracted
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from the original image) or transformed by a RoI Pooling layer (in case of

patches extracted from features computed by the features extractor), to

classify them and regress their bounding­box corrections. At the end,

detections are filtered with non maxima suppression over bounding boxes

intersection­over­union (IoU) to remove overlapping ones.

Object detection is inherently unbalanced: the amount of easy negative

samples (background) is greater than the positive ones decreasing the

performance of the model to distinguish between negatives and positives.

This is solved using top proposals in two stage detectors and hard negative

mining (that is, for training are used only negative samples whose

classification loss is the highest in order to let the model focus on hard

negative examples) in one stage detectors [22].

In order to solve this problem, the FocalLoss [20] was proposed for coping

automatically with class unbalance down­weighting the loss when easy

negatives and easy positives are classified focusing the training on hard

positives and negatives. The FocalLoss has the following form:

FL(pt) = −αt(1 − pt)γ log(pt) (2.4)

where

pt =


p y = 1 positive

1 − p otherwise
(2.5)

at =


α y = 1 positive

1 − α otherwise
(2.6)

p is the model’s estimated probability, γ is a hyperparameter for controlling

the down­weighting factor and α is a further hyperparameter for considering

the class unbalance.



2.1 Background 8

Figure 2.2: High level graphical overview of CenterNet. Gray parallelepipeds
represent activations after an operation depicted with a colored triangle. The
width and height of each parallelepiped represents, respectively, the channels
and spatial dimensions after each operation. A full description is presented in
Section 2.1.3.

2.1.3 CenterNet

CenterNet[33] is an end­to­end differentiable encoder­decoder network that

allows to carry on the object detection task (and many others) efficiently and

more simply than two or one stage object detectors based on proposals [25]

because does require neither proposals nor filtering final detections since

only one prediction per object is estimated.

Encoder: ResNet In this work we used CenterNet with ResNet18 and

ResNet101 as backbone, also called encoder, which has to extract

meaningful features, then used by the decoder. ResNet [12] introduce the

residual connection in order to let the network learn the identity function

G(x) = x + F (x) where x is the input (identity), F (·) is the residual

function to learn and G(·) is the output forwarded to a non­linear activation

function. All of them define a residual block. As a consequence the loss
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landscape is smoother allowing the training of very deep networks. The

input spatial dimensions are reduced by the downsample block (gray

triangle, see Figure 2.2) by a factor 4, then a sequence of residual blocks

(yellow triangle, see Figure 2.2) at each level extract features from previous

activations halving the spatial dimension and doubling the channels (except

for the first level): in particular ResNet18 apply two residual blocks at each

level; instead ResNet101 applys at the first level 3 residual blocks, than 4,

next 23 and at the end 3. Moreover, the residual block is different for

ResNet18 and ResNet101, as shown in Figure 2.2: the former uses only two

3 × 3 convolutions instead the latter uses a 3 × 3 convolution preceded and

followed by 1 × 1 convolutions that reduce then expand the amount of

channels; this is required due to the exponential increase of them. In both

cases, when the output of a block is the input of a residual block that halves

the spatial dimension, 3 × 3 convolution with stride 2 in the skip connection

path downscale the input dimensions.

Decoder The features extracted by the backbone are then processed by the

decoder which is composed by a sequence of 1 × 1 deformable convolutions

[7] followed by 3 × 3 transposed convolutions[30] (Figure 2.2): the former

allow learning offsets in order to apply convolutions with sparse kernels,

instead of dense ones as in normal convolutions, adapting it based on the

object scale, the latter allow upscaling activations with a learnable function

instead of a non­learnable one (e.g. bilinear upsampling). The spatial

dimensions are double and channels halved each time a transposed

convolution is applied.

Heads Based on the task, CenterNet could have many heads. For a simple

object detection task there are the heatmap head which contains at each pixel

position the probability that it is a center, offset head which allow to correct

the stride position extracted from the heatmap and size head which allow to
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extract the width and height of bounding box. In particular a 3 × 3

convolution follow a 1 × 1 one for generating output tensors in the strided

resolution (Figure 2.2).

Instead of using anchors, bounding boxes with fixed area and aspect ratio,

CenterNet detect objects based on their center point p = (x, y), thus it is

neither required to classify proposals extracted by RPN (using anchors) or

Selective Search, as in two­stage detector, nor classify each anchor at each

position in the final activation, as in one stage detector: this allows a faster

inference. Moreover, since each object can be detected only once filtering

out overlapping detections is avoided.

In order to train the network each center position p of class c is downscaled

by a factor D, then p̃ =
⌊

p
D

⌋
is computed. Hence, the ground truth heatmap

H ∈ R
H
D

× W
D

×C is created generating unnormalized Gaussians at each p̃ with

an object­size adaptive σp at index c taking the element­wise maximum if

two centers overlap on the same class:

Yxyc = e
− (x−p̃x)2+(y−p̃y)2

2σ2
p (2.7)

Therefore given an image I ∈ RH×W ×3 CenterNet predicts a heatmap

Ĥ ∈ R
H
D

× W
D

×C , an offset map Ô ∈ R
H
D

× W
D

×2 for correcting the positions due

to the stride and bounding box sizes Ŝ ∈ R
H
D

× W
D

×2. Then non­maxima

suppression (NMS) is applied on the heatmap for extracting peaks in a

neighborhood 3 × 3. At each peak position p̂k for class c, the probability

ŷxyc, offset ôpk
and size ŝpk

are extracted, respectively, from Ĥ , Ô, Ŝ and the

total loss is computed (thus the supervision is done only on peak positions):

L = Lk + λsizeLsize + λoffsetLoffset (2.8)
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where Lsize is

Lsize = 1
N

N∑
k=1

|ŝpk
− spk

|

and spk
is the ground truth size, Loffset is

Loffset = 1
N

N∑
k=1

|ôpk
−

(
pk

D
− p̃k

)
|

and Lk is the pixel­wise FocalLoss:

Lk = 1
N

∑
x,y,c


(1 − ŷxyc)α · − log ŷxyc yxyc == 1

(1 − yxyc)β · (ŷxyc)α · − log(1 − ŷxyc) otherwise

(2.9)

which solves class unbalance and where

1. N is the numbers of keypoint in the ground truth heatmap

2. (ŷxyc)α and (1 − ŷxyc)α allow to discount the loss for easy positives

and negatives in order to let the network focus on hard to classify

examples.

3. (1 − yxyc)β reduce the penalization of the loss at positions near the

ground truth (negative positions) allowing the network to classify

them as centers.

2.2 Algorithms

2.2.1 IAN detection with template matching guided by

Ariadne

The core idea is to track the IAN position frame by frame producing different

paths. The one with the best curvature is selected. In order to do so at each

step, patches at previous positions are extracted from the previous frame and

a scores map (Figure 2.3c) is computed sliding each patch (Figure 2.3a) onto
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(a) Patch extracted on the
previous frame.

(b) RoI considered at cur­
rent frame.

(c) Scores map com­
puted.

(d) k1 = 10 points selected using the scores map. Then k2 = 5 points are selected by
Ariadne (blue border).

Figure 2.3: Template matching applied considering on of the previous point.

a region of interest (RoI) (Figure 2.3b) centered on the previous position at

the current frame and computing a score using the Normalized Cross

Correlation (NCC). The NCC is the following:

NCC(x, y) =
w∑

tx=0

h∑
ty=0

T (tx, ty) ∗ I(x + tx, y + ty)√∑w
tx=0

∑h
ty=0 T (tx, ty)2 ∑w

tx=0
∑h

ty=0 I(x + tx, y + ty)2

where I is the image (the RoI in our case), T is the patch and w and h are the

width and height of the patch. This technique is called template matching.

Then, these points are filtered with the statistical reasoning done by Ariadne

for acquiring possible candidates.

In particular, a single step of the algorithm compute k1 points using template

matching; although in Ariadne it’s selected the point which maximize the

probability of a path (see Equation 2.1), we select k2 points with the highest

probability considering only the Distance and Curvature likelihood

(Figure 2.3d).

Since this is a breadth first search algorithm, in order to prune invalid paths
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we thought to discard points far away from a precomputed pripor modelled

as a parabola but since it wasn’t robust (we will discuss this in

Section 3.4.1), this pruning was avoided. We observed that most of the

uncertainty was in the middle, hence we allowed new paths only in the

center. In particular given a probability sampled from a normal distribution

N (
⌊

L
2

⌋
, σ2) where L is equal to the amount of frames and σ2 represent the

amount of frames to consider in the middle we chose to insert in the frontier

only points whose probability weighted by the Gaussian was greater than a

threshold. Moreover, in order to avoid an exponential number of paths, an

upper bound of possible opened path was set.

(a) Prior as parabola computed on
the first CT scan in validation set
is far away from the ground truth.

(b) Tracking executed using the
ground truth of the previous frame
as previous point.

(c) Tracking executed using de­
tection of previous frame as pre­
vious point.

Figure 2.4: Parabola and tracking done on a CT scan in the validation set
showing each position in a 3­dimensional space x­y­frame.
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2.2.2 IAN detection with CenterNet

As in Section 2.2.1, we are going to track IAN positions: in particular

CenterNet detections will be used in order to obtain them, exploiting spatial

and temporal information between consecutive frames, that is IAN positions

should not be far away from each other and positions detected starting from

both sides at same frame should be closer.

The former is ensured reweighting the heatmap generated by CenterNet with

a prior, the latter is done, simply, computing at each frame the mean between

detections found starting from the beginning and the ending of the nerve.

For our task CenterNet was modified for predicting a heatmap

H ∈ R
H
D

× W
D

×1 since there are no classes, a radius map R ∈ R
H
D

× W
D

×1 other

than an offset map.

We defined the prior Pi at step i as a Gaussian centered on the previous

position pi−1 whose scale and sigma are hyperparameters: prior scale Aprior

and prior sigma σprior:

Pi = Aprior ∗ e

(x−pi−1,x)2+(y−pi−1,y)2

2σ2
prior

Therefore the tracking is done in the following way: at each step i, given the

CenterNet’s prediction Ĥi(Figure 2.5a) and the prior Pi (Figure 2.5b) we

compute a combined heatmap HPi = Ĥi ∗ Pi (Figure 2.5c). Then onto a RoI

centered on the previous position pi−1 we apply NMS as in the original paper

and extract the point pi with the greatest score.
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OUT
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(a) The original CenterNet model
(without prior).

IN
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16

32

OUT

4

8

16

32

32

16

8

4

(b) CenterNet model using prior in­
jected at four possible levels.

Figure 2.6: Models used in our work. The numbers represent the downscale
used by the original paper.

(a) Heatmap generated by
CenterNet

(b) Prior heatmap gener­
ate at previous position

(c) Heatmap composed
by the CenterNet and
prior one.

Figure 2.5: Heatmap generated during one step of the tracking.

The algorithm is applied in both directions, from the mental foramen to Spix

spine and vice versa, producing two set of positions Pf and Pb that are used

for computing the averaged ones: given pf ∈ Pf and pb ∈ Pb, the final

position pm = pf +pb

2 .
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Level Downscale factor in the decoder (Figure 2.6b)

4 32
3 16
2 8
1 4

Table 2.1: Levels associated to each downscale factor

Moreover, we tried to track the position injecting the combined heatmap

found before in the model, trying to exploit this information during the

inference. In order to do so we define 4 possible levels along the network

before each deformable convolution (Figure 2.2) indexing them from 4 to 1

starting from the deepest location to the shallowest one (Table 2.1). The

heatmap HPi is downscaled for complying with the spatial resolution used by

the original network and then concatenated along the channel with the

features map computed by the previous convolution (Figure 2.6b).

Regularization when using a prior When injecting a prior inside

CenterNet we observed heavy overfitting: not only was the heatmap

generated depending on the prior, that is, prior and heatmap were very

similar, but also its confidence was lower, the lower the scale Aprior. In

Figure 2.7 CenterNet receives in input an image with random values sampled

from a standard normal distribution I ∼ N(0, 1) and a prior centered at the

center of the image with different σprior: when Aprior = 0.3 the heatmap

generated by the model without dropout presents more uncertainty than

when using Aprior = 1.0, where no uncertainty is present. Hence during the

training we applied the following regularizations:

• Given the downscale factor of the prior dprior at level where is injected

(Table 2.1), we distorted the center of the prior with noise sampled

from a multivariate normal distribution N (0, σ2) with sigma equals to

10, in order to have in the full resolution an offset equals to

±dprior × 3 ×
√

10 forcing the network to learn to predict the correct
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heatmap: this should reflect the real situation during the tracking

where the prior Pi position is not perfect.

• Then we also dropped out randomly, with a given probability pdropout,

the prior within the batch replacing it with a zeroed tensor.

The effect of these regularizations can be seen in Figure 2.7 where the model

with dropout trained with priors whose position was distorted by an offset

sampled from N (0, σ2), doesn’t predict the prior.

Figure 2.7: Heatmap generated by models trained with and without dropout,
using the same random input with prior injected at level 1 and different scales
and sigmas.



Chapter 3

Experiments

3.1 Dataset

The entire dataset is composed by ∼ 71 (CB)CT scan anonymized, in order

to respect GDPR gudelines 1, annotated by a non expert (myself).

DICOM data are processed using pydicom[23]: raw value are converted into

the Housenfield units thorugh a linear conversion y = m ∗ x + c where m

and c are repsectively RescaleSlope and RescaleIntercept, parameters of the

machine that created the data. Moreover in order to visualize particular

information (tissues, bones, …), windowing2 is applied, that is, given the

WindowWidth(WW) andWindowCenter(WL), the Housenfield information

is clipped between WL ± WW
2 where the lowest value is set to black and the

1https://gdpr-info.eu/recitals/no-26/
2https://dicom.nema.org/medical/dicom/current/output/chtml/part03/

sect_C.11.2.html#sect_C.11.2.1.2

https://gdpr-info.eu/recitals/no-26/
https://dicom.nema.org/medical/dicom/current/output/chtml/part03/sect_C.11.2.html#sect_C.11.2.1.2
https://dicom.nema.org/medical/dicom/current/output/chtml/part03/sect_C.11.2.html#sect_C.11.2.1.2
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highest value is set to white (due to MONOCHROME2 flag 3):

p(h) =



0, h ≤ WL − WW
2(

h−(WL−0.5)
WW−1 + 0.5

)
∗ 255, WL − WW

2 ≤ h < WL + WW
2

255, h > WL + WW
2

(3.1)

where h is the Housenfield value and p(h) is the pixel value associated

computed from the Housenfield one.

When the IAN is well visible, annotation are inserted at the center otherwise

hints are used in order to put it in the right position as much as possibile. The

Figure 3.1 contains the whole dataset used for training, validating and testing

the network.

Table 3.1 contains a comparison between our dataset and ones used by

papers cited in Section 1.1: not only the amount of data used for training is

much larger than ours, but each scan was annotated by radiographer with

voxel­level precision. This highlight another important aspect of our work:

the annotations required are much easier to obtain than ones used in others

since it is simpler to annotate the center of the canal with a circle than

annotating pixels in a volume.
3https://dicom.nema.org/medical/dicom/current/output/chtml/part03/

sect_C.7.6.3.html

https://dicom.nema.org/medical/dicom/current/output/chtml/part03/sect_C.7.6.3.html
https://dicom.nema.org/medical/dicom/current/output/chtml/part03/sect_C.7.6.3.html
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(a) Validation set.

(b) Test set.

(c) Training set.

Figure 3.1: Mental foramen cut for the whole dataset.
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Source Train Val Test

This 61 5 5

Kainmueller et al. 106

Jaskari et al. 637 52
154

1285

Liu et al. 154 30 45

Bayrakdar et al. (75 CT scans)

Kwak et al. ∼ 29456 (images) ∼ 9818 (images) ∼ 9818 (images)

Table 3.1: Dataset comparison (CT scans).

3.2 Metrics

3.2.1 Intersection over Union (IoU)

The Intersection over Union is a metric used in object detection for

addressing how much two bounding boxes overlap. This metric is scale

invariant.

Given the ground truth bounding box (Bg) and detection bounding box (Bd),

the IoU is:

IoU = |Bg ∩ Bd|
|Bg ∪ Bd|

with IoU ∈ [0, 1]. In practice, it is the ratio between the pixels belonging to

both ground truth and detection over the pixels belonging to either the

ground truth or the detection.
4Primary test data
5Secondary test data
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3.2.2 Generalized Intersection over Union (GIoU)

When two bounding boxes are not overlapping the IoU is equal to 0: no

insight is given about much far away they are. Therefore, GIoU was

proposed [27]:

GIoU = |Bg ∩ Bd|
|Bg ∪ Bd|

− |C \ (Bg ∪ Bd)|
|C|

where C represents the minimum convex hull that encloses the two bounding

boxes and GIoU ∈ [−1, 1]. Moreover, GIoU is a differentiable IoU therefore

can be used as a loss.

3.2.3 Distances in millimeters

A CT scan volume is composed by slices of the head from top to bottom.

This is the axial plane. On an axial plane we know the row and column

spacing, that are, respectively, the vertical and horizontal distance between

pixel centers in millimeters. Then the distance in millimeters between two

slices is the slice thickness.

Therefore in order to translate distances from pixels to millimeters in the

coronal plane we need the slice thickness and column spacing (Figure 3.2).

Given the points p1 and p2, the slice thickness ry and the column spacing rx

the computation is the following:

dmm(p1, p2) =
√

(rx(p2,x − p1,x))2 + (ry(p2,y − p1,y))2 (3.2)

since in our case the slice thickness and the column spacing were the same,

thus rx = ry = r, the formulation is simplified as:

dmm(p1, p2) = r ∗ ||p2 − p1||2 (3.3)

where || · || is the Euclidean distance.
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Figure 3.2: CT scan volume where are presented the column spacing and slice
thickness.

3.3 Training and validation

Training CenterNet (trained on COCO dataset) was finetuned on 61 CT

scans (hence ∼ 122 canals, since for each CT scan we have the left and right

one) for 400 epochs with a learning rate equals to 5 ∗ 10−4 using Adam with

default parameters (β1 = 0.9, β2 = 0.999 and ϵ = 10−8). Moreover,

following the paper, we set the bias of the heatmap head at −9.21 using

b = − log(1 − π

π
) (3.4)

where π is the prior probability of the foreground class. In our case, given

π = 2 ∗ 10−4 (since there is always one pixel as ground truth in the heatmap

at size 64 × 64), b = −9.21, such that it will predict at the beginning of the

training σ(−9.21) = 10−4. Indeed, we tried −2.19, −4.59, −6.9 along
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−9.21 which gives us the lowest initial loss.

Each frame was resized to 256 × 256 and then downscaled by a factor 4

(following the original paper). In order to increase the amount of possible

data seen by the network, the dataset was augmented with zoom in/zoom out

and horizontal flipping randomly applied at each frame (Table 3.2 contains

hyperparameters values).

Due to smaller annotation radius values after rescaling, a minimum value

was enforced to the σp on Equation (2.7) used for generating the heatmap

(equal to 10), which allowed to obtain less restrictive output heatmaps from

CenterNet (Figure 3.3).

In order to ease the problem, for all experiments we used a fixed radius

equals to the mean radius computed, at resolution 256 × 256, over the

training set (r = 7). We would like to highlight that the radius is not really

important for our study since we are more interested in the center position,

and so in the distance in millimeters from the real IAN, than in the width of

the canal. Nevertheless, the network can be trained also for predicting it.

Validation During the training every 5 epochs we executed the tracking,

using default parameters (Table 3.3), for measuring IoU, GIoU and distance

in mm between the ground truth and mean detections in order to have

meaningful metrics. The ones with the greatest GIoU were selected.

Name Value

Probability horizontal flip 0.8
Probability zoom in/out 0.8
Zoom in/out range 0.8 − 1.5
pdropout 0.8

Table 3.2: Augmentation hyperparameters.



3.4 Results 25

(a) Heatmap generated using a minimum radius equal to 3.

(b) Heatmap generated using a minimum radius equal to 10.

Figure 3.3: Ground truth heatmap (left) and heatmap generated by CenterNet
(right)

3.4 Results

3.4.1 IAN detection with template matching guided by

Ariadne

Since the time complexity of the algorithm increase exponentially with the

number of k2 paths, the evaluation was done using only the first CT scan in

the validation set (Figure 3.1a).

The prior as parabola is not robust As mentioned in Section 2.2.1 the

precomputed prior as parabola wasn’t robust enough. It was created
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computing parameters of a generic parabola using the least square solution.

In particular, we normalize the x and y coordinates over width and height of

the start, middle and ending annotations for each canal. Then given the

matrix 
x2

1 x1 1
... ... ...

x2
n xn 1




a

b

c

 =


y1

· · ·

yn

 (3.5)

,that is XA = Y , we solve for A = (XT X)−1(XT Y ). The approximation

(Figure 2.4a) is far away from the ground truth therefore can’t be used as

prior.

The tracking diverges Another problem encountered that undermine the

whole algorithm is the divergence of the tracking caused by the wrong

template extracted in the previous frame. This can be observed comparing

Figure 2.4b and Figure 2.4c: enforcing the position, allow the algorithm to

correct itself as soon as it diverges from the right path.

3.4.2 IAN detection with CenterNet

Our experiments were evaluated computing IoU, GIoU and distances in

millimeters between ground truth and detection obtained either by using

tracking described in Section 2.2.2 or by CenterNet alone. For the tracking

variant or our method, we used detections from start to end (Backward), end

to start (Forward) and averaged ones (Mean). For a fair comparison default

hyperparameters (Table 3.3) were used for all experiments. The results are

displayed in Table 3.4 and Table 3.5.

In figure Figure 3.8 we show metrics and the tracking computed on one of

the best CT scan in our test set.
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Name Value

Aprior 1.0
σprior (4, 4)

Table 3.3: Tracking hyperparameters used for validating and testing our mod­
els.

CenterNet on its own is not accurate enough Despite using ResNet101

as backbone results don’t improve with respect using ResNet18. This is

expected due to low amount of data used for training (Table 3.1). Moreover

CT scans are unbalanced: the amount of frames where Spix spine

(Figure 1.1a) and mental foramen (Figure 1.1b) annotation are present, is

much lower than ones where the IAN is in the body of the pathway: this lead

to uncertainty at the start and end of the canal (Figure 3.8b). Also noise

within (CB)CT scan lower model performances.

The prior can increase the performances A slightly improvements can

be seen despite it has no real consequences when comparing distances in

millimeters (Table 3.4).

The prior has to be injected at deeper level Better performances are

registered when the prior is inserted at deeper level but again it has no real

impact on real distances (Figure 3.5). A possible explanation could be that

due to more non­linearities, the network is able to extract more information

in order to infer positions.

Void bones are dangerous CenterNet is unable to detect IAN when it is

hidden by void bones as in Figure 3.7, therefore tracking will fail unless

CenterNet is able to recover the correct position.

Tracking allows mitigating bad detections Despite wrong detections

from CenterNet, tracking allows partially to correct them (Figure 3.8b) and

produces smoother trajectories.
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Figure 3.4: Evaluation of the model without and with prior at level 1.

Figure 3.5: Evaluation of the model with prior at level 1 and 4.
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Figure 3.6: Evaluation of the ResNet18 and ResNet101 as backbone with no
prior.

Figure 3.7: Frame from a CT scan in test set where IAN is hidden. Ground
truth. CenterNet detection.
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(a) Tracking on a CT scan in the test set. Ground truth. Tracking detection.

(b) Metrics on a CT scan in the test set.

Figure 3.8: Detection obtained with ResNet18 and injecting the prior at level
4.
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Model Mean

Backbone Configuration IoU ↑ GIoU ↑ Distances(mm) ↓

ResNet18 P0 (Tracking) 0.236 ± 0.206 0.081 ± 0.317 2.116 ± 1.007
P0 (CenterNet) 0.232 ± 0.213 0.069 ± 0.327 2.182 ± 1.141

ResNet101 P0 (Tracking) 0.241 ± 0.218 0.080 ± 0.340 2.181 ± 1.197
P0 (CenterNet) 0.239 ± 0.221 0.070 ± 0.350 2.274 ± 1.476

ResNet18 P1 (Tracking) 0.232 ± 0.218 0.082 ± 0.326 2.131 ± 1.060
P1 (CenterNet) 0.236 ± 0.226 0.079 ± 0.342 2.171 ± 1.208

ResNet18 P4 (Tracking) 0.259 ± 0.215 0.119 ± 0.323 2.004 ± 1.017
P4 (CenterNet) 0.254 ± 0.219 0.106 ± 0.330 2.051 ± 1.104

Table 3.4: Metrics computed using averaged detections.

Model Forward

Backbone Configuration IoU ↑ GIoU ↑ Distances(mm) ↓

ResNet18 P0 (Tracking) 0.233 ± 0.201 0.084 ± 0.300 2.147 ± 1.007
P0 (CenterNet) 0.230 ± 0.212 0.066 ± 0.326 2.182 ± 1.147

ResNet101 P0 (Tracking) 0.246 ± 0.219 0.097 ± 0.325 2.112 ± 1.098
P0 (CenterNet) 0.237 ± 0.219 0.067 ± 0.349 2.272 ± 1.479

ResNet18 P1 (Tracking) 0.227 ± 0.206 0.078 ± 0.305 2.147 ± 1.024
P1 (CenterNet) 0.229 ± 0.223 0.070 ± 0.341 2.221 ± 1.295

ResNet18 P4 (Tracking) 0.259 ± 0.213 0.123 ± 0.313 2.014 ± 1.000
P4 (CenterNet) 0.249 ± 0.221 0.097 ± 0.334 2.088 ± 1.174

Model Backward

Backbone Configuration IoU ↑ GIoU ↑ Distances(mm) ↓

ResNet18 P0 (Tracking) 0.214 ± 0.206 0.046 ± 0.319 2.286 ± 1.139
P0 (CenterNet) 0.230 ± 0.212 0.066 ± 0.326 2.182 ± 1.146

ResNet101 P0 (Tracking) 0.209 ± 0.198 0.028 ± 0.329 2.451 ± 1.409
P0 (CenterNet) 0.237 ± 0.220 0.066 ± 0.349 2.275 ± 1.481

ResNet18 P1 (Tracking) 0.184 ± 0.198 0.012 ± 0.311 2.385 ± 1.188
P1 (CenterNet) 0.227 ± 0.222 0.065 ± 0.342 2.228 ± 1.285

ResNet18 P4 (Tracking) 0.217 ± 0.201 0.058 ± 0.309 2.189 ± 1.127
P4 (CenterNet) 0.249 ± 0.222 0.097 ± 0.335 2.089 ± 1.162

Table 3.5: Metrics computed using only detection from end­to­start (Forward)
and start­to­end (Backward).
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Conclusion

The inferior alveolar nerve (IAN) is an important nerve whose position have

to be known with millimetric precision in order to avoid damaging it during

surgical operations or implants positioning.

In this thesis, we explored two approaches to automatically identify it in CT

scans: tracking of IAN using template matching detections with statistical

reasoning (inspired by Ariadne [11]); a novel way to address this problem

trough tracking its position frame by frame using CenterNet[33] detections.

In the latter approach, we also explored the idea of enforcing spatial and

temporal constraints to link detections across consecutive CT scans.

Moreover, we tried to exploit the same spatial information within the

network in order to influence its prediction.

The approach based on Ariadne was not robust enough and tracking diverges

after a few frames. The method based on CenterNet and tracking information

was able to achieve good performance for a preliminary study. The best

configuration predicts the position with an average error of 2 mm.

Different ablation studies show the effectiveness of tracking using a prior

and injecting the prior inside the network, in particular at the deeper level.
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A possible continuation of this study could explore different ways to

leverage the prior information as well as different networks: for instance,

due to the sequentiality of the data Recurrent CNN or 3D CNN could

achieve better performances.

Moreover increasing the quantity and enhancing the quality of the dataset

will for sure increase the ability of each model to perform better also in edge

case situations improving overall the performances.

Finally due to the sensible application, explainability of the model prediction

should be considered, in order to let the clinic user makes a better informed

decision instead of one based blindly on the final inference.
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