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Abstract

Hadrontherapy is one of the available techniques used nowadays to treat
cancer. Specifically, it employs beams of protons or heavier ions with initial
energies of hundreds of MeV/u. Hadrontherapy has an advantageous energy
release in the patient, allowing to irradiate the cancer volume in a more pre-
cise way and to spare the healthy tissues surrounding it. The main drawback
of this kind of therapy is the nuclear interaction of the primary beam with
the nuclei constituting the irradiated tissue. Target and projectile nuclear
fragmentation could have a dangerous biological effect on tissues surround-
ing the tumor. Specifically, target fragments have a very short range and are
difficultly detected. For this reason the experimental panorama is very poor,
thus reducing the precision in the evaluation of success or induced risk of
hadrontherapy treatments. For this purpose, the FOOT (FragmentatiOn Of
Target) experiment has been designed. It aims at filling the gap both in pro-
jectile and target fragmentation experimental data, measuring the fragment
production cross section by using in the latter an inverse kinematic tech-
nique. At larger energies, the FOOT measurements will be useful to evaluate
the interaction of the space radiation field with materials composing the
spaceship hull in a long term space mission (typically on Mars), in order to
assess the radiation-induced damage on astronauts’ health and electronics on
board. The FOOT apparatus allows to identify nuclear fragments by mea-
suring their charge Z and their number of mass A. The latter is measured
in three redundant ways, which need to be combined to obtain a best es-
timation of A. In the present thesis, the technique of Lagrange Multipliers
used for the constrained minimization of functions, will be introduced and
implemented in the FOOT analysis code to reconstruct the number of mass
of nuclear fragments. Moreover, the results of the method will be compared
to the ones already implemented in the experiment.
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Introduction

Cancer is a disease caused by the uncontrollable growth of abnormal cells.
Moreover, it has been listed by World Health Organization as the second lead-
ing cause of death globally in 2020 [1]. There are many techniques used to
treat cancer, such as surgery, chemotherapy, immunotherapy and radiother-
apy. The treatments aim at removing the cancer: when this is not possible,
though, one can try to prevent the reproduction of its cells. In radiother-
apy, beams of ionizing radiation are used to irradiate the tumor in order to
damage the DNA of the cells. According to the type of radiation involved,
one can have conventional radiotherapy or hadrontherapy. In the first case,
X-Rays or electrons are used, while hadrontherapy uses beams of heavier
charged particles, usually protons or 12C ions. The reason for the choice of
these particles stands in their interaction with matter, which produces the
largest energy release at the end of their path in correspondence with the
so-called Bragg peak. By modulating the initial energy and intensity of the
beam, one can place the peak of energy release in correspondence of the tu-
mor site, irradiating it in an uniform and effective way, sparing the healthy
tissues and organs.
As opposed to the case of therapy with photons and electrons, which are well
established techniques based on an accurate knowledge of radiation-matter
interaction, charged particles have a side effect caused by nuclear fragmen-
tation. In the energy range of charged particles therapy, i.e. between 60 and
400 MeV/u, fragmentation happens for the target in the case of protons
and for target and projectile in the case of 12C. The main drawback of tar-
get fragments is that they have very short range, thus they cannot exit the
target and cannot be detected. This reflects in a lack of measurements for
target fragmentation cross section. Due to this deficit of experimental data,
the effect of the production of nuclear fragments in the human body is not
completely understood and it is not yet included in the treatment planning
system for hadrontherapy [2]. However, it is important to evaluate the con-
tribution of fragments, mostly because of their biological effect in the healthy
tissues. To deal with this problem and try to fill the vacancy in experimental
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2 Introduction

measurements, the FOOT (FragmentatiOn Of Target) experiment has been
conceived. FOOT aims at measuring the differential cross section, as a func-
tion of the energy and emission angle of fragments, for target fragmentation.
To avoid the problem of the short range of target fragments, measurements
are performed with an inverse kinematic approach. In this layout, a beam of
C or O hits a composite target of C2H4 and C: the H cross section is obtained
by subtraction. The experiment has been designed as a table-top apparatus
and it consists of two setups: an emulsion spectrometer for the detection of
light fragments with Z=1 and 2, and a magnetic spectrometer able to detect
heavier fragments. Moreover, the setup of the experiment allows to obtain
measurements for projectile fragmentation in a direct kinematic configura-
tion. Hadrontherapy is not the only context in which the measurements of
FOOT can be exploited: thanks to the overlap in particle type, energy range
and physical processes occurring, space radioprotection can also benefit from
the results of FOOT. As a matter of fact, fragmentation cross sections ob-
tained with the magnetic spectrometer can be used for the estimation of dose
received by astronauts and electronic equipment during long duration space
missions.
The work of this thesis focuses on the electronic setup of FOOT. It is com-
posed by a magnetic spectrometer, which allows to reconstruct the charge Z
and mass number A of nuclear fragments: Z can be obtained from the energy
loss of fragments in a thin scintillator and time of flight, while A is obtained
in three different ways (A1, A2, A3) using the momentum, time of flight and
kinetic energy, thanks to the redundant measurements of the apparatus. The
main goal of this thesis is to implement a technique able to combine the
three mass number measurements A1, A2, A3 using the Lagrange Multipliers
method. This technique allows to obtain the best estimate of A (i.e., Afit)
that minimizes the Lagrangian function L, which is usually built to perform
the minimization of a function f (x) that needs to satisfy some constraints
gi (x).
In chapter 1, the basic radiation-matter interactions taking place during
hadrontherapy are described, together with the introduction of some basic
radiobiology quantities and the description of the common ground between
radiation therapy and space radioprotection. A short historical review of
hadrontherapy is also presented. Chapter 2 is dedicated to the FOOT exper-
iment: the motivations and the two layouts of the apparatus are reported.
In Chapter 3 the main work of this thesis is described, starting from the
reconstruction of Z and A of fragments produced by a 200 MeV/u and a 700
MeV/u beam of 16O on a C2H4 target. Then a theoretical description of the
Lagrange Multipliers method is presented, together with an explanation of
how it can be applied to the reconstruction of Afit in the FOOT experiment.
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The results of the number of mass Afit reconstructed with the Lagrange
Multipliers method, using simulated data of a 200 MeV/u beam of 16O im-
pinging in a target of C2H4, are shown and compared to the results of the
other mass reconstruction techniques of FOOT, i.e. Augmented Lagrangian
Method (ALM) and χ2 minimization.
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Chapter 1

Radiation-Matter Interaction

Radiotherapy is one of the many techniques used to treat solid tumors,
particularly cancer. Its name comes from the tool used in this therapy to
irradiate and treat tumors: ionizing radiation. By definition, a ionizing radi-
ation is a particular kind of particle or electromagnetic wave that is able to
release energy inside matter and ionize its atoms: the goal of radiotherapy is
to ionize the DNA of tumor cells in order to destroy them or prevent their
multiplication.
During treatment, it is important to take into account the fact that the irra-
diation of tumor cells is impossible to achieve without causing some effects
also on the surrounding healthy tissues. Therefore, the purpose is to max-
imize the energy release on the tumor by monitoring two parameters. The
former is the Tumor Control Probability (TCP), which is the probability
that tumor cells can be controlled with the deposited radiation. The latter is
Normal Tissue Control Probability (NTCP), which is the response of healthy
tissues surrounding the tumor [3]. Both of them depend on biological effects,
but generally they increase with dose, i.e. energy released per unit mass, as
illustrated in Figure 1.1.

The two curves appear shifted along the x-axis because normal tissues
can better repair radiation damage. The purpose of radiotherapy is thus to
work in the range where TCP-NTCP is larger.
Nowadays, there are two different kinds of radiotherapy: conventional ra-
diotherapy and hadrontherapy. The former uses beams of X-rays, while the
latter exploits beams of charged particles, mainly protons and 12C ions. The
different kinds of radiation implied in these two treatments techniques can
cause distinct physical interactions and biological effects in the irradiated
tissue.
This chapter will contain, in section 1.1, the description of physical processes
taking place in the interaction of charged particles with matter, both elec-
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6 Chapter 1. Radiation-Matter Interaction

Figure 1.1: TCP (blue line) and NTCP (red line) probabilities as a function
of energy released in the patient. Radiotherapy has to maximize the TCP-
NTCP difference for a given dose and works in the therapeutic window [4].

tromagnetic and nuclear, in section 1.2 some parameters useful to describe
the effect of ionizing radiation on living tissue are introduced. Section 1.3
presents a short overview of the beginning and development of hadronther-
apy, and section 1.4 explains the common ground between hadrontherapy
and space radioprotection.

1.1 Charged Particles Interactions with Mat-

ter

When a charged particle enters a slab of material, several kinds of inter-
action can happen. In the energy range of hadrontherapy, which is up to 250
MeV/u for proton beams and up to 400 MeV/u for 12C ions, the interac-
tion between a charged particle and an atom of the material can be either
electromagnetic or nuclear. When an electromagnetic interaction happens,
the particle can be subjected to an inelastic collision with electrons, causing
ionization, or to an elastic collision with nuclei, causing multiple Coulomb
scattering. Instead, nuclear interaction mainly produces fragmentation, which
can involve both the projectile and the target, or just one of them, according
to the size of the nuclei involved.
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1.1.1 Electromagnetic Interaction

In the inelastic collision between a charged particle and an atomic elec-
tron, the particle can transfer energy to the electron and strip it from the
nucleus, ionizing the atom.
Since for a single particle many collisions could happen, the quantity describ-
ing this process is the energy loss per unit length in a given medium, whose
average is expressed by the Bethe-Bloch formula:

−
〈
dE

dx

〉
=
ρ · Z
A

4πNAmec
2

MU

(
e2

4πε0mec2

)2
z2

β2

[
ln

(
2mec

2β2

I · (1− β2)

)
−β2

]
(1.1)

All the constants contained in equation (1.1) are explained in table 1.1.

ρ Medium Density Z Medium Atomic Number
A Medium Mass number NA Avogadro Number: 6.022 · 1023 mol−1

me Electron Mass: 0.510 MeV/c2 MU Atomic Mass Unit
e Electron Charge ε0 Vacuum Permittivity
z Charge of the Incoming Particle I Mean Excitation Potential

Table 1.1: Constants of the Bethe Bloch formula

The most important dependencies in the formula are the charge z and
the β parameter of the projectile particle: the higher the incoming particle
charge, the larger its energy loss, while the 1/β2 term indicates that the
particle loses less energy when it is faster, thus at the beginning of its path
in the traversed medium. The energy release, then, increases as the particle
slows down: the largest dE/dx happens at the end of the path of the particle,
right before it stops. The general trend of the dE/dx function is illustrated
in figure 1.2 for several particles.
The formula (1.1) can be applied with good precision only in the range
0.1< βγ <1000. For all the other βγ values some correction are needed:

• At low energies, the shell correction must be applied. In these condi-
tions, the velocity of the incoming charged particle is comparable to
the orbital velocity of atomic electrons and one of the assumptions of
the Bethe-Bloch theory breaks down: the electron cannot be considered
as stationary in the collision [5]. For this reason, at low velocities the
effective charge of projectile particles decreases, due to the interplay of
ionization and recombination and the term Z in equation (1.1) must
be replaced with Zeff :

Zeff = Z
[
1− exp

(
−125βZ−2/3

)]
(1.2)
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Figure 1.2: Mean Energy loss per unit length (quantity described in equa-
tion 1.1) as a function of βγ of the incident charged particle.

At still lower projectile energies, another significant contribution arises:
elastic collisions with target nuclei, which dominate the process at the
end of the path of the particle. For radiotherapy applications, though,
this contribution can be neglected [6].

• At high energies the density correction has to be taken into account. In
this case, the effect produced by the beam of charged particles entering
a medium is the polarization of atoms along its path, which results in a
shielding of the farther electrons. These electrons will thus contribute
less to the energy loss of the particle [5].

Considering the initial energy of the incoming beam, it is evident that hadron-
therapy works in the top-left area of the plot in Figure 1.2 and has to take
into account mainly the low energy correction, which is illustrated in figure
1.3 for 12C ions and protons.
Considering plot 1.3, the goal of therapy is to choose a beam energy that
allows to have the minimum stopping power in the entrance channel of the
body and the peak of the stopping power in correspondence of the cancer
volume: this can be done by tuning the initial energy of beam, which is re-
ported on the x-axis of the same plot.
The Bethe Bloch formula (1.1) implicitly contains the main advantage of
treating tumors with charged particles: due to the 1/β2 dependence of the



1.1. Charged Particles Interactions with Matter 9

Figure 1.3: Stopping power of carbon ions (red line) and protons (blue
line) as a function of the beam energy, in the low energy range [6].

average energy loss, the energy released as a function of the depth has a very
characteristic shape, exhibiting a Bragg peak at the end of the path. Next
section will contain a more detailed description of the Bragg peak and of its
most efficient application in therapy.

Bragg Peak

Thanks to the proportionality between the energy loss of the particle and
the inverse of its velocity β, a beam of charged particles slows down while
traversing the human body, and progressively releases more energy. There is
thus a value of depth in the body that corresponds to the lowest velocity of
the particle and its largest energy release: it is the depth of the Bragg peak.
After such peak, the beam stops. The main goal of hadrontherapy is to place
the Bragg peak in correspondence of the tumor site, in order to irradiate it
with the highest amount of energy sparing the surrounding healthy tissues.
This can be done by changing the initial energy of the beam, which deter-
mines the depth of the peak, as shown in Figure 1.4.
The first problem that needs to be addressed before treatment is the dif-
ference between the thickness of the Bragg peak and the dimension of the
tumor: most of the times a single Bragg peak is not enough to irradiate the
whole cancer volume, thus a Spread Out Bragg peak (SOBP) is needed. By
modulating beams with different initial energies and different intensities, one
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Figure 1.4: Bragg peak for proton beams at different initial energies: the
higher the energy, the deeper the position of the peak [7]. With the increase
of the depth the peak is less sharp: this is due to an uncertainty that will be
described in the following paragraphs.

can obtain a plateau where the energy release is maximum, as illustrated in
Figure 1.5, and that can be used to irradiate the whole tumor.

1.1.2 Range

Another important quantity related to the passage of charged particles
in matter is the range. This quantity describes how long is the path of a
charged particles beam inside a material and provides information about
how deep particles can penetrate before losing all of their energy. The particle
range relies upon three main parameters, i.e. the type of particle, its initial
kinetic energy and the type of material it traverses. Besides these, the concept
of range is also strictly connected to the intrinsic statistical nature of the
energy loss process: this leads to a spread in the value of dE/dx for a beam
of identical particles. According to the thickness of the traversed material,
the energy loss distribution can be modeled in two ways: for thin absorbing
materials, a Landau-Vavilov distribution can be found, which is a skewed,
asymmetric function with a tail at high energies [5]. As the absorber becomes
thick, instead, thanks to the central limit theorem, the distribution of energy
loss becomes a Gaussian function [6]:

f (∆E) =
1√
2πσ

exp

((
∆E −∆E

)2
2σ2

)
(1.3)
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Figure 1.5: Spread Out Bragg Peak obtained from the modulation of several
beams with different initial energies and intensities [8]. The obtained plateau
(black line) will coincide, during the irradiation, with the thickness of the
tumor volume.

The variance of the function depends on the charge of both the incident
particle and material, and also on the velocity of the particle. This implies
that not only the value of dE/dx, but also the range fluctuates statistically
around the mean [9]:

R =

∫ x

0

dx =

∫ E0

0

dE

dE/dx
(1.4)

This value represents the most probable and is also called Continuous Slowing
Down Approximation (CSDA) range, obtained by neglecting the fluctuations
in the energy loss. The behavior affecting both energy loss and range, enclos-
ing their statistical nature, is called straggling. From an experimental point
of view, the phenomenon of range straggling at a defined energy in a given
material can be seen more clearly by taking a beam of charged particles with
the desired energy traversing different thicknesses of the material. Then, the
ratio of transmitted to incident particles can be measured and plotted as a
function of the thickness of the absorber. In the case of an exact process, one
would expect a box-shaped function, which drops to zero at the value of the
range. What is obtained due to straggling is, instead, summed up in Figure
1.6. Therefore, for small thicknesses all particles of the beam are transmit-
ted, but as the thickness increases there is not a sharp decrease to zero, but
a smoother slope down over a certain distribution of thicknesses [5]. The
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Figure 1.6: Transmission coefficient as a function of depth for a beam of
charged particles traversing a material [5]. Due to the statistical nature of
the energy loss process, the function is not box-shaped, as one would expect,
but has a smooth slope down. This shape of the function allows to define
the mean range, where roughly half of the particles are absorbed, and the
extrapolated range, where approximately all particles are absorbed.

mean value of this distribution is called mean range and it is the thickness at
which roughly half of the particles have been absorbed. To obtain instead the
thickness at which roughly all particles are absorbed, the extrapolated range
is used. It can be found by taking the tangent of the curve in the midpoint
and extrapolating it to zero. The extrapolated range is the quantity one needs
to work with: as a matter of fact, to optimize the therapeutic irradiation, it is
necessary to have all particles of the beam stopping at the tumor depth. Both
features of the range distribution can be seen in Figure 1.6. In the concept of
range lies one of the main uncertainties that affects the use of hadrontherapy.
Hence, besides the intrinsic uncertainty caused by straggling, it is also neces-
sary to take into account another contribution. When the therapeutic beam
interacts with atoms of the human body, it can create nuclear fragments,
i.e. charged particles lighter than the ones composing the beam, that have a
longer range with respect to primaries and can thus release energy in tissues
deeper than the tumor: this is particularly dangerous if there is an organ at
risk close to the area which has to be treated.

1.1.3 Multiple Coulomb Scattering

Up to now, we have assumed that the path travelled by charged parti-
cles inside matter can be represented by a straight line, but a more accurate
representation of this path is a zig-zag line, which takes into account the
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Figure 1.7: Pictorial representation of a charged particle entering a material
with a given direction, undergoing multiple coulomb scattering inside the
thickness x and exiting with an angle θ and a vertical shift y with respect to
its initial direction.

multiple Coulomb scattering contribution. As said before, charged particles
traversing matter can also interact with nuclei of atoms in the material, via
both electromagnetic and nuclear interaction. When the interaction is elec-
tromagnetic, the particle undergoes multiple Coulomb scattering, which is
basically a repeated elastic scattering on nuclei of the material. The elastic
interaction with electrons has an impact on the energy of charged particles.
In the elastic interaction with nuclei, instead, their direction is mostly af-
fected. This is due to the large mass difference between charged particle and
nucleus, which makes the energy loss negligible.
Every single scattering, governed by the Rutherford formula [10], adds a small
deflection in the beam direction, all the contributions then result in a zig-zag
path for the particle, which will exit the material with a deflection θ0 with
respect to its initial direction, as shown in Figure 1.7. When the number of
independent scatterings is larger than 20, we can use a statistical approach
and find a probability distribution for the net deflection angle as a function
of the traversed thickness [5].
In this case, multiple scattering is well described by Moliere’s theory [11].
Using a first order approximation, the probability distribution of the deflec-
tion angle becomes a Gaussian with mean 0 and a standard deviation given
by:

σθ =
14.1MeV

βpc
Zp

√
L

Lrad

[
1 + 0.038 · ln

(
L

Lrad

)]
(1.5)

where p is the particle’s momentum, β is the velocity, Zp is the charge of the
incident particle and L/Lrad is the traversed thickness in terms of radiation
length [12].
Lrad is a parameter that depends on the atomic number and weight of the
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traversed material [5]:

Lrad =
716.4 g/cm2 · A

Z (Z + 1) ln
(

287
√
Z
) (1.6)

From equations (1.5) and (1.6) it can be seen that multiple scattering in-
creases for thicker materials and that targets containing heavy elements cause
larger angular spread than targets containing light elements with the same
thickness. Moreover, fixing the type of particle, the scattering decreases at
higher energies. Eventually, comparing beams with the same range in water,
one can see that the angular spread for protons is about three times larger
than the one of 12C ions [6]. The beam spread due to multiple Coulomb scat-
tering in hadrontherapy contains mainly two contributions: one from all the
materials in front of the patient, which is dominant at low energies, and an-
other from the tissue between entrance point and stopping depth, dominant
at high energies, due to larger penetration depths in tissues.

1.1.4 Nuclear Interaction

Besides the interactions described above, charged particles belonging to
therapeutic beams can also produce a nuclear reaction with nuclei of atoms
in the material, in this case the human body. The most probable nuclear
interaction in hadrontherapy is nuclear fragmentation: according to the size
of particles in the beam, which is the projectile, one can observe either tar-
get fragmentation, projectile fragmentation or both. The nuclear interaction
between charged particles and nuclei of atoms in the human body can be
modeled with the abrasion-ablation model, which was introduced by Bow-
man, Swiatecki and Tsang in 1973 [13]. This model splits the fragmentation
process in two stages. The abrasion stage can be seen as a particle removal
in the ion-ion interaction, while ablation is a nuclear de-excitation, i.e. a
consequence of the first stage. The model for the interaction is illustrated
in Figure 1.8: once the projectile nuclei, which move at relativistic speeds,
arrive, they collide with stationary target nuclei and there is an overlap be-
tween projectile and target. This creates a fireball, whose size depends on the
impact parameter of the collision. Peripheral collisions, which have a small
impact parameter and are also the most common ones in the hadrontherapy
energy range, i.e. [60-400] MeV/u, cause a small overlap, while in central
collisions the total destruction of nuclei can take place, due to a much larger
overlap of projectile and target. The portion of overlapped nuclear material is
sheared away in the abrasion step: as a result, a highly excited pre-fragment is
formed. In the second phase of the process, i.e. ablation, large pre-fragments
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Figure 1.8: Schematizing of the nuclear fragmentation process in three
phases: on the left, projectile and target right before the collision, in the
center the abrasion stage and on the right the final stage, i.e. ablation.

created by the abrasion phase de-excite and, in doing so, they lose energy
by evaporating nucleons or light particles and emitting photons. The resul-
tant products of the collision, sometimes referred to as secondary products,
are the nuclear fragments. Target nucleons that are not hit by the projectile
remain stationary and projectile nucleons not taking part to the reaction
proceed with their initial velocity.

Nuclear fragmentation usually produces two different outcomes: when the
projectile is a proton, the beam energy is not enough for projectile fragmen-
tation, thus only target fragmentation is produced. This is the case of proton
therapy. When the projectile is a heavier particle, instead, also projectile
fragmentation can take place, which is what happens for 12C therapy. Both
types of reactions create some physical effects that have to be taken into
account in the context of therapy, to be able to evaluate their consequences
on the patient and obtain an effective treatment.

Target Fragmentation

In the case of proton therapy, projectile nuclei do not have enough en-
ergy to beak up into quarks, thus fragmentation only occurs in the target:
as mentioned before, this implies the creation of very slow fragments, with
short range and high energy release, as listed in Figure 1.9. The main concern
about these fragments is their biological effect in the entrance channel, i.e.
the portion of the human body before the Bragg peak, where ionization of
the DNA of cells is unwanted and could be dangerous, due to the presence
of healthy tissues. Moreover, plot 1.10 shows the percentage of ionization
(green) and fragmentation (red) events in the irradiation with charged par-
ticles. In the Bragg peak area the higher contribution comes from ionization,
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Figure 1.9: Expected target fragments produced by a 180 MeV/u beam
of protons in water. For each fragment, the expected energy, energy transfer
and range are listed [14].

Figure 1.10: Schematic view of the impact of ionization (green dots) and
target fragmentation (red dots) along the track of the charged particle, in
tissue sections of 1x1 mm2. As opposed to the Bragg peak, where damage to
cells is wanted, in the entrance channel the action of target fragments might
be dangerous [14].
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Figure 1.11: Measured Bragg curves for carbon beams at different initial
energy. Unlike the case of protons, after the peak there is a dose tail increasing
with initial energy [6].

and both types of event have an advantageous effect on tumor cells. In the
entrance channel, i.e. the region constituted by healthy tissues, there is in-
stead a higher proportion of nuclear reactions, which could produce unwanted
effects. For all the reasons explained above, it is necessary to deeply under-
stand the behavior of nuclear fragments inside the human body, to be able to
exploit proton therapy in the safest way possible. Nowadays, though, there
is a huge lack of experimental data regarding target fragments, because their
very short range makes it impossible for them to exit the target and prevents
their detection. The FOOT experiment works precisely in this context: its
main goal is to measure the double differential cross section, with respect
to the fragment’s kinetic energy and emission angle, for the production of
target fragments in the interaction between the therapeutic beam and the
patient. Due to the very short range of fragments, the technique of inverse
kinematics described in Chapter 2 is needed.

Projectile Fragmentation

The work of the FOOT experiment will also be useful to obtain a deeper
knowledge of projectile fragmentation, which only happens in heavy-ion hadron-
therapy. In this case nuclear fragments create a tail of energy release after
the Bragg peak, as shown in Figure 1.11 for beams of 12C hitting a water
target at different initial energies.
Such tail can be a drawback in cases where an Organ At Risk (OAR), i.e. an
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organ that is particularly close to the tumor and could be damaged by the
irradiation, is present: one thus needs to know its effect in the most precise
way possible. Unlike the case of target fragmentation, where the flux of the
therapeutic beam remains approximately the same, projectile fragmentation
in beams of heavy ions leads to an attenuation of the primary beam’s flux
and a build-up of secondary fragments with lower charge, which are the cause
of the tail beyond the Bragg peak [15].
Thanks to the different behavior of projectile fragments with respect to tar-
get’s ones, some experimental measurements have been possible and the pri-
mary beam attenuation and fragment buildup can be estimated with good
accuracy by detecting the charged fragments produced as a function of the
thickness of traversed material. Haettner et al. [15] measured the charge,
mass and exit angle of charged fragments produced by a beam of 12C, which
is the most common isotope for heavy ion hadrontherapy, with two different
energies and at different depths in water. Water is commonly used in this
kind of measurements because it is the predominant constituent of the hu-
man body [6].

The plot 1.12 of beam attenuation and the correspondent Bragg curve at
200 and 400 MeV/u show that, at 200 MeV/u, 70% of the primary carbon
ions are still present at Bragg peak position, while at 400 MeV/u the fraction
of surviving primary ions is only 30%. This results in a lower and less sharp
Bragg peak at higher energy and, subsequently, a larger tail after the peak.
Another interesting plot in Haettner’s study is the build-up of charged frag-
ments as a function of depth in water: it is obtained by integrating the angular
distribution of each fragment between 0° and 10°.
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Figure 1.12: Surviving fraction of 12C nuclei as a function of depth (figure
above) in water and their corresponding Bragg curves (figure below). The
two represented carbon beams have, respectively, initial energy of 200 and
400 MeV/u [15].
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Figure 1.13: Build-up of charged projectile fragments as a function of depth
in a water target, for an impinging carbon beam with 400 MeV/u energy. The
dashed line shows the depth of the Bragg peak, beyond which the majority
of fragments are light (Z=1,2) [6].

Plot 1.13, representing the build-up for a primary beam of 400 MeV/u,
shows that few centimeters after the Bragg peak the predominant fragments
are the lightest ones, i.e. protons and alpha particles, which also have larger
emission angles. Heavier fragments, instead, are usually emitted in a more
narrow cone, between 0° and 5°.
The energy of 400 MeV/u is more or less the highest value required for heavy
ion therapeutic beams and it is the energy at which fragmentation effects are
the most significant. As the nuclear cross section does not vary much in
the range between 100 and 400 MeV/u, plot 1.13 can also be used to make
reliable predictions about projectile fragments produced by primary beams
with lower energies [15].

1.2 Radiobiology

To have a more complete knowledge of what hadrontherapy is, together
with its advantages and drawbacks, not only the physical aspect should be
considered. The fact that charged particles during therapy interact with living
tissues must be taken into account to evaluate the effects of hadrontherapy in
the most complete way possible, thus also from the biological point of view.
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For this purpose, radiobiology is very helpful: it is a branch of science which
combines principles of physics and biology, describing the effect of ionizing
radiation on living organisms by using some dedicated quantities and mech-
anisms.
In the specific case of hadrontherapy, which is an irradiation of a localized
volume in the human body affected by cancer, the biological effect stands
mainly in the ionization of cells’ DNA, which allows to kill them or prevent
their multiplication.
Usually, cells can be damaged in two ways: direct or indirect. In the first case,
the energy released by charged particles in the therapeutic beam produces
some harm in the living tissue. In the second case, instead, charged particles
interact with molecules of the human body, mainly water, producing free
radicals, i.e. highly reactive molecules that can then damage cells.
In the context of cancer treatment, radiobiology helps to understand the risk-
benefit ratio of a specific therapy: therefore, with some particular parameters,
one can evaluate the damage caused to cancerous and healthy cells, the ad-
vantage in using charged particles instead of photons and how much radiation
of each type is needed for the patient, based on where and how extended the
cancer is.

1.2.1 Dose

A very important quantity for the description of the irradiation in hadron-
therapy is the dose. It is defined as:

D =
dE

dm
(1.7)

thus it is the energy released by a beam of particles per unit mass of the
traversed material. The SI unit measurement for dose is Gray (Gy), which
corresponds to J/kg.
For every type of radiation, the amount of released dose changes with depth
in matter and depends on the initial energy of the beam and on the velocity
of particles. Studying the variation of the dose, the depth-dose curve can be
obtained. It has a very characteristic shape for neutral and charged particles.
The plot in Figure 1.14 helps understanding the difference between conven-
tional RT and hadrontherapy: the former has the major dose release at low
depths, i.e. on the surface of the human body. With the latter, instead, the
initial energy of the beam can be adjusted in order to place the largest en-
ergy release, i.e. the SOBP, at the depth where the tumor is. In this way,
the tumor receives the largest dose, and the surrounding healthy tissues are
mostly spared.
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Figure 1.14: Dose released by photons (orange line), protons (blue line) and
carbon ions (gray line) as a function of depth in the human body. Photons
and charged particles have a very different shape of the depth-dose profile,
also called Bragg curve.

Unfortunately, dose does not take into account the biological aspect of the
energy release: 1 Gray of photons produces a different biological damage with
respect to 1 Gray of protons. At the same time, 1 Gy of a given radiation
can have very different effects on different types of tissues. This is the reason
why equivalent and effective dose (i.e. Deq and Deff , respectively) need to
be introduced.

Deq =
∑
R

wRD (1.8)

Deff =
∑
T

wTDeq (1.9)

Equations (1.8) and (1.9) contain two factors used to weigh the dose: wR
depends on the type of radiation traversing the tissue, while wT depends
on the type of tissue that is being irradiated: the typical values for both
factors are listed in figure 1.15. Once the biological effect of radiation is taken
into account, the unit of measurement changes from Gray (Gy) to Sievert
(Sv). While 1 Gy of photons and protons can cause very different biological
damage, a 1 Sv dose has the same biological effect independently from the
particles that have caused it.
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(a) Typical weighing factors for radiations

(b) Typical weighing factors for tissues

Figure 1.15: Tables containing the typical values of (a) wR used to weigh
the type of radiation in the equivalent dose and (b) wT for the type of irra-
diated tissue in the effective dose [5].
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Figure 1.16: Schematic representation of energy releases caused in cells by
low and high LET radiations. In the first case, sparse interactions have much
smaller probability to create severe damage with respect to the second case,
where interaction are denser and more frequent.

1.2.2 LET

Another important parameter, mainly used to characterize the track left
by a particle, is the Linear Energy Transfer (LET):

LET =
dE

dl
(1.10)

It can be defined as the average energy released per unit length. At first sight,
the definition of LET is the same as the one used for the stopping power (1.1).
But while the stopping power focuses its attention on the energy loss by a
charged particle moving through a medium, the LET is focused on the rate
of energy absorption by the medium, as the charged particle traverses it [16].
It is also typically focused on the ionization released close to the track of
the particle, excluding all secondary particles with longer range. Moreover,
the unit measurements are different: for stopping power, MeV/cm are used,
while LET is expressed in keV/µm.
According to its LET value, each type of radiation can be classified as sparsely
or densely ionizing. Photons are classified as sparsely ionizing, protons and
heavier charged particles as densely ionizing. The denser the ionization by
the particle, the higher the probability to create a significant damage in the
DNA of tumor cells, as schematized in Figure 1.16.
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Figure 1.17: Variation of the RBE value as a function of LET for different
types of charged particles [17].

1.2.3 RBE

Besides the advantageous depth-dose profile, another powerful feature of
protons and heavier charged particles is the enhanced biological effect with
respect to photons, which is given by the more severe damage caused to
DNA of cells. For an accurate estimation of the efficacy of ions with respect
to photons, the concept of Relative Biological Effectiveness (RBE) must be
introduced [6]:

RBE =
Dx−rays

D

∣∣∣∣
isoeffect

(1.11)

The RBE of a given radiation is the ratio between the dose of x-rays and the
dose of such radiation, respectively referred to as Dx−rays and D in equation
(1.11), needed to produce the same biological damage.
From the formula (1.11) it is clear that protons, 12C ions and all charged
particles will have a RBE larger than 1. Since charged particles release more
energy in matter with respect to photons, RBE will also be connected to the
LET of particles, as shown in figure 1.17. The RBE depends on many factors
concerning the treatment: biological endpoint, dose, type of irradiated tissue,
particle type and energy. Considering it as a constant value it is a simplifi-
cation, because the RBE of the same particle can vary drastically within the
tumor volume and the treatment field.
Moreover, once the primary beam used for the irradiation undergoes frag-
mentation, the combined biological effect of beam and secondary fragments
must be taken into account.
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Currently, hadrontherapy has no Treatment Planning System (TPS) able
to evaluate the RBE of beams and their produced fragments [2]: hopefully,
with measurements from the FOOT experiment, this contribution can be
implemented to create an automated TPS for therapy.

1.3 Hadrontherapy

A further difference between conventional radiotherapy and hadronther-
apy lies in their history: hadrontherapy is a much “younger” type of treat-
ment, due to the later and not yet complete discovery of its physical effects
on matter and, subsequently, on the human body. A very detailed report
of how hadrontherapy was born and developed can be found in the paper
History of hadrontherapy by Ugo Amaldi [18].
Reminding that a hadron is any type of particle composed by quarks and
bound by strong force, we know that the first type of hadrontherapy in-
volved neutrons and it began in the 1930s in the USA. The idea of using the
Berkeley cyclotron for medical purposes came from Ernest Lawrence, who
worked together with his brother John and, after performing some experi-
ments, in 1938 began treating the first patients using neutron beams.
The study was carried on in the following years by doctor Robert Stone, who
treated approximately 200 patients. Due to the primitive techniques and the
fact that the bad consequences on healthy tissues were much higher than the
benefits of the therapy, the use of neutrons was dismissed in 1948.
The pioneer of proton therapy was Robert Wilson, one of Lawrence’s stu-
dents. He first exposed his idea of using protons to cure cancer in 1946, in his
paper “Radiological use of fast protons”, using as a motivation for therapy
the advantageous depth-dose profile of charged particles and the Bragg peak
(see Section 1.1.1).
The first patient was treated in 1954 at the Lawrence Berkeley Laboratory:
beams of protons were managed in the same way as beams of photons, so at
first their electric charge was not exploited in the beam creation and in the
beam handling. With the years, more laboratories started to cure patients us-
ing protons. The main drawback of treatments performed in the first years of
hadrontherapy is that they were carried on inside facilities mainly dedicated
to experimental physics: for this reason, there were no machines devoted to
imaging and diagnostics, thus it was difficult to monitor the tumor irradia-
tion, the surrounding tissues and the evolution of the patients’ situation. It
took about twenty years to go from physics laboratories to more equipped
hospital-based facilities: the first ones were built in California and Japan,
starting their work in, respectively, 1990 and 2000.
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In the mean time, thanks to the combined work of radiation oncologists and
physicists, it was discovered that proton therapy is particularly useful and
advantageous in the control of tumors that are close to organs at risk.
In the following years, one more hypothesis took place: heavier ions, that
have less lateral spread and straggling with respect to protons, could also be
used for cancer therapy. After several trials, having to combine a large dose
release and small side effects in normal tissue, Yasuo Hirao and his collabora-
tors chose to exploit carbon ions. In Japan, the HIMAC (Heavy Ion Medical
Accelerator in Chiba) facility was built and the first patient was treated in
1994, using a beam of carbon ions with less than 400 MeV/u. By the end of
the XX century, Europe also decided to invest on hadrontherapy with carbon,
and a carbon ion facility was built at GSI, in Germany. The first treatment
was performed in 1997. Up to now, more and more hospitals have decided to
invest on hadrontherapy with protons, carbon or both. Nowadays, though,
hadrontherapy is only used as an alternative to conventional RT in the most
difficult or extreme cases, due to the much higher cost of the required equip-
ment and treatment planning and to the partly unknown underlying physical
processes, such as target fragmentation.
A very useful source of information is the Particle Therapy Cooperative
Group (PTCOG), which was created in the ’80s for scientists to exchange
ideas for the development of HT. The PTCOG is still active and every year
it provides a report of all the particle therapy facilities in the world and the
number of patients treated up to now. According to their website [19], by the
end of 2020 more than 100 facilities were active with more than 290000 pa-
tients treated, the majority of them using protons. The trend of the number
of treated patients in the last 13 years is shown in Figure 1.18 for protons and
carbon ions. In Italy, hadrontherapy is performed in three facilities. At the
Protontherapy Center in Trento, a hospital-based building which only uses
protons, at CNAO (Centro Nazionale di Adroterapia Oncologica) in Pavia,
hospital-based and equipped with a synchrotron that allows treatments with
protons and 12C ions, and at the INFN LNS (INFN-Laboratori Nazionali
del Sud) in Catania, a laboratory-based facility which is specialized on eye
tumors treatment with protons.
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Figure 1.18: Progress of the number of patients who received a HT treat-
ment, from 2007 to 2020, worldwide. The blue line shows a quite sharp in-
crease of proton treatment, while the orange line shows the slower increase
of carbon treatments [19].
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1.4 Space Radioprotection

Despite dealing with quite different situations, there is an important over-
lap between the physics of hadrontherapy and radioprotection in space, which
are both part of the measurements campaign program of the FOOT exper-
iment. Energetic particles in space come mainly from three sources: Solar
Particle Events (SPEs), Galactic Cosmic Rays (GCRs) and geomagnetically
trapped particles. SPEs are mainly composed by protons emitted from the
Sun during coronal mass ejections and solar flares. They have an energy spec-
trum that can reach the GeV region and they are unpredictable, thus risking
to deliver a lethal dose to astronauts. GCRs consist of high energy protons
and highly energetic charged particles (HZE) that are produced by super-
novae in the Milky Way, outside of the solar system. GCRs are fully ionized
nuclei and their isotopic composition is known: 85% of protons, 14% of alpha
particles, 1% of heavier ions (with carbon ions among the most abundant).
Their energy ranges between few MeV to about 1020 eV, but the peak in the
energy spectrum is in the hundreds of MeV to GeV range [20], as reported in
figure 1.19. This is also the energy range of initial beam energies for particle
therapy. Lastly, geomagnetic trapped particles consist of protons and elec-
trons, confined by the Earth magnetic field into two regions, called Van Allen
belts. The inner belt contains protons with energies up to 100 MeV, while in
the outer one there are electrons with energy up to 100 keV. Trapped particles
are not a concern for deep space explorations, which usually happen outside
of Earth’s magnetosphere, i.e. the area in which such particles are confined. In
long duration space missions, the dominant radiation risks are thus the ones
from GCRs ans SPEs. The contribution of these two risks is not equal. As a
matter of fact, SPEs occur on a cycle, with roughly seven events per year, and
the most dangerous ones which could have severe effects on the human body
only happen once or twice in a millennium. Nevertheless, their contribution
should not be neglected, even if predictions on SPEs are very hard to obtain.
GCRs instead, are an isotropic type of radiation that continuously reaches
the spaceship hull. The goal of space radioprotection is to minimize the dose
that enters the spacecraft: to do so, the most efficient technique is to build
a shield that is able to reduce the flux of incident particles. Once the inci-
dent particles traverse the shielding material, though, nuclear fragmentation
takes place, modifying the composition of space radiation spectra. This is
the same phenomenon that takes place when an hadrontherapy beam enters
the human body and that needs to be accounted for in the calculation of the
biological effect of radiation. For this reason, it is important to obtain dose es-
timations that take into account the fragmentation of primary radiation: this
can be done by direct measurements, but the most efficient tool nowadays is
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Figure 1.19: Annual fluence of charged ions belonging to GCRs as a func-
tion of their energy [21].

calculation through deterministic and Monte Carlo transport codes. In this
context, a fundamental element for validating and benchmarking the codes is
the cross section measurements describing nuclear fragmentation of primary
ions on several shielding materials [2]. Moreover, experimental studies have
shown that, thanks to their high mass stopping power, light materials are the
best candidates for shielding, especially the ones which are rich in hydrogen
[22]. This leads to a further element in common with hadrontherapy, i.e. the
target material.
Summing up, the particle species that are currently used for hadrontherapy
or considered promising alternatives (protons, carbon and helium ions) are
also among the most abundant species in space. The overlap is also in terms
of targets, energy range of interest and physical processes taking place: this is
the reason why nuclear fragmentation cross sections measured by the FOOT
experiments can be of great help to evaluate the dose received by the fly crew
and the electronics during long-lasting space mission (i.e. Mars exploration).



Chapter 2

The FOOT (FragmentatiOn Of
Target) Experiment

The FOOT (FragmentatiOn Of Target) experiment works in the context
of applied nuclear physics: its main goal is to perform precise measurements
of differential fragmentation cross sections, with respect to kinetic energy and
production angle of emitted nuclear fragments. The experiment has been ap-
proved and funded by INFN (Italian National Institute of Nuclear Physics)
in 2017 and nowadays the collaboration includes about one hundred physi-
cists from Italy, Germany, France and Japan, working at universities and
research centers. The final goal of the experiment is the measurement of the
fragmentation cross section with a maximum uncertainty of 5% and the frag-
ments energy spectrum with an energy resolution of the order of 1-2 MeV/u.
The results will lead to a more precise treatment planning system (TPS) for
hadrontherapy, will help in benchmarking models of nuclear interactions and
in the design and optimization of spacecraft shielding for long duration space
missions.
The FOOT apparatus foresees two different setups: the magnetic spectrom-
eter used to identify fragments heavier than Helium and the emulsion spec-
trometer optimized for light fragments. The electronic setup is currently in
the final construction phase, which began in 2018, while the emulsion spec-
trometer has already began taking data in its final configuration, with two
experimental campaigns at GSI research center, in 2019 and 2020. Despite not
being complete, most parts of the magnetic spectrometer have been tested
and calibrated with several data takings at CNAO (Pavia, Italy), GSI (Darm-
stadt, Germany) and TIFPA (Trento, Italy).
This chapter will be completely dedicated to the FOOT experiment: in sec-
tion 2.1, the motivations and research program of FOOT are outlined; section
2.2 contains an explanation of the inverse kinematic technique; section 2.3
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lists the design criteria of the apparatus; sections 2.4 and 2.5 are dedicated to
a description of the magnetic spectrometer and its data acquisition system;
finally, section 2.6 delineates the structure of the emulsion chamber.

2.1 Motivations and Research Program

As already mentioned in chapter 1, the overall effect of nuclear fragmenta-
tion is a modification of the delivered dose in the patient’s body with respect
to the one only due to primary ions radiation [2]. Treatment planning sys-
tems (TPS) are not yet able to completely reproduce this modification of the
radiation field. As a matter of fact, TPS are mostly based on nuclear models
and MC simulations, but there are very few cross section values available
for fragmentation. In recent years, some experiments have been performed to
investigate projectile fragmentation in 12C ion beams, but the studied initial
energies and targets were very few [24, 25, 26]. The process of target fragmen-
tation, instead, has been practically neglected up to now, due to the intrinsic
difficulty in the detection of produced fragments, which have extremely low
energy and therefore very short (µm) range. The same delivered dose mod-
ification happens when charged particles of the spatial environment hit the
shielding of spaceships, thus the charged particles that reach astronauts and
electronic equipment inside the spaceship are the results of fragmentation:
the physical process is analogous, but the initial beam energy is higher, typ-
ically ∼700 MeV/u. The FOOT experiment has been designed to detect,
track and identify all the charged fragments produced in ion collisions with
different targets, with the aim of measuring both projectile and target frag-
mentation. The goal is to measure the double differential cross section (with
respect to kinetic energy and solid angle) with an accuracy < 5%: this re-
flects into a quite strict isotopic identification ability. More specifically, the
clear separation of analysed isotopes needs an accuracy of 2-3% for charges
and 5% for masses. The measurement of target fragmentation will need an
inverse kinematic approach to be achieved: it will be described in detail in
the following. FOOT has been designed as a fixed target experiment: the
initial energies of beams will be 200 MeV/u for hadrontherapy applications
and 700 MeV/u for space radioprotection. Thanks to the compatibility be-
tween the ions composing projectile and target, the only in which the two
applications will difference is the initial energy. The main targets of interest
have been chosen according to the most abundant elements in the human
body: carbon, oxygen and hydrogen. The experiment will not make use of
a pure gaseous hydrogen target, due to its low density, which implies low
interaction rate, and the risk in handling it in therapy and research centers
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Figure 2.1: Combination of the carbon and CH2 angular distribution to de-
termine the hydrogen angular distribution for alpha fragments. The angular
distribution for the hydrogen target is the difference between the CH2 and
carbon target, divided by two [27].

where the experiment will be held. To overcome this difficulty, an alternative
procedure has been chosen: it has already proven to be feasible, as reported
in [27] and shown in figure 2.1. Using a multi-layer composite target of C2H4

and C, the p-N cross section can be obtained by subtraction:
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where Ek indicates the kinetic energy and Ω the solid angle of the emitted
fragments. The main drawback of this technique is that the uncertainty for
the cross section of hydrogen will be the quadratic sum of uncertainties for
each target, thus it will be affected by a quite large error.

2.2 Inverse Kinematic Approach

The choice of an inverse kinematic technique comes from the need to over-
come the difficulty of short range of target fragments, which are not able to
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exit even a thin target material and would therefore be impossible to detect.
Moreover, the use of a thinner target would imply a very low interaction
rate, thus the need of a very large time for data acquisition, together with
the difficulty to handle the target without damaging it. Therefore, while in a
direct kinematic layout one would have a beam of protons hitting a target of
tissue-like material (12C,16O), the situation must be inverted. In an inverse
kinematic framework, a tissue-like beam hits a hydrogen-rich target. If the
kinetic energy per nucleon remains the same, to go from the patient reference
frame (proton projectile + tissue-like target) to the new laboratory reference
frame (tissue-like projectile + proton target), a Lorentz boost will be suffi-
cient. A Lorentz boost is a coordinates transformation between two inertial
reference frames, one moving with velocity β with respect to the other. In
this specific case, the beam moves along the z axis. The laboratory frame
can be indicated as S and the patient’s frame as S’. S = ion moving with β
along z, proton at rest; S’ = ion at rest, proton moving with −β along z.
The four-momentum of the ion in S is P=(E/c, ~p) and the four-momentum
of the proton in S’ is P’=(E’/c, ~p′). Using the Lorentz boost formula, the
4-momentum coordinates in S’ can be written as:

E ′

c
= γ

(
E

c
− βpz

)
(2.3)

p′x = px (2.4)

p′y = py (2.5)

p′z = γ

(
−βE

c
+ pz

)
(2.6)

Then, expressing the transformation in a matrix form:

P’ = ΛP (2.7)
E ′/c
p′x
p′y
p′z

 =


γ 0 0 −βγ
0 1 0 0
0 0 1 0
−βγ 0 0 γ



E/c
px
py
pz

 (2.8)

The inverse Lorentz transformation can therefore be written as:

P = Λ−1P’ (2.9)

and the inverse matrix can simply be obtained by changing the sign of β.

Λ−1 (β) = Λ (−β) =


γ 0 0 βγ
0 1 0 0
0 0 1 0
βγ 0 0 γ

 (2.10)
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In order to correctly apply the Lorentz boost, the accuracy on the emission
angle measurement must be of the order of mrad, for both the projectile and
the target. The recommended target thickness to have a good interaction
rate and minimize the secondary fragmentation, which also allows the correct
accuracy, is 2-4 mm.

2.3 Apparatus Design Criteria

The constraints on the design and optimization of the apparatus have
been set with the help of a Monte Carlo (MC) simulation of a 16O beam
impinging on a polyethylene target at 200 MeV/u. The simulation has been
performed using the FLUKA code [28, 29] and the resulting distributions
of fragments yield are reported in figure 2.2 for exit angle (left) and ki-
netic energy (right). The kinematics of the fragmentation reaction causes
fragments to exit with different angles: heavy (Z≥3) fragments are mostly
forward-peaked and, in general, emitted within a cone of 10° semiaperture
with respect to the beam axis [30], while light fragments can have much larger
exit angles. Moreover, the kinetic energy per nucleon is peaked around the
beam value for heavy fragments, while light fragments have wider kinetic en-
ergy distributions. The aforementioned features of fragments must therefore
be considered in designing the apparatus.
Another aspect to take into account is that the detector must be movable
and easily fit in the experimental rooms of centers providing the beam at
therapeutic energies. Being FOOT a fixed target detector, the automatic
choice would be a magnetic spectrometer. The size, cost and weight of a
magnetic spectrometer for the detection of light fragments with the needed
accuracy, though, would be impractical for a “table top” setup, due to their
large angular acceptance. This is the reason why the FOOT apparatus has
been designed with two different setups:

• Electronic Setup: based on a magnetic spectrometer composed by elec-
tronic subdetectors. Optimized for the detection of fragments heavier
than He, is able to cover a polar angle of 10° with respect to the beam
axis.

• Emulsion Chamber : spectrometer based on an emulsion cloud chamber.
Will provide measurements of light fragments emitted with angles up
to 70°.
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Figure 2.2: MC-computed exit angle (left) and kinetic energy (right) dis-
tributions for charged fragments emitted by a 200 MeV/u 16O beam hitting
a C2H4 target.

2.4 Electronic Setup

The goal of the electronic setup of FOOT is to detect and identify charged
nuclear fragments with Z≥3. This is achieved by making use of a magnetic
spectrometer, which allows to measure the energy loss (∆E) of particles, their
time of flight (TOF), momentum (p) and kinetic energy (Ek). ∆E and TOF
allow to reconstruct the charge, while TOF, p, Ek are employed for the mass
reconstruction. In order to obtain the desired precision on the cross section
measurement, the needed performances are:

• Momentum resolution σ (p) /p ∼ 5%

• Time of flight resolution ∼100 ps

• Kinetic Energy resolution σ (Ek) /Ek ∼ 2%

• Energy loss resolution σ (∆E) /∆E ∼ 2%

The overall detector size lies between 1.5-2.0 m, which makes it able to exploit
therapeutic beams at different centers, such as CNAO (National Center of
Oncologic Handrontherapy) in Pavia (Italy), Protontherapy Center in Trento
(Italy), HIT (Heidelberg Ion Therapy) Center and GSI Helmholtzzentrum für
Schwerionenforschung in Darmstadt (Germany).
The detector can be schematically divided in three different regions: upstream



2.4. Electronic Setup 37

Figure 2.3: Schematic representation of the electronic setup for the FOOT
experiment.

region, magnetic spectrometer and downstream region. The whole layout is
depicted in figure 2.3

2.4.1 Upstream Region

This part of the detector is also referred to as pre-target region. As a
matter of fact, it is composed by two subdetectors that aim at monitoring
the direction and interaction point of the beam, as well as at counting the
number of primary ions. In this region it is important to minimize the out
of target fragmentation and the multiple scattering. The two constituents of
the upstream region are the start counter and the beam monitor.
The Start Counter (SC) is a squared foil of thin plastic scintillator (EJ-
228), with a thickness of 250 µm. The active surface of the scintillator has
a transverse size of 5 cm, compatible with the typical transverse beam size.
The tightness needed for the detector operation is provided by an aluminium
frame enclosed in a 3D printed box, which keeps the scintillator in place. 48
SiPM (AdvanSiD ASD-NUV3S) with a 3x3mm2 area collect the light. The
SiPMs are 12 per side, bundled in 8 channels, each reading a series of 6.
The readout and powering of SiPMs is driven by the WaveDAQ system [31],
which can sample signals at rates up to 5 Gsamples/s in a dynamic range of
1 V. Since the SC is very thin, a gain between 0.5 and 100 can be applied
to its signal and tuned based on beam type and energy. The SC is placed
44 cm upstream of the target. Its jobs are: to provide the trigger, to mea-
sure the incoming ion flux and to produce the reference time t0 for all other
subdetectors, allowing the time of flight (TOF) measurement together with
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Figure 2.4: Technical drawing (a) and picture of the mechanical frame (b)
of the SC.

the TOF wall detector. Different thicknesses of the scintillator can be used
for different projectiles and initial energies to preserve the SC performances.
Figure 2.4 shows a technical drawing of the SC and a picture of its frame.

The Beam Monitor (BM) is a drift chamber and it has already been used
in the FIRST experiment [26]. The chamber consists of 12 layers of wires,
with three drift cells per layer. Wires are arranged in planes, alternated along
the x and y axes, in order to reconstruct the beam profile. Moreover, consecu-
tive layers are staggered of half a cell, to avoid left-right ambiguities [32]. The
cell is rectangular (16x10 mm) and its long side is orthogonal to the beam.
The drift chamber operates at a pressure of ' 0.9 bar and a working point
between 1850 V and 2200 V, depending on the beam. The gas is an Ar/CO2,
80%/20% mixture. A recent performance study with proton beams [33] has
produced some more specific results about the BM. The optimal working
point has been found to be ∼2200 V and the detection efficiency larger than
90%. The spatial and angular resolutions depend on the initial energy of the
beam: the former ranges from 140±70 µm at 220 MeV to 120±60 at 80 MeV,
while the latter is respectively equal to 1.62±0.16 mrad and 2.1±0.4 mrad
for the same energies. The BM will be placed between the SC and the tar-
get, used to measure direction and impinging point of the projectile beam.
This information is crucial to address pileup ambiguity in tracking detectors
downstream the target. Moreover, it can help discarding events where the
beam has fragmented in the SC. A high spatial resolution in the BM is fun-
damental to measure the direction of emitted fragments with an accuracy of
few mrad: this will allow to reach the required resolution for the kinetic en-
ergy in inverse kinematic. A schematic view of the BM is presented in figure
2.5, together with a picture showing the inside of the drift chamber.
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Figure 2.5: Technical drawing (a) and picture of the inside (b) of the BM.

2.4.2 Magnetic Spectrometer

The central part of the detector includes the target and three tracking
stations, all composed by silicon detectors, located upstream, between and
downstream of two permanent magnets, which create the magnetic field that
curves particles and allows to measure their momentum. The magnetic spec-
trometer region provides the production point and the tracking of fragments.
The Vertex detector (VTX) is hosted in a mechanical structure together
with the target. It is composed by 4 monolithic pixel sensor layers with an
area of 2x2 cm2. The VTX layers are placed along the z direction, respec-
tively at 0.6-0.9-2.1-2.4 cm from the target: this reflects into a geometric
acceptance of ∼40° for emitted fragments. MIMOSA-28 (M28) Monolithic
Active Pixel Sensor (MAPS) technology has been chosen to build each VTX
layer, in order to assure low material budget and high precision and effi-
ciency. The M28 consists in a matrix of 928 (rows) x 960 (columns) pixels
with a 20.7 µm pitch, resulting in a chip size of 20.22 x 22.71 mm. Moreover,
each M28 layer has a thickness of 50 µm, so that the overall material budget
for VTX is 200 µm. To reduce the amount of transferred data, M28 have
an integrated binary readout and a zero suppression logic. Moreover, pixels
output of one row are read out in parallel row by row at the end of the col-
umn, where 960 discriminators are present, each with configurable threshold.
The VTX can reach a spatial resolution of 5 µm: matching this value with
the BM accuracy, one can reach an angular resolution at the mrad level for
the direction of primary beam and emitted fragments. Moreover, the reduced
material budget of BM and VTX minimizes multiple scattering. One of the
M28 sensors is depicted in figure 2.6. The figure also shows a drawing of one
of the VTX layers, with all of its electronics.
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Figure 2.6: Picture of a M28 sensor (a) and drawing of a VTX layer (b),
containing the sensor (gray square) and all the electronics.

The magnetic system is a key element of the FOOT spectrometer. It al-
lows to bend the tracks of fragments produced in the target. The ideal choice
for this system would be a magnetic dipole, which would be able to guaran-
tee the needed momentum resolution: this choice, though, is not compatible
with the requirement of a portable system. The chosen alternative is thus a
magnetic system in air, composed by two magnets in Halbach configuration.
This allows the presence of a tracking station between the two magnets, to
achieve the required momentum resolution. Generally, the Halbach configura-
tion consists in a cylindrical permanent magnet generating an approximately
dipolar field in its internal hole. Moreover, the field increases with the radius
of the external cylinder and decreases with the radius of the gap. In the case
of FOOT, in order to produce the right (B x L) to obtain the wanted momen-
tum resolution and have an angular acceptance of 10°, two different magnet
dimensions have been chosen. The first magnet has a gap diameter of 5 cm,
the second of 10.6 cm: both generate a field along the y axis, respectively with
a maximum intensity of 1.4 T and 0.9 T inside the holes. The intensity of
the magnetic field along the z axis of the cylinder exhibits a Gaussian shape
for each magnet. The inner tracker, placed in between the two magnets, will
experience a magnetic field of 0.6 T. Both magnets are made of twelve units
of samarium-cobalt (SmCO), able to maintain its magnetic properties even
if exposed to high radiation environments [34].

The Inner Tracker (ITR) is a tracking station composed by two layer of
pixel sensors, used to track fragments inside the magnetic field region. Each
plane covers a sensitive area of ∼ 8x8 cm2, with 16 M28 sensors per layer.
This choice is motivated by low material budget, which reduces multiple
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scattering and out of target fragmentation, and high tracking performances.
Moreover, such performances are expected not to significantly change in pres-
ence of the magnetic field [35]. The used technology is the same as the VTX,
which will simplify the DAQ system, but the larger area with respect to the
VTX requires a mechanical support, increasing the material budget. The ITR
will consist of ladders, i.e. double-sided layouts, similar to the ones already
implemented in the PLUME experiment [36]. One of them is shown in fig-
ure 2.7. Each ladder will be composed by two modules of M28 sensor layers,
glued on opposite sides of a support structure. Each module contains 4 M28
sensors, glued on a cable that provides communication to the outside. The
overall material budget of a single ladder is x/X0 ' 0.3%, and the ITR will
contain 4 ladders, two for each plane. Figure 2.8 reports a schematic frontal
and lateral view of the ITR structure.

Figure 2.7: Picture of a PLUME ladder [36]. It is a sensor composed by
two layers of silicon pixel detectors. In FOOT, it will be used to build the
ITR.

The Micro Strip Detector (MSD) is the tracking station located
downstream of the magnetic region, essential for momentum measurement
and matching of reconstructed tracks with hits in subdetectors of the particle-
ID region (TOF wall, calorimeter). The MSD operates with an analogue
readout, which provides a redundant measurement for the dE/dx of frag-
ments [37], thus for their charge identification. It is composed by three x− y
planes with an active area of 9.6x9.3 cm2, separated by a 2 cm gap along the
beam direction. For each x − y plane, the adopted sensors are two perpen-
dicular Single Sided Silicon Detectors (SSSD): this ensures reduced material
and x − y readout. Each SSSD has a thickness of 150 µm and is glued to
a Printed Circuit Board (PCB) that provides mechanical support and read-
out interface. A digital readout of the SSSDs with pitch 150 µm would lead
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Figure 2.8: Schematic frontal (a) and lateral (b) view of how the ITR will
be composed.

to a spatial resolution of about 40 µm, but thanks to the analogue readout
a factor 3 can be gained, as proved in [38, 39], with the further advantage
of measuring the dE/dx. Analogue signals are read by VA1140 chips, then
digitized by 12 bit ADCs.

2.4.3 Downstream Region

The downstream region is also referred to as fragment identification re-
gion. As a matter of fact, it is composed by two detectors, i.e. the TOF wall
and calorimeter, that allow the charge and isotopic identification of frag-
ments. It is the distal part of the detector, located at least 1 m away from
the target, but the distance could vary according to the β of the primary
beam, to allow an almost constant resolution on the TOF.
The TOF Wall Detector (TW) is composed by two layers of 20 plastic
scintillator bars (EJ-200, Eljen Technology). Each bar is wrapped with reflec-
tive aluminium and darkening black tape. The dimensions of the bars are: 2
cm width, 44 cm length: all of them, arranged on two orthogonal x−y planes,
create an active area of 40x40 cm2. The TW produces the measurement of
deposited energy ∆E, the stop signal to the TOF measurement (started with
t0 provided by the SC) and the hit position. The transverse dimensions of
the TW have been chosen to match the angular aperture of heavier frag-
ments, dictated by the target-detector distance. Moreover, the thickness of
bars is a trade-off between signal intensity, which influences the resolution,
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Figure 2.9: Prototype of a plastic scintillator (EJ-200) bar that will be
used to build the TW.

and re-fragmentation probability in the TW. Each bar is read by 4 SiPMs,
whose signals are digitized by the WaveDAQ system [31], i.e. the same used
by the SC. All of the TW characteristics have been chosen to guarantee a
time resolution better than 100 ps, a relative energy loss resolution of the
order of 5% and a hit position reconstruction with a precision <8 mm. Figure
2.9 shows the prototype of one of the scintillator bars.

The Calorimeter (CAL) is the last and most downstream detector, which
aims at measuring the kinetic energy of fragments, used to identify their
mass A. Since FOOT will work at relatively low beam intensity, the right
material for the CAL would be a dense crystal, with high light yield and no
particular needs on the response time. For these reasons, bismuth germanate
BGO (Bi4Ge3O12) has been chosen. Its density ρ = 7.13 g/cm3 guarantees
a high stopping power and a light yield of '10 photons/keV, which meet
the energy resolution requirements. The CAL will be composed by 320 BGO
crystals in a disk-like arrangement, with an approximate radius of 20 cm.
The shape of each crystal will be a truncated pyramid with a front face of
2x2 cm2, a back face of 3x3 cm2 and a length of 24 cm. This depth allows
to minimize the energy leakage, mostly caused by escaping neutrons. Each
crystal is read by a matrix of 25 SiPMs, whose active surface is 2x2 cm2. The
characteristics of the SiPM allow to have a linear response up to an energy
of 10 GeV. The SiPM matrix is then coupled to a specific board, which is
in turn interfaced with a CAEN V1740 digitizer, that allows measurements
based on signal amplitude, signal integral and shape analysis. It is impor-
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Figure 2.10: Picture of a BGO bar (a) and schematic view (b) of the
crystals disk-like disposition for the FOOT calorimeter.

tant to know that, even if the calorimeter fulfills the requirements for kinetic
energy resolution as demonstrated from experimental tests [40], Ek can be
affected by systematic errors caused by neutron production and, at high en-
ergies, hadronic showers that cannot be fully contained. In figure 2.10, the
picture of a BGO crystal and the scheme of the disk-like disposition of the
calorimeter crystals are shown.

2.5 Trigger and DAQ

The detector will have a DAQ system that has been designed to acquire
the largest possible sample size with high accuracy, in a controlled and online-
monitored environment. It will have a Minimum Bias Trigger, fired by the
SC when its discriminated signal is composed by a number of channels above
threshold exceeding a programmable value. In this way, any form of sys-
tematics due to trigger selection can be avoided. To improve the fraction of
recorded fragmentation events, a fragmentation trigger can be set, asking for
activity outside of the central bars of the TW in a logical OR. The electronics
used to perform the trigger function is a CAEN V2495 board, with a fully
programmable FPGA and internal logic. The maximum acquisition rate in
minimum bias trigger will depend on the slowest detectors, i.e. the MIMOSA
chips of the pixel tracker. They have a frame readout time of ∼185.6 µs,
which would imply a maximum readout rate to about 5 kHz, but in order to
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reduce the pileup effect in the chips, the actual trigger rate of FOOT will be
' 1 kHz. With this rate, about 26 M events per day can be collected using
a Minimum Bias trigger.
The DAQ system implemented for the whole apparatus is a flexible, hier-
archically distributed system based on linux PCs, VME crates and boards,
detector integrated readout systems and standard communication links (eth-
ernet, USB, optical fibers). A controller PC will be used for the control of
the system: it will run the DAQ GUI interface to start/stop a run, control
and configure other nodes in the system. A different PC, called storage PC,
will collect information coming from different detectors, perform the event
building and store the acquired data on disk. The storage PC will also con-
tain configuration data, DAQ process information and an electronic logbook
interfaced with the DAQ system. The whole system is designed to store data
on a SSD disk during data taking and transfer data to a dedicated NAS
system (>20TB) during inactive times. There will be several sets of online
monitoring information. Information pieces on the DAQ running can be col-
lected from each VME board or data provider and provided to a network of
PCs connected to the experiment. Moreover, information will also come in
the form of histograms filled on each PC: typical histograms will show de-
tector occupancies, particle arrival times, particle energies, collected charges
etc. A third, more powerful, online information will come from a fast online
event reconstruction performed on the fly for a fraction of events. This will
allow to have, on part of the data, track momentum spectra, TOF, fragment
charges and masses.

2.6 Emulsion Spectrometer

The Emulsion Spectrometer (ES) has been inserted in the FOOT experi-
ment to work together with the magnetic spectrometer for the characteriza-
tion of the production of low Z fragments, mostly H and He. The arrangement
is shown in figure REF: the ES will be placed after the SC and BM, with
the beam incoming from the left. SC and BM, already described in sections
REF and REF, will perform their beam monitoring purposes with a DAQ
that will be completely decoupled from the one of the ES. SC and BM can
be used to perform an online control of the beam flux on the active surface of
the emulsions, in order to avoid the spatial pileup of events. The choice of nu-
clear emulsions for the detection of light fragments has been driven by their
excellent spatial resolution (< µm), which is the best among all tracking de-
vices. In emulsion chambers, target and detector are integrated in a compact
setup, providing an accurate reconstruction of interactions occurring inside
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the target. A further advantage is that they do not need any power supply or
readout electronics. To “read” emulsions, automatic scanning system tech-
niques are needed. Thanks to last generation microscopes, one can have very
fast scanning and wide angular acceptance. Summing up, the possibility to
measure particles with an angular acceptance above 70° coupled to the very
high spatial resolution made nuclear emulsions the ideal choice for the new
cross section measurements FOOT wants to perform.
Nuclear emulsion films used by FOOT consist of two 70 µm thick sensitive
layers, deposited on both sides of a 210 µm plastic base, producing a total
thickness of 350 µm. Sensitive regions are composed by AgBr crystals (2 µm
diameter) scattered in a gelatine binder, able to detect charged particles. The
trajectory of a charged particle can be recorded by a series of AgBr crystals,
which act as latent images. Thanks to the chemical process of development,
latent images enhance and induce the growth of silver clusters to a diameter
of 0.6 µm, which can be seen with optical microscopes. The density of this
cluster, referred to as grain, is proportional to the ionization of the charged
particle. After the development, emulsions are scanned by automated systems
and the acquired image is analyzed by a dedicated software. The goal of this
software is to recognize clusters of aligned dark pixels, representing the track
of a charged particle: a straight sequence of pixels in an emulsion layer defines
a micro-track. Then, two aligned micro-tracks on the top and bottom layers
of an emulsion form a base-track, which can be connected to other base-tracks
on a straight line along different films, in order to form a volume-track. The
FOOT emulsion spectrometer has been built with alternated layers of passive
materials and nuclear emulsions, acting as high-resolution tracking detectors
and ionization detectors. Also in this case, the setup can be ideally divided
into three sections with different purposes.

• Interaction and Vertexing Region: this first section is composed by lay-
ers of target element, in this case C or C2H4, alternated with emulsion
films. When the primary beam interacts with the target cells of this sec-
tions, secondary fragments will be emitted and detected by the follow-
ing sections. Thanks to the emulsion structure, the detector will track
the fragments and reconstruct the interaction position. The length of
the first section has to be optimized for each data taking, in order
to have a statistically significant number of interactions based on the
beam type and energy and on the target. During the 2019 data taking
at GSI, two 12O beam configurations, at 200 MeV/u and 400 MeV/u
have been detected with two different stacks of 30 cells. In the former
case the target was composed by 1 mm carbon layers, while in the latter
2 mm C2H4 layers were used.
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Figure 2.11: Layout of SC and BM placed next to the emulsion spectrometer
to monitor the beam before the interaction.

Figure 2.12: Schematic description of the emulsion spectrometer and the
materials composing it, divided in three sections.
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• Charge Identification Region: composed by elementary cells consisting
of four emulsion films, without any passive material. The section is
dedicated to Z identification, which can be achieved by measuring the
grain density, proportional to the energy loss. In exposing the emul-
sions to charged particles, one has to take into account that highly
ionizing particles can cause a saturation effect, suppressing the iden-
tification possibility. However, by thermally treating the emulsions at
an appropriate temperature above 28°C and at high humidity (∼ 95%)
for about 24 hours, one can induce a fading that can reduce the num-
ber of tracks. The combination of several films, subject to different
temperatures, allows to overcome saturation effects for particles with
different ionizations [41, 42]. This procedure, called refreshing, has to
be performed after the exposure and before the chemical development.
In the case of FOOT emulsions, refreshing has been applied with differ-
ent temperatures, each producing different track volume variables for
the particles, proportional to the silver grain density [43]. The charge
of fragments can be identified by looking at the correlation between
couples or linear combination of volume track variables.

• Momentum Measurement Region: composed by emulsion slabs alter-
nated with passive material. The dimensions of section 3, i.e. length,
number of layers and thicknesses, depend on the beam energy. The
accuracy of the reconstruction depends on the segmentation of high-Z
passive layers, which has to be chosen in order to stop the fragments.
In the stack, passive layers with lower Z are placed before the ones
with high Z. The kinetic energy is evaluated with the range technique:
measuring the length of the track, Ek can be estimated using the range-
momentum energy correlation. The momentum of particles can be esti-
mated, using the trajectory, through the Multiple Coulomb Scattering
Method (MCS) [44, 45]. By measuring with high accuracy the x − y
coordinates and their slopes (θx, θy) for each track, the MCS method
allows to estimate the momentum as:

p (MeV/c) =
13.6

β · δθ (mrad)
· Z ·

√
x

X0

(2.11)

where β is the velocity of the fragment, Z its charge, δθ the deviation
of the track slope, x the traversed distance and X0 the radiation length
in the material. The use of two independent methods for energy and
momentum estimation, together with the charge measurement of the
previous section, allows the assessment of the mass A for the isotopic
identification.



Chapter 3

Global Analysis and Lagrange
Multipliers Method

The fragment reconstruction procedure of the FOOT experiment allows
to identify nuclear fragments by spotting their charge Z and mass number A.
In this thesis, the reconstruction relies on Monte Carlo (MC) simulated data
obtained with the FLUKA software. This chapter will contain, in section 3.1,
an overview of the simulation that produced data used for the analysis; in
section 3.2 an outline of the charge and mass reconstruction performances,
together with their physical basis, will be presented. Section 3.3 will then
describe the theory at the basis of the Lagrange Multipliers method, together
with its application to fragments identification in the framework of the FOOT
analysis code. In section 3.4 the results of mass number reconstruction using
the Lagrange Multipliers method will be presented.

3.1 Monte Carlo simulations

The complete simulation of the FOOT setup has been a very important
tool during the planning stage of the apparatus: it has been performed for
different ion beams, initial kinetic energies and targets. In this way, the ge-
ometry and performances have been corrected and optimized by accurately
evaluating the interactions in the active parts of the detector and identifying
possible critical points in the layout. The software implied for all simulations
is FLUKA [28, 29], which was chosen thanks to its robustness, coming from
the comparison with many experimental data, and because it is now widely
implied in several fields of physics. The code is able to simulate the interac-
tion and transport of hadrons, heavy ions and electromagnetic particles [46].
To simulate the interaction of such particles with different materials, FLUKA

49
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(a) 200 MeV/u (b) 700 MeV/u

Figure 3.1: Simulated layout of the FOOT detector, for two different initial
energies of the primary beam. This 2D view has been created with FLUKA
Flair GeoViewer [47].

makes use of experimental cross sections if available, or different theoretical
models according to the particle type and energy.
The simulation used in this thesis to perform the analysis is based on the
geometry of the electronic setup described in section 2.4. In this geometry,
the origin of the reference frame is placed at the center of the target, with
all the subdetectors placed along the z axis, which also coincides with the
beam direction. At present, the primaries are simulated as a beam along the
z direction, with a small spread in the transverse directions, mimicking a real
therapeutic beam. Experts decided not to include in the simulation step any
detectors response efficiency or smearing, as they will be implemented in the
reconstruction step. This chapter contains an analysis of the fragmentation
of two primary beams of 16O, respectively with initial energies of 200 MeV/u
and 700 MeV/u. The former value provides results that are compatible with
the hadrontherapy energy range, while the latter can give information for
space radiation protection.

The geometries for both layouts are respectively reported in figures 3.1(a)
and 3.1(b). In both cases, the beam impinges on a polyethylene (C2H4) target
with a density ρ = 0.94 g/cm2 and a thickness of 5 mm: this target produces
a nuclear fragmentation rate of 2.8% and 1.2%, respectively, for 200 and 700
MeV/u beam energies. When the initial energy of the beam is higher, i.e. at
700 MeV/u, a different setup has been used: due to the lower emission angle
of the produced fragments, the detectors have been placed further away from
the target, in order to have the same angular acceptance. In particular, the
MSD is placed 62 cm away from the target and its planes are spaced of 5 cm,
then, TOF wall and calorimeter are placed at 290 cm from the target and the
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Beam Energy Primary Particles Interaction Events
200 MeV/u 5 · 107 1397243
700 MeV/u 1 · 107 121118

Table 3.1: Number of primary particles and interaction events simulated
with FLUKA for two different initial energies of the primary 16O beam im-
pinging oh a 5mm C2H4 target, studied in the present work.

calorimeter is slightly moved in the x direction to account for magnetic de-
flection. Table 3.1 reports the values of primary particles and selected events
for each initial energy of the beam.
To obtain a more acceptable computing time and output data size, simulation
experts decided to set a transport threshold of 1 GeV for produced photons,
electrons, γ-rays and e+e− pairs, so that they deposit all of their energy in
the same point where they are produced. Moreover, photons transport was
allowed in the whole simulated apparatus because it does not affect comput-
ing resources, while e+e− pairs transport was switched off in the magnetic
field and calorimeter area to speed up the process and avoid very large sizes
for output files.

3.2 Fragments Identification

The MC simulation produced by FLUKA allows to reconstruct the tra-
jectory produced by a fragment as a series of hits along the detector volume.
Once all the hits of a given fragment have been collected, the analysis code
converts trajectories into track objects, which are represented by a C++
struct. The whole code, composed by C++ classes and ROOT, will then
work with these objects. When all the tracks have been inserted into the
analysis code, the first step is to identify the charged fragment that produced
them: a nuclear fragment is uniquely identified by the value of its charge Z
and mass number A. The FOOT apparatus allows to obtain the values of Z
and A by measuring the energy release in a thin scintillator (i.e., the TW),
their time of flight, momentum and kinetic energy. The time of flight is mea-
sured between the SC and TW, the kinetic energy is measured as the energy
deposited in the CAL and the momentum is reconstructed by the magnet
bending in the tracking region. This implies that all fragments included in
the analysis have to traverse the whole detector, from SC to CAL, in order
to be correctly identified. All kinematic quantities used for the identification
have some specific features, which will be presented in the following.
The energy loss (∆E) of particles is reconstructed as the energy released in
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the plastic scintillator. Experimental tests allowed to parametrize the reso-
lution of ∆E as a function of the energy loss itself:

σ (∆E) = α +
β

∆E
(3.1)

where α=0.904 MeV and β=18.6 MeV2. It is worth to notice that ∆E is also
proportional to the charge Z of the fragment (see eq. (1.1)). The energy loss
resolution can then be identified with the resolution of the scintillator, which
has been experimentally proven to be limited in the range [5; 10]%.

σ (∆E)

∆E
=
σ (∆Escn)

∆Escn
(3.2)

The time of flight (TOF) is reconstructed as the time window between a
signal in the SC detector and a signal in the TW, placed in the downstream
region. Both signals are produced in thin layers of material and collected by
silicon photomultipliers to minimize the delay between signal production and
acquisition. The TOF resolution is a function of both the initial energy of
the beam and the energy released in the TW, which depends on its charge.
These dependencies have been experimentally investigated: the TOF resolu-
tion as a function of the initial kinetic energy has been proven to range from
54 to 84 ps, as shown in plot 3.2(a). The proportionality with the charge
of the fragment, instead, is reported in plot 3.2(b) and it is a function of
1/Z. Taking into account these two dependencies, σ(TOF) can be empiri-
cally parametrized as:

σTOF = A+
B

Z
(3.3)

where A = 56 and B = 84. According to the formula (3.3), the resolution is
approximately 70 ps for carbon ions and 140 ps for hydrogen. Further and
more specific details on the evaluation of TOF resolution can be found in
[48].

The resolution σ(TOF) is taken into account in the analysis code by ap-
plying a Gaussian smearing to the TOF value produced by the simulation:
the smearing is calculated by means of equation (3.3). Adding the measure-
ment of the distance L travelled by the particle, which can be obtained by
the tracking from the production point to the entrance of the TW, the TOF
measurement can also be used to calculate the velocity β of the fragment in
units of c as:

βc =
L

TOF
(3.4)

The momentum (p) of fragments can be extracted from the angular devi-
ation of the track inside the magnetic field of the spectrometer. Its resolution
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(a) TOF resolution as a function of
initial kinetic energy of the beam [48]

(b) TOF resolution as a function of charge

Figure 3.2: TOF resolution as a function of the two variables used to
parametrize it in equation (3.3): beam energy and charge of the fragment.

contains several contributions, namely the spatial resolution of detectors,
the spatial extension and intensity of the magnetic field and the multiple
Coulomb scattering, which is inversely proportional to the energy and mass
of particles. Experimental studies used Kalman Filter tool [49], which is the
main technique involved in track reconstruction to evaluate the momentum,
to prove that the resolution improves with energy and, subsequently, with
the momentum of fragments. This is due to the reduced multiple scattering
contribution, but also depends on the spatial resolution of trackers, which
ranges from few µm to tens of µm. Nevertheless, the difference between the
resolution of light and heavy fragments is negligible, and has been considered
constant for the analysis presented in this chapter. Using the MC generated
and reconstructed momenta, pgen and preco, the relative momentum resolution
can be derived as:

σ (p)

p
=
pgen − preco

preco
(3.5)

Momentum resolution resulted about σp/p = 3.7% as a good approximation
for all fragments produced by beams with initial energies of 200 MeV/u and
700 MeV/u. This implies that the reconstructed momentum can be obtained
by applying a Gaussian smearing of 3.7% to the value pgen produced by the
FLUKA code.

The kinetic energy (Ek) of fragments can be estimated as the value of energy
deposited by particles inside the calorimeter. This value is obtained by sum-
ming the energy deposition of a given fragment in each crystal composing the



54 Chapter 3. Global Analysis and Lagrange Multipliers Method

(a) 200 MeV/u (b) 700 MeV/u

Figure 3.3: Ratio of deposited energy and MC generated energy for 12C
produced by a 200 MeV/u and a 700 MeV/u beam of 16O impinging on a
C2H4 target.

calorimeter, in order to include also the re-fragmentation contributions. The
main drawback in the measurement of Ek is the production of neutrons in
elastic interactions with atoms of the calorimeter: neutrons can deposit their
energy far from the primary track or, sometimes, out of the detector, lead-
ing to a constant underestimation of the fragment energy. To have a slightly
more precise evaluation of the kinetic energy of the fragments, the energy
loss contributions of TW and MSD have been included. Figure 3.3 reports
the ratio of energy deposited in calorimeter and scintillator with respect to
the MC generated energy. Defining as good reconstructed fragments the ones
that deposit in CAL an energy that differs less than 10% from their generated
one, we can see that an amount of 17% and 75% of fragments, respectively
for 200 and 700 MeV/u, are not well reconstructed. This effect is due to the
larger neutron production and the larger fraction of energy deposited in other
subdetectors, which cannot be measured.
The resolution of kinetic energy measured in a calorimeter is usually ex-
pressed as:

σ (Ek)

Ek
=

c1√
Ek

+
c2
Ek

+ c3 (3.6)

and, in the specific case of the FOOT calorimeter, we have: c1 = 1.84 MeV1/2,
c2 = 96.16 MeV, c3 = 0.37. From experimental tests with different types of
beams at several initial energies, it has been found that the resolution is
dominated by the constant term c3, which is mainly due to inhomogeneities
of the calorimeter and shower leakage. The estimation of relative resolution
σ (Ek) /Ek lead to a constant value of 1.5%, which has been applied as a
Gaussian smearing to all MC values of kinetic energy in the analysis.
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Figure 3.4: Time of Flight vs energy loss in the TW for fragments produced
by a 200 MeV/u beam of 16O on a polyethylene target. In the plane, eight
regions are visible, which represent fragments with charges from 1 to 8.

3.2.1 Charge Identification

The charge Z of fragments can be calculated by inverting the Bethe Bloch
equation (1.1): in the analysis, the quantity dE/dx of the formula becomes
the energy deposit ∆E in the TW, while the velocity β is determined ac-
cording to equation (3.4). The TOF-∆E plot obtained in my analysis and
reported in figure 3.4 for a beam with initial energy = 200 MeV/u shows
that the resolutions of energy loss and time of flight allow to discriminate
eight regions in the plane, which correspond to fragments with charge from
1 to 8. The eight regions are distributed on the TOF −∆E plane according
to the Bethe-Bloch curve for the corresponding charge.
Figures 3.5(a) and 3.5(b) report the results I obtained for the charge identifi-
cation of fragments produced by a beam of 16O hitting a polyethylene target
at, respectively, 200 MeV/u and 700 MeV/u. From the plots it is evident
that, despite some small tails, the features of the FOOT apparatus allow a
good charge separation and the identification capability depends mainly on
the ∆E resolution. Plots 3.5(a) and 3.5(b) both show a small peak before
the proper hydrogen peak: its cause has not been understood yet and is still
under investigation. My results of mean values and resolutions for the charge
identification at initial beam energies of 200 and 700 MeV/u are summed up
in table 3.2. In the case of an oxygen beam with initial energy of 200 MeV/u,
the charge resolution has its best value of about 3% for heavy fragments,
while it reaches almost 6% for hydrogen.
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(a) 200 MeV/u 16O on C2H4

(b) 700 MeV/u 16O on C2H4

Figure 3.5: Reconstructed charges for fragments produced by a beam of
16O at, respectively, 200 and 700 MeV/u hitting a polyethylene target.
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200 MeV/u 700 MeV/u
Fragment Z σZ [%] Z σZ [%]

H 1.01 5.5 0.96 6.2
He 2.02 3.6 1.97 4.9
Li 3.04 3.2 2.99 4.4
Be 4.07 3.0 3.99 3.6
B 5.09 2.9 5.01 3.2
C 6.13 2.8 6.02 3.2
N 7.16 2.8 7.03 3.0
O 8.20 2.8 8.05 2.9

Table 3.2: Reconstructed charge and charge resolution for fragments pro-
duced by a 16O beam impinging on a C2H4 target with, respectively, 200
MeV/u and 700 MeV/u.

Resolutions are slightly worse for a beam with 700 MeV/u, where σZ reaches
a value of 6.2%. It is worth to remind, though, that light fragments (H, He)
will also be identified using data from the emulsion spectrometer, thus it is
acceptable for these charges to have less precise results. Anyway, at both
energies the peaks are very well resolved and the probability to not identify
the correct charge is at percent value.

3.2.2 Mass Identification

The second step of fragments identification is the evaluation of its number
of mass A which, combined with Z, allows to uniquely identify the particle.
The most important feature of the FOOT apparatus is the redundancy of the
subdetectors, which enables to determine A, thus make an isotopic identifica-
tion, in three different ways. A1, A2 and A3 are obtained by the combination
of two of the three kinematic quantities of the fragment: time of flight (TOF),
momentum (p) and kinetic energy (Ek).

• A1: combination of TOF and p
Relativistic particles obey to an equation that relates their mass m
with their momentum p and velocity β:

p = mcβγ (3.7)

Inverting equation (3.7) and reminding that A = m/U , where U is the
atomic mass unit, U = 931.494 MeV/c2, we obtain:

A1 =
p

Uβcγ
(3.8)
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where

γ =
1√

1− β2
(3.9)

Moreover, using error propagation, we can estimate the resolution:

σ (A1) =

√(
∂A1

∂p
σ (p)

)2

+

(
∂A1

∂β

∂β

∂TOF
σ (TOF )

)2

=
1

U

p

βc

√
1

γ2

(
σ (p)

p

)2

+
γ2

β2

L2

c2 TOF 2
σ2 (TOF )

(3.10)

• A2: combination of Ek and TOF
A relativistic equation involving the kinetic energy and the mass of the
fragment is considered:

Ek = mc2 (γ − 1) (3.11)

Then, inverting the equation (3.11) and considering the expression for
A written above, we obtain:

A2 =
Ek

U · c2 (γ − 1)
(3.12)

In this case, the associated resolution is:

σ (A2) =

√(
∂A2

∂Ek
σ (Ek)

)2

+

(
∂A2

∂β

∂β

∂TOF
σ (TOF )

)2

=
Ek
Uβc

γ

γ − 1

√
1

γ2

(
σ (Ek)

Ek

)2

+
β2γ4

(γ − 1)2
L2

c2 TOF 2
σ2 (TOF )

(3.13)

• A3: combination of Ek and p
To obtain the third expression of the mass number, two relativistic
expressions for the energy of the particle must be taken into account:

E = Ek +mc2 (3.14)

E =
√
p2c2 +m2c4 (3.15)



3.2. Fragments Identification 59

(a) 7Li (b) 9Be

(c) 11B (d) 12C

(e) 14N (f) 16O

Figure 3.6: Distribution of reconstructed mass number A1 obtained with
equation (3.8) for the most abundant isotope of each charge Z≥3 for initial
energy 200 MeV/u.
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(a) 11B (b) 12C

(c) 14N

Figure 3.7: Distribution of reconstructed mass number A1 obtained with
equation (3.8) for some of the most abundant isotopes for initial energy 700
MeV/u.
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(a) 7Li (b) 9Be

(c) 11B (d) 12C

(e) 14N (f) 16O

Figure 3.8: Distribution of reconstructed mass number A2 obtained with
equation (3.12) for the most abundant isotope of each charge Z≥3 for initial
energy 200 MeV/u.
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(a) 11B (b) 12C

(c) 14N

Figure 3.9: Distribution of reconstructed mass number A2 obtained with
equation (3.12) for some of the most abundant isotopes for initial energy 700
MeV/u.
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By combining (3.14) and (3.15), it is possible to calculate the mass m
of the fragment, which can then be divided by U to retrieve the mass
number A3:

m =
p2c2 − E2

k

2c2Ek
(3.16)

A3 =
p2c2 − E2

k

2Uc2Ek
(3.17)

Then, the associated resolution can be evaluated as:

σ (A3) =

√(
∂A3

∂p
σ (p)

)2

+

(
∂A3

∂Ek
σ (Ek)

)2

=
1

UEk

√
p4
(
σ (p)

p

)2

+
p2c2 + E2

k

4c4

(
σ (Ek)

Ek

)2
(3.18)

The distributions of A1, A2 and A3 obtained in my analysis for some selected
fragments produced by a beam of 16O hitting a polyethylene target are shown
in figures 3.6, 3.8, 3.10 for a beam energy of 200 MeV/u and in figures
3.7, 3.9, 3.11 for a beam energy of 700 MeV/u. All distributions contain a
peak, whose mean value is compatible with the expected mass number of
the fragments: every difference from the true value is indeed included in the
resolution. Moreover, the width of each distribution depends on the resolution
or, equivalently, the smearing applied to the kinematic quantities involved in
the A calculation. The mass number resolution is about 4% for A1, slightly
better for A2, where it reaches a value of 3.2% for heavier fragments, and
worse for A3, for which σA is of the order of 8-9%. The worse precision of
A3 with respect to A1 and A2 is explained in equation (3.17), where the
momentum and kinetic energy are squared and, subsequently, the associated
error is multiplied by a factor 2. A common feature of all plots showing the
distributions of A2 and A3 is a tail before and after the peak: this tail is due
to the kinetic energy underestimation caused by the neutron production in
the calorimeter, leading to an underestimation/overestimation of the mass
number. In this analysis, though, the contributions of energy loss in the TW
and MSD have been included in the kinetic energy, in order to have a slightly
more precise estimation of A.
It is important to underline that equations (3.8), (3.12) and (3.17) are not
independent from each other: the three mass number determinations are
correlated, due to the presence of a common subdetector for each couple of
equations. Therefore, it is necessary to apply a fit procedure that includes
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(a) 7Li (b) 9Be

(c) 11B (d) 12C

(e) 14N (f) 16O

Figure 3.10: Distribution of reconstructed mass number A3 obtained with
equation (3.17) for the most abundant isotope of each charge Z≥3 for initial
energy 200 MeV/u.
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(a) 11B (b) 12C

(c) 14N

Figure 3.11: Distribution of reconstructed mass number A3 obtained with
equation (3.17) for some of the most abundant isotopes for initial energy 700
MeV/u.
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A1, A2 and A3 simultaneously and allows to obtain the best estimation for
A. In the analysis code of FOOT experiment, two fit procedures have already
been implemented, one based on the χ2 minimization [50] and another on the
Augmented Lagrangian Method (ALM) [51]. The main work of this thesis is
to implement a third fit procedure for A, based on the Lagrange Multipliers
method. In the following, a theoretical description of this technique will be
presented, together with the implementation of the method in the FOOT
analysis code and the results obtained for the number of mass estimation.

3.3 Lagrange Multipliers Method

The method of Lagrange Multipliers (LM) is a tool for constrained mini-
mization. It can be applied in cases where it is necessary to find the minimum
of a differentiable objective function f(x) that is subject to a constraint g(x),
also represented by a differentiable function. In other words, we need to find
the minima of the function f among the set of points x that satisfy the con-
dition g(x) = 0 [52]. All of the above can be expressed in a more compact
form: {

Minimize f (x) = f (x1, x2, ..., xn)

g (x1, x2, ..., xn) = 0
(3.19)

To satisfy both of the conditions listed in (3.19), the LM method requires
to define a new objective function, called Lagrangian and defined as:

L (x, λ) = f (x) + λg (x) (3.20)

where the bold notation x is used to indicate a vector and will be adopted
in the whole chapter. In equation (3.20), a new variable λ, called Lagrange
multiplier, has been introduced. This variable has an arbitrary scalar value.
Once the Lagrangian has been defined, the main and most important conse-
quence of this technique is that the minima of the unconstrained objective
function L are also minima of the original constrained problem [52]. Hence,
by building the Lagrangian, one can turn a problem of constrained minimiza-
tion into a simpler, unconstrained minimization, which is usually easier to
solve. The method can also be generalized for a function that has to obey
several constraints gi(x). In this case, L becomes:

L (x,λ) = f (x) +
∑
i

(λigi (x)) (3.21)

which contains one Lagrange multiplier λi for each constraint gi. From the
mathematical point of view, the minimization of a function is connected with
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the fulfillment of two requirements, called first order condition (FOC) and
second order condition (SOC) [53]. The FOC requires the gradient of the
function to be null in the minimum point (x∗,λ∗), while the SOC requires
the Hessian matrix of the function to be positive definite. In the specific case
of our function L, the FOC can be written as:{

∇λL (x∗,λ∗) = 0

∇xL (x∗,λ∗) = 0
(3.22)

where the Lagrangian is derived with respect to the Lagrange multipliers and
the variables. The SOC instead is expressed as:

~dTHL (x∗,λ∗) ~d > 0 ∀~d (3.23)

where (HL)jk (x∗,λ∗) =
∂2L

∂xj∂xk
(3.24)

where ~d is any infinitesimal displacement from the minimum in the direction
allowed by the constraints. Summing up, the minimization of L guarantees
the minimization of f (x) within the constraints gi (x), but also implies the
fulfillment of conditions (3.22) and (3.23).
In some cases, equality constraints like the one in equation (3.19) can be too
stringent, and it is useful to substitute them with inequality constraints:

k (x) ≤ 0 (3.25)

However, the alteration of the constraints has to be accounted for in the
Lagrangian: function L with the form described in equation (3.21) cannot be
used anymore. It is therefore useful to introduce a new variable called slack,
as explained in [54] and [55]. A slack variable is essentially used to convert
the inequality into an equality. As a matter of fact, by adding a positive
quantity to a negative number, we can make the number equal to zero.

k (x) ≤ 0 (3.26)

k (x) + t2 = 0 (3.27)

where t2 is the slack variable, which is written in a quadratic form to denote
that it must not be negative [54]. An analogous procedure can be adopted
with inequalities of the opposite kind, i.e. containing a constraint of the
“greater or equal” type. In that case, though, the slack variable has to be
inserted with a negative sign. Therefore, in analogy with the previous case,
by adding a negative quantity to a positive number, we can make the number
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equal to zero.

h (x) ≥ 0 (3.28)

h (x)− s2 = 0 (3.29)

Summing up, to be able to apply the LM method with inequality constraints
it is necessary to introduce auxiliary variables, which are called slacks and
must be squared to guarantee their positivity. According to the type of in-
equality, slacks will have a positive or negative sign to capture the inequality
and turn it into an equality. Once this procedure has been adopted, it will
also have an impact on the Lagrangian function, that must contain the new
variables. The function L thus becomes:

L
(
x, λ1, λ2, t

2, s2
)

= f (x) + λ1
[
k (x) + t2

]
+ λ2

[
h (x)− s2

]
(3.30)

for a function f that has to obey constraints like the ones described in equa-
tions (3.26) and (3.28). Therefore, to find the minimum of f (x), equation
(3.30) has to be minimized to find an optimal solution (x∗,λ∗, t2∗, s2∗). Once
the minimization has been performed, based on the value of its Lagrange
Multiplier λ, an inequality constraint can be defined active or inactive: the
former has a non null multiplier and the corresponding slack variable is zero,
while the latter has λ = 0 [55]. Therefore, in order to take into account the
effects of the constraints we should expect them to be active.

3.3.1 LM Method implementation in the FOOT anal-
ysis code

The main goal of this thesis was to insert in the FOOT analysis code a
procedure able to obtain from the A1, A2, A3 values the best estimate of the
number of mass A through the Lagrange Multipliers method. Since the LM
method consists in defining an objective function f(x) with some constraints
gi(x) and building a Lagrangian function L that needs to be minimized (as
described in section 3.3), I should include the parameter A in a Lagrangian
function. More precisely, it has to be included in vector x, from which the
Lagrangian depends, so that the best estimate is obtained by taking the value
of A in the point x∗ which minimizes L. The best estimate of A will, from
now on, be referred to as Afit. In this section, all the necessary steps for the
computation of Afit will be described.

• Definition of the objective function f(x)
For the analysis work of this thesis, I chose to include the parameter A
in the objective function, i.e. the function that needs to be minimized
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and needs to fulfill the constraints. Including A in the objective func-
tion is not enough: it must be at least in a quadratic form, in order to
have non null first and second derivatives and satisfy conditions (3.22)
and (3.23).
Taking all of the above considerations into account, the function I in-
serted in the procedure is:

f (x) = (A1 − Afit)2 + (A2 − Afit)2 + (A3 − Afit)2 (3.31)

i.e., the sum of the squared differences between the three correlated
values of A and the value of the best estimate. It is important to retrieve
equations (3.8), (3.12) and (3.17), which contain the dependence of the
variables A1, A2 and A3 on the kinematic quantities of the fragments.
Equation (3.31) can thus be written as:

f (x) =

(
p

Uβγ
− Afit

)2

+

(
Ek

U (γ − 1)
− Afit

)2

+

(
p2 − E2

k

2UEk
− Afit

)2

(3.32)
where the convention c = 1 has been adopted. It is also worth to remind
the reader that γ is equivalent to:

γ =
1√

1− β2
=

1√
1− L2

TOF 2·c2

(3.33)

where L is the trajectory of the fragment inside the detector (i.e., from
its production point to the calorimeter). Equations (3.32) and (3.33)
show that the vector of variables from which our problem will depend
contains the three kinematic quantities of the fragment and the best
estimate of A, therefore:

f (x) = f (p, TOF,Ek, Afit) (3.34)

• Definition of constraints gi(x)
In the specific case of this analysis, an equality constraint like the one
in (3.19) is not advantageous or useful to obtain information about the
best estimate Afit. It is easier and more practical to impose for the
objective function (3.32) some inequality constraints. The ones I chose
to apply are three and involve the momentum, the time of flight and
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the kinetic energy of fragments:(
pmeas − p

σP

)2

≤ 1 (3.35)(
TOFmeas − TOF

σTOF

)2

≤ 1 (3.36)(
Ekmeas − Ek

σEk

)2

≤ 1 (3.37)

where pmeas, TOFmeas, Ekmeas indicate the MC-generated momentum,
time of flight and kinetic energy after a gaussian smearing, in order to
reproduce the measured quantities. The conditions (3.35), (3.36), (3.37)
require that, for a given track, the fitted momentum, time of flight and
kinetic energy, i.e. the elements in the vector x from which the La-
grangian depends, are within one standard deviation from the corre-
sponding measured quantity of the same track (i.e., pmeas, TOFmeas,
Ekmeas). Constraints (3.35), (3.36) and (3.37) are inequalities of the
“smaller or equal” type: therefore, to build the Lagrangian we must
introduce a slack with positive sign, using the procedure described in
equation (3.27). In this way, the constraints become:(

pmeas − p
σP

)2

− 1 + s21 = 0 (3.38)(
TOFmeas − TOF

σTOF

)2

− 1 + s22 = 0 (3.39)(
Ekmeas − Ek

σEkin

)2

− 1 + s23 = 0 (3.40)

• Definition and minimization of the Lagrangian L

Once all the basic elements for the construction of the Lagrangian have
been defined, it is necessary to retrieve equation (3.30). By inserting
the function (3.32) and the constraints (3.38), (3.39) and (3.40) in it,
we obtain:

L
(
x,λ, s2

)
=

(
p

Uβγ
− Afit

)2

+

(
Ek

U (γ − 1)
− Afit

)2

+

(
p2 − E2

k

2UEk
− Afit

)2

+ λ1

[(
pmeas − p

σP

)2

− 1 + s21

]
+ λ2

[(
TOFmeas − TOF

σTOF

)2

− 1 + s22

]
+ λ3

[(
Ekmeas − Ek

σEkin

)2

− 1 + s23

]
(3.41)
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which is the function to minimize to obtain Afit. On the right side of
the equation, a compact notation has been used to indicate the vectors
of variables x, Lagrange multipliers λ and slacks s2i :

x = (p, TOF,Ek, Afit) (3.42)

λ = (λ1, λ2, λ3) (3.43)

s2i =
(
s21, s

2
2, s

2
3

)
(3.44)

The minimization of the Lagrangian (3.41) has been commissioned to
the MINUIT algorithm of the ROOT package [56]. MINUIT works with
a user defined function and performs the minimization in an iterative
way: at each step, the value of the function is computed and the val-
ues of the free parameters on which it depends are varied, in order to
understand in which direction the algorithm has to perform the subse-
quent parameters variation to reach the minimum point. The maximum
number and size of steps can be defined by the user, together with the
range in which the parameters can take values. Once the algorithm has
reached the minimum of the function, it provides the values of parame-
ters producing such minimum, together with their error matrix. In this
specific case, L has been inserted in the code and the components of
vectors x,λ, s2i have been treated as free parameters with limits. The
minimization of the Lagrangian thus produced some values that we can
indicate as x∗,λ∗, s2i

∗, from which Afit has been extracted and studied
for each track. Together with free parameters, MINUIT allows the defi-
nition of fixed parameters: in this analysis, pmeas, TOFmeas, Ekmeas have
been considered fixed and set to the output value of the MC simulation
with the corresponding Gaussian smearing.

3.4 Analysis Results with LM Method

As mentioned above, the main goal of the analysis consist in finding the
optimal values x∗,λ∗ and s2i

∗, able to minimize the Lagrangian function
(3.41). Among all of these values, the most important one for my thesis is
the mass number Afit, which represents the best estimate of A for nuclear
fragments. This value includes the information from the three redundant
measurements A1, A2 and A3 provided by the FOOT detector, in this case
obtained from simulated MC data and smeared of a percentage related to the
experimental resolutions of detectors, in order to get a real data-like sample.
The analysis code receives quantities in vectors (3.42), (3.43) and (3.44) as
free parameters, meaning that the MINUIT algorithm can change their val-
ues in the optimal way to reach the minimum of L, ranging in an interval
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that can be set by the user. For the kinematic quantities of fragments, i.e.
the momentum, time of flight and kinetic energy, the MC output value can
be used as a starting value, and also their optimal range can be extrapo-
lated from simulations. Moreover, it is known from the theory exposed in
section 3.3 that slacks must be positive quantities, in our case at most equal
to 1. For Lagrange Multipliers, instead, it is more difficult to have a reliable
prediction: before performing the LM fit procedure, a performance study is
necessary to understand what are the best ranges and starting values for λ.

3.4.1 Performance study of Lagrange Multipliers

The first thing that needs to be evaluated is the sign of quantities con-
tained in vector (3.43), i.e. understand if they have to be positive, negative
or both.
Setting negative values for lambdas in the range [-1;0], the minimization pro-
cedure is not able to converge, and the reconstructed distribution of Afit
does not have a definite value for any of the analysed fragments. The same
happens when a still lower boundary is set for the range: this hints at posi-
tive values for the Lagrange multipliers. As a matter of fact, when a positive
range is set for λ1, λ2, λ3, the minimization has a successful outcome for
all fragments. The fit result depends on the upper boundary of the range
and on the starting value set for the multipliers. Fitting the reconstructed
Afit distributions with a Gaussian function, the mean value increases when
a larger range is set for the variables, and so does the percentage resolution.
The starting value does not affect the output of the minimization too much:
it is only slightly worse in the case in which the starting value is set to half
of the maximum. All of the above considerations are summed up in figures
3.12(a) and 3.12(b) for 12C, but they are valid for all the studied fragments.
The studied ranges are: [0;0.3], [0;1], [0;5], [0;10] and [0;20]. The performance
study proved that the method exhibits a systematic effect, causing the results
of the fit to improve as the range of Lagrange multipliers gets narrower: the
reason for this behavior is still under investigation. In the present analysis
the range [0;1] has been chosen, in order to have a trade-off between the per-
formances and the choice of a range narrow enough to weigh the constraints
in the proper way.

Once we have found out that vector λ must contain positive values and
once we have chosen the optimal range and starting values for the multipliers,
the fit procedure has been carried out. Its results will be described in next
section.
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(a) Reconstructed/Expected Mass Number

(b) Percentage Resolution

Figure 3.12: Performance study for the range and starting values of La-
grange multipliers, based on the outcome of reconstructed mass number and
resolution for 12C. In both plots, on the x axis are reported the starting val-
ues of Lagrange Multipliers expressed as percentages of the maximum value
of lambda reported in the legend panel (i.e., Lambda max). On the y axis, in
(a) Areco indicates the value obtained from a Gaussian fit of the reconstructed
peak and A12 is the expected value (i.e., 12); in (b) σ% is obtained from the
Gaussian fit of the number of mass peak and expressed as a percentage of
the mean value.
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Variable Starting Value Boundlow Boundup
p pMC 0 30 GeV/c2

TOF TOFMC 0 30 ns
Ek EkMC 0 15 GeV
A 2Zreco 0 20
λ1 0.3 0 1
λ2 0.3 0 1
λ3 0.3 0 1
s1 not set -1 1
s2 not set -1 1
s3 not set -1 1

Table 3.3: Starting values and ranges of free parameters used in the min-
imization of the Lagrangian for the reconstruction of the best estimate for
the mass number.

3.4.2 Isotopic Identification with LM method

In this section, the distributions of Afit, i.e. the best estimate of the mass
number of fragments, obtained by the minimization of function (3.41), are
reported. Differently from all the previously reported results, this analysis has
only been performed for a beam of 200 MeV/u hitting a polyethylene target.
The reason why the 700 MeV/u beam has not been taken into account is
that the LM method calculation involves A1, A2 and A3, but only A1 is used
for the evaluation of A for fragments produced by a 700 MeV/u beam. This
is because A2 and A3 contain the kinetic energy, which at higher energies
is largely underestimated due to the abundant neutron production in the
calorimeter, as described in section 3.2.
Since the kinematic variables, Lagrange multipliers and slacks have been
inserted in the MINUIT algorithm as free parameters with limits, table 3.3
reports the ranges and starting values assigned to such parameters to obtain
the presented results. All values in the table have either been obtained by
comparison with simulations or by theoretical considerations exposed in the
previous sections.

It is important to underline that negative values were allowed for the
slacks s1,s2,s3 because they appear in the Lagrangian in a quadratic form.
Besides the correctly reconstructed number of mass of fragments, a further
proof of the good functioning of the method can be found in the distributions
of Lagrange multipliers and slacks, reported in figure 3.13 for 12C. As a matter
of fact, the distributions show that λs are mostly non null and that slacks
have a peak at 0. Moreover, by applying a χ2 cut as described in the following
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Fragment A1 σ (A1) % A2 σ (A2) % A3 σ (A3) % ALM σ (ALM) %
7Li 7.05 4.2 6.97 4.0 7.18 9.0 7.04 4.0
9Be 9.07 4.3 8.95 3.8 9.25 9.0 9.04 3.9
11B 11.10 4.2 10.93 3.7 11.34 8.9 11.06 3.7
12C 12.16 4.1 11.90 3.3 12.49 8.8 12.09 3.5
14N 14.25 4.1 13.90 3.3 14.71 9.0 14.12 3.4
16O 16.31 4.0 15.87 3.3 16.89 8.9 16.13 3.2

Table 3.4: Comparison among the values of A obtained with formulas (3.8),
(3.12), (3.17) and values obtained with the LM fit.

it is possible to discard the badly reconstructed events corresponding to null
λs and non null slacks, thus confirming the requirement of active constraints
explained in section 3.3. It is also worth to notice that, even if the values
assumed by lambdas are close to the upper and lower boundary of the range,
this does not cause any problem in the reconstruction outcome.

By fitting the Afit distributions produced by the minimization of L with
a Gaussian function, I obtained the mean values and resolutions for the
best estimate of the mass number. The results of the fit procedure show an
improvement in mean values and resolutions with respect to the values of A1,
A2, A3, as summed up in table 3.4 for the most abundant fragments of each
charge. Besides improving the A values, the procedure is also able to keep the
percentage resolution of Afit below 4% for such fragments. The performance
improvement is not that great (for example with respect to A2) because the
precision of TOF and Ek is larger than the one of the momentum, thus using
all the quantities at the same time does not cause big changes.

Some small tails, though, are still visible in the plots, next to the fitted
peaks. A further improvement can thus be applied to the data, by identifying
these badly reconstructed events using their χ2 value. Figure 3.14 shows
the distribution of χ2 as a function of Afit for some of the most abundant
fragments produced in the reaction: from the plots it is evident that a χ2 cut
at 5 can help eliminating the undesired event without reducing the statistics
too much (i.e. with a reduction that is less than 10% of the events) and it is
compatible with the results in statistic proposed by the methods in [50, 51].
The improvement can be seen for the most abundant fragment of each charge
in figures 3.15 and 3.16, where plots on the left show all the reconstructed
events for each fragment, while plots on the right show the distributions after
a χ2 cut: the cut is able to discard all the events in the tails.
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(a) λ1 distribution (b) s1 distribution

(c) λ2 distribution (d) s2 distribution

(e) λ3 distribution (f) s3 distribution

Figure 3.13: Distribution of Lagrange multipliers and slacks obtained by
the minimization of the Lagrangian function (3.41). All distributions show
that the three constraints applied to the function are active.
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(a) 7Li (b) 9Be

(c) 11B (d) 12C

(e) 14N (f) 16O

Figure 3.14: Distribution of χ2 values as a function of Afit: a cut at a value
of 5 (yellow area in plots) allows to eliminate badly-reconstructed events in
the tail, without ruining the reconstruction statistics.
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(a) 7Li (b) 7Li with χ2 < 5

(c) 9Be (d) 9Be with χ2 < 5

(e) 11B (f) 11B with χ2 < 5

Figure 3.15: Reconstructed Li, Be, B fragments using the LM method.
Plots are shown without any event selection (on the left) and with a χ2 cut
to eliminate tails of badly-reconstructed events (on the right).
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(a) 12C (b) 12C with χ2 < 5

(c) 14N (d) 14N with χ2 < 5

(e) 16O (f) 16O with χ2 < 5

Figure 3.16: Reconstructed C, N, O fragments using the LM method.
Plots are shown without any event selection (on the left) and with a χ2 cut
to eliminate tails of badly-reconstructed events (on the right).
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Fragment AcutLM σ (AcutLM) % AcutALM σ (AcutALM) % Acutχ2 σ
(
Acutχ2

)
%

6Li 6.05 4.1 6.01 3.9 6.08 4.2
7Li 7.04 4.1 7.02 3.8 7.09 4.2
8Li 8.04 4.1 8.05 4.2 8.10 4.2
7Be 7.07 4.0 7.01 3.4 7.12 4.2
9Be 9.04 3.9 9.00 3.6 9.12 4.2
10B 10.08 3.7 9.99 3.6 10.16 4.1
11B 11.06 3.7 11.00 3.4 11.16 4.1
12B 12.05 3.7 12.04 4.6 12.17 4.1
9C 9.13 3.1 9.0 4.9 9.28 4.2
10C 10.14 3.8 10.02 3.3 10.23 4.2
11C 11.13 3.6 11.00 3.3 11.23 4.1
12C 12.09 3.5 11.96 3.2 12.22 4.1
13C 13.07 3.5 12.96 3.3 13.22 4.1
14C 14.06 3.5 13.98 3.4 14.23 4.1
12N 12.05 3.9 12.05 5.0 12.21 4.3
13N 13.14 3.5 12.98 3.1 13.32 4.1
14N 14.13 3.4 13.97 3.3 14.26 4.1
15N 15.08 3.4 14.95 3.3 15.29 4.1
14O 14.07 3.6 13.96 3.0 14.37 4.2
15O 15.16 3.4 14.96 3.1 15.35 4.1

Table 3.5: Comparison between mean values and resolutions obtained by a
Gaussian fit of A fit results for three different procedures: Lagrange Multi-
pliers, χ2, ALM. Fragments are produced by a 200 MeV/u 16O beam on a
polyethylene target.

Finally, the results of my analysis can be compared to the ones obtained
with the χ2 minimization [50] and the ALM [51], i.e. other fit procedures
already implemented in the FOOT analysis code. All results are reported in
table 3.5 for a wide variety of fragments, where values that are not related to
the LM method have been taken from [50] and [51]. From the table it emerges
that, extending the LM method to other fragments, the worse reachable
resolution is 4.1%. The results of the three techniques are summed up in
figure 3.17. The figure shows that the LM method provides results that are
compatible with the ones obtained with χ2 minimization and ALM, in both
mean values and resolutions of fitted Gaussian peaks.
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(a) Reconstructed/Expected Mass Number

(b) Percentage Resolution

Figure 3.17: Comparison between the mean values (a) and percentage
resolutions (b) of the three mass reconstruction methods. The reported values
are obtained from the fit of reconstructed peaks with a Gaussian distribution,
for the most abundant fragments of each charge.
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Conclusions

The main goal of this work is to implement a procedure based on the La-
grange multipliers (LM) method for the number of mass A reconstruction in
the analysis code of the FOOT (FragmentatiOn Of Target) experiment. The
aim of the procedure is to obtain the best estimate of the number of mass A
of fragments from the three redundant measurements A1, A2, A3 acquired by
the apparatus. Together with the charge Z, the number of mass Afit obtained
by the LM fit will allow to uniquely identify the fragments produced in the
beam-target interactions. The method of this reconstruction procedure will
then be used to compute the target fragmentation cross section, using an
inverse kinematic approach, and the projectile one. Moreover, the results can
provide information about hadrontherapy and space radioprotection. In the
present work, fragments have been reconstructed using Monte Carlo (MC)
simulated data, obtained by a FLUKA simulation of the electronic setup of
the apparatus which is specifically built for the detection of heavy (Z>2)
fragments. The data analysed in the present work represent the fragmen-
tation of a 16O beam with two different energies of the primary beam: 200
MeV/u, compatible with the hadrontherapy energy range, and 700 MeV/u,
compatible with data needed for space radioprotection, on a C2H4 target. In
both cases, a smearing corresponding to the resolution of subdetectors has
been applied to simulated data: this allowed to obtain a real data like sam-
ple. The quantities involved in the Z reconstruction are the energy loss of the
particle in a thin scintillator and the time of flight. For the A reconstruction,
time of flight (TOF), momentum (p) and kinetic energy (Ek) are used. For
the reconstructed Z, both 200 and 700 MeV/u beam energies allowed a good
charge separation, with a resolution that ranges from ∼ 3% for heavy frag-
ments to ∼ 6% for hydrogen. The inefficiencies in the reconstruction of light
fragments (i.e., Z=1,2) , though, will be compensated by data obtained with
the emulsions setup. After the charge identification, the number of mass of
the produced fragment has been computed in three different ways by combin-
ing respectively TOF and p, TOF and Ek and p and Ek. The three obtained
correlated values for the most abundant fragment of each charge are compat-

83
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ible with the expected A. The largest shifts with respect to the true A value
are observed in A2 and A3: as a matter of fact, these two involve the kinetic
energy of fragments, which suffers from an underestimation caused by the
large neutron production in the calorimeter. This phenomenon is amplified
at 700 MeV/u: therefore, in this case only A1 is used for the number of mass
reconstruction. Being the three A measurements correlated, i.e. with a sub-
detector in common for each couple of measurements, one needs to combine
them with a fit procedure to obtain a best estimate Afit. This is precisely
what the LM method has been used for, using data related to the 200 MeV/u
beam. Lagrange multipliers are normally used for constrained minimization
of functions: Afit thus needs to be inserted in the vector of parameters from
which the Lagrangian function depends. Then, its best estimate will be ob-
tained as the value of the parameter in the minimum of the Lagrangian L.
With L described in Chapter 3, the minimization can be performed and A
can be correctly reconstructed. The parameters inserted in the function are:
A1, A2, A3 and Afit, together with the kinematic quantities TOF, p, Ek.
Moreover, lagrange multipliers λi and slacks s2i were introduced: these are
both characteristics of the LM method. It is important to underline that, for
the correct functioning of the algorithm, λ must be positive quantities. In
this work, a preliminary study of their ranges and starting values has been
performed: the best range was proven to be [0;1], independently from their
starting value. The correct output of the LM fit can be improved by perform-
ing a χ2 cut at a value of 5 on Afit. For all the investigated fragments, the
percentage resolution of A is within 4%. Moreover, a comparison with the
other fit methods already implemented in the FOOT reconstruction, i.e. χ2

minimization and Augmented Lagrangian Method (ALM), proved that the
statistics and results are compatible: for some fragments, the LM method
can also provide some improvements, mostly in the expected values Afit. In
conclusion, the study proposed in the present thesis work provides encour-
aging results to be employed as starting points for further investigations and
analyses based on the Lagrange Multipliers method and aimed at optimizing
the number of mass reconstruction.
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