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Abstract

Extreme precipitation causes large damage and replenish freshwater stor-
age in arid regions. Quantitative information on extremes with low yearly
exceedance probability is crucial for risk and water resources management,
design of hydraulic structures and early-warning systems. Rain gauges offer
relatively long and homogeneous records, but don’t sample uniformly the
Earth’s surface, leaving vast areas completely ungauged. Satellite observa-
tions could help overcoming this limit, but suffer from estimation errors,
which may propagate to the estimated extreme quantiles.

In this work, rain gauge and satellite data for two different regions, Israel
and a portion of south-eastern Austria, are used to derive extreme quantiles
associated to low yearly exceedance probability using the novel ”Simplified
Metastatistical Extreme Value” framework. Differences between satellite and
rain gauge estimates are analyzed using a specifically developed error model
with the aim of understanding how the current approaches could be refined
and improved.

The results show that satellite based estimates of extreme quantiles are
in good agreement with the rain gauges over Austria, while a slight overes-
timation is detected over Israel. The developed error model allowed us to
predict errors in the estimated quantiles based on errors in the parameters
of the statistical model. Correlations between the first two moments of the
events’ distribution and the statistical model parameters provide the bases
for including prior information on satellite estimation errors in the estimation
of extreme quantiles.
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Sommario

Le precipitazioni estreme causano ingenti danni e riempiono i depositi di ac-
qua dolce nelle regioni aride. Informazioni quantitative su eventi estremi con
basse probabilità di superamento annuali sono cruciali per la gestione delle
risorse idriche, la progettazione delle opere idrauliche ed i sistemi di allerta.
I pluviometri sono caratterizzati da serie storiche relativamente lunghe ed
omogenee, ma essi non ricoprono uniformemente la superficie terrestre, las-
ciando scoperte aree molto vaste. Le osservazioni satellitari possono aiutarci
a superare questo limite, ma sono affette da errori di stima, i quali possono
propagarsi fino alla stima dei quantili estremi.

In questa tesi, dati pluviometrici e satellitari relativi a due differenti re-
gioni, Israele ed una parte dell’Austria sud-orientale, sono stati utilizzati
per poter derivare quantili estremi associati a basse probabilità di super-
amento annuali tramite l’utilizzo del ”Simplified Metastatistical Extreme
Value” framework. Le differenze tra le stime satellitari e pluviometriche
sono state analizzate tramite l’utilizzo di un modello di stima degli errori
appositamente formulato per comprendere come gli attuali approcci possano
essere rifiniti e migliorati.

I risultati mostrano che le stime dei quantili estremi ottenute sulla base
dei dati satellitari sono in buon accordo con quelle pluviometriche per quanto
riguarda l’Austria, mentre per Israele è stata evidenziata una lieve sovras-
tima. Il modello di propagazione degli errori utilizzato ha permesso di
prevedere in modo adeguato gli errori nei quantili stimati, sulla base degli er-
rori nei parametri del modello statistico utilizzato. Le correlazioni tra i primi
due momenti della distribuzione degli eventi di precipitazione ed i parametri
del modello statistico hanno permesso di includere le informazioni preliminari
sugli errori di stima dei parametri nella stima dei quantili estremi.
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Chapter 1

Introduction

1.1 Extreme Precipitation

1.1.1 Significance of Extreme events
Extreme events could be defined as events whose magnitudes lie in the upper
or lower parts of the distribution. In this work, extreme precipitation events
related to long return periods were studied. They are events with low yearly
exceedance probability [Chow et al., 1988]: for instance, events with 100
years return period, termed 100-year return levels, are events with intensity
likely to be exceeded with a probability of 1% (1/100) in a given year, and
are thus expected to be exceeded, on average, once in 100 years.

Extreme precipitation affects several social, ecological, economic and tech-
nical systems, by causing natural hazards such as floods and landslides, and
by replenishing freshwater storage in arid regions. Monitoring and quan-
tifying extreme precipitation quantiles is thus crucial for several fields and
applications, such as hydraulic structures design and weather-related risk
management [Katz et al., 2002]. In addition, extreme precipitation events
are of main concern in the context of the global warming: in fact, in the last
decades many studies showed that extreme events are rising in intensity and
changing in frequency, as shown in figure 1.1 [Berg et al., 2013, Myhre et al.,
2019; Fischer and Knutti, 2016]. In order to improve the estimation of the
probability of occurrence of extreme precipitation, accurate observations and
adequate methods are needed. In this study, rain gauge and satellite esti-
mates of daily precipitation over diverse climatic settings are analyzed using a
novel statistical approach, with the aim of deriving quantiles associated with
long return periods, evaluating the accuracy of the satellite-based estimates,
and address some of the current methodological gaps in the precipitation
frequency analyses based on satellite data.
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Figure 1.1: Probability Density Functions (PDF) for daily precipitation
amounts. (a) The purple line is the reference PDF, the orange one shows how
it changes with higher temperatures. (b) Changes in extreme precipitation
between the periods 1906-1935 and 1986-2015 as a mean of actual observa-
tions of 15 rain gauge stations in the Netherlands [Myhre et al., 2019].

1.1.2 How to study extremes
Extreme return levels are usually quantified by means of the Extreme Value
Theory, which studies the limiting distribution for extremes of large samples.
From a practical standpoint, its formulations neglect a large portion of the
observable events, because it focuses on the distribution of annual maximum
values or of the peaks exceeding very large thresholds. This data decimation
leads to large uncertainties in the estimated quantiles.

Additionally, Extreme Value Theory is sometimes limited by the underly-
ing assumption on the asymptotic behaviour of the samples of the probability
distribution function: an infinite number of events should occur every year. It
was observed that the number of yearly observations (for example, the num-
ber of yearly wet days) is often too scarce for this asymptotic assumption to
hold [Nerantzaki and Papalexiou, 2022].

New non-asymptotic statistical approaches were developed in the last
years, such as the Metastatistical Extreme Value framework (MEV) [Marani
and Ignaccolo, 2015; Zorzetto et al., 2016], which also allows to consider all
the available samples to infer the distribution of extremes. Successively, a
simplified formulation of MEV, termed Simplified Metastatistical Extreme
Value framework (SMEV), was proposed as a way to better fit the statistical
model to the observed extremes.

By exploiting these new approaches, quantiles related to extreme precip-
itation events can be derived from the distribution of the so-called ordinary
precipitation events (see section 1.1.3 for a definition), with a considerable in-
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crease of the data sample to be used for parameters and quantiles estimation
and, consequently, of estimation accuracy.

1.1.3 Ordinary and extreme events
Ordinary precipitation events, which are the fundamental samples for fre-
quency analyses studies, are defined as all the independent realizations of a
process of interest [Marani and Ignaccolo, 2015; Marra et al., 2020].

For the case of precipitation, they can be considered as non-zero rainfall
amounts observed in statistically independent rainy periods. In this work,
since daily rain is analyzed, ordinary events are defined as stochastic realiza-
tions of independent daily rain amounts exceeding a predefined low threshold
[Zorzetto et al., 2016].

As discussed above, extremes are very high samples of the ordinary events.
The distribution of the ordinary events is typically unknown, but it is possible
to approximate the tail of this distribution, i.e. the portion of the distribution
which describes the probability of very high events, using relatively simple
formulations. Practically, the tail of the ordinary events distribution can be
identified by the portion of data which shares the statistical properties with
the annual maxima.

For example, it was shown that for the case of daily precipitation, the
exceedance probability of heavy intensities likely decreases as a stretched ex-
ponential, and can thus be described using a Weibull distribution [Wilson
and Tuomi, 2005]. In estimating extreme return levels, it is thus good prac-
tice to focus on the tail of the distribution of ordinary events [Marra et al.,
2020]. This tail can be detected using statistical tests which verify which
portion of the distribution is likely sampled from a Weibull model: in fact,
in previous studies, the Weibull distribution was used to describe ordinary
events, but it was shown that it fits better to the tails [Marani and Ignaccolo,
2015; Miniussi and Marani, 2020; Zorzetto et al., 2016; Papalexiou, 2018].

1.2 The need for satellite observations
The earth surface is covered by rain gauges in an uneven way: for instance,
ocean surface is characterized by very few data collected by buoys and ships;
moreover, several parts of mainland are covered by an elevated number of
stations (urban areas), while others present a very scarce coverage (arid areas
and rainforests, for example).

In figure 1.2, the spatial distribution of the Global Precipitation Clima-
tology Centre (GPCC) rain gauges, a global network characterized by regular

15



Figure 1.2: Spatial distribution of GPCC gauges [Kidd et al., 2017].

and reliable daily measurements [Becker et al., 2013], is shown. Assuming
an average instrument orifice of 246 cm2, the overall land coverage would be
roughly of 1,612 m2. A typical soccer pitch of 105 m x 68 m is characterized
by an area of 7140 m2, thus all GPCC stations in the world would not even
cover one fourth of a pitch of such type [Kidd et al., 2017].

Satellite precipitation products have been characterized by a fast devel-
opment in the last decades. They can provide information with quasi-global
coverage (see figure 1.3) at a maximum resolution of roughly 4 km in space
and 30 minutes in time [Michaelides et al., 2009]. These aspects make them
more likely to be preferred with respect to rain gauges networks, since they
can overcome their sampling limitations by observing vast regions and cov-
ering ungauged areas of the globe.

Despite the shortness of their records, which are currently in the order
of 20-30 years at most, they started to be used for deriving high quantiles
of interest for several applications [e.g., Gado et al., 2017]. Estimation er-
rors, however, were found to severely affect the results [Marra et al., 2019a].
Precipitation frequency analysis methods based on satellite records are cur-
rently characterized by several gaps [Marra et al., 2019a], especially in case
of satellite data evaluation and extrapolation [Hu et al., 2018]. In fact, even
though they are used for quantile derivation, they show several estimation
errors [Kidd and Levizzani, 2011] due to the indirect measurements, which
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are enhanced for extremes [Miao et al., 2015; Prakash et al., 2015]. Further-
more, the currently adopted statistical methods for satellite records’ analysis
have proved to be inadequate due to the poor availability of data points to
estimate the parameters of extreme value distributions [Marra et al., 2019a].

Figure 1.3: Typical half-hourly precipitation map from the Integrated Multi-
satellitE Retrievals for GPM (IMERG) algorithm [NASA].

1.3 Specific objectives
This thesis directly addresses these gaps, with the aim of improving satel-
lite based derivation of high return period quantiles. The following specific
research questions have been addressed:

• How well do satellite products reproduce long return period quantiles
over different climatic conditions using a novel statistical approach?

• Which portion of the ordinary events distribution shares the statistical
properties of extremes?

• Which are the agreements and differences between land and satellite
based instruments in deriving high return period quantiles and how
well can these differences be predicted based on the satellite estimation
errors?
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• Are there correlations between parameters describing extreme return
levels, which are derived quantities, and the moments of the distri-
bution, which can be computed by prior knowledge of the ordinary
events?

1.4 Thesis structure
In chapter 2 the theoretical structure of the applied SMEV statistical frame-
work is described, right after having defined the MEV approach and discussed
the differences with the classical EVT theory. Chapter 3 presents the ana-
lyzed data, both for land and satellite based ones. The applied methods for
data analysis, parameters and quantiles estimation, error propagation and
moments-parameters correlation are reported in chapter 4. The achieved
results are described in chapter 5.

A final summary, reporting the thesis’ findings and conclusions, can be
found in chapter 6, along with an insight on future applications.
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Chapter 2

Theoretical framework

2.1 Extreme Value Theory
Extreme Value Theory (EVT) [Gumbel, 1958] is a branch of statistics which
focuses on very large (or small) events. It relies on the extreme value theorem
[Fischer and Tippet, 1928; Gnedenko, 1943], which is analogous to the central
limit theorem, but considers the distribution of maximum or minimum values
instead of mean values.

Let’s consider records of independent and identically distributed variables
X1, X2, ... (precipitation events under specific assumption, for instance), rep-
resented by the same cumulative distribution function F . If the samples are
divided in ”blocks”, each consisting of n non-zero elements (annual records,
for instance), then, the maximum of a specified block Mn (which would be
an annual maximum) is defined by

Mn = max(X1, ...., Xn) (2.1)

Under these assumptions, the cumulative probability distribution of the
block maxima, that is the probability of getting a value Mn not exceeding a
threshold z, can be expressed as

Pr(Mn ≤ z) = Pr(X1 ≤ z, ...., Xn ≤ z)
= Pr(X1 ≤ z)....P r(Xn ≤ z) = F (z)n

(2.2)

A linear renormalization of the variable Mn is needed, since, if z+ is the
smallest value for which F (z) = 1, then, for any z < z+, F (z)n → 0 for
n→∞; i.e. the distribution degenerates into a single point on z+. If an and
bn are sequences of constants, such that an > 0, then the normalization can
be achieved as follows:

M∗
n = Mn − bn

an
(2.3)
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Now, the focus is on seeking limit distributions for M∗
n by appropriately

choosing an and bn in order to stabilize the distribution parameters (location,
scale) of Mn as n increases. From these results, it can be proved that, if there
exist sequences of constants an and bn, with an > 0, such that

lim
n→∞

P {M∗
n ≤ z} = G(z) (2.4)

or
lim
n→∞

F (anz + bn)n = G(z) (2.5)

and if G(z) is a non degenerate distribution function, then G(z) belongs
to one of three main families of distributions [Fischer and Tippett, 1928]:

• Gumbel (Type I)

G(z) = e−e
− z−b

a with −∞ < z < +∞ (2.6)

• Frechet (Type II)

G(z) =

0, if z ≤ b

e−
z−b
a

−α
, if z > b

(2.7)

• Weibull (Type III)

G(z) =

e
−[−( z−b

a )]α , if z < b

1, if z ≥ b
(2.8)

where a > 0 and b (scale and location parameter respectively), are real
and the shape parameter α is greater than 0 in the types II and III. Defined
as above, G(z) is called Generalized Extreme Value distribution (GEV).
From these results, it follows that the three distribution families characterize
different extreme values behaviours. It can be proved that they could be
merged into a single family of distribution functions, defined as:

G(z) =


exp

(
−
[
1 + θ z−µ

λ

]− 1
θ

)
, if θ 6= 0

exp
(
−exp

(
− z−µ

λ

))
, if θ = 0

(2.9)

where the location and shape parameters, µ and θ, are finite and the scale
parameter λ is positive. The shape parameter can be related to the three
types of extreme value distributions as follows:
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Figure 2.1: The three types of GEV distribution, with normalized sample
values on x axis and density probabilities on y axis [Hor et. al, 2008].

� if θ = 0 distribution is type I (Gumbel)

� if θ > 0 distribution is type II (Frechet)

� if θ < 0 distribution is type III (Weibull)

In figure 2.1, the different behaviour of the three families is shown. In the
Frechet one, the tail is lower bounded, while in the Weibull one it is upper
bounded.

2.2 Metastatistical Extreme Value framework
The Metastatistical Extreme Value framework (MEV) is an approach that
assumes the distribution F is known and relaxes the limiting assumptions
of the classical EVT. Usually, in real applications, the number of samples is
not sufficient for the EVT asymptotic assumption to hold [Cook and Harris,
2004; Koutsoyiannis, 2004]. In MEV, the asymptotic assumption is overcome
by explicitly accounting for the yearly number of realizations of the process
(n). In doing so, all the ordinary events in the distribution can be used for
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estimating the parameters, not only the annual maxima as in the EVT. This
procedure drastically reduces the uncertainty in the high-quantiles estimation
by up to 50% with respect to the classical theory [Zorzetto et al, 2016].

In particular, MEV considers as random variables

• the parameter defining the number of events (n)

• the parameters of the cumulative distribution function of the event
magnitudes(θ, λ)

This leads to a compound distribution for the block maxima. Also, in this
framework, the parameters’ variability accounts for (i) the randomness of
event occurrence which generates a finite and varying number of events in
each block and for (ii) the possibly changing probability distribution of event
magnitudes across different blocks. To do so, the number of events in each
block (n) and the parameters’ values (θ, λ) are considered as realizations of
stochastic variables (N, Θ, Λ). A graphical representation of this framework
is seen in figure 2.2.

Let’s now define the MEV cumulative distribution function by considering
all possible values of the parameters and the probability distribution of each
block maxima:

ζ(x) =
∞∑
n=1

∫
ΩΘ,Λ

F (x, θ, λ)ng(n, θ, λ)dθdλ (2.10)

where g(n, θ, λ) is the joint probability distribution of N,Θ, and Λ and
ΩΘ,Λ is the population of all the possible values of the parameters. Accord-
ingly, the probability distribution of the extremes ζ emerges from the full
distribution of the ordinary events which is sampled a number of times n
every year.

If the expectations are substituted with sample average and the Weibull
(stretched-exponential) distribution is adopted for the ordinary events (as
usually done for non-zero daily precipitation amounts [Wilson and Tuomi,
2005; Marani and Ignaccolo, 2015]), equation 2.10 becomes

ζ(x) =
∞∑
n=1

∫
λ

∫
θ
g(n, θ, λ)

[
1− exp

(
−
(
x

λ

)θ)]n
dθdλ (2.11)

where
1− exp

(
−
(
x

λ

)θ)
= F (x, θ, λ) (2.12)

is the Weibull distribution [Weibull, 1951]. A sample of yearly maxima dis-
tributions can now be defined, yielding to the sample average approximation

23



Figure 2.2: A graphical representation of MEV applied to daily rainfall ex-
tremes analysis: here the Weibull distribution shape (w in this figure from
Zorzetto et al. [2016], θ in this thesis, in blue), scale (C in this figure, λ
in this thesis, in red) and number of wet days (N in this figure n in this
thesis, in green) are shown in terms of their yearly values and they define
the cumulative distributions of maximum yearly rainfall (in gray and black).
The MEV distribution (red in the x, y plane) is obtained by means of a
sample average over the empirical frequency distribution of the parameters.
[Zorzetto et al., 2016]

ζ(x) ≈ ζm(x) so that

MEV (x) = ζm(x) = 1
M

M∑
j=1

1− exp
(− x

λj

)θjnj (2.13)

This is the MEV-Weibull distribution, where j is one of the M total years in
record, written as a sample average of the cumulative distribution functions
observed during the sampled years.
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2.3 The Simplified MEV (SMEV)
One of the main limits of the MEV framework is that, since the number
of ordinary events occurring in each year is usually limited, the distribution
parameters’ estimation may lead to biased values of the quantiles. In partic-
ular, the inter-annual variations of the distribution parameters could be due
to

• inter-annual variations of the characteristics of the ordinary events

• parameter estimation uncertainty

• variability of different types of ordinary events occurrence

So, in order to overcome these limits, the SMEV, as opposed to MEV, ne-
glects the inter-annual variability in both the ordinary events distributions
and in their number of yearly occurrences [Marra et al., 2019b].
Specifically, this means that

1 identical distribution of ordinary events of each type is assumed

2 mean probability of occurrence approximation is applied

The identical distribution assumption, that has been exploited to decrease
the parameter estimation uncertainty in latest works [Marra et al., 2019b;
Marra et al., 2020], allows to factorize the MEV cumulative distribution
function 2.13 in

MEV (x) =
S∏
i=1

[Fi(x, θi, λi)]ni
1
M

M∑
j=1

[
S∏
i=1

[Fi (x, θi, λi)]δi,j
]

(2.14)

with ni and δi,j = ni,j − ni respectively expressing the mean number of the
ith type of ordinary events occurring in a year and the deviations of the
yearly values from the mean. As a consequence, the identical distribution
assumption allows to rewrite the term

R = 1
M

M∑
j=1

[
S∏
i=1

[Fi (x, θi, λi)]δi,j
]

(2.15)

as a function of the compound probability without dependence on the dis-
tributions Fi and on their parameters. Furthemore, taking the limit Fi → 1,
that is the case of extremes, this term becomes negligible in equation 2.14
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when estimating return periods exceeding values of the order of 10 years. A
new Simplified MEV formulation arises from these results:

SMEV (x) =
S∏
i=1

[Fi (x, θi, λi)]ni (2.16)

This formulation reduces the number of the parameters to 3·S for the Weibull
case; also, it gives a direct physical interpretation of them, since ni is related
to the probability of occurrence of the ordinary events of type i, and θi and
λi are related to their intensity. In this work, also the event type variability
was neglected, so that equation 2.16 further simplifies, resembling ordinary
statistics:

SMEV (x) = [F (x, θ, λ)]n (2.17)

where n is the mean value of ordinary events per year. This is the frame-
work that was adopted in this work: the ordinary events in the distribution
tail were used to estimate the extremes’ distribution parameters, not all the
ordinary events in the distribution as in the usual MEV approach, since, as
mentioned in section 1.1.3, it was shown that the tail values are the ones
which fit to the Weibull stretched exponential distribution more reliably.

2.3.1 Return period
The return period is the mean representative time interval between two ex-
ceedances of a given intensity event. It can be defined as follow [Abarbanel
et al., 1992] :

RP = 1
p

(2.18)

Since p = 1− P (x) is the probability of a random variable X having a
value greater than x and P (x) = Pr(X ≤ x) is an extreme value cumulative
probability distribution function (for instance, SMEV), it follows that

RP = 1
1− P (x) (2.19)

This means that the return period can be directly defined by means of the
cumulative distribution function; also, from a more statistical view, it means
that in order for the event to happen once, it is necessary to make, on average,
1/p trials.
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2.3.2 Return levels
When studying precipitation extremes, it is useful to derive and analyze the
corresponding return levels or quantiles.

If q is the return level (or quantile) associated to the return period 1/P ,
then, recalling the return period definition, its value could be exceeded (on
average) every year with probability P . Commonly, it is referred to as the
return level which is expected to be exceeded once every 1/P years.

For the case of SMEV used in this work, the equation used for retrieving
quantiles is

q = λ
[
−ln

(
1− P 1

n

)] 1
θ ; (2.20)

with λ and θ being the scale and shape parameters of the Weibull dis-
tribution, respectively, P the cumulative distribution function like in section
2.3.1, so that

P = 1− 1
RP

, (2.21)

and n the mean number of ordinary events per year.
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Chapter 3

Data

3.1 Study Areas
The selection of the study areas has been influenced by the needs of having

a Ground-based reliable and relatively long measurements to be used as
a benchmark

b Regions with different climatic conditions

Combining these two fundamental aspects, a dense network of stations in a
region of south-eastern Austria and a more sparse network covering Israel
were selected.

These study cases have different characteristics: the first dataset includes
a small homogeneous area which is classified as warm-summer humid con-
tinental climate Dfb [Koppen and Geiger, 1936], so no dry season can be
effectively identified and the monthly average temperature is always below
22◦C; the second region, instead, could be divided into three main climate
types, which are

• Csa: Warm mediterranean climate

• BSh: Warm semi-arid climate

• BWh: Warm desert climate

with monthly average temperatures often exceeding 22◦C (figure 3.1).
Moreover, more or less long dry time intervals could be identified depending
on the region. Since the differences between the BSh and BWh are slight
and the network in these areas is relatively sparse, in this work, these ar-
eas are considered as one: the latitude of 31.5◦N was chosen to separate a
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Figure 3.1: Climatic zones of Israel. [Zoccatelli et al., 2019]

”Mediterranean” region (which includes the area classified as Csa) from an
”Arid” one (roughly BSh and BWh areas). Thus, three main climatic zones
were identified and studied on the basis of the selected areas.

3.2 Stations

3.2.1 Austria
The selected stations are part of the WegenerNet network: a very dense
ensemble of stations which covers the surroundings of Feldbach in the Styria
region. A graphical overview of the stations’ distribution can be seen in figure
3.2. The 151 considered stations provide daily precipitation data of the last
24 hours (in mm), with a detection threshold of 0.11 mm, initialized at every
12:00 UTC, from 2007 to the end of 2020 [Fuchsberger et al., 2021].

It is crucial to highlight that this network was created to be independent
from satellite-based precipitation products, which means that these data are
not used for adjusting the satellite data.
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Figure 3.2: Spatial distribution of WegenerNet network stations in the Feld-
bach surroundings (Austria) [WegenerNet DataPortal].

Quality control

Preliminary data quality control was carried out seeking for

1 Missing values

2 Missing years

Missing values are expected to be stored as NA or −9999, but Austria sta-
tions did not show any missing data, also due to interpolation. Some of the
151 stations were deleted from the final dataset, since they were character-
ized by the absence of one or more yearly records, thus leading to a total of
128 out of 151 reliable daily rain records.

Furthermore, in the data, a flag, showing the percentage of interpolated
precipitation values was also reported: preliminary tests were made to un-
derstand whether this type of data should be considered, and so censoring
the precipitation records with an interpolated value greater than a prede-
fined threshold, or not. Also, interpolated data could report values below
the gauges’ detection threshold of 0.11 mm. Results showed that the years
with more than 10% of interpolated values are more than 20% of the total.
Since this would lead to a conspicuous loss of data, interpolated precipitation
values also were considered in the following analyses.
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3.2.2 Israel
Israel data were extracted from 408 rain gauges distributed heterogeneously.
The data temporal coverage is also uneven, in fact they vary from year 1948
to 2018 and several stations reported them in different yearly length records.
This is another difference to be analyzed with respect to the Austrian case.
Israeli data report all the recorded daily precipitation values of the following
24 hours, initialized at every 06:00 UTC, greater or equal to the minimum
detectable magnitude of 0.1 mm.

In this case, only ten (out of 408) stations are exploited for calibration of
satellite-based precipitation retrievals.

Quality control

Israel stations data were already filtered for missing values [Marra et al.,
2021]. Years with more than 10% missing data were removed from the anal-
yses.

3.3 Satellite
Satellite data were taken from the 6th version of the Integrated Multi-satellitE
Retrievals algorithm (IMERG) of the Global Precipitation Measurement mis-
sion (GPM) [Huffman et al., 2015]. IMERG combines precipitation esti-
mates from microwave and infrared radiance-based observations from geosyn-
chronous satellites [Joyce and Xie, 2011] and combines them with space-borne
radars from the GPM core satellites and rain gauges [Hou et al., 2014; Hong
et al., 2004; Huffman et al., 2007; Rudolph and Schneider, 2015]. This new
release allows to merge early precipitation data collected by the previous
Tropical Rainfall Measuring Mission (TRMM) [Simpson et al., 1996], during
the 2000-2014 period, with recent estimates obtained by the GPM satellite
constellation from 2015 to present day in order to obtain a relatively long
dataset. The reader interested in more information on the improvements of
this new algorithm is referred to Tan et al. [2018]. The estimates cover por-
tions of the globe between 90◦ N -S of latitude on a 0.1◦ x 0.1◦ grid, updated
every 30 minutes and reported in mm/h.

Specifically, the IMERG ”final run” is used, which includes the most
updated and quality-controlled estimates. The R package ncdf4 version 1.17
was used to open and read the downloaded files which are in the HDF5
format. After opening one of these half-hourly files, as visible in listing 3.1,
four variables can be identified and analyzed:
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• Precipitation estimate in mm/h (”PrecipitationCal”)

• Time step in seconds (”time”)

• Latitude (”lat”)

• Longitude (”lon”)

1
2 File C:/ Imerg/ IMERG_V06_HH_NorthItaly /2020/
3 3B_HHR.MS.MRG .3 IMERG .20200105 _
4 S033000_E035959 .0210. V06B.HDF5.nc4
5 ( NC_FORMAT_NETCDF4_CLASSIC ):
6
7 1 variables ( excluding dimension variables ):
8 float precipitationCal [lat ,lon ,time]
9 DimensionNames : time ,lon ,lat

10 Units: mm/hr
11 units: mm/hr
12 coordinates : time lon lat
13 _FillValue : -9999.900390625
14 CodeMissingValue : -9999.9
15 origname : precipitationCal
16 fullnamepath : /Grid/ precipitationCal
17
18 3 dimensions :
19 time Size :1
20 DimensionNames : time
21 Units: seconds since 1970 -01 -01 00:00:00 UTC
22 units: seconds since 1970 -01 -01 00:00:00 UTC
23 standard_name : time
24 LongName : Representative time of data in
25 seconds since 1970 -01 -01 00:00:00 UTC.
26 bounds : time_bnds
27 axis: T
28 calendar : julian
29 origname : time
30 fullnamepath : /Grid/time
31 lon Size :121
32 DimensionNames : lon
33 Units: degrees_east
34 units: degrees_east
35 standard_name : longitude
36 LongName : Longitude at the center of
37 0.10 degree grid intervals of longitude
38 from -180 to 180.
39 bounds : lon_bnds
40 axis: X
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41 origname : lon
42 fullnamepath : /Grid/lon
43 lat Size :71
44 DimensionNames : lat
45 Units: degrees_north
46 units: degrees_north
47 standard_name : latitude
48 LongName : Latitude at the center of
49 0.10 degree grid intervals of latitude
50 from -90 to 90.
51 bounds : lat_bnds
52 axis: Y
53 origname : lat
54 fullnamepath : /Grid/lat
55
56 6 global attributes :
57 FileHeader : DOI =10.5067/ GPM/IMERG /3B-HH /06;
58 DOIauthority =http :// dx.doi.org /;
59 DOIshortName =3 IMERGHH ;
60 AlgorithmID =3 IMERGHH ;
61 AlgorithmVersion =3 IMERGH_6 .3;
62 FileName =3B-HHR.MS.MRG .3 IMERG .20200105 - S033000 - E035959
63 .0210. V06B.HDF5;
64 SatelliteName =MULTI;
65 InstrumentName = MERGED ;
66 GenerationDateTime =2020 -05 -04 T06 :58:52.000 Z;
67 StartGranuleDateTime =2020 -01 -05 T03 :30:00.000 Z;
68 StopGranuleDateTime =2020 -01 -05 T03 :59:59.999 Z;
69 GranuleNumber =;
70 NumberOfSwaths =0;
71 NumberOfGrids =1;
72 GranuleStart =;
73 TimeInterval = HALF_HOUR ;
74 ProcessingSystem =PPS;
75 ProductVersion =V06B;
76 EmptyGranule = NOT_EMPTY ;
77 MissingData =;
78
79 FileInfo : DataFormatVersion =6a;
80 TKCodeBuildVersion =0;
81 MetadataVersion =6a;
82 FormatPackage =HDF5 -1.8.9;
83 BlueprintFilename =GPM.V6.3 IMERGHH . blueprint .xml;
84 BlueprintVersion =BV_62;
85 TKIOVersion =3.93;
86 MetadataStyle =PVL;
87 EndianType = LITTLE_ENDIAN ;
88
89 Grid. GridHeader : BinMethod = ARITHMETIC_MEAN ;
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90 Registration = CENTER ;
91 LatitudeResolution =0.1;
92 LongitudeResolution =0.1;
93 NorthBoundingCoordinate =90;
94 SouthBoundingCoordinate = -90;
95 EastBoundingCoordinate =180;
96 WestBoundingCoordinate =$-$180;
97 Origin = SOUTHWEST ;
98
99 Grid. fullnamepath : /Grid

100 DODS_EXTRA . Unlimited_Dimension : Grid_time
101 history : 2021 -04 -21 04:19:47 GMT Hyrax -1.15.4
102 https :// gpm1. gesdisc . eosdis .nasa.gov/ opendap / GPM_L3 /
103 GPM_3IMERGHH .06/2020/005/3 B_HHR.MS.MRG .3 IMERG

.20200105
104 _S033000_E035959 .0210. V06B.HDF5.nc4?
105 precipitationCal [0:0][1859:1979][1329:1399] ,
106 time ,lon [1859:1979] , lat [1329:1399]

Listing 3.1: Example of half-hourly IMERG HDF5 file as opened with R
ncdf4 package

The first coordinate, time, that is the recording time in seconds since
1970/01/01 00:00 UTC, has been transformed into day/month/year and
hour/minutes/seconds info. The second and the third variables, lon and
lat, represent the longitude and latitude at the center of the 0.1◦ grid cells
and are characterized by 121 and 71 values respectively for the ”NorthI-
taly” observing area data (ranging from 5.95◦ W to 17.95◦ W in longitude
and from 42.95◦ N to 49.95◦ N in latitude), that include several countries,
among which Austria. For the Israel observing area, the lon and lat dimen-
sions are characterized by 91 and 81 values (ranging from 32.05◦ W to 40.05◦
W and from 26.95◦ N to 35.95◦ N).

3.3.1 Pixel selection
The satellite pixels (i.e. the grid cells) including the coordinates of the ana-
lyzed rain gauges for both areas needed to be identified. In fact, only a small
number of pixels was used, because of the facts that the starting HDF5 data
report values on relatively wide areas and that every grid cell includes more
than one station. Analyzing the stations’ latitude and longitude coordinates,
a match between these values and those of the corresponding grid cells cen-
ters was made so as to select and associate the pixels to be used to the right
stations. This match was considered as correct if a station was within ±0.05◦
both in latitude and longitude from those of the specified satellite pixel’s cen-
ter. In table 3.1, the number of the selected pixels and their minimum and
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maximum latitude and longitude values are reported.

Austria Israel
N. of pixels 8 143
Lat min 46.85◦ 29.55◦
Lat max 46.95◦ 33.25◦
Lon min 15.75◦ 34.35◦
Lon max 16.05◦ 35.85◦

Table 3.1: Number of extracted satellite pixels and their maximum and min-
imum center coordinates values.

3.3.2 Filtering and Aggregation
Satellite precipitation estimates are available every 30 minutes, while station
data directly report daily cumulated values. Thus, satellite estimates were
aggregated to the corresponding temporal scales. To achieve this goal, two
preliminary conversions were applied:

1 Half-hourly precipitation intensities (mm/h) into half-hourly precipita-
tion accumulations (mm), assuming uniform precipitation rate during
the 30-min time intervals

2 Time step in seconds into time step in year/month/day hh/mm/ss

Then, before starting the aggregation, missing value records labeled with NA
were either set to zero, if limited to≤ 6 hours per day , or else deleted.Merging
of the half hourly satellite data, for both areas, was done, taking into account
that the initializing time for rain-gauges is 12:00 UTC for Austria and 6:00
UTC for Israel, while, for IMERG data, values are saved as precipitation
estimates in the 30 minutes following the time step.
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Chapter 4

Methods

After having filtered data, several analyses were carried on as described in
this chapter. In section 4.1, the ordinary events identification process is de-
scribed, followed by the identification of the distribution tail (section 4.2).
Parameters’ estimation (still section 4.2) is described before high return pe-
riod quantiles’ estimation (section 4.3). Then, differences between rain gauge
stations and IMERG estimates (defined as errors) were studied and error
propagation was applied so as to see how the observed differences matched
with series expansions (section 4.4) to point out and quantify reliability of the
satellite product. Last, the correlation between the first two moments of the
distribution and the estimated parameters was studied (section 4.5), in order
to find out how already available information, such as statistics of the satel-
lite estimation errors, could be related to biases in the SMEV parameters,
and consequently in the quantiles.

4.1 Ordinary events identification

4.1.1 Austria
Ordinary events, here considered as independent wet days (refer to section
1.1.3 for a definition), were identified. A precipitation threshold, expressed
in mm/day, was chosen in order to define the wet days. Cross-check using the
satellite data showed an optimal agreement in the detection of the number of
wet days. For the case of Austria, all daily amounts greater or equal than 0.1
mm were defined as wet, since stations and satellite showed a good match.
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4.1.2 Israel
Comparison with satellite data showed a not negligible difference in detection
of the number of yearly wet days according to the precipitation daily thresh-
old. In fact, based on figures 4.1 and 4.2, the 1 mm threshold was chosen,
since, close to that value, n becomes comparable for the two products. Fur-
thermore, it can be noticed that the Mediterranean (MED) stations, which
are roughly 90% of the total (367/408), are those which weigh more on the
variability of the median value of the mean number of events. The Arid
stations (ARID) show more overestimation for satellite data and very high
dispersion, as pointed out by the 5th and 95th percentile trend, but, since
they represent 10% of the stations only, they affect the overall behaviour only
slightly.

Figure 4.1: Bias (IMERG/Stations) in the mean number of yearly events esti-
mated using daily precipitation thresholds based on all satellite and stations
filtered values
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(a) MED

(b) ARID

Figure 4.2: Bias (IMERG/Stations) in the mean number of yearly events
estimated using daily precipitation thresholds based on all satellite and sta-
tions filtered values: (a) Mean n for the mediterranean stations. (b) Mean n
for the arid stations.
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4.2 Distribution tail identification
Following section 4.1, the tail of the ordinary events distribution, which is
the portion related to the most intense samples for which the assumption
of Weibull-tail holds, had to be identified. A test [Marra et al, 2020] was
implemented and applied to the rain gauge data, since considered as the
reference, to identify the portion of the ordinary events’ distribution better
adapting to a Weibull stretched exponential cumulative distribution function
(eq. 2.12).

4.2.1 Weibull tail test
A main function, called test SMEV was implemented in R programming
language to apply the test mentioned above. The six inputs of the function
are: vals (the precipitation ordinary events), bids (the recording year of
each vals), data portion (the portion of the events’ distribution to consider),
p (probability value between 0 and 1 related to the confidence interval),
niter (number of iterations) and station (the analyzed rain gauge station ID
number).

In the first part of the script, the ordinary events are sorted from the
smallest to the largest along with their bids, then annual maxima are iden-
tified and flagged.

Subsequently, two functions, Weibull fit and random weibull are called
in the script, which, respectively, allow to: estimate the ordinary events’ dis-
tribution parameters according to a given definition of the tail, and to ran-
domly generate a number niter of Weibull-distributed samples. The Weibull
fit script is described later in this section.

As shown in listing 4.1, at line 34 the Weibull tail test is applied to the
events’ distribution: annual maxima are selected and then compared to those
of 1000 random Weibull distributions created by bootstrap with replacement
(random weibull function). Quantiles of the randomly generated array are
computed by means of the quantile function, with p/2 and 1− p/2 denoting
the probabilities of the lower and upper percentile of the confidence interval.

If 80% confidence interval is selected, then p = 0.2 and the two test
variables, p hi and p low, give the mean fraction of the samples’ annual
maxima that are higher or lower than the 90th and the 10th percentile of the
1000 Weibull synthetic distributions. If p out = p hi + p low is lower than
0.2, i.e. if less than 20% of the maxima are out of the confidence interval, the
sample values can be considered as likely samples from Weibull-distributed
ordinary events.

According to the adopted confidence interval metrics, this means that
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the analyzed portion of the events’ distribution can be well described by a
Weibull one. Else, if p out > 0.2, the assumption of having a Weibull tail
defined by the used data portion is to be rejected.

1 test_SMEV <- function (vals ,bids , data_portion ,p,niter , station )
2 {
3 #let ’s sort the ordinary events
4 bids <- bids[order(vals)]
5 vals <- sort(vals)
6
7 #here i put a flag on the annual maxima
8 isams <- matrix (0, ncol =1, nrow= length (vals))
9 for (id in unique (bids)) ## devo trasporlo ?

10 {
11 ams <- 0
12 for (l in which (( bids ==id)!=0))
13 {
14 if(vals[l]>ams)
15 {
16 ams <- vals[l]
17 iams <- l
18 }
19 }
20 isams[iams] <- 1
21 }
22 -------------------------------------------------------
23 # calling the function wich estimates the distribution

parameters
24 parameters <- weibull_fit (vals , data_portion ,isams , censorams

= TRUE , station )
25
26
27 # creation of an array of random weibull distributions
28 randy <- random_weibull (niter , parameters [,1], parameters

[,2], length (vals))
29 -------------------------------------------------------
30 istest <- isams
31 ##Here , test to verify tail beahaviour is applied
32 p_lo <- mean(vals[ istest ==1] < apply( randy[, istest ==1] , 2

, quantile , probs = p/2 , na.rm = TRUE ),na.rm = TRUE)
33 p_hi <- mean(vals[ istest ==1] > apply( randy[, istest ==1] , 2

, quantile , probs = 1-p/2 , na.rm = TRUE ),na.rm = TRUE)
34
35 p_out <- p_hi + p_lo
36 results <- data.frame(p_lo ,p_hi ,p_out)
37 return ( results )
38 }

Listing 4.1: SMEV test function code
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Weibull fit function: parameter estimation

In this script (see listing 4.2), which can be applied to both land and satellite
based data, the distribution parameters are estimated by taking as input the
ordinary events and the selected data portion to be analyzed. In the begin-
ning, if input data are not ranked up from the smallest to the largest, data
sorting is applied. Then, the Empirical Cumulative Distribution Function
(ECDF), which gives the empirical non exceedance probability, is computed
by using the Weibull plotting positions formula and the section of sample
values is selected on the basis of the data portion input. Subsequently, if the
function is called by the test SMEV , annual maxima are censored from the
data in order to have independence for the tail test.

Afterwards, coordinates transformation is applied to data (ordinary events
and ECDF), in order to derive the distribution parameters n, λ, θ by means
of a linear regression. Last, a linear Weibull fit is plotted on the selected
portion of the ordinary events distribution according to the estimated pa-
rameters, in order to visually appreciate the match between the estimated
Weibull distribution and the available data samples.

1 weibull_fit <- function ( data_nozero , data_portion ,isams ,
2 censorams , station )
3 {
4 #We start by sorting in ascending order the input (non
5 #zero) data
6 X <- sort( data_nozero , decreasing = FALSE)
7 ib <- order( data_nozero )
8 isams <- isams[ib] #here the position of the ordered data
9 #in the original vector ( data_nozero ) is declared

10
11 ECDF <- matrix (data= ((1: length (X))/( length (X)+1)))
12 fidx <- max (1, trunc( length (X)* data_portion [1]))
13 tidx <- ceiling ( length (X)* data_portion [2])
14 to_use <- fidx:tidx
15
16 # annual maxima censoring
17 if ( censorams == TRUE)
18 {
19 to_use <- to_use [is. element (to_use ,which(isams ==0))]
20 }
21 # variables transformation
22 t <- log(log (1/(1 - ECDF[ to_use ])))
23 u <- log(X[ to_use ])
24 v <- matrix (1, nrow = length (X[ to_use ])) # weight matrix
25 res_vec <- data.frame(t,u,v)
26 ----------------------------------------------------
27 Results <- weightedfit ( res_vec )
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28 shape <- 1/ Results [,1] # Results [,1] is the slope
29 scale <- exp( Results [ ,2])# Results [,2] is the intercept
30 parameters <- data.frame(shape ,scale)
31
32 # Ordinary events distribution and Weibull fit plot
33 plot1 <- ggplot (data=NULL)+
34 geom_point ( mapping =aes(x=t,y=u)) +
35 geom_line ( mapping = aes(x=t,y= Results [ ,1]*t+
36 Results [ ,2]) , col=’red ’) +
37 labs(y= "log( DailyRain )", x = "log(log (1/
38 Exceedance probability )",title = str_c(’ Weibull
39 Fitting Station ’,station ), subtitle = str_c(’
40 Lower limit = ’, data_portion [1]) )
41 show( plot1)
42
43 return ( parameters )
44 }
45 --------------------------------------------------------
46 weightedfit <- function (data)
47 {
48 x <- data [,1]
49 y <- data [,2]
50 dimensions <- dim(data)
51 s <- dimensions [1]
52 t <- dimensions [2]
53 stdv <- matrix (1, nrow = s)
54 if (t==3)
55 {
56 stdv <- data [,3]
57 }
58 w <- 1 / stdv ˆ2
59 S <- sum(w)
60 Sx <- sum(w*x)
61 Sy <- sum(w*y)
62 Sxx <- sum(w*(xˆ2))
63 Sxy <- sum(w*x*y)
64 Delta <- S*Sxx - (Sx)ˆ2
65 a <- (Sxx*Sy - Sx*Sxy) / Delta
66 b <- (S*Sxy - Sx*Sy) / Delta
67
68 Results_slope <- b
69 Results_intercept <- a
70 results_weighted <- data.frame( Results_slope ,
71 Results_intercept )
72
73 return ( results_weighted )
74 }

Listing 4.2: Weibull fit function code
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4.3 Quantiles computation
After tail identification and parameters estimation, distribution quantiles
with long return period, for both rain gauges and satellite data, can be
computed.Quantiles associated to 2, 5, 10, 50, 100 and 500 years return
periods are computed using the inversion formula defined in section 2.3.2.

4.4 Error estimation and propagation
Differences between IMERG and rain gauge based estimated parameters and
quantiles were defined as errors. Scatter plots were used to visually inspect
these errors, in order to see which device showed overestimation or underes-
timation with respect to the other.

Then, the propagation of the error from satellite precipitation estimates
to SMEV-estimated quantiles was derived using Taylor series expansions.
Observed and estimated normalized errors in the quantiles were compared,
with IMERG values treated as deviations from reference values (rain gauges).

If second order series expansion is applied, then the deviation δq is

δq = q(Sat)− q(Stat) =
(
dq

dλ

)
δλ+

(
dq

dθ

)
δθ +

(
dq

dn

)
δn+

+ 1
2

[(
d2q

dλ2

)
δλ2 +

(
d2q

dθ2

)
δθ2 +

(
d2q

dn2

)
δn2

] (4.1)

where δλ, δθ and δn are the satellite parameters errors.
It should be highlighted that the series expansion is well applicable to

relatively small errors, while greater deviations are expected for higher ones.
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First derivatives

If quantiles are determined through equation 2.20, first derivatives are such
that

dq

dλ
δλ = dq|λ =

[
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thus

dq|λ
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= δλ

λ
(4.3)
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qθn
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 δn
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n
(4.4)

dq|θ
q

= −
ln
[(

q
λ

)θ]
θ

δθ

θ
(4.5)

These are the equations adopted in the error computation analysis for the
first order expansion. As it can be noticed, the second one simplifies into a
more handy expression if P tends to 1, that is the case of high return period
(extreme) quantiles.

The match between observed and estimated errors is expected to improve
for higher quantiles, due to the presence of the variable P in the quantile
estimation equation.
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Second derivatives

Considering the definitions obtained for the first derivatives, the second order
expressions are such that

dq2

dλ2 δλ
2 = dq2|λ = 0

dq2

dn2 δn
2 = dq2|n = −
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2θ + ln
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For P −→1 the second equation tends to 0, so both the scale and n parameters
contributions to the second order expansion can be neglected. Thus, the term

dθ2|θ
θ

=
qln

[(
q
λ

)θ] {
2θ + ln

[(
q
λ

)θ]}
θ5 δθ2 (4.7)

is the only second order one which influences the series expansion. These re-
sults show that the biggest weight in error propagation is due to the observed
shape deviations.

4.5 Moments-parameters correlation
Analysing the correlation between the derived parameters and the first mo-
ments of the ordinary events distribution allows us to understand how derived
information directly related to the errors in the estimated extreme quantiles,
such as the errors in the parameters, could be related to quantities (mo-
ments) that can be directly obtained from prior knowledge of the ordinary
events’ distribution and of the satellite estimation errors. This investigation
could help for associating the results gained in this work with preliminary
information on the accuracy of satellite data, even regarding other regions of
the globe.

Specifically, after having identified the left data portion which defines the
distribution tail, bias of the estimated shape and scale parameters (IMERG/S-
tations) were plotted against:
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• bias in the mean of the values above the selected threshold

• bias in the standard deviation of the values above the selected threshold

In the case of Israel, the correlation was studied both considering all the sites
together and dividing them according to the two climatic zones.
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Chapter 5

Results

In this chapter, the main results obtained by applying the methods discussed
in chapter 4 to the Austrian and Israeli land and satellite based data are
presented.

Starting from the identification of the distribution tails, several plots
were made and reported to see the correlations and differences in distribution
parameters and estimated quantiles between the two instruments in the three
climatic areas.

5.1 Distribution tail
Recalling section 4.2, in order to identify the distribution tails, the Weibull
tail test was applied to several portions of each station’s ordinary events
distribution, both for Austria and Israel.

Histograms (figure 5.1) were made to identify which part of the distribu-
tion shows a Weibull behaviour. The bins’ values represent the first left data
portion threshold, starting from the end of the distribution, for which the
value of p out = p hi + p low (where p hi and p low give the mean fraction
of the samples’ annual maxima that are higher or lower than the 90th and
the 10th percentile of the 1000 Weibull randomly generated distributions if
a confidence interval of 80% is selected) of the considered station falls below
0.2.

Furthermore, after having identified the optimal thresholds, linear fits
of the Weibull distributions describing the tail, computed by means of the
selected data portion parameters, were plotted on the overall ordinary events
distributions for better visual evaluation (figure 5.2).
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Austria

By looking at figure 5.1 (a), the tail of the distribution was identified as the
highest 10% values: in fact, once passed the 0.9 left threshold, most of the
stations had already reached p out values below 0.2.

Specifically, 75% of the 128 analyzed stations show p out values that,
at some point, are smaller than 0.2; moreover, for 82% of these, it hap-
pens between 0 and 0.9 thresholds. This value of 0.9 is in agreement with
the other studies [Miniussi and Marra, 2021] based on data from Germany,
where the climatic conditions usually characterized by stratiform precipita-
tion are similar to those of Austria. Figure 5.2 (a) shows what happens if
the linear Weibull fit, computed by exploiting this portion of data for which
p out falls below 0.2 for the first time without increasing again, is overlaid on
the overall distribution of a station in transformed coordinates. The Weibull
fit based on the highest 10% ordinary events values matches that portion of
the distribution, while it departs from them at lower values, corroborating
the choice of 0.9 as left data portion threshold for Austria ordinary events
distribution tail identification. This choice implies that, in Austria, the an-
nual maximum daily precipitation amounts are likely samples from ordinary
events with Weibull tail, defined as the largest 10% of the ordinary events.

Israel

In Israel (figure 5.1 (b)), the selected left data portion threshold is 0.75. In
fact 98% of the 408 analyzed stations showed values of p out below 0.2 at
some point of the distribution and for 87% of these it happens before the 0.75
threshold included. This is in agreement with other precipitation frequency
analysis works studying data from this Israeli stations network [Marra et al.,
2019b].

As shown in figure 5.2 (b), the 25% most intense precipitation values
fit well the linear Weibull distribution with progressive deviation for lower
values. It can be noted that, in the y axis, values of the logarithm of daily
precipitation start from a higher magnitude than those of Austria (figure
5.2 (a)): this is due to the fact that the chosen precipitation threshold is
1 mm for Israel, as opposed to the 0.11 mm of Austria, thus leading to
a censoring of low ordinary events values. Also, the overall shape of the
distribution is different from that of the Austrian stations: in fact, lower
ordinary events show a lower deviation from the Weibull fit. This can be
explained by considering that in Israel the precipitation events are more
easily related to convective structures, thus more likely to be independent
and Weibull distributed [Wilson and Tuomi, 2005; Berg et al., 2013].
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(a) Austria

(b) Israel

Figure 5.1: Austria and Israel p out histograms for distribution tail identi-
fication: each bin represents the left data portion threshold for which, for
the first time, starting from right, the value of p out in the Weibull tail test
falls below 0.2 without increasing again above that value until the end of the
distribution. On the x axis, the left data portion threshold is reported by
means of normalized interval (0,1).
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(a) Austria

(b) Israel

Figure 5.2: Weibull fits (red line) obtained from 0.9 and 0.75 left data portion
threshold for Austria and Israel respectively plotted on the overall ordinary
events distributions of station 10 (Austria) and 375 (Israel) of the two land
based datasets.
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5.2 Parameters and quantiles
Identification of the distribution tails allowed us to derive the parameters
describing them. Successively, by exploiting these results, extreme quantiles
were computed.

The shape and scale parameters are fundamental quantities in the de-
scription of daily rainfall PDFs: while scale affects the distribution by stretch-
ing or shrinking it, the shape parameter changes its overall shape. These two
deegrees of freedom interact by producing different consequences on ordinary
and extreme events distribution.

Precisely, as visible in figure 5.3, if a reference probability distribution is
defined, then, an increase (or overestimation) in the shape parameter would
lead to a decrease (or underestimation) in the PDF tail, i.e. underestimation
of extreme events, since it describes how quickly the negative exponential
diminishes. Underestimation of the shape parameter, instead, would lead to
an overestimation of the tail.

These differences affect the quantiles estimation also: in fact, if quantiles
are derived by means of equation 2.20, high shape values would be related to
greater quantiles underestimations for higher return periods and viceversa.

Figure 5.3: Weibull stretched exponential distributions in transformed coor-
dinates with Scale parameter fixed to 1 and varying Shape parameter.
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5.2.1 Parameters
Derived Mean number of yearly ordinary events (n), Shape and Scale pa-
rameters for both Austria and Israel were analyzed in scatterplots where
land-based estimates are on the x axis and satellite-based ones were placed
on the y axis so as to identify how and where the IMERG algorithm overes-
timated or underestimated them.

Mean number of yearly events

In figure 5.4, the n parameter scatterplots are shown, with the black line
being x=y. In the Austria case, despite the fact that they cover a relatively
small region, the stations present a high variability in the mean number
of yearly ordinary events, with values ranging from little more than 150 to
roughly 230. The satellite, instead, also due to the fact that just 8 pixels
are considered for the 128 stations, shows very little dispersion with a mean
value around 171 days. It is important to highlight that the IMERG product
underestimates this parameter for most of the stations: this could be due
to the measurement difference of the two types of instruments. In fact, rain
gauges can collect water also below their minimum detectable threshold,
then, when the volume of one side of the tipping bucket is full (which means
that 0.11 mm of rain has been collected) the lever tips and the precipitation
is recorded. Hence, if they collect precipitation in previous hours or day, it
will appear as an ordinary 0.11 mm event not being observed by the satellite
product. At the same time, since IMERG retrievals consider 8 pixels only,
the fine scale variability of precipitation events is not reproduced as well as
done by the rain gauges which report point values in a very dense network
and this means that the estimate errors are more likely to be due to the
satellite product.

The blue dot in the figure represents the long-recording Bad Gleichenberg
station (not present in the Wegenernet Network), which reports precipitation
data from 1948 and is located at 46.879◦N and 15.907◦E. It has been used
in preliminary evaluation of the datasets to spot differences between the new
and highly sensitive network and the old long record.

In the Israel case, brown dots are related to the ARID climate stations,
while green dots represent the MED ones. Here, a completely different sit-
uation was found: in fact, MED stations are characterized by both satel-
lite overestimation and underestimation for events above the 1 mm selected
threshold; ARID areas, instead, always show satellite overestimation. To ex-
plain the increased detection of events in these cases, two main aspects have
to be taken into account: first, in Israel satellite pixels, the Mediterranean
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and the Dead seas may be included, thus leading to grater noise in the detec-
tion of precipitation (moreover, the Dead sea is not masked as water surface
by the retrieval algorithms in IMERG). Second, the climatic conditions are
such that the precipitation events are typically due to convective processes,
which could involve just one or few stations. However, when the satellite
retrieval is applied, all the events recorded by the single stations in the con-
sidered satellite pixel (which gives areal estimates) result as summed up in
the final number of events count. This last feature becomes more relevant
for the ARID stations, since the few precipitation phenomena affecting these
places are almost entirely convective [Sharon, 1972].

Shape and Scale

Looking at figures 5.5 (a) and 5.6 (a), it can be noticed that the Shape
values, estimated as in section 4.2.1, are distinguished by an overall satellite
overestimation for the Austrian dataset, thus leading to an underestimation
effect on extremes with respect to land-based data. The Scale parameter is
also characterized by overestimation, but, since this is related to an opposite
effect on extremes, high quantiles estimates are expected to be less biased.

In the Israel case (figures 5.5 (b) and 5.6 (b)), both the Shape and Scale
parameters estimates present underestimation for IMERG, which leads to
overestimation and underestimation in extremes, respectively. Thus, high
quantiles estimates should be less biased as for the Austrian network, even
if the Scale estimates for the ARID area are generally higher for the satellite
product.
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(a) Austria

(b) Israel

Figure 5.4: Mean number of events (n) scatterplots. The blue dot represents
the Bad Gleichenberg station for the Austria study area (figure a), while in
Israel scatterplots (figure b) brown dots represent the estimates for the ARID
stations and the green ones represent the estimates for the MED stations.
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(a) Austria

(b) Israel

Figure 5.5: Shape scatterplots. The blue dot represents the Bad Gleichenberg
station for the Austria study area (figure a), while in Israel scatterplots (figure
b) brown dots represent the estimates for the ARID stations and the green
ones represent the estimates for the MED stations.
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(a) Austria

(b) Israel

Figure 5.6: Scale scatterplots. The blue dot represents the Bad Gleichenberg
station for the Austria study area (figure a), while in Israel scatterplots (figure
b) brown dots represent the estimates for the ARID stations and the green
ones represent the estimates for the MED stations.
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5.2.2 Quantiles
Quantiles estimation was done on the basis of parameters’ results using eq.
2.20. Scatterplots of the IMERG versus stations’ quantiles were obtained
(figures 5.7, 5.8, 5.9, 5.10). In the Austria case study, a slight overall over-
estimation of the lowest studied quantiles (2, 5, 10 years return period) can
be noticed, while for the highest return levels a better compensation is visi-
ble, due to the combination of overestimation for both the scale and shape
parameters.

For the Israel case study, a different situation is detectable: in fact, a
general overestimation affects all the computed quantiles. This could be due
to the combination of two issues:

1 Shape underestimation is stronger than the Scale one

2 Shape weight in the inversion formula is bigger than the Scale one

Regarding point 1, as showed above, Israel shape estimates are character-
ized by an overall underestimation, with just two stations overestimated by
IMERG, while, for the scale case, even if values have more dispersion, several
cases (mainly ARID ones) exhibit larger satellite estimates with respect to
rain gauges. Point 2 comes from the fact that, in the quantiles inversion for-
mula, θ appears as a root index, while λ is just a multiplicative factor: this
is corroborated by section 4.4 derivations, where it was shown that at the
second order expansion the error in θ is the only not negligible term. This
feature is better analyzed in the next paragraph where error propagation
results are reported.
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Figure 5.7: Austria derived quantiles: 2, 5, 10 years return period. Blue dot
represents the Bad Gleichenberg station.
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Figure 5.8: Austria derived quantiles: 50, 100, 500 years return period. Blue
dot represents the Bad Gleichenberg station.
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Figure 5.9: Israel derived quantiles: 2, 5, 10 years return period. Blue dots
represent the ARID stations, red ones represent the MED stations.
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Figure 5.10: Israel derived quantiles: 50, 100, 500 years return period. Blue
dots represent the ARID stations, red ones represent the MED stations.
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5.3 Error propagation
This step consists of studying relationships between observed and estimated
(computed by means of Taylor series expansion as in section 4.4) normalized
quantiles’ errors, so as to understand and quantify several parameters’ esti-
mation errors weight and reliability of the SMEV framework in parameters’
and quantiles’ estimation.

5.3.1 Austria
Figures 5.11 and 5.12 show scatterplots between normalized observed and es-
timated Austria errors. Differences between rain gauges and satellite are rel-
atively small, in fact overestimations both for the two products with respect
to each other never exceed 40%. Also, a good correlation between the two
error types is visible even for low quantiles: in fact, all scatterplots’ points
lay near the x=y line, with better agreement for higher quantiles because
approximations made in deriving the error equation are especially suited for
extreme quantiles. Also, it can be noticed a slight tendency in overestimation
for estimated (computed) errors, mostly for lower observed differences. Nev-
ertheless, perfect agreement is never reached, since the section 4.4 equations
are approximations truncated at the second order expansion.

5.3.2 Israel
In figures 5.13 and 5.14, scatterplots between normalized observed and esti-
mated Israel errors are shown. In this case, differences between stations and
satellite reach maximum values of nearly 500% for the 2 years return period
quantiles. This bigger dispersion is due to the greater heterogeneity in sta-
tions’ location and in climatic conditions; also, arid areas and sea surfaces
increase noise in satellite retrievals.

A general underestimation for estimated errors is visible in case of higher
observed differences (typical of ARID stations), but it constantly decreases
for higher quantiles. In conclusion, a great agreement between estimated
and observed quantile errors was found, which improves for higher return
periods. Moreover, this improvement is way more visible in this case than in
the Austrian one.
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Figure 5.11: Austria error propagation: 2, 5, 10 years return period
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Figure 5.12: Austria error propagation: 50, 100, 500 years return period
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Figure 5.13: Israel error propagation: 2, 5, 10 years return period. Black
dots represent MED stations, red dots represent ARID stations.
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Figure 5.14: Israel error propagation: 50, 100, 500 years return period. Black
dots represent MED stations, red dots represent ARID stations.
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5.4 Moments-parameters correlation
Correlation between specific moments of the distribution errors, such as the
mean precipitation value and its standard deviation above the selected left
data portion (0.9 for Austria and 0.75 for Israel) and the parameters’ errors
was studied so as to see if derived quantities (the distribution parameters)
could be related to the moments which can be obtained from prior knowledge
of the satellite estimation errors.

The errors in this case are defined as bias, in particular as the ratio
between IMERG and stations estimates. The blue and yellow lines in the
following figures represent the linear fit based on the plotted dots, while the
green shading represents the 90% confidence interval.

5.4.1 Austria
Figures 5.15 and 5.16 show Austrian correlations for scale and shape param-
eters respectively.

It can be noticed that a modest correlation is identifiable between scale
and mean precipitation value errors (fig. 5.15 (a)), where the R2 value is
equal to 0.450, even if dispersion is not negligible, mostly for higher bias.
Standard deviation (fig. 5.15 (b)), instead, doesn’t show signs of an actual
correlation: in fact, the R2 term is nearly 0.

Shape errors are characterized by a completely different tendency, in fact
some correlation is visible between them and standard deviation biases (fig.
5.16 (b)) with an R2 value of 0.372. Mean precipitation value errors (fig. 5.16
(a)), instead, don’t show interdependence: R2 is nearly 0 and the dispersion
is high.

5.4.2 Israel
In this case, ARID stations have been highlighted with red dots to distinguish
them from the MED ones in figures 5.17 and 5.18.

The greater number of stations and the better match between Israel or-
dinary events tail and the Weibull distribution reduced the dispersion in fit
estimates for the scale errors: as shown in fig. 5.17 (a), a very high correlation
was found for mean precipitation value errors with R2 = 0.891. ARID sta-
tions in this case increase the degree of correlation since they are distributed
close to the linear fit, even if characterized by greater bias values. Standard
deviation also shows a slight correlation with the scale parameter (fig. 5.17
(b)), in fact R2 = 0.486. As opposed to the mean precipitation value errors,
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ARID stations are characterized by high dispersion, due to the greater noise
of satellite retrievals for these areas.

Israel shape errors don’t show sign of noticeable correlations with the
Mean precipitation value differences (5.17 (a)). Standard deviation errors
(5.17 (b)) appear as uncorrelated if linear fit is done on all the stations, but
if the ARID stations are filtered out, the R2 value increases considerably to
0.357 as visible in figure 5.19.
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(a)

(b)

Figure 5.15: (a). Austria Scale error vs. Mean precipitation error (b). Aus-
tria Scale error vs. Mean precipitation standard deviation error
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(a)

(b)

Figure 5.16: (a). Austria Shape error vs. Mean precipitation error (b).
Austria Shape error vs. Mean precipitation standard deviation error
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(a)

(b)

Figure 5.17: (a). Israel Scale error vs. Mean precipitation error (b). Israel
Scale error vs. Mean precipitation standard deviation error
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(a)

(b)

Figure 5.18: (a). Israel Shape error vs. Mean precipitation error (b). Israel
Shape error vs. Mean precipitation standard deviation error
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Figure 5.19: Israel Shape error vs. Mean precipitation standard deviation
error for MED stations only.
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Chapter 6

Summary and Conclusions

In this work, satellite (IMERG V06) and land based precipitation data have
been studied and analyzed with the overarching objective of improving the
estimation of high return period quantiles from satellite observations. These
extreme precipitation events are of main concern in several fields, such as
hydrological design, insurance and reinsurance businesses, natural hazard
risk estimation and management and many other applications.

Satellite data are of fundamental relevance in the process of precipitation
frequency analysis because of the scarce land coverage of rain gauges: their
uneven distribution doesn’t allow to obtain enough information on the most
remote parts of the globe and on the sea surface.

Since very few studies on assessing differences between land and satellite
based precipitation measurements have been done so far and error correlation
between derived quantiles for the two types of instruments has not been well
described yet, in this thesis several steps in the direction of closing these gaps
were made.

Study areas with very different characteristics were selected: a portion
of south-eastern Austria and the whole territory of Israel. This allowed to
identify three main climatic zones: 1 for Austria, which belongs to the warm-
summer humid continental climate Dfb, and 2 for Israel, which have been
labelled as ”Mediterranean” (or MED, for Csa zones) and ”Arid” (or ARID,
for BSh and BWh zones).

In the first place, data quality was checked and ordinary events, i.e. daily
precipitation data defined as realization of independent stochastic variables,
were defined by identifying the right daily precipitation threshold for both
the study areas.

Then, a preliminary test, based on the SMEV statistical framework, that
is a simplified version of the Metastatistical Extreme Value framework, was
applied to the land based data, considered as the reference, so as to iden-
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tify the ones which belong to the precipitation probability distribution tail.
Afterwards, distribution parameters and high return period quantiles were
derived for both satellite and stations data regarding all the study areas.
Then, differences in these derivations between the two instruments were an-
alyzed and correlated so as to understand gaps and errors and how to adjust
them.

The results achieved in this work can be summarized as follows:

• The daily precipitation threshold for the Austrian data was set to 0.1
mm, because the difference in daily precipitation estimation is very
slight for the rain gauge and satellite products. In the case of Israel,
due to the presence of the ARID area, whose station data are charac-
terized by a very high dispersion, and of the Mediterranean and Dead
sea in the satellite pixels, noise is way more emphasized, thus leading
to pronounced differences in satellite daily event estimates with re-
spect to rain gauges ones. This led to choosing 1 mm as the threshold
value, since starting from this quantity the overestimation for satellite
retrievals is almost null.

• Distribution tail identification, carried out by comparing several por-
tions of the stations’ ordinary events to Weibull stretched exponential
distributions, led to the choice of selecting the highest 10% and 25%
ordinary events for Austria and Israel, respectively, as the values rep-
resenting the tail. In fact, Weibull distributions, obtained from the
parameters estimated on the basis of the tail events so defined, fit
very well these portions of the probability distributions, while they in-
creasingly deviate while approaching lower values. For the Israel case
study, correspondence starts at lower non exceedance probability val-
ues since precipitation events characterizing this area are mostly con-
vective. They better adapt to Weibull distributions, also because of
the fact that they are more likely to happen within one day and thus
to be independent.

• Parameter estimation led to different results for the analyzed areas.
The mean number of yearly ordinary events shows a high variability
roughly ranging from 150 to 230 days for Austrian stations, despite
the fact that the network covers a very small region around the city of
Feldbach. The IMERG product underestimates it for most of the rain
gauges: this could be due to the fact that IMERG retrievals consider
8 pixels only, so the fine scale variability of precipitation events is not
reproduced as well as done by the rain gauges which report point values
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in a very dense network. Furthermore, the tipping buckets of the sta-
tions collect rain below their detectable threshold, but they tip when
the volume of each of them is full (thus precipitation under the thresh-
old happened in previous day is recorded as daily values in the next
ones), that is when 0.11 mm of water has been gathered; meanwhile
satellite products just capture radiation corresponding to precipitation
signals greater than or equal to their detection threshold, so they end
up in recording less daily events.

• As to Israel’s mean number of yearly ordinary events analysis, ARID
and MED stations were separated: this allowed to notice that while
the ARID rain gauges are characterized by systematic overestimation
of the ordinary events above the 1 mm threshold, the MED stations
show overall compensation between overestimation and underestima-
tion of this parameter. The overestimates could be due to two main
issues: firstly, satellite pixels include sea surface from the Mediterranen
and Dead seas, whose noise leads to an increase in detection of precip-
itation events; secondly, the climatic zones are such that convective
precipitation is way more likely to happen with respect to the strati-
form type, so when events affect individual stations, satellite product
just sums up all the events happened in one pixel which may include
several stations.

• Austria shape and scale parameters estimates are characterized by over-
all satellite overestimation. Since they have an opposite effect on quan-
tiles’ derivation (scale is a multiplicative factor, shape is the index of
a logarithm’s root), they lead to a general compensation when these
are computed, which becomes more relevant for higher return periods.
This could be due to the fact that shape overestimation is related to
very high extremes underestimation, while if scale is overestimated,
extremes are overestimated like all the other distribution values. For
the Israel case study, shape parameter values showed IMERG under-
estimation for almost all the stations. Scale estimates, instead, are
characterized by sharp overestimation for ARID stations and overall
underestimation for MED stations. This led to a general overestima-
tion of the quantiles, whose dispersion decreases for higher return peri-
ods, because of the facts that shape overall underestimation is stronger
than the scale one and that this parameter’s weight in the inversion
formula for retrieving quantiles is bigger than the scale one.

• Observed errors, defined as normalized differences between IMERG and
rain gauges derived quantiles, were analyzed and compared to esti-

80



mated errors obtained from the second order Taylor series expansion.
Even if over and under-estimations between the two products are larger
for Israel, both the study areas showed a considerable agreement be-
tween observed and estimated errors, with increasing match for higher
quantiles, due to the fact that approximations, which are more valid
for higher quantiles, were made in deriving second order error propa-
gation equations. Also, Austrian errors are characterized by a slight
Taylor expansion overestimation, especially for low differences, while,
for Israel, a tendency in underestimation for higher errors was found.

• Correlation between parameters and moments of the distribution errors
(IMERG/stations) showed that the scale errors are strongly correlated
with the mean precipitation value above the selected left data portion
threshold for both the study areas. At the same time, the standard
deviation error of the mean precipitation value is characterized by a
slight anti-correlation with the shape parameter errors for both the
areas; but for Israel this relation becomes valuable if MED stations are
considered only, while it decreases considerably if ARID stations are
added in the fitting.

6.1 Outlook
These results will possibly help in improving and adjusting satellite retrievals
over regions of the globe poorly covered by rain gauges and characterized by
climatic conditions analogous to those analyzed in this work. The moments-
parameters error correlation allowed us to understand which are the connec-
tions between derived quantities and those available by prior knowledge of
the probability distribution of the ordinary events, so these results can be
applied to other remote or scarcely sampled areas such as oceans, deserts
and rain forests.

Future applications will hopefully focus on applying the methods ex-
ploited in this thesis to other regions with climatic conditions different from
the ones here analyzed, possibly with dense and reliable rain gauges networks
which can be used as reference for preliminary evaluation. Another future
implementation should be based on the analysis of areal means of the station
data: in fact, satellite pixels usually include several stations, so that analy-
sis of averaged land based values could give estimates closer to the satellite
retrievals.
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Glossary

ARID Israel stations in the BSh and BWh climate zones.

ECDF Empirical Cumulative Distribution function.

EVT Extreme Value Theory.

GEV Generalized Extreme Value distribution.

GPM Global Precipitation Measurement mission.

IMERG Integrated Multi-SatellitE Retrievals algorithm for the GPM mis-
sion.

MED Israel stations in the Csa climate zone.

MEV Metastatistical Extreme Value framework.

PDF Probability Density Function.

RP Return Period.

SMEV Simplified Metastatistical Extreme Value framework.

TRMM Tropical Rainfall Measuring Mission.
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