
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea in Computer Science

MicroRacer:
Development of a didactic environment

for Deep Reinforcement Learning

Supervisor:
Chiar.mo Prof.
Andrea Asperti

Author:
Marco Del Brutto

Session III
Academic Year 2020/2021



To my family.





Introduction

Reinforcement Learning (RL) is a branch of machine learning where an

agent taking actions in a given environment is supposed to learn an optimal

behaviour by acquiring experience. Due to its recent, numerous and remark-

able improvements and the availability of faster processors, RL is now much

more widespread than in the past. In addition to the traditional fields of

robotics and autonomous driving, RL has been successfully applied in vari-

ous and diverse sectors, such as electric power system optimization, Natural

Language Processing (NLP), financial marketing, and many more.

One of the major improvements of the last ten years has been the adoption

of Deep Neural Networks as function approximators to address scalability

issues, leading to the creation of an entirely new branch, of the discipline,

known as Deep Reinforcement Learning. Despite the continuous increase in

the use of RL, it remains a mathematically complex field and an active field

of research. Furthermore, the addition of neural networks has introduced

ulterior difficulties, such as a longer training time, and issues in debugging

and explainability, in particular relative to the comprehension of various

problems and failures during the training process.

Considering what has just been stated, the didactic of deep reinforcement

learning could be complex. More than once in the past, this problem has been

tackled. As a result, different environments have been developed during

the last years. However, in many cases these environments haven’t really

represented a solution, for different reasons. In some cases, they can be

considered as either too simplistic or too complex. In other cases, even

i



ii INTRODUCTION

if these environments are interesting or stimulating, the long training times

may render every attempt to study or optimize Deep Reinforcement Learning

algorithms problematic.

In this thesis, we worked at the development and testing of the Microracer

DRL environment, a new environment for the didactic of DRL, originally

created by Prof.Asperti. The environment takes inspiration from car racing:

the goal consists in completing random generated tracks in the shortest time,

just relying on lidar-like observations.

Different parts have been added to the original project given. An opti-

mization work has been made since the lidar handling has been moved from

Python to Cython in order to improve its execution time. Moreover, the

time-step of the environment has been regulated accordingly to the new ex-

ecution speed and the code has been reformatted to be easier to use.

To render the track more interesting, its creation has been enriched by adding

obstacles and chicanes. Since it has been noticed that in some cases the orig-

inal project could be too trivial, a maximum turning angle limiter has also

been implemented.

A race mode has been implemented, with the relative graphic visualization,

to allow different models to compete against each others. This gives the en-

vironment a more competitive nature.

Different DRL algorithms have been added as well, to give some baselines

and to test the environment from various perspectives. Finally, several ex-

periments and tests has been conducted with the aim to verify its viability

as a reinforcement learning environment with the needed characteristics.

Structure of the thesis

In the first chapter, Reinforcement Learning is introduced. A description

of its basic mechanics is given, and the techniques on which it relies are

explained as well. Deep Reinforcement Learning is finally described and the

structure of the most modern DRL algorithms is presented.



INTRODUCTION iii

In the second chapter, the most famous car-racing Reinforcement Learn-

ing environments are mentioned, from the classical to the latest developed.

Only the environments specifically created or adapted to didactic or experi-

mental purposes are treated. Their features are also specified.

The third chapter is dedicated to the complete description of MicroRacer.

There is a detailed explanation of its inner working process. The structure of

the states and actions are also depicted and the interface used by the environ-

ment is outlined. Furthermore, it is explained how to launch a competitive

race, an evaluation run and how they work.

The fourth chapter, finally, contains the explanation of the tests con-

ducted on MicroRacer to demonstrate its functionality. The results of the

tests are also present and a description of catastrophic forgetting as a problem

commonly encountered using this environment is included.





Contents

Introduction i

1 Reinforcement Learning 1

1.1 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Returns . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Policy and Value function . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Value function . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Exploration vs Exploitation . . . . . . . . . . . . . . . . . . . 7

1.4.1 On-policy methods . . . . . . . . . . . . . . . . . . . . 7

1.4.2 Off-policy methods . . . . . . . . . . . . . . . . . . . . 8

1.5 Fundamental RL Methods . . . . . . . . . . . . . . . . . . . . 8

1.5.1 Dynamic Programming . . . . . . . . . . . . . . . . . . 8

1.5.2 Montecarlo . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.3 Temporal-Difference learning . . . . . . . . . . . . . . . 10

1.6 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . 11

1.6.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . 12

1.6.2 Policy Gradient methods . . . . . . . . . . . . . . . . . 13

1.7 Modern Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7.1 DDPG . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7.2 PPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

v



vi CONTENTS

1.7.3 TD3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.7.4 SAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.7.5 DSAC . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Car-racing RL-Environments 23

2.1 OpenAI Gym . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 AWS DeepRacer . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 TORCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Learn-to-Race . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 MicroRacer 31

3.1 Track structure . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Obstacles generation . . . . . . . . . . . . . . . . . . . 33

3.1.2 Chicanes generation . . . . . . . . . . . . . . . . . . . 34

3.2 Racer internal state . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Termination . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Lidar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 State, Action and Reward . . . . . . . . . . . . . . . . . . . . 38

3.3.1 State structure . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 Action structure . . . . . . . . . . . . . . . . . . . . . 39

3.3.3 Reward function . . . . . . . . . . . . . . . . . . . . . 39

3.4 Environment interface . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Competitive Race . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Evaluation Run . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Experiments and Results 43

4.1 Implemented methods . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Catastrophic forgetting . . . . . . . . . . . . . . . . . . . . . . 48

Conclusions 51

A Appendix 53



List of Figures

1.1 Representation of the interaction between agent and environ-

ment in a Markov decision process . . . . . . . . . . . . . . . . 2

1.2 A neural network with four inputs units, two hidden layers

and two output units . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 DDPG pseudocode . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 PPO pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 TD3 pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 SAC pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.7 DSAC pseudocode . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 CarRacing-v0 example . . . . . . . . . . . . . . . . . . . . . . 25

2.2 DeepRacer example . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 TORCS example . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Learn-to-Race example . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Example of a generated track. On the left representation of the

track using the generated splines; on the right representation

of the boolean matrix map. . . . . . . . . . . . . . . . . . . . 32

3.2 On the left, an example of a track with obstacles in red; on the

right, details of one obstacle. The part in gray is considered

invalid on the boolean matrix. . . . . . . . . . . . . . . . . . . 34

vii



viii LIST OF FIGURES

3.3 Details on chicane creation. The blue line is the mid-line and

the blue dots are the pre-existing turn points, the green dots

are the added outer control points, the red dots are the inner

added control points while the orange and the green lines are

the inner and outer borders of the track, created from the

mid-line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Example of a race between 4 agents: two of them have al-

ready finished the track, one went off road while another is

still running. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Training curves of all methods except PPO. The solid lines

correspond to the mean and the shaded regions correspond to

95% confidence interval over 5 trainings. . . . . . . . . . . . . 47

4.2 Example of catastrophic forgetting: on the left average episodic

reward over 50000 training steps using DDPG, on the right

average episodic reward over the same number of steps using

DSAC. After a phase of catastrophic forgetting, both methods

return to improve. . . . . . . . . . . . . . . . . . . . . . . . . 49



List of Tables

4.1 Hyperparameters used in the various methods. . . . . . . . . . 45

4.2 Average training time required to run 50000 training iterations

(600 episodes for PPO) using each method calculated over 5

trainings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Average and maximum of 100 evaluation episodes executed

after each training over 5 trainings of 50000 iterations (600

episodes for PPO). . . . . . . . . . . . . . . . . . . . . . . . . 48

A.1 Complete results of 100 evaluations episodes executed after

each training process. . . . . . . . . . . . . . . . . . . . . . . . 54

ix





Chapter 1

Reinforcement Learning

Let’s first introduce the meaning of reinforcement learning, which is a

particular branch of machine learning. When talking about reinforcement

learning, it is useful to cite the definition given by Sutton and Barto in their

book Reinforcement learning: an introduction. They state that “Reinforce-

ment learning (. . . ) is simultaneously a problem, a class of solution methods

that work well on the problem, and the field that studies this problem and

its solution methods.” [17]

This field employs methods studied to solve problems by using algorithms

capable of learning the right action to perform, in a given situation. The

algorithm cyclically interacts with an environment of some sort in a “trial

and error” way; as a result, it collects a feedback in the form of a reward

signal. The reward given by the environment can be a positive or negative

feedback and represents a score given to the action happened in a specific

environment condition. The main aim of this process is not to obtain an

higher reward in a specific moment, instead, it is to maximize the future

cumulative rewards. In fact, the rewards given after each interaction will be

used to optimize the process of choosing a specific action over another, to

maximize future rewards.

This process is opposed to other branches of machine learning, like su-

pervised and unsupervised learning. These two mentioned methods, indeed,

1



2 1. Reinforcement Learning

always use pre-built data collections, and in supervised cases pre-labeled data

collections, in order to learn.

1.1 Markov Decision Process

Reinforcement learning typically applies the concept of Markov Decision

Process as mathematical framework, in order to describe and formalize prob-

lems.

A Markov Decision Process, or MDP, is a stochastic control process com-

posed by two main elements, that interacts in a discrete time-step way: the

agent and the environment.

Figure 1.1: Representation of the interaction between agent and environment

in a Markov decision process

For every time-step the agent will generate an action by checking the

state, which is a collection of data that describes the current environment

configuration. This action will influence the environment, modifying its con-

figuration. Therefore, the environment will respond with a new state and a

reward, which will be relative to the action taken in the previous state. This

cycle will be repeated continuously by the algorithm.

Each state-action combination can lead to diverse paths and different future

rewards, as a result the agent will try to use all of these data to maximize

future rewards. Each time-step can be described by the sequence (s, a, r, s′);

where s represents the current state, a is the action taken, r is the reward



1.1 Markov Decision Process 3

obtained using action a in the state s, and s′ is the new state resulted from

action a in state s.

The concatenation of each sequence for every time-step is called a trajectory:

S0, A0, R1, S1, A1, R2, S2, A2, R3, S3... (1.1)

This sequence can be endless in the case that this process hasn’t a temporary

limit. In this specific case, the problem is called a continuing task. On the

contrary, if the problem has a termination, it is called an episodic task.

Each new state and reward, generated by the environment at time t conse-

quently to a state-action pair, have a discrete probability distribution defined

as follow:

p(s′, r|s, a) .
= Pr{St = s′, Rt = r|St−1 = s, At−1 = a} (1.2)

for each s, s′ ∈ S, r ∈ R, a ∈ A, with S as the state space, R as the possible

rewards and A as the action space. This makes possible that every future

reward and state depend only on the current state and action, with no need

of previous information. This property is called Markov property.

As the agent will try to maximize the total amount of rewards it receives, it

is necessary to calculate the cumulative rewards of a trajectory. To do so,

we need to introduce the concepts of expected return and discount rate.

1.1.1 Returns

The expected return is the sum of all the rewards in a trajectory. However,

if we need to apply this to a process that has no end, as in a continuing task,

we need to assign a weight to future rewards. Otherwise, in the long run the

sum will be infinite. This weight is called the discount rate.

The discount rate is a number between 0 and 1, which represents the impor-

tance of future rewards. If the rate is 0 or closer to 0, future rewards will

have little or no relevance. On the contrary, the closer to 1 they are, the

more relevant they will be considered.



4 1. Reinforcement Learning

The expected return Gt is defined as follows:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+3 + ... =

∞∑
k=0

γkRt+k+1 (1.3)

where γ is the discount rate. As a result, a reward in a distant future step k

is only worth γk−1.

1.2 Policy and Value function

Additional concepts that it is necessary to introduce in order to better

understand this process are policy and value function.

1.2.1 Policy

As Sutton and Barto state, “A policy is a mapping from states to prob-

abilities of selecting each possible action.” [17] A policy π(s) defines the be-

haviour of the agent, which corresponds to the choice of the action, according

to the state of the environment. The policy is constantly being updated by

the process, according to the experience gained.

There are two different kinds of policies.

The first kind is called stochastic policy, if it’s based on a probability dis-

tribution; while the second kind is called deterministic policy, if there is a

direct association between state and action.

1.2.2 Value function

The value function is a function which attributes a numerical value to

every state or state-action pair. The numerical value given by the function is

an estimation, which represents how much is worth a given state or perform-

ing a specific action in a given state in terms of future rewards. The value

function directly depends on the policy, since the value function is updated

by the received rewards, which are the consequences of the actions chosen



1.2 Policy and Value function 5

by the policy. The policy itself can be updated according to the values esti-

mated by the value function.

The state-value function of a state s under a policy π, is formally known as:

vπ(s)
.
= Eπ[Gt|St = s] = Eπ

[
∞∑
k=0

γkRt+k+1|St = s

]
, for all s ∈ S (1.4)

where Eπ[·] is the expected value of a variable having the agent follows policy

π and t as any time-step.

In the case of the action-value, the function is the following:

qπ(s, a)
.
= Eπ[Gt|St = s, At = a] = Eπ

[
∞∑
k=0

γkRt+k+1|St = s, At = a

]
(1.5)

The value function demonstrates a recursive relationship between the

value of the current state and the values of its successors states. This rela-

tionship is defined as follows:

vπ(s)
.
= Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a) [r + γEπ[Gt+1|St+1 = s′]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvπ(s
′)] , for all s ∈ S

(1.6)

And this equation is called Bellman equation for vπ.

1.2.3 Optimality

The objective of a reinforcement learning training process is to obtain

a policy that performs better than any other; it is called optimal policy. In

order to find the best one, a method to compare policies is required. To do so,

we need to use the value function. A policy π is better or equal than another

policy π′ if and only if vπ(s) ≥ v′π(s) for all s ∈ S. The optimal policy π∗

(which isn’t unique) is, therefore, the one determined by the optimal value

function v∗. It is defined as follow:

v∗(s)
.
= max

π
vπ(s) for all s ∈ S (1.7)



6 1. Reinforcement Learning

In the same way, an optimal policy also has an optimal action-value function

defined as:

q∗(s, a)
.
= max

π
qπ(s, a) for all s ∈ S and a ∈ A(s) (1.8)

which can be written in terms of the value function as:

q∗(s, a)
.
= E[Rt+1 + γv∗(St+ 1)|St = s, At = a] (1.9)

As the value function satisfies the Bellman equation, the same must happen

for the optimal value function. In fact, the Bellman equation for v∗ is called

the Bellman optimality equation and it’s defined as follow:

v∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

Eπ∗ [Gt|St = s, At = a]

= max
a

Eπ∗ [Rt+1 + γGt+1|St = s, At = a]

= max
a

E[Rt+1 + γv∗(St+1)|St = s, At = a]

= max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)]

(1.10)

This affirms that the value of a state under an optimal policy must be equal

to the expected return for the best action from that state. The same happens

for the action-value function, which is as shown here:

q∗(s, a) = E
[
Rt+1 + γmax

a′
q∗(St+1, a

′)|St = s, At = a
]

=
∑
s′,r

p(s′, r|s, a)
[
r + γmax

a′
q∗(s

′, a′)
] (1.11)

1.3 Model

A model is intended as a description of the environment structure and

the way it works, allowing the agent to make predictions about its future

behaviour. It can be used to improve the process of learning, but it is not

fundamental, the states can be used as a partial description to approximately



1.4 Exploration vs Exploitation 7

understand the structure of the environment. By its presence or absence, we

havemodel-basedmethods developed on planning and predictions, andmodel-

free methods totally based on accumulating experience through the trial and

error method.

1.4 Exploration vs Exploitation

One of the most important dilemmas of reinforcement learning is finding

a balance between exploration and exploitation.

Exploring means researching possible actions in given states that have not

been tried, and which may give a significant reward. On the other hand,

exploiting means using actions in given states whose value has already been

discovered, in order to obtain the maximum reward. As the agent learn,

and the value function and the policy are updated, the agent will tend to

prefer exploitation over exploration. This happens because the aim of the

agent is to maximize future rewards. However, if the knowledge of both the

environment and the possible rewards is incomplete, obtaining an optimal

policy will be impossible. For this reason, it is necessary to implement and

improve exploration techniques.

The problem is that both exploration and exploitation can lead to repeated

failures, before reaching any kind of optimality. Exploration, as a matter of

fact, may be negative if the states that give major rewards have already been

found, resulting into constantly exploring irrelevant states. The right bal-

ance between exploration and exploitation is up to the present time an open

problem, and as Sutton and Barto confirm, “The exploration-exploitation

dilemma has been intensively studied by mathematicians for many decades,

yet remains unresolved.” [17]

1.4.1 On-policy methods

In order to explore in a better way different methods based on the action

choosing strategy has been created. In on-policy methods a single policy is



8 1. Reinforcement Learning

trained and used to make decisions. This approach usually make use of a

stochastic policy which become closer to deterministic as the training goes on.

An example can be the ϵ–greedy method by which there is an ϵ probability

of selecting a random action instead of the policy chosen one.

1.4.2 Off-policy methods

Opposed to on-policy methods, in an off-policy approach different policies

are used. One policy, called behaviour policy, is used to collect data. This

one can be static, using a random actions choosing process, or can be trained

but in a more exploratory way. Another policy, the target policy, is the one

improved using the calculated value function.

1.5 Fundamental RL Methods

It will now be defined the fundamental reinforcement learning methods

on which all moderns and advanced techniques rely.

1.5.1 Dynamic Programming

Dynamic programming is a model-based algorithmic framework; there-

fore, it can only be applied on problems whom environment model is totally

known. It is composed by different computations.

The first one, called policy evaluation, is based on the already given definition

of a value function. Using the Bellman equation and sweeping through the

state set, this computation iteratively calculates a sequence of value-function

approximations for an arbitrary policy.

The next phase is the policy improvement; in this phase the previously cal-

culated value function is used to update the policy. This is done by making

the new policy π′ greedy with respect to the value function of the original



1.5 Fundamental RL Methods 9

policy π:

π′(s)
.
= argmax

a
qπ(s, a)

= argmax
a

E [Rt+1 + γvπ(St+1)|St = s, At = a]

= argmax
a

∑
s′,r

p(s′, r|s, a) [r + γvπ(s
′)]

(1.12)

with argmaxa as the action that maximizes the following expression. This

process always grants a better policy, unless the policy is already optimal.

When these two phases are cyclically repeated together until convergence,

it is called policy iteration; while if the policy evaluation process is stopped

after one update of each state, it’s called value iteration.

This cyclical interaction can be generalized to all reinforcement learning

methods as one process updates the value function using a given policy and

the other updates the policy using the given value function and both work

together to try to reach optimality. This concept is called generalized policy

iteration (GPI).

Dynamic Programming has limited applicability since it requires a complete

model. Moreover, it can be slow in the case of a really large state space.

1.5.2 Montecarlo

Montecarlo, opposed to dynamic programming, are model-free methods

and don’t require a complete model as they acquire experience by interacting

directly with the environment. In particular, during each and every iteration,

a trajectory of a complete episode is collected. Immediately afterward, in a

generalized policy iteration way, the data from the trajectory are employed to

perform an update of the value function by averaging the returns Gt obtained

as in:

V (St)← V (St) + α [Gt − V (St)] (1.13)

with α as a constant step-size parameter. The value function is then used to

update the policy.



10 1. Reinforcement Learning

By the way in which the average of the returns is calculated, there are differ-

ent methods as first-visit and every-visit. However, the policy can easily fall

in a incorrect optima without proper exploration methods. This may hap-

pen for two main reasons. First, because in GPI the policy will act greedly

with respect to the value function; second the value function doesn’t have

the complete model of the environment as it is updated only by using returns

collected from episodes. In some cases, this can be solved by beginning each

episode in a different state and randomly selecting an action. As a result, in

the long run this will cover all states.

There are other ways to solve the problem. For example, by giving the pol-

icy a probability of selecting a random action in a on-policy approach, or by

using a policy to explore, while training another one in the off-policy way.

As this method requires a complete episode, Montecarlo can be only used on

episodic tasks.

1.5.3 Temporal-Difference learning

The idea behind Temporal-difference(TD) learning methods is a combi-

nation of Montecarlo and dynamic programming. In fact, it is model-free, it

can learn exclusively using experience as Montecarlo, and performs updates

using learned estimates as dynamic programming.

Temporal-difference works using the GPI process. However, the policy eval-

uation part is different, as it is based on a technique called bootstrapping.

As a matter of fact, opposed to Montecarlo, where a complete episode is re-

quired in order to calculate the value function, in TD-learning just one step

is already sufficient to update it. The value function is then calculated using

an estimation of future rewards V (St+1) as follows:

V (St)← V (St) + α [Rt+1 + γV (St+1)− V (St)] (1.14)

with α as a constant step-size parameter. As it is observable, the improve-

ment is made using the error between the actual estimation V (St) and the

more precise estimation Rt+1 + γV (St+1). This specific error is called TD-



1.6 Deep Reinforcement Learning 11

error δt and it’s relative to the step t:

δt
.
= Rt+1 + γV (St+1)− V (St). (1.15)

More steps can also be taken before the update, and then the value function

is computed using the partial returns and the estimation; In this case, called

n-step TD, TD-learning becomes more similar to Montecarlo.

TD-learning is, therefore, usable in both episodic and continuing tasks but,

as in Montecarlo, exploration techniques must be implemented. An exam-

ple of TD-learning methods can be SARSA[17] which is on-policy and Q-

learning[18] as off-policy. Comparing TD-learning with Montecarlo, it is also

possible to notice that there are other two differences. TD-learning is in

fact biased, as the value function is calculated partially using an estimation,

which is opposed to Montecarlo where actual returns are used.

On the other hand, Montecarlo has a higher variance since the value function

depends on long trajectories. During these trajectories, the decisions taken

at each step can be wrong as later collected trajectories can greatly change

the policy. Opposed to this, in TD the policy is improved at every step,

making it more precise.

1.6 Deep Reinforcement Learning

In the case of a very large state or action space, even continuous, finding

a solution to a reinforcement learning problem in a traditional way could

become really time and space consuming. In this case, when a never visited

state is encountered, it is useful to generalize using the already collected

data. To do so, function approximators can be employed for the policy and

the value function, transforming them from a fixed association to a function

parametrized by a weight vector. One of the most commonly used function

approximators are Neural Networks.



12 1. Reinforcement Learning

1.6.1 Neural Networks

Neural network (NN) are networks made of interconnected nodes, shaped

as a sort of weighted, directed and acyclic graph inspired by biological nervous

systems. They usually have an input layer, an output layer, and a variable

number of intermediate “hidden” layers. Each layer can have a different

number of units and each unit can be connected to one or more units in next

layer by an edge which has a real-valued weight associated.

Figure 1.2: A neural network with four inputs units, two hidden layers and

two output units

Neural networks used in reinforcement learning usually work in a “feed-

forward” way as the signal compute a weighted sum, traveling through edges,

from the input layer to each of the intermediate layer and finally out of the

output layer. After each layer, a function, called activation function, can be

applied to the signal. In order to make the approximation computed by a

neural network more precise, an update to the weights must be performed.

This update is done by using a stochastic gradient method, as each weight

is adjusted with the aim of minimizing the difference (or loss) between the

neural network output and the desired output, which is called backpropaga-



1.6 Deep Reinforcement Learning 13

tion. In the reinforcement learning case, the loss is the mean squared error

between the approximated value and the true value calculated from collected

data.

As the number of states in a state space exceeds the number of weights in

the neural network used to approximate the value function, each update to

the function for a particular state influences also the other states. As a re-

sult, this makes improbable to reach a global optima, especially for complex

functions. However, often a local optima is enough.

1.6.2 Policy Gradient methods

In policy gradient methods, instead of a value function, the policy is pa-

rameterized in a function approximation way, and trained by the process.

This approximation is usually done using a neural network. It permits the

policy to choose an action, given a state, without consulting the value func-

tion, as it associates a different probability to each action. Even if it is not

parameterized in this methods, the value function can still be used to learn

the policy parameters. In order to learn the parameters of this function,

they are updated using a gradient of a performance measure J(θ) with re-

spect to the policy parameters θ. The performance must be maximized, for

this reason, a gradient ascent is used, and the update is:

θt+1 = θt + α∇̂J(θt) (1.16)

where ∇̂J(θt) ∈ Rd′ is a stochastic estimate of the gradient of the performance

measure. In this way, it is possible to let the agent learn specific probabilities

for each action or even an appropriate level of exploration, which can be

reduced close to determinism in the long run.

Actor-Critic methods

Actor-critic methods are particular policy gradient methods, where both

the policy and the value function approximations are learnt. In this case

the value function, called the critic, is used to bootstrap an estimation of the



14 1. Reinforcement Learning

performance of the policy, which is called the actor. In fact, usually the actor

parameters are updated using as loss the value given by the critic. Then, the

critic parameters are updated in the usual way, using the data collected by

the actor.

Continuous action space

Policy gradient methods, thanks to policy approximation, are able to han-

dle continuous action space.

In continuous action space, opposed to discrete action space, there are an

infinite number of actions, as they are included in a real numbers range. In

order to deal with these infinite actions, instead of learning action probabili-

ties, it is necessary to learn a probability distribution, which can be a normal

distribution. In this case, the output of the policy approximator will be the

mean, and in some cases the standard deviation, of the normal distribution.

This normal distribution will be then used to sample an action.

1.7 Modern Algorithms

1.7.1 DDPG

Deep Deterministic Policy Gradient (DDPG) is a model-free actor-critic

algorithm developed by Lillicrap et al[12], intentionally created to handle

continuous action space problems. In fact, it uses function approximators for

both the policy and the action-value function.

DDPG works in a off-policy way as the networks are updated at each time-

step, using mini-batches of samples collected during the training, and saved

in a replay buffer R. The use of a replay buffer is done in order to minimize

correlations between samples; therefore, it must be of an adequate dimension.

Two separated target networks for both the policy µ′(s|θµ′
) and the action-

value function Q′(s, a|θQ′
) are created as a copy, and used to calculate the

target value. These are slowly updated using the learned networks by polyak



1.7 Modern Algorithms 15

averaging: θ′ ← τθ+(1−τ)θ′ with τ ≪ 1. This is done to avoid the divergence

caused by the use of the same network to both update and calculate the target

value. The exploration in this method is guaranteed by a noise sampled from

a normal distribution, injected in the action chosen by the policy. The action-

value function is updated by minimizing the loss given by the mean-squared

Bellman error, using the target functions for bootstrapping:

L(θQ) = E(s,a,r,s′,d)∼R

[
(Q(s, a|θQ)− (r + γ(1− d)Q′(s′, µ′(s′|θµ′

)|θQ′
))2

]
(1.17)

where (1 − d) = 0 if s′ is a terminal state. The policy, instead, is updated

by maximizing the action-value function by applying a gradient ascent that

uses as loss:

L(θµ) = Es∼R[Q(s, µ(s|θµ)|θQ)]. (1.18)

Both of them perform a single gradient step at each time-step.

Figure 1.3: DDPG pseudocode



16 1. Reinforcement Learning

1.7.2 PPO

Proximal Policy optimization (PPO) is an actor-critic method developed

by the OpenAI team [16] which can be used on both discrete and contin-

uous action space environments. PPO works in a on-policy way, and the

exploration is granted by a stochastic policy which becomes progressively

less random as the training goes on. The idea behind PPO is to limit the

possible policy update steps in order to avoid a performance collapse caused

by large updates.

This can be done in two ways: either by applying an adaptive penalty on

KL-divergence called PPO-Penalty, or by clipping the objective function to

reduce bigger steps called PPO-Clip. PPO-Clip has been found to perform

better and will be described in detail. The algorithm works by cyclically col-

lecting a trajectory of predetermined length with the current policy and then

computing the returns Rt and the advantages with an arbitrary advantage

method, using the current value function. The policy loss is then calculated.

This is done, as first, by taking the ratio between the state-action probabili-

ties of the previous policy πθ and the new current policy πθk . Successively, in

order to take the smallest step, the minimum between this ratio multiplied

to the advantage, and the same ratio but clipped and then multiplied to the

advantage is taken as loss:

L(s, a, θk, θ) = min

(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), clip

(
πθ(a|s)
πθk(a|s)

, 1− ϵ, 1 + ϵ

)
Aπθk (s, a)

)
(1.19)

with ϵ as an hyperparameter that measures the distance allowed from the

old policy. The policy is then updated with gradient ascent for a selected

number of epochs, which can be early stopped if the new policy grows too

much. The value function, instead, is trained applying a gradient descent

that uses as loss the mean squared error between the value generated by the

network V (st) and the return Rt. The trajectory is then discarded, the old

policy saved and a new cycle begins.



1.7 Modern Algorithms 17

Figure 1.4: PPO pseudocode

1.7.3 TD3

Twin Delayed DDPG (TD3) is an actor-critic method developed by Fu-

jimoto et al[8] and designed to address the problems present in DDPG. In

fact, DDPG presents some issues. For example, it is high hyperparameters

dependent and has Q-value overestimation.

TD3 is very similar to DDPG, as it works with continuous action problems,

it is off-policy, explores by adding noise to the deterministic actions deter-

mined by the policy. Moreover, it makes use of a replay buffer from which

mini-batches are sampled, and it performs “soft” polyak updates to the tar-

get networks.

On the other hand, in order to solve the problems of DDPG, three improve-

ment has been made to TD3. The first one, called target policy smoothing,

consists of adding clipped noise to the action selected by the target policy,

which is used to bootstrap in the Bellman error. This is done in order to avoid



18 1. Reinforcement Learning

sharp peaks over some actions in the Q-function approximator, smoothing

them over near actions.

The second one is the introduction of a second Q-function and the relative

target function. The smaller Q-value from the target Q-functions is then

used to calculate the Bellman error employed to update them both. This

prevents overestimation in the Q-function. This technique is called clipped

double-Q.

The last improvement involves the delaying of the policy update, as it is done

less frequently than the Q-function. This happens in order to further slow

down the target change.

Figure 1.5: TD3 pseudocode



1.7 Modern Algorithms 19

1.7.4 SAC

Soft Actor Critic (SAC) is an off-policy actor-critic algorithm developed

by Haarnoja et al[10] that can work on both continuous and discrete action

problems. Similarly to TD3, it makes use of the clipped double-Q technique

to update the Q-functions with the mean squared Bellman error.

Even if SAC has a stochastic policy opposed to TD3, SAC benefits from

the policy smoothing partially done by the stochasticity. Other similarities

between DDPG and TD3 are the employ of a replay buffer and the use of

target Q-networks updated by using Polyak averaging.

The focal point of SAC is the introduction of the entropy of the generated

distribution H, which is used as a sort of bonus reward to the action-value

function:

Qπ(s, a) = E[R(s, a, s′) + γ(Qπ(s′, a′) + αH(π(·|s′)))] (1.20)

with α as a entropy regularization coefficient which can be fixed or trained.

Lastly, SAC doesn’t use a target policy as it employs the current policy

to compute the next state-action used for the update. In this case, the

exploration is granted by the stochastic policy and the α coefficient of the

entropy term as higher values corresponds to more exploration.



20 1. Reinforcement Learning

Figure 1.6: SAC pseudocode

1.7.5 DSAC

Distributional Soft Actor-Critic (DSAC) is an off-policy actor-critic al-

gorithm developed by Jingliang et al[7] that can be considered a variant of

SAC. In fact, it makes use of almost all the techniques used in SAC with one

exception: the clipped double-Q learning is substituted by a distributional



1.7 Modern Algorithms 21

action-value function. The distributional action-value function, instead of a

value, returns a distribution. The use of a distribution, as clipped double-Q

learning, can mitigate Q-function overestimation, but with a different ap-

proach. Furthermore, it uses a single network for the action-value estimation

and that improves time efficiency. While the loss function used for the actor

remains the same as SAC, the one used for the critic is defined as follows:

JZ(θ) = − E
(s,a,r,s′)∼B,a′∼πϕ′ ,Z(s′,a)∼Zθ′ (·|s′,a′)

[
logP(T πϕ′

D Z(s, a)|Zθ(·|s, a))
]

(1.21)

with T πϕ′

D Z(s, a) = r + γ(Z(s′, a′)− α log π(a′|s′)).

Figure 1.7: DSAC pseudocode



22 1. Reinforcement Learning



Chapter 2

Car-racing RL-Environments

It is obvious that every environment that can be, even partially, described

with a Markov Decision Process can be used to train a reinforcement learning

algorithm. However, to learn how to implement a reinforcement learning

algorithm, to test the performance of a particular method or to study a

solution to a known problem can be really hard on a generic environment.

For this particular purpose, dedicated environments have been specifically

created.

These environments are studied to help the understanding of RL me-

chanics, with explicit states and actions descriptions, well-shaped rewards,

and also metrics to measure the performance. There are even environments

created to deal with a particular problem, as for instance sparse rewards.

Different platforms already exist to satisfy this purpose. A description of the

most famous ones, with special attention to the racing ones, will be given as

follows.

23



24 2. Car-racing RL-Environments

2.1 OpenAI Gym

OpenAI Gym1[4] is an extensive open-source toolkit, developed by Ope-

nAI, which includes different simulated environments and is continually grow-

ing. These environments can vary a lot, from tasks proposed in RL literature

to Atari games, from simple text environments to even simulated robots.

This permits to cover different problems, like discrete and continuous action

or state spaces, sparse rewards and screen images as input.

Every environment has a common interface that permits to write general al-

gorithms, which will work on all of them. This interface, which can also be im-

plemented on external environments too, to render them “Gym-compliant,”

is an effort to standardize a common interface to reinforcement learning en-

vironments.

OpenAI Gym tries to offer a benchmark as well, in order to compare the

performance of different methods or different implementations of the same

method. This is done by permitting to reproduce the results obtained by

using a method.

OpenAI also offers baselines of the most common reinforcement learning al-

gorithms, optimized for these environments, which can be used as reference.

1https://gym.openai.com/



2.1 OpenAI Gym 25

CarRacing-v0

Figure 2.1: CarRacing-v0 example

CarRacing-v0 is a model-free environment from OpenAI Gym, consisting

of a top-down view car race aimed to let the car learn to finish the track as

fast as possible, without excessively leaving the track. The track is randomly

generated at each episode and it is composed by a number of tiles; when all

tiles are visited the episode terminates.

It uses a continuous action space, but it gives the possibility to use discrete

actions. An action is composed of three values: steering, accelerating and

decelerating, while each observation is a 96x96 pixels RGB image. As it is

possible to see in figure 2.1, at the bottom of the window there are different

indicators as, from left to right, true speed, four ABS sensors, steering wheel

position and gyroscope. The reward given is +1000/N for every tile visited,

with N as the total number of tiles in a track, and −0.1 at each frame.

When the agent consistently gets a total reward higher than 900, the game

is considered solved.



26 2. Car-racing RL-Environments

2.2 AWS DeepRacer

AWS DeepRacer2[3] is a platform created by AmazonWeb Services, which

allows the developers to learn reinforcement learning. By paying a fee, AWS

DeepRacer offers a 3D online racing simulator, servers to train the agents,

a console to adjust the various parameters and a log-analysis system. It’s

even possible to buy a real 1/18th scale electric vehicle with lidar sensors and

cameras, to try the agents in real-life. AWS organizes a DeepRacer League

every year for both the simulated environment and the real vehicles, where

pre-trained agents run against each other.

The racing simulator is a model-free environment that replicates reality

as best as it can, in order to train the agent to be used in real life as well.

The objective in this environment is to finish the track without leaving its

borders and, depending on the chosen mode, to race against another car, to

avoid the obstacles or to run as fast as possible.

It makes use of the front camera view and the values from the lidar as

states and as actions the steering angle and speed. The reward function

is defined by the user: its aim is to obtain the best performance by giving

the right importance to specific behaviours. The console permits to create

this specific reward function, choose the optimization algorithm, tune in the

hyperparameters, select the wanted track and choose the model.

The algorithms used to train the agents are limited and can’t be changed as

they are already given by the platform. As present, it is possible to use only

PPO and SAC.

2https://aws.amazon.com/it/deepracer/



2.3 TORCS 27

Figure 2.2: DeepRacer example

2.3 TORCS

The Open Racing Car Simulator3 (TORCS) is a 3D car racing simulator

originally developed in 1997 by Eric Espié and Christophe Guionneau. It is

multi-platform as it can run on Linux, Mac OS X, FreeBSD and Windows,

and open-source, licensed under GPL. Although it can be used as an ordi-

nary racing game, TORCS has always been employed as an AI research and

experimentation platform[6][14].

As it is open-source and thought to do that, it is easy to adapt the

code to use it as a reinforcement learning environment, but different in-

terfaces have already been developed for this reason[13], even to render it

gym-compliant[9]. It is a realistic environment, with sophisticated real-life

physics, where it’s possible to select different tracks and cars. The structure

of the observations in this environment is highly configurable. Indeed, it can

have different readings as rangefinders, the position on the track, the engine

rounds per minute, wheel speed, damage to the car, or even images of what

can be seen by the car.

The possible actions that the agent can take include the steering and

3https://sourceforge.net/projects/torcs/



28 2. Car-racing RL-Environments

the acceleration in a continuous way. In this case, the reward function is not

defined and need to be shaped by the developer by using the various available

parameters. The choice of when to terminate one episode is also left to the

developer.

Being highly customizable, this environment can be really good to test

RL methods or to try and solve a known problem. On the other hand, this

feature can make quite complex for developers to approach reinforcement

learning for the very first time.

Figure 2.3: TORCS example

2.4 Learn-to-Race

Learn-to-Race4 [11, 5] is an open-source realistic multi-modal control en-

vironment of recent development, aimed to let agents learn how to perform

a car race. It is based on a high fidelity racing simulator developed by Ar-

rival, and it provides a Gym-compliant interface. This environment aims to

replicate, at its best, real-life vehicle dynamics in a 3D photo-realistic sim-

ulation. With the environment are also provided different baseline models

4https://learn-to-race.org/



2.4 Learn-to-Race 29

to demonstrate how it works and how to use it. The action space used in

this environment is continuous and comprehends two actions: steering and

acceleration. The Observation space can be vision-only or multi-modal. In

vision-only the agent receives RGB images from the camera placed in front

of the vehicle. Instead, in multi-modal in addition to images it receives sen-

sor data such as readings from lidars or depth cameras. The default reward

function provides positive rewards for progressing on the track, while keep-

ing a competitive speed, and negative rewards for getting outside the given

bounds but it is possible to customize this function. The environment also

provides different metrics in order to help measure both the performance and

the quality of the agents trained.

Currently, there are only two tracks to race in these environment; how-

ever, it is possible to create more environments by using various given tools.

Moreover, it offers a vehicle builder mode, which allows the user to cus-

tomize every part of the vehicle, from the physical model to the mechanical

components.

AICrowd is currently organizing a challenge, in order to get the best

performing agents, capable of high speeds while respecting the safety con-

straints. As TORCS, this environment can be hard to use by developers who

are new to reinforcement learning.

Figure 2.4: Learn-to-Race example



30 2. Car-racing RL-Environments



Chapter 3

MicroRacer

MicroRacer is an environment inspired by car racing and its primary pur-

pose is to be a didactic tool used to teach and experiment with reinforcement

learning methods. It has been developed to be simple, lightweight, without

requiring a very long training but still stimulating and not trivial. It is a

model free environment with continuous action and state space. The physics

is very simple, without considering things as wheel friction or aerodynamics,

but still remaining realistic in some way. The track is generated randomly

at each episode and it’s possible to add obstacles or chicanes to keep it in-

teresting. In order to let the agent learn how to accelerate and decelerate,

it’s possible to activate a stricter limiter to the turning angle at high speed.

Moreover, the user can launch races between different agents from different

algorithms or from the same one, but trained with different hyperparameters.

MicroRacer is open-source and mainly written in Python, with a couple

of functions in Cython to improve its efficiency. It requires basic libraries

as tensorflow, numpy, scipy, matplotlib, tensorflow_probability and

cython in order to work. Baselines of different deep reinforcement learning

methods are also included: indeed, it offers an example to help the user

understand how to use the environment and how this method works. The

code is available on GitHub at: https://github.com/asperti/MicroRacer.

31



32 3. MicroRacer

3.1 Track structure

Figure 3.1: Example of a generated track. On the left representation of the

track using the generated splines; on the right representation of the boolean

matrix map.

The circular track in MicroRacer is generated by using CubicSplines. The

idea is to deform a circle of radius 1 centered on the 0 of the plane. At first,

the turns are defined using a configurable number of angles in radians equally

spaced between 0 and 2π, 20 as default. The sine and cosine of these angles

are used to generate points on the plane; then, on these points a random

offset is applied and their position is smoothed to avoid sharp turns. Finally,

an interpolation is done on these points, having the first and last point equal,

and the resulting spline will represent the mid line of the track. Using this

first spline, two more splines are generated, representing the borders of the

track.

This is done firstly by taking a high number of points on the first spline.

Then, two more points are found perpendicular to the tangent of each of

these points. The distance between the mid point and the two border points

is configurable and it represents half the track width. As default it is 0.02,

but it can be customized if necessary. The new points are then interpolated



3.1 Track structure 33

to generate both the external and the internal spline, defining the borders of

the track.

A dense matrix of points is derived from these splines, in order to get a

discrete description of the track, to check what is around the racer and to

control if the position is valid. This matrix has a dimension of 1300x1300

points and each of them is a boolean which represents if the position is valid

(on the track) or invalid (outside the track or on an obstacle). The track is

represented on the matrix by cycling in a radial motion on the discretization

of different points belonging to the outer spline, and the relative points on

the inner spline. Then, the state of all the points between each outer and

inner point is changed on the matrix. In this process the matrix is always

checked, to verify that the track doesn’t get outside the maximum dimension

1300x1300; otherwise, a new track is generated.

3.1.1 Obstacles generation

It is possible to generate a variable number of obstacles along the track,

as default 6. These obstacles, which even if are motionless can be seen as

vehicles occupying the trail, are placed on the left or the right borders of

the track. Their position is chosen taking points, on the spline representing

the borders, using angles in radians between 0 and 2π. These points are

randomly spaced but never too close to each other. The side of the track

is randomly picked, using the track width to calculate their position. Their

length is calculated by taking another point at a fixed distance. Finally, the

obstacles are mapped on the track matrix; this is done by setting to false the

state of the points between the two used for each obstacle.



34 3. MicroRacer

Figure 3.2: On the left, an example of a track with obstacles in red; on the

right, details of one obstacle. The part in gray is considered invalid on the

boolean matrix.

3.1.2 Chicanes generation

A chicane can be inserted in a random point of the track to train and

test the agent with sharp turns. This chicane is created before generating

the first spline. It is done by randomly choosing one of the turns with the

exception of the first and the last.In particular, the point representing the

turns. New points are then inserted before and after the one chosen, but

still within the range of the previous and the next turn. These new points,

that will be two before and two after, are employed to shape the chicane.

Then, the chosen point and the new added ones will be aligned with the

points relative to the previous and successive turn. Finally, the two inner

new points will be displaced in opposite direction to generate the chicane.

The offset representing the displacement can be changed to have bigger or

smaller turns. The distance between the outer added points and the chosen

point can also be customized, as it represents how sharp the turns will be.

The points will then be interpolated as usual to create the mid-line spline.



3.2 Racer internal state 35

Figure 3.3: Details on chicane creation. The blue line is the mid-line and

the blue dots are the pre-existing turn points, the green dots are the added

outer control points, the red dots are the inner added control points while

the orange and the green lines are the inner and outer borders of the track,

created from the mid-line.

3.2 Racer internal state

As a model-free environment, the agent outside of it knows nothing about

the structure of the track or the current position of the racer on the track. In

fact, this is all saved and calculated by the environment. In order to better

understand the environment, it is useful to know that it has been thought

with a ratio of 1:1000m. At the beginning of an episode, the starting position

of the racer is always the same, as it is the point on the mid-line spline of

angle 0 in radians. This position is saved as x and y points of the plane.

The starting direction, instead, is the negative tangent to the mid-line in the

starting position; while the starting speed is randomly selected (currently



36 3. MicroRacer

between 0 and 0.5). The direction and the speed are saved as a vector with

its length as the speed and direction as the racer direction. At each step the

speed, direction and position are updated. The time-step, which currently is

0.04, can be configured to experiment with the frequency of the observations

received. In fact, it has been found that it can influence the behaviour of the

agents. The current speed is updated using the acceleration selected by the

agent, which can be positive (speed up) or negative (slow down). The speed

can reach 0 but can never be negative. The current direction is updated

using the direction chosen by the agent. The maximum turn the agent can

make in a step corresponds to π/6 (30°) in each direction. It is possible to

activate a limiter to the max turning angle dependant on the current speed,

to force the agent to accelerate and decelerate according to the track shape.

This is calculated according to a simple law of tolerated angular acceleration

as follows:

Θ = min{4π
4aT

v
,maxturn} (3.1)

with Θ as the new max turning angle, maxturn as the old maximum turning

angle (π/6), a as the maximum tolerated acceleration (currently 4.5g), T as

the time-step and v as the current speed. Finally, having the new speed and

direction, the position of the racer is changed accordingly.

3.2.1 Termination

After updating the position, speed and direction, the environment checks

if the episode is in a termination condition. There are different conditions

that may end an episode. The first and more obvious one is if the racer

complete the whole track, returning to the starting point. In this case the

environment checks if the angle of the old position in radians is in the upper

half of the track, while the angle of the new position is in the lower. This

means that the racer has again surpassed the starting point, as the race

follows a clockwise direction and the starting point is precisely on the right

half.



3.2 Racer internal state 37

The second condition is when the racer get outside the track or over

an obstacle. This is checked by discretizing the racer current position and

verifying that the discrete equivalent is a valid position on the map matrix.

If not, the episode will end.

Another termination condition is when the racer reverses its direction.

This is verified by checking if the angle of the racer’s new position is greater

than the old. In fact, the race goes clockwise and the circonference angle

in radians grows from 0 to −π and then from π to 0 again to complete the

circle. In this way, to go in the right direction the racer’s angle should always

decrease. The only exception is when the old angle is in the lower half and

the newer is in the upper: in this case there is a special check.

Finally, there is an optional termination condition that put an end to an

episode if the racer speed goes lower than a certain value. This one can be

activated, if necessary, to avoid the use of an excessively slow speed in order

to safely complete the track. In this case, the lower bound to the starting

speed will be increased over the speed limit.

3.2.2 Lidar

As the agent has no knowledge of the global structure of the track or

the position of the racer on the track, a lidar-like vision is present to give

the agent the description of the current surroundings. It is composed of an

array of 19 lidar simulations equally spaced in a range from -30°to 30°with
respect to the front of the racer. Each of these values measure the distance

to the borders of the track at a given angle. This distance is calculated by

iteratively performing steps in the direction of each lidar. At each step, the

relative discrete location and the directly adjacent points are checked on the

map matrix to see if it is a valid or invalid position. If it is invalid, the

distance measured is returned.

In order to get a safe and precise measurement, these steps are shorter

both near the racer and when a border is encountered. The functions im-

plementing this lidar simulation are written in Cython. In fact, these func-



38 3. MicroRacer

tions perform a high number of computations at each time-step and can slow

down the environment. Cython solves this problem, as it optimizes the code,

speeding up its execution.

3.3 State, Action and Reward

3.3.1 State structure

The state, that the environment provides to the agent at each step, is

a partial description of both the current surroundings and the speed of the

racer. It makes use of the lidar array, but in order to simplify the learning

process only a limited number of lidar values are used. It is composed of five

elements:

Direction This value represents the direction with the greater distance from

the track’s borders. It is the angle of the element with the greater value

in the lidar array. This angle is relative and must be applied to the

current direction of the racer.

Left distance This is the distance value calculated by the lidar directly

adjacent to the left of the one with the maximum distance. If the

maximum one is the first, these two values are equal.

Max distance This is the maximum distance to the borders from the values

in the lidar array. To be more precise, it is the lidar which direction is

in the first element of the state.

Right distance In the same way, this is the distance value calculated by

the lidar directly adjacent to the right of the one with the maximum

distance. If the maximum one is the last, these two values are equal.

Speed This value is the current scalar velocity of the racer.



3.3 State, Action and Reward 39

3.3.2 Action structure

The agent can take two actions to influence the behaviour of the racer

in the environment. Both these actions are continuous and must be in the

range [-1,1]:

Acceleration/deceleration If the action is positive the racer will accel-

erate. On the other hand, if the action is negative it will decelerate.

Finally, if it’s zero the racer will keep its current speed.

Turning angle If the action is positive the racer will turn right, and vice

versa. Moreover, if it’s zero the racer will keep the current direction.

This value is scaled by the current max turning angle.

3.3.3 Reward function

The objective in MicroRacer is to get fast agents while staying on the

track. The reward function is shaped to achieve this target without using

complex mechanisms. As greater speed means greater distance covered, at

each time-step the environment will give as reward the distance covered by

the racer in that interval. The cumulative reward is, in fact, the expected

total discounted distance traveled by the racer. This happens only if the

racer is in a non-termination condition. If the racer gets in a termination

condition different from the completion of the track, it receives a reward of -

3. It is possible to customize the reward function with different mechanisms;

however, it is not recommended, since it may introduce biases during the

learning process.



40 3. MicroRacer

3.4 Environment interface

To let any reinforcement learning method use this environment, it is neces-

sary to instantiate the Racer class in tracks.py. On declaration it is possible

to turn off obstacles, chicanes, the turn limiter and the low speed termination

by using: Racer(obstacles=False, turn_limit=False, chicanes=False,

low_speed_termination=False). This class has two methods:

reset() -> state

This method generates a new track and resets the racer position on the

starting point. It returns the initial state.

step(action) -> state, reward, done

This method takes an action composed by [acceleration, turn] and

lets the racer perform a step in the environment according to the action.

It returns the new state, the reward for the action taken and a boolean

done that is true if the episode has ended.

3.5 Competitive Race

In order to graphically visualize a run it is necessary to use the function:

newrun(actors , obstacles=True , turn_limit=True ,

chicanes=True , low_speed_termination=True)

which is in tracks.py. Using the same function it is also possible to let

different agents compete against each other in real time. It takes as input a

list actors of Keras models, which can even contain just one model.

These models can be from different methods and have a different internal

structures but, in order to work, they must take as input the state and

return in output the action as first element (without noise, if used). It is

also possible to turn off the various optional parts and limitations on the

environment. While achievable, it is not recommended to let run an high

number of agents as it may excessively slow down the process. All the agents



3.5 Competitive Race 41

will race using the same map and the same starting speed. The race will be

visualized as a plot using the animation functions from matplotlib. Lines

of different colors will be plot for every racer over the representation of the

map, and their position will be updated at every step.

On the right there is a legend with all the racers from top to bottom,

ordered by the list passed to the function. This legend contains information

on the current action taken by each racer and its related speed. If the racer

gets in a early termination state, the legend will show which was the cause.

On the other hand, if the racer completes the track, the legend will show

its ending position. While they race on the same track, the racers cannot

interfere with each other and can even be in the same position, since this is

just a superposition of their trajectories.

Figure 3.4: Example of a race between 4 agents: two of them have already

finished the track, one went off road while another is still running.



42 3. MicroRacer

3.6 Evaluation Run

In tracks.py is also present a function that permits to evaluate an agent’s

average performance using some metrics. The function:

metrics_run(actor , runs_num =100, obstacles=True ,

turn_limit=True , chicanes=True ,

low_speed_termination=True)

takes as input a Keras model as actor, the number of episodes to execute as

runs_num and all the others parameters to activate or deactivate the various

optional parts as in the two already treated cases. As in the newrun case,

the model passed to the function must take as input a state and as output an

action as first element. It will run the number of episodes specified without

graphics and print at the end of each one the steps taken, the cumulative re-

ward and the average speed for the episode. When all the episodes terminate,

it will print the average reward, the average steps number and the average

speed of all the executed episodes. The number of episodes completed will be

printed as well. This function can be used to periodically evaluate the agent

during the training process or to perform an extended performance check of

an agent, in order to collect statistics.



Chapter 4

Experiments and Results

In the following section, all the tests that have been made on the envi-

ronment will be showed. These tests, which have been conducted using the

various methods cited in this thesis, make use of the same environment set-

tings. In particular, all the environment optional parts have been used. Here

is a list of them: obstacles, chicanes, low speed termination and turn limiter.

The time-step used is 0.04, while all the other environment parameters are

as previously described and haven’t been altered.

4.1 Implemented methods

The methods that has been used to test the environment are those men-

tioned in section 1.7. These methods have been implemented following the

structure described in the dedicated paragraphs. However, among the given

baselines, there is a further modified implementation of DDPG (DDPG2.py).

This implementation makes use of parameter space noise[15]. The parame-

ter space noise is inserted into the weights of the layers of the actor’s neural

network. This is done to further improve exploration as it can be used in

place of action noise. All the methods implement a function that randomly

perform, after a chosen action, another one, composed of [0, 0], which keeps

the same speed and direction. This is done to partially uncouple the agent

43



44 4. Experiments and Results

from the environment time-step.

The DDPG actor’s neural network makes use of two towers. One of them

calculates the direction, while the other calculates the acceleration. Each

of them is composed of two hidden layers of 32 units, with relu activation.

The output layer uses a tanh activation for each action. At the same time,

the critic network uses two layers, one of 16 units and one of 32, for the

state input and one layer of 32 units for the action input. The outputs of

these layers are then concatenated and go through another two hidden layers

composed of 64 units. All of them make use of relu activation.

In DDPG2, the actor has two hidden layers with 64 units and relu ac-

tivation and one output with tanh activation . Meanwhile, the critic is the

same as in DDPG.

In TD3, the actor is the same as DDPG2. The critic has two hidden layer

with 64 units and relu activation.

In SAC, the actor has two hidden layer with 64 units each and relu acti-

vation and output a µ and a σ of a normal distribution for each action. The

critic is equal to TD3.

In DSAC, the actor is the same has SAC. The critic has the same structure

as the actor.

In PPO both the actor and the critic have two hidden layers of 64 units

with tanh activation, but the actor has also tanh activation on the output

layer.

All the hyperparameters used for these methods are specified in Table

4.1.



4.1 Implemented methods 45

Hyperparameter Value

Shared

Discount Factor 0.99

Optimizer Adam

Shared except PPO

Actor and Critic Learning Rate 0.001

Buffer Size 50000

Batch Size 64

Target Update Rate τ 0.005

DDPG2

Parameter Noise Std Dev 0.2

TD3, DDPG

Exploration Noise N (0, 0.1)

TD3

Target Update Frequency 2

Target Noise Clip 0.5

SAC, DSAC

Target Entropy -A

DSAC

Target Update Frequency 2

Minimum critic sigma 1

Critic difference boundary 10

PPO

Actor and Critic Learning Rate 0.0003

Mini-batch Size 64

Epochs 10

GAE lambda 0.95

Policy clip 0.25

Target entropy 0.01

Target KL 0.01

Table 4.1: Hyperparameters used in the various methods.



46 4. Experiments and Results

4.2 Results

In order to get a more accurate behavioral representation of each method

while using the environment, the results of five different trainings have been

collected for each of them. For almost all methods, a training consisted

of 50000 training steps. This was not possible for PPO as, unlike all the

other methods used, it collects a complete trajectory first, and then executes

a training step. Thus, performing 50000 training steps would require an

incomparable amount of time while giving different results as the method

improves in a different way. For these reasons, PPO has been trained using

as training length a number of episodes that would give a similar training

time.

The training times collected are relative to the execution of all the train-

ings on a machine equipped with a “NVIDIA GeForce GTX 1060” GPU,

“Intel Core i7-8750H” CPU and 16GB 2400MHz RAM. As can be observed

in Table 4.2, the methods that train an higher number of Neural Networks

require higher training times.

Method DDPG DDPG2 TD3 SAC DSAC PPO

Average Training Time 41m 54m 1h10m 1h11m 53m 45m

Table 4.2: Average training time required to run 50000 training iterations

(600 episodes for PPO) using each method calculated over 5 trainings.

The training process can vary a lot between methods, as can be seen

in Figure 4.1. TD3 and SAC tend to require less observations and training

steps to improve and are able to grow more linearly. The other methods

improve at a slower pace and can have a jagged learning curve with occa-

sional catastrophic forgetting. This doesn’t mean that they can’t reach good

results though. For instance, in some trainings DDPG achieves really good

scores. In fact, even using the same method, the agent obtained at the end

of different trainings may be vastly dissimilar. SAC, instead, seems to be the

only method that has more stable results between different trainings.



4.2 Results 47

Figure 4.1: Training curves of all methods except PPO. The solid lines cor-

respond to the mean and the shaded regions correspond to 95% confidence

interval over 5 trainings.

After each training, 100 evaluation episodes has been run to collect the

real performance of each trained agents. The average of these results over

5 trainings and the best results obtained for each method can be seen in

Table 4.3 while the complete results for each training are displayed in the

appendix. As it can be noticed, an higher number of completed episodes

usually corresponds to slower speeds. This may indicate difficulties in the

process of learning the right acceleration action. Similarly to the training

curves, TD3 and SAC seem to have the best performances even in evaluation,

as expected.



48 4. Experiments and Results

Method DDPG DDPG2 TD3 SAC DSAC PPO

Average completed episodes 38 18 54 69 37 37

Average episodic reward 2.48 0.80 3.52 4.61 2.84 2.05

Average speed 0.34 0.30 0.26 0.29 0.34 0.23

Max completed episodes 90 39 80 79 75 62

Table 4.3: Average and maximum of 100 evaluation episodes executed after

each training over 5 trainings of 50000 iterations (600 episodes for PPO).

4.3 Catastrophic forgetting

One of the most interesting issues encountered during the use of neural

networks, and in this specific case in their implementation within reinforce-

ment learning, is the so-called “catastrophic forgetting.” The term Catas-

trophic Forgetting refers to the tendency of a neural network to worsen its

performance during a given training, after showing a previous improvement

phase, as if it had forgotten how to act.

This phenomenon has been observed analyzing the results of several re-

inforcement learning methods applied within Microracer. For this reason, it

could be a suitable environment for the study of this peculiar phenomenon,

given the short time required for the agent to be trained and its wide cus-

tomizability, which permits ablation studies.



4.3 Catastrophic forgetting 49

Figure 4.2: Example of catastrophic forgetting: on the left average episodic

reward over 50000 training steps using DDPG, on the right average episodic

reward over the same number of steps using DSAC. After a phase of catas-

trophic forgetting, both methods return to improve.





Conclusions

In this thesis, MicroRacer has been discussed, all its functionalities have

been explained, and the various upgrades to the original Prof.Asperti’s project

have been illustrated. After all that have been explained, it can be certainly

maintained that MicroRacer is a simple and functional didactic environment

for Reinforcement Learning, while still remaining both competitive and not

trivial.

In the past a similar environment was experimented by Professor Asperti

et al.[2][1], and it was based on the game Rogue. MicroRacer has a common-

ality with that environment, which is the use of a simplified state information.

However, what makes MicroRacer different from the old project, is the fact

that it makes use of continuous action space oppositely to the discrete used

in the older one. This gives the possibility to use specific continuous action

space RL-methods and to investigate their functioning.

From the tests conducted it has been verified that, thanks to MicroRacer

simplified dynamics, the agent used can obtain good results with short train-

ing times, and it is also possible to investigate common DRL issues.

MicroRacer is currently under evaluation by the students of the Machine

Learning course at the University of Bologna and a championship for the

next academic year is planned.

MicroRacer is freely available to everyone and could be further improved

as it is open source and easily accessible on GitHub at https://github.

com/asperti/MicroRacer.

51



52 CONCLUSIONS



Appendix A

Appendix

53



54 A. Appendix

Completed

episodes

Average

episodic reward

Average episodic

environment steps

Average

speed

DDPG 2 -0.21 162 0.41

66 4.35 458 0.30

90 6.1 699 0.22

32 2.55 297 0.38

0 -0.36 173 0.40

DDPG2 2 -0.85 161 0.31

27 1.67 374 0.26

39 2.42 507 0.22

21 1.08 230 0.33

2 -0.29 180 0.36

TD3 75 5.11 442 0.33

37 2.42 338 0.33

7 0.28 471 0.16

80 5.18 743 0.24

72 4.77 565 0.25

SAC 74 5 829 0.23

77 5.04 499 0.28

79 5.23 515 0.29

55 3.80 398 0.34

60 4.01 486 0.31

DSAC 12 1.15 267 0.37

26 1.91 289 0.35

51 3.68 406 0.33

24 2.23 316 0.37

75 5.24 473 0.31

PPO 62 3.66 546 0.26

31 1.66 791 0.17

52 3.18 602 0.23

0 -0.78 227 0.29

41 2.54 601 0.19

Table A.1: Complete results of 100 evaluations episodes executed after each

training process.



Bibliography

[1] Andrea Asperti, Daniele Cortesi, and Francesco Sovrano. “Crawling

in Rogue’s Dungeons with (Partitioned) A3C”. In: Machine Learn-

ing, Optimization, and Data Science - 4th International Conference,

LOD 2018, Volterra, Italy, September 13-16, 2018, Revised Selected

Papers. Vol. 11331. Lecture Notes in Computer Science. Springer, 2018,

pp. 264–275. doi: 10.1007/978-3-030-13709-0\_22. url: https:

//doi.org/10.1007/978-3-030-13709-0\_22.

[2] Andrea Asperti et al. “Crawling in Rogue’s Dungeons With Deep Rein-

forcement Techniques”. In: IEEE Trans. Games 12.2 (2020), pp. 177–

186. doi: 10.1109/TG.2019.2899159. url: https://doi.org/10.

1109/TG.2019.2899159.

[3] Bharathan Balaji et al. “DeepRacer: Educational Autonomous Rac-

ing Platform for Experimentation with Sim2Real Reinforcement Learn-

ing”. In: CoRR abs/1911.01562 (2019). arXiv: 1911.01562. url: http:

//arxiv.org/abs/1911.01562.

[4] Greg Brockman et al. “OpenAI Gym”. In: CoRR abs/1606.01540 (2016).

arXiv: 1606.01540. url: http://arxiv.org/abs/1606.01540.

[5] Bingqing Chen et al. Safe Autonomous Racing via Approximate Reach-

ability on Ego-vision. 2021. arXiv: 2110.07699 [cs.RO].

[6] “Deep Reinforcement Learning for Autonomous Driving”. In: CoRR

abs/1811.11329 (2018). Withdrawn. arXiv: 1811.11329. url: http:

//arxiv.org/abs/1811.11329.

55



56 BIBLIOGRAPHY

[7] Jingliang Duan et al. “Distributional Soft Actor-Critic: Off-Policy Re-

inforcement Learning for Addressing Value Estimation Errors”. In:

IEEE Transactions on Neural Networks and Learning Systems (2021),

pp. 1–15. doi: 10.1109/TNNLS.2021.3082568.

[8] Scott Fujimoto, Herke van Hoof, and David Meger. “Addressing Func-

tion Approximation Error in Actor-Critic Methods”. In: Proceedings of

the 35th International Conference on Machine Learning, ICML 2018,

Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Ed. by Jen-

nifer G. Dy and Andreas Krause. Vol. 80. Proceedings of Machine

Learning Research. PMLR, 2018, pp. 1582–1591. url: http://proceedings.

mlr.press/v80/fujimoto18a.html.

[9] Gianluca Galletti. “Deep reinforcement learning nell’ambiente pyTORCS”.

MA thesis. University of Bologna, school of Science, 2021.

[10] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum En-

tropy Deep Reinforcement Learning with a Stochastic Actor”. In: Pro-

ceedings of the 35th International Conference on Machine Learning,

ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018.

Ed. by Jennifer G. Dy and Andreas Krause. Vol. 80. Proceedings of

Machine Learning Research. PMLR, 2018, pp. 1856–1865. url: http:

//proceedings.mlr.press/v80/haarnoja18b.html.

[11] James Herman et al. “Learn-to-Race: A Multimodal Control Environ-

ment for Autonomous Racing”. In: Proceedings of the IEEE/CVF In-

ternational Conference on Computer Vision. 2021, pp. 9793–9802.

[12] Timothy P. Lillicrap et al. “Continuous control with deep reinforcement

learning”. In: 4th International Conference on Learning Representa-

tions, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference

Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2016. url:

http://arxiv.org/abs/1509.02971.



BIBLIOGRAPHY 57

[13] Daniele Loiacono, Luigi Cardamone, and Pier Luca Lanzi. “Simulated

Car Racing Championship: Competition Software Manual”. In: CoRR

abs/1304.1672 (2013). arXiv: 1304.1672. url: http://arxiv.org/

abs/1304.1672.

[14] Daniele Loiacono et al. “The 2009 Simulated Car Racing Champi-

onship”. In: IEEE Trans. Comput. Intell. AI Games 2.2 (2010), pp. 131–

147. doi: 10.1109/TCIAIG.2010.2050590. url: https://doi.org/

10.1109/TCIAIG.2010.2050590.

[15] Matthias Plappert et al. “Parameter Space Noise for Exploration”. In:

6th International Conference on Learning Representations, ICLR 2018,

Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track

Proceedings. OpenReview.net, 2018. url: https://openreview.net/

forum?id=ByBAl2eAZ.

[16] John Schulman et al. “Proximal Policy Optimization Algorithms”. In:

CoRR abs/1707.06347 (2017). arXiv: 1707 . 06347. url: http : / /

arxiv.org/abs/1707.06347.

[17] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an

introduction. 2nd edition. Adaptive computation and machine learning

series. Cambridge, MA, USA: The MIT Press, 2018. isbn: 9780262039246.

[18] Christopher J. C. H. Watkins and Peter Dayan. “Technical Note Q-

Learning”. In: Mach. Learn. 8 (1992), pp. 279–292. doi: 10.1007/

BF00992698. url: https://doi.org/10.1007/BF00992698.





Acknowledgements

I would like to express my gratitude to Professor Asperti for the patience,

the trust, the continuous help and guidance during the process of developing

and writing this thesis.

Thanks to my parents for the constant enormous help and sustain. All of

this couldn’t be possible without them.

Thanks to Virginia for the immense support both moral and physical during

the last months and for believing in me even when i didn’t.

I would also thank Matteo and Federica for all the years together. You

are like a second family to me.


