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Introduzione

L’obiettivo di questa tesi è di presentare al lettore le possibili implementazioni

di algoritmi supportati da reti neurali per la ricostruzione di immagini to-

mografiche 3D.

La ricostruzione di immagini tomografiche può essere osservata come la risoluzione

di un problema inverso, dove il problema diretto è la scansione dell’oggetto

desiderato.

Purtroppo, una normale scansione si può rivelare pericolosa per il paziente,

poiché soggetto a potenziali massicce dosi di raggi X. Per cercare di ridurre

il numero di radiazioni a scansione si stanno implementando nuovi metodi

chiamati a visione scarsa, ossia ottenere una ricostruzione ottimale cercando

di ridurre il numero di immagini effettuate durante una scansione compen-

sando tramite computazioni matematiche.

Se in un ambiente perfetto è possibile ottenere la ricostruzione esatta di una

immagine ciò non é possibile in un ambiente reale poiché sono presenti ru-

more e possibili artefatti. Quindi si implementano funzioni di ricostruzione,

il cui risultato sarà il più vicino possibile al limite di convergenza. Ci sono

molteplici algoritmi per la ricostruzione di immagini, ma i più comuni ap-

plicano una funzione di ottimizzazione e una di regolarizzazione per potersi

avvicinare il più possibile al limite.

Tra questi metodi lentamente stanno prendendo piede i metodi iterativi,

che permettono una discesa controllata fino ad arrivare al valore minimo.

Purtroppo, i metodi iterativi hanno un alto costo computazionale per iter-

azione quindi un loro utilizzo in un ambiente medico o ospedaliero è estrema-
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ii INTRODUZIONE

mente inefficiente per via dei lunghi tempi di attesa necessari per produrre

una ricostruzione.

Per compensare a questi tempi d’attesa molte proposte sono state fatte, ma

attualmente la più funzionale comporta l’utilizzo dell’intelligenza artificiale,

in particolar modo delle reti neurali, per l’acceleramento del processo.

Il primo capitolo sarà dedicato alla tomografia computerizzata. Parleremo

della sua evoluzione e delle formule che han portato alla creazione e realiz-

zazione della tomografia come la conosciamo noi oggi.

Nel secondo capitolo verranno mostrati i vari algoritmi utilizzati per la ri-

costruzione tomografica. Osserveremo il loro funzionamento e le principali

differenze tra algoritmi iterativi e no. Infine, compareremo i vari algoritmi

per osservare quale abbia avuto il risultato migliore in un confronto generale.

Il terzo capitolo comincia spiegando brevemente i principi alla base delle reti

neurali e come esse funzionano. Dopo illustreremo i componenti principali

delle Reti Neurali Convoluzionali, una versione particolare di rete neu-

rale utilizzata in questa tesi poiché particolarmente capace nell’imparare il

riconoscimento delle immagini. Il capitolo si chiude con un’analisi della rete

generata, confrontandola con i valori normalmente ottenibili da algoritmi it-

erativi.

Per concludere, condivideremo alcuni pensieri finali per riassumere e dis-

cutere i risultati ottenuti e come possano essere interpretati, seguiti dalla

bibliografia.
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Introduction

The aim of this thesis is to present to the reader the possible implementa-

tions of algorithms supported by neural networks for the reconstruction of

3D tomographic images.

The reconstruction of tomographic images can be observed as the resolution

of an inverse problem, where the direct problem is the scanning of the desired

object.

Unfortunately, a normal scan can prove to be dangerous for the patient, as

it is subjected to potentially massive doses of X-rays. To try to reduce the

number of scanned radiations, new methods called poor vision are being im-

plemented, i.e., obtaining an optimal reconstruction while trying to reduce

the number of images made during a scan by compensating through mathe-

matical computations.

If in a perfect environment, it is possible to obtain an exact reconstruction of

an image, this is not possible in a real environment since there is noise and

possible artefacts. Then we implement reconstruction functions, the result

of which will be as close as possible to the convergence limit. There are mul-

tiple algorithms for image reconstruction, but the most common ones apply

an optimisation function and a smoothing function to be able to get as close

as possible to the limit.

Among these methods, iterative methods are slowly gaining ground, which

allow a controlled descent down to the minimum value. Unfortunately, it-

erative methods have a high computational cost per iteration, so their use

in a medical or hospital environment is extremely inefficient due to the long
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iv INTRODUCTION

waiting times required to produce a reconstruction.

To compensate for these waiting times, many proposals have been made, but

currently the most functional involves the use of artificial intelligence, espe-

cially neural networks, to speed up the process.

The first chapter will be devoted to computed tomography. We will talk

about its evolution and the formulas that led to the creation and implemen-

tation of tomography as we know it today.

In the second chapter, the various algorithms used for tomographic recon-

struction will be shown. We will observe how they work and the main differ-

ences between iterative algorithms. Finally, we will compare the various

algorithms to see which one performed best in a general comparison.

The third chapter begins by briefly explaining the principles behind neural

networks and how they work. We will then illustrate the main components of

Convolutional Neural Networks, a particular version of a neural network

used in this thesis as it is particularly capable of learning image recognition.

The chapter closes with an analysis of the generated network, comparing it

with the values normally obtainable from iterative algorithms.

To conclude, we will share some final thoughts to summarise and discuss the

results obtained and how they can be interpreted, followed by the bibliogra-

phy.
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Chapter 1

Computed Tomography

Computed tomography (CT) is a medical imaging technique that permits the

performance of a noninvasive exam of a patient for the diagnosis and study

of tumours and numerous other pathologies.

It is a radiological examination in which the data is collected by the passage

of various X-ray beams in the affected area and then processed by a com-

puter, in order to reconstruct a three-dimensional image of the scanned area.

The first step towards computed tomography was made by the discovery of

X-rays by the German physics professor Wilhelm Röntgen in 1895 and their

potential application in the medical field.

Then in 1917 it was followed by the formulation of the Radon transform

function which showcased a mathematical demonstrations of how a function

f(x,y) could be reconstructed from an infinite set of its projections. This

function will be explained in more detail in chapter 1.1.2.

Finally, the first prototype of a computed tomography scanner was conceived

in 1967 by the English engineer Sir Godfrey Hounsfield, together with the

South African physicist Allan Cormack. This discovery earned the two scien-

tists the Nobel Prize for medicine in 1979. The prototype featured a scanning

unit that rotated 180°, one degree at a time, around the patient’s head, stor-

ing 160 images from each position, for a total of 28,800 images; this process
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2 1. Computed Tomography

took from 5 to over 10 minutes.

The studies continued and, in 1975, culminated in the creation of the first CT

machinery, the Automatic Computerised Transverse Axial Scanner (ACTA),

capable of taking images of any part of the body. This machine had 30 photo-

multiplier tubes as detectors and was able to complete a scan in just nine

translation and rotation cycles, a much faster speed than EMI’s equipment.

Nowadays, the sector is still developing but has had dramatic growth and sig-

nificance over the past decades. For example, in 2008, the industry-leading

Siemens AG, a German multinational conglomerate corporation, introduced

a new generation of scanners capable of obtaining images in less than a sec-

ond.

Modern tomographic scanners are primarily composed of an emitter of an

X-ray beam that rotates around the patient and a detector, on the opposite

side, that collects the image of a section of the patient.

But the size and type of either evolved considerably during the course of the

years and thus scanners nowadays can be classified in four generation based

around the changes of those parameters.

The first generation of scanners (see top left sub-figure of figure 1.1) were

mainly composed of an X-ray tube that emitted a linear beam of X-rays.

To perform a scan, the X-ray tube first performed a translation and then a

rotation of one degree for 180 degrees, for a total of 180 angular projections

× 160 projection rays.

In the second generation, two major changes were introduced: the geometry

of the radiant beam changed from a linear shape to a ”fan-shaped” beam,

as shown in top right sub-figure of figure 1.2, with an amplitude of around

20-30 degrees, and consequently, the number of detectors increased from 1

to a group of 20-30. With this generation, a single scan took only a few tens

of seconds.

Third generations were introduced thanks to a general improvement in tech-

nology; now the ”fan-shaped” beam changed to an amplitude of around 30–50

degrees, and the number of detectors also increased widely, reaching several

2



3

hundred elements. This meant that scans were able to include the entire

anatomical portion to be studied.

A fourth generation based scanner presented detectors laid in a static ring

placed all around the patient, replacing the rotating detector array (as shown

in the bottom images of figure 1.1). This cut down the time required for a

scan from approximately 5 seconds for a third generation scanner down to a

few seconds.

Modern tomographs now present a fundamental characteristic, that of an ac-

quiring spiral. In fact, in the unidirectional continuous rotation tomographs,

the X-ray tube and the detectors are mounted on a rotating ring which is

powered by ”sliding contacts.” This method allows the acquisition of images

in a continuous way.

As the X-rays pass through the patient, they are attenuated differently by

various tissues according to the tissue density defined by the Beer-Lambert’s

law. A visual representation of the raw data obtained is called a Sinogram.

In conclusion, computed tomography (CT) use has increased dramatically

over the past several decades. Integrating CT into routine care has improved

patient health care dramatically, and CT is widely considered among the

most important advances in medicine. However, CT delivers much higher

radiation doses than conventional diagnostic x-rays. For example, a chest

CT scan typically delivers more than 100 times the radiation dose of a rou-

tine frontal and lateral chest radiograph[1].

Furthermore, radiation exposure from CT examinations has also increased, in

part due to the increased speed of image acquisition, allowing vascular, car-

diac, and multi-phase examinations, all associated with higher doses. Thus,

greater use of CT has resulted in a concurrent increase in medical exposure

to ionizing radiation[2].
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4 1. Computed Tomography

Figure 1.1: Sketches of tomographic devices, from the primordial technology

with parallel X-rays scans (top left), to the most modern solution exploiting

fan-beams for 2D (top right) and cone-beams (bottom) for 3D CT.

1.1 Sparse Tomography

As mentioned in the above paragraph, one of the biggest concerns regarding

the use of CT scanners is how to reduce the radiation dose without compro-

mising the image quality.

As one can imagine, higher radiation doses usually mean higher resolution

images due to less attenuation caused by tissues and vice versa. However,

increased dosages of radiation can increase the adverse side effects.
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1.1 Sparse Tomography 5

The patient surface dose from a typical abdominal CT is 200–300 times more

than that of a typical chest radiograph, 20–30 times that of the mean glan-

dular dose of a typical craniocaudal mammogram, and approximately 10–20

times that of typical abdominal radiography.[3]

As such, motivated by an increasing focus on the potentially harmful ef-

fects of X-ray radiation, a recent trend in CT research is the development

of few-views imaging techniques [4], whose graphical drafts are schematically

reported in Figure 1.2.

Hence, in classical full-dose CT (first row of Figure 1.2), up to one thou-

sand projections are taken along the circular trajectory, hence, one way to

reduce the total amount of radiation consists of decreasing the number of

projections. The resulting protocol is labelled as sparse-views full-angle to-

mography.

A different CT geometry using few projections is the so-called limited-angle

tomography where a further reduction of X-ray scans is made by limiting the

source trajectory to a C-shaped path, i.e., by restricting the 360-degree an-

gular scanning interval to a range smaller than 180 degrees(see second row of

Figure 1.2). In some tomographic applications, human anatomy does not al-

low a complete circular motion to the X-ray source, thus the use of a reduced

range is mandatory and the resulting technique is called tomosynthesis.

In the medical field, low-dose compared with full-dose protocols allows ap-

plying CT techniques to a wider class of examinations, including vascular,

dental, orthopaedic, musculoskeletal, chest, and mammographic imaging. In

particular, they are approved even for screening tests: safer routines are

indeed led without compromising the reliability of their diagnosis [5]. In ad-

dition, they are widely used not only in medicine but also in materials science

and cultural heritage, to prevent damage to the subject under study due to

excessive radiation.
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6 1. Computed Tomography

Figure 1.2: Types of tomographic reconstruction; top sketch illustrate a full-

views techniques, bottom sketch a sparse-views technique

1.2 Beer-Lambert Law

As mentioned before, when an X-ray pass through an object, they are atten-

uated by the the type and density of the material they are passing through.

From a physical point of view, the projection data reflect the absorption of

the photons constituting the X-rays, and the image of the scanned object is

a picture of the attenuation coefficient map in pseudo-colours.

The physical model describing photons absorption is described in the Lam-

bert Beer’s law.

The Lambert Beer’s law relates the attenuation of light to the properties of

the material through which the light is travelling.

In the most simple case, assuming a mono-energetic beam and a homoge-

neous sample of thickness dℓ (as shown in Figure 1.3), Lambert-Beer’s law of

attenuation can be expressed as:

m(w) = m0 · e−µw (1.1)

6



1.2 Beer-Lambert Law 7

With µ being the linear attenuation coefficient for the crossed point w and

imposing the initial condition of m(0) = m0 where m0 is the emitted photon

count.

Figure 1.3: application of the Lambert-Beer’s law through an object of length

dℓ

In practice, the attenuation coefficient µ(w) is not constant along the ray

path. So for inhomogeneous samples the equation above changes into:

m = m0 · e−
∫W
0 µ(w)dw (1.2)

With w being the beam direction. The integral in the exponential is also

known as line integral PWµ and can be computed as:

PWµ = − ln(
m

m0

) =

∫ W

0

µ(w)dw (1.3)

This equation represents the projection image, which is proportional to the

integrated attenuation coefficient of a sample from a certain beam direction,

furthermore by setting the plane coordinates as w = (x, u) and renaming L

the integration path we obtain:

PWµ = − ln(
m

m0

) = +

∫
L

µ(x, y)dw (1.4)

7



8 1. Computed Tomography

1.3 Radon transform

Thanks to the application of Beer-Lambert’s law, we can now obtain the

projected distribution (profile) of the object, but what can be known about

the actual distribution?

This problem has long been of interest to mathematicians, and with the

advancements in experimental science and other applied fields, we also needed

a solution to this issue. A solution to the reconstruction problem came with

the formulation of the Radon transform and its inversion formula in 1917 by

Johann Radon.

Initially, the formula was only for problems in R2 and R3 dimensions, but it

was later expanded to resolve equations in Rn.

The generalised Radon transform, Rf , is a function defined in the space of

straight lines L ⊂ R2 by the line integral along each such line as:

Rf(L) =

∫
L

f(x)|dx| (1.5)

The Radon transform of µ is defined as the map R : [0, 2π] × R → R such

that:

(Rµ)(θ, t) = Pθµ(t), ∀θ ∈ [0, 2π],∀t ∈ R

Pθµ(t) =

∫
L

µ(x, y)dw
(1.6)

In other words, the Radon transform R of an object slice described by µ

is the set of projections acquired along the whole circular trajectory. The

process defining full-dose tomography represents a discrete realization of the

(continuous) Radon transform.

The Radon transform data is often called a sinogram because the Radon

transform of an off-center point source is a sinusoid. Consequently, the Radon

transform of a number of small objects appears graphically as a number of

blurred sine waves with different amplitudes and phases.

8



1.4 Solving the reconstruction problem 9

Figure 1.4: Geometry of the line integral associated with the Radon trans-

form

1.4 Solving the reconstruction problem

In CT scanning, we can represent the acquisition of the sinogram from the

object scanned by the machine as a forward problem, as it starts with the

causes and then calculates the effects. To obtain the reconstruction of the

object from the sinogram, the software reconstructs the digital image from

the acquired projection data. Hence, tomographic image reconstruction rep-

resents an inverse problem mathematically.

In an inverse problem, which can be seen represented inf Figure 1.5, only

the measurements of an effect are known, as given data, whereas the causal

factors represent the unknown that must be retrieved as a solution to the

problem.

Hence, in computed tomography, the lines on which the parameter is inte-

grated are straight lines; hence, the tomographic reconstruction of the param-

eter distribution is based on the inversion of the Radon transform, although

the Radon transform and its generalisations still present many theoretical

9



10 1. Computed Tomography

Figure 1.5: Inverse Problem

challenges, with questions of sufficiency of data still unresolved.

Mathematically, inverse problems are generally ill-posed in the sense of Hadamard[6],

I.e., one of the following conditions is not satisfied:

1. At least one solution to the problem already exists.

2. The solution to the problem is unique.

3. The solution does not continuously depend on the data.

Traditional methods for CT can’t face the ill-posedness and compute images

with unwanted artefacts and noise. Textbf filtered backprojection and, as

computing power has increased, textbf iterative reconstruction algorithms

were investigated as solutions. This is possible thanks to a more recent

approach that models the CT imaging process as an optimisation problem

where the inverse problem is solved by inverting the discrete model, repre-

sented by a linear system, constrained by means of regularisation functions.

Imposing regularisation also allows one to choose a good solution among the

infinite possible ones.

10



Chapter 2

Tomographic reconstruction

Initially, CT scanners solved the tomographic reconstruction problem with

linear algebra, but this approach was limited by its high computational com-

plexity, especially given the computer technology available at the time.

To improve the quality of tomographic reconstructions starting with only a

finite, limited number of projections, many algorithms have been proposed

to help significantly reduce unwanted noise and artefacts. Modern used al-

gorithms are primarily based on the inverse of the Radon transform and the

geometry of the scanner.

This chapter will illustrate the tomographic reconstruction software imple-

mented and present a brief description of the algorithms studied, how they

work, and the differences between them.

2.1 Software used

Before we begin illustrating the algorithms, it’s important to illustrate which

software/toolboxes were utilised for repeatability purposes.

All the algorithms presented below were written in Python 3.9 using the

toolboxes CIL, ODL and ASTRA toolbox.

11



12 2. Tomographic reconstruction

2.1.1 CIL

The Core Imaging Library[7] (CIL) is an open-source Python framework for

tomographic imaging with particular emphasis on the reconstruction of chal-

lenging datasets. CIL provides an extensive modular optimisation framework

for prototyping reconstruction methods, including sparsity and total varia-

tion regularisation, as well as tools for loading, preprocessing, and visualising

tomographic data.

2.1.2 ODL

The Operator Discretization Library (ODL) is a Python library for fast pro-

totyping focusing on (but not restricted to) inverse problems. ODL is being

developed at KTH Royal Institute of Technology, Stockholm, and Centrum

Wiskunde and Informatica (CWI), Amsterdam. The main intent of ODL is

to enable mathematicians and applied scientists to use different numerical

methods on real-world problems without having to implement all the neces-

sary parts from the bottom up. This is achieved by an Operator structure

that encapsulates all application-specific parts, and a high-level formulation

of solvers that usually expect an operator, data, and additional parameters.

2.1.3 ASTRA toolbox

ASTRA Toolbox[8] is an open platform for 3D image reconstruction in to-

mography. Most of the software tools that are currently used in electron

tomography offer limited flexibility with respect to the geometrical parame-

ters of the acquisition model and the algorithms used for reconstruction. The

ASTRA Toolbox provides an extensive set of fast and flexible building blocks

that can be used to develop advanced reconstruction algorithms, effectively

removing these limitations. A series of experiments based on experimental

dual-axis tilt series demonstrate this flexibility, the resulting reconstruction

quality, and the computational efficiency of this toolbox.

12



2.2 Filtered Back Projection 13

2.2 Filtered Back Projection

One of the first algorithm ever introduced in the CT field was the Filtered

Back Projection (FBP), which is a stabilised and discretized version of the

inverse Radon transform.

As the name implies, it is mainly composed of two main steps: firstly it

applies a filter to the data received as sinogram to reduce the blurring present

and then backproject applying the inverse of the Radon transform.

With a sampled discrete system, the formula for the inverse Radon transform

is [9]:

f(x) =

∫ π

0

(Rf(·, θ) ∗ h)(⟨x,nθ)dθ (2.1)

In a real-world discrete setting, FBP assumes a perfect scanner and highly

simplified physics, which is extremely difficult to implement. This can lead

to a number of artefacts, high noise, and impaired image resolution. Never-

theless, the FBP algorithm is still implemented in many commercial systems,

since it computes the output image in a very short time, which is a funda-

mental request in a medical setting.

A possible alternative is the implementation of a model-based iterative algo-

rithm, which can be derived from the discretization of Lambert-Beer’s Law.

Compared with the Filtered Back-projection method, iterative reconstruc-

tion costs large computation time, limiting its practical use. However, due

to the ill-posedness of Radon Inversion, the Filtered Back-projection method

may be infeasible in the presence of discontinuity or noise. Iterative recon-

struction methods provide metal artefact reduction, noise and dose reduction

for the reconstructed result that attract much research interest around the

world.

13



14 2. Tomographic reconstruction

2.3 Iterative reconstruction

Iterative Image Reconstruction (IIR) method, or also commonly abbreviated

as iterative algorithm are rising in popularity in the last periods due to their

ability to provide images with improved resolution, reduced noise and fewer

artefacts, as well as the ability to greatly reduce the radiation dose in certain

circumstances, they can also introduce a priori information about the object

scanned and exploit the Compressed Sensing (CS) theory for reconstructing

a signal or an image from a reduced number of acquisitions with respect to

the Nyquist theory [10].

Their main drawback is their higher computational cost with respect to the

analytical methods, but due to a combination of new technologies and new

algorithm using massive parallelism it’s possible to realise fast iterative al-

gorithm with acceptable results for medical settings [11].

2.3.1 Linear system

Whereas the FBP algorithm resolves a Radon transform for obtaining the

reconstructed image, iterative methods require the implementation of a linear

equation, but are applied to real-world settings.

When implementing a real discrete settings, we must first remember that

the scanner and the scanned object are both discrete. Thus the attenuation

coefficient µ(x, y) that we obtain from the application of the Beer-Lambert’s

law (1.4) is also discretized in an image of form N = Nx ×Ny, having np as

the number of recording units for a detector and Nθ projections at equally

spaced angles θk, ∀k = 1, ..., Nθ

Now, using mathematical notation, we can describe the CT process using a

linear system in the form:

Ax = b (2.2)

where A ∈ RNd × RN is the matrix describing the system geometry, having

Nd = Nθ × np; b ∈ RNd × Rθ(b > 0) is the vector of recorded projections

14



2.3 Iterative reconstruction 15

and x ∈ RNv is the discretisation of µ(x, y) in the Nv voxels of the objects.

However, in a real-life discrete setting, the linear system [2.2] is under-

determined, having N > Nd, hence it has infinite possible solutions. More-

over, due to the ill-posedness of the inverse problem and to a lack of data,

noise and streaking artefacts corrupt the solutions, thus regularisation strate-

gies are necessary.

A model-based approach is introduced to overcome these numerical contro-

versies by adding some prior information. The resulting formulation can be

stated as a minimisation problem involving a data-fitting function J and a

prior operator R (acting here as a regulariser):

argmin
x

f(x) = J (x) + λR(x) (2.3)

2.3.2 Least Squares

For the implementation of the data-fitting function J , one of the most com-

monly used approach is the Least Squares (LS) operator:

LS(x) =∥ Ax− b ∥22 (2.4)

The LS function perfectly fits with the assumption of Gaussian noise com-

ponents on the available data b. The formula was then implemented in the

SGP algorithm as [12]:

J (x) = 1

2
∥ Ax− b ∥22 (2.5)

2.3.3 Total Variation

The total variation function [13] (TV), also known as total variation regular-

isation or total variation filtering, is currently the most widely used regular-

isation function for CT problems, so it was chosen as the perfect candidate

for R(x).
It is based on the principle that signals with excessive and possibly spurious

15



16 2. Tomographic reconstruction

detail have a high total variation, that is, the integral of the absolute image

gradient is high. The concept was pioneered by Rudin, Osher, and Fatemi

in 1992 and so is today known as the ROF model [14] :

TV (x) =
N∑
j=1

∥ ∇xj ∥2 (2.6)

or in its smoothed differentiable form as:

TVβ(x) =
Nv∑
j=1

√
∥ ∇xj ∥22 +β2 (2.7)

where β is a small positive parameter.
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2.4 Iterative algorithms implemented

2.4.1 GD

Gradient descent (GD) is an optimisation algorithm, based on convex or dif-

ferentiable functions that tweaks its parameters iteratively to minimise the

cost-given function to its local minimum.

It operates on the concept of gradients, which is the first derivative at a se-

lected point or, in the case of a multivariate function the vector of derivatives

in each main direction.

The GD algorithm works by iteratively calculating the next point using gra-

dient at the current position, then scales it by a learning rate and subtracts

obtained value from the current position (thus making a step). It subtracts

the value because we want to minimise the function (to maximise it would

be adding)(see Figure 2.1).

Formally, if we start at a point xk and move a positive distance, α in the

direction of the negative gradient, then our new and improved xk+1 will look

like this:

xk+1 = xk − αk∇f(x) = xk + αk(b− Axk) (2.8)

2.4.2 CGLS

The conjugate gradient method is an algorithm for the numerical solution

of particular systems of linear equations, namely those whose matrix A is

symmetric (A⊤ = A) and positive definite (x⊤Ax > 0).

Solve Ax = b

or minimise ∥Ax− b∥2

or solve (ATA+ sI)x = AT b,

where the matrix Amay be square or rectangular and s is a scalar (positive or

negative). The method is stable if s = 0 or s > 0. More generally, it should

17



18 2. Tomographic reconstruction

Figure 2.1: Method of the gradient descent

be stable if ATA+ sI is positive definite. Otherwise, it may be unstable.

2.4.3 FISTA

The fast iterative shrinkage-thresholding algorithm (FISTA)[15] it’s the evo-

lution of the iterative shrinkage-thresholding algorithms (ISTA). FISTA pre-

serves the computational simplicity of ISTA but with a global rate of con-

vergence that is proven to be significantly better, both theoretically and

practically. The concept is based around the general step of ISTA, which in

linear form is:

xk+1 = Tλt(G(xk)) (2.9)

where G(.) stands for a gradient step of the fit-to-data LS function. FISTA

address the main problem with ISTA algorithms, the slow convergence of xk

to a solution due to the fact that they are methods based on function values

and gradient evaluations. The solution proposed in FISTA is to implement
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a faster method similar to ISTA in the form:

xk+1 = Tλt(G(yk)) (2.10)

where the new point, yk uses a very specific linear combination of the previous

two points, xk−1, xk−2. Due to its minor role in this thesis, a detailed proof

of the statement unfortunately exceeds the scope of this paper. We refer the

reader to existing literature on the topic for details of this [15].

2.4.4 SGP

The scaled projection algorithm (SGP) is a scaled gradient projection algo-

rithm accelerated by exploiting a scaling strategy for defining gradient-based

descent directions and generalised Barzilai–Borwein rules for the choice of

the step-lengths.[16] It solves a minimisation problem of the form:

min
x≥0

f(x) = LS(x) + λTVβ(x) (2.11)

SGP can be seen implemented in pseudo-code in the algorithm next page:
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20 2. Tomographic reconstruction

Algorithm 1 SGP(x0,maxIterations, toleranceGradient, α = 1)

x = x0 ∧ k = 0

grad = grad(LS(x) + λ ∗ TV (x))

RelativeError =
∥x− groundTruth∥
∥groundTruth∥

ρ =
√
1 + 1e15

s = ScalingMatrix(x, ρ)

CONTINUE ← True

while CONTINUE do

directionDescent = Projection(x− α ∗ s ∗ grad)− x

StepLength = BacktrackingStep(x, f(x), grad, directionDescent)

RelativeError =
∥x− groundTruth∥
∥groundTruth∥

k+=1

x = x+ StepLength ∗ directionDescent

grad = ∥grad∥
if (∥grad∥ > toleranceGradient) ∧ (k < maxIterations) then

grad0 = grad

grad = grad(LS(x) + λ ∗ TV (x))

ρ =
√
1 + 1e15/k2.1

s = ScalingMatrix(x, ρ)

α = BarzilaiBorweinRules(s, x0, x, grad0, grad, alpha)

else

CONTINUE = False

end if

end while

Return (x, k, grad,RelativeError, f(x))
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2.5 Methods comparison

In this section, we will discuss the differences in the performance of each

algorithm, looking at the quality of reconstructed images and relative errors.

With relative error, it is intended as the result of a normalisation applied to

the difference between the true image and the reconstructed one.

Each algorithm were tested each two times on a Shepp-Logan phantom of

size 128×128×128, the first time doing only 10 iterations whenever possible

and the second time 100 iterations or till convergence.

The Sheep-Logan phantom is one of the most famous phantom used for test-

ing reconstruction algorithms, it is based on ellipsoid vaguely resembling a

human head (see figure 2.2),it was created by Larry Shepp and Benjamin F.

Logan for their 1974 paper The Fourier Reconstruction of a Head Section

[17].

To the phantom it was also applied Gaussian noise, which is statistical noise

that can take on values that are Gaussian-distributed, with a standard devi-

ation of 1e−3 to see how the various algorithms would reconstruct an image

in a not-so-perfect setting.

Algorithm used Relative error after 10 iterations after 100 iterations

Fbp 0.23763588 0.23763588

Cgls 0.29899165 0.17062649

Gd 0.646686 0.3288964

Fista 0.48350394 0.09436152

Sgp 0.35354166 0.10564623

Table 2.1: Relative error of each algorithm

Looking at table 2.1, we can see that Fbp is the only non-iterative algorithm

tested, proven by the fact that its relative error remains unchanged. Its rel-

ative error is one of the lowest overall, but the quality of the image is not

very close to the original. The noise streaks are visible and quite apparent,
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22 2. Tomographic reconstruction

and two lines not present on the original can be seen adjacent to the recon-

struction.

Figure 2.2: Reconstruction images of the phantom (top-left) after 10 itera-

tions from top to bottom, left to right: phantom, fbp, cgls, gd, fista, sgp

CGLS is next and when looking at the relative errors we can see a small im-

provement, only halving the error after 90 iterations plus, but unfortunately
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when looking at the image almost the exact situation reappear as for FBP,

only reduced. Two lines that were not present on the original phantom are

present adjacent to the reconstruction, but overall the image seems improved,

although a little blurred.

Gradient Descent is the most particular case, having one of the highest rel-

ative errors, almost doubling the error of other algorithms after only 10

iterations. Even after 100 iterations, it still remains the highest, although

reduced by almost half from 10 iterations. Looking at the original phantom

and then the GD reconstruction, it appears that the Gradient Method not

only bumped its brightness quite a lot, thus making the smaller ellipsoids

disappear, but it also appears quite blurred, making it harder to recognise

particular forms. While in this case it was not a cause of concern, in a

medical setting it can be quite troublesome due to tissues not being quite

recognisable.

Continuing further, we find Fista, which is one of the most recent algorithms

published in this comparison, and its accuracy can be seen by looking at the

table. Whilst the relative error after 10 iterations is the second highest of

the group, after 100 iterations we can see it dropping down even below 1e−2,

which is astounding. Looking at the image, we can see that, while a little

blurred and brighter than most, it’s one of the cleanest so far.

Finally, we arrive at Sgp. Sgp presents the best relative errors so far, while

not the lowest of the group, they are quite close to having a relative error

after 100 iterations equal to 1e−2. Instead, by looking at the image, we can

see that, while it’s difficult to recognise some of the smaller details, the con-

trast is quite clear and a lot less blurred than the other image.

Having confronted this algorithm, it was then decided to adopt Sgp as the

method to continue working on, giving the clearest images whilst having

some of the lowest errors.
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Chapter 3

Neural Network

With artificial neural networks, or NN in short, we mean a sub-branch of

artificial intelligence inspired by the biological neural networks that make up

the brains of animals.

A neural network is a computational framework including a large number of

neurons as basic computing units connected to each other with varying con-

nection strengths known as ”weights.” This feed-forward, layered architecture

is mainly intended to reflect the process of extracting visual features from

biological neurons layer by layer. An artificial neural network is composed

primarily of the following elements: neurons with weights and activation

functions; network topology, or connections, which ought to be trained with

training data according to some learning rules.

Neurons are the core of the network and the most elementary unit. They

are capable of receiving information in input from other neurons, processing

them, and then transmitting them to other neurons. This can be illustrated

by a mathematical expression:

 v =
m∑
i=1

xiwi + b

y = φ(v)
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where wi represents the weight for each input signal component xi, b is a

bias, v is the sum of the input vector and the weight vector and y represents

the output of the neuron after the application of a nonlinear activation func-

tion φ to v.

The activation function is an essential component of a neuron because it de-

fines the output behaviour of the neuron and empowers the network thanks

to its nonlinear mechanism. This non-linearity enables the artificial neural

network to learn a complex nonlinear mapping from input to output signals

without it, the network would be a linear system whose information process-

ing capability would be very limited.

Generally speaking, the activation function delivers a single number via a

”soft” thresholding operation as the final result of the information process-

ing processed by the neuron. Two of the most commonly used functions are

the Sigmoid and the ReLu.

The Sigmoid function sets the output value in a range between 0 and 1, where

0 represents not activated at all, and 1 represents fully activated.

φ(v) =
1

1 + e−v

Currently, the sigmoid nonlinearity is rarely used, because it has the major

drawback of saturating when activated at either 0 or 1, and because the

gradient in these regions is almost zero, this is undesirable for optimisation

of the network parameters.

The rectified linear unit function (ReLu) works better than a smooth function

like the Sigmoid, while also being significantly easier to compute. ReLu

outputs 0 if its input is less than 0; otherwise, it just reproduces the input.

The mechanism of ReLU is more like the biological neurons in the visual

cortex.

φ(v) = max(0, v)

There are two major merits of the ReLU function: there is no saturation

zone for positive stimulation and there is no gradient. And, in the network
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26 3. Neural Network

training process, the convergence speed of ReLU is much faster than that of

Sigmoid.

(a) Sigmoid function (b) ReLu function

Figure 3.1: Activating function

Neurons combined form layers which can detect the type of feature of their

input data. It could be the input layer or a hidden layer. Different types

of networks can be created by combining different neurons each time, which

will cause new layers to be created and old layers to be modified or even

removed.

Figure 3.2: Graph of a three-layer model with activation function.
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To understand how a neural network works, we must first take a look at the

overall process of implementation and analyse each step. The whole process

can be summarised into the following points:

1. Design: Based on the task, we design the neural network architecture,

the topology and the details on convolution, activation, loss function,

and choose the value for the hyperparameters.

2. Forward projection: Training samples are then fed into the network

to produce some outputs. (Forward projection) The input samples

are samples that originate from a training dataset used to train the

network, while some samples are for creating a testing dataset to verify

the level of convergence of the network.

3. Backpropagation: The weight of each neuron is then updated after

checking the relative error using the backpropagation method.

4. Repeat : Repeat point 2 and 3 until the network converges. We have

trained the network for one epoch.

The main concept behind the implementation and usage of a neural network

is its ability to grow thanks to its capability to reinforce or weaken con-

nections between neurons throughout the learning process by adjusting the

weight of each neuron.

When a neural network is created, initially it sets all the weights randomly.

As such, the initial iterations perform poorly. It still needs to adjust its

weight iteratively, by comparing the error between the training values ob-

tained and the predicted values, usually given by the developer, so as to

obtain a converged or trained neural network with an appropriate internal

representation, which can then map from an input to a desirable output.

Such a training process is almost exclusively done using the backpropagation

algorithm.

Backpropagation is a shorter term for ‘error backward propagation’ and is

essentially a gradient descent optimisation. In backpropagation, it calculates
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28 3. Neural Network

a loss function at the output layer of the network and then distributes it

backwards throughout the network layers.

The loss function is used to measure the discrepancy between a predicted

value ŷ and the corresponding label y. It is a non-negative function, whose

minimisation drives the performance of the network to reach convergence in

the training stage.

Training a neural network is to update the network parameters so that ŷ

approaches y as closely as possible by some certain measure. The loss func-

tion can take a variety of forms, but here we will discuss the most commonly

used: L2 and L1.

The mean squared error (L2 ) measures the average of the squares of the

errors, that is, the average squared difference between the estimated values

and the actual value. The standard form for L2 is:

L2 =
1

n

n∑
i=1

(yi − ŷi)2

The mean absolute error (L1 ), similarly to L2, calculates the loss function

as the sum of absolute differences between actual and predicted values. L1

does not have the normalising factor n (or n – 1). That is, the L1 loss is

defined as:

L1 =
n∑

i=1

|yi − ŷi|

While some parameters can change during a training session, there are some

that cannot be changed by the algorithm and are decided initially by the

developer of the network. Those parameters are called hyperparameters. For

example, some hyperparameters are variables that determine the network

structure and how the network is trained. By citing a few, we have the

learning rate, the number of epochs for each training set, the regularisation

parameter (aka which loss function), etc. etc.

With learning rate we intend how much of the error value has to be back

propagated to the weights in the network in order to move in the direction of

lower loss. Usually it looks like: Weightnew = Weightcurrent−learningRate∗
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gradient.

In order to train a neural network well and speed up the training process,

there are several established strategies.

One of the most commonly implemented in neural networks with many layers

is mini-batch. Mini-batch training means taking samples of a certain batch

size to train the neural network during each iteration, instead of all available

samples at the same time.

Batch normalisation is used to normalise the distribution of each layer’s data

to speed up the training speed. In batch normalisation, the input training

data is processed in a batch, instead of for all the data. This slows down the

training speed and thus requires lower learning rates and suitable parameter

initialisation. This strategy is also useful to contrast overfitting.

An overfitting model is a statistical model that contains more parameters

than can be justified by the data. The mechanism of overfitting is to un-

consciously extract some residual changes (i.e., noise) as if that variation

represented the underlying model structure. In contrast, under-fitting oc-

curs when the statistical model does not adequately capture the underlying

structure of the data. Then, when the model begins to ‘remember’ training

data rather than ‘learn’, overfitting occurs when new data is processed. The

direct consequence of overfitting is the poor performance of the network on

the validation set.

See figure 3.3 for an illustration comparing an overfitted model to a fitted

one.
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Figure 3.3: Noisy (roughly linear) data is fitted to a linear function and a

polynomial function. Although the polynomial function is a perfect fit, the

linear function is be expected to perform better: if the two functions were

used to extrapolate beyond the fitted data, the linear function should make

better predictions.

3.1 Convolutional neural network

When we talked about how a neural network works, we focused primarily on

the most commonly used net, the feedforward network, but there are various

types of neural nets that are used for different use cases and data types.

For example, recurrent neural networks are commonly used for natural lan-

guage processing and speech recognition, whereas convolutional neural net-

works (CNNs) are more often used for classification and computer vision

tasks.

Convolutional neural networks were first discussed in a paper written by Dr.
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David Hunter Hubel and Dr. Torsten Nils Wiesel in the 1960s, where they

claimed that the visual cortex of cats and monkeys contains neurons that

react individually to directional structures. Visual stimulus can affect the

neighbourhood of a single neuron, known as the receptive field. Adjacent

cells have similar and often overlapped receptive fields, the size and position

of which vary, forming a complete visual spatial map.

This justified the use of local receptive fields in neural networks, and Hubel

and Wiesel also proposed a cascading model for use in pattern recognition

tasks.[18] Finally, in 1980, neocognition was proposed, marking the birth of

the CNN, which introduced the concept of the receptive field in the artificial

neural network. [19]

According to the concept of receptive fields, CNN exploits the spatial lo-

cality by enforcing a local connectivity between neurons of adjacent layers.

This architecture ensures that the learned “filters” produce the strongest re-

sponses to spatially local input patterns of relevance. Stacking many such

layers together forms nonlinear filters that become increasingly global as the

depth goes deeper.

Figure 3.4: Convolution in a receptive field
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In CNN, each filter is replicated across the entire visual field. These replicated

units share the same parameters; that is, the same weight vector and bias

are repeatedly used to produce a feature map. In a given convolutional layer,

the features of interest for all neurons can be analysed by a shift-invariant

correlation. Replicating units in this way allows for the same feature to be

detected regardless of their position in the visual field.

Each CNN layer has neurons arranged in three dimensions: width, height,

and depth. The width and height represent the size of a feature map. The

depth represents the number of feature maps over the same receptive field,

which offers different structural features in the same visual scope to respond

to visual stimuli of various types, respectively. Finally, different types of

layers, both locally and completely connected, are stacked to form the CNN

architecture.

3.2 Learned Post Processing

Thanks to these discoveries, CNN has begun to achieve recognition in the

field of reconstructive techniques as a potential successor to fully conven-

tional iterative algorithms, but neural networks alone take little advantage

of traditional algorithms that were developed through physical modeling and

mathematical derivation, and there is no evidence, neither theoretically nor

numerically, that neural network based algorithms solve the mathematical

inverse problem modelling the tomographic reconstruction process.

This makes the network-based reconstruction results sub-optimal. So one

possible solution proposed was to implement hybrids, to mix iterative recon-

struction algorithms and deep learning techniques for improving performance

whilst maintaining optimal results.

The current approach is called Learned Post Processing (LPP). First it pro-

duces a low quality image with artefacts and noise reconstructed with a fast

method (typically a FBP) and then a neural network tries to improve the

quality of the image by suppressing the artefacts. The network is then fed
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as samples for comparison, a set of ground truth images reconstructed from

full dose acquisitions.[20]

While LPP is extremely important as it pioneers a new approach to imaging

iterative reconstruction, it is also being criticised for its lack of mathematical

characterisation. [21]

One potential solution is the introduction of the Rapid Iterative Solver with

Iteration Network-based Gaining (RISING) framework.[22] The RISING re-

constructing procedure can be described by the two following steps executed

in sequence:

• Starting from the projection data, a rapid iterative algorithm (IIR) pro-

duces a low quality reconstruction by solving the model-based problem

of handling few-view CT with a few iterations. The execution of only

a few iterations fits realistic time constraints.

• The previously computed rough reconstruction is processed by a deep

neural network which aims at retrieving the unperformed iterations

towards convergence. Its output is the RISING solution image.

Another widely implemented algorithm is the U-Net architecture. The U-

Net is a generic deep learning solution for frequently occurring quantification

tasks such as cell detection and shape measurements in biomedical image.

The U-Net is named to reflect its symmetric architecture and consists of a

contracting part (left side) and an expansive part (right side).

The contracting part follows the typical architecture of a convolutional net-

work. It repeatedly applies convolutions, each followed by the ReLU activa-

tion and a max pooling operation for down-sampling.

At each down-sampling step, U-Net doubles the number of feature channels.

In the expansive part, each step is for up-convolution, which is known as

transposed convolution. By the up-convolution, it finishes up-sampling fea-

ture maps and halves the number of feature channels. Then, U-Net con-

catenates these up-sampling feature maps with the correspondingly cropped

feature maps from the contracting part of the U-Net.
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Although the U-Net framework presents numerous advantages, like its prac-

tical adaptability, there are some disadvantages that limit its potential usage,

like its deep structure that requires a very expensive training in terms of time

and consumed energy.

One potential alternative is implementing a ’green’ alternative architecture

called ResUNet (residual-learning U-Net) that saves time and energy and

also lowers computational time to reduce the cost of the hardware required

to train the network.

The ResUNet is a fully convolutional neural network with a symmetric en-

coder decoder structure and pooling/unpooling operators to enlarge its re-

ceptive field. Each convolutional layer is composed of a Conv2D + Batch-

Normalization + ReLU structure, as it is common in the literature, except

for the last layer, where it was used as a tanh activation function.

Although this network is extremely important to understanding the evolution

of neural networks, unfortunately, its complete explanation exceeds the scope

of this paper, thus we refer the reader to ”A green prospective for learned

post-processing in sparse-view tomographic reconstruction”[23] for details of

this.
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3.3 Technical Notes

For our experiments, the implementation of a U-Net or ResUNet was too

expensive, due to the sheer size of the phantom. As such, Colaboratory by

Google was initially the platform to train our networks, but due to the con-

straints imposed on heavy-usage users, it was difficult to run the training

samples without having the training abruptly stop halfway.

Due to this, it was then decided to run the training of the neural network

on a machine generously given by the Department of Scienze Informatiche,

which has a Geforce RTX A4000 with 16GB of memory.

The algorithm was written in Python 3.9 using the toolbox TensorFlow. Ten-

sorflow is an end-to-end open source platform for machine learning. It has

a comprehensive, flexible ecosystem of tools, libraries, and community re-

sources that lets researchers push the state-of-the-art in ML and developers

easily build and deploy ML-powered applications.

The samples on which the network was trained and then tested were not

based on the Sheep-Logan phantom, which instead was the case for the com-

parison between iterative algorithms, due to its notoriety and its simplicity.

Instead, it was decided to utilise an array of 120 phantoms, which were ran-

dom objects generated containing ellipsoids, circles and other figures (see

figure 3.5). Each phantom was generated as a 3D object with a size of

256x256x32.

While it was not possible to implement a complete U-Net, it was decided to

implement a somewhat partial U-Net by implementing only a layer of con-

volution and up-convolution.

This left us with a greater degree of freedom compared to a normal U-Net

and also helped to mitigate the enormous computing power usually required.

Unfortunately, this choice came with a cost: by limiting the network’s power,

we also severed its ability to grow, making training till convergence impossi-

ble.

The network also implemented the ADAM optimiser, which is a stochastic
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Figure 3.5: Two random phantoms generated for the network

gradient descent method that is based on adaptive estimation of first-order

and second-order moments, to help improve the descent by manipulating the

learning rate of the training. citekingma2017adam

The network was then trained three times, each time changing the size of the

kernel to observe how the changes modified the behaviour of the network.

We define kernels as the stack of layers that are defined by the action of a

number of filters on the input. For example, on a convolutional layer, the

kernel size refers to the width × height of the filter mask.
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Layer Type Output Shape

Conv3D (256, 256, 32)

ReLU (256, 256, 32)

BatchNormalisation (256, 256, 32)

Conv3D [skip1] (256, 256, 32)

ReLU (256, 256, 32)

BatchNormalisation (256, 256, 32)

MaxPooling3d (128, 128, 16)

Conv3D (128, 128, 16)

ReLU (128, 128, 16)

BatchNormalisation (128, 128, 16)

Conv3D (128, 128, 16)

ReLU (128, 128, 16)

BatchNormalisation (128, 128, 16)

UpSampling3D (256, 256, 32)

Concatenate(skip1) (256, 256, 32)

Conv3D (256, 256, 32)

ReLU (256, 256, 32)

BatchNormalisation (256, 256, 32)

Conv3D (256, 256, 32)

ReLU (256, 256, 32)

BatchNormalisation (256, 256, 32)

Table 3.1: The 3D convolutional neural network’s structure

3.4 Analysis of the network

After training the neural network in each of its possible configurations for

over 200+ epochs, we decided to test its ability with the taste samples. One

of the most astounding feats that the network showcases is its ability to

reduce the mean relative error (MRE ) between the target result and the pro-
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duced result. As we can see in Figure 3.6, by comparing the MRE’s median

of the sample not corrected by the network to the MRE’s median produced

by the neural network with kernel size 3, the network was able to reduce the

mean relative error by almost half. Another surprise was its ability to reduce

the number of outliers, as seen by the lengths of the whiskers in the first box

plot compared to any other box plot.

Figure 3.6: Median of mean relative errors

This illustrates that the network is quite able to identify potential errors

present in an object and correct them, independently of the starter value,

which was instead expected.

Another interesting situation occurs when looking at the kernel size. While

the box plot for the neural network with kernel size 3 can be considered the

largest amongst the three, it is also the only one that doesn’t present any

outliers outside of its whiskers (identified by the small dots above the box

plots), when instead they appear when increasing the value of the kernel.

This, however, can be easily identified as being caused by the short duration

of the network’s training. By increasing the training duration, those outliers

should be quite easily dealt with.
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One tendency present in all of the reconstructed images is also its inability

to recognise objects with similar shades next to each other, making it quite

confusing to identify the borders.

Figure 3.7: Comparison of objects between reconstructions

We then decided to look at the images reconstructed by the network and

compare them against the ones obtained by only launching the iterative al-

gorithm Sgp (see Figure 3.7 and 3.8).
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When looking at the images obtained, we can clearly see that there are some

issues that the network was unable to get rid of and also some that were even

slightly worsened. The most noticeable issues are the streaks that appear in

every reconstruction but seem more visible when the kernel size is equal to 3,

and although there are still some present for the other two reconstructions,

their visibility decreases noticeably.

Figure 3.8: Second object comparison between reconstructions
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Instead, when looking at the images obtained by the network with kernel

size 7, we can see that there are still some streaks, but the most worrying

issue that was encountered was its tendency to increase the size of particular

points inside the phantoms. This could be cause for concern because, in

a medical setting, the reconstructed image must be extremely close to the

original to not cause some form of bad judgement.

When looking at the object from a side perspective view (see Figure 3.9),

we can see that for this particular case, the Sgp algorithm after 10 iterations

produced a beam originating from the object in a position of approximately

(160, 15)

Figure 3.9: Side view of the first comparison of objects between reconstruc-

tions
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This beam can be seen not present in the reconstruction after 100 iterations,

but it appears in the images reconstructed by the network, albeit smaller for

each increase in kernel size. This means that the network was able to identify

it correctly as an error, but it wasn’t able to correctly remove it.

One noteworthy mention we can add to this side perspective is the almost

absent presence of streaks, signifying that the network is working correctly

but requires more time, more samples, and possibly a more advanced form

to continue to grow.

Finally, looking at the result, we can conclude that, although the recon-

structed images weren’t quite excellent, the network performed splendidly

with the given resources.

Some changes could be made to improve its growth and reliability, like con-

verting the network from a partial U-Net to a RedCNN[24] and also increasing

the sample size to let it train with more unknown variables.
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Conclusions

In this thesis, we showcased a possible approach to the implementation of

a neural network for tomographic imaging techniques using Convolutional

neural network.

Initially, it was shown how current CT scanners work and how the medical

setting is undergoing a gradual change from full-view scanners to sparse-

view ones, and how a sparse-view scanner can be implemented. It was then

explained how modern imaging algorithms work and how they operate by

solving the reconstruction problem of an object scanned, which can be clas-

sified mathematically as an inverse problem.

In the second chapter, we introduced the most commonly used algorithms

nowadays, starting with the oldest and most basic ones, such as filtered

back-projection and gradient descent, to analyse newly created iterative tech-

niques, such as the Fast iterative shrinkage-thresholding algorithms (Fista)

or the scaled projection algorithm (SGP).

They were then compared to observe their performance applied to a simu-

lated real-world setting. The parameters compared were primarily relative

errors and the quality of the reconstructed images. Each algorithm was

launched two times, one to end after 100 iterations or if it converged, while

the other was early stopped to simulate a real-world medical setting where

it’s unacceptable to wait for a long period of time for a reconstructed image

and instead the image is required minutes after the scan.

After having compared the algorithms, we started to design a neural network

with the intention of feeding it the images produced after 10 iterations as a
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source and the images after 100 iterations as targets, with the objective of

creating a network capable of creating images similar to the targets and thus

removing over 90 iterations of the algorithm, increasing its efficiency and

speed.

Various architectures were tested, and then it was decided to implement a

partial U-Net due to its simplicity and quickness in the training phase. It

was trained multiple times, every time changing the hyperparameters by a

notch to observe potential differences and then implement only the ones with

the best results obtained.

After testing, we can conclude that the networks created are all stable thanks

to obtaining similar results even when the images were extremely different

from each other. Even in the outlier’s case, the error was reduced com-

pared to the source image by quite a margin. Unfortunately, artefacts are

still present inside the images and, in some cases, even worsened, amplifying

streaks and increasing the size of objects, potentially making them a hazard

in a possible medical setting.

Future development is still possible and welcomed. Current algorithms are

primarily based on the reconstruction of two-dimensional layers, while three-

dimensional reconstructions are quite young in comparison. The network

described in this thesis is still young and potentially extremely accurate. Po-

tential changes could integrate existing networks to form a better imaging

reconstruction architecture.
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