
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA
CAMPUS DI CESENA

Scuola di Ingegneria
Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

ONLINE ADAPTATION OF ROBOTS
CONTROLLED BY NANOWIRE NETWORKS

Elaborato in:

Intelligent Robotic Systems

Relatore:

Prof. Andrea Roli

Correlatore:

Dott. Michele Braccini

Presentata da:

Paolo Baldini

Anno Accademico 2020/2021





To my family. To my girlfriend.





Contents

Introduction 6

1 Nanowire networks 10
Device parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

The simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Online adaptation 14

3 Preliminary analysis 18
Paths stimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Connected loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Network density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Update frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Separation and fading memory . . . . . . . . . . . . . . . . . . . . . 26

Critical state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Robotic architecture 36
A technical perspective . . . . . . . . . . . . . . . . . . . . . . . . . 36

A biological perspective . . . . . . . . . . . . . . . . . . . . . . . . 38

A final outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Experimental setting 45
Automatic design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Statistical evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Experiments parameters . . . . . . . . . . . . . . . . . . . . . . . . 49

Robot and network parameters . . . . . . . . . . . . . . . . . . . . . 49

6 Experiment: collision avoidance 52
Task and arena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Qualitative analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4



Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Experiment: area avoidance 68
Task and arena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8 Experiment: T-maze 79
Task and arena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Preliminary test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9 Future works 93

Conclusion 96

Appendix 99

5



Introduction

Since few decades, researchers have started to evaluate the possible usage of

systems inspired by the human brain. This interest comes from the will of

transposing the computational power and flexibility of this organ into artificial

devices. Although different in types, the resulting systems are considered part

of what is called Artificial Intelligence. Among them, lies the class of physical

networks. This includes all the computational systems whose hardware aims

or is used to mimic a biological neural network. Specifically, one subset is

represented by electrical circuits. Nevertheless, their use had never been one

of the main solution in the Artificial Intelligence. This is due to the hardly

trainable state and mechanics. In the last decade however, a further subset of

this category started to emerge, and to be assessed due to its high dynamical and

neuromorphic properties: memristive networks. Their characteristics combined

with novel computational approaches [19, 24] are paving the way for new types

of computation. One promising area of application is robotics. The need is

indeed for cheap and low consumption controllers to be developed. For this

goal, electrical memristive networks seems to be an interesting and promising

opportunity.

In this dissertation, the use of one of these systems is evaluated: the

nanowire network. Its exploitation follows an approach derived from what

is called Reservoir Computing [30]. The goal is to assess if these devices have

the capabilities to be used in the robotic area. In fact, only classical computing

tasks have been considered so far. Nevertheless, the reduced cost, power con-

sumption and neuromorphic properties, make them potentially optimal for the

development of a new generation of robots. The vision that this work follows is

about futuristic artificial entities being able to adapt through the use of intrinsic

properties, while being cheap and ecological. Therefore, the aim is to evaluate

if this novel technology possess the characteristics for a paradigm change, that,

in robotic, no one has yet explored.

The coveted evaluation requires various steps. The first consists in studying

the network and preparing the robotic system. This explores the physical and

chemical principles that enable the previously presented properties. The result
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is the definition of a simulator of the memristive device. Through its use, a

behavioural analysis of the network is conducted. This allows to clarify the

mechanisms for robot adaptation. The goal is to enable an adjustment according

to the changes in the environment. This is a needed step towards the realisation

of the project vision. Finally, all the previous results converge to the definition

of the robot architecture, both from an architectural and biological point of

view.

With the envisioned entity ready, the next step is its experimental assess-

ment. The goal is to verify if the created system really possess the capabilities

to be the starting point for a new generation of robots. To assess this question,

it is firstly needed to assess its performance in simple tasks. This is evaluated

through a basic collision avoidance, and integrated by an area avoidance assign-

ment. Additionally, the phenotypical plasticity of the robot is assessed. This

represents its ability to adapt to different environments and tasks. Finally, the

last tests verified the performances in a memory oriented task. The system is

thus evaluated to understand if he can exploit its internal dynamics to generate

an endogenic awareness of time.

As final point of the thesis, possible future works are presented. All of them

are based on the results obtained, or are inspired by the approach followed.

This thesis is organised as follows:

• Chapter 1: Nanowire networks

The network is described, and its working principles are introduced from

the physical and chemical point of view. The potential of this technology

is assessed, also considering the economical aspect. From the production

perspective, the influence of the density parameter is briefly discussed.

Finally, the simulator used in the project is presented, highlighting its

characteristics and limits.

• Chapter 2: Online adaptation

The online, adaptive learning approach is presented, together with its

strength points. Additionally, the concepts of phenotypical and develop-

mental plasticities are discussed. Finally, a consideration on the use of

Reservoir Computing in online methodologies is given.
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• Chapter 3: Preliminary analysis

The characteristics of the network are evaluated and studied. Particu-

larly, the existence of a critical working state and an endogenic memory

is searched. Additionally, the influence of external components in the

network behaviour is assessed.

• Chapter 4: Robotic architecture

The robotic control architecture is proposed from a biological and techni-

cal point of view. Finally, a unified, software version is presented.

• Chapter 5: Experimental setting

The common characteristics of the experiments are grouped and explained.

This includes (i) the selection of some parameters for the robot function-

ing; (ii) the definition of methodologies to ensure statistical reliability;

(iii) the description of the adaptive approaches.

• Chapter 6: Experiment: collision avoidance

The first experiment is described, performed and assessed. Specifically,

the densities, loads, and adaptive strategies are evaluated according to

their influence in the results. Additionally, a qualitative analysis of a

successful instance is performed.

• Chapter 7: Experiment: area avoidance

The second experiment is described, performed and assessed. The aim

is to demonstrate a more reactive behaviour and to ensure phenotypical

plasticity. The latter one is confirmed through a comparison with the

same networks optimised for the collision avoidance. The densities and

the loads are evaluated according to their influence in the results.

• Chapter 8: Experiment: T-maze

The third and last experiment is described, performed and assessed. The

main goal is to verify if the network dynamics can be exploited as an

endogenic memory. A preliminary, manual test is described and explained.

The results are then analysed according to the influence of densities, loads

and adaptive strategies.

8



• Chapter 9: Future works

Possible future works originated or inspired by this dissertation are pre-

sented. The main topics are improvements in: (i) the adaptive mechanics;

(ii) technical aspects; (iii) experiments; (iv) analysis; (v) the nanowire

network knowledge.
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1 Nanowire networks

The nanowire networks are electrical circuits composed of nanometric wires.

Those overlap, creating a graph-like structure. The wires are immersed in an

insulating substrate, that allows the current to flow in the network without

‘jumping’ between the arches. In this dissertation, this specific category of

electrical circuits is considered, mostly due to its memristive-like behaviour.

Those devices can indeed exhibit structural and functional plasticity, mim-

icking biological networks [29]. Until now, the research on these systems

mostly considered the use of crossbar architectures (see Figure 1). Neverthe-

less, randomly-created and self-organised devices are being studied and their

computational capabilities assessed [26, 29].

Figure 1: Circuital equivalent of a nanowire network organised according to a

crossbar architecture. Pictures taken from [29] by courtesy of the authors.

The specific systems here considered consist in randomly generated net-

works composed of nanometric silver-wires, immersed in an insulating substrate

and connected through ion-silver bridges [29] (see Figure 2). These latter ones

are also called ‘atomic’ or ‘resistive’ switches, and cause the non-linear be-

haviour of the device [6, 15]. Their working principle depends on an applied

voltage difference, that causes an attraction and aggregation of ions, creating

the ion-silver bridges and increasing the junction conductivity. When the stim-

ulation is removed, the network slowly returns to its stable state. This dynamic

determines a network plasticity and can be seen as a short-term memory. The

conductivity depends indeed on the recent history of the stimulation. From this
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Figure 2: The picture (A) represents a random nanowire network. The figure

(B) shows the process of formation of a silver-bridge between two junctions.

Pictures taken from [29] by courtesy of the authors.

point of view, the network is strongly neuromorphic [18], with the conjunctions

that represent the synapses.

One limiting factor in mimicking the brain computational model consists

in the high quantity of neurons and synapses that it is composed of. This huge

amount of connections is infeasible to be simulated by any modern computer.

The nanowire networks offer a theoretical solution to this problem. The quan-

tity of connections depends indeed only on the number of wires, their length,

and the size of the device package. Moreover, they function in parallel1 . These

characteristics make the number of connections, and thus the size of the net-

work, irrelevant with regard to the computational time. These systems are thus

fully scalable. Additionally, the memristive behaviour determines a fading

memory property, and advantages the neuromorphic computation. This allows

spatio-temporal data to be effectively processed, making these systems more

similar to the human brain [9].

Nevertheless, from an electrical point of view, the nanowire networks are

passive components. This means that they do not proactively supply energy, but

instead they consume it. The system thus needs and external signal to produce

an output. The computational capabilities are indeed related to a process

of mixing and transforming the input data, and not to an active behaviour.

1The systems are subject to the electric laws, and thus to the Kirchhoff’s currents one
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Moreover, the networks do not store the signals that they receive. Instead, they

dissipate them immediately. From this point of view, the nanowire networks are

completely dissipative components. This highlights a difference with the brain,

that instead keeps the information for some time also in absence of inputs.

Finally, the use of these devices may result in a reduction of costs for the

creation of biologically inspired neural networks. The creation only requires

drop-casting nanometric wires in an insulating substrate, making the production

low-cost [9, 29]. Moreover, although not assessed, exploiting specific hardware

is usually more efficient than using general purpose ones (e.g., software neural

networks). This suggests that the use of this technology may lead to an im-

provement in the overall power consumption. The possibility is supported also

by the intrinsic memory of the networks. A downside of a classical Von Neu-

mann architecture consists indeed in having the data and the computing areas

separated, with the information transfer responsible for remarkable consumes

[9]. Novel computational frameworks exploiting the local memory provided

by the nanowire networks may thus decrease the overall computational cost by

getting rid of this overhead.

Device parameters

We previously explained how the connections of the network depend on the

number of wires, their length, and the size of the device package. In this disser-

tation, these parameters are ignored, considering instead a derivate measure:

the normalised density. This is calculated according to the following formula:

D = N
L2

S2 (1)

Where:

• D is the normalised density;

• N is the number of nanowires;

• L is the mean length of the wires;

• S is the size of one side of the squared package.
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The normalised, creation density determines the emergence of connected com-

ponents. A critical point is found around the value 5, when most of the nodes

start to be connected together2 .

The simulator

The nanowire network here discussed was not physically available. The experi-

ments used instead a simulator of the device3 . Here, the network is represented

as a graph, with the nanowires associated to nodes, and the junctions to arches.

The voltage distribution is calculated with the Modified Nodal Analysis, or

MNA [17]. The non-linear dynamic of the junctions is modelled by a custom

algorithm. This primary simulator was thus expanded for its use as the robot

controller. This involved the possibility of connecting multiple sources (i.e.,

the sensors), external loads (i.e., the motors), and to perform mutations of the

set of nodes selected as input/output.

The use of a simulator brought some advantages. Differently from a physical

device, its software representation allows for direct analysis of the network

state. In hardware, this would require some shrewdness and tedious work.

Moreover, it enables to easily test multiple configurations, not being limited

by a single instance. This is also useful for collecting statistical data. As a

drawback, however, the simulation requires much more computational time.

This causes the need for shorter simulations to be executed. Finally, the use

of the simulator to control a physical robot results problematic. One of the

aims was initially to test the adaptive approach in the real world. This would

require a real time information flow between a physical robot and the simulator.

Moreover, it would need a fast computation of the model. If the first problem

is manageable, this is not true for the second. The update frequency of the

simulator is normally too low to smoothly drive the robot. The idea had thus to

be discarded.

2These experimental data were informally provided by Carlo Ricciardi and Gianluca Milano

from the Polytechnic of Turin
3This consists in an upgrade of a previously existing model provided by Gianluca Milano

from the Polytechnic of Turin
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2 Online adaptation

At the start of the robotic era, the automata were defined through physical

mechanisms that allow the desired behaviour to emerge. In some cases, complex

gear structures were used4 , in others, the body shape was designed to directly

allow actions when immersed in a suitable environment [10]. The control

system of these devices was thus a mixture of mechanical properties. With the

advancement of technology and the introduction of silicon components, the

definition of the robot behaviour started to be expressed through programming.

The design is still complex, but surely easier than before. In the last decades, we

are witnessing an additional change in the way we define how a robot behaves.

Although the programming approach is still the most important one, automatic

design techniques are emerging, with the ‘evolutionary robotic’ being a notable

example [13]. This allows to create working robots also when a clear logic

solution is unknown or extremely hard to process [3]. Additionally, if correctly

performed, it allows the robot to be more resistant to noise. The affected areas

are the design of the body-shape [33] and the control logic [13, 4].

One of the key points that differentiates the biological beings from the

robots is the ability of the firsts to behave in dynamic and unknown environ-

ments. This capability partially derivates from the high computational power of

the brain, that can elaborate a high quantity of ill-conditioned signals [28]. Nev-

ertheless, the ‘killer feature’ comes from its phenotypical and developmental

plasticity [4]. These respectively represent the ability of the brain to produce

different phenotypes according to the environment and the development history

of the living being. These definitions underline an aspect of the natural world

that is often ignored in the robot development: a continuous adaptation. Cur-

rent engineering processes typically consist in the definition of static control

mechanisms. Also in case a learning technique is exploited, it is frequently

used to perform a training before the deployment. This type of process is said

to be offline. The results of these techniques consist in the realisation of very

specialised and efficient robots, that are however bound to the world that they

are developed for (see Figure 3 B). Indeed, the system is usually trained on a

4Notable examples are the Jaquet-Droz automatas [35] and the Karakuri puppets [36]
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Figure 3: Concept of the learning techniques. In an offline learning (B), the

robot cannot change its control software, and its performances are thus related

to the environment. In an online learning (A), the robot is able to adapt and,

after a training period, should be able to improve its performances. The figure

is only for explanation and does not represent data of real runs. Moreover, the

performance of the online approach may still be related to the environment,

causing the adaptation to perform better or worse depending on the case. Nev-

ertheless, the result should still consist in an improvement, compared to the

offline approach.

limited set of common states, avoiding extreme situations. This means that the

presence of unexpected noise or events may affect the behaviour or the perfor-

mance of the robot. Therefore, the most common and effective use of these

approaches is to create precise robots that have to work in specific, typically

static, niches. Nevertheless, this methodology does not fit for all the tasks.

Specifically, behaviours in very noisy and unpredictable environments may be

too hard to train or define using these approaches. Additionally, the ‘ecological

niche’ of the robot may change in time. In order to resolve these problems,

a different methodology may be exploited: online learning. Contrarily to the
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offline approach, this contemplates a continuous adaptation of the robot. The

advantages are theoretically more working autonomy and adaptability, being

able to automatically modify the behaviour to face changes in the environment.

Nevertheless, downsides reside in the difficulty of managing the adaptation and

in the possible problems that can occur during it. Wrong choices may indeed

lead to irreversibly damage the robot. To face or mitigate this issue, usually

the systems are partially trained in simulation and then moved to the hardware

when the results are sufficiently good (see Figure 3 A).

The experiments carried on in this dissertation will not take place in the real

world due to the unavailability of the physical control system5 . Instead, we will

consider a continuous adaptation in a simulated environment. This approach

is in line with a series of researches about online learning in robotics, using

Boolean Networks [4, 1, 23]. The addition to the literature will be the use of a

novel control mechanism: the nanowire networks. Additionally, the influence

of different types of adaptive approaches will be evaluated. The aim is to define

a robotic system that is able to automatically adapt its phenotype according to

the working environment and to the selective pressure to which it is subjected

(i.e., the objective function). This requires the definition of an adaptive strategy

that is embeddable into the robot itself. In this treaty, phenotype is meant as the

behaviour of the individual, in that it is the visible aspect that emerges from the

genotype (i.e., the network) through its interaction with the external world. The

phenotypical and developmental plasticities are instead representative of the

adaptation of the robot to the environment and the task. The first manifests in

the adjustment of the input pre-processing (e.g., using multipliers; see Chapter

4 and 5) according to the environmental properties. The second gives adaptive

pressure to the robot, requiring a modification towards the behavioural goal.

Both use the same approaches of re-connection and weighing of the inputs (see

Chapter 5), but the goals are different.

In this context, the neural short-term plasticity of the nanowire networks

represents a factor in the background. This refers indeed to the ability of the

5The problems related to the use of the nanowire network simulator with real robots are

discussed in Chapter 1
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network to modify its behaviour at runtime for a short period, in order to adapt

to the stimulus [29]. Compared to the other kinds of plasticity, it is visible that

this does not represent a long term adaptation.

The final issue about the use of online learning and adaptation in this

research, relates an architectural point. The robot controller is indeed a variant

of the Reservoir Computing framework [30], in that it requires to exploit a

non-modifiable, non-linear system: the nanowire network. Nevertheless, the

original idea requires a readout to be trained to match an expected result. This is

obviously in contrast with the aim of a continuous learning, in that the objective

output is not known. Therefore, the readout is substituted by a fixed post-

processing. The robot is thus trained by re-wiring the input connections to the

network. This approach moves the training from the output, that requires a goal

to be matched, to the input, that instead just needs feedback of the performance.

An online adaptive approach can indeed search for the best connection that

allows the robot to perform well. Therefore, in some ways, this research will

also propose a new variant of Reservoir Computing for its use with online

adaptation.
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3 Preliminary analysis

To the best of the author’s knowledge, the usage of a nanowire network as the

control system of a robot has never been evaluated. A preliminary analysis of

the characteristics of this technology is thus required. The goal is to understand

how the nanowire network behaves and which parameters influence it. The

analysis of the latter ones, will be limited to the variables effectively modifiable

in the robotic architecture.

Paths stimulation

The main characteristic of the studied network is the property of changing

its conductance when subject to a voltage. During the stimulation, the input

potential insists on the junctions between the wires. As described in Chapter 1,

this causes the formation of silver-bridges and a consequent increment in the

edge conductance. The influence of the stimulation on a junction depends (i) on

its position in the network topology and (ii) on its resistance ‘influence’ in the

input/output path. Specifically, according to the voltage divider, equivalent

resistors in parallel branches are less subject to be excited. At the same time,

junctions in short input/output paths are more sensible to the stimulation. This

causes a complex distribution of the conductance across the network.

To understand the principles behind this distribution, the first step consists

in analysing the influence of the resistors in the equivalent electric circuit (ii).

In agreement to the voltage divider, the electric potential subdivides between

the nodes according to the conductance of the links. Junctions that are highly

resistive will be subject to higher voltages, that cause a faster stimulation (see

Figure 4). The result is an oddly stimulated network that changes its state in an

inhomogeneous way.

The second consideration relates the position of the nodes in the circuit

(i). Junctions nearer to the source tend to be more subject to the stimulation.

This is due to the fact that the network have a tendency to branch, increasing

the parallel resistors as we move away from the input node6 . This causes a

6This may not be true in low dense networks, where the branches often merge back together
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Figure 4: The distribution of the voltage, and thus of the stimulation, across the

resistances of the network follows a circuital law. In the given schema, the 2R

resistor will undergo a higher stimulation, causing its resistance to drift more

than R. This behaviour obviously requires considering the resistors as plastic

junctions.

reduction of the equivalent resistance of farther, branched junctions, decreasing

the voltage that insists on them and thus their stimulation. Nevertheless, this

property depends on the topology of the network, with denser ones more subject

to this phenomenon.

The two described principles concur in the definition of higher level prop-

erties of the network. One of those is the influence of the input/output path

length in the voltage distribution. Shorter path are indeed composed of fewer

branches and resistors. The first, determines a more homogeneous stimulation

in that the currents are less divided in the circuit. The second, causes the input

voltage to fall across a smaller amount of junctions, increasing the stimulation

of each of them.

Until now, the distribution of the stimulations has been discussed from

a static point of view. Nevertheless, it is important to remember that the

plasticity of the network adds a dynamic. The continuous stimulation is thus an

essential factor to consider. In time, highly stimulated junctions become more

conductive, causing a continuous reduction of their influence in the voltage

divider. This consequently causes a decrement in their stimulation, favouring

others. Therefore, the network presents a complex, dynamic behaviour that also

depends on the duration and possible frequency7 of the inputs. The capability

of the junctions to relax between the stimulations plays indeed another primary

role in defining the system behaviour. This relation will be further analysed in

7If pulsed inputs are used
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Sections ‘Update frequency’ and ‘Critical state’.

Connected loads

In the project, the controller interacts with the components of the robot through

direct connections. Differently from other kind of systems, the inputs and

outputs do not just transport data, but they also passively influence the network

behaviour. The circuital equivalent of the controller is indeed subject to the

laws of Kirchhoff and Ohm. Therefore, the addition of external connected

components changes the electrical state of the whole system.

The main influence on the nanowire network are the motors. Those may be

seen as additional loads of the circuit, changing its voltage distribution (see

Figure 5). When the resistance is low, just a small amount of tension falls at

the sides of the motor. This causes the network to be highly stimulated, in that

the majority of the electric potential influences the device. Differently, when

the connected load increases, also the voltage on the motor does (see Figure 6).

This causes the controller to be less stimulated and thus to show lesser changes

in the conductance. In other words, the network is less dynamic. This may be

seen as a decrease in the synaptic plasticity.

Nevertheless, the analysis of the motor load is not limited to its influence in

the network stimulation. With a decrease in the resistance, the robot is subject

to a generalized slowing down8 . This is again due to the voltage divider. Indeed,

as the motor resistance decrease, as it does its influence, moving electrical

potential from the load to the network. The result is lesser power at the output

nodes. Therefore, the general idea is that an increase in the load determines

faster movements, and vice versa.

The previously presented properties compete against each other: to have

high sensitivity we have to sacrifice the output speed, and vice versa (see Figure

7). Given a complex task that needs both, a solution consists in the disjunction

of the computation and actuation parts. This would allow module specific

configurations and parametrizations, and thus the achievement of the desired

state. Nevertheless, the hardware solution becomes complicated, requiring

8If a non-negated output connection is used
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Figure 5: Circuital representation of the nanowire network. To improve the

readability, the lines on the left represent the nanowires junctions. These are

directly represented as resistances on the right figure. Note that the line 10 is

not part of an input/output path, and thus it is ignored in the circuital scheme.

Moreover, the motor is substituted by its equivalent resistance, underlining its

influence in the network behaviour: the larger the load, the less the stimulated

is the controller.

additional components to be installed. A more adaptive approach is to find a

balance of the two properties.

Network density

Another aspect to evaluate is the influence of the network creation density in

the computation. This directly affects the number of the junctions, and thus the

cardinality of the state space9 . The results are a higher probability to find good

scoring solutions, and an increase in the exploitable memory of the network.

9Analog devices can assume infinite values. Therefore, the increase in the state space has

to be evaluated through the cardinality, comparing the dimensions of infinities
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Figure 6: Qualitative relation between input (i.e., the red dotted curve) and

output control signals, according to the motor load. It is visible that the slope

stays low for small resistances, and increases for higher ones. This is due to

the voltage divider, that moves electrical potential on the motor.

Nevertheless, the complexity of the search also increase10 .

From a technical perspective, the first consequence of increasing the net-

work density is a wider parallelisation of the equivalent electrical circuit. This

is due to the higher number of connections for the single wire. The result is a

reduction in the overall network resistance. Consequently, the influence in the

voltage divider decreases, causing a lower stimulation of the device11 .

A trend related to an increase of the network creation density, consists in

a general dissolution of well-defined stimulated paths (see Figure 8). The

cause is the greater amount of consecutive junctions separating an input from

an output. Additionally, the increased parallelisation makes the network less

stimulated. This causes a reduction in the electrical potential insisting on the

10Also, the simulation of the network increases in complexity, needing to simulate a much

larger equivalent circuit
11If the same motor load is used
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Figure 7: Visual representation of the balancing between stimulation and output

intensity of the system. With a low motor load (A), most of the electrical

potential falls on the network equivalent circuit, making it more sensible to

inputs but decreasing the output intensity. This is opposite in case of high motor

resistances (C). For most tasks, a balance (B) may be the optimal solution.

single edge, and thus in the variation of its conductance12 . The result is a lower,

overall network sensibility13 (see Figure 9).

Until now, the increment in the network density seems relatively useful for

the computation. Nevertheless, the most interesting opportunities are related

(i) to the theoretical increase of the network memory, and (ii) to the possible

improvement in multi-signal analysis. The first (i) assumes that an increment

in the density leads to a wider state space. This would allow an increase in the

memory accessible by the tasks. The second (ii) hypothesizes that an increment

in the amount of ‘brain-pathways’ may help in the transformation and exploita-

tion of the sensory signals, possibly improving the network computational

capabilities. Nevertheless, a systematic assessment of these properties is not

explored in this research, and it is instead postponed to future works.

A final consideration is that the density should be carefully chosen for each

task. Specifically, the need of memory and a high quantity of input signals may

require a more complex network to be used. Additionally, in case a simulated

controller is exploited, also the computational complexity should be considered.

12The stimulation curve is not linear
13A high voltage on a single resistor is more effective compared to a distribution across

many junctions
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Figure 8: Dissolution of well-defined paths as the network density increases.

This is due to a general reduction in the single junction stimulation.

This is not a problem if physical devices are available.

Update frequency

The nanowire network can be stimulated with inputs provided in two different

ways: continue and periodic. The first one considers the data as continuously

streamed. The second allows the signals to influence the network at regular

intervals. In the simulator, the first approach is not implementable due to

the working mode of the computer. The simulation of the continuous mode

requires the periodic one to be run with frequencies higher than the perceivable

excitement and relaxation time of the junctions14 . Relatively low values shown

to be enough, due to the low decay rate of the network conductance.

The update rate concept is of primary importance, in that determines some

behavioural properties of the system. For high frequencies, we can assume no

changes, with the conductance oscillation that remains almost the same. This

is not true for low values. The idea is that slower update rates give the network

time to relax. The excitement decay combined with a non-linear stimulation

curve (see Figure 10) determines differences in the change of the input/output

path conductance, and in its distribution across the junctions. Therefore, the

main topic consists in understanding how the update frequency influences the

14The adjective perceivable is important in that a ‘higher frequency’ is physically impossible:

in one case we talk about an analog signal, that by definition is not made of pulses
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Figure 9: Variation of the network conductance according to the creation den-

sity. This is calculated on the input/output path. Also, the change of the average

conductance of the junctions is plotted. The curves are obtained by a stimu-

lation with an increasing input voltage. Note that the network conductance

increases according to the density. This is due to a parallelisation of the equiva-

lent resistors. Nevertheless, the variation due to the stimulation decreases. This

can be perceived as a reduction in the network sensitivity.

evolution of the network state. Additionally, this may lead to the search of

phase transitions depending on specific update rates (see Section ‘Critical

state’).

To understand the influence of the frequency on the network behaviour, the

tests analysed the changes of the motor speed15 according to an increasing

sensory input at different update rates16 . The results highlight a substantial

difference in the response to the stimuli, with lower frequencies showing more

irregular outputs (see Figure 11). This is due to the property of the network

to relax towards its stable state, changing the balance of the voltage divider.

The result is a consequent change in the stimulation intensity, and thus in the

network conductance. This property is visible only when the frequency is low

enough. In these situations, the non-linearity of the relaxation and stimulation

curves cause the irregular output behaviour.

The influence of the stimulation frequency is also visible from the point

15This is directly related with changes in the intensity of the network output signal
16The test used a network connected with a motor load of 100Ohm. This information is

needed in that the behaviour also depends on the connected load
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Figure 10: Dynamics of the input/output path conductance. The non-linearity

of the behaviours in time is visible.

of view of the changes in the conductance distribution in the network. As

already said (see Section ‘Paths stimulation’), when a junction decreases its

resistance, the voltage that will insist on it at the next step decreases as well.

This usually causes less stimulated edges to change more in a subsequent

stimulation. This behaviour seems to extreme when the frequency becomes low,

with the conductance distribution that basically ‘flips’17 (see Figure 12). The

result is the dissolution of well-defined paths, making the network state appear

more chaotic. Contrarily, the use of high frequencies causes the input/output

paths to excite in a more homogeneous and continuous way (see Figure 13).

The result is a higher and more stable output18 .

Separation and fading memory

As explained in Chapter 2, the control architecture is devised on a variant of

the Reservoir Computing framework [30]. Nevertheless, to be used as a reser-

voir, the nanowire network needs to have some characteristics: (i) separation

17This is again related to the non-linearity of the excitement and relaxation
18With an increment in the conductance, the voltage ‘moves’ towards the load, that has a

fixed resistance. This makes the output signal more intense. The improved stability is due to

the better defined input/output path
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Figure 11: Motor speed according to the update frequency. The graph was

generated providing a network with an increasing input signal, shown in red.

When stimulated at high frequencies (i.e., 10Hz) the output shows a smooth

increment. When the update rate is lower, we can instead observe an irregular

behaviour. The least stable signal is found for values around 0.2Hz. This

behaviour is analysed in the Section ‘Critical state’.

property; (ii) fading memory19 [24]. The first (i) requires that given different

inputs, the internal trajectory of the system differs. The second (ii) requests a

short-term memory of the network, meaning that old inputs should persist in

the system state for some time.

The separation property is usually required in that the readout should be

able to distinguish differences in the inputs just by looking at the reservoir

state20 . This is not really needed in our approach, in that the readout is just

a direct connection between the network nodes and the actuators. The only

post-processing is a negation of the output signal, but this does not involve any

19Also called echo state property [19]
20The readout should also be able to discriminate between different signals and noise. This

capability is called approximation property [24]

27



Figure 12: Changes in the network stimulation at different frequencies. The

upper graphs show the penultimate stimulation; the bottom ones the last. It

is visible that, as the frequency decrease, the network shows a more irregular

behaviour. The junctions’ conductance starts indeed to ‘flip’.

high-level elaboration. Therefore, the most interesting property to verify is the

fading memory. Some experiments of this research require indeed some sort of

awareness of the past to succeed (see Chapter 8). Because of that, the analysis

of the network memory capacity is essential for the continuation of the project.

The goal of the following experiments is to assess if the network ends up

in different states depending on the input signal, thus showing the separation

(i) and fading memory (ii) properties. The first (i) can be verified by checking

the network conductance; the second (ii) by evaluating if the relaxation is

immediate or if it takes time to complete. For the latter one, the analysis can

be performed by simply providing the network with a squared input signal

(see Figure 14). During the high state, the conductance tends to raise quickly,

stabilising later in a balance point. This is due to the influence of the static

28



Figure 13: Changes in the input/output path conductance when stimulated at

different frequencies. The input signal is a voltage value from 0 to 10V. As

visible, for high frequencies we have a stable behaviour (A), while for lower

ones it starts to be irregular (B and C). Note that the reached conductance in

the first case (A) is almost ten times higher than the last one (C).

load21 . When the input signal decreases, the network completely relax toward

its relaxed state. This ‘depression’ process happens in the order of the seconds.

For the separation property (i), the analysis is more complex. Indeed, it

requires verifying that for different input streams, the network shows different

internal trajectories. Hence, a computational evaluation would require the

analysis of an infinite set of input signals. This is obviously not possible.

Additionally, to the best of the author’s knowledge, a mathematical approach

have still to be proposed for this type of systems. As a consequence, only a basic

analysis will be performed. The goal is to verify this property for two sample

signals. The approach is to stimulate the network with an input composed of

two half-sins (i.e., the sensing peaks), separated by a zero-voltage input. To

differentiate the stimulus, the distance between the peaks will be gradually

increased. This will determine the test of multiple signals with a similar

pattern. The choice of limiting the analysis to the increase of the peaks distance

is due to the hypothesis that similar inputs would be harder to distinguish.

21If the network has an initial resistance higher than the motor, it will be highly stimulated.

In case this stimulation makes the conductance higher than the load, the network will start to

relax again. This process will eventually converge to a stable point
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Figure 14: Conductance behaviour when a stimulus is applied and then re-

moved. After the remotion, the conductance decreases to its initial state in

some seconds. The strange behaviour visible in the time-window [0, 20]s is due

to the low frequency update (i.e., 1Hz) and to the weight of the cascading load

(i.e., 100Ohm).

Therefore, a success in this discrimination would suggest a general ability of

the system in differentiating the signals. The initial results show an increase

in the input/output path conductance, according to the distance between the

two peaks (see Figure 15). This behaviour is caused by the influence of an

electric potential applied on an already stimulated network. During the initial

peak, the system reduces its resistance, and eventually balances the voltage

divider with the static output load (see Figure 14). When a second, near-in-

time stimulation occurs, a lower electrical potential insists on the network,

making its conductance increase less than before. This causes the input/output

resistance to be higher than after the first stimulation. The process is contrary

with farther peaks. Indeed, in this case the network have time to relax, and thus

results more sensible to new stimulus (see Figure 16).
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Figure 15: The behaviour of the input/output conductance when the network

is stimulated with a signal composed of two peaks (i.e., half-sin waveforms)

separated by an increasing time. It is visible that, as the time-distance increases,

also the conductance does. The difference is clearly visible until almost 10s,

after which it disappears. This means that the evaluated network is able to

distinguish signals that have separated peaks distant at most 10s. For farther

inputs, the memory almost completely fades, causing an indistinguishability of

the signals.

Critical state

Many studies about the usage of brain-inspired controllers, propose that the

higher computational capabilities emerge at the critical state of a system [22].

This concept has been made famous by the conjecture ‘life exists at the edge

of chaos’. It is believed that the critical state, defined as the phase transition

between order and chaos, posses the ability of balancing adaptability and

robustness. Specifically, ordered systems are known to be robust, but less

adaptable to changes or to unexpected situations. Chaotic ones are instead

incredibly hard to control, with the input signals that are constantly inflated.

Following this line of thought, the possibility to induce a critical state in the
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Figure 16: Detail of the separation property test. The top graphs (A) represent

the results of a ‘near-peaks’ stimulation (i.e., 3s), the bottom ones (B) a ‘far-

peaks’ one. In the first (A), the network does not have time to completely relax,

resulting in a lower final stimulation. In the second (B), the network is ‘freshly’

stimulated, and thus it responds strongly. Indeed, after long periods of time,

the influence of the first stimulation fades, making the network again sensible

to new stimulations.

nanowire networks has been assessed.

The first consideration relates to the creation of those networks. As said in

Chapter 1, a critical point of density is ∼ 5, when most of the nanowires start

to be connected together. This relates the number of wires with the topology

of the network, according to the percolation theory. Nevertheless, this type of

criticality is only related to the emergence of a large connected component, and

not to the working state of the system. Considering the previous results about

the influence of the stimulation frequency (see Section ‘Update frequency’),

the possibility of inducing a critical state by varying the update rate of the

system has been assessed. An alternative is the evaluation of the influence

of the input voltage intensity. Nevertheless, this last possibility has not been

deeply assessed.

As already explained (see Section ‘Update frequency’), when the network
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is stimulated with low frequencies we assist at an irregular behaviour of the

output signal (see Figure 11). This phenomenon is due to the non-linearity of

the stimulation and relaxation curves, that may cause a drift towards one of

the two states (i.e., excited and relaxed). The irregular behaviour is thus not

only present in the output signal, but also in the network conductance itself.

The hypothesis is that the update frequency may determine a critical state of

the system, where the resistance and output oscillate in irregular ways, without

stabilising. This slightly resembles the concept behind the ‘logistic map’ [27],

and from that it is inspired. Therefore, the test consisted in the search of a

similar pattern in the network conductance. Running a simulation, the system

was stimulated with a 10 voltage input at different frequencies. The behaviour

of the average conductance of the network was thus evaluated. The results show

that the signal stabilises to a fixed point attractor for high frequencies, and to a

two point attractor for low ones. Nevertheless, the most interesting behaviour

is recognised in a specific range of update rates, that does not present any

periodicity22 (see Figure 17). The discovery of a non-periodic signal confirmed

some sort of chaos in the network dynamics, depending on the frequency. The

analysis continued then with the evaluation of a wider ‘population’ of update

rates, showing a chaotic-like behaviour near to specific ranges of values (see

Figure 18).

All the previously discussed behaviours depend on the time that the network

needs to relax, and on the non-linearity of this process. Specifically, the

relaxation at high frequencies almost completely cope with the stimulation,

allowing the network conductance to stabilise to a fixed value. At low update

rates instead, the relaxation strongly influences the behaviour, creating a multi-

points attractor. The working principles of this property suggest that the voltage

intensity of the input signal may take part in the definition of the critical state,

modulating the stimulus impact. Nevertheless, the preliminary analysis show

only marginal changes in the range of the chaotic behaviour. Indeed, the

variation of the stimulation intensity affects the average conductance, but not

22This consideration excludes the ‘stability-reaching’ period, discarding the first iterations

results
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Figure 17: Average conductance behaviour in a network stimulated with a 10V

input signal at different frequencies. Stable single, and two points attractors

are visible for the top (1Hz; A) and bottom (0.1Hz; D) signals. The middle

frequencies (0.4Hz and 0.2Hz; B and C) generated instead a non-periodic

pattern. This is visible in the zoom on the right, clearly for the 0.4Hz signal

(B). Although not clearly visible, also the 0.2Hz (C) behaviour is non-periodic,

with some sporadic expansions in its range of conductance values.

the frequency-attractor relation. In other words, the range of frequencies that

causes a chaotic behaviour in the network remains almost the same.

Finally, the behaviour of the conductance not only depends on the frequency

and stimulation intensity, but also on the topology of the network. Different

devices can indeed show structures that are more suitable to be stimulated.

This complicates the search of a critical value. Therefore, the analysis should

be specific for each instance, and evaluated in a complete setting. Indeed,

the connection of external components changes the behaviour of the network,

possibly moving its critical point.
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Figure 18: Behaviour of the conductance in a network stimulated with a 10V

signal at different frequencies. For each value of the x axis, the values assumed

by the conductance during its oscillation are plotted. The left graph shows the

changes in the input/output (i.e., sensor/actuator) path. The right image plots

the changes in the average conductance of the whole network. Note that this

behaviour belongs to a specific device instance, and therefore it is not a valid

generalization. Nevertheless, qualitative analysis seem to show the presence of

the chaotic area in the same range of frequencies also for other networks.
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4 Robotic architecture

A robot is an artificial system composed of many components. Its architectural

design must define their role and the interaction between them. During the

development of the project, this schema emerged not only from a technical

refinement, but also from a parallel with the biological world. This approach

helped in the design of a functional and optimised architecture, suggesting how

the data should flow and how each component should behave. Additionally,

this parallel allows for a more coherent administration of the project, match-

ing the founding ideas of adaptation, phenotypical plasticity, neuromorphic

computation, etc.

Because of this duality of perspective, this chapter will be dedicated to the

definition of both the representations. The starting point will be the technical

model, followed by a description of its biological inspiration.

A technical perspective

The classical way to describe a system consists in the representation of all its

components and their interactions. For robots, this definition is usually more

complex, in that it considers elements of two different worlds: the physical

and the logical/software one. This consequently often causes a detriment in

the quality of the represented model23 . From this point of view, the use of

nanowire networks strongly improve the architecture, in that they work in the

same physical world as the robot does. If we ignore that the system run in

simulation, the only programmatic part relates to its adaptation. This results

in a model composed mostly of hardware components. To provide a schematic

description, we may imagine this robotic system as a composition of three parts:

transducers, connections and controller.

One of the main building blocks are the transducers, that allow the robot to

interact with the world and being embodied in it. This means that, taken the

environment as a different system, the actions on one can perturb the state of

23The signals and data have to be converted between the two worlds, often requiring addi-

tional components to act as interfaces or converters
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the other [37]. This is possible in that the transducers are converters of energy-

forms, allowing for signals belonging to one of the systems to be perceived by

the other. Practically, those converters take the shape of sensors and actuators.

The firsts convert the outer signal in a way intelligible by the robot (see Figure

20); the seconds convert the will-of-action to produce a change in the world

(see Figure 21). For the goal of this research, only three types of transducers

are actually needed: the proximity and ground sensors24; the motors. All those

are found in the EPuck robot (see Figure 19).

Figure 19: Image of the EPuck, the robot used in the experiments. The image

comes from [25].

The other important component for a robot is the control center. This usually

consists in a programmable controller, able to elaborate the perceived signals

and to produce perturbations in the world through the use of the actuators. The

logic deciding how to respond to sensing or to proactively perform actions is

thus contained in the robot brain. Typically, it is static and/or immutable. The

goal of this project is to create a system that can adapt in order to complete

tasks or to learn behaviours, without the need of a clearly defined software

24This classification is only for the sake of simplicity. Both the proximity and ground

sensors are indeed composed of an emitter (i.e., actuator) and a receiver (i.e., sensor) of

infrared signals. The classification as sensors is due to their final goal
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solution. The attempt is to achieve it through the use of a controller consisting

of a nanowire-network and an adaptive mechanism. As for the general schema,

this will take the inputs from the sensors and generate an according output

to control the actuators. The network shall autonomously manage any kind

of memory required for the task. The logic controlling the robot will be then

completely embedded by the controller and modulated through its connections

with the transducers (see Figure 20 and Figure 21).

The final components of the robot are the connections. Those create a link

between the transducers and the nodes of the network. In the simplest idea,

they just allow the data to flow in a bidirectional way. In the current model,

however, it was decided to delegate to them also a processing/modulation

of the transferred signals (see Figure 20 and Figure 21). This choice comes

from the possibility to embed in them some sorts of amplifiers or attenuators,

avoiding the need to model an additional entity. This results in the usage of

those connections also to adapt input and output ranges to the ones expected by

the network.

A biological perspective

As said at the beginning of this chapter, the architecture of the robot may be

seen as a parallel to the biological world. The controller, sensors, actuators,

and in general all the components usually have some sort of correspondent in

a living body. The focus should then be to find a viable model that helps in

the study, design and representation of this robotic architecture. Nevertheless,

it is important to work on a reduced schema, in order to keep the parallel

simple and thus more effective. Indeed, the number of components in an EPuck,

or in general in any kind of small wheeled robot, cannot compare with the

complexity of most of the biological systems. The alternatives are then to

select basic living beings or to simplify the model of more complex ones. For

this research, the second possibility has been chosen. The selected model

is a simplified abstraction of the human body, cleaned by all the exceeding

organs that does not have a correspondent in the robot. This choice obviously

reduces the contact points between the architecture and the biological system,
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however it also allows studying and researching in a better known area25 . As

a final clarification, a 1:1 mapping of the function of each organ is also not

possible. This limit is due to the necessity of balancing between a technical

implementation and its biological inspiration. The goal is indeed to take the

best from the two perspectives, and not to accurately mimic the human body

functioning. Constraints and premises given, the next step is to determine the

mapping between the entities of the two models.

The main block of the robotic system is obviously the nanowire network.

It is the central component in driving the robot completion of tasks. This role

obviously links it with an area of the human neural system. Specifically, its

memory capabilities associate it with the area of the hippocampus, while its

motion-related computation with the motor cortex. To simplify the logic, this

distinction in sub-areas has been ignored, mapping the nanowire network with

the generic idea of cortex (see Figure 20 and Figure 21).

The robot acquires the environmental information through its sensors. This

approach is the same that humans use to perceive the world. This entity is

so almost directly mapped into its biological correspondent, with the only

distinction related to the number and type of sensors involved (see Figure 20).

The first difference is prominent, with the human body exploiting an incredibly

higher number of sensors. Although different in scales, the final decision was

to address those entities with sensor in both the models. The types names are

instead maintained due to the difference in the perceived energy-form26 (e.g.,

the human body does not possess any ground-sensor, making a possible parallel

far-fetched).

The acquired signals have to be re-directed toward the network. This is a

central problem in the project. The system aims indeed to exploit the nanowire

network, reducing to the bare minimum any pre- or post-processing of the

signals. This goal move then the effort from the transformation of the data to

25The author of this dissertation, and probably most of the readers, have more knowledge

about the human body compared with simpler, but often unknown, living beings
26In reality, many sensors in the EPuck can find a counterpart in the human body. Neverthe-

less, this requires a denaturalisation of the goal, cancelling differences between, for example,

IR and ground sensors and making them relate with eyes
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the exploitation of the network topology. This is done by finding a convenient

connection between transducers and neurons. Searching for a similar link in

the human body, we find a group of organs and fibers ascending from the body

sensors up to the cortex. Between them, the thalamus is of prominent impor-

tance. Its role consists in forwarding all the incoming signals and redirecting

feedbacks to the correct location [34]. This is what the connections in the

robotic system actually do (see Figure 20). Additionally, the thalamus control

the flow of information to the cortex and acts as a filter to noise [2, 11]. This

allows the possible needs of simple pre-processing to be performed without

breaking the logic of the biological model.

Figure 20: Correlations between the biological/human and electronic model for

the representation of the robotic architecture. The scheme represents only the

afferent fibers (i.e., ascending-sensory-pathways), and not the efferent ones

(i.e., descending-motor-pathways). The sensory information is forwarded from

the sensors up to the thalamus, and then to the cortex, via the fibers. Although

in a biological human model many others organs are involved in the ascent, the

image focuses on the common points with the robotic/technical model. The left

side of the image comes from [8].

When the information reaches the cortex, it passes through the network,
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undergoing a transformation. The result is a control signal obtained by the

modification, mixing and extrapolation of knowledge from the input. In the

biological model, the obtained information would be forwarded to various part

of the nervous system, like the cerebellum and the basal ganglia. The goal

of this distribution is to allow an optimisation of the control signal and the

production of feedbacks to the cortex [20]. This procedure is simplified in the

electronic model, and assumes that this multi-areas elaboration is fully per-

formed by the nanowire network. The final outcome is thus a simpler scheme

that does not contemplate the possibility of explicit feedback arcs or external

mechanisms to improve the result (see Figure 21). This last characteristic is

also an extreme, to the point that minimum or null post-processing is applied

to the signal. The idea is indeed that the nanowire network contains all the

computational power needed to obtain a good result. The goal is thus just to

find a valid configuration of nodes that allows the task to be accomplished.

This translates to the possibility for the descending-motor-pathway to be repre-

sented as a simple link between motor-control-nodes and the robot actuators.

Nevertheless, for the sake of architectural design, we need an abstraction that

may represent those descending pathways. In the project, it has been identified

with the part of the medulla called pyramid. This section of the brainstem is

indeed an aggregation of descending fibers [20]. During their descent, most of

those will eventually cross, getting directed to the area of the body that they

control. This concept actually resembles what is done within the robot, with

electrical connections running from the network nodes to the left or right motor.

An additional advantage in choosing this element for the representation is that

it is located at the lowermost part of the brain. This means that most of the

fibers of the descending-motor-pathways have already been grouped together

when they form the pyramids [16]. From a computational point of view, we

may imagine that most of the computations have already been performed. This

again perfectly matches with our definition of the robot architecture. The

computation is indeed performed only by the nanowire network, and only few

adjustments are done in cascade of it.

We already talked about the motors, but we did not precisely clarify how

they are associated with the biological model. One of their goals is obviously
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to allow the robot to move. However, this is only a partial description. More

generally, the motors help the robot to act in the environment, possibly modify-

ing it. This use is comparable to what the muscles do in the human body (see

Figure 21). Because of this similarity, we decide to adopt the muscle as the

biological representative of the robot motors.

Figure 21: Correlations between the biological/human and electronic model

for the representation of the robotic architecture. The scheme represents only

the efferent fibers (i.e., descending-motor-pathways), and not the afferent ones

(i.e., ascending-sensory-pathways). The control commands that originate in

the cortex are down-streamed towards the muscles. We can also identify the

bottom part of the brain, in which the fibers group and form the pyramids. The

left side of the image comes from [7].

A final outcome

Given the technical and biological perspective of the robot architecture, it is

now time to merge the views to obtain the final schema. This is composed

by: the cortex; the body (i.e., the group of sensors and muscles); the pyramid;

the thalamus (see Figure 22). Each of them respectively matching with: the
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nanowire network; the EPuck; the node-to-actuator connections; the sensor-

to-node connections. Those represent all the components defined in the views,

and concur in providing all the functionalities of the robot.

Since the experiments run in a simulated environment, those entities had

to be defined programmatically. This is done with a functional approach. The

classes are thus seen only as data storages, without included methods.

The EPuck (i.e., the robot body) is composed of motors and sensors. This

does not include the connections in that those are seen as re-connectable entities,

that do not well match with the immutability of the EPuck. The pathways are

thus seen as a different layer, that may be modified by choice. Indeed, between

the four building blocks of the model, those two (i.e., the pyramid and the

thalamus) are the only ones that are supposed to be externally/voluntarily

modified in order to change the behaviour of the robot. The cortex represents

indeed an electronic circuit that is not supposed to be, possibly, externally

modified. The only possibility is thus to entirely substitute the control system.
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Figure 22: The UML schema of the robot architecture. It represents the compo-

sition of its building blocks. This follows a functional paradigm and thus its

classes do not contain methods. The entities represent hardware components in

a simulated environment. The inheritance relation between the IRSensor and

the GroundSensor is due to the technical similarity between the two. Although

they measure different information, the ground sensor is just an IR sensor that

is pointed towards the ground.

44



5 Experimental setting

In Chapter 4 the structure of the robot has been discussed. Nevertheless, the

control architecture only represents what we want to optimise. The process of

optimisation and assessment has indeed its own structure and approach, that

has to be discussed. This is inspired from the adaptive computation framework

and determines another parallel between the natural world and the robotic

system here analysed. According to that, the approach should assume an online

adaptation, allowing phenotypical plasticity (see Chapter 2).

Automatic design

The automatic design is a methodology for the modelling that exploit some

optimisation techniques [14]. The approach used in this dissertation is called

adaptive, and is inspired on the well-known ‘evolutionary computation’ frame-

work. Indeed, the main difference relates to the target of the optimisation:

an individual versus a population. Therefore, the discussion initially consid-

ers the idea of evolutionary computation, as it is a similar but better known

methodology. The differences with the adaptive approach are subsequently

illustrated.

The evolutionary computation is a methodology for the optimisation of

solutions belonging to a high set of possible configurations. It overcomes

the problem of finding a mathematical function that can be used to evaluate

the performance by looking at the design. Indeed, that may not exist at all

[32]. The main inspiration of this approach is the evolution of natural beings.

Its strength point is the possibility to improve the solutions that we already

have, without having to explore all the possible ones. This allows to greatly

reduce the computational complexity, although possibly precluding to find the

optimal configurations. The process follows a simplification of the natural

reproduction approach, identifying the steps of (i) crossover and (ii) mutation

as a way to improve the population. At each epoch, a generation of individuals

is ‘executed’. This represents the life of each entity, that gains feedback on its

performance and is categorised in a range between successful and unsuccessful.
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Just like in the living world, outstanding individuals have more chances to

survive and to reproduce, hopefully passing their good-scoring heritage to

their descendants. This process includes the crossover (i), where two good

scoring individuals mix their genetical material to form an offspring. During

the reproduction however, some mutations (ii) may take place, changing some

genes. This process is what helps the solutions to escape local optima.

In the developed system, the evolution process is simplified and substituted

by an adaptive approach27 . The optimisation does not operate on generations,

but on single individuals. The crossover (i) step cannot thus be executed, leav-

ing the duty of the adaptation to the mutation (ii) alone. This is due to the

computational complexity in evaluating more individuals in a generation. The

computational systems available for the tests are indeed not able to run more

instances of the robot in acceptable time. This problem limits the ability of the

system to evolve and thus change the approach from evolution to adaptation.

The new framework runs a robot in an epoch to evaluate its performance, ex-

pressed as fitness. The best solution is then modified and tested in a subsequent

execution. Nevertheless, if no configuration reaches the minimum threshold,

the individual is created again from scratch (see Figure 23). This last feature,

if well configured, allows the system to search a good enough solution from

which start the adaptation, avoiding optimising very bad ones. This is possible

due to the reduced search space of the parameters. More complex tasks would

instead be probably penalised by this approach. It is important to underline that

the optimisation process does not create nor adapt the nanowire network and the

robot body. The only modified entities are the connections between the network

nodes and the sensors. The mutation can take place as a simple rewiring or also

include a weighting of the connection links. In any case, this follows some rules

in order to avoid naive systems to be created, and to allow the adaptation to

proceed. The first one, requires at least two wires separating inputs and outputs,

thus avoiding a complete remotion of the network dynamic28 . The second, is

the use of a Gaussian mutation for the variation of the signal multiplier.

27The robot is always the same, and only its behaviour adapt
28The dynamic is given by the strengthening of the junctions between the wires
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Figure 23: Adaptive cycle of a robot configuration. Note that the processes of

creation and adaptation of the solution modify only the connections between

the robot and the network.

Statistical evaluation

The previously defined approach represents the adaptation of a specific robot-

controller system. Nevertheless, the tests required by this research have to

generate robust data and to evaluate different configuration parameters. The

process requires then multiple adaptation-lines to be optimised. This means

that the architecture has to adapt different starting configurations, such that

their results can be statistically evaluated. In the code, the adaptation-line takes

the name of Simulation and consists in the result of a sequence of epochs. In

those, different configurations are tested for a specific period of time, in order

to calculate their performance29 (see Figure 24). The test architecture consists

then in multiple Simulations, each of which will generate an optimised solution

starting from the initial configuration. Those adaptation-lines can differ in

29The calculation method is task-specific and is not discussed here. See Chapters 6, 7 and 8

for more information
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multiple parameters, such as: (i) the task; (ii) the motor load; (iii) the creation

density of the nanowire network; (iv) the random seed. Specifically, (iv) allows

generating reproducible and robust results, in that the probability that they are

due to a lucky configuration decrease. Those different instances, created from

the same starting parameters, are called Replicas.

Figure 24: Architecture of the adaptive system. An Individual directly repre-

sents a Robot, considered as the union of brain, thalamus, pyramid and body.

However, it also includes a reference to the story and fitness obtained during

its execution. The Simulation represents instead the adaptation-line of an indi-

vidual in time, subject to a defined task. Except for ‘Fitness’, all classes follow

the functional programming style and thus do not contain methods.
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Experiments parameters

Every experiment runs in a specific environmental niche. This is a static arena

in which the robot performance is evaluated. The environments differ according

to the goal task that we are optimising30 . Different niches may provide different

sensorial information to the robot, that may consequently need different types

of sensors.

Overall, the experiments use some default parameters. Those may change

depending on the test, but most of them remain constant. First, the update

frequency of the simulation (i.e., the robot and the network) is 10Hz. This

is a sufficient update rate to allow the robot to move smoothly, while saving

computational resources from the nanowire network simulation. This parameter

never changes in any experiment, and also represents the time-duration of an

epoch step31 . The number of epochs in each adaptation-line is normally 30.

Experimentally, it resulted in a good amount of mutations for the configurations

to succeed, at least for easy tasks. At the same time, it allows for relatively fast

executions. This value changes only for the T-maze experiments (see Chapter

8). The epoch duration in steps is not discussed, in that it differs in each task.

The replicas of the configurations are set to 30. Their goal is indeed to avoid

‘lucky’ or ‘cursed’ instances to heavily influence the overall results. Therefore,

a limited number of repetitions should be enough for this goal, guaranteeing

statistical significance. Each replica is obviously created with a unique seed.

Robot and network parameters

An important point in the run of the experiments is related to the setting of

some robotic parameters. The search space of the possible configurations is

indeed theoretically unlimited, and thus requires some preliminary choices to

be defined.

The first point relates to the need to adapt the input and output signals

30Each environment will be discussed in detail in the tasks specific sections of this research.

See Chapters 6, 7 and 8 for more information
31The frequency of the simulation, together with the duration in steps, determines the

time-duration of an epoch
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intensity to the range accepted by the network. This indeed works with values

in [0, 10]V, that may not be compatible with the ones provided by the sensors or

the ones needed to control the motors. In the simulation, this parametrisation

is different from the one that would be used in a physical robot due to the

simulator APIs, that provide a higher level approach. An example is the range

of motor signals that the output of the network will be converted to. This is

set to [6.28, -6.28] due to the working mode of the simulator, that directly

uses the rotation speed32 . The use of a decreasing range is due to the choice

of using proximity measures. Indeed, their generated signal belongs to an

increasing positive range, with a low reading when no obstacle is visible. Due

to the network working mode, the output would be then normally zero, rising

in intensity when a wall gets near. As a consequence, the robot would normally

remain still. An initial solution to this problem may consist in negating the

input. That would however cause the network to be normally highly stimulated.

The limiting factor resides in the response to stimuli. Indeed, the dynamics of

the excitements is faster compared to the relaxations. This causes a normally

stimulated system to react slowly compared to a relaxed one. Therefore, we

prefer the control network to be normally ‘idle’, getting excited faster as a

response to unexpected events. Another approach consists instead in centring

the range of the sensors’ signal on the zero, making it start from a negative

value. As a plus, this would allow the robot to move also backward, compared

to the first approach. Nevertheless, a negative point consists in exceeding

the working range of the network (i.e., [0, 10]V). Moreover, the robot would

normally move backward. An additional possibility consists in negating the

centred signal. Indeed, this approach does not present very negative points.

Nevertheless, it results that making the zero signal correspond both in the input

and output may cause inefficiencies. Considering a scenario in which both the

input and output signals are zero, the robot would stay still forever. This would

hardly happen instead if only one of the two signals is null. In that case, we

would have that the robot keeps moving (in case the input is zero) or that the

network keeps being stimulated (in case the output is zero). This would thus

326.28rad/s is indeed the rotation speed in a specific direction (i.e., counter- or clockwise)
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increase the possibilities for the robot to escape locking situations. Since no

satisfiable solution has been found, the decision consists in zero-centring and

negating the output control signal to the motor. Indeed, this approach resolves

all the previously presented problems.

In Chapter 3, the influence of the motor loads has been discussed. Due to

their physical state, those are impossible to be modified through learning, and

thus have to be selected at the start of the simulation. Moreover, an indecision

in the choice of a ‘general good value’ emerged, mostly due to the need of

balancing the stimulation of the network and the motor speed. Therefore, the

decision is to attempt the use of four different orders of magnitude: [1e+03,

1e+04, 1e+05, 1e+06]Ohm.

Additional configurations relate to the use of the nanowire network. The

first point to discuss is the utilisation of a single connected component. The

network is indeed composed of multiple groups of connected wires, whose

number depends on the creation density (see Chapter 1). The use of all of

them would add additional checks33 , and thus computational complexity, to the

simulation, slowing it down. Additionally, a risk would be the reduction of the

robot to a Braitenberg-like vehicle [5], connecting single inputs to outputs. If

the plastic property of the network would still be evaluable, that would not be

true for its mixing capabilities. The decision was thus to use only the largest

connected component.

Another aspect concerns the selection of the network creation density to

use during the experiments. An initial choice was to use the value at which the

percolation of the network begins: ∼ 5 (see Chapter 1). Nevertheless, to allow

a broader study, three densities were chosen to be tested for each task: [5.0,

7.5, 10.0].

33The Modified Nodal Analysis works indeed only with a connected circuit. The presence

of multiple components would require the analysis of each of them
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6 Experiment: collision avoidance

A practical evaluation of the nanowire network as a robotic controller requires

the test of its performance in a given task. This helps to understand the strength

and the weak points of its usage to achieve a specific goal. Given the novelty

of this control system, it is needed to start to evaluate its behaviour in a well

known environment and with a relatively easy task. Therefore, the best choice

is trying to achieve a collision avoidance behaviour.

Task and arena

The collision avoidance task evaluates the ability of the robot to avoid crashes

against obstacles and walls. This usually takes place in an arena full of items,

that have to be avoided. The task implicitly requires the robot to move. This

can follow unspecified approaches, like random walk, exploration, etc.

Being the first experiment, it is aimed at evaluating the robot capability to

complete basic tasks. Therefore, the arena is a simple, squared maze with a

central block (see Figure 25). The initial setup does not contain other obstacles

other than the path, in that the goal is only to evaluate the robot capability

in turning when it faces a wall. The only irregularity is in the shape of the

central object that defines the path. The use of a rectangle allows indeed to

form a strict passage on the left and right sides. This adds a basic complexity

to the task, not allowing the robot to simply going in a wide circle. Finally, the

environment is completely static, with only the robot moving in it.

Due to their simplicity, this kind of basic arenas are usually used to assess

primary capabilities of novel controllers or strategies [4, 13]. Indeed, running

unknown systems in extremely complex mazes does not allow to properly

understand their behaviour.

Objective function

The goal of the experiment is to optimise the robot in order to obtain a config-

uration that can successfully complete the task. Nevertheless, the evaluation

of this ability must be rigorous. This is achieved through the definition of
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Figure 25: Top view of the arena used for the collision avoidance task. The

big object with the writings in the center is the obstacle that the robot have to

circumnavigate.

an objective function that can mathematically and deterministically evaluate

the robot behaviour34 . The performances on each step are then summed and

normalised in a [0, 100] range:

(1−
√

θ (n)) · (1− |vl (n)− vr(n)|) ·
vl (n) + vr(n)

2
(2)

where:

• n is the actual step;

• θ (n) ∈ [0, 1] is the max proximity perceived by a sensor at the step n. The

larger the value, the nearer we are to an obstacle;

34The function is defined as a modification of the one described in [4]
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• vl (n), vr(n) ∈ [0, 1] respectively are the normalised left and right veloci-

ties of the robot wheels at step n;

The goal of this objective function is to reward robots that run quickly,

in a straight line, turning only when needed. Specifically, vl (n)+vr(n)
2 favours

fast movements in the arena. 1−
√

θ (n), rewards behaviours that avoid walls

and obstacles. This is made more influent through the use of the square root

in the function. 1− |vl (n)− vr(n)| prise configurations that prefer a straight

movement to a turn.

Configuration

As said at the beginning of the chapter, the collision avoidance experiment aims

to verify the ability of the optimisation system to make the robot complete a

simple task. Additionally, it assesses the behaviour of the resulting configu-

rations and the resistance to faults. The run take place in the described arena,

and uses the proximity sensors included in the EPuck. Those are needed to

perceive the neighbourhood of obstacles and walls35 , and are disposed in an

uneven way around the robot, with a higher concentration on its front side. For

the collision avoidance task, all of them will be used. This adds complexity, in

that the adaptive approach has to balance the influence of each sensor.

Most of the robotic and experimental parameters used in this test are already

discussed in Chapter 5. Therefore, we will discuss only the ones that differs

from the standard. The epoch duration is 200. The fitness threshold value for

the adaptation is 40.0. Finally, the parameter that changes between the runs is

the type of the signal used as input. This varies both in the measured property

(i.e., proximity or distance) and in the signal pre-processing (i.e., unprocessed,

adapted to a custom range, weighted). The assessed types are listed in Table 1.

Note that the ‘weighted’ approach (see Configuration V in Table 1) was not

originally used in this experiment. Indeed, it was developed for the T-maze task

(see Chapter 8). Nevertheless, its evaluation may give more information about

its validity, and it is thus assessed also there.
35The measure exploits the time-of-flight of an infrared signal, sent and received by the

sensor after its reflection on a surface
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Configuration I II III IV V

Signal type P1U3 P1R4 D2U3 D1R4 P1W5

1 Proximity measure: neighbourhood of an obstacle;

2 Distance measure: distance of an obstacle (i.e., negation of the proximity measure);

3 Unprocessed measure (or direct): the input signals are used without modifications;

4 Custom Range: the signals are adapted to a custom range equal for each sensor. If

it is smaller than the original one, the exceeding values are maximised (if higher) or

minimised (if lower);

5 Weighted: the signals are multiplied by a varying factor different for each sensor.

Table 1: Experiment specific configurations.

Results

The first step for the analysis of the results quality, is the choice of threshold

levels for the categorisation between good and bad solutions. The selection

has been done discretionary, with the value selected according to observations.

The threshold classifies the scores with a ‘cautious’ approach, in that no failing

configuration should be able to perform more than it. Instead, some success-

ful configurations may lay below this value. The threshold chosen for the

discrimination is 50.

According to the threshold value, the percentage of instances that were

successfully optimised during the experiments are presented in Table 2. The

data are differentiated according to the experimental Configuration (see Table

1).

I II III IV V

24.72 76.39 35.28 77.78 62.22

Table 2: Percentage of solutions that achieved a value of fitness over 50.0. For

each Configuration of Table 1 (i.e., x axis), the data are calculated on a total of

360 samples (i.e., 30 replicas * 3 densities * 4 loads).

The results show a general capability of the optimiser to allow the robot
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to succeed. The range of success varies between 24.72 (see Configuration

I in Table 2) and 77.78 (see Configuration IV in Table 2), according to the

Configuration. It is already intuitable that the success heavily depends on the

chosen parameters and strategies. These results will be further analysed in the

following sections, concentrating on single aspects.

Density influence

As said in Chapter 3, Section ‘Network density’, the density influences the

signals distribution and the memory capacity of the system. This makes it a

primary important parameter to be evaluated. The need of specific network

properties is tailored to the specific task we are optimising, and theoretically not

to the chosen adaptive approach. Therefore, the hypothesis is that the density

influences the result of the adaptation in the same way, almost regardless of the

mutation mechanism36 . The use of an aggregated index, obtained by the data of

the many executions, is thus admissible.

The used measure is the mean improvement given by a density: ∆Dδ . Taking

the successful instances of a Configuration, the value is calculated as the

amount obtained by a specific density, divided by the average amount of the

run. The result is then averaged between all the tested adaptive approaches.

The formula is shown in Equation 337 .

∆Dδ =
1

#C

#C

∑
c

3s(Dδ , c)
s(D5.0, c) + s(D7.48, c) + s(D10.0, c)

(3)

where:

• δ ∈ {5.0, 7.48, 10.0} is the evaluated density value;

• #C is the number of tested configurations. In this experiment is 5;

• c is the currently assessed run/configuration (see Table 1);

36Obviously, very bad approaches may lead to zeroing the performances. Therefore, we

assume that good enough adaptive methodologies are used
37Note that the ‘3’ in the fraction in the formula is used to average the successful instances

of the density values
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• s returns the number of successful instances for a density value in the

evaluated configuration;

The formula returns 1 if the density does not influence the result. A negative

value is measured if the amount of successful instances is lower than the average.

A positive one, if it is higher. The calculations use the data collected during the

experiments (see Table 3), and are reported in Chapter Appendix. The results

for each value of density (i.e., 5.0, 7.48, 10.0) respectively are: 0.9, 1.07, 1.034.

The measures are calculated on 600 samples each38 .

I II III IV V

5.00 21.67 69.17 30.83 73.33 55.00

7.48 27.50 79.17 36.67 81.67 69.17

10.00 25.00 80.83 38.33 78.33 62.50

Table 3: Percentage of solutions that achieved a value of fitness over 50.0. For

each Configuration of Table 1 (i.e., x axis), the data are differentiated according

to the network creation density (i.e. y axis). Each value is calculated on a total

of 120 samples (i.e., 30 replicas * 4 loads).

It is clearly visible that the lower value of density causes a general decrease

in the amount of successful instances. The higher value obtains higher results,

generating an increment. Finally, the ‘middle density’ (i.e., 7.48) is the one

that performs better. Additionally, a lesser variation related to the ‘custom

range’ input pre-processing is visible, with both the configurations II and

IV achieving less divergent results between low and high densities. This is

calculated as ∆Dbest −∆Dworst . Specifically, they achieved an average variation

of 0.13 versus a value of 0.23 obtained by the others. Therefore, we confirm

that the adaptive approaches do not change the qualitative influence of the

density (i.e., if it is better or worse than the average), but they can shrink or

expand the range of the variation (i.e., how much better or worse the result is).

385 configurations * 30 replicas * 4 loads = 600 samples
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Load influence

The other parameter to evaluate is the load. It influences the power on the motor

and the stimulation of the system. The assessment of possible changes in the

performances related to a variation of the load are thus worth to be analysed.

Nevertheless, differently from the density, this parameter does not seem to

influence the amount of successful configurations. Indeed, the results vary,

finding the lower load being the best in some cases (see Configuration III in

Table 4), and higher ones outstanding in others (see Configuration IV in Table

4). Overall, the results do not seem to follow any pattern.

I II III IV V

1e+03 24.44 76.67 60.00 71.11 54.44

1e+04 23.33 78.89 41.11 77.78 73.33

1e+05 28.89 73.33 26.67 84.44 57.78

1e+06 22.22 76.67 13.33 77.78 63.33

Table 4: Percentage of solutions that achieved a value of fitness over 50.0. For

each Configuration of Table 1 (i.e., x axis), the data are differentiated according

to the motor load (i.e. y axis). Each value is calculated on a total of 90 samples

(i.e., 30 replicas * 3 densities).

Although the motor load does not influence the amount of successful in-

stances, it may still impact the scores’ distribution. Nevertheless, this also does

not show any interesting pattern (see Chapter ‘Appendix’). The values seem

indeed to be independent of the load. Therefore, it can be concluded that the

motor resistance does not influence the results of the collision avoidance task.

Adaptation strategy

We already started to discuss the influence of adaptive strategies (see Section

‘Density influence’). Nevertheless, their effect has not been evaluated. It is

important to understand how much an approach can influence the results. By

looking at the data, the difference generated by the use of a pre-processing of the

input signal is astonishing. The amount of successful configurations increases
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by an average of 47.0939 when a ‘custom range’ is used, and by an average

of 32.2240 for the ‘weighted’ approach. This highlights a capability of these

pre-processing approaches to make more or most of the instances converge

to good results. Therefore, an improvement compared to the ‘unprocessed’

approach is confirmed.

The previous results shown the ‘custom range’ strategy successfully opti-

mising the higher amount of configurations. Nevertheless, this is not directly

a symptom of a higher quality approach. Although the ‘weighted’ method

performs worse in this aspect, its scores’ distribution shows that the maximum

and minimum reached fitness are higher than the others (see Figure 26). Con-

sidering the finer grain optimisation of the weights, the approach may perform

better in the long run. Therefore, choice of the adaptive strategy should depend

also on more strategic considerations.

Qualitative analysis

Beside achieving the desired result, of primary importance is also the compre-

hension of the network behaviour. This can hardly be done statistically, in that

it requires a qualitative analysis. Therefore, the chosen approach consists in

taking one successful solution and analysing its signal propagation. Due to the

length of the process, this is performed only for one instance and configuration.

The chosen one uses a custom range adaptation and a proximity measure. It has

been selected due to the results obtained in Section ‘Results’, that suggest the

use of a pre-processed input signal for a successful and reliable optimisation.

The plots of a similar analysis, concerning the use of a distance measure, are

visible in Chapter ‘Appendix’. Due to the differences in approach, most of

the results are coherent but opposite, compared to the ones discussed in this

section.
39Average score when the ’custom range’ is used (76.39+ 77.78)/2 minus the average score

when it is not used (24.72+ 35.28)/2
40Score when the weights are used 62.22 minus the average score when they are not used

(24.72+ 35.28)/2
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Figure 26: Fitness distribution according to the pre-processing strategy of the

input. The data come from the configurations I, II and V of Table 1.

Overall behaviour

The first point in the analysis of the network behaviour, concerns the input/out-

put signals relation. The goal is to understand how the sensors’ perception

influences the direction. In other words, how the network transforms signals

into what is perceived as the robot behaviour.

The appearance of an obstacle causes an increase in the left/right motors

signals ratio (see Figure 27 A, C and D). This determines the right turning of

the robot (see Figure 27 B). The initial orientation in the arena is clockwise,

meaning that the optimal approach is a starboard manoeuvre (see Figure 25).

The change of direction is related to the perception of the sensors. Specifically,

the frontmost ones are those that firstly perceive the obstacles (see Figure 27

A). This makes the behaviour mostly dependent on those. Contrarily, a weaker

relation would cause the robot response to be slow or even not enough for an

efficient avoidance. According to this consideration, the connections of the

back sensors are less important for the success of the task.
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Figure 27: Input/output relation and consequent behaviour. The plot (A) repre-

sents the signal perception of the sensors. An increase towards 1550 (bottom)

means the approaching of an obstacle. The plot (B) shows the direction of the

robot. It is calculated as the left minus right motor speed. When the signal in-

creases, the robot turns right, and vice versa. The plots (C) and (D) respectively

show the motors speeds during the iterations. The red line is a smoothing of

the effective behaviour to better understand the movement.

Fault resistance

One underestimated point in the analysis of the quality of a control system is

its ability to resist and recover from faults. The first concern the stability of

the behaviour after the loss or the fault of a component. The second, the ability

to learn again how to behave without the lost appendix. This latter one requires

ad-hoc tests, and it is postponed to future works. Nevertheless, the first can be
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evaluated qualitatively, and it is thus here verified.

One of the expected properties of a good solution is an efficient mixing and

transformation of the input signals. Additionally, the exploitation of multiple

sensors is desired. This is expected to make the behaviour more stable and

robust. The hypothesis is that an ability in the information manipulation may

supply the fault of some sensors. The correlation of some input signals supports

this conjecture41 .

To verify this property, the first step consists in the analysis of the influence

of each sensor in the resulting behaviour. The second, in iteratively zeroing the

inputs, in order to spot high changes in the output signal.

To assess the influence of the sensors, it is possible to analyse the corre-

lation between inputs and outputs time series. The measure uses the Pearson

coefficient to assess similarities between each signal entering the network and

the ones exiting it. An initial consideration is that the results are mostly nega-

tive (see Figure 28). The working mode of the system causes indeed the motor

signal to rise when the input is low (i.e., no obstacles; see Figure 27)42 . There-

fore, the behaviours of sensors and motors appear as negated. Some signals

however do not influence at all the outputs. This is due to their positioning in

the robot43 and connection to the network. Indeed, the input node may cause the

sensors to stimulate only one motor. This causes the almost zeroed correlation

between some sensing and controlling signals.

The correlation analysis allows individuating sensors that do not influence

the motors. Nevertheless, this does not guarantee a relation between the re-

maining ones. The input signals are indeed mutually correlated due to their

positioning, that causes and obstacle to be perceived by many of them. There-

fore, the sensors may produce very similar outputs, that may bias the Pearson

measure. This invalidates the evaluation of the mediating capabilities of the

41Due to the sensors’ disposition around the robot, most of them are able to perceive the

same obstacles. This makes the input signals correlated
42The configuration uses proximity measures. Therefore, the neighbourhood of an obstacle

would cause an increase in the signal. Consequently, due to the negation of the output of the

network, the motor signal decreases
43Sensors placed on the back of the robot are less subject to stimulus caused by obstacles
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Figure 28: Pearson correlation between sensor and motor signals. The higher

the absolute value is, the higher the correlation.

network. To approach this problem, an additional analysis has been carried

on. The goal is to understand how influential the failure of a sensor is. The

approach is thus opposite, analysing if the absence of a signal severely impacts

the behaviour of the robot. This allows to understand if the system is controlled

by a just few sensors or if it acts as a mediator between many. For the evaluated

configuration, the behaviour seems to be the latter. Indeed, no sensors com-

pletely influence the output, meaning that at least a minimal signals blending

takes place (see Figure 29). This property translates in a substantial resistance

to failures, with the motor control signal remaining mostly stable also after

loosing an input. The automatism of this behaviour makes it more interesting,

not needing a specific training.

Topology of the connections

All the previously analysed properties depend on the connections of the trans-

ducers to the network. The influence is often approximable to a physical
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Figure 29: Changes in the motors signals due to simulated fault sensors. The

breaks are tested subsequently, and one at the time. The map on the left shows

the correlation between the normal signal and the one obtained by breaking the

sensor. Values near to 1 means small or no change. Although some sensors are

more influential than others, it is visible that no one is overwhelming. This is

confirmed also by the right graphs, that compare the behaviour without breaks

(i.e., the ‘none’ line) with the one produced by each faulted sensor.
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neighbourhood between the input and output nodes44 (see Figure 30). This is a

simplification, but it helps in qualitative and shallow analysis. Specifically, it

supports in understanding how the distance and position of the input and output

nodes impacts on the influence and in the mixing capabilities of the network,

allowing complex behaviours to rise.

Figure 30: Connection of the transducers to the network. The sensors concen-

trate around the motor that they influence the most. This is likely to change

with more complex tasks, that require a complete blending and transformation

of the signals. We can see that the right sensors (i.e., ps0/1/2) tend to organise

around the left motor. This organization appears also around the right one.

A systematic and more reliable measure, consists in considering the in-

put/output path resistance. In a normal circuit this is static, but in the evaluated

network it varies runtime. This possibly biases the sensors’ equilibrium, mak-

ing the behaviour change according to specific circumstances. Due to the

relative simplicity of the task, and to the adaptive pressure, this property did

not clearly emerge. Although the resistance effectively changes, the behaviour

44This is not always true, in that the influence depends on the topology of the network and

on the interaction with other inputs. In dense systems this is more likely to be true compared to

sparser ones
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of the robot remains the same (see Figure 31). A final consideration is that

many sensors seems to organise around a motor to influence its behaviour. This

confirms the previous consideration that the output is a combination of each

sensor signals also from a topological point of view.

Figure 31: Variation of the resistance during a robot run. As visible, the

path-resistance of near nodes is lower than for farther ones. This allows some

sensors to have more influence than others (e.g., left ones on the right motor).

Nevertheless, no signal presents extreme behaviours. Finally, this graph shows

also the stimulation and relaxation of the network. This is especially visible in

correspondence of iteration 30 and 100.
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Conclusion

The analysis assessed the ability to successfully complete the task, and the

influence of the configuration parameters on the result. The network creation

density shown an influence on the average result of the optimisation, with

higher values performing better. The motor load resulted instead not influent

on the final performance, for most of the runs. Considering the adaptive

strategy, the pre-processing of the input signal shown to be important. The

use of a ‘custom range’ shown the best overall results, closely followed by the

‘weighted’ approach.

The experiment also evaluated a successful solution, in order to clearly

understand what the optimisation produces. The analysis shown a well or-

ganised disposition of the connections, for the evaluated task. This explained

the ‘information flow’ in the network. Additionally, the signals’ correlation

suggested an ability in facing faults. This has been assessed, showing that the

robot maintains the behaviour also when some signals disappear.
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7 Experiment: area avoidance

The collision avoidance test evaluated the ability of the robot to move in a

world with obstacles. Nevertheless, the presence of items in the environment

simplifies the task, in that they can physically block the movement. The

robot has thus to react quickly to get a good score, but an immediate reflex

is not needed. The area avoidance test aims to evaluate the ability of the

network to provide a fast response to stimuli, without the help of other entities.

Additionally, the task is a way to assess the phenotypical plasticity of the robot

when a similar selective pressure (i.e., objective function) is used in a different

environment.

Task and arena

To clearly define the task, it is important to initially describe the arena in which

it will take place. This is a flat area, empty of obstacles. The physical items

are indeed substituted by coloured zones on the floor (see Figure 32). The

white ones are the illegal areas, and represent an intangible obstacle for the

robot. Passing over them is indeed a not-allowed action that will penalise

the performance. To allow the robot to foresee the illegal areas, those are

surrounded by gray borders. No penalty is applied when passing over them:

they are only needed as a warning. Finally, the black areas are normal zones on

which the robot can wander.

The definition of the arena considered the robot configuration. As already

discussed in Chapters 5, the use of normally high or low input signals drastically

changes the behaviour of the network. The result may consist in having the

device normally excited, or vice versa. At the moment, this problem can be

managed only by manually changing the pre-processing logic of the robot (i.e.,

negating the reading). This is a limit of the optimisation approach. Since

this factor cannot be automatically modified, the arena is designed to provide

normally low signals. This allows the robot to work in the normally-relaxed

state, that is supposed to perform better due to the higher dynamic45 .

45This is because the relaxation is slower than the excitement
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Figure 32: Top view of the arena used for the area avoidance task. The white

fields are the ‘illegal’ places where the robot cannot go. The gray borders

are a warning to the robot, saying that it is going toward an illegal area. No

penalty is applied on them. Finally, the black areas are normal movement

spaces. The outer border is illegal in order to confine the robot and to penalise

configurations that only move ahead.

Objective function

To make the EPuck complete the task, it needs a selective pressure that can guide

its adaptation. This is represented by feedback that the robot can autonomously

calculate. The function must consider the penalties and the rewards that can

be obtained during the run, and should carefully evaluate their impact in the

optimisation. High returns or punishments can indeed cut out some interesting

adaptive paths46 . In the specific task, the complexity is not particularly high.

46For example, the choice of using relevant penalties may cause the optimisation process

to converge on configurations that are expert in avoiding the illegal areas but are less able to
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Because of that, the chosen objective function highly penalises wrong actions47 ,

decreasing the score by 100 at each wrong step. Additionally, we want the robot

to mostly move ahead, avoiding circular motion paths. The desired function is

then obtained as a modification of the one used in the collision avoidance task,

with the proximity penalty substituted by the illegal area one. The performances

on each step are then summed and normalised in a [0, 100] range:

(1− |vl (n)− vr(n)|) ·
vl (n) + vr(n)

2
− 100 · θ (n) (4)

where:

• n is the actual step;

• θ (n) ∈ {0, 1} return 1 if the robot is on the illegal area, 0 otherwise;

• vl (n), vr(n) ∈ [0, 1] respectively are the normalised left and right veloci-

ties of the robot wheels at step n.

Note that no explicit reward is given if the robot is on a normal (i.e., gray or

black) area. Positive scores depend indeed only on the motion behaviour.

Configuration

As said, the experiment in the area avoidance maze aims to evaluate the ability

of the robot to act in a less favourable environment. The increasing complexity

is given by a more punitive objective function. Additionally, the experiment

assesses the phenotypical plasticity of the robot. This is done evaluating how

the behaviour adapt when the same networks are placed in different environ-

ments with similar objective functions. The assessed devices are indeed created

with the same seeds used in the collision avoidance task. This means that every

network previously used is tested also in the area avoidance maze. The results

should give an additional confirmation of the hypothesis according to which

the network (i.e., the genotype) is not the only responsible for the emergence

of a behaviour (i.e., the phenotype).

wander in interesting ways. The choice thus depends on the goal of the task
47For more complex tasks, we may decide for a more indulgent objective function
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Most of the robotic and experimental parameters used in this test are already

discussed in Chapter 5. Therefore, we will discuss only the ones that differs

from the standard. Differently from the collision avoidance task, the epoch

duration is 400 steps. This is needed in that the area avoidance is more subject

to lucky movement of the robot, that may be able to avoid the illegal areas

just due to its direction48 . An increment in the evaluation time thus increases

the validity of the experiment. The sensor provides ground measures, that are

adjusted according to the custom range chosen in Chapter 649 . This causes

a higher response of the network and allows a comparison with the collision

avoidance results. Specifically, the Configuration II of Table 1 in Chapter

6 is used for the comparison. Finally, the change in the objective function

determines a revision of the fitness adaptive threshold. From the value of 40.0

used in the collision avoidance task, this is changed to a value of 70.0.

Results

The first step for the analysis of the results quality, consists in selecting some

threshold levels for the categorisation between good and bad solutions. The

selection has been done discretionary, with the values selected according to

mathematical considerations and direct observations. The objective function is

calculated applying a penalty of 100 in case the robot override an illegal area.

Compared to this value, the prises are almost negligible. Giving an example, a

fitness score of 70 would be given to configurations that are able to stay out

of the illegal areas ∼ 70% of the time (i.e., 280 steps out of 400). According

to these considerations and to visual evaluations, the ranges chosen for the

classification of the simulation results are the ones shown in Table 5.

Given the ranges, it is then possible to assess the results in a statistical way,

identifying how the configurations performed and according to which metric.

48This is due to the greater size of the arena
49The range was decreased from [0, 4095] to [0, 1550], causing a multiplication factor of

∼ 2.6
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Range Classification

[− inf, 75) Fail

[75, 90) Good

[90, inf] Success

Table 5: Ranges for the classification of the configurations results.

Density influence

The analysis of the results considers also the influence of some parameters.

The density is thought to be one of the most important, and potentially one

of the most influent. Therefore, the evaluation considers the changes in the

performance according to the variation of this parameter. The data consider the

results of 120 configurations for each value of density50 .

The results highlight a relation between performance and density. Lower

values seem to help in achieving better scores. The percentage of successful

instances differs by 13.34% between the lowest and the highest density (see

Table 6). Nevertheless, this value seems to not influence the percentage of

failing configurations, that remains ∼ 20% for all the three values.

Density [− inf, 75) [75, 90) [90, inf]

5.00 23.33 37.50 39.17

7.48 23.33 45.00 31.67

10.00 20.00 54.17 25.83

Table 6: Percentage of configurations that achieved a value of fitness in the

specified ranges. The data are differentiated according to the network creation

density.

The percentage of successful instances is obviously related to the average

score obtained by the density values. Nevertheless, this measure is useful to

have an idea of the expected result. Taking all the configurations that use a

network of a given density, and calculating the average of the best scores, it is

visible that the results differ by some percentage points (see Figure 33). This

5030 replicas * 4 loads = 120 configurations
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emerges also by looking at the distribution of the best performances (see Figure

34). The variation is not particularly big, with all the densities able to reach

the first threshold, averagely. The second threshold is instead reached by the

configurations that belong to the fourth quartile.

Figure 33: Adaptation of the fitness according to the iterations. The value is

calculated by taking the average of the best fitness of each configuration that

uses a specific value of density.

Load influence

The second parameter to assess is the influence of the loads in the computation.

The data consider the results of 90 configurations for each value of load51 . As

expected, their impact in the area avoidance task is greater than in the collision

avoidance. This is due to the fact that a faster and stronger response is needed

in the experiment. Oddly enough, however, the performances increase as the

loads get smaller. This is an unexpected result. Due to the simplicity of the task,

a simpler controller was expected to perform better. As described in Chapter 3

indeed, increasing the load induces a higher power on the motors and a lower

5130 replicas * 3 densities = 90 configurations
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Figure 34: Initial and maximal fitness distributions according to the network

creation density.

stimulation on the network. Nevertheless, the results highlight an incredible

improvement in the performances when low loads are connected (see Figure

35). The spread of the percentages of successful instances between the smaller

and bigger load is indeed 75.56% (i.e., more than one quarter of the runs; see

Table 7).

Load [− inf, 75) [75, 90) [90, inf]

1e+03 8.89 15.56 75.56

1e+04 30.00 23.33 46.67

1e+05 50.00 43.33 6.67

1e+06 0.00 100.00 0.00

Table 7: Percentage of configurations that achieved a value of fitness in the

specified ranges. The data are differentiated according to the motor load.

By looking at the distribution of the fitness at the initial and final step, we

can clearly see that higher loads prevent any improvement in the solution (see

Figure 36). Instead, as the resistance decreases, the performance increases.
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Figure 35: Adaptation of the fitness according to the iterations. The value is

calculated taking the average of the best fitness of each configuration that uses

a specific load value.

This is extreme in case of the lower load, that have its median almost at 100%

of the score (see Figure 36).

Overall performance

As an additional step, the evaluation considers the overall experiment results.

On a total of 360 optimised configurations52 , the percentage of succeeding

instances is 32.22%. The ‘good’ solutions are 45.56%. Finally, the failing in-

stances are 22.22%. Therefore, the most common result consists in an instance

that occasionally overrides the white (i.e., illegal) area. According to the clas-

sification, the ‘at least good’ results are 77.78%. Nevertheless, the differences

due to the parametrisations cannot be ignored. It has been shown indeed how

the results strongly depend on the densities and the motor loads. Accordingly, it

results that the best performing configurations are the ones that use low values

of density and load (see Figure 37). Indeed, the best instance, calculated on 30

5230 replicas * 3 densities * 4 loads = 360 configurations
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Figure 36: Initial and maximal fitness distributions according to the cascading

motor load.

replicas, found most of its scores above the successful threshold.

Phenotypical plasticity

The final step in the evaluation consists in assessing the phenotypical plasticity

of the robotic system. As said at the beginning of the chapter, the experiment

considered the same networks used in the collision avoidance task. Specifically,

the instances are the ones optimised in the custom range evaluation (see Con-

figuration II in Table 1). The results confirm the hypothesis that sufficiently

complex networks (i.e., the genotypes) are able to express different behaviours

(i.e., phenotypes). The same instances were indeed able to perform well both

in the collision and area avoidance experiments. Considering the best scor-

ing loads53 , the behaviours allowed the robot to achieve good results in both

the tasks, respectively 78.89% and 75.56% of the times for collision and area

avoidance.
53The selection of the load value determines the complexity of the network behaviour, with

high resistances that reduce the internal dynamic. Therefore, we can assume that not-enough

stimulated systems are not complex enough to generate a successful phenotype
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Figure 37: Maximal fitness distributions according to the network creation

density and cascading motor load. Note that the fitness range of the rightmost

plot is [30, 100] instead of [40, 100] used by the others.

Additionally, the similarities between the objective functions (i.e., the

selective pressure) suggests that the characteristics of the environment directly

affect the emergence of phenotypes. In the opposite case, we would see the same

or similar behaviours emerge from the optimisation. Instead, the phenotype

adapt to the specific characteristics of the arena, allowing the robot to score

well in both.

Conclusion

The analysis assessed the ability to successfully complete the experiment and

the influence of the configuration parameters on the result. It turned out that

both the density and the motor load influence the result. Specifically, this latter

one determines a huge impact on the results, with too high values not being

able to properly complete the task at all. This consideration suggests that the

presence of the network is indeed necessary, and it does not simply act as a

relay. In the opposite case, we would see an opposite behaviour54 .

The experiment also assessed the phenotypical plasticity of the system. This

was evaluated considering the capability to adapt both to the collision avoidance

and the area avoidance tasks. The results shown that the networks are able to
54As said, the higher the load, the higher the power on the motors. This would cause a

decrement in the voltage falling on the network, and thus a reduced influence of it

77



express different behaviours (i.e., phenotypes) according to the environment

and selective pressure.
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8 Experiment: T-maze

The previous experiments respectively evaluated the capability of the system

to perform a simple task (see Chapter 6) and its reflexes (see Chapter 7).

Additionally, they assessed the adaptability of the network to different tasks and

environments, showing phenotypical plasticity. Nevertheless, the exploitation

of the intrinsic memory of the system was not attempted. Given the importance

of this property, it is needed to evaluate if the nanowire network can be used

to complete assignments that require an awareness of the past. This is tested

through the optimisation of the T-maze task. Additionally, the results of two

different adaptive approaches are compared.

Task and arena

The T-maze task was historically used to assess the memory capacity of rodents.

The goal was to show a switching behaviour, choosing the paths at the crossroad

in an alternate way [12]. In this research, the task is modified. The aim is to

allow an external stimulation to guide the robot choice. This requires an

initially presented stimulus to be memorised for a short term. Therefore, the

environment directly influences the robot, suppressing or enhancing some of

its behaviours [31]. This is done through the use of an initial stimulation path,

that may be both white and black (see Figure 38). The direction that the robot

has to take is thus dynamically set by the initial colour. The goal is to reach the

end-area with the opposite hue of the start. The score is influenced by the time

spent outside the target zone, and thus by how quickly the target is reached.

The robot shall pass to a gray area that is neutral and positioned at the end of

the stimulation path, at the crossroad.

Objective function

The goal of the task is for the robot to reach the end point of the maze. This

indeed influences most of the performance. Nevertheless, also the time needed

to reach the goal is important. Therefore, the objective function also considers

this factor. This is implicitly done, in that positive feedbacks are obtained
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Figure 38: Top view of the arena used for the T-maze task. The gray area (B) is

neutral, and no score is gained in it. It corresponds to the crossroad of the maze.

The starting/stimulating area (A) is from where the robot gets the information

about where to go. Its colour can be white or black depending on the direction.

The areas (C) on the sides of the maze (i.e., after the crossroad, on the left and

right) are the end-points. Their colour does not change during the execution.

only after the target is reached. Therefore, the more time is used to reach the

goal, the lower the final score will be. The performances on each step are then

summed and normalised in a [0, 100] range:

2 · θ · β − 1 · θ (5)

where:

• θ ∈ {0, 1} is 1 if the floor is the same colour as the starting one;

• β ∈ {0, 1} is 1 if the floor is gray.

The step objective function gives then a double, positive score if the colour

of the floor is different from the starting one (i.e., θ ) and from gray (i.e., β ).
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Instead, if the robot is still on the initial area or in the wrong end-point (i.e., θ ),

it receives a penalty. Finally, staying in the gray area (i.e., β ) is not rewarded

and neither penalised.

Preliminary test

Preliminary tests did not manage to complete the task. The continuation of

the experiments required then an intermediate, manual analysis to verify the

feasibility of the goal. This has been done by taking a random network and

manually selecting the input nodes (i.e., the nanowires), basically creating a

custom thalamus. The connections are direct, with only an attenuation applied

to the ground sensor55 . This is needed both to avoid the robot turning on itself,

and to avoid an overstimulation of the network56 . The goal is to make both the

motors subject to the proximity sensor, with one of them slightly more sensible

to it. This translates in having the input connected with the outputs through two

differently resistive paths. The aim of this uneven balance is to allow a standard

manoeuvre also in the absence of an initial stimulation57 . The opposite turning

is achieved by making the ground sensor influence the most resistive path. The

stimulation increases the conductance, making the output more powered and

the connected motor slower58 . This balance-shift causes the robot to turn on

the opposite direction when the obstacle is perceived.

This custom solution shows the ability to complete the task, allowing the

robot to turn on one direction when subject to a given stimulus, and vice versa

(see Figure 39). The result thus confirms that the endogenic memory of the

network can be successfully exploited. The need is thus for the optimisation

system to produce good performing solutions. The choice of the input/output

55It corresponds to an attenuation of 70% of the signal, with a maximum value of 3V
56An overstimulation may cause the network to remain stimulated by a previous test, influ-

encing the result of a subsequent one. With a custom range, this problem is resolved, allowing

only stimulus that the robot can recover from
57Note that the turning happens only when the robot perceives the wall. Before of the

perception, the output is almost 0 and thus the robot proceeds straight. This behaviour is due to

the chosen working ranges of sensors and actuators (see Chapter 5)
58This is due to the negation of the output signal of the network
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nodes (i.e., the nanowires) does not seem to be a problem. For small networks,

the number of nanowires is indeed limited. Nevertheless, the selection of

the input range or the multiplier of the signals is more complicated. A naive

solution may require the user to specify the parameter according to observations.

However, this approach limits the potential and partially violates the concept of

the adaptive computation. Moreover, it may lead to worse solutions. Therefore,

the idea consists in allowing the optimiser to also automatically balance the

sensors influence in the network. This was effectively done after the assessment

of this result, with the implementation of a signal weighting.

Finally, as an additional consideration, the sequence of floor colours be-

tween multiple runs seems to not influence the ability of the robot to complete

the task. A concern was indeed that the end-area may stimulate the network

before the kidnapping59 , changing its subsequent behaviour. Nevertheless, the

results do not show any related problem. The hypothesis is that the length of

the stimulation path allows the network to ‘reset’ its state. A conclusion is that

the influence of old stimulations does not prevent the robot to succeed the task.

Configuration

Each experiment consists of different configurations and aims to understand be-

haviours or confirm hypothesis. For the T-maze task, the goal is to explain if the

nanowire network can exploit its plasticity to store and use memory information.

This is assessed by verifying that the robot can succeed in completing the maze.

Additionally, it is required for the adaptive algorithm to be able to successfully

optimise most of the configurations. If this last point is not guaranteed, one

may argue that the obtained results are due to lucky configurations.

Most of the parameters of the experiments are standard, defined in Chapter 5.

Nevertheless, some that are specific to the T-maze task, or were not previously

described, exist. These newly defined parameters are here presented. The

experiments take place in the T-maze arena and use a combination of one

ground and two proximity sensors. The epoch duration is 1000. Every 250

59After one run the robot is automatically brought back to the starting point
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Figure 39: Frame of the manual test of the T-maze task. On the left, the position

of the robot in the arena is visible. On the right, the nanowire network state is

shown. Although the stimulation seems slightly biased toward the left-motor,

the path is still more resistive. This is due to the number of subsequent wires

and junctions (i.e., resistors). The result is a lower electrical potential on the

left output node. Due to the negated logic, the right-motor results thus slower

than the other, causing the robot to turn right. With a higher stimulation from

the ground sensor, the voltage distribution flips, causing an opposite behaviour.

steps, a new round starts, and the configuration is tested with a different initial

condition (i.e., alternatively, black or white stimulation). The epochs count is

200. This high amount is needed in order to allow the optimisation. The T-maze

task resulted indeed harder to complete compared to others. Each combination

is replicated 5 times to improve the robustness of the results. Nevertheless,

the population is still small for a reliable, statistical analysis. This is due to

the length of the computation, that inhibits more run to be performed60 . With

the aim of speeding up the search, the configurations are adapted only if they

60A run composed of 5 replicas, 200 epochs, 1000 steps of duration takes more than a week

of computation
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obtain a minimum fitness of 40.061 . In case a lower performance is obtained,

the connections are re-created from scratch. As final point, the experiments

evaluate two types of input pre-processing: (i) weighting; (ii) adaptation to

a custom range. The first (i), applies and adapts a specific multiplier to each

sensor signal. The second (ii), adapts the inputs to a fixed, hand-selected range,

raising their voltage influence62 . A direct connection is not assessed due to

the results obtained in Section ‘Preliminary test’, that show an inability to

complete the task.

Results

In this section, the results of the experiments taking place in the T-maze arena

are assessed. This involves the evaluation of the influence of various param-

eters in the performance. Nevertheless, to be able to analyse the results, a

categorisation between ‘good’ and ‘bad’ solutions is needed. This is done by

defining three ranges of results, each of them representing a further step in the

task completion (see Table 8).

Range Classification

[− inf, 40) Fail

[40, 50) Good

[50, inf] Success

Table 8: Ranges for the classification of the configurations results.

The first range contains the failing configurations. Those are the ones that

make ’errors’, terminating in the wrong end-point or remaining in the starting

area for too long. By observation, a value below 40 is indicative of bad solutions.

The second range is from 40 to 50. This represents ‘good’ solutions. Those are

the ones that never end up in the wrong end-point nor remains in the initial area

for long. Nevertheless, those configurations typically fail in reaching both the

61The choice of the value corresponds to the first threshold of the results’ classification (see

Section ‘Results’), meaning that the robot never goes in the wrong target. Nevertheless, it also

means that the robot may block in the middle of the maze
62The range is [0, 1550], meaning that values equal or higher will be set to 10V
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targets. The common behaviour consists in reaching one of the end-points when

a stimulation is presents and wandering in the gray area for the remaining time.

Although not successful, these configurations are labelled as ‘good’ in that

they show some kind of memory, going on one side if the stimulation meant so,

but avoiding it otherwise. Finally, the last group considers the configurations

performing more than 50. Those are the successful ones, in that able to reach

both the end-points. Indeed, due to the duration of a run, values over 50 are

possible only for robots that always succeed. Higher results are indicative of

the time needed by the robot to reach the desired areas. These thresholds are

chosen with a cautious approach. This means that, although lower values may

already present a successful behaviour, the ranges start when almost all the

configurations succeed.

Overall considerations

The T-maze experiments consist in the test of two distinct configurations, dif-

ferentiated by the adaptive approach. To analyse the single parameter influence,

it is needed to firstly present the results. The first (i) approach, using the

weighting pre-processing, obtained the results in Table 9. Instead, the second

(ii) approach using an adaptation to a custom range produced the results in

Table 10.

As explained in the Section ‘Configuration’, the results were calculated on

a reduced amount of executions. Specifically, the statistics of each density are

calculated on a total of 20 samples63 , while the load ones used just 15 runs64 .

Due to the reduced population, both the results are not statistically relevant.

Nevertheless, the discovery of strong patterns in the data may be symptom of

interesting properties. This may lead to future evaluations, and help in predict

the influence of some configurations in complex tasks.

To enhance the statistical reliability of the data, it is proposed to perform a

combined evaluation of the two runs. Although different in the approach and in

the results, the overall behaviour should help in the search of some patterns in

635 replicas * 4 loads = 20 configurations
645 replicas * 3 densities = 15 configurations
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Density [−in f , 40.0) [40.0, 50.0) [50.0, in f )

5.00 15.00 50.00 35.00

7.48 10.00 40.00 50.00

10.00 5.00 35.00 60.00

Load [−in f , 40.0) [40.0, 50.0) [50.0, in f )

1e+03 6.67 40.00 53.33

1e+04 6.67 46.67 46.67

1e+05 13.33 40.00 46.67

1e+06 13.33 40.00 46.67

Average 10.00 41.67 48.33

Table 9: Percentage of configurations that achieved a value of fitness in the

specified ranges. The data are differentiated according to the network creation

density and load. The results are generated by the ‘weighting’ (i) test configu-

ration.

the parameters choice. The hypothesis is that densities and loads influence the

results regardless of the adaptive technique used (i.e., weighting or adaptation

to a custom range). In other words, a parameter that positively influences the

performance, is expected to do the same with both the approaches.

Both the weighted (i) and the custom range (ii) adaptive approaches are able

to successfully complete the task, almost or more than half of the time. Using a

joint evaluation, the result is that 55.83% of the instances are categorised as

successful65 . Conversely, the failing configurations seem to be a negligible

part. This highlights a capability of the optimiser to generally allow the robot

to exploit some sort of memory. As explained at the beginning of the section,

also the ability to stop in the gray area is considered a symptom of awareness.

Although the results do not show an overwhelming presence of fully successful

configurations (i.e., performing more than 50), the memory of the network

seems likely to be exploitable.

65The percentage is calculated on 5 replicas * 3 densities * 4 loads * 2 approaches = 120

samples
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Density [−in f , 40.0) [40.0, 50.0) [50.0, in f )

5.00 15.00 30.00 55.00

7.48 0.00 35.00 65.00

10.00 5.00 25.00 70.00

Load [−in f , 40.0) [40.0, 50.0) [50.0, in f )

1e+03 0.00 26.67 73.33

1e+04 0.00 40.00 60.00

1e+05 20.00 20.00 60.00

1e+06 6.67 33.33 60.00

Average 6.67 30.00 63.33

Table 10: Percentage of configurations that achieved a value of fitness in the

specified ranges. The data are differentiated according to the network creation

density and load. The results are generated by the ‘custom range’ (ii) test

configuration.

Density influence

One of the parameters that may influence the ability of the configuration to

succeed is the creation density of the nanowire network. In the previous experi-

ments, this parameter shown to effectively influence the results (see Chapter 6

and 7). This is thought to be valid also for the T-maze task. The hypothesis is

that the higher need of memory requires more complex networks to be used66 .

Differently from the area avoidance tasks, the results show denser networks

generating more successful instances (see Table 9 and 10). The percentage

increases sharply from low to high values. Depending on the adaptive approach,

the spread is of 25 and 15 percentage points, resulting in an average increment

of 20%67 . This suggests that high values of density determine a general im-

provement in the amount of successful instances. Nevertheless, by looking at

the scores’ distribution, this result seems less certain (see Figure 40). Although

less statistically relevant68 , a clear distinction is visible only for the ‘weighted’

66The memory is expected to be related to the dimension of the network state
67This value is calculated on 40 samples: 5 replicas * 4 loads * 2 approaches
68The statistics of each approach use only 20 samples
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approach. This result mines the previous one, requiring more tests to be pro-

duced. Therefore, a more complete analysis is postponed to future works with

a greater population of results.

Figure 40: Distribution of the scores according to the network creation density.

On the left, data of the ‘weighted’ approach are plotted. On the right, the results

of ‘custom range’ strategy are shown. The plots show both the initial and final

distribution, in order to allow the comparison of the improvement.

Load influence

The other parameter to evaluate is the motor load. The choice of a good value,

shown to be extremely important in some settings (e.g., in the area avoidance).

Its evaluation is thus needed in order to understand which kind of stimulation

better drives the robot in the T-maze69 . The results suggest that low loads

score better than higher ones (see Table 9 and 10). This is in line to what was

analysed in the area avoidance task. Nevertheless, the drift in performances

is reduced. This result is partially unexpected. The formation and storing

of memory inside the network is thought to be facilitated by high intensity

stimulations. Therefore, tasks that require awareness of the past (e.g., T-maze)

are expected to be more sensible to the connected loads, compared to more

reactive ones (e.g., area avoidance). This hypothesis is not confirmed by the

data, suggesting that also low stimulations are enough for the task completion.

69The stimulation of the network is indeed related to the motor load
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The previous results have however to be carefully accepted. As for the

density analysis, the amount of data is limited. Additionally, if the density

had an amount of 40 samples, the load has just 3070 . This further reduces

the statistical relevance of the result, and precludes the consideration of the

parameter influence in the single approach71 .

Adaptation strategy

One of the points raised in the Section ‘Preliminary test’ revolves around the

need of a pre-processing of the input signal, in order to successfully perform

the task. The experiments explored the possibility of using both weighted links

(i) and custom input ranges (ii) to tackle the problem (see Section ‘Configura-

tion’). Therefore, the analysis consists in the comparison of the performances

obtained with the two approaches. The goal is to identify differences, in order

to comprehend how a methodology impacts on the result. Strong variations

may suggest indeed an efficiency of one of the two approaches, or vice versa.

The amount of samples for the evaluation of each strategy are 6072 .

A primary point in the evaluation of these methodologies, is that both are

able to complete the task. This result is important, in that it resolves the

problem of the unprocessed connections toward the system, that were almost

never able to allow the robot to complete the maze. Therefore, the two novel

strategies provide better results, and represent valid approaches for the task

optimisation.

The results present averagely higher performances when the ‘custom range

adaptation’ (ii) is used. The ‘weighted link’ (i) approach generates indeed

lower scores. Nevertheless, the greater adaptability of this latter one has to

be acknowledged. The ranged solution requires indeed a handmade work,

needing to select the parameter discretionary. This approach is feasible for a

limited amount of sensors types, but may become overwhelming as the number

increases. Additionally, this value is hardcoded and cannot be modified by

the robot itself. From this point of view, the ‘weighted-links’ approach gives

705 replicas * 3 densities * 2 approaches = 30 samples
71For each load, there would be a total of only 15 samples
725 replicas * 3 densities * 4 loads = 60 samples
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more possibilities to adapt. Firstly, it allows the system to automatically select

the weight. This is especially useful in that we are discussing online training,

that allows a continuous adaptation. The hypothesis is that the system will

eventually converge to a good solution, remaining able to adapt to possibly

extreme changes in the environment. The second point, is the possibility to

optimise the signal of the single sensor. This is not particularly useful in the

T-maze, but may become needed in more complex tasks.

Assessing the results quantitatively (see Table 9 and 10), we can see that

the amount of successful configuration passes from 48.33% for the weighted

approach, to 63.33% for the ‘custom range’ one. The spread of the results

is thus 15%. The difference between the percentages of failing instances is

instead low (i.e., 3.33%), meaning that both the approaches are sufficiently

good to exploit the network memory. Indeed, the major difference consists

in the passage from the second to the third success range. Nevertheless, by

assessing the fitness distribution of the two strategies, it is possible to see that

the ‘weighted’ pre-processing generates an effectively worse set of solutions

(see Figure 41). This result is contrary to the ones obtained in the collision

avoidance task, where the approaches closely matched each other.

An additional point to discuss is the improvement of the performances in

the run. The ‘custom range approach’ causes the fitness to improve rapidly,

stabilising after some iterations. Conversely, the weighted strategy grows

slowly, reaching similar results after much longer time (see Figure 42). From

the point of view of the speed, the first approach is thus better. Nevertheless,

no decay is visible in the improvement rate of the fitness for the ‘weighted’

approach. This may be due to a slower optimisation towards the same values

obtained by the custom range73 , as well as a higher suitability to continuous

adaptation. This latter aspect would allow the weighted approach to perform

better in the long run. Nevertheless, no test considered this option, mostly due

to the computational complexity of the simulation. Therefore, this possibility

is actually just a speculation.

73This implies that the ‘custom range’ approach already reached the upper limit of the

fitness
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Figure 41: Fitness distribution according to the pre-processing strategy of the

input.

Conclusion

The experiment assessed the feasibility of the goal. The results show a general

capability of the system to complete the task, at least when a sufficient number

of executions is considered. This thus confirms the presence of an endogenic

memory arising from the network dynamics.

Also, the influence of some strategies and parameters was assessed. Specif-

ically, two adaptive approaches were tested, each of them providing a different

pre-processing of the input signals. The results highlighted a better perfor-

mance of the methodology adapting the signal to a custom range, compared

to the one using weighted (i.e., multiplied or attenuated) links. The tested

parameters were instead the density and the load, both suggesting some kind of

influence. Nevertheless, their reduced amount of samples causes a reduced reli-

ability of the results. The analysis of those parameters has thus to be considered

a proof of concept for future works and studies.
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Figure 42: Adaptation of the fitness according to the iterations. The value is

calculated taking the average of the best fitness of each configuration that uses

a specific value of density (top) and load (bottom). On the left (A), the results

from the custom range approach are shown. On the right (B), the results from

the weighted link approach are shown.
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9 Future works

This thesis paved the way for future works, relating robotics and nanowire

networks. Because of the novelty of the approach, the amount of possible

development is massive. In this chapter, a brief list of possible research paths is

presented. Most of them emerged during the development of this dissertation,

and represent alternative goals that it could have aimed at.

Adaptation

One of the initial proposals, considered the use of the nanowire networks to

create failure resistant and recoverable robots. Although the first aspect was

considered during the work (see Chapter 6), no effort was made to maximise its

effectiveness. Indeed, the resistance to some sensor failure was assessed only

on already optimised configurations, and not for specifically trained robots.

Regarding the recoverability instead, this was not evaluated at all. Therefore, a

possible development would consider an explicit training of the network driven

system, in order to resists and recover from failures.

Another aspect to assess, is the effective improvement of the performance

when the nanowire network is exploited. Indeed, the experiments considered

the success of the solutions, but a comparison with static circuit is missing.

Therefore, an analysis without a dynamic network (i.e., without the junction

plasticity) may be interesting. This can be easily achieved through the use

of the simulator. Alternatively, a comparison with other types of networks or

neuromorphic systems may be performed (e.g., Boolean or Neural networks).

The use of alternative, adaptive strategies may be a valid continuation

of this work. The proposal is the creation of an algorithm that adapts the

mutation impact according to the quality of the solution. The goal is to change

extremely when the fitness is low, and moderately when a good performance is

approached. For the weights, this may be done through the use of a variable

sigma in a Gaussian mutation.
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Technical

As said (see Chapter 1), the nanowire networks have the potential for efficient

and fast computations. Nevertheless, an effective measure of their impact

is missing. Therefore, a proposed area of work relates to the comparison of

consumption and computation capabilities with other types of systems. Some

valid competitors may be Boolean and Neural networks. Additionally, the

analog functioning of the nanowire devices is not limited by ‘clock cycles’,

like for the computers. This allows their evaluations as real-time computing

systems.

Considering the reduced size of the nanowires, an interesting possibility

would be their use in the control of micro and nanobots. One of the problem

is indeed finding a control system that can fit these entities. Some approaches

exploited biology for this task [21]. These networks represent instead an

artificial alternative. Nevertheless, to achieve this goal, a greater research

effort is needed. Additionally, due to the limited impact of these robots, this

idea necessarily have to mix with studies of swarm intelligence.

Experimental

Considering future works related to the tasks, an initial point consists in evalu-

ating the T-maze run in a more statistically reliable way. Indeed, in the current

test, the number of replicas is limited by the time required for the computation.

Nevertheless, with more computing power or with a physical device, this possi-

bility should be assessed. Additionally, an evaluation on longer mazes should

be performed, in order to confirm the persistence of the successful behaviour

in time.

Still related to the tasks, the test of the system in a dynamical environment

would provide information about the behavioural stability and adaptability.

Therefore, this may also be an interesting path.

In case the tests start to become too hard to succeed through the use of a

simple reconnection, a possibility may evaluate the use of a more complex

readout. In this case however, a solution to the online adaptation problem

described in Chapter 2 has to be found.
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Analytics

This thesis did not statistical analysed the characteristics of the successful

configurations. Nevertheless, the search of some patterns in their organisation

may help in understanding how the adaptation works and possibly converges.

In future works, a similar evaluation should be considered.

Nanowire networks

Until now, the presented possible future works mostly considered the robotic

area. Nevertheless, some researches may deeply assess the nanowire networks

performances and characteristics. An example is the evaluation of the density

influence on the computation. In this dissertation, this was evaluated through

the performances in the tasks. Nevertheless, formal approaches may apply some

constraints to this analysis. An example is to force the input and output nodes

to maintain a constant distance74 . This would allow evaluating if the wider

branching of denser networks effectively improve or reduce the performance.

A different analysis may consider alternative ways to induce a critical state

in nanowire networks. According to the hypothesis described in Chapter 3,

the performances are expected to greatly improve if a phase transition results

exploitable.

Finally, a possible study may assess the use of external components to

stabilise the signal or improve the memory of the device. Indeed, it is common

in the robotic area the use of delayed feedback loops, for the stabilisation of the

output and the increment of the storable data. This may extend the effectiveness

of the nanowire network to more demanding fields.

74It may be both physical or resistive
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Conclusion

The dissertation evaluated the usage of nanowire networks for the control of

a robotic system. This is trained by an online, adaptive strategy to complete

tasks in specific environments.

The work articulated on multiple steps. The first (see Chapter 1), considered

the motivations for the use of the nanowire networks as control systems. The

resulting strength points are many. Its neuromorphic computation is suitable

for the creation of biologically inspired systems. The similarities with the brain

resulted also by: a reduced power consumption; potentially high scalability;

the computing capabilities. Indeed, the device is analog and not limited by

clock speeds, allowing for theoretically fast and efficient computations. This is

enhanced also by the possibility of storing information directly in the system,

approaching the problem of the overhead present in classical Von Neumann

architectures. This list of benefits has been followed by a brief discussion about

the networks’ creation, and by the presentation of the simulator used in the

project.

The next step consisted in the explanation of the aimed phenotypical plastic-

ity. According to the work vision, the adaptation of the behaviour to tasks and

environments is indeed a central point. This has been achieved through the use

of an online, adaptive strategy. Additionally, the limitations concerning the use

of Reservoir Computing in continuous adaptation have been presented, termi-

nating in the proposal for a custom, mixed architecture (see Chapter 2). Part of

the work has been indeed later devoted to the definition of a biologically plau-

sible and architecturally feasible design (see Chapter 4). This resulted in the

association between entities of the two domains. The main identified modules

are the brain (i.e., the controller), the thalamus (i.e., the sensory connections),

the pyramid (i.e., the control connections), the sensors and the muscles (i.e.,

the transducers).

The design of the system required however a previous step: an analysis

of the network behaviour and characteristics (see Chapter 3). This helped in

understanding how to properly define the architecture. The evaluated aspects

concerned many parameters and design choices. For example, the distribution
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of the stimulation shown a relation with the density. Nevertheless, also the

connected components shown to influence the device computation. Specifically,

low external loads induced an increase in the network sensitivity. Finally, the

most interesting analyses related to the memory, the separation property and the

update frequency of the system. Specifically, the latter one shown to determine

the presence of chaotic behaviours.

With the definition of the architecture complete, the description of the ex-

periments begun. The approach consisted in the formalisation of the standard

choices. This included the definition of the adaptive strategies, and the param-

eters used by the robot and in the experiments (see Chapter 5). Specifically,

the chosen adaptive approach consisted in the re-wiring and re-weighing of the

input connections from the sensors to the network.

The robot was then tested in distinct environments, with different tasks. The

goal was to verify some behavioural capabilities. Specifically, the collision

avoidance evaluated and confirmed the ability to complete a simple task. It

also compared some adaptive strategies, showing that a pre-processing of

the input signals is needed. Additionally, it studied a successful instance to

understand how the optimisation converged to a good solution. This consisted

in the evaluation of the connections’ disposition, as well as the fault resistance

of the system. Specifically, the latter one shown high resilience and mixing

capabilities. The second task was instead the area avoidance. It assessed and

confirmed the phenotypical plasticity of the network, testing the instances from

the previous arena in a new setting. Also, it evaluated a more reactive behaviour.

The final test was the T-maze. It considered the use of an intrinsic memory

capacity, showing the ability to exploit it. Additionally, it also assessed two

adaptive strategies.

The final step of the thesis, presented possible future works. It analysed

various aspects, proposing changes in (i) the adaptation of the system; (ii) the

technical evaluations; (iii) the experiments; (iv) the analysis of the results;

(v) the assessment of the nanowire networks behaviour.

Overall, the system presented good capabilities in optimising according to

a given objective function and environment. The solutions shown to be robust

to failures and flexible to the type of task to complete. They also confirmed
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the possibility to exploit the intrinsic memory of the system. This is extremely

important for a possible, future, wide use of this technology.
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Appendix

Experiment: collision avoidance - Density influence calcula-
tions

Configuration I in Table 1:
∆D5.0 = 3 ∗ 21.67/(21.67+ 27.5+ 25.0) = 0.8764999325872995

∆D7.48 = 3 ∗ 27.5/(21.67+ 27.5+ 25.0) = 1.1123095591209384

∆D10.0 = 3 ∗ 25.0/(21.67+ 27.5+ 25.0) = 1.011190508291762

Configuration II in Table 1:
∆D5.0 = 3 ∗ 69.17/(69.17+ 79.17+ 80.83) = 0.9054850111271108

∆D7.48 = 3 ∗ 79.17/(69.17+ 79.17+ 80.83) = 1.0363921979316664

∆D10.0 = 3 ∗ 80.83/(69.17+ 79.17+ 80.83) = 1.0581227909412227

Configuration III in Table 1:
∆D5.0 = 3 ∗ 30.83/(30.83+ 36.67+ 38.33) = 0.8739487857885287

∆D7.48 = 3 ∗ 36.67/(30.83+ 36.67+ 38.33) = 1.0394973070017954

∆D10.0 = 3 ∗ 38.33/(30.83+ 36.67+ 38.33) = 1.086553907209676

Configuration IV in Table 1:
∆D5.0 = 3 ∗ 73.33/(73.33+ 81.67+ 78.33) = 0.9428277546822098

∆D7.48 = 3 ∗ 81.67/(73.33+ 81.67+ 78.33) = 1.0500578579693995

∆D10.0 = 3 ∗ 78.33/(73.33+ 81.67+ 78.33) = 1.0071143873483908

Configuration V in Table 1:
∆D5.0 = 3 ∗ 55.00/(55.0+ 69.17+ 62.5) = 0.8839127872716558

∆D7.48 = 3 ∗ 69.17/(55.0+ 69.17+ 62.5) = 1.1116408635560078

∆D10.0 = 3 ∗ 62.50/(55.0+ 69.17+ 62.5) = 1.004446349172336

∆D for 5.0: 0.88+0.91+0.87+0.94+0.88
5 = 0.8960000000000001

∆D for 7.48: 1.11+1.04+1.04+1.05+1.11
5 = 1.07
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∆D for 10.0: 1.01+1.06+1.09+1.01+1.00
5 = 1.034

Range of density influence for each Configuration in Table 1:

I −→ max(∆D)−min(∆D) = 1.11− 0.88 = 0.23

II −→ max(∆D)−min(∆D) = 1.06− 0.91 = 0.15

III −→ max(∆D)−min(∆D) = 1.09− 0.87 = 0.22

IV −→ max(∆D)−min(∆D) = 1.05− 0.94 = 0.11

V −→ max(∆D)−min(∆D) = 1.11− 0.88 = 0.23
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Experiment: collision avoidance - Distribution of scores ac-
cording to the load

Figure 43: Fitness distribution according to the motor load. From left to right

and from top to bottom, the data are the representatives of the configurations I,

II, III, IV, V from Table 1.
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Experiment: collision avoidance - Analysis of distance sensing
configuration

Figure 44: Analysis of input/output signals and consequent robot movement.
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Figure 45: Analysis of input/output signals’ correlation.

Figure 46: Analysis of output signals’ correlation when subject to faults.
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Figure 47: Analysis of transducers connections to the network.

Figure 48: Analysis of paths resistances from sensors to motors.
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