
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA
CAMPUS OF CESENA

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT
Second Cycle Degree in Computer Science and Engineering

AGENT-ORIENTED VISUAL
PROGRAMMING

FOR THE WEB OF THINGS

Thesis in

PERVASIVE COMPUTING

Supervisor

Prof. ALESSANDRO RICCI

Co-supervisor

Prof. SIMON MAYER

Presented by

SAMUELE BURATTINI

Academic Year 2020 – 2021

to Giada

Index

Introduction vii

1 Context, Motivations and Research Proposal 1
1.1 The IntellIoT Project . 2

1.1.1 Key Mission . 2
1.1.2 Use Cases . 3

1.2 Domain-Expert Programming 5
1.3 Proposing Visual Agent Programming 6

2 State of the Art 7
2.1 Agent-Oriented Programming 7

2.1.1 What is an Agent . 8
2.1.2 The BDI Agent Model 9
2.1.3 Multi-Agent Systems and the A&A Metamodel 11
2.1.4 The JaCaMo Platform 13

2.2 Visual Programming and End-User programming 13
2.2.1 Block-based Visual Programming 15

2.3 Web of Things . 16
2.3.1 Origins and Motivations 16
2.3.2 Design Principles . 17
2.3.3 The Thing Description Model 18

3 Requirements 21
3.1 Assumptions and Constraints 21
3.2 Non-Functional Requirements 22
3.3 Functional Requirements . 23

4 Design 25
4.1 From Agent Code to a Visual Language 26

4.1.1 Choosing the Visual Abstraction 26
4.1.2 Reference Syntax and Constructs 27
4.1.3 Mapping Principles . 30

v

vi INDEX

4.1.4 Core Blocks . 30
4.1.5 Integration with the WoT 33

4.2 Identifying Components and Architecture 33
4.2.1 Designing the Agent Runtime Infrastructure 35
4.2.2 Simulation Environment Requirements 36

5 Development 39
5.1 Smart Environment TD Repository 39
5.2 Creating the Web User Interface 40

5.2.1 Thing Explorer . 41
5.2.2 Web IDE . 42

5.3 Implementing the Runtime Infrastructure 46
5.3.1 Wrapping JaCaMo . 47
5.3.2 Support for Agent to Thing Interaction 49

5.4 WoT Simulation and Proxy Environment 55

6 Evaluation 57
6.1 Designing a User Study . 57

6.1.1 Evaluation Variables . 58
6.1.2 Task Design . 58

6.2 Demographic Analysis . 61
6.3 Study Routine . 61
6.4 Qualitative Outcomes . 64

6.4.1 Task Results Analysis 64
6.4.2 General Considerations for Future Evaluations 65
6.4.3 Final Evaluation . 66

Conclusions 67

Acknowledgements 71

Introduction

In the context of a Pan-European project aimed at defining the next gener-
ation of intelligent IoT systems, this thesis proposes the idea of Visual Agent-
Oriented Programming as the enabling tool for non-technical users to configure
and program such systems.

The thesis work was carried out while being hosted by the University of St.
Gallen, contributing to the exploration of the Interaction and Communication-
based Systems research group in the field of engineering autonomous systems
capable of controlling Web of Things (WoT) environments with a human-in-
the-loop philosophy.

Motivated by the ever-increasing demand for interfaces designed for workers
to be able to keep the pace of the fast digitalization of business activities, a new
tool was designed and developed to provide a seamless interface to control the
digital representation of physical environments exploiting agent programming.

To our knowledge, this is also the first attempt at building a user-friendly
interface on top of the agent-oriented paradigm that targets people with no
previous programming experience. This can be seen as the first step in explor-
ing whether the assumptions made when defining agents as entities to build
software in a way that was more understandable for humans since taking in-
spiration from models of human behaviour and reasoning still hold.

From a WoT perspective, providing a uniform programming interface is
crucial to allow to create or modify software featuring a different degree of
autonomy in flexibly performing tasks, dealing with open, dynamic and dis-
tributed environments. Users can leverage the agent paradigm to define com-
plex behaviour at a very high level of abstraction leaving space for all sorts
of reconfiguration to happen in the lower layers such as on-demand machine
allocation.

Chapter 1 goes deeper into the motivations that brought to the definition
of this research proposal, Chapter 2 presents the state of the art that was taken
as reference for the three different fields involved which are: Agent-Oriented
programming, Visual Programming and Web of Things.

In Chapters 3, 4 and 5 the design and development process is described
highlighting the requirements envisioned for the system and how they were

vii

viii INTRODUZIONE

technically achieved to produce a working prototype.
Finally, Chapter 6 describes the evaluation process that consisted in testing

the implemented prototype with a user study to gain qualitative feedback that
can drive future iterations of the solution.

Chapter 1

Context, Motivations and
Research Proposal

This project was born from the collaboration of the PSLab 1 of the Uni-
versity of Bologna and the Interaction and Communication-based Systems 2

research group at the University of St. Gallen, Switzerland.

Since both groups shared interest in similar topics concerning the aug-
mentation of smart environments through the use of software agents, while at
the same time trying to keep “humans in the loop”, the idea was to find an
interesting research proposal that was coherent with this themes.

Coincidentally, the St. Gallen group was working on a European project
named IntellIoT3 that funded research projects on the development of sys-
tems that could make the existing IoT technologies, more intelligent and au-
tonomous. The project ended up shaping the requirements of the thesis work
itself and creating the opportunity for an internship to develop the thesis work
abroad.

In the following sections first, the general objectives of the IntellIoT project
are presented to provide the context in which the thesis was conceived. Sec-
ondly, motivations for the increasing need and interest in end-user program-
ming for domain-specific applications are shown, to further validate the pro-
posed work. In the end, the general proposal for the thesis is described, this
then shaped the requirements that are listed in Chapter 3.

1https://apice.unibo.it/xwiki/bin/view/PSLab/
2https://ics.unisg.ch/chair-interactions-mayer/
3https://intelliot.eu/

1

https://apice.unibo.it/xwiki/bin/view/PSLab/
https://ics.unisg.ch/chair-interactions-mayer/
https://intelliot.eu/

2
CHAPTER 1. CONTEXT, MOTIVATIONS AND RESEARCH

PROPOSAL

1.1 The IntellIoT Project

IntellIoT defines itself as a Pan-European project focusing on developing
integrated, distributed, human-centred and trustworthy IoT frameworks, ap-
plicable to agriculture, healthcare and manufacturing.

With its thirteen partners scattered around nine countries, the project ex-
plores the applicability of new enabling technologies such as 5G connectivity,
distributed technology, Augmented Reality and AI to real-world fields in com-
bination with IoT sensor networks.

In the context of this broad project, the University of St. Gallen is focusing
on managing Web of Things enabled intelligent robots using multi-agent sys-
tems. The work of this thesis is exploring how humans can define the behaviour
of such systems effectively.

1.1.1 Key Mission

The overall goal of the IntellIoT project is to develop a reference architec-
ture and framework for IoT semi-autonomous applications and environments
that present evolving intelligence through the interaction with human experts
and a reference communication and computation framework that adapts to
changes in the environment and has built-in security, privacy and trust[18].

Three pillars emerge from this mission, that are the central research topics
on which the project revolves around:

1. Collaborative IoT: multiple semi-autonomous entities will have to co-
operate in order to reach the system goal. These entities will be aware
of themselves and their surroundings through sensing technologies and
will have a different amount of knowledge about the task they need to
perform. Since providing complete knowledge is almost impossible in an
open evolving scenario, they will also need to improve their knowledge
through Machine Learning capabilities either by discovering new details
through the environment or by interacting with the other entities within
a secure communication network.

2. Human-in-the-Loop: the human is considered a source of invaluable
experience and knowledge. With this in mind, the idea is to keep the
human in a central role. Instead of removing him/her from the system,
the plan is to use the human experience to overcome unknown situations
when the system does not have the knowledge (yet) to solve a problem
and have the system learn from it to overcome future similar situations.
The human is still at the centre of the system, and to do that he/she
needs new efficient tools to interact with the machines.

CHAPTER 1. CONTEXT, MOTIVATIONS AND RESEARCH
PROPOSAL 3

Figure 1.1: The three pillars of IntellIoT

3. Trustworthiness: Security, Privacy and Trust are considered essentials
for the broader acceptance of IoT systems and applications. To realize
reliable systems trust must be ensured from the autonomous components
as well as it is nowadays required from the human members of an orga-
nization. As well as applying all the known techniques to ensure the
treatment of data safely, the system needs to be monitored and trans-
parent in its decision process.

These pillars are not only objectives of the system, but also help shape
the requirements of the different use cases. In each use case, the domain is
exploited to create a unique scenario to work on each of these pillars indepen-
dently exception made for the third one (Trustworthiness) that by nature has
to be pervasive in every solution that the project will deliver.

1.1.2 Use Cases

The project targets three selected use cases coming from real-world appli-
cations of current IoT technologies. These areas have been selected because

4
CHAPTER 1. CONTEXT, MOTIVATIONS AND RESEARCH

PROPOSAL

they feature heterogeneous IoT enabling technologies, device types, network
deployments and performance requirements.

The three chosen use cases are:

1. Agriculture: in the agriculture domain the concept of “smart farm-
ing” is already a thing, with careful detection of individual plant needs
through sensing technologies and deployment of specialized treatments
instead of investing large quantities of substances uniformly over large
fields. The next step that IntellIoT wants to address is towards automat-
ing processes by employing self-driving tractors equipped with sensors
and able to perform tasks that are usually tiring for human operators
and thus potentially unsafe. Of course, farmers will be away from the
field but still important to the management of the farm, being able to
remote control the tractor in case of unknown obstacles and in defining
the overall goals of the farming system leveraging their knowledge and
experience.

2. Healthcare: in the field of healthcare IntellIoT is interested in dealing
with remote patient monitoring: an interesting application of wearable
IoT devices that could help relieve the social (and financial) burden of
chronic diseases. The idea is to improve treatment by enabling constant
monitoring of the patient health state, but letting the patient carry on
with regular life activities. With a system like that in place, the AI-
powered monitoring system will still rely on human experts to assess
and judge potential health threats and understand unknown situations
or errors. The critical point of the system is to be able to filter efficiently
just the right amount of data to be sent to the professionals so that they
can gain proper insights without being overwhelmed.

3. Manufacturing: Industry 4.0 aims at the complete digitalization of
manufacturing processes governed by IoT technology and supported by
as little human intervention as needed in the whole cycle from a cus-
tomer order submission to the realization of a piece and its delivery.
Following these requirements, this use case aims to enable individualized
customization and realization of a simple product. This goes towards
an idea of manufacturing-as-a-service using shared machines on a single
shop floor. This requires the system, once data from the customer is
received, to identify needed machines, plan a path for the piece moved
by self-driving vehicles around the plant and instruct machines with the
required steps to build the product. The whole process can be queued
for approval from a human supervisor to teach the AI and improve the
solutions as well as ensure safety to operate in the environment.

CHAPTER 1. CONTEXT, MOTIVATIONS AND RESEARCH
PROPOSAL 5

The use cases help ground the project down in specific situations that can
be immediately perceived as beneficial for future IoT systems. They also pro-
vide easily understandable domains that can be explored and used for testing
during the development phase of the project so that the proposed solutions
are always challenged with specific domain problems.

For this thesis work, some tests were carried out in a simulated farming sce-
nario deliberately inspired by the agriculture use case of the IntellIoT project.

1.2 Domain-Expert Programming

As seen in the mission of the IntellIoT project, keeping humans in the
fast-paced machine-controlled world is a very important challenge for the days
ahead. The expertise of well-trained workers and the ability of people to adapt
quickly and develop alternatives is not (at least for now) matched by Artificial
Intelligence and is a valuable resource that can’t be neglected in the process
of digitalization.

Also, one of the oldest known problems when dealing with software devel-
opment is the gap between the programmer’s comprehension of the domain and
the domain itself. This often causes misunderstanding and errors when creat-
ing software solutions for real-world problems and research is always looking
for tools and processes to try to make this gap thinner.

This is usually accomplished either by training programmers and analysts
to extract the domain knowledge from the experts and reflect it into the code
(like with Domain-Driven Design techniques) or by directly empowering the
user with tools that require the expert himself to “code” or configure some
parts in a complex system often making use of domain-specific languages or
even visual tools that are considered more user friendly.

We envision a kind of end-user programming that may be defined as domain
expert programming where the programmer is not necessarily just any final
customer of a software solution, but a person with deep knowledge of the
domain in which the software may be useful.

In this project context, domain experts are further identified as people
whose experience in the field of modelling business processes using smart ma-
chines is extremely valuable, but whose lack of programming training is limit-
ing the capability to configure such systems and schedule such configurations
for execution.

This creates the need for a tool that could help these people to build a
solution from scratch. Low-code (or even no-code) environments are powerful
tools designed to enable people without a proper computer science background
to program parts of a system. These environments often offer an intuitive vi-

6
CHAPTER 1. CONTEXT, MOTIVATIONS AND RESEARCH

PROPOSAL

sual way of assembling programs to relieve an inexperienced user from the
challenges given by syntax, scope and other well known technical details asso-
ciated with almost every programming language.

To this purpose, experimenting with new tools that can provide a graphic
interface with both close to domain abstractions and high programming flexi-
bility is a key point to keep the human expertise and at the same time increase
the level of autonomy and intelligence of complex systems.

1.3 Proposing Visual Agent Programming

The proposal for this thesis merged the needs of the IntellIoT project with
the ever-increasing interest in end-user programming for industrial domains
and the research interests of both the involved groups in agent-managed sys-
tems of smart things.

The resulting idea is the design and implementation of an agent-oriented
visual language and a supporting development environment to agentify the
control of smart things.

While both visual tools and multi-agent systems have been used in the
context of IoT applications (as seen in [27] or [11]), the idea of approach-
ing agent-oriented programming with a visual abstraction is instead, to our
knowledge, a novelty.

In this context, the WoT is kept as a domain constraint while the ex-
ploration of how to port agent programming to a visual level is conducted.
The core thesis work will be based on studying the existing agent program-
ming tools and developing a credible mapping that could leverage both the
expressiveness of agent-oriented languages and the ease of use of graphic pro-
gramming interfaces.

In particular, the chosen agent architecture will be the Belief Desire In-
tention (BDI) model, because originally intended to lower the gap between
human practical reasoning and code. In this sense, by designing an effective
visual tool, we expect to be able to use it going forward to study whether the
original claim is valid and people actually think as agents do.

A qualitative study was also planned to gain feedback for the developed
interface and provide the first insights in this direction by evaluating how non-
technical users responded to solving problems with the visual agent-oriented
programming language after little to no training about either “classical” pro-
gramming or the adopted agent model.

Before continuing with the technical description of the implemented solu-
tion, the next chapter introduces the state of the art of the main cited enabling
technologies used in the project.

Chapter 2

State of the Art

To better understand this thesis project, an excursus of existing literature
about the three main axes around which the project is developed is presented.

The main contribution of the thesis project itself is indeed the seamless
integration of these three orthogonal research fields that are: Agent-Oriented
Programming, Visual Programming and Web of Things technologies.

The following sections aim at providing a basic understanding of the re-
search done so far on these topics and what is considered the state of the art
of each field as well as presenting the technologies used to develop the thesis
project itself.

2.1 Agent-Oriented Programming

Software agents have their roots in the Distributed AI community and can
be traced back as far as the 1970s with the first definition of the Actor model.
The definition of an Actor was that of a computational agent which has a mail
address and a behaviour. Actors communicate by message-passing and carry
out their actions concurrently[17].

In the first years of their conceptualization research focused on the defi-
nition of agent models and architectures and on how agents could cooperate
to solve problems. The term quickly became so broad that it’s hard to define
properly what an agent is since many categories and applications exist and the
word ‘agent’ is really an umbrella term for a heterogeneous body of research
and development[24]. This can lead to confusion about what to expect from
an agent and how to classify a software system as agent-based or not.

Since agents became such an important concept in the community, the idea
of having agent-oriented programming as a new paradigm emerged. The name
is derived from Object-Oriented programming since the core idea of agent pro-
gramming is that it’s a specialization of the first model in which instead of

7

8 CHAPTER 2. STATE OF THE ART

having objects defined by their properties interacting through method invoca-
tion, we have agents defined by their mental state interacting through semantic
message exchange[30].

For the scope of this thesis though, a clear definition of agents is needed.
In the following sections, the notion of agent adopted in this thesis is presented
alongside the reference architectural models used to realize both agents and
multi-agent systems. Lastly, the supporting technologies used to implement
the software solution are shown.

2.1.1 What is an Agent

To give a definition in just one sentence of what is now generally accepted
to be considered an agent, this quote by Wooldridge[37] can be used:

An agent is a computer system that is situated in some environ-
ment, and that is capable of autonomous action in this envi-
ronment in order to meet its design objectives

This (apparently) simple definition encapsulates all the basic aspects that
need to be taken into consideration when thinking about agents. First of all,
an agent is situated in an environment, which means that a notion of such
environment must be defined for the agent to live within it and observe it to
then be able to act upon it autonomously. Finally, an agent must act to meet
its design objective which means that agents are created with a specific goal
in mind to be achieved and their autonomy is merely intended as a means to
reach that objective.

To further refine this definition it’s important to introduce the notions of
weak and strong agency as well since they determine the properties that are
expected to be satisfied by gent systems.

Weak Agency is recognized to any software system that exhibits the fol-
lowing properties:

• Autonomy which means that agents can operate without the need of di-
rect human intervention and have control over their actions and internal
state;

• Social ability which means that agents are capable of interacting with
other agents (and possibly humans) with some form of communication
language;

• Reactivity which means that agents perceive their environment, and
respond to the events that arise from that environment;

CHAPTER 2. STATE OF THE ART 9

• Pro-activeness which means that agents do not only react to the exter-
nal stimuli coming from the environment but can exhibit goal-directed
behaviour and take the initiative.

Strong Agency is recognized to systems in which “weak agents”, that have
all the properties listed above, are conceptualized or even implemented with
concepts that are usually applied to humans, for example, is often the case to
use notions of beliefs, knowledge, intentions etc.[38]

For the scope of this thesis when the agent term is used it is referring
to an agent under the strong agency notion. In particular, the thesis work
is revolving around agents designed with the Belief Desire Intention model,
discussed below.

2.1.2 The BDI Agent Model

The Belief Desire Intention model is an agent architectural model based on
human practical reasoning. Its definition was motivated by the need of having
a resource-bounded intelligent agent capable of both means-end planning and
weighting of competing alternatives[7].

To achieve the desired properties, the agent architecture was inspired by
how human behaves, in particular, to reduce the time spent on deliberation,
the model introduced the idea of intentions, alongside beliefs and desires which
were already commonly used, to indicate that, once chosen, an agent should
persist with a plan to some degree instead of continuously reconsider all the
possible routes, just like people do.

First of all, for most, it might sound strange to give to a computer sys-
tem the definition of a mental state, but if we qualify the entities composing
such mental state it becomes clear how this helps in modelling an agent-based
system:

• Beliefs are defined as information that the agent has about the environ-
ment. This information, since it’s internal to the agent, can be outdated
or inaccurate but the agent believes it’s true. They are not so dissimilar
from variables holding data in any other computer program;

• Desires are all the state of affairs that the agent might want to accom-
plish. This does not imply that the agent acts upon a desire, they just
potentially influence the deliberation process. These are the options the
agent can choose to pursue;

10 CHAPTER 2. STATE OF THE ART

• Intentions are the state of affairs that the agent has decided to work
towards. From all the possibilities that the agent has considered either
them coming from the outside or his internal desires, the agent chooses to
commit to a specific intention. Note that this process can be recursive,
every time narrowing down the options available for the agent that is
following a specific intention[6].

The powerful idea behind using these concepts to model computation of
autonomous entities is that they are both very high-level and easily under-
standable since used by people in everyday life to reason about other people’s
behaviour (e.g. we can say that a person buying a ticket intend to take the
train and vice versa).

To then traduce these conceptual entities in a computational model, it’s
possible to envision a control-loop for the agent that can keep a rational balance
between beliefs, goals, actions and intentions[12]. The loop sequence can be
summarized as:

1. Observe the environment to perceive changes;

2. Update the set of beliefs and determine the current desires based on
beliefs and intentions;

3. Choose among the desires which ones to pursue that become intentions

4. Generate a plan to achieve the intentions.

(a) Execute a step of the plan

(b) Observe the environment to perceive changes

(c) Update the set of beliefs and determine the current desires based
on beliefs and intentions;

(d) Check if it’s worth reconsidering its current intention to deliberate
again

(e) Check if the current plan is still sound to achieve the intention or
if it needs to find another one

(f) Repeat the inner cycle if the plan is still ok

5. Repeat the outer cycle if the plan is successful or if the intention is now
impossible to reach for some reason.

Of course, the crucial elements are the continuous observation of the exter-
nal environment and the capacity of deciding whether it’s worth reconsidering
an intention or keeping following it. This kind of control structure allows the

CHAPTER 2. STATE OF THE ART 11

agent to be sufficiently complex to act “freely” while keeping a commitment
to an intention and not getting lost in continuous deliberation.

One of the most famous implementations of the BDI model is the Proce-
dural Reasoning (PRS) System[13] which is based on the fact that the agent
doesn’t need to plan since it’s equipped with a plan library manually con-
structed by developers. This simplifies of course the whole process, reducing
the time needed by the agent to plan since it’s not necessary to compute a new
one but just choose whether an applicable one is present in its library.

Plans in PRS are defined by a goal a context and body. The goal is needed
to define what the plan accomplishes, the context determines when a plan is
applicable whereas the body is a sequence of actions. The interesting approach
of PRS is that plan bodies can have new goals as actions, this implements the
behaviour of deferring a decision at the last moment since when a new goal is
encountered during the execution of a plan the agent stacks a new intention on
top of the previous one and works to accomplish it as usual before resuming
the rest of the plan (or concurrently depending on the semantic of the goal
itself).

When we speak of plans in this thesis we refer to this model since the PRS
implementation of the Belief Desire Intention model is the one adopted for the
implementation of the enabling technology to program agents that was used
for this project: Jason[5].

2.1.3 Multi-Agent Systems and the A&A Metamodel

In agent-related literature, the notion of a multi-agent system (MAS) is
pervasive since, although systems composed by a single agent are possible, it
is often more useful and interesting to build systems where more than one
agent work together (or competitively) in the same environment.

As it can be seen in Figure 2.1 the structure of a multi-agent system is
composed of the environment and the agents that exist within it. Agents
have a sphere of influence on the environment which means that they either
observe and/or have control over it. Of course, these portions might overlap
which means that the effect of one agent’s actions upon the environment can
influence the behaviour of another agent.

Agents in a MAS are often collaborating to the achievement of a high-
level goal, this creates the need of defining some organizational relationships
that define roles among agents that regulates how they can interact with each
other. In a multi-agent system, then, three dimensions are intertwined: the
agent dimension, the organization dimension and the environment dimension.

Regarding the latter, we defined agents as situated in an environment and
we’ve seen how this environment is fundamental in the BDI architecture to

12 CHAPTER 2. STATE OF THE ART

Agent

Interactions

Organizational
relationships

Environment

Sphere of
influence

Figure 2.1: The visualization of a multi-agent system showing the relationships
among agents and with the environment[19]

let the agent acquire new perceptions and change its beliefs. It’s easy to
understand that how the environment is shaped has an important influence on
the whole agent system.

One of the proposals for describing and defining environments is the Agent
& Artifacts metamodel. This conceptual framework introduced the idea of hav-
ing the necessity to program the environment for effective multi-agent software
engineering with the ultimate goal of providing agents with a proper working
environment where they could find, create and share appropriate tools that
could help them achieve their goals in the form of artifacts.

The notion of Artifact is an abstraction meant to represent an entity be-
longing to the environment, thus external from the point of view of an agent.
Such entities can be created, shared, used and disposed of by agents to carry
out some tasks. Artifacts types should be defined by the MAS engineer en-
capsulating a specific function and purpose and they can also be placed in the
environment to design its initial state[28]. Artifacts should be used to model
only passive entities, that become useful only through the interaction with
agents.

To provide a notion of locality artifacts can be organized into workspaces
that define the scope of visibility of an artifact for the agents in the MAS. To
get access to an artifact agents must join the appropriate workspace in which
artifacts are shared.

CHAPTER 2. STATE OF THE ART 13

The artifact model exposes an interface made of an observable state and
operations and events. This mimics the way humans interact with their tools
and, in the same way, agents can inspect the state of an artifact (e.g. watch
how much time is left on a timer), invoke operations on it (e.g. activate the
timer) or react to changes notified by the artifact itself (e.g. listen to the ring
signalling the end of the timer).

A framework to build MAS environments named CArtAgO was developed
implementing the Agent & Artifacts metamodel to be used with different kinds
of cognitive agents.

2.1.4 The JaCaMo Platform

When it comes to tools to engineer and implement multi-agent systems
the most notable is the so-called JaCaMo platform which was designed to
incorporate in a coherent solution the three orthogonal dimensions typically
present in MAS shown in Figure 2.1.

To achieve so the JaCaMo platform fuses together three technologies from
which its name originate, namely:

• Jason as the BDI agent programming language to code autonomous
intelligent agents for the multi-agent system;

• CArtAgO as the framework based on the A&A metamodel to define
the environment in which agent will be placed;

• Moise as the organizational specification model to manage agent orga-
nizations and roles within the MAS[16].

The JaCaMo platform managed to achieve its goal of proving that there
is a benefit of building a multi-agent system taking into consideration these
three fundamental dimensions and having them fully integrated into a single
tool[4].

The JaCaMo platform was chosen as the enabling tool supporting the exe-
cution of the agents built with the visual language developed. For this reason,
as explained in further details in section 4.1 the visual language is based on
Jason also due to its seamless integration with the execution platform.

2.2 Visual Programming and End-User pro-

gramming

Visual Programming is defined as the action of programming using more
than one dimension to convey semantics[9]. Traditional text-based program-

14 CHAPTER 2. STATE OF THE ART

ming is considered mono-dimensional since, although visually organized on a
2D screen, code can be seen as a single string of characters.

In the field of Visual Programming two main concepts are identified:

• Visual Programming Languages (VPL) are programming languages
designed in a way that leverages the multi-dimension space to create new
syntactic expressions visually;

• Visual Programming Environments are tools that use visual expres-
sions to generate code that may have a different syntax from the code
used to edit it. This commonly means creating visual interfaces on top
of traditional text-based languages to simplify the syntax and leverage
the power of a VPL.

Historically, Visual Programming started out trying to change the entire
software development process but was heavily criticized since the proposed
tools were interesting for “toy” software projects and failed to generalize to
more complex scenarios. This is partially due to a methodological problem
that makes it hard to effectively test newly developed tools because of [35].

The scope of Visual Programming tools was then changed to either focus
on parts of the development process (e.g. building GUIs with Visual Basic), or
on specific domains, creating some kinds of Visual Domain-Specific Languages
that since working with restricted domain could leverage the visual abstraction
to a different level and gain more from the positive impact of it.

In general, the main goals of Visual Programming are:

1. to make programming more accessible to some particular audience;

2. to improve the correctness with which people perform programming
tasks,

3. to improve the speed with which people perform programming tasks.

It’s then intuitive to see how and why Visual Programming has been often
paired with the idea of end-user programming, specifically in the connotation
of visual domain-specific applications.

This field is extremely relevant if we think about the fact that most software
(in terms of quantity) is actually written by people with expertise in different
domains than computer programming but who might need to support their
activities with computers, rather than by professionals.

End-user programming can be defined by the goal that the programmer has
when writing software, often this goal is simply to solve a problem on the fly
with a computer and maybe forget about it later, thus ignoring all the features
typical for industrial software engineering such as maintenance or testing[20].

CHAPTER 2. STATE OF THE ART 15

In different definitions, the same term is also used to indicate program-
ming done by everyday people that are not programmers in their regular work
life[22]. In this thesis, the term is used with this meaning even if domain-
experts programming might be the best-suited term to indicate the activity of
automating a task through programming done by professionals in a specific
field.

2.2.1 Block-based Visual Programming

One of the most successful examples of Visual Programming Environments
applied to end-user (or novice users) is block-based visual programming.

The core idea is to present the user with a primitives-as-puzzle- pieces
metaphor as the main visual abstraction to convey visual cues to users in-
dicating where and how commands may be used. Writing a block program
consists of dragging-and-dropping instructions together and writing small por-
tions of text for values, names etc. The possibility of syntax error is prevented
since the programming environments don’t allow to snap together blocks that
shouldn’t be connected[32].

Block-based languages support the user not only removing syntax problems
but also making available all the possible instructions in easily browseable block
palettes so that they don’t need to know the language in advance. Blocks are
also often differentiated by colour, to convey groups of similar functions and
the possibility of including text in the block helps describe the function that
the block encapsulates better than classical programming languages (e.g. a
variable increment which might be written as x=x+1 in Java can be expressed
as a block with the wording increment x by 1).

The idea of block-based visual programming is not new, although it gained
increasing popularity in the last few years with projects like Scratch[21] that
pushed block programming as a learning tool for children to introduce them
to the world of programming and algorithmic reasoning and AppInventor[25]
that brought many smartphone users close to the world of mobile application
development by giving them a fast integrated tool to design both the user
interface and the behaviour in an online editor.

Since this rise in popularity, studies have been conducted to assess what
makes this approach so successful[33]. When directly comparing text-based
languages with block environments the majority of users answered that blocks
were easier to use thanks to the visual cues, and the controlled environment
that prevents the frustration of mistakes and felt more natural and under-
standable as well (“Java is not in English it’s in Java language, and the blocks
are in English, it’s easier to understand.”).

This of course opens up the question of whether it’s interesting to use such

16 CHAPTER 2. STATE OF THE ART

languages not only as a learning tool but as proper programming environments
for end-users. That’s why this thesis will focus on block languages as well as
other technical motivations discussed in Section 4.1.

2.3 Web of Things

First introduced in 2007[15] the Web of Things is now a set of W3C stan-
dards to improve the interoperability and usability of the Internet of Things
(IoT). The idea originated trying to reduce the “silo effect” coming from the
industrial development of IoT technologies. The proposal is to apply the ar-
chitectural principles and standardized technologies of the World Wide Web
as a way to reproduce the fully connected network experience that we have
with the regular Internet with the Internet of Things as well.

This can open the door to interesting scenarios for both human and ma-
chine interaction with smart things and harness the full potential of complex
distributed sensor networks.

2.3.1 Origins and Motivations

To better understand what the Web of Things is and what is the current
point of development of the project it’s important to give a definition of what
it’s considered to be a Smart Thing and what is the Internet of Things and
why it’s important to have connected networks of devices.

As it is described in what can be considered one of the Internet of Things
manifesto[2] this idea was born as the miniaturization of computers made it
possible to embed devices in common objects. The core idea is to let computers
track, produce and reason about data in a typically human-centred Internet
since machines do not suffer the limitation in observation attention, time and
fatigue that people have. This meant producing data with much more quality
and in much more quantity.

The idea of a smart thing was not novel and for a long time theorized in
the ubiquitous computing field[34] that envisioned a world where computation
would “disappear” in the environment.

To define a Smart Thing we can think of any regular object and give it the
ability to communicate about its current state, and possibly its capabilities,
giving access to remote control as well.

First, it was possible, using passive RFID tags, to append a piece of digital
information to any object to be able to track it, then the ability to embed
small sensors and processing units within basically anything became a reality.
Giving each of these devices an IP address and the ability to be on its own on
the network was the final step towards the definition of a new Internet[14].

CHAPTER 2. STATE OF THE ART 17

This resulted in an explosion of different technological stacks composed
of communication protocols, architectures, and creating a panorama of not
just one Internet of Things but several silos of connected devices, missing the
original point of interoperability.

In this panorama, the Web of Things initiative saw in the historical evo-
lution of the “Internet of Humans” and the World Wide Web the solution to
such problem, creating an application-level standardization based on open and
shared technologies to connect things and realize true physical mashups.

2.3.2 Design Principles

As stated multiple times already the main focus of the Web of Things is true
interoperability among different IoT devices, working on different technological
stacks and produced by different vendors.

This brings several benefits in both the consumer and the industrial domain
thus the W3C is pushing towards the adoption of this standard to allow the
creation of interesting applications on top of the internet-connected sensing
and actuation devices scattered around the world.

One of the main architectural properties that the Web of Things takes from
the Web is the idea of RESTful APIs [36]. By giving Unique Resource Identi-
fiers (URI) to things and their properties they are effectively fully integrated
into the Web and can be treated as any other Web resource. It also inherits
the idea of different representation formats for the same resource, enhancing
interoperability through the classical Content-Type negotiation approach.

Although the RESTful API approach is strong in the WoT community, the
architecture does not impose any architecture and does not force a client or
server implementation of system components.

In general the Web of Things architecture is based around four pillars [39]:

• Flexibility: There are a wide variety of physical device configurations
for WoT implementations. The WoT abstract architecture should be
able to be mapped to and cover all of the variations;

• Compatibility: There are already many existing IoT solutions and on-
going IoT standardization activities in many business fields. The WoT
should provide a bridge between these existing and developing IoT solu-
tions and Web technology based on WoT concepts. The WoT should be
upwards compatible with existing IoT solutions and current standards.

• Scalability: WoT must be able to scale for IoT solutions that incorpo-
rate thousands to millions of devices. These devices may offer the same
capabilities even though they are created by different manufacturers.

18 CHAPTER 2. STATE OF THE ART

• Interoperability: WoT must provide interoperability across device and
cloud manufacturers. It must be possible to take a WoT enabled device
and connect it with a cloud service from different manufacturers out of
the box.

In general, this sums up the philosophy of WoT. The conceptual architec-
ture to implement these principles is based on the definition of Things that
are described with Thing Descriptions in order to provide a machine-readable
manual on how to interact with a device.

2.3.3 The Thing Description Model

The fundamental building-block of the WoT architecture is the Thing De-
scription (TD). Every thing (or any virtual entity representing the aggregation
of things) must be described by a TD that act as a machine-readable manual
for the interaction with the thing itself.

Thing descriptions are based on the notion of interaction affordances. This
term originates in ecological psychology and was first adopted in the Human
Computer Interaction field basing on the definition by Donald Norman:

“Affordance” refers to the perceived and actual properties of the
thing, primarily those fundamental properties that determine just
how the thing could possibly be used.[23]

An affordance in the real world is, for example, the handle of a door, which
is an affordance of the thing door suggesting that it can be opened. Not only,
but, usually, the shape of the handle also suggest how to open it.

Similarly, an interaction affordance of a thing is intended in the hypermedia
fashion of presenting information and control, thus suggesting TD consumers
the possible choices of how to interact with a thing in the form of hyperlinks
that can be followed to navigate the Web of Things.

The Thing Description model defines three types of interaction affordances:

• Property Affordances An Interaction Affordance that exposes the
state of the Thing. This state can then be retrieved (read) and op-
tionally updated (write). Things can also choose to make Properties
observable by pushing the new state after a change;

• Action Affordances An Interaction Affordance that allows invoking a
function of the Thing, which manipulates state (e.g., toggling a lamp on
or off) or triggers a process on the Thing (e.g., dim a lamp over time);

CHAPTER 2. STATE OF THE ART 19

• Event Affordances An Interaction Affordance that describes an event
source, which asynchronously pushes event data to Consumers (e.g., over-
heating alerts).

Affordances are described defining a title, a @type which is usually de-
fined using a JSON Schema and one or more hypermedia forms defining the
operation semantic, the target IRI of the affordance and any additional infor-
mation on how to use the affordance itself[40].

The standard representation of a thing description is in JSON-LD which
is an extension of JSON that supports semantic annotations so that Thing
Descriptions are directly interoperable with the semantic Web and can be
enriched with RDF triples.

An example of a ThingDescription can be seen in Listing 2.1. The show-
cased thing is a smart lamp with a boolean property representing the state
of the lamp and an action that toggles the state and returns the new value.
Even from such a basic example, it’s possible to see how the thing description
model can describe everyday objects and their affordances to external users
navigating the Web of Things.

20 CHAPTER 2. STATE OF THE ART

{

"@context": "https://www.w3.org/2019/wot/td/v1",

"@type": "HueLamp",

"id":

"http://localhost:3000/workspaces/lamp-wars/things/huelamp",

"title": "huelamp",

"base": "http://localhost:3000/affordances/lamp-wars/huelamp/",

"securityDefinitions": {

"nosec_sc": {

"scheme": "nosec"

}

},

"security": [

"nosec_sc"

],

"properties": {

"state": {

"type": "boolean",

"forms": [

{

"href": "state",

"op": [

"readproperty"

],

"contentType": "application/json"

}

],

"readOnly": false,

"writeOnly": false

}

},

"actions": {

"toggle": {

"output": {

"type":"boolean"

},

"forms": [

{

"href": "toggle",

"op": "invokeaction",

"contentType": "application/json"

}

],

"safe": false,

"idempotent": false

}

}

}

Listing 2.1: An example of Thing Description, showing a simple lamp
used in the project.

Chapter 3

Requirements

As stated in chapter 1, the formulated proposal was to first design a user-
friendly tool domain experts could use to program and run an agent system
and then develop a prototype implementation to qualitatively assess the effec-
tiveness of the resulting IDE.

This fitted the IntellIoT mission well so the project and the use cases on
which it’s based were used to ground down the proposed application not just as
a simple visual development environment, but a tool where agents and things
in the real world are integrated seamlessly using the WoT Thing Descriptions
as a way to model a specific domain that experts can understand.

When designing the requirements for the system, some assumptions were
made to better identify the target and constrain the required functionalities.
Some non-functional requirements were identified as well, leading to techno-
logical locks on the components of the system.

3.1 Assumptions and Constraints

The first assumption made when designing the requirements of the system
is that all the required smart things were available through the WoT Thing
Description standard using the JSON-LD 1.1 representation.

From within the tool itself, users won’t be able to edit the descriptions and
organize them, this setup has to be carried out either manually or by another
tool (or a new version of the prototype).

The other strong assumption made was that things were able to commu-
nicate over HTTP. This can often not be the case when dealing with legacy
IoT systems that may require different communication protocols supported by
the WoT standard, but since it was always meant to be a prototype this was
ignored to simplify the implementation.

21

22 CHAPTER 3. REQUIREMENTS

To constrain the complexity, event affordances, present in the Thing De-
scription specification, were also ignored for the time being. This choice limits
the capabilities of agents of observing the thing state asynchronously and force
both the TD designer and the agent programmer to support active polling for
properties.

These choices were made since the thesis scope was less on the best possible
integration between agents and the Web of Things and more on the relationship
between users and agent programming. Stronger integration with the WoT is
delegated to future works.

Regarding users, some assumptions were made to design the system around
a specific target. The programming ability of users was considered to be either
none or very little, but no hard constraints on this were put in place to keep
the system as general as possible.

The hypothesis was instead that users have a strong knowledge of the
domain of course since they are considered to be experts. In this specific
context, that means that they know and understand deeply the things available
in the environment and how to interact with them. If not the designer of the
TDs themselves, since that can require some deeper knowledge of computer
science, they understand at least the concept of properties and actions of a
thing and the input/output flow when interacting with it.

3.2 Non-Functional Requirements

The main non-functional requirement for the system was to be as much
user friendly as possible. This meant having a nice clean interface with a few
easy to understand features for users to not feel overwhelmed by the tool.

Other than that, the system was required to be easily accessible and un-
obtrusive. This was translated in a technological lock of using standard Web
technologies to realize the interface to the system as a Web application since
the execution of the multi-agent system was never meant to run on the user
machine, but on some dedicated server anyway.

Web applications have the benefit of being portable on a set of different
machines and devices, although the application was not required to have a
smartphone version and was designed to be used with wide screens.

The last non-functional requirement was yet another technology lock on
the reference agent-oriented abstraction. BDI agents were chosen primarily
since they should be easier to understand for novices, but also because of the
tools that the research community has built to support the programming and
execution of such agents.

The BDI model has been given support with a programming language

CHAPTER 3. REQUIREMENTS 23

named Jason and a Java-based execution platform, JaCaMo, that mixes pure
agent programming with the Agents and Artifacts metamodel for environment
programming. The integration of the BDI model with the A&A metamodel
is crucial as the use case for this system has the communication with the
environment through the WoT at its core.

Since this was a prototypal implementation there was no expectation on
performances of the system in general.

3.3 Functional Requirements

The very high-level requirements for the tool were identified after the defi-
nition of the core idea was finalized, keeping the application use cases in mind.

The planned system is required to have:

• A visual programming language to develop BDI agents;

• A Web-based application to use the visual language, program agents and
submit them for execution;

• An interface to discover and test the behaviour of available smart things
interacting through Thing Descriptions;

• Seamless integration of agent to thing interaction in the visual language;

• An execution environment to run a desired multi-agent system configu-
ration;

• Dynamic instantiation and removal of agents in an already running sys-
tem;

• Agent to thing interaction support from the execution environment;

• Permanent storage of the agent’s code to allow for future editing and
maintenance of an “agent library”.

It’s clearly understandable from this list how the main focus of the project
is to create a comprehensive tool that, having non-technical users as targets,
can mask most of the complexity concerning the integration with the real world
and the execution of complex multi-agent systems.

Providing this integration seamlessly and naturally is one of the main chal-
lenges in this project scope.

The next chapter will detail how these requirements were translated into
software components and how these components are organized to build the
system that supports all the required functionalities as well as the motivations
behind the design choices.

Chapter 4

Design

In this chapter, the design process of the system is described in detail.

Given that the high-level requirements and objectives identified for the
system were stable and complete, there was no need for a detailed plan of each
different component before starting the implementation.

The whole process was carried out incrementally, building prototypes first
and moving on to design new components when needed. This led to a sys-
tem built organically, with constant refactoring to improve the quality of the
solution and no problems of integration.

A step by step approach was used: starting from the integration of the WoT
into a Web UI, later going towards the definition of the block language and
finally concluding with the execution support of agents built with the block
language.

The integration of the WoT communication from within the agent code was
introduced as the last link, building a simulation environment as well to test
out the features of the whole system without necessarily needing a physical
smart object.

This development process proved successful in adjusting the complexity
and scope of the whole project to fit within the hard time constraint of the
internship while preserving all of the core features required for the project.

Some parts of the system were designed knowing that they might have
needed a full project focused only on them and they were simply supporting
the realization of a prototype. This leaves space for future innovation in those
fields, while proving the point that the combination of these technologies can
bring interesting results.

25

26 CHAPTER 4. DESIGN

4.1 From Agent Code to a Visual Language

The main design challenge in this project was the creation of the visual
language that could support both an easy way to develop agents and a seamless
interface to the WoT affordances to be used within the agent code.

Since this is the core of the whole system, the final product went over
multiple iterations over the lifespan of the project, and will probably continue
to evolve gaining feedback from real users trying out the system.

Although constant change from this part of the system is expected, the
design process was carried out methodically, first deciding on the visual ab-
straction that suited best the use case, then analyzing the reference language
to understand syntax and programming constructs and finally providing a map
focusing on enabling users to compose their agents and hopefully learn about
the model while doing so.

4.1.1 Choosing the Visual Abstraction

There are multiple ways to support the development of a program making
use of a graphic interface. Of course, because different tools highlight different
aspects of the program itself, choosing the right one is a crucial point when
designing a new platform.

When choosing the visual abstraction three factors were taken into consid-
eration:

• Ease of use for novices;

• Coherence with the agent paradigm;

• Development support.

The main classes of visual programming languages applied when novice
users are involved are block-based and flow-based languages.

When considering the two approaches, because of the nature of the agent-
programming model it seemed more natural to go with a block-based approach.
Flow-based languages are usually applied in the modelling of how data must
flow during the execution of the program, but when dealing with agents users
define the program in terms of behaviour more than data. BDI agents deal
with a set of predefined plans to apply in specific situations.

This kind of reactive behaviour can be easily modelled with blocks, having
for each plan a separate “chunk” of blocks triggered by some sort of event.
This has been already proven effective by the notorious MIT App Inventor[25]
project that allows users to develop Android mobile apps using blocks in a
reactive programming fashion.

CHAPTER 4. DESIGN 27

The App Inventor project was originally backed up by Google which is still
supporting a JavaScript library to create, customize and manage blocks on a
canvas. This is a strong base model on top of which lots of custom other block
languages were developed.

The presence of this tool settled down the block abstraction as the best for
this prototypal project since it could help build the language faster relying on
a well known and appreciated template.

Of course, although this is the conclusion reached for this project given the
requirements and the similarities within languages, it might still be relevant to
explore different possibilities as well as try designing a fully customized visual
paradigm from scratch.

4.1.2 Reference Syntax and Constructs

To begin the construction of the visual language, it was necessary to study
and understand the syntax and identify the “building blocks” of the agent-
oriented programming language chosen as a reference.

The language of choice was the BDI agent language Jason, an extended ver-
sion and implementation of the conceptual language AgentSpeak. This refer-
ence was chosen because it’s among the most popular agent-oriented languages
also due to the support given by the Jason interpreter and the integrated Ja-
CaMo platform.

The AgentSpeak language is a BDI agent language based on logic pro-
gramming [26]. This means that, contrary to other previous approaches, the
representation of beliefs and goals is not implemented using classical data
structures, but taking the shape of a first-order logic predicate such as in Pro-
log. This was done as an effort to provide a stronger connection between the
theoretical BDI architecture and its actual implementation and to simplify the
model-checking of agent programs.

The analysis of the constructs available in the language, to be ported as
visual elements, first involved looking at the Jason syntax and grammar shown
in listing 4.1.

An agent is composed by an initialization section where the programmer
can establish the knowledge that the agent has since the beginning of its execu-
tion by defining a set of beliefs, a set of goals to pursue and a set of deductive
rules that can be used to simplify the checking of logic conditions. After the
initialization, the programmer can define a plan library, where all the proce-
dural knowledge of the agent is stored. This defines what the agent can do
and eventually how to handle failure.

The difference between the two sections though, is that goals and beliefs
in the initialization can not have variables since they would not be grounded.

28 CHAPTER 4. DESIGN

agent → (init_bels | init_goals)* plans

init_bels → beliefs rules

beliefs → (literal ".")*

rules → (literal ":-" log_expr ".")*

init_goals → ("!" literal ".")*

plans → (plan)*

plan → ["@" atomic_formula] triggering_event [":" context] [

"<-" body] "."

triggering_event → ("+" | "-") ["!" | "?"] literal

literal → ["~"] atomic_formula

context → log_expr | "true"

log_expr → simple_log_expr

| "not" log_expr

| log_expr "&" log_expr

| log_expr "|" log_expr

| "(" log_expr ")"

simple_log_expr → (literal | rel_expr | <VAR>)

body → body_formula (";" body_forumula)*

| "true"

body_formula → ("!" | "?" | "+" | "-" | "-+") literal

| atomic_formula

| <VAR>

| rel_expr

atomic_formula → (<ATOM> | <VAR>) ["(" list_of_terms ")"] [

"[" list_of_terms "]"]

list_of_terms → term ("," term)*

term → literal

| list

| arithm_expr

| <VAR>

| <STRING>

list → "[" [term ("," term)* ["|" (list | <VAR>)]] "]"

rel_expr → rel_term ("<"|"<="|">"|">="|"=="|"\\=="|"=") rel_term

rel_term → (literal|arithm_expr)

arithm_expr → arithm_term [("+" | "-") arithm_expr]

arithm_term → arithm_factor [("*" | "/" | "div" | "mod")

arithm_term]

arithm_factor → arithm_simple ["**" arithm_factor]

arithm_simple → <NUMBER>

| <VAR>

| "-" arithm_simple

| "(" arithm_expr ")"

Listing 4.1: Grammar of Jason, as reported in [5]

CHAPTER 4. DESIGN 29

Notation Triggering event type

+ Belief addition
- Belief deletion
+! Achievement-goal addition
-! Achievement-goal deletion
+? Test-goal addition
-? Test-goal deletion

Table 4.1: Types of triggering events and the corresponding notation

From a syntactical point of view beliefs and goals are represented as logic
predicates (literal) that can have zero or more terms. A term can be either:

• an <ATOM> which is any lowercase string with no spaces;

• a <STRING> which is a string surrounded by quotes;

• a <NUMBER> which is any digit and floating-point number;

• a <VARIABLE> which is a string starting with an uppercase letter and no
spaces;

• or they can even be lists, arithmetic formulas or an atomic formula that
allow a higher level of composition.

Plans are defined by their triggering event an optional context and the
plan body.

The triggering event is a literal preceded by a combination of symbols that
can express one of the six possible events in table 4.1 that can be used to
decide when a plan should be considered relevant.

A plan context is an optional logic expression whose runtime evaluation
can determine whether a plan is applicable or not in a given time. Again, a
logic expression can have standard boolean conditions mixed with predicates
that check against the agent’s belief-base and can ground variables.

Finally, plan bodies are a sequence of instruction among expressions (e.g.
to assign a variable or do some math), addition/removal of beliefs and goals
that can trigger the execution of other plans and also invocation of actions
both internal or of an artifact. Invocation of actions shares the same syntax
as predicates.

30 CHAPTER 4. DESIGN

4.1.3 Mapping Principles

Once the main concepts were extrapolated from both a syntactical and
semantic perspective, the design process involved choosing a way to map each
construct with a specific block.

The approach followed a few core design principles that guided how to
develop the block language. These guiding principles can be summarized as:

• Single Responsibility: each block should map only one concept of the
language;

• Composition: complements the single responsibility principle by trying
to avoid creating complex blocks that merge multiple functions instead
each simple block should be used in composition with other blocks to
create valid constructs;

• Convey Semantics: blocks should be designed to let the user under-
stand easily what makes them unique and how they can be combined
with other blocks;

• Avoid Block Explosion: when blocks with similar meanings can be
grouped together or reduced to the same block, sacrifice the single re-
sponsibility to avoid a huge number of different blocks that would be
confusing.

The overall goal was to make a language that was simple enough for novice
users to be understood intuitively, but also not limiting for more experienced
programmers. Keeping the right balance was definitely a challenge, but the
guiding principles helped with that when choices needed to be made on how
to represent a specific concept.

To simplify the implementation, though, some advanced features of the lan-
guage were left out namely lists and annotations. This choice was made to not
overload the block language with these features for this first implementation,
they could always be added in future by extending the project. Higher-order
variables are also limited since they require a much deeper understanding of
the language to be used effectively.

4.1.4 Core Blocks

The block language design process culminated in actually defining all the
blocks needed to construct an agent program. As stated before blocks followed
an iterative design process to be more polished and understandable, but that
mainly concerned the UI side (displayed text and colours) more than the actual

CHAPTER 4. DESIGN 31

structure since the methodical mapping process starting from the grammar and
following the listed principles brought immediately to a solid base start.

To better understand the outcome of the whole process and ground the
considerations done so far, in this subsection some of the main building blocks
are shown and explained.

As stated before, the main thing noticeable when looking at an agent pro-
gram is the separation between the initialization of the agent’s mental state
and the actual plan library, so these categories were used as the main groups
for blocks as well to make the distinction clear for users as well.

Initialization blocks The initialization part of the agent was wrapped in a
block acting as a root. This was modelled as if it was a special plan executing
every time the agent is started to use the same semantics as the plan library
and also to not leave any “dangling” isolated blocks that could cause confusion
or get lost in the canvas space.

Colours were used to make initialization blocks feel different from plan
blocks and let people understand that they could only stack together.

As in Jason, users can initialize agents by adding beliefs which to let people
familiarize themselves with the concept are called notes as if the agent is
writing down post-its containing all the information he needs to remember to
convey the behaviour and life cycle of a belief.

Users can also tell their agents to achieve a goal. Or define a logic rule that
can be later used to simplify the code (the agent knows is true when).

Goals and beliefs, since sharing the same syntax, are represented with the
same block that has the syntax of a predicate and can accept only grounded
terms as arguments.

An example of an agent initialization block can be seen in Figure 4.1a.

Plan blocks Plans were modelled with a root block that served as a con-
tainer for the plan triggering event, the context and the actual plan body.
Each plan can easily be identified by an agglomerate of blocks once again to
keep the workspace as clean as possible. One thing that was noticed, but not
addressed, is that plans rely on the order of definition when matching the same
triggering event so the user should pay attention to where the plans are placed
in the visual interface (but an automatic ordering system could definitely be
implemented and help the overall clarity).

Again colours were used to emphasize which blocks could be put together,
and they are purposefully quite different from initialization blocks.

Triggering events were modelled coupling addition and deletion of the same
concept as a selectable option of the same block to limit the number of blocks.

32 CHAPTER 4. DESIGN

(a) Initialization blocks

(b) Plan blocks

Figure 4.1: Portions of an agent created with the visual language.

Different types of goals and beliefs triggers were still kept separated since
semantically different but they do share the same block shape and colour.

Contexts were modelled as expressions using classic logic operators. They
can be combined to be as long as needed mixing predicates with boolean
expressions. To avoid leaving an empty context since it is an optional part in
the definition of a plan, a special always block was created so the user could
check if there are blank connections left to consider their agent complete.

Blocks similar to the ones used to represent beliefs and goals are used with
a different colour to symbolize the fact that they can accept variables. They
share the same shape since they share the same syntax but have a different
meaning and can be used in different contexts. Instead of using the same blocks
to represent actions, a few relevant actions are directly mapped to specific
blocks in order to enforce basic typing and guide the user when choosing to
insert them in the code.

Interacting with things is considered an agent action, more on that in the
next section.

CHAPTER 4. DESIGN 33

4.1.5 Integration with the WoT

Of course, part of the design process was dedicated to understanding how
to make agents interact with smart things and especially how to fit this natu-
rally within the visual language. To focus as much as possible on the natural
integration of concepts, blocks were designed first and later the actual imple-
mentation of the execution support was done adapting to the design.

This lead to a very clear design that hides all the unnecessary technical
concerns from the eyes of the final user, to which interacting with a Web
Thing is not so different from any other agent’s action. Blocks were designed
by keeping as reference the Thing Description model, mapping interaction
affordances into simple operations.

Of course, blocks needed to present a grade of flexibility since, in order for
the final solution to be effective, they needed to be automatically generated
from the TD itself. As said before, only property and action affordances were
considered for this project scope. Of course, since they represent semantically
different operations they were modelled as different blocks.

An important difference between these different kinds of affordances is that
actions can have some form of input whereas property must always have out-
put. This can be further defined by providing the JSON Schema description
of the expected object to be sent or received through the affordance API.
JSON Schemas are considered optional in the Thing Description model, but
it’s needed for the correct use of the tool so that the automatic generation
of blocks can show what are the expected values to be used when interacting
with a thing.

This posed the need for blocks to represent and manipulate JSON objects.
Again, following the same mapping principles described above, the choice was
to split the actual affordance blocks from the JSON manipulation since they
represent different functions of the language although usually coupled.

The actual implementation of agent-to-thing interactions required some
work at the infrastructure level, using the tools provided by Jason and JaCaMo
to extend agent capabilities. How this was concretely achieved is described in
the next chapter, the main point from a design perspective is that at the user
level no details about the underlying technicalities should be shown.

4.2 Identifying Components and Architecture

During the design process, it was necessary to identify all the software
components needed to realize the requirements for the system.

This was done trying to understand and separate the responsibilities, to
maintain a clean, and expandable, architecture. In total, six modules were

34 CHAPTER 4. DESIGN

identified to compose the system:

Smart Environment TD Repository This module is responsible for stor-
ing and serving the Thing Descriptions (TD) of all the available things in the
environment. This is necessary to provide access to the TDs for the user to be
able to understand them, try them out and use the affordances in the agent
code.

Thing Explorer This module is an interface to the TD Repository, it pro-
vides an easy way for the user to test the affordances masking the details
of composing the right request to the Thing itself behind forms and buttons
generated from the description.

Web IDE This module allows the user to program agents through a visual
language and submit them for execution. Since the technological lock was
already imposed by the requirements this was designed to be a web application.

Storage Manager This module is responsible for the persistence of the
user-created agents’ code and of the designed runtime configurations specifying
which agents to execute together in a multi-agent system.

Runtime Orchestrator This module is an optional module that schedules
the execution of different runtime configurations each time on a new Runtime
Environment. Although this was not in the requirements when it came to plan-
ning the support for execution of multi-agent systems the possibility of having
multiple separated systems running was considered an interesting feature to
add.

Runtime Environment This module executes a multi-agent system given
the generated source code and a runtime configuration specifying how many
agents needs to exist in the system. The environment is also extended to na-
tively support agent to thing interactions.

A simulation environment, the WoT Simulator and Proxy was designed
as well. It supports testing of the agent system on a simulated smart envi-
ronment both for development purposes and for checking the soundness of the
programmed agents before deploying in a real-world scenario. This component
is outside of the project scope itself but complements the solution providing
a much-needed testing option when dealing with programming smart environ-
ments.

CHAPTER 4. DESIGN 35

Smart Environment

TD Repository

Thing Explorer

Web IDE

Storage Manager

Runtime Orchestrator

Runtime Environment

TD

CRUD

Runtime

Configuration

API

Runtime
Management

API

Figure 4.2: Components and their relationships to implement the systems’
requirements

As it can be seen from Figure 4.2, the components presented above collabo-
rate to implement a comprehensive system implementing the requirements: the
Smart Environment TD Repository exposes an interface to serve Thing
Descriptions to the rest of the system. The Thing Explorer consumes the
descriptions to generate a user-friendly interface, whereas the Web IDE does
the same to provide programming constructs that users can insert in the agent
visual language.

TheWeb IDE persists the defined agents through the CRUD (Create Read
Update Destroy) operations provided by the Storage Manager and interact
with the Runtime Orchestrator to schedule the execution of a multi-agent
system using the Runtime Environment as the execution platform.

4.2.1 Designing the Agent Runtime Infrastructure

The Runtime Infrastructure design was heavily influenced by the actual
target runtime platform which is the JaCaMo platform.

Given that the block language can generate correct agent code, agents
could have simply been exported as source files and used in a regular JaCaMo
project.

What the Runtime Infrastructure aims at, is to allow for this exchange to
happen over the network and submit a configuration specifying which agents

36 CHAPTER 4. DESIGN

to execute together in a multi-agent system as well. Of course, it also supports
natively the extensions needed to allow agents to interact with the WoT.

The planned design involves a two-step process with the configuration first
submitted to the Runtime Orchestrator that then can schedule the actual
execution to one of the Runtime Environment nodes available.

The inspiration for the runtime configuration came from the .jcm file used
in the JaCaMo platform to define a multi-agent system. For this example, just
names and source reference of the agents to be executed is needed but since
the .jcm allows defining some fine details about the environment and the agent
organization as well this can be later implemented to extend the control and
possibilities of configuration.

4.2.2 Simulation Environment Requirements

The Simulation Environment was the latest addition to the project, coming
from the desire and need to test the solution independently from the lab setup
consisting of real smart objects.

Usually, in these situations, mocked APIs are the quickest solution, they
usually are implemented in a “static” way, always replying in the same way
and that wouldn’t have allowed seeing if the effects of the actions were actually
executed triggering changes in the thing state.

Also, not having a comprehensive view of the whole environment would
have made the debugging process hard to follow and impossible for different
mocked things to behave according to the same environmental constraints.
Let’s say for example we’re building a temperature monitoring agent, if we’re
mocking a temperature sensor and a heater we would like to see that the action
of turning on the heater actually results in a rise in the temperature readings
from the sensor, otherwise, the agent might think that the system is failing.
This is practically impossible to achieve if the two mocked devices are not
placed within the same simulation.

The idea was further developed to realize a companion simulation envi-
ronment that could act as the deployment environment for the agents built
with the visual tool. The simulation environment was envisioned to have a
visual interface as well for users to quickly be able to see if the programmed
multi-agent system was behaving in the desired way just as they would do by
looking at the real things.

Since this component was realized for the immediate needs, no intensive
research on the existing literature on the topic was done and a fully customized
option was designed and developed instead.

The simulation environment was planned to satisfy the following require-
ments:

CHAPTER 4. DESIGN 37

• Offer a simulation environment to test applications that need to operate
over web-things;

• Act as a repository for the Thing Descriptions of the simulated things;

• Be easily configurable to support different scenarios with multiple things;

• Display an intuitive graphic interface to debug and observe the behaviour
of the system;

• Offer the possibility for customization for a better graphic representation
of the things;

• Have a robust infrastructure that allows to simply add the simulation
models and the Thing Descriptions to simulate a new thing.

As it can be seen, the main focus was on ease of customization acting like a
framework where new user-defined models can be added to simulate different
scenarios.

Since it was meant to be a companion application for the Web IDE, the
simulator was also planned as a web application so users could keep both
applications open on their browser and switch easily between them.

Chapter 5

Development

In this chapter, the development process that brought to the creation of
the prototype of the whole system is described.

Technological locks were imposed from the interface side by the require-
ments to have a light-weight Web application that didn’t need installation on
the end-user machine, and from the agent infrastructure side by the support
offered by the JVM environment with the implementation of JaCaMo as the
main framework for executing BDI agents written in the Jason programming
language.

The development process was organized to first realize the end-user inter-
face to manage and program agents with the designed block language and later
build the runtime environment infrastructure to support the remote execution
of multi-agent systems capable to interact with the Web of Things.

Interesting implementation details are discussed in the following sections
following the realization of the main components while motivating the choices
of the enabling technologies.

5.1 Smart Environment TD Repository

To better understand how the system is implemented the best way is to
follow the main data flow between components, starting with the source which
is the Smart Environment TD Repository.

This component was the first present in the system since it was based on the
already available implementation of a discovery service for Thing Descriptions
developed by the team in St. Gallen.

The project, whose name Yggdrasil comes from the mythological tree of
life, aims at providing uniform interaction among heterogeneous agents by
proposing the notion of Hypermedia MAS [10].

39

40 CHAPTER 5. DEVELOPMENT

The idea is to model an agent environment based on the Agents & Arti-
facts metamodel through hypermedia and standard Web technologies, achiev-
ing scalability and uniform access to resources in the environment.

The API exposed by Yggdrasil helps navigate an agent environment and
all the defined workspaces where artifacts and their operations are described
with the Thing Description standard since the model perfectly overlaps with
the one of A&A.

This allows to present both digital artifacts and actual things under the
same interface and the service can act as a discovery platform for both.

Some work was initially done to extend the capability of Yggdrasil of gen-
erating Thing Descriptions and serving them in JSON-LD 1.1 format to be
better consumable in Web applications.

The Smart Environment TD Repository doesn’t necessarily need to be
an instance of Yggdrasil though, since Yggdrasil itself was exploited for this
functionality out of its many features.

The WoT Simulator developed for testing purposes acts in fact as a TD
servient as well, replacing Yggdrasil for a lighter deployment setting.

The main point is that any service capable of exposing Thing Descriptions
is ok as long as it does still keep them organized using the structure of the
Agent & Artifacts metamodel made of environments and workspaces since
this was used as a constraint in the front-end applications namely the Thing
Explorer and the Web IDE to keep things neatly organized and provide the
concept of scope for agents interacting with them.

5.2 Creating the Web User Interface

The UI is what target users of the system will see and interact with. Of
course, this is one of the most important parts of the system itself given that
the main goal is to directly empower people to use the platform easily for their
needs.

Users should have a clear idea of what each component of the interface do
without any detailed explanation and the interface should allow them to un-
derstand and use the tools they have available to create their solution through
agent programming.

Two main use-cases were identified when designing the UI:

• Observing and testing the smart things’ behaviour in reaction to com-
mands sent through the Thing Description interface;

• Coding to replicate the desired behaviour of the smart things.

CHAPTER 5. DEVELOPMENT 41

These two phases are of course not necessarily sequential but can be re-
peated in multiple iterations when writing an agent program so the idea was
to model two different interfaces to support each use case in parallel.

The Thing Explorer is the component of the system supporting discovery
and testing of the capabilities offered by the different smart things whereas
the Web IDE is the one providing access to the block language and runtime
management of multi-agent systems.

Both are implemented as Web pages served by a Node.js server. The whole
Web application that implements the system UI is developed using standard
Web technologies without the aid of modern front-end frameworks.

There is no strong motivation on not using frameworks other than the
implementation of the Thing Explorer started on top of a simple JavaScript-
based prototype and there was never the need to refactor the whole infrastruc-
ture since the application is self-contained with a small number of pages and
reusable components.

5.2.1 Thing Explorer

The Thing Explorer is the component of the system that helps users nav-
igate the environment modelled in the TD Repository. As stated before this
is crucial since users need to be aware of what are the things available for
interaction and which affordances they expose to develop a solution to their
domain problems.

The explorer is implemented as a Web interface showing on one side all the
available things in a workspace and revealing a list of affordances, separated
by kind, when clicking on a thing.

Each affordance is parsed from the Thing Description, generating a graphic
component that shows the description of the affordance itself and allows to test
it out by sending the correct request to the thing at the press of a button. To
compose the request, if parameters are needed like in the case of actions, an
HTML form is used to input the required values. The form is interpreted by
composing the syntactically correct JSON object to send as the body of the
request following the schema defined in the TD.

Results of requests to the thing are displayed as raw JSON messages in a
notification-like component to signify that the thing is answering the request.

The interface is clean and simple since this system component is designed
to be easily accessible and should require no instructions to be used. The tool
is thought to be complementary to the Web IDE, the same colour scheme is
used to help users familiarize themselves with the different kinds of affordances.
The resulting interface can be seen in Figure 5.1

The explorer was seen as a necessary extension to deal with the complexity

42 CHAPTER 5. DEVELOPMENT

Figure 5.1: With the Thing Explorer UI, users can see available things, their
affordances and test them out, results are displayed on the bottom right as
notification pop-ups.

of programming smart things with a non-trivial behaviour. It was proven quite
useful when preparing demos of the whole system with the devices available
in the laboratory such as robot arms or mobile robots. Being able to test
out some affordances and identify the right parameters before putting them
into the agent code, reduces the time needed to create a working solution and
fine-tune the values to be sent to the machine.

5.2.2 Web IDE

The Web IDE is the core component since it is the interface to use the
visual agent language, manage the library of saved agents and schedule the
execution of multi-agent systems.

The goal of creating a user-friendly Integrated Development Environment
(IDE) comes from the advantages that such systems give to programmers when
designing their solutions. The interface should then offer a comprehensive view
of the code, give the programmers tools that can be used to produce code more
efficiently and support them in the execution and deployment.

One key feature of traditional IDEs that here is missing is debugging sup-
port which was left to future works since the infrastructure was missing to
achieve it and to provide a good visual explanation of the agent’s decision
process is definitely a challenge worth another project.

CHAPTER 5. DEVELOPMENT 43

Figure 5.2: The Web IDE - on the left the toolbox, in the centre the canvas to
place blocks and on the top right the buttons to manage agents and execution.

The final interface can be seen in Figure 5.2. In the following sections,
different features of the tool are presented to show how they were implemented
and integrated towards the goal of assisting users in the development cycle.

Development tools

The structure used by the TD Repository of environments and workspaces
to group things is used by the IDE to give scope only to a specific workspace
when programming agents. The first thing the user has to do is select which
workspace to load so that TDs can be parsed and blocks related to such things
can be generated. This limitation is purely meant for the manageability of the
number of things visible to the agent, it’s up to the designer of the repository
to organize things efficiently so that all the desired interactions can take place.

All the tools concerning the visual language are already offered by the li-
brary of choice to implement it which is Blockly. The library not only supports
the definition of custom blocks but comes with a development environment
styled as an infinite canvas to drag blocks in.

In the canvas, blocks can be moved, manipulated, deleted and composed
to create programs. The syntactical check generally offered by an IDE is
a consequence of the usage of blocks as visual abstraction since each block
defines to which other it can be linked allowing only correct compositions.

The canvas is complemented by a toolbox, a menu where blocks (or pre-

44 CHAPTER 5. DEVELOPMENT

aggregated block structures) can be organized in categories, for users to easily
access them and use them in the canvas.

In total six categories were defined to group blocks up:

• Values is the category containing blocks for raw values that can be
used in combination with other blocks such as atoms, strings, numbers,
booleans and variables;

• Operations is the category for operations between values such as math
operations and boolean expressions;

• Initialization is the category for blocks that can be used to define the
initial knowledge of the agent in the form of beliefs, goals and rules.
Note that the root block for the “initialization plan” is not present since
only one can exist and it’s generated by default when a new agent file is
created and can never be deleted;

• Plan definition is the category containing blocks for defining plans
given their triggering events and context;

• Agent actions contains all the actions available to be used in plans, can
be extended to support more of the internal actions that Jason supports;

• Communication contains some actions that are related to agent-to-
agent communication and thus separated since they are not needed if
the user is programming an agent that does not need to directly interact
with other agents.

Additionally, a category is dynamically created for each smart thing in
the workspace to easily group and distinguish blocks related to the use of
affordances on different things.

On top of the functionalities offered by Blockly, some additional control
was given to the user by enriching the interface.

As any typical IDE, a tab-bar to keep multiple files open at the same time
was added alongside the possibility of defining a name for the agent source file.
Since there can be only one canvas in each Blockly instance, this is actually
implemented by removing all the blocks on the canvas when the user selects a
tab and load the corresponding ones from an in-memory data structure where
blocks are temporarily stored.

A button grid is also displayed on top of the canvas to manage the storage
and execution of agents.

CHAPTER 5. DEVELOPMENT 45

Persistent storage

Agents can be saved persistently to be later recovered and edited. This
of course is a fundamental feature to have in any IDE since writing code is
generally an iterative process that could require the user to go back and edit
some parts of an agent program either for bug-fixing or evolving the behaviour.

Since the agent visual programming environment is developed as a Web
application, central server-side storage was seen as the most sensible option.
The Storage Manager component inside the Web IDE backend server im-
plements this functionality. For the time being, it does not keep separate
libraries for multiple users, but, for a production environment, some form of
authentication might be needed to avoid mixing agents created by different
people.

The central storage uses a MongoDB database to store both the generated
Jason code and the XML-based serialization used by Blockly to describe the
block structure so that the visualization can be quickly regenerated on the
Web interface.

The interaction with the storage is enabled by Save and Load buttons on
the button grid on top of the canvas.

Runtime Management

After users have developed one or more agents they might want to deploy
them. Execution management is usually a feature of IDEs so the Web IDE
must support users in the process of actually submitting a multi-agent system
configuration to the Runtime Environment.

Since for the time being the configuration is simply a list of agent names
and their corresponding sources, when pressing the Define Runtime button
users are prompted with a simple interface to pick from the library of agents
that they saved on the persistent storage and choose which one they want to
be executed in the same multi-agent system.

A configuration must be then persistently saved with a name and later
submitted for execution on the actual Runtime Environment using the Run
button.

When a multi-agent system is running, users may like to get some in-
formation about which agents are deployed and possibly edit them. This is
done with the Inspect Runtime button that shows the user a menu with all
the multi-agent systems currently running and can provide information about
which agents are present in them. Users can dynamically add or remove agents
selecting a name and a template from the agent library.

This allows to edit the behaviour of an agent, and update it by removing
only agents with that source without interfering with the running instances of

46 CHAPTER 5. DEVELOPMENT

other agents in the system. In future, it might be interesting to provide this
update functionality directly over running instances of agents by swapping
the plan library with the new one in order to keep the agents alive and thus
maintain their mental state.

Code generation

The core functionality of the Web IDE is of course generating valid in
the Jason syntax. Once the design phase of the different blocks to map the
concepts and abstractions available in Jason to develop agents was completed,
the actual code generation was implemented in the IDE once again thanks to
the support of Blockly.

Since the library offers the possibility to define custom blocks it is also
possible to develop custom code generators. This is done by defining functions
that convert each type of block into a string. The approach resembles one
of a classical parser but as if the parsing is already done by the actual block
structure itself. This leads to a very clean definition of how blocks connec-
tions should be interpreted when composing the actual code, delegating the
responsibility of the representation to each singular unit.

When defining blocks is possible to include what are called mutations in
Blockly, which are values embedded in the block to keep extra information
that is not necessarily visible in the graphic representation. This mechanism
was heavily used to generate affordances blocks and store values needed in
the code generation phase without showing the users technical details such as
affordances URIs.

5.3 Implementing the Runtime Infrastructure

Through the visual language, users can build agents and generate valid
Jason source code that could be exported and used in any Jason application.
The goal of the project though was to not only support people in the building
phase but also in the execution phase like any modern IDE would do.

The visual language is also managing interaction with the Web of Things
and thus requires a specific runtime environment properly configured and
equipped with the enabling tools.

On top of all these requirements, since the IDE interface is Web-based
the execution environment was planned to be accessible with standard Web
technologies such as REST APIs as well. TheRuntime Environment is then
implemented as a Web Server, exposing APIs to receive both agent source code
and runtime configurations to start the execution and to later stop it at any
given moment.

CHAPTER 5. DEVELOPMENT 47

When designing the overall system, a level of indirection was added to
support the execution of possibly more than one multi-agent system at the
same time. The Web IDE communicates with the so-called Runtime Or-
chestrator that deals with the concrete rerouting of requests to the Runtime
Environments nodes.

Although planned, for simplicity, this last feature was not implemented
and the orchestrator is directly rerouting requests to a single known runtime
environment node.

It is worth noting that in building the runtime infrastructure the goal was
to have immediate support for the execution and not to create a solution to
last in the long period. One of the most critical aspects that emerged is that
the runtime environment where agents are deployed is completely ignorant of
the existence of the smart things whereas it might be interesting to reflect the
structure used in the TD Repository in the environment as well. Further work
on the topic is already in the planning working on top of the previously cited
Yggdrasil project.

Anyway, since this was not the main scope of the project the proposed
infrastructure is a valid solution to work in a concrete scenario even if the
integration with the Web of Things is treated as with any other external entity
instead of in a more inclusive way.

5.3.1 Wrapping JaCaMo

As stated before, JaCaMo is the reference execution platform for Jason
agents. When building the Runtime Environment the first task was to find an
efficient way to wrap JaCaMo in a Web Server application that could add the
API logic needed to be interoperable with the rest of the system.

The integration of JaCaMo with REST has been already studied by the
original creators of the platform in a recent paper[1] that brought to the cre-
ation of JaCaMo-REST: a resource-oriented Web-based abstraction for the
multi-agent programming platform JaCaMo implemented in Java.

In its essence, JaCaMo-REST is a JaCaMo application that directly exposes
APIs to modify all the relevant entities in a multi-agent system from agents to
artifacts and organizations. The idea at the core level is to have a multi-agent
system always running and allow an external application to edit which agents
are present, the environment as well as directly change the behaviour of agents
by communicating with them or injecting new plans.

Since the requirements of the Runtime Environment planned for the system
were different JaCaMo-REST was wrapped and slightly modified to work as
needed.

The resulting implementation architecture is shown in Figure 5.3. The

48 CHAPTER 5. DEVELOPMENT

architecture was planned to be JaCaMo independent, so that it would be
possible to change the agent execution platform. A newly created REST server
implemented with Vert.x in Java exposes the following endpoints to manage
the execution of a multi-agent system:

• GET /agents to retrieve all the agent sources saved on the filesystem;

• GET /agents/:id to retrieve a specific agent source by its id which is
the name of the source file;

• PUT /agents/:id to update the source file of an agent;

• GET /runtime to get information about the running MAS;

• POST /runtime to submit a new configuration and start the execution
of the MAS;

• DELETE /runtime to stop the current executing MAS;

• GET /runtime/agents to get the list of agents currently running in the
MAS with their names and source templates;

• POST /runtime/agents to create and add a new agent to the currently
executing MAS;

• GET /runtime/agents/:name to get information about a specific agent
running identified by its name in the currently executing MAS;

• DELETE /runtime/agents/:name to remove an agent from the cur-
rently executing MAS;

The MasManager implements the business logic used by the API controllers
through delegation to a PersistenceManager and a RuntimeManager.

Agents and configurations received through the API are converted to the
right kind of files for the JaCaMo platform and saved persistently on the
file system that acts as a shared memory between the Web server and the
JaCaMo-REST instance. The latter is executed as a subprocess managed by
the RuntimeManager that starts it when needed passing as an argument the
path of the .jcm file with the configuration that needs to be loaded.

Communication with the running instance of JaCaMo-REST is achieved
using the APIs directly exposed by the process over the local network through
the MasBridge. This allows for example to kill running agents and add new
ones. For this last feature in particular, the original API was changed to
behave so that when the name of the source file to be used as a template for

CHAPTER 5. DEVELOPMENT 49

JaCaMo-REST

R
E
S
T

A
P
I

Route
Contoller MasManager

FileSystem

PersistenceManager

Starts

RuntimeManager

Reads

Calls

MasBridge

REST API

Runtime Environment

Writes

Figure 5.3: Architectural diagram of the wrapper built around JaCaMo-REST

a new agent is passed as a parameter to the API that agent is instantiated
since the original implementation always deployed agents based on an empty
template expecting plans, goals and beliefs to be sent later and fill the agent
through the APIs.

Again, this was a prototypal implementation, further insight might be
gained in integrating JaCaMo-REST by maybe expanding its API, but since
the time was limited it was easier to use it sort of like a black-box and wrap
it in a custom made interface for better compatibility.

5.3.2 Support for Agent to Thing Interaction

The very last piece of the puzzle in building a runtime infrastructure for
the WebIDE was the integration of the Web of Things inside the agent envi-
ronment.

Both Jason and JaCaMo were built knowing that, depending on the specific
application, developers might have needed additional control over what agents
can achieve especially when interacting with external services and systems so
there is an already built-in mechanism to expand the capabilities of the multi-
agent system. This can be done either by creating new internal actions of the

50 CHAPTER 5. DEVELOPMENT

Jason language using Java or by defining CArtAgO artifacts (once again in
Java) that agents can use.

The two methods, although quite similar in practice, have a substantial
semantic difference that was considered when choosing how to support proper
interaction with things. Actions can be seen as something that an agent can
do, they are internal by definition thus they are not shared between agents and
they can only edit the agent state. Artifacts, on the other hand, can be seen
as tools providing functionalities to an agent, they have a life cycle, internal
state and they can be shared among agents in the same environment so an
action invocation on an artifact can modify the environment for all the other
agents.

For these reasons both methods were used to realize the integration with the
Web of Things, in particular, a WoTHttpClientArtifact was defined providing
functionalities for agents to invoke affordances on things and retrieve the result
as a JSON object. Internal actions were used instead to add JSON parsing
and assembling capabilities to agents.

WoT HTTP Client Artifact

Since the things considered for this project scenario operates over HTTP,
agents need a way to make HTTP calls to communicate with them. At first,
this was considered a capability of an agent, so the idea was to implement it
with a Jason Internal Action.

Web of Things though can use authentication flows to implement security
and access control to the thing’s internal state and actions. This would have
meant that agents would have needed to constantly remember to use the proper
authentication header when making requests to each thing. As human users,
we are not accustomed to this, since usually Web clients are designed to make
this task easier by asking the user to authenticate once and then remembering
his identity.

Since agents should not be dissimilar from people in their interaction with
external services, the implementation of this flow was achieved with a Web
client artifact. In this way, agents could authenticate first for a given thing
and then use it seamlessly through the instance of the client. The abstraction
of an Artifact is then the most appropriate since the client has a life cycle and
some internal state concerning authentication.

As it can be seen in Listing 5.1 the artifact is implemented extending the
base CArtAgO class and it provides operations to set authorization, read prop-
erties and invoke actions both with or without sending input. The operations
match the semantics of the Thing Description model, they accept the URL of
the affordance and return the result as a serialized JSON payload. The seri-

CHAPTER 5. DEVELOPMENT 51

alization is needed for compatibility with Internal Actions that need to parse
the fields and convert them into values usable within the agent code.

The intended use of the artifact is for each agent to instantiate a client
for each Web thing it needs to interact with. Although artifacts are effectively
shared among agents, this simplifies the management and each agent may have
its own method of authentication with the thing. Of course, having shared
authenticated clients could open the possibility of malicious behaviour, but for
the purpose of this implementation, we assume to have a multi-agent system
where trust is ensured.

public class WotHttpClientArtifact extends Artifact{

private WotHttpClient client;

private String name;

void init(String name) {

this.name = name;

this.client = new BasicHttpClient(name);

}

@OPERATION

void authorizeWithKey(String location, String tokenName, String

tokenValue){

TokenLocation tokenLocation =

TokenLocation.valueOf(location.toUpperCase());

this.client = new StringTokenAuthenticatedHttpClient(this.name,

tokenLocation, tokenName, tokenValue);

}

@OPERATION

void readProperty(String url, OpFeedbackParam<String> result) {

try {

result.set(client.readProperty(url).toString());

} catch (WotClientException e) {

failed(e.getMessage());

}

}

@OPERATION

void invokeAction(String url, String method, JsonElement obj,

OpFeedbackParam<String> result) {

try {

result.set(client.invokeAction(url, method, obj).toString());

} catch (WotClientException e) {

failed(e.getMessage());

}

}

52 CHAPTER 5. DEVELOPMENT

@OPERATION

void invokeAction(String url, String method, OpFeedbackParam<String>

result) {

try {

result.set(client.invokeAction(url, method, null).toString());

} catch (WotClientException e) {

failed(e.getMessage());

}

}

}

Listing 5.1: The Java code implementing the WoTHttpClientArtifact

The management of artifacts is seamless to the user that does not need
to know the internal details of the implementation when using the visual lan-
guage. To this purpose, custom shared plans were developed and appended to
each agent so that they are able to manage the creation of the artifact.

In Listing 5.2 the two test-goal triggered plans for the creation of a client
are shown. The first one checks in the plan’s context if the user has provided
some form of authentication for that thing. The authentication information
has to be set as a belief of the agent before invoking affordances and it is used
to directly authenticate the client artifact upon creation.

If no authentication is provided the second fallback plan is executed. Both
plans save the artifact ID as a belief for the agent for it to be retrieved when
needed since the instruction ?xx wot client(Thing, ID) is prepended to each
affordance invocation so that the artifact is lazily created when needed for the
first time and later its ID is retrieved to be used again.

+?xx_wot_client(Thing, ID) : x_thing_login(Thing, Scheme, Location,

KeyName, Value)

<- println("Thing with login");

.my_name(N);

.concat(N, "_", Thing, "_client", A);

makeArtifact(A,"wot.WotHttpClientArtifact",[N],ID);

authorizeWithKey(Location, KeyName, Value)[artifact_id(ID)];

+xx_wot_client(Thing, ID).

+?xx_wot_client(Thing, ID) : true

<- .my_name(N);

.concat(N, "_", Thing, "_client", A);

makeArtifact(A,"wot.WotHttpClientArtifact",[N],ID);

+xx_wot_client(Thing, ID).

Listing 5.2: Shared plans appended to each agent source file to manage
Artifacts

CHAPTER 5. DEVELOPMENT 53

Internal Actions for JSON management

To make the integration with the Web of Things complete, agents need to
be able to extract information from the JSON result of the invocation of an
affordance and use it within the agent code. They also need to be able to
assemble JSON objects to be used as inputs for affordances that require so.

These JSON manipulation capabilities are best modelled as Internal Ac-
tions since they are part of the manipulation that an agent does without the
need for any interaction with the environment. Actions in Jason can interact
with regular Java Object-Oriented code to do any sort of computation and
return values wrapped within the classes that represent Jason’s valid terms.
Object references as treated as terms and allow to share Java objects between
different actions.

In total seven actions were developed as a library for agents to use: the
notation used below with the angle brackets indicates the so-called feedback
parameter. Since Jason’s actions need to have always only a boolean return
value indicating if the plan can continue or the action has failed, this is the in-
tended method of returning the functional result of an action and the feedback
parameter must be an unbound variable that gets grounded with the return
value.

Here are the actions for JSON management, again the idea was to create
simple “atomic” actions that could express all the required functionalities by
composition:

• json.create empty object(<Obj>) to create an empty object that can
be later filled with fields;

• json.create empty array(<Obj>) to create an empty array that can
be later filled;

• json.parse(string, <Obj>) to create a JSON object, array or value
from its string representation (needed to interact with the client artifact);

• json.get(obj, type, key, <Value>) extracts a value from a json ob-
ject if the key is a string otherwise an element from an array if the key
is a number;

• json.get(obj, type, <Value>) extract the typed value in agent terms
from a JSON primitive value;

• json.set(obj, type, key, value) insert a new key or change the
value of an existing one. As before if the key is a string works with
object otherwise with arrays;

54 CHAPTER 5. DEVELOPMENT

• json.print(prefix, obj) print the JSON object to the agent console
for debug purposes.

As it can be seen, type information is needed when extracting the value
from the JSON structure in order to perform the correct cast.

Again JSON management is seamless to the user using the visual language,
all the necessary parsing logic is automatically generated from the blocks given
the data coming from the input and output schema of the affordance as shown
in figure 5.4.

(a) A plan using two affordances on a lamp thing.

+!change_color(Color) : true

<- ?xx_wot_client("huelamp",X_var_1);

readProperty("http://localhost/huelamp/state",

X_var_2)[artifact_id(X_var_1)];

json.parse(X_var_2, X_var_3);

json.get(X_var_3, "boolean", State);

(State == true);

json.create_empty_object(X_var_4);

json.set(X_var_4,"string", "color", Color);

?xx_wot_client("huelamp", X_var_5);

invokeAction("http://localhost/huelamp/color","POST", X_var_4,

X_var_6)[artifact_id(X_var_5)];

json.parse(X_var_6, X_var_7);

json.get(X_var_7, "string", "color", Result).

(b) The code generated from the blocks above

Figure 5.4: The integration with the Web of Things in the block language and
its corresponding translation in Jason code.

CHAPTER 5. DEVELOPMENT 55

5.4 WoT Simulation and Proxy Environment

The Simulation Environment was developed as a supporting system to
the main one to give the ability to test agents onto simulated smart things
environments.

As stated before the main features desired for this system were ease of
configuration and a simple yet effective graphic interface to show the state
of the simulated things. On top of that, for the needs of the user study, the
Simulation Environment was also extended to work as a proxy, mapping an
application-level Thing Description to the raw APIs of a thing, allowing for
more interesting and complex affordances to be exposed for the users (and
their agents) to use.

To accomplish these requirements a Node.js server application was built,
to work at a fast pace and produce a working prototype in the least amount
of time. For future investigation on this kind of system, a typed language
would be better since Object Oriented languages are usually better suited to
build simulations due to their expressiveness in modelling objects and their
behaviour.

To simulate a thing, its Thing Description must be defined and saved in
a folder. The application then parses the TD and exposes both the TD itself
and all the endpoints corresponding to the affordances. The TD must declare
in the @type field the name of the class implementing the simulation model.

All the simulation objects must extend a ThingWrapper abstract class and
implement two methods that map the property and action affordances to the
actual state changes on the simulation model. When a request is sent to the
affordance URL the application finds the simulation object implementing that
thing by matching its unique id, it then invokes the mapping methods passing
any optional input data and waits for a result to be returned after the thing
logic is applied. A fixed tick simulation is also run to emulate time passing in
the system, meaning that at each update a thing can change its internal state
without having this triggered by an affordance (e.g. a smart light bulb might
overheat with time if kept on).

Every tick a thing might push its new state on a WebSocket to keep the
front-end application updated with the current simulation state. Invocation
of affordances is also logged which makes it possible to track the behaviour of
agents interacting with the system and have some form of basic debugging.

If a thing logic implements remote calls to a smart object API the simulated
thing is acting as a proxy, this is extremely powerful since it allows to both test
an application over hybrid systems when not all the things are available and
because, as stated before, it might be necessary to give the agents a higher-level
set of operations over a thing and this system can act as a way of prototype

56 CHAPTER 5. DEVELOPMENT

Figure 5.5: The front-end application showing a simulated smart lamp.

and implement that as well. This mechanism was used in the user study since
users were asked to control mobile robots and they were programmed to have
a basic routing algorithm at the proxy level since it was easier than program
that at the machine level.

Finally, to make the simulation come full-circle, the notion of the envi-
ronment is present in the simulated world. Things can get a reference to an
environment object and use it to either read its state or act to change it. This
is essential to implement a simulation that let things behave coherently within
it.

To make things interesting, the environment is implemented just as any
other thing, exposing a thing description that must declare the @type Envi-
ronment thus it can be accessed by the external to give the user full control
over it. The environment simulation object is instanced before the others and
then passed as a reference to all the simulation objects that can use them in
their logic. This opens the possibility for simulating scenarios with multiple
things having a cause-effect relationship in their behaviour through interaction
with the environment such as for example a heater and a temperature sensor.

The front-end application for the Simulation Environment was developed
to be just a basic stub, it receives updates through a WebSockets with all the
things’ state and is able to show it (Figure 5.5). Custom components can be
defined that interpret the state changes and show them on a graphic interface.
Since just a basic interface was needed this was not developed intensively but
there is potential for an interesting future project investigating how to give
proper support for users to define their components effectively and support
complex rendering of the simulation state.

Chapter 6

Evaluation

After developing a working draft of the whole system. In-house testing
proved that the solution was robust enough to allow new users to try it out
with real users in a controlled environment.

Since the system was always built having in mind its target purpose of
enabling people without proper training in computer science to develop their
solutions in automation scenarios, a preliminary evaluation study could high-
light the potential of the tool and gain feedback on the current implementation
to improve it for future works.

This led to the definition of a user study carried out during a week when
people with little or zero programming experience came for the first time in
contact with the tool and tried to accomplish simple automation tasks with a
few real smart objects available in the University of St. Gallen’s laboratory.

In this chapter the choices made for the definition of the study and its
routine are explained, then a demographic analysis of the study participants
is presented and in the end, relevant outcomes are shown.

6.1 Designing a User Study

The design activity of the user study focused on what was the best way to
simulate a situation in which users could need the tool to solve some problems.

The main issue was that given the time available to complete the project
it was nearly impossible to find experts and let them test the tool in a domain
they know using even complex smart things.

The next best solution was to create a study targeting people with no
relevant previous experience in programming and let them approach simple
and understandable domains and things. This was the approach towards which
the user study was designed.

57

58 CHAPTER 6. EVALUATION

6.1.1 Evaluation Variables

First of all, it was necessary to define which variables were relevant and
thus needed to be tracked during the study itself.

The main goal of the study was to evaluate:

• the usability of the overall system;

• the user-friendliness of the agent paradigm presented in visual form;

To collect data that could help evaluate qualitatively these aspects, it was
decided to ask the users to complete some specific tasks with the tool and
measure how long it took for each user to complete them individually within
one hour and a half as the maximum time slot.

An audio recording was also kept on since it was interesting to apply the
think-aloud protocol commonly used for usability testing in this scenario to
follow the user thought process and be able to understand better what users
struggled with in order to improve it in future iterations of the tool. This was
important both for the interface usability and especially for understanding
whether people were comfortable with the agent paradigm or not.

To further evaluate more objectively the usability, the System Usability
Scale (SUS)[8] was chosen for an after-study survey.

Since there was interest in understanding how easily people with no ex-
perience could grasp the concepts of agent-oriented programming, little to no
training was given to users. A one-page explanation of the basics of what is an
agent was given for them to read and then they were shown a three minutes
long tutorial video presenting the interface and its features before starting the
actual study.

6.1.2 Task Design

Users were given different tasks to complete that were timed individually.
In total, five tasks were designed to be solved by users.

Since, as stated before, no assumption could be made about the knowledge
of users about any domain, tasks were placed in very simple domains that users
could easily relate to. To provide all the necessary contextual information
relevant to understanding the domain, tasks were grouped into scenarios: each
scenario presented the smart things available to use and the general situation
that users needed to imagine to solve problems.

The smart things themselves were designed to be as simple as possible, with
very basic actions and properties and all relevant to the task to not confuse
the users with an abundance of operations not useful to complete the task
goal. In order to do that, the implemented simulator was used to mask under

CHAPTER 6. EVALUATION 59

an “application-level” Thing Description the actual controls to be sent to the
device acting as a logic controller and allowing to have the desired high-level
behaviour.

Finally, task descriptions were given as descriptions of people’s behaviour,
as if the agent to be programmed by the user was a person that needed instruc-
tions to complete the task. This was done to have people less worried about
the idea of programming and more focused on the behaviour they wanted to
achieve since the text on the block language was designed to create a narrative
flow describing the agent behaviour.

Below the finalized scenarios and their tasks are presented, highlighting
how each task was chosen to test a specific interaction between the users and
the visual language.

Scenario 1 - Lamp In the first scenario, designed to make users familiarize
themselves with the interface and the basics of agent programming, users were
asked to imagine having their agents living in a shared flat and controlling a
smart lamp for their living room.

The lamp has two properties:

• state is a true/false value that indicates if the lamp is on

• color is a text value with a color code (e.g. #FF0000 is red)

The lamp has two actions:

• toggle switches the state of the lamp from true(on) to false(off) and
vice versa.

• setColor changes the color of the lamp by putting as input the color
code.

In task one users were asked to have an agent continuously check the lamp
state and switch it on whenever it found it was off, then wait for a few seconds
and repeat. This very basic example already introduced most of the basic
concepts needed to develop a solution which are: agent-to-thing interactions,
flow control (the agent switch on the light only if it’s off since it can only
toggle), and loops.

Task two was a modification of task one asking users to achieve the op-
posite behaviour of having the light always off. This task was designed to
have users analyze their solution, understand the control flow and modify it
to achieve a different result.

In task three, the last in this scenario, users were asked to have an agent
looping through the colours of the rainbow. This task was interested in seeing

60 CHAPTER 6. EVALUATION

if users could understand how to use the “memory management” features of
agent programming to create the optimal solution to a rather repetitive task.
It was also the first task involving sending input to a smart thing.

Scenario 2 - Farming In the second scenario, designed to immerse users
in a more specific domain with more complex things, users were asked to
imagine having their agents managing a farm using a tractor. The tractors
were simulated by mobile robots that could move in a three-by-three grid of
fields and each field was identified with a number from 0 to 8.

The tractor has two properties:

• position returns the number of the field in which the tractor is;

• direction returns the direction the tractor is facing as a number from 0
to 3 since the tractor rotates only 90 degrees.

The tractor has three actions:

• goHome tells the tractor to go to its designated home spot outside of
the field grid, it returns the time needed by the tractor to complete the
operation;

• moveToField tells the tractor to move to a field specified as input giving
its number, it returns the time needed by the tractor to complete the
operation;

• checkSoilHumidity checks the soil humidity and returns a value, a
colour sensor was used to check whether a piece of coloured paper was
present on the field.

In task one users were asked to move the tractor in each field and check the
soil condition. They were also told to make the agent remember the humidity
of each field as it goes by. This task was focused on using the agent beliefs
to optimize the solution and using basic programming logic to tell the agent
to move each time in the field with the next number. Keeping the humidity
value was also interesting to see if users understood how belief worked and that
they needed to use some sort of data structure to keep the data and remember
which field corresponds to the stored humidity value.

Task two was a modification of task one asking users to, instead of re-
membering the humidity value, check if it was under a threshold and notify
another agent (already implemented). This task was interested in seeing if
communication primitives were intuitive and effective as well as seeing if users
could find a way to execute plans when beliefs were added.

CHAPTER 6. EVALUATION 61

6.2 Demographic Analysis

Participants for the study were recruited by word-of-mouth and thanks to
the help of the Behavioural Lab1 of the University of St. Gallen.

In total twenty people participated in the study. Before starting the routine
they were asked a few questions to understand better their background and
see if any correlation emerged with the results.

The main demographic features observed are presented in Table 6.1. As
it can be seen the sample is quite representative for gender, age and level of
school although since they were recruited through the University most of them
were of course students. They did though come from different faculties so there
was some variance in that as well.

The most important aspect was about previous programming experience:
most of the users answered that they didn’t have had any sort of relevant expe-
rience and seven out of twenty have never even seen a programming language
before. Most of those who had some previous experience usually said that it
was an introductory course using Python or R.

It was interesting to have people with very different backgrounds in that
sense since it was compelling to see if the previous experience was beneficial
for understanding or an obstacle given that the agent paradigm is profoundly
different from procedural programming.

Users were also asked to answer a few questions to compute a score mea-
suring their attitude towards using computers in general. The questions were
inspired by a study[31] that was aimed at measuring attitude towards com-
puters for teachers and was itself based on the Computer Attitude Scale[29].
To keep the survey short though, just a few items were selected.

The questions asked users to evaluate some statements about their experi-
ence with computers in their day-to-day life in a range from 1 (fully disagree)
to 5 (fully agree). The average score resulted in 3.97 which indicate that users
were at ease in interacting with the machine so despite not having experience
in programming they were regular computer users which is exactly the target
category that was identified when designing the system.

6.3 Study Routine

The full study routine lasted one and a half hours. Participants came one
at a time in assigned time slots spanning one week.

The study was performed in a room in the laboratory of the University of
St. Gallen, users had a laptop to use the Web IDE and the web service was

1https://behaviorallab.unisg.ch/en

62 CHAPTER 6. EVALUATION

Study Participants

Total 20

Age 11 under 25

8 between 25 and 50

1 50 or older

Gender 11 female, 9 male

Level of School 8 high-school or lower

4 bachelor degree

8 master degree or above

Current Occupation 13 students

5 working students

2 workers

Programming Experience 8 Yes, 12 No

Computer Attitude Score Mean=3.97

(out of 5) σ=0.62

Table 6.1: Demographic analysis of the study participants

hosted on a different machine managed by a supervisor. Real smart things
were used to have the user see the effect of their actions on the real world,
namely a smart RGB lamp and two mobile robots (Figure 6.1).

First, participants were asked to fill in a background data form providing
the demographic information and their general attitude towards computers,
programming and smart things. The concept of a smart thing is introduced
in the form to let the users ask about it if they have never come across the
concept before.

As preparation, they were given a written description of the study routine
explaining the idea of tasks and scenarios. They were also asked to try to think
aloud in order to understand their reasoning process during the execution of
tasks. A one-page long description of “what is an agent” explaining basic agent
concepts by making similarities with people’s behaviour was also given to read
and consult even during the task execution.

They were then shown a three minutes long tutorial video showcasing the
platform and its functionalities and controls. They were shown how to move
blocks around and stick them together and they were given a rough explanation
of a hello world agent that is generated as a stub whenever a new “file” is
created like it’s usually done in IDEs.

CHAPTER 6. EVALUATION 63

Figure 6.1: The user-study setup.

After the preparation was completed users were shown the scenario first,
the description of the smart thing to be used and then one task at a time on
a monitor managed by the supervisor. The audio registration and stopwatch
were started for each task.

Users were free to ask questions to the supervisor, who could answer with-
out guiding them to the solution. Whenever they felt ready to submit their
solution the time recording was stopped and the solution run by the super-
visor. If a partial solution was submitted the supervisor tried to point out
what was missing by making the user observe the thing behaviour and asked
to continue by restarting the stopwatch.

Sometimes users were moved to the next task even if the solution was not
fully completed. This was done to avoid excessive frustration. All the users
followed the same sequence of tasks since they were organized with progressing
difficulty.

At the end of the study, users were asked to fill out another form evaluating
each task difficulty level (on a scale from 1 to 5) and the usability of the system
using the SUS.

64 CHAPTER 6. EVALUATION

6.4 Qualitative Outcomes

Although the study was not conducted with a strict approach, some in-
teresting qualitative results can be derived by observing the measurements
taken while users completed tasks. Results are summarized in Table 6.2 and
discussed below.

Study Results

Task Mean difficulty score Mean time Participants

Task 1.1 4.36 25m 41s 20

Task 1.2 2.88 7m 32s 18

Task 1.3 3.15 10m 50s 20

Task 2.1 3.07 9m 31s 15

Task 2.2 3.50 6m 13s 5

SUS score Mean = 73.28 σ=9.05

Table 6.2: Results of the user study

6.4.1 Task Results Analysis

Most of the users managed to complete three tasks out of five total, mostly
due to the fact that users needed a lot of time for the first task to enter in the
correct mindset and understand blocks behaviour. This is reflected by both
the difficulty score that users attributed to task one and its average time which
was significantly higher than the following tasks. In the comments that users
gave motivating their scoring the fact that the interface was new and they
needed time to get used to it is often mentioned.

Users performed better in task two, demonstrating that they understood
their previous solution well enough to be able to change it to modify the
behaviour without starting from scratch. Some users did ask if they could edit
the previous solution, some others, although preferring to start from a blank
canvas, were able to remember the meaning of the blocks they used before and
find them quickly.

With task three almost all the users missed the point of creating an efficient
solution making use of agent beliefs to remember the sequence of colours and
iterate on that. Most of them did implement a solution successfully repeating a
lot of blocks but in little time proving autonomy in reaching a working solution
with the small experience gained from previous examples. While doing that
most of them felt like a “better solution” would have been available somehow,

CHAPTER 6. EVALUATION 65

the ones that did try to achieve it struggled and didn’t complete the task
because they got lost.

Task four (2.1) was similar to task three, most of the users were able to
translate their previous solution, although not efficient, to the new scenario
pretty quickly. Most of them failed in using beliefs efficiently and creating a
data structure in the agent’s mind.

Task five was approached by very few users due to time limitations. The
few that did had no trouble identifying the communication primitives and
understood the idea of exchanging messages but didn’t manage to complete
the full task.

6.4.2 General Considerations for Future Evaluations

One of the aspects that were underestimated is the time needed by users
to get familiar with the block-based interface. Although they are considered
intuitive, they are purposefully built in a way that lets people play and explore
the possible combinations. For people that have never used anything similar
that can take some time to get used to and discover how blocks work. A
new iteration of the study may benefit from having a more in-depth tutorial
dedicated to the interface and to block mechanics or giving users some free
time to play around with blocks without any objective.

Users also struggled in understanding the idea of interacting through the
Web of Things affordances, confusing properties and actions, but we assume
that the target users for the system are at least somewhat experienced in that
area. To give an example, a lot of users struggled in understanding that for the
agent to see whether the lamp was on or off they needed to invoke the property
affordance and check the returned value. Testing again with a different user
group might request some training on these topics to evaluate better just the
interaction of users with the agent paradigm.

The hardest agent programming concepts for users to grasp were loops and
flow control, especially for people that had some experience with other pro-
gramming languages that were looking for more familiar constructs (if-else or
for loops). Although these constructs are available in Jason and implemented
as an extension of AgentSpeak they were left out from this prototype because
it was interesting to see if people with no previous training would have been
brought to naturally reason in those terms. When asked what they were strug-
gling with when trying to implement a loop, most users answered that they
wished for a “repeat the plan” block, but failed to match it with assigning the
same goal again to the agent.

For what concerns flow control, that was hard to grasp because it intro-
duced the idea of failing plans. This required a deeper understanding of how

66 CHAPTER 6. EVALUATION

the agent reasoning process works and thus confused users that would have
not expected the agent to fail and drop what it was doing but instead just skip
some parts of the plan.

The most interesting observation is concerning the use of beliefs. Almost
everyone didn’t think of using beliefs to optimize the solution and guide the
agent’s behaviour. This arise the question of whether the abstraction is hard
to understand or a better visual representation is needed to make users com-
prehend how to manage the agent memory. Further investigation should focus
on this.

Of course, user feedback was incredibly useful to understand if the text
on the blocks was understandable and conveyed the right behaviour. This will
need further investigation and refinement but, as a first prototype, it was quite
successful.

6.4.3 Final Evaluation

Overall the system was considered usable receiving an average score on
the System Usability Scale of 73.3 out of 100. Although the SUS is generally
used to compare different systems and individual scores are less meaningful,
because of its extensive use an adjective rating scale was defined and the score
is considered above good [3].

By listening to the user reasoning process it was clear that they were able
to understand the general flow and with a little more time and guidance they
might have been able to solve even more complex problems. This is further
proved by the results of the different tasks that although rising in complexity
do not rise in perceived difficulty and time needed to figure out a solution.
This might indicate that the system is effective in making users learn about
how agents behave and get confidence with the paradigm.

It is worth noting that the best participant was a student with no previous
experience in computer science who managed to complete all the tasks in
significantly less time than the average, proving that the system can appeal to
people that know nothing about programming but approach the task with the
right mindset.

Conclusions

Main Contribution

As stated multiple times the main contribution of this thesis work is the
application of visual programming techniques to the agent-oriented paradigm
in a way that fixes as the ultimate goal the full engineering of multi-agent-
based solutions to problems in different WoT powered domains and realized
by non-technical domain experts.

This project did not only conceptualize a visual agent language but also
the vision for an accessible Integrated Development Environment mixing agent-
oriented programming and the Web of Things in a seamless interface for both
humans and software agents. It then also developed a prototypal implementa-
tion of such a system that was evaluated on a sample of users with promising
results to validate the initial assumptions made when defining the system re-
quirements.

In doing so, the development steps were first the analysis of the require-
ments coming from both the IntellIoT project and the research interest of the
collaborating groups. Then the analysis of the available tools in the multi-
agent system engineering community brought to the identification of Jason
and the JaCaMo platform as the ideal candidates to implement the solution.

An analysis of the Jason language and its fundamentals followed, to iden-
tify a credible mapping that could convert the syntax to a more human-
understandable set of concepts that were later implemented as blocks through
the Blockly library to implement the visual language.

An interface supporting the usage of the block language was developed
alongside the realization of a Runtime Environment, wrapping the execution
of a JaCaMo multi-agent system under a REST API and building tools for
agents to invoke Web of Things affordances and manipulate the returned JSON
payloads.

Finally, a Simulation Environment was created to both simulate smart ob-
jects and mask raw APIs under an application-level interface for real smart
things to help test out the solution, create demos to showcase the functionali-

67

68 CONCLUSIONI

ties and develop the scenarios needed to make users try the system.

The thesis work was then completed with an evaluation study, bringing
a group of users with different backgrounds in contact with the tool for the
first time and with little to no explanation of its functionalities and of the
agent paradigm in general, to see whether the developed solution was friendly
enough to pick up and use and gain feedback to improve it in future iterations.

Overall this project brought to the realization of a usable tool and more
importantly to the exploration of new routes to integrate the Web of Things
technologies with the agent-oriented software engineering in order to enable
autonomous controlling systems for real-world devices in different domains.
This of course opened up a lot of potentially interesting challenges to further
investigate in future related works.

Open Challenges and Future Work

Working on this project touching different research fields allowed to under-
stand better what it might mean to have them seamlessly integrated. This,
though, was not the scope of the thesis work itself since this first exploration
was mostly motivated to see whether the combination of these topics might
bring interesting results.

From what we were able to see with the development of this project we
believe that the hypothesis that the integration of agents and WoT is crucial
to building intelligent IoT systems is true, and also doing that by means of a
simple visual interface might accomplish the goal of keeping humans always in
control of such complex systems.

Of course, a lot can be done to improve the existing solution, first and
foremost the development of the visual language is an ongoing process, that
requires many iterations to be able to pinpoint the basic concepts of agent
programming in such a way to make it easily understandable by any user,
finding the right metaphors that convey the agent behaviour and empower
people to program them efficiently. A lot of work is still needed in that sense,
experimenting with different visual paradigms and going towards the definition
of a fully customized solution designed around agent programming can help
to understand whether the agent paradigm is truly effective as it theoretically
should in bridging the abstraction from machines to people.

Finding an efficient way of providing more experts users with the powerful
tools that are present in the Jason language that were purposefully left out
from this implementation such as annotations and higher ordering without
overwhelming novices might be interesting as well. Finding an appropriate
balance in that sense might be challenging, but needed if the platform is to

CONCLUSIONI 69

be used not only by non-technical users but by expert agent programmers as
well.

From an agent engineering perspective, the IDE focused on the definition
of agents. But as we’ve seen the agent dimension is just one of the three
layers composing every multi-agent system. In order to have a powerful multi-
agent system development tool, environment programming and organization
programming must be taken into consideration for future expansion.

From a Web of Things perspective instead, event affordances were left out
from the scope of the whole system, but they are needed if the tool wants to
support the full expressive power of the Thing Description model. Also, the
integration with the MAS environment is very basic for the time being.

This last feature is maybe one of the most interesting for future works since
having Web of Things fully integrated into the agent environment could open
up to even better solutions that improve the separation between the control
logic and the actual controlled hardware.

Lastly, the proposed Simulation Environment could be polished and further
developed in a fast and effective tool to create simulations to run agents in WoT
based environments.

Hopefully, given the interest in the project from both the research groups,
some of these open challenges can be undertaken in future research projects.

Acknowledgements

Coming to the end of my student years, a big thank you is due to all the
people that believed in me and that shared this piece of life with me.

First I would like to thank everyone that I worked with in St. Gallen while
developing this thesis, from professor Simon Mayer that welcomed me into his
group and guided me in the development of my work always leaving me free
to explore my ideas, to all the colleagues that I had the opportunity to meet
in the office. You made me feel at home even if I was in a completely new
place and it was wonderful to feel part of such an inspiring community made
of people coming from all over the world and with so many different passions
tied together by the love for Computer Science and innovation. Thanks in
particular to Danai for being my go-to Jason expert and answering my daily
questions and to Iori for helping me with all the technical infrastructure setup
in the lab.

On the topic of St. Gallen, I want to also thank my flatmates Alexia,
Amanda and Hyo for being super nice, letting me have some fun after my long
working days and also agreeing to take part in my user-study.

To all my Italian friends goes my thank you for always being there for me
both to my hometown group in Ancona, to all my friends in Cesena that started
this long journey with me, and my university colleagues of the SpaceTeam with
honourable mentions to Francesco, Delu and Simone for sharing quite literally
every struggle and joy that brought to this destination.

I want to thank my family for the help that they give me every day and
that can never be taken for granted, for the support both moral and financial
that they ensured me to allow me to keep studying, learn what I love and get
to have the living abroad experience that I always dreamed of.

I can not thank my girlfriend Giada enough for always pushing me to-
wards achieving my goals, listening rambling about my work, giving me advice
and just generally for being by my side. May this be just one of the many
achievements we get to share.

I would also like to thank Angelo Croatti, who actually suggested sending
me to St. Gallen in the first place, for introducing me to the world of PhD
research, always answering my questions about it and the world of Mixed

71

72 RINGRAZIAMENTI

Reality which bridged me into the interest in HCI in general (and VR gaming
as well to be fair).

And, last but of course not least, I would truly like to thank professor
Alessandro Ricci for supporting me during the development of this thesis and
for being able through his teaching to share his passion for this “crazy agent
world” which I’ve started to love myself and I hope to continue exploring in
my days ahead.

The past years and the current time have been characterized by an un-
expected series of events that cloud our vision of the future, may this ac-
complishment be a light to guide me always and remember me to never stop
dreaming.

Thank you to everyone.

Bibliography

[1] Cleber Jorge Amaral, Jomi Fred Hübner, and Timotheus Kampik. To-
wards jacamo-rest: a resource-oriented abstraction for managing multi-
agent systems. arXiv preprint arXiv:2006.05619, 2020.

[2] Kevin Ashton et al. That ‘internet of things’ thing. RFID journal,
22(7):97–114, 2009.

[3] Aaron Bangor, Philip Kortum, and James Miller. Determining what in-
dividual SUS scores mean: Adding an adjective rating scale. Journal of
usability studies, 4(3):114–123, 2009.

[4] Olivier Boissier, Rafael H Bordini, Jomi F Hübner, Alessandro Ricci, and
Andrea Santi. Multi-agent oriented programming with JaCaMo. Science
of Computer Programming, 78(6):747–761, 2013.

[5] Rafael H Bordini and Jomi F Hübner. A Java-based interpreter for an
extended version of AgentSpeak. University of Durham, Universidade
Regional de Blumenau, 256, 2007.

[6] Rafael H Bordini, Jomi Fred Hübner, and Michael Wooldridge. Program-
ming multi-agent systems in AgentSpeak using Jason. John Wiley & Sons,
2007.

[7] Michael E Bratman, David J Israel, and Martha E Pollack. Plans
and resource-bounded practical reasoning. Computational intelligence,
4(3):349–355, 1988.

[8] John Brooke. Sus: a “quick and dirty” usability scale. Usability evaluation
in industry, 189(3), 1996.

[9] Margaret M Burnett and David W McIntyre. Visual programming.
COMPUTER-LOS ALAMITOS-, 28:14–14, 1995.

[10] Andrei Ciortea, Olivier Boissier, and Alessandro Ricci. Engineering world-
wide multi-agent systems with hypermedia. In International Workshop
on Engineering Multi-Agent Systems, pages 285–301. Springer, 2018.

73

74 BIBLIOGRAPHY

[11] Andrei Ciortea, Simon Mayer, and Florian Michahelles. Repurposing
manufacturing lines on the fly with multi-agent systems for the web of
things. In Proceedings of the 17th international conference on autonomous
agents and multiagent systems, pages 813–822, 2018.

[12] Philip R Cohen and Hector J Levesque. Intention is choice with commit-
ment. Artificial intelligence, 42(2-3):213–261, 1990.

[13] Michael P Georgeff and Amy L Lansky. Reactive reasoning and planning.
In AAAI, volume 87, pages 677–682, 1987.

[14] Neil Gershenfeld, Raffi Krikorian, and Danny Cohen. The internet of
things. Scientific American, 291(4):76–81, 2004.

[15] Dominique Guinard. A web of things application architecture: Integrating
the real-world into the web. PhD thesis, ETH Zurich, 2011.

[16] Mahdi Hannoun, Olivier Boissier, Jaime S Sichman, and Claudette Sayet-
tat. MOISE: An organizational model for multi-agent systems. In Ad-
vances in Artificial Intelligence, pages 156–165. Springer, 2000.

[17] Carl Hewitt. Viewing control structures as patterns of passing messages.
Artificial intelligence, 8(3):323–364, 1977.

[18] IntellIoT. Deliverable D2.1 Use case specification & Open Call def-
inition, 2020. https://intelliot.eu/wp-content/uploads/2021/

08/Use-case-specification-and-Open-Call-definition.pdf?utm_

source=deliverables-subpage&utm_medium=in-text-link.

[19] Nicholas R Jennings. On agent-based software engineering. Artificial
intelligence, 117(2):277–296, 2000.

[20] Amy J Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret
Burnett, Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieber-
man, Brad Myers, et al. The state of the art in end-user software engi-
neering. ACM Computing Surveys (CSUR), 43(3):1–44, 2011.

[21] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Eve-
lyn Eastmond. The scratch programming language and environment.
ACM Transactions on Computing Education (TOCE), 10(4):1–15, 2010.

[22] Bonnie A Nardi. A small matter of programming: perspectives on end
user computing. MIT press, 1993.

[23] Donald A Norman. The psychology of everyday things. Basic books, 1988.

https://intelliot.eu/wp-content/uploads/2021/08/Use-case-specification-and-Open-Call-definition.pdf?utm_source=deliverables-subpage&utm_medium=in-text-link
https://intelliot.eu/wp-content/uploads/2021/08/Use-case-specification-and-Open-Call-definition.pdf?utm_source=deliverables-subpage&utm_medium=in-text-link
https://intelliot.eu/wp-content/uploads/2021/08/Use-case-specification-and-Open-Call-definition.pdf?utm_source=deliverables-subpage&utm_medium=in-text-link

BIBLIOGRAPHY 75

[24] Hyacinth S Nwana. Software agents: An overview. The knowledge engi-
neering review, 11(3):205–244, 1996.

[25] Shaileen Crawford Pokress and José Juan Dominguez Veiga. MIT
App Inventor: Enabling personal mobile computing. arXiv preprint
arXiv:1310.2830, 2013.

[26] Anand S Rao. AgentSpeak (L): BDI agents speak out in a logical com-
putable language. In European workshop on modelling autonomous agents
in a multi-agent world, pages 42–55. Springer, 1996.

[27] Partha Pratim Ray. A survey on visual programming languages in internet
of things. Scientific Programming, 2017, 2017.

[28] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. Give agents their ar-
tifacts: the A&A approach for engineering working environments in MAS.
In Proceedings of the 6th international joint conference on Autonomous
agents and multiagent systems, pages 1–3, 2007.

[29] Neil Selwyn. Students’ attitudes toward computers: Validation of a
computer attitude scale for 16–19 education. Computers & Education,
28(1):35–41, 1997.

[30] Yoav Shoham. Agent-oriented programming. Artificial intelligence,
60(1):51–92, 1993.

[31] Timothy Teo. Pre-service teachers’ attitudes towards computer use: A
singapore survey. Australasian Journal of Educational Technology, 24(4),
2008.

[32] David Weintrop. Block-based programming in computer science educa-
tion. Communications of the ACM, 62(8):22–25, 2019.

[33] David Weintrop and Uri Wilensky. To block or not to block, that is the
question: students’ perceptions of blocks-based programming. In Pro-
ceedings of the 14th international conference on interaction design and
children, pages 199–208, 2015.

[34] Mark Weiser. The computer for the 21st century. ACM SIGMOBILE
mobile computing and communications review, 3(3):3–11, 1999.

[35] Kirsten N. Whitley. Visual programming languages and the empirical
evidence for and against. Journal of Visual Languages & Computing,
8(1):109–142, 1997.

76 BIBLIOGRAPHY

[36] Erik Wilde. Putting things to REST. 2007.

[37] Michael Wooldridge. An introduction to multiagent systems. John wiley
& sons, 2009.

[38] Michael Wooldridge and Nicholas R Jennings. Intelligent agents: Theory
and practice. The knowledge engineering review, 10(2):115–152, 1995.

[39] WoT Working Group. Web of things (WoT) architecture, 2020. https:

//www.w3.org/TR/2020/REC-wot-architecture-20200409/.

[40] WoT Working Group. Web of things (WoT) Thing Description, 2020.
https://www.w3.org/TR/wot-thing-description/.

https://www.w3.org/TR/2020/REC-wot-architecture-20200409/
https://www.w3.org/TR/2020/REC-wot-architecture-20200409/
https://www.w3.org/TR/wot-thing-description/

	Introduction
	Context, Motivations and Research Proposal
	The IntellIoT Project
	Key Mission
	Use Cases

	Domain-Expert Programming
	Proposing Visual Agent Programming

	State of the Art
	Agent-Oriented Programming
	What is an Agent
	The BDI Agent Model
	Multi-Agent Systems and the A&A Metamodel
	The JaCaMo Platform

	Visual Programming and End-User programming
	Block-based Visual Programming

	Web of Things
	Origins and Motivations
	Design Principles
	The Thing Description Model

	Requirements
	Assumptions and Constraints
	Non-Functional Requirements
	Functional Requirements

	Design
	From Agent Code to a Visual Language
	Choosing the Visual Abstraction
	Reference Syntax and Constructs
	Mapping Principles
	Core Blocks
	Integration with the WoT

	Identifying Components and Architecture
	Designing the Agent Runtime Infrastructure
	Simulation Environment Requirements

	Development
	Smart Environment TD Repository
	Creating the Web User Interface
	Thing Explorer
	Web IDE

	Implementing the Runtime Infrastructure
	Wrapping JaCaMo
	Support for Agent to Thing Interaction

	WoT Simulation and Proxy Environment

	Evaluation
	Designing a User Study
	Evaluation Variables
	Task Design

	Demographic Analysis
	Study Routine
	Qualitative Outcomes
	Task Results Analysis
	General Considerations for Future Evaluations
	Final Evaluation

	Conclusions
	Acknowledgements

