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Abstract

TheSun is located in theOrionArmof theMilkyWay galaxy and its surrounded, along other bod-
ies, by stars. This thesiswork aims at understandwhether these stars candynamically interactwith
the Sun and its Solar System and to investigate the possible features of this kind of interactions.
We will begin from an observable quantity, the Oort surface density for stars that we will assume
Σ∗ = 38M⊙pc−2 (Kubryk, Prantzos, and Athanassoula 2015), and we will build a stellar density
profile for theMilkyWay galaxy using themodel suggested by Jurić et al. 2008. Then, making use
of the Initial Mass Function and the Star Formation Rate function, we will calculate the Present
DayMass Function to have the correct distribution of mass along stellar classes. From kinematic
concepts such as the rotation curve, the Oort constants and the Local Standard of Rest we will
characterize themotion of the Sun in the Galaxy, assuming for our calculations a value v = 14 km
s−1 for the Sun velocity with respect to the Local Standard of Rest. Wewill then define theHill ra-
dius and Sphere Of Influence radius by making use of the restricted three body theorem. We will
thus have a complete model in terms of star density and distribution, kinematics, and dynamics
whichwill lead us to quantify differentmass rangeswhichwill show the possibility of a close SNII
explosion, and will highlight the perturbing effect of near low mass stars onto the Solar System
Oort cloud and the action of the Sun onto alienOort clouds. Lastly, in this thesis wewill compare
our models to the latest Gaia EDR3 data from the paper of Reylé, C. et al. 2021 which will allow
us to analyze the current situation in the Solar neighbourhood and will highlight the presence of
stars currently perturbing the Oort cloud and five possible Solar System Oort cloud-alien Oort
cloud merging.



Sommario

Il Sole è posizionato in corrispondenza del Braccio di Orione all’interno della Via Lattea ed è
circondato da stelle e da altri oggetti. Lo scopo di questa tesi è di capire se queste stelle possono
interagire dinamicamente con il Sole ed il suo Sistema Solare e, in tal caso, di esaminare gli effetti
di questo tipo di interazioni. Cominceremo la nostra trattazione da un osservabile, la densità
superficiale di Oort per le stelle che assumeremo pari a Σ∗ = 38M⊙pc−2 (Kubryk, Prantzos, and
Athanassoula 2015), e costruiremo un profilo di densità stellare per la Via Lattea utilizzando il
modello suggerito da Jurić et al. 2008. Facendo quindi uso dei concetti di Initial Mass Function e
di funzioni di Star Formation Rate potremo calcolare la Present Day Mass Function in modo da
distribuire correttamente la massa a seconda della classe stellare. Dal nozioni di cinematica quali
la curva di rotazione, le costanti di Oort e il Sistema di Riposo Locale potremo caratterizzare il
movimento del Sole all’interno della Galassia e assumeremo il valore v = 14 km s−1 per la velocità
del Sole rispetto al Sistema di Riposo Locale. Definiremo, quindi, il raggio di Hill e il raggio della
Sfera di Influenza attraverso il problema dei tre corpi ridotto. A questo punto avremo unmodello
completo in termini di densità e distribuzione stellare, cinematica e dinaimca che ci porterà a
definire intervalli in massa in cui si potrenno verificare esplosioni di SNII e che ci permetterà di
sottolineare l’effetto perturbativo delle stelle di piccola massa poste nelle vicinanze sulla nube di
Oort del Sistema Solare e l’effetto che produce Sistema Solare sulle nubi di Oort aliene. Infine
in questa tesi confronteremo i nostri modelli con i dati aggiornati della EDR3 di Gaia dal paper
di Reylé, C. et al. 2021 che ci permetteranno di osservare l’attuale situazione nei dintorni Solari
e metteranno in luce la presenza di stelle che stanno perturbando la nube di Oort e di cinque
possibili merging tra la nube di Oort del Sistema Solare e nubi di Oort aliene.
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Chapter 1

Introduction: aim of the project

Thecurrent visionof the Sun inside theMilkyWayGalaxy places it in an almost planar position 8.2
kpc far from theGalaxy centre (McMillan 2016). TheSun belongs to the thin diskwhich is one of
the components of the Galaxy structure. We can say that the thin disk is one of the densest zones
in terms of stellar distribution, along with bulge and spiral arms, of the Galaxy, this feature could
possibly cause interactions between the Sun and other stars that could have as consequences on
the Solar System comet showers or object stripping. Recent work on this topic were made by
Bailer-Jones 2018 and Bailer-Jones et al. 2018 in which the author used Gaia DR2 data to esti-
mate close encounters from radial velocities of near stars.

This thesis work aims to take a step further and evaluate the consequences of close encounters
and in general the effect of the presence of near stars by studying how they would dynamically
interact with the Solar System.
Since we will have a theoretical approach to the problem, in Chapter 2 we will model the local
Galaxy structure starting from the Oort density given by Kubryk, Prantzos, and Athanassoula
2015 and we will assume a Galaxy density profile from Jurić et al. 2008. We will also want to
establish how the mass is distributed between the different star classes thus we will calculate the
Present DayMass Function by assuming functional forms both for the Initial Mass Function and
the Star Formation Rate. We will choose three Initial Mass Functionmodels from Salpeter 1955,
Miller and Scalo 1979, and Chabrier 2003 and four Star Formation Rate models from Schmidt
1959 and Buzzoni 2005. The Present Day Mass Function will be computed then in Chapter 3 by
making use of the stellar lifetime law given by Buzzoni 2002.
In Chapter 4 we will then compare our results with up to date Gaia EDR3 data from Reylé, C.
et al. 2021 and then in Chapter 5 we will check our Galaxy radial density model by computing
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the rotation curve and calculate the Sun rotational velocity to be compared with the one given by
theOort constants calculation of Bobylev andBajkova 2020. Finally, wewill make use of the LSR
definition to assume a mean stellar velocity to apply to all the stars in our model. We will mean
the LSR value between the values given by the works of Dehnen and Binney 1998, Aumer and
Binney 2009, Schönrich, Binney, and Dehnen 2010, Golubov et al. 2013, Bobylev and Bajkova
2018, and Ding, Zhu, and Liu 2019.
In Chapter 6 our last step will be to formalize the restricted three body problem and to give the
definitions and values for the Hill sphere and SOI sphere and some observations upon the limits
of the Solar System.
The results we will present in Chapter 7 will show that the possibility of a comet shower or object
stripping is bounded to themass of the interacting star and its relative distance to the Sun, andwe
will highlight someother aspects such theprobability for the Solar System tobehit byhigh energy
radiation fromSNII and thepossibility of a sort ofmerging zone in theouterOort cloudwith alien
Oort clouds of stars of low mass. We will thus investigate and show that a perturbation of the
planet orbits is possible and will show the frequency of this feature for the Solar System. Finally
we will compare our results with near stars included in the catalogue of Reylé, C. et al. 2021.
Chapter 8 will summarize the work discussing also how all the previous results would change if
the Sun would enter a denser environment such as the spiral arms of the Galaxy and giving some
possible future use of this work.
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Chapter 2

MilkyWay Structure

2.1 Introduction

In this Chapter we will describe the Milky Way, MW, structure in terms of star density and star
density profiles. Since this thesis purpose is to study the interactions between stars in the Solar
neighbourhood it is fundamental to know how the stars are positioned with respect to the Sun in
order to have results as realistic as possible. Firstly, in Section 2.2 we will give an historical intro-
duction on the studies of MW structure starting from the 1920 Great Debate and subsequently
we will introduce and comment useful quantities that will be used in our calculations.
In Section 2.3 we will discuss about the Oort surface density comparing the results of different
authors andmaking a choice on the Oort density value (Σ∗ = 38M⊙pc−2) we will use for subse-
quent calculations.
In Section 2.4 we will choose and compute the density profile for theMW from the work of Jurić
et al. 2008. This profile density, along with the Oort density, will be used to get a representative
mean density for the Sun surroundings which will then be employed in Chapter 3 to normalize
the calculated Present Day Mass Function to realistic values.
In Section 2.5 after a brief historical introduction we will show the three Initial Mass Functions
adopted which will be utilized in the Present Day Mass Function calculation.
Finally, in Section 2.6 we will introduce four possible Star Formation Rates that will be used in
combination with the Initial Mass Functions to calculate the Present Day Mass Function.
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2.2 Setting the context

The Milky Way galaxy has been a matter of interest for a very long time. During human history,
our Galaxy has been described variously: from the whole Universe to a small part of it and from
considering it at the centre of the Universe to understand that there is no privileged spot.
In recent times, a big step forward in the characterization of our Galaxy has been the 1920 Great
Debate where Harlow Shapley and Herbert Curtis presented their studies and summed up the
recent-to date astronomical discoveries. The debate goal was to characterize the Galaxy’s envi-
ronment. For astronomers back then, outer galaxies didn’t exist but spiral nebulae or island uni-
verses were observed. Shapley claimed that spiral nebulae should be inside theGalaxy which had
a dimension of about 100 kpc with the Sun placing about 20 kpc far from the centre. Curtis’ idea
was instead that the nebulae should be out of our Galaxy. Furthermore, Curtis believed that the
Sun’s location was in the Galaxy’s centre and that theMilky way would have dimensions of about
10 kpc. Both astronomers were right for some aspects: now, we know that the Sun isn’t at the cen-
tre of the Milky Way (least of all at the centre of the Universe) and that spiral nebulae are outer
galaxies.
Later on, new theories and observations allowed researchers to make progress in the definition
of the Galactic environment. Oort 1927a confirmed Lindblad’s theory Lindblad 1926 of the ro-
tation of the Galaxy around its centre and in his 1958 paper Oort, Kerr, and Westerhout 1958
gives a detailed view of the Milky Way, more similar to the actual one, with new details as the
observations of hydrogen gas clouds and a defined spiral structure. Subsequently, new theories
went on such as the density wave theory Lin and Shu 1964, the hypothesis of a black hole at the
centre of the galaxy, the darkmatter halo and a partition in substructures basing on dynamics and
chemical features.
Today, the topic is still open as (Hou 2021) emphasizes showing in great detail the various sub-
structures of the Local arm, and questioning the previous theories about the formation and the
working mechanism of spiral arms such as the density wave theory. In Figure 2.1 is shown a rep-
resentation of the Galaxy as would be seen from the top.
For this work we’ll use some of the most recent studies of the Milky Way. The actual shared view
of the Galaxy structure is of different components (e.g. as in Robin et al. 2003) such as the dark
matter halo, the halo, the bulge, the bar, and the disk which is split itself into two subcompo-
nents: thin and thick disk. All these parts are an object of study to determine the Galaxy’s struc-
ture, dimensions, mass, kinematics, and composition and to obtain information about how the
galaxy works and its formation history. One of the recent studies for theMilkyWay structure is of
McMillan 2016 that estimates various parameters as theMW total stellar mass and Sun’s distance
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from the Galactic centre:

Mgal = 54.3 · 109 M⊙ ; (2.1)

R⊙ = 8.20± 0.09 kpc . (2.2)

For this thesis work we want to model the Milky Way in the Solar neighbourhood using for our
model thick and thin disk components and halo component. Since we want tomodel the density
profile especially in the Solar neighbourhood we will not add the bulge component as for (2.2)
the Sun is far enough from the centre of the Galaxy.
In the section 2.3 we’ll describe the observed stellar surface density that will be used to normal-
ize our models; in the section 2.4 we’ll calculate the stellar density vertical profile for the Solar
neighbourhood; in the section 2.5 we’ll discuss the IMFs used and in the section 2.6 we’ll show
the star formation rates adopted.

2.3 Oort density

The Oort density is a local parameter for the surface density of stars in the Solar neighbourhood,
it’s calculated as the density of stars (in solar masses, M⊙) by area unit (in pc2) and the density of
remnants, gas or dark matter can also be included, depending on the work.
Oort first calculated this parameter in his study of 1932 (Oort 1932). He observed themotion of
the stars and resolved the Poisson equation for the gravitational potential:

∂

∂z

(
1

v(z)
∂(v(z) < σz >2)

∂z

)
= −4πGρ , (2.3)

this equation is the equivalent of the classic Poisson equation but described with observable
variables. In (2.3), v(z) is the vertical velocity distribution, σz is the vertical velocity dispersion
and ρ is the star density, using this equation Oort calculated the volumetric density, ρ∗ = 0.15
M⊙pc−3.Bahcall 1984 continued Oort’s studies and adapted to more recent data. He solved the
equation (2.3) to describe realistically the gravitational potential. Bahcall used several models
to fit Oort data and found a surface density that ranges from Σ∗ = 49 M⊙pc−2 to Σ∗ = 120
M⊙pc−2. More recently, McMillan 2011 shows a method to fit mass models to observables. He
decomposes theMilkyWay into subcomponents and uses values from literature to create the best
fit model that gives Σ∗ = 63.9(60.3) M⊙pc−2 for best fit(convenient). In the work of Bovy and
Rix 2013, the authors use SDSS/SEGUE¹ data to calculate the distribution of mass, the rotation

1. Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration.
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Figure 2.1: Artistic representation of the top viewof theMilkyway based on the last studies of the
Galaxy structure. Superposed to the picture the is the galactic longitude grid that helps to under-
stand the Sun’s position in the galaxy disk. Credits: NASA/Adler/U.Chicago/Wesleyan/JPL-
Caltech.
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curve, and parameters of the Galaxy using data and analytic models. They find a stellar and rem-
nants surface density of Σ∗ = 38± 4M⊙pc−2. Kubryk, Prantzos, and Athanassoula 2015 in their
paper model the Galaxy adding radial migration and obtain a stellar and remnant surface density
of Σ∗ = 38M⊙pc−2. Finally the last paper we considered is McKee, Parravano, and Hollenbach
2015 where the authors fitted their model basing upon previous work of Flynn et al. 2006 and
found Σ∗ = 31.2 M⊙pc−2 in the z-range that goes from zmin = −1100 pc to zmax = 1100 pc. For
this work the Oort density has been taken from the work of Kubryk, Prantzos, and Athanassoula
2015 as:

Σ∗ = 38M⊙pc−2. (2.4)

The surface density still hasn’t a fixed value, it can easily change for different data or model used
for the calculations, so we choose to use this as a free parameter in our forthcoming discussion.
In Table 2.1 the surface densities discussed are shown.

Author(s) Σ∗ [M⊙pc−2]

Bahcall 1984 49-120
Flynn et al. 2006 35.5
McMillan 2011 63.9(60.3)

Bovy and Rix 2013 38±4
Kubryk, Prantzos, and Athanassoula 2015 38
McKee, Parravano, and Hollenbach 2015 31.2
McKee, Parravano, and Hollenbach 2015 33.4

Table 2.1: Summary of the surface densities taken in account.

2.4 Disk structure

As mentioned before, Milky Way’s disk can be decomposed into two substructures: thick disk
and thin disk. These structures are different either by dimensions and composition. An example
of the different structures of the Galaxy can be see in Figure 2.2. There have been many studies
of the Galactic structure in the Solar neighbourhood within the years. Sandage 1987 derived a
density distribution perpendicular to the galactic plane for the stars and compared them to the
known data from other authors. Sandage found that a good fit of the data is with two power laws
representing the thin and thick disk and another one representing the halo. The latter can be well
represented using a power law as ρ(r) ∼ (1 + r)−n but the author finds that an exponential form
for the vertical distribution of the halo is a good approximation for the Solar neighbourhood.
Sandage also found that the thick-to-thin disk normalization should be ∼ 11% and the halo-to-
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Figure 2.2: Artistic representation of the structures of the Milky Way. In this picture is shown
also the main composition of the structures. The Sun lies near the Galactic plane at z ∼ 27 pc as
in Chen et al. 2001 and belongs to the thin disk.
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thin normalization is∼ 0.5%. We chose tomodel the perpendicular density profile following the
more recent work of Jurić et al. 2008 because is still used as a reference for current works. In this
paper, the authors fit data using a double exponentialmodel for thin and thick disk and a two-axial
power-law ellipsoid model for the halo:

ρ(R, z) = ρthin(R, z) + ρthick(R, z) + ρhalo(R, z) (2.5)

The three density profiles are the following:

ρthin(R, z) = ρthin(R⊙, 0)e
R⊙
Lthin exp

(
− R

Lthin
− z

hthin

)
(2.6)

ρthick(R, z) = fDρthin(R⊙, 0)e
R⊙
Lthick exp

(
− R

Lthick
− z

hthick

)
(2.7)

ρhalo(R, z) = fHρthin(R⊙, 0)

[
R⊙√

R2 + (z/q)2

]n

(2.8)

where ρthin(R⊙, 0) is the thin disk normalization, and R⊙ is the Sun’s radial position in galacto-
centric coordinates. Lthin and Lthick are the scale lengths respectively for the thin and thick disks,
hthin and hthick are the scale heights for the disks, and fD, fH are the thick-to-thin disk normalization
and the halo-to-thin disk normalization. The halo density profile is then defined also by the pa-
rameters q which sets the halo ellipticity and n which is the power-law index. The values for all
the parameters described are shown in Table 2.2. The thin disk normalization is not included in
the Table as we will calculate it basing on the observed surface density values given by the Oort
density. The Sun vertical position is essentially on the Galactic plane, namely z⊙ ∼ 27 pc (Chen

Parameter Value
R⊙ 8200 pc
Lthin 2600 pc
Lthick 3600 pc
hthin 300 pc
hthick 900 pc
fD 0.12
fH 0.0051
q 0.64
n 2.77

Table 2.2: In this Table are shown the parameters adopted for the computation of the density
profile. All the parameters except R⊙, taken as eq. (2.2), are the best fit found by Jurić et al. 2008.

et al. 2001). The profile (2.5), for our purpose of studying the solar neighbourhood, has been
calculated at the Sun’s position from the Galaxy centre, R⊙ = 8.20 kpc. We can thus neglect for
this specific case the dependence from the radial coordinate R for the thin and thick disk profiles,
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obtaining:

ρthin(z) = ρthin(R⊙, 0) exp
(
− z

hthin

)
(2.9)

ρthick(z) = fDρthin(R⊙, 0) exp
(
− z

hthick

)
(2.10)

The total vertical density distribution is therefore the linear combination of (2.9), (2.10) and
(2.8):

ρ(z) = ρthin(z) + ρthick(z) + ρhalo(R⊙, z) . (2.11)

This profile is normalized for the Oort density (2.4) as follows:

2
∫ zmax

0
ρ(z)dz = 2

∫ zmax

0
(ρthick(z) + ρthin(z) + ρhalo(R⊙, z))dz = Σ∗ , (2.12)

where zmin = −1100 pc and zmax = 1100 pc as the used Oort density is calculated in this z-
range. From the results of this calculation we can get the value for the thin disk normalization
ρthin(R⊙, 0) = 4.3 · 10−2 M⊙pc−3, then adopting the thick-to-thin disk normalization ratio of Ta-
ble 2.2 we calculated the thick disk normalization as fDρthin(R⊙, 0) = 5.2 · 10−3 M⊙pc−3, and using
the halo-to-thin disk normalization we get fHρthin(R⊙, 0) = 2.2 · 10−4 M⊙pc−3. The density pro-
files obtained are shown in Figure 2.3 where the total density and its components are superposed.
The thin disk prevails within z ∼ 1000 pc, the thick disk becomes important from z ∼ 1000 pc to
z ∼ 4000 pc and then the halo is prevailing at higher z as can be see in Figure 2.4.
We calculated the mean density< ρ > for the thin disk using the density profile ρ(z) (2.11) as
follows:

< ρ >=
1

hthin

∫ hthin

0
(ρthin(z) + ρthick(z) + ρhalo(R⊙, z))dz , (2.13)

where hthin = 300pc as inTable 2.2. The localmeandensity is therefore< ρ >= 3.2·10−2 M⊙pc−3.
We will use this value to normalize our models of Star Formation Rate and Present Day Mass
Function to the local stellar density to get a representative model for the Sun’s neighbourhood.

2.5 Initial Mass Function

Stellar formation takes place when a cold interstellar gas cloud reaches the Jeans’ critical mass so
the effect of gravity begins to overcome the expansion of the gas, allowing the cloud to collapse.
The outcomes of this process are the classic stars we observe and study.
The idea is, a gas cloud doesn’t generate a single star but a Simple Stellar Population, SSP, that is, a
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Figure 2.3: Disk density profile (red) with the three components, thin disk (green), thick disk
(orange), and halo(purple), normalized as (2.12).

certain number of stars distributed along with different masses. The Initial Mass Function, IMF,
is the function that allows us to study this distribution by telling us the star fraction between the
massM andM+dM. The IMF is auseful tool in astrophysics to study theGalaxy’smassbudget and
its star formation mechanism. This function was introduced by Salpeter 1955, successive studies
were carried on by other astronomers during the years and still the IMF is an open issue. Our
knowledge (its functional form and properties, its applications...) should improve with new and
more deep observations of stars in theMilkyWay as the ones given by theGaiamission, the latest
and most accurate observing mission. For this thesis work we should model the mass budget in
the Solar neighbourhood with the Present Day Mass Function (Sec. 3.4). To do this, there’s the
need to use an IMF model that is representative of the Solar neighbourhood. Our expectation is
that there should be an high density of low-mass objects such as planets and dwarf stars and low
density of highmass stars. For historical reasons we choose to use the Salpeter IMF (Subs. 2.5.1)
even if there will be the need to modify its behaviour in the low-mass regime due to diverging
problems as will be explained in Subs. 2.5.4. Taking into account the low-mass issue we choose
two other IMFs for our calculations: one is the Miller and Scalo (Sect. 2.5.2) and the other is
given by Chabrier (Subs. 2.5.3).
The IMF can be defined as a probability function to describe the probability of a star to have a
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Figure 2.4: Ratios of the subcomponents to the total density distribution.

mass in the range [M;M+ dM] thus the normalization is the following:∫ 100M⊙

0.1M⊙

ξ(M)MdM = 1M⊙ , (2.14)

we want to model a SSP so the integration range spans from the minimum mass necessary to
trigger hydrogen burning in the nucleus (0.1 M⊙) to the maximum mass given by hydrostatic
equilibrium (100M⊙). All the IMFs computed are shown in Figure 2.6 where light green repre-
sents the mass range studied in each reference paper and dark green represents our extrapolation
of the function. In Figure 2.7 superposed IMFs are plotted with annotated mass related objects
as defined in Table 4.3. In order to do this, we changed ξ(log(M)) function to the ξ(M) form as:

ξ(M) =
1

M ln(10)
ξ(log(M)). (2.15)

Usually most of the IMFs used or created are power laws and by convention if the IMF is in the
form ξ(M) the exponent is represented by the letter swhile if the IMF is in the ξ(log(M)) form the
exponent is represented as x with the relation x = s − 1. For the Present Day Mass function in
Section 3.4 the ξ(M) form is used.
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2.5.1 Salpeter IMF

In his paper, Salpeter 1955, Salpeter started remarking the difference between stars in globular
clusters and stars of the Solar neighbourhood. The former ones are all almost of the same age and
mass and can be helpful to study stars of a very narrowmass range while the latter have vaster age
and mass ranges and can be used to construct a luminosity function. In his work Salpeter took
the data from previous studies. The dataset used included stars with magnitudeMv in the range
[−4.5; +13.5] and some corrections have beenmade in order to use only main sequence stars. We
can translate themagnitude range in amass range that helps us identifywhatmasseswere involved
in this calculation. The mass range was fromM = 0.32M⊙ toM = 17M⊙. In this way, Salpeter
firstly calculated the luminosity function. He then calculated the ’original luminosity function’
and from this one the ’original mass function’, namely the Initial Mass Function, finding a power
law relation:

ξ(M) = AM−s ; (2.16)

ξ(log(M)) = BM−x , (2.17)

where s = 2.35, A = 0.17M−1
⊙ , x = 1.35, and B = 0.39 (log M⊙)−1 is the normalization as (2.14).

2.5.2 Miller & Scalo IMF.

Thesecond IMF is fromMiller andScalo1979. In theirwork the authors start fromthe luminosity
function to calculate the PresentDayMass function, that shows how themass is distributed at the
present time. They use a more complex law than the Salpeter one that takes into account also the
slope of the mass-luminosity relation, the vertical distribution of stars, and the fraction of stars
still on the main sequence. The authors make a very detailed study considering also the various
stellar evolution features andcalculated thePresentDayMassFunction in themass range [0.11−61]
M⊙. Starting from this, the Miller and Scalo find the IMF trying different birthrates in order to
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fit the observations. Their approach returned a segmented form for the IMF:

ξ(M) =


A1M−s1 0.1 < M/M⊙ < 1.0

A2M−s2 1.0 < M/M⊙ < 10

A3M−s3 10 < M/M⊙

, (2.18)

ξ(log M) =


B1M−x1 0.1 < M/M⊙ < 1.0

B2M−x2 1.0 < M/M⊙ < 10

B3M−x3 10 < M/M⊙

. (2.19)

In 2.3 are tabulated the coefficients and exponents values.

ξ(M) [M−1
⊙ ] ξ(log M) [(log M⊙)−1]

A1 0.31 B1 0.72
A2 0.31 B2 0.72
A3 1.73 B3 4.00
s1 1.4 x1 0.4
s2 2.5 x2 1.5
s3 3.3 x3 2.3

Table 2.3: Coefficients and exponents of the laws (2.18) and (2.19) calculated using the normal-
ization (2.14) and the relation (2.15).

2.5.3 Chabrier IMF.

Chabrier studied for a long time the IMF issue and producedmany papers in which hemodelled
various functions and confronted them with data and other authors’ work. For our work we fo-
cused on the studies in the years [2001-2003] during whichChabrier published three papers and
studied especially the low-mass domain of the IMF. In Chabrier 2001 the author models the M-
dwarf mass range [0.1 − 0.794] M⊙. In this paper Chabrier proposes 3 different IMFs aiming to
find a good function to fit the stellar mass distribution. One of them is an exponential IMF, an-
other one is a two-leg IMF and the last one is lognormal. The author concludes that all the three
IMFs reproducewell the lowmass domain and theExponential one seems to be best compromise
between the high-mass tail and the low-mass end of the stellar distribution:

ξ(M) = AM−s exp
[
−
(m0

M

)β]
(2.20)

ξ(log M) = BM−x exp
[
−
(m0

M

)β]
(2.21)
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where m0 = 716.4 M⊙, β = 0.25, and the other parameters are shown in Table 2.4. The use of
this function shows a similar approach to the Schechter luminosity function (Schechter 1976)
for the galaxies. In Chabrier 2002 the author uses a broken IMF which finds to describe well the
L-dwarfs domain in the mass range [0.001− 0.072]M⊙:

ξ(M) =

 A1
(

M
m0

)−s1
M < 0.1M⊙

A2
(

M
m0

)−s2
M > 0.1M⊙

(2.22)

ξ(log M) =

 B1
(

M
m0

)−x1
M < 0.1M⊙

B2
(

M
m0

)−x2
M > 0.1M⊙

(2.23)

where the stellar massi is expressed as m0 = 0.1 M⊙ units, and the parameters can be found in
Table 2.4. Finally in Chabrier 2003 the author sums up the recent determinations for IMFs and
PDMFs and concludes that the functional form that best fits the observations is a gaussian form
for masses below 1M⊙ and an exponential one over 1M⊙ for the mass range [0.1 − 100]M⊙. As
suggested by Chabrier in this paper and proposed also by other authors, e.g. Lucas and Roche
2000, Bate, Bonnell, and Bromm 2003, and Luhman 2012, we added a constant part below 0.01
M⊙:

ξ(M) =


A1M−1 M < 10−2 M⊙

A2M−1 exp
[
− (log M−log mc)2

2σ2

]
10−2 < M/M⊙ < 1.0

A3M−s M > 1.0M⊙

(2.24)

ξ(log M) =


B1 M < 10−2 M⊙

B2 exp
[
− (log M−log mc)2

2σ2

]
10−2 < M/M⊙ < 1.0

B3M−x M > 1.0M⊙

(2.25)

where also in this case themass is expressed inmc = 0.079M⊙ units, σ = 0.69, and the coefficients
and exponents are shown in Table 2.4.
For the next calculations of thePDMFwewill use this last lognormal IMFand the Salpeter (2.16)
and Miller and Scalo (2.18) ones.

2.5.4 Investigating the low-IMF: planets.

For this work we want to study the sub-stellar and planet population. We therefore extrapolated
the IMFs described in the previous section down to 1MJup = 10−3 M⊙ and calculated the numer-
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Exponential
ξ(M) [M−1

⊙ ] (2.20) ξ(log M) [(log M⊙)−1] (2.21)
A 42.8 B 98.57
s 3.3 x 2.3

Two-leg
ξ(M) [M−1

⊙ ] (2.22) ξ(log M) [log(M⊙)−1] (2.23)
A1 0.10 B1 0.23
A2 0.10 B2 0.23
s1 1.55 x1 0.55
s2 1.0 x2 0

Lognormal
ξ(M) [M−1

⊙ ] (2.24) ξ(log M) [log(M⊙)−1] (2.25)
A1 0.83 B1 1.93
A2 0.85 B2 1.95
A3 0.24 B3 0.55
s 2.3 x 1.3

Table 2.4: Coefficients and exponents of the illustratedChabrier laws (reference to the equations
are in the table) calculated using the normalization (2.14) and the relation (2.15).

ical and mass fraction given by the IMFs previously described.
Before showing the results, is convenient to describe briefly the relations between the s exponents
that characterize the IMFs. In Table 2.6 are calculated the exponents of the following analytical
expressions:

A
∫

M−sdM =
A

1− s
M1−s (2.26)

A
∫

M ·M−sdM =
A

2− s
M2−s (2.27)

where the first (2.26) if integrated in amass range represents the number of stars while the second
one (2.27) represents theirmass formass range of integration. If we followTable 2.6 and focus on
the last column 2− s, we can see that the Salpeter one is the only IMF function that has a negative
exponent thus if we integrate in the low mass range this function will diverge.
The solution to this problem is to modify the behaviour of the Salpeter IMF. In order to do this,
we can make an analogy with the mass distribution of the Solar System. Since both our SSP and
the Solar System have a total mass of roughly 1 M⊙ we can compare our SSP to the distribution
in mass and number of planets in the Solar System with respect to the Sun. Figure 2.5 shows the
mass and number proportion for planets with respect to the Sun. The first chart in the first row
explains that the mass of Solar System bodies is only a few percents (∼ 0.1%) of the total Solar
System mass while the other charts shows us that the number of sub-stellar bodies is very high,
thus we have a big populations of lowmass objects that doesn’t contributemuch to the total mass
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Figure 2.5: Pie charts to show the proportions between objects in the Solar System.

budget.
We can also establish an upper limit for a functional model of a mass closed system as the Solar
System (or an SSP). If the Solar System has a total mass MSS, most of its mass as said before is
composedby theSun’smass and the remaining is givenby the lessmassiveobjects. Wecan thus set
an upper limit to the number of object of the samemass that can possibly compose this remaining
mass of the Solar System. For example, we can calculate the maximum number of Jupiter-like
planets that can compose the Solar System as follows:

NJup =
MSS −M⊙

MJup
(2.28)

this relation is true for every object of mass M thus we can generalize this relation obtaining an
upper limit for the number of objects that trend asN(M) ∝ M−1:

N(M) =
MSS −M⊙

M
. (2.29)

In Table 2.5 are shown values for the main Solar System objects.
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Object Mass [MJup] Number

Jupiter 1 1.5
Saturn 0.30 4.9

Neptune 0.053 27
Uranus 0.045 32
Earth 0.0031 466
Venus 0.0025 572
Mars 0.00034 4339

Table 2.5: In this table are calculated the number of objects of the same mass as the seven main
Solar System objects as if they would compose the totality of the remaining Solar Systemmass as
(2.29).

Keeping in mind this analogy, we want to re-model the Salpeter IMF in the low mass domain
to avoid diverging behaviours and to resemble the Solar System scenario. To do this, we choose
to maintain constant the IMF below 0.1M⊙:

ξ(M) =

 A1 M < 0.1M⊙

A2M−s M < 0.1M⊙

(2.30)

As we will see especially in Table 2.8 this alteration doesn’t resembles perfectly the Solar System
scenario as the low mass domain still composes the ∼ 16% of the total mass. The choice of a
constant trend is due to the fact that for avoiding diverging behaviours the trend should be s < 2,
in this way in the last column of 2.6 the exponent will be 2− s ≥ 0. The choice of s = 0 is mainly
due to simplify the computation and to the known errors in the determination of a good mass
luminosity relation for the sub-stellar regime since in this mass range the sub-stellar objects are
fully convective and if still there isn’t a consolidate theory there can be over- or underestimates
of the numerical and mass budget. Also in literature we can find confirm of the unsuitability of
the Salpeter IMF in the low mass range as in Pardi and Ferrini 1994 that remark that there is no
theoretical reason for the Salpeter function behaviour for low masses. From now on, we will use
this modified Salpeter IMF in our calculations.
We can now calculate the numerical fraction of planets over the total which is calculated as fol-

ξ(M) s 1− s 2− s
Salpeter, eq. (2.16) 2.35 -1.35 -0.35

Miller & Scalo, eq (2.18) 1.4 (M < 1M⊙) -0.4 0.6
Lognormal, eq. (2.24) 1 (M < 1M⊙) 0 1

Table 2.6: Values for the exponents used in the three IMFs and for their integrations.
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lows:
Nplanets

Ntot
=

∫ 0.1M⊙
0.001M⊙

ξ(M)dM∫ 100M⊙
0.001M⊙

ξ(M)dM
. (2.31)

The results of this calculations are shown in Table 2.7 and show that the situation can be consid-
ered similar for the three IMFs because all of them show a prevalence of planets over the total.
This is only a numerical prevalence because if we look at Table 2.8 we can see that the mass ratio
of planets over the total is for all the IMF roughly less than the 15%. The mass fraction is thus cal-

ξ(M) Number of planets Total Number Nplanets/Ntot

Salpeter, eq. (2.30) 3.81 6.65 0.57
Miller & Scalo, eq (2.18) 11.8 13.4 0.883
Lognormal, eq. (2.24) 3.87 5.36 0.722

Table 2.7: For each IMFused thenumber of planets and the total number of planets are calculated
and the fraction over the total as (2.31).

culated re-normalizing the IMF over the sub-stellar range [0.001 − 0.1] M⊙ in order to quantify
the mass for the sub-stellar range as follows:

Mplanets

Mtot
=

∫ 0.1M⊙
0.001M⊙

ξ(M)MdM∫ 100M⊙
0.001M⊙

ξ(M)MdM
. (2.32)

Table 2.8 shows the results of the calculations. As we said these results show that even if the
numerical fraction can be high, planets make only a little fraction of the total mass of the system.

ξ(M) Mpl [M⊙] Mtot [M⊙] Mplanets/Mtot < Mpl > [MJup]

Salpeter, eq. (2.16) 1.9·10−1 1.19 1.6·10−1 50
Miller & Scalo, eq. (2.18) 1.4·10−1 1.14 1.2·10−1 11
Lognormal, eq. (2.24) 8.3·10−2 1.10 7.7·10−2 21

Table2.8: This table shows themass fractionofplanetsover the totalmassof the stellar population
used calculated as in (2.32).

2.6 Star Formation Rate

The ability to create new stars for a galaxy is measured by the Star Formation Rate (SFR) that
shows howmany solar masses of interstellar gas become stars each year. This quantity is useful to
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Figure 2.6: In this Figure, used IMFs are plotted. Dark green represents the extrapolated values
while light green represents the mass range studied by reference authors.
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Figure 2.7: Superposition of the calculated IMFs with highlighted planets, brown dwarfs, and
stars mass domain.

understanding the degree of galaxy’s activity (e.g. a starburst galaxy will have a SFR way higher
than an elliptical one). The first studies for an analytical model for the SFR begin with Schmidt
1959 that thought that the SFR should be linked to the total amount of gas in the galaxy. Basing
upon data of previous work and upon the studies of the luminosity function (Salpeter 1955) and
the distribution of the stars in the Galaxy, Schmidt proposed a general model in which the SFR
can be a function of time that depends on the gas density by a power n. Schmidt proposes the
following model, for n = 1:

f(t) = f(0)e−
t
τ (2.33)

where e−
1
τ = P, P is the gas fraction (usually, P = 0.20) and (1− P)τf(0) = 1. For n > 1:

f(t) = f(0)
[
1+ (n− 1)

t
τ

]− n
n−1

(2.34)

where τ = n−1
P1−n−1 and (1− P)τf(0) = 1.

In this thesis we used four different SFR, three of which are Schmidt type n = 0, n = 1, n = 2 and
the last one is a Levy type SFR.
Our SFRs have dimensions of [M⊙yr−1pc−3] because is normalized to the local mean stellar den-
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sity using 2.13: ∫ Tgal

T0
φ(t)dt =< ρ > , (2.35)

In equation (2.35) the SFR is integrated from the lifetime of the most massive star T0 to Galaxy’s
age Tgal.
The first SFR considered is the constant one:

φ(t) = A0 (2.36)

with A0 = 3.1 · 10−12 M⊙yr−1pc−3 as (2.35). The second one is the exponential form (n = 1) as
said before:

φ(t) = A1e−
t
τ , (2.37)

where τ = Tgal
2 as in Miller and Scalo 1979, and A1 = 7.2 · 10−12 M⊙yr−1pc−3. We chose also the

quadratic case (n = 2):
φ(t) = A2

1(
1+ t

Tgalτ

)2 . (2.38)

where τ = P
1−P , taken as P = 0.20 as in Schmidt 1959 and Miller and Scalo 1979, and A2 =

3.1 · 10−11 M⊙yr−1pc−3. Another hypothesis is the one that connects the activity of the galaxy to
his morphological type:

φ(t) = A3t−η, (2.39)

whereA3 = 1.6 · 10−7 M⊙yr−1pc−3, and η depends on themorphology of the galaxy. For theMilky
Way (Sb), η = 0.5 as in Buzzoni 2005.
The values for the SFR calculated today, φ(Tgal) are shown in Table 2.9. The values for SFR today
range from 0.31 · 10−12 [M⊙yr−1pc−3] to 3.1 · 10−12 [M⊙yr−1pc−3], due to the different behaviour of
the functions taken into account, as remarked also by plot in Figure 2.8. In Figure 2.9 is plotted
the cumulative function for the SFRs used that shows how in Tgal time the total mass formed by
different SFRs equals the mass of disk stars.

φ(t) φ(TGal) [10−12 M⊙yr−1pc−3]

Constant, eq. (2.36) 3.1
Schmidt n = 1, eq. (2.37) 0.97
Schmidt n = 2, eq. (2.38) 0.31

Levy, eq. (2.39) 1.6

Table 2.9: Values of the local SFRs used calculated today (φ(Tgal)).
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Figure 2.8: Superposition of constant, Schmidt n = 1, Schmidt n = 2, Levy SFRs.

Figure 2.9: Cumulative representation of the SFRs used. After aTgal = 10Gyr themass of objects
formed is equivalent to the Galaxy’s mean density.
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Chapter 3

TheGalaxy properties in the solar neighbor-
hood

3.1 Introduction

In this Chapter wewill calculate the PresentDayMass Function, PDMF, and give some values for
the stellar and remnants density distribution. These values will be compared to data in the next
Chapter 4 to see if our calculation could match the latest observations. The PDMF will then be
used to give the stellar density around the Sun and, together with the mean velocity of stars and
their dynamical limits, will tell us different information on the interactions of stars with the Sun
in Chapter 7.
TheChapterwill thus startwith some fundamentals of stellar evolution given in 3.2 and in Section
3.3will be proposed a function for the calculationof theMainSequence lifetime givenbyBuzzoni
2002.
In Section 3.4 we will discuss the theory of PDMF and show its functional form.
In Section 3.5 we will normalize the PDMF in order to match to the observed stellar density in
the Sun neighbourhood and will calculate the amount of stellar remnants.

3.2 Setting the context

To establish the features of the Solar Systemneighbourhood is important to understand the char-
acteristics of the stellar populations surrounding the Sun and to assess their evolutionary stage.
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A star is defined by its ability to burn hydrogen and other elements in its core. The mass of a star
sets a limit to the possibility of hydrogen burning ignition in the core that is typically 0.1M⊙ while
there is a maximum mass of about 100M⊙ imposed by hydrostatic equilibrium.
The entire evolution of a star can be studied using theHRdiagramwhich relates the luminosity of
a star with its temperature. Once a star completed its formation stage, it’s considered a virialized
system. Hydrogen burning begins in the core and the star begins its life positioning on the main
sequence, MS.
TheMS is one of the sequences of the HR diagram and is temporally the longest. Evolution after
the MS is very fast for every star and post-MS stages are different depending on the initial mass
of the star. We can use as a timescale for the stellar lifetime the time spent on theMS because this
represents about 90% of its total lifetime (timescales for evolutionary stages post-MS are almost
one magnitude less than the MS ones).

3.3 Stellar Age - TurnoffMass relation

TheMS is the only sequence of theHRdiagram that links the luminosity of a star to itsmass, from
empirical studies we know that L ∝ M3.3. When the hydrogen burning in the core stops, the star
leaves the MS and continues its evolution towards lower temperatures. High mass stars evolve
more rapidly than low mass ones, besides higher mass stars will be the first to leave the MS and
then gradually lower masses. This generates an important feature in observations called turnoff
point (TO) that shows the maximum luminosity (or mass) at which the MS is truncated and is
characteristic of the evolutionary stage of a stellar population. In the article of Buzzoni 2002, the
TO evolution in function of time is calculated as follows:

log t = 0.825 log2(MTO/120) + 6.43 (3.1)

where t is the time expressed in yr and MTO represents the turnoff mass in M⊙. This relation is
shown in Figure 3.1.

3.4 Present DayMass Function

Adisk galaxy like theMilkyWay can recycle its gas during its life, based on the galaxy’s star forma-
tion history. The recycled gas can form new stars at different times, making the galaxy’s colours
bluer. Star formation in disk galaxies occurs at different times so the galaxy can be modelled ad a
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Figure 3.1: Age - Turnoff Mass relation. Grey dashed lines show the Turnoff Mass for a SSP of 10
Gyr.

Composite Stellar Population, CSP. Globular clusters or elliptical galaxies on the other hand are
Simple Stellar Populations: all the stars are generated in a single burst of star formation.
While a SSP is well described using an IMF , to describe a CSP there’s the need to know what’s
the effect of star formation history on the IMF. A CSP can be described using the Present Day
Mass Function, PDMF, that at a fixed time t shows the distribution of the stellar mass for volume
unit:

Φ(M) =

ξ(M)
∫ Tgal
Tgal−τMS

φ(t) τMS < Tgal

ξ(M)
∫ Tgal
0 φ(t)dt τMS ≥ Tgal

, (3.2)

where ξ(M) is one of the IMFs described in Subsection 2.5, φ(t) is one of the SFRs in Subsection
2.6, Tgal is the age of the galaxy and τMS represents the main sequence lifetime of a star of mass
M and it’s calculated using (3.1). This distribution is different based on stellar lifetimes: if a star
has a main sequence period greater than the age of the galaxy then the IMF can still be used to
describe the stellar population, otherwise, SFR has to be taken in to account.
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3.5 Stellar distribution

For this work, we want to describe how the stellar mass is distributed in the solar neighbourhood
and, in particular, in the thin disk. The local mean density (2.13) is used to normalize the PDMF
Φ(M) as follows: ∫ 100M⊙

0.1M⊙

Φ(M)dM =< ρ > . (3.3)

This calculation has been done for the IMFs in Subsection 2.5. Each IMF has been multiplied
by the SFRs described in Subsection 2.6. The results are shown in Figure 3.2 for a Salpeter IMF,
Figure 3.3 for a Scalo IMF, and in Figure 3.4 for a Lognormal IMF. In each figure, the dashed line
represents the IMF adopted and the continuous lines are the resulting PDMF having different
colours for different SFR.

Figure 3.2: PDMF using Salpeter IMF.
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Figure 3.3: PDMF using Miller and Scalo IMF.

3.5.1 Remnants distribution

Wealso calculated the numerical andmass quantity of stellar remnants such as white dwarfs, neu-
tron stars, and black holes. To do this, the following calculations have been made:

Nrem =

∫ Mup

M(t0)
ξ(M)dM−

∫ Mup

M(t0)
Φ(M)dM (3.4)

Mrem =

∫ Mup

M(t0)
ξ(M)MdM−

∫ Mup

M(t0)
Φ(M)MdM (3.5)

whereM(t0) is the today turnoff mass andMup is the maximum mass used in our calculations, 100
M⊙. In order to estimate the quantity and the mass of WD remnants we changed Mup to 8 M⊙.
The results are shown in Table 3.1 in which are tabulated the number andmass of both remnants
and white dwarfs, the mean masses, calculated as the ratio between the mass and the number of
remnants and WD, and the fraction of WD of the total of remnants.
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Figure 3.4: PDMF using Lognormal IMF.
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Chapter 4

Observations - Gaia mission

4.1 Introduction

In this Chapter wewill compare ourmodels with latest data fromGaiamission. This step is useful
to ensure that our model can be as much representative as possible of the Solar vicinity. Data
shown in this Chapter will also be used in Chapter 7 to compare our results to the observations.
In Section 4.2 we will give an overview of the Gaia mission, describing the satellite itself and how
the data is collected and released.
In Section 4.3 we will compare our work with data from Reylé, C. et al. 2021 which used GAIA
data of the first 10 pc from Sun from 3rd Early Data Release.

4.2 TheGaia mission

Gaia is an European Space Agency (ESA) mission based on astrometry techniques. Gaia is an
acronym that stood for Global Astrometric Interferometer for Astrophysics but since the work-
ing method has changed to astrometry, this acronym is no longer used. The mission goal is to
catalogue objects in the solar neighbourhood using astrometry to obtain their spatial and veloc-
ity distribution. Gaia is the successor of theHipparcos¹mission that lasted from1989 to 1993 and
used astrometry to determine position, proper motions, and photometric data for more than 2,5
million of stars, generating two catalogues, the Hipparcos (of about 110.000 stars) and Tycho-2
(of about 2.5 million stars).

1. High Precision Parallax Collecting Satellite
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Figure 4.1: Artistic impression of the Gaia satellite. Credits: ESA–D. Ducros, 2013.

Gaia aims with its observations to expand the catalogues given by Hipparcos mission. The Gaia
satellite, Figure 4.1, was launched on 19 December 2013 at 09:12:19.6 from French Guiana to-
wards the Lagrange point L2 of the Sun-Earth-Moon system, reached 26 days after the launch. La-
grangian points are defined by the three body problem as stationary points, five in total, in which
the total gravitational force of two massive objects equals the centrifugal force of a small object
of negligible mass. If the latter mass is in L2, it will share its orbit with the second less massive
object. For the Sun-Earth-Moon system the second Lagrangian point L2 is placed in the anti-Sun
direction, about 1.5 · 106 km from Earth, and the Gaia satellite shares its orbit with Earth, moving
around L2 point in a Lissajous-type orbit. For the astrometric problem, L2 point is particularly
important to have a known reference system fromwhich to calculate parallaxes. In Figure 4.2 the
sky scanning pattern for Data Release 2 (DR2) is shown.
Gaia satellite has a very complex hardware/software composition due to the various tasks that
must be accomplished before transmitting data to the ground. Data are detected by different
instruments: astrometric, photometric, and spectroscopic ones, in order to obtain differentmea-
surements from the light collected by the telescope.
The telescope is composed by two identical mirrors having apertures of 1.45x0.50mand separated
by an angle of 106.5 degrees. Mirrors have 35m of focal length and the light optical paths are ini-
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Figure 4.2: This figure shows the scan pattern of Gaia across the sky based on real data. This
scan is related to the period between 1October 2014 and 31May 2016, that corresponds to DR2
data. The colors show the direction of the scan with legend on the border of the image. Credits:
ESA/Gaia.

tially separated and then merged to reach the focal plane. The latter is composed by 106 CCD
detectors and has five functions: metrology (to ensure that the wave front is coherent), object
detection, astrometry, photometry, and spectrometry.
Theastrometric instrument returns distance andparallax for theobservedobject. Thewavelength
range of the observations is 330− 1050 nmgiven by theGband photometricGaia filter. The survey
is flux limited thus there isn’t a preselection of sources to observe.
The photometric instrument measures the Spectral Energy Distribution, SED, of the source and
is composed of two disperser prisms, the first called BP and operating in the wavelength range
330− 860 nm and the second one called RP operating in the 640− 1050 nm range. These data can
be used for photometry, e.g. in Figure 4.3 is shown theHR diagram obtained from the DR2 data.
The spectroscopic instrument, also called radial-velocity spectrometer, RSV,measures the radial
velocities from spectra of the sources. RSV is an integral field spectrograph with a resolution of
R ≈ 11700 that operates in the wavelength range 845− 872 nmwhere is visible the CaII triplet, and
the hydrogen Paschen series useful to determine the radial velocity of early-type stars.
Gaia’s data can be used for Galactic astrophysics such as to better define the structure and size of
the Milky Way, to define the star formation history of our Galaxy, and to study its stellar popula-
tions. Gaia’s observations are useful also to study stellar astrophysics such as stellar evolution and
properties of binary ormultiple systems and also can be used to study exoplanets and solar system
features. Thanks to Gaia’s high resolution, it’s possible also to observe brightest stars in galaxies
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Figure 4.3: Hertzsprung Russel diagram from DR2 Gaia data (> 4 million stars). Credits:
ESA/Gaia/DPAC, CC BY-SA 3.0 IGO.

of the Local group, and to observe distant galaxies and quasar as a magnitude limited sample.
Gaia’s data are collected in a catalogue and published in the so-called data release:

• 1st Data Release, DR1: 14 September 2016;

• 2nd Data Release, DR2: 25 April 2018;

• Early 3rd Data Release, EDR3: 3 December 2020;

• 3rd Data Release, DR3: first half 2022;

with all the data accessible to public. Each data release generates a vaster and more accurate cat-
alogue because Gaia has more time to measure the sources. An example from is in Figure 4.4 in
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which the trajectory of 40000 stars are plotted basing on the EDR3 data (twice more accurate
than DR2).
Further general references about theGaiamission canbe found inGaiaCollaboration et al. 2016.

Figure 4.4: Superposed to the image of theMilkyWay there are trails that represent the trajectory
of 40000 stars within 100 pc. Their propermotions aremeasured byGaia satellite and catalogued
in the EDR3. Credits: ESA/Gaia/DPAC; CC BY-SA 3.0 IGO. Acknowledgement: A. Brown, S.
Jordan, T. Roegiers, X. Luri, E. Masana, T. Prusti and A. Moitinho.
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4.3 Comparison of our work with Gaia data.

Our goal is to select among the models given in Section 3.4 the one that better depicts the So-
lar neighbourhood to have a realistic representation for subsequent dynamical calculations. We
searched for the latest studies of the Solar System neighbourhood population and found the ar-
ticle of Reylé, C. et al. 2021 in which the authors make a catalogue of stars enclosed in a 10 pc
distance from the Sun.
The stars of this catalogue were selected using SIMBAD², an astronomical database for objects
that don’t belong to the Solar System. The selection criterion for SIMBAD query was that the
maximumobject parallax should have been of 100mas that translates in amaximumdistance of 10
pc basing on the parallax relation α[as] = 1[AU]

Dobj[pc]
.

Data obtained by authors have been checked and updated using the latest EDR3Gaia values and
collected in a 559 objects catalogue that spans from the most luminous A-class stars to exoplanets
with highlights on the system type (single star or multiple) and the spectral type distribution.
The full catalogue is available at https://gucds.inaf.it/GCNS/The10pcSample/ inwhich for each
star several information were given as:

• System name;

• Category;

• Position in right ascension and declination coordinates;

• Epoch;

• Parallax;

• Radial velocity;

• Spectral type;

• Photometric data;

• Identifiers.

4.3.1 Spectral type -Mass conversion.

Ourmodels state the number of stars by volume unit for a givenmassMwhile the catalogue only
gives information on spectral type of stars. To compare models and catalogue data is thus firstly

2. Set of Identifications, Measurements, and Bibliography for Astronomical Data
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necessary to convert data from spectral type tomass. To do this we used the table given by Pecaut
andMamajek2013 last updatedon02/03/2021andavailable at thewebsitehttp://www.pas.rochester.edu/.
In Figure 4.5 is shown the conversions from spectral type to mass and specific values for each
spectral type are shown in Table 4.1.

Figure 4.5: Spectral type - Mass conversion. In this plot each point links the spectral type to
the mass given in Pecaut and Mamajek 2013. The points between spectral types correspond to
sub-spectral classes that usually range from 0 to 9.

This conversion relation is truncated at L2 spectral class because for lower masses the main
sequence overlaps the Hayashi track thus the objects are fully convective and is difficult to have a
proper mass-luminosity relation. The Hayashi track is an almost vertical curve that splits the HR
diagram into an hydrostatic equilibrium zone and a non-hydrostatic equilibrium zone. Active
stars belong to the first zone while forming stars belong to the latter zone. Pre-Main Sequence
stars stand on the Hayashi track and are characterized by full convection. When the PMS star on
the Hayashi track develops a radiative core and increases its mass and temperature it leaves the
track towards the hydrostatic equilibrium zone stopping on theMain Sequence in which the star
will begin hydrogenburning. TheHayashi track sets a limit in theHRdiagram to stellar evolution:
all the evolution takes place in the hydrostatic equilibrium zone in which the star structure can be
radiative, while the more it’s near to Hayashi track, the more its structure becomes convective.
An example of the role of the Hayashi track can be taken from data in Reylé, C. et al. 2021 in
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Figure 4.6 where a Color-MagnitudeDiagram, CMD, is plotted using BP, RP, andG photometric
filters fromGaia telescope. In this Figure is clearly visible themain sequence and thewhite dwarfs
sequence while for low G magnitudes (>16) the main sequence presents a tilt corresponding to
the presence of the Hayashi track. These low mass objects stand on the Hayashi track, thus are
fully convective and the usual set of equation for stellar structures doesn’t work. This cause some
difficulty in the determination of a mass-luminosity relation and bigger uncertainties in the mass
estimate.
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Spectral Class Mass [M⊙] Spectral Class Mass [M⊙] Spectral Class Mass [M⊙]

O7 27 F1 1.5 K5 0.7
O7.5 25 F2 1.46 K6 0.69
O8 23 F3 1.44 K7 0.64
O8.5 21.3 F4 1.38 K7.5e 0.63
O9 19.8 F5 1.33 K8 0.62
O9.5 18.5 F6 1.25 K9 0.59
B0 17.7 F6.5 1.23 M0 0.57
B0.5 15 F7 1.21 M0.5 0.54
B1 11 F8 1.18 M1 0.5
B1.5 10 F8.5 1.15 M1.5 0.47
B2 7.3 F9 1.13 M2 0.44
B2.5 6 F9.5 1.08 M2.5 0.4
B3 5.4 G0 1.06 M3 0.37
B4 5.1 G1 1.03 M3.5 0.27
B5 4.7 G2 1 M4 0.23
B6 4.3 G3 0.99 M4.5 0.184
B7 3.92 G4 0.985 M5 0.162
B8 3.38 G5 0.98 M5.5 0.123
B9 2.75 G6 0.97 M6 0.102
B9.5 2.68 G7 0.95 M6.5 0.093
A0 2.18 G8 0.94 M7 0.09
A1 2.05 G8.5 0.92 M7.5 0.088
A2 1.98 G9 0.9 M8 0.085
A3 1.86 K0 0.88 M8.5 0.08
A4 1.93 K0.5 0.87 M9 0.079
A5 1.88 K1 0.86 M9.5 0.078
A6 1.83 K2 0.82 L0 0.077
A7 1.77 K2.5 0.8 L1 0.076
A8 1.81 K3 0.78 L2 0.075
A9 1.75 K3.5 0.75
F0 1.61 K4 0.73

Table 4.1: Extract of the Pecaut and Mamajek 2013 table available at this link containing only
Spectral Class and Mass columns. This Table is represented in Figure 4.5.
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Figure 4.6: Color magnitude diagram for stars in the Reylé, C. et al. 2021 catalogue using Gaia
photometric filters G, BP, and RP.
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4.3.2 Comparison between data andmodels.

Since some stars of the catalogue don’t have spectral type classification we ignored them for our
comparison keeping only the ones with known spectral type. The ’new’ catalogue has then 321
stars, 99 brown dwarfs, 77 planets, and 21 white dwarfs for a total of 518 objects and can be repre-
sented by the radar chart 4.7. In order to compare ourmodel to data we integrated each PDMF in
a spherical volume of 10 pc radius and translated data from spectral type tomass bins as described
in the previous subsection. The white dwarfs number is calculated as explained in 3.5.1 for the
volume integrated PDMFs.

As a first check on this dataset it is possible to estimate the stellar mass density in this 10 pc
radius volume. We can thus compare the Gaia dataset density with the mean density of the disk
calculated as shown in Section 2.4. Using as reference Table 4.1 we can sum up all the dataset
masses. Since the Table stops at L2 spectral type we assumed a meanmass ⟨MBD⟩ = 0.07M⊙ for
browndwarfs, and ameanmass ⟨Mpl⟩ = 0.001M⊙ for planets obtaining the results shown inTable
4.2. Themeandensity of the chosenmodel seem to agreewell to themeandensity calculated from
the dataset. If we compare the two values we get that our model’s predicted mean density can be
considered convincing in an accuracy range of |D−M|

D = 6.1% thus validating the chosen value for
the Oort surface density.

Total Mass [M⊙] Mean density [M⊙pc−3]

Gaia dataset 140 0.033
Our models (2.4) 134 0.032

Table 4.2: Comparison between total mass of Gaia dataset and our model prediction for total
mass in a 10 pc radius sphere and density. Model mean density is calculated as (2.13).
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Figure 4.7: Logarithmic radar chart representing Gaia data given by Reylé, C. et al. 2021 listed in
Table 4.3.

Comparison by object category. Onepossible classification givenby authors is by object category:

• Stars - from spectral class A to spectral class K;

• Low mass stars - spectral class M;

• Brown dwarfs - spectral classes L,T,Y;

• Planets;

• White dwarfs.

We then firstly compared the amount of objects in each category with our model. We integrated
the PDMF distributions in themass intervals shown in Table 4.3 in order to compare themodels
to data. The results of this integration are shown in Figures 4.8, 4.9, and 4.10, 4.11 where PDMFs
calculated using same SFR and Gaia data are plotted superposed in logarithmic scale.
As can be seen from plots, PDMFs using Salpeter-type IMF seem to overestimate the number of
objects in brown dwarfs and low mass category while stars, planets, and white dwarfs are under-
estimated. Miller and Scalo IMFbased PDMFs instead have a huge overestimate (∼ 3 dex) in the
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Object category Mass range [M⊙] Spectral type Number of objects in catalogue
Stars [0.59-2.18] A to K 68

Low Mass [0.078-0.57] M 253
Brown Dwarfs [0.013-0.077] L, T, Y 99

Planets [0.001-0.013] 77
White Dwarfs 21

Table 4.3: This table associates to object category given by Reylé, C. et al. 2021 the spectral type,
the mass range calculate as in Subsection 4.3.1, and the relative object count for the catalogue.

Figure 4.8: Logarithmic radar chart representing PDMFs using constant SFR integration results
for different IMFs used superposed to Gaia data.

planet category while there seems to be agreement in low mass and stars category. PDMFs cal-
culated using Chabrier IMF also overestimate the planet and brown dwarfs domain while for low
mass, stars, and white dwarfs there seems to be agreement with data. Considering the different
SFRs used, there isn’t an significant variation on the number of objects calculated but observing
the charts, we can see that PDMFs using constant SFR or Levy SFR have counts similar to Gaia
data for stars, low mass stars, and white dwarfs. As we disclosed in the previous Section, there
is the possibility that the Gaia dataset is incomplete, especially for low mass objects as brown
dwarfs, planets, and white dwarf that are more difficult to observe.
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Figure 4.9: Logarithmic radar chart representing the 3 different PDMFs calculated using Schmidt
n = 1 SFR and integrated in the mass intervals and superposed to Gaia data.

Figure 4.10: Radar chart showing 3 different PDMFs calculated with Schmidt n = 2 SFR super-
posed to Gaia data in logarithmic scale.
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Figure 4.11: Radar chart in logarithmic scale showing the 3 different PDMFs using Levy SFR
integrated in the mass interval and superposed to Gaia data.

Comparison by spectral type classification. Another approach we used to compare our models to
data is to rebin data every two mass bins in order to have more than one count for bin, obtaining
a total of 24 bins. We integrated our model in the same mass bins and plotted the results in Fig-
ures 4.12, 4.13, and 4.14. All the PDMF models give an acceptable estimate over the mass range
[0.1− 1]M⊙ while they all underestimate the stars count at highermasses, constant SFR and Levy
SFR gives less underestimate than Schmidt ones. As in already noticed PDMFs using Miller and
Scalo IMF are the ones that maximum overestimate the quantity of stars at low masses and also
Chabrier IMF causes an overestimate in the low mass range. PDMFs using Salpeter-type IMF
4.12 show instead better agreement in the low mass range.
To establish which model best fitted data we performed the Kolmogorov-Smirnov Test with the
results tabulated in 4.4. According to these results and setting the limit for the p-value as 0.05, we
conclude that we can’t reject any of the models proposed. In Chapter 7 we will although sim-
plify our calculations by taking the Salpeter type PMDF computed with constant SFR and we
will define a lower and upper boundary by taking the minimum and maximum PDMF model.
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Figure 4.12: In these plots data andmodel are represented. Data is plotted with pink colours and
dot markers while model is plotted with green colours and square markers. The PDMF models
shown are the ones using Salpeter-type IMF and a different plot is given for each SFR considered.
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Figure 4.13: Data is plotted using pink colour and dot markers while model is represented with
orange colour and squaremarkers. ThePDMFmodels shown are the ones usingMiller and Scalo
IMF and a different plot is given for each SFR considered.

47



Figure 4.14: Data is plottedwith pink colours and dotmarkers whilemodel is plotted using green
colours and square markers. The PDMF models shown use Chabrier IMF and a different plot is
given for each SFR considered.
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ξ(M) φ(t) p-value

Salpeter-type IMF

Constant SFR 0.00010
Schmidt n = 1 SFR 0.00041
Schmidt n = 2 SFR 0.00041

Levy SFR 0.00041

Miller & Scalo IMF

Constant SFR 0.012
Schmidt n = 1 SFR 0.012
Schmidt n = 2 SFR 0.012

Levy SFR 0.012

Chabrier IMF

Constant SFR 0.012
Schmidt n = 1 SFR 0.012
Schmidt n = 2 SFR 0.012

Levy SFR 0.012

Table 4.4: Results of the Kolmogorov-Smirnov test for our PDMFsmodels. All themodels show
p < 0.05.
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Chapter 5

Kinematics

5.1 Introduction

In this Chapter is discussed local kinematics of stars starting from a brief outline on the history
of kinematic studies in Section 5.2.
InSection5.3wewill discuss about thekeplerian approach to the calculationof the rotation curve.
In Section 5.4 we will show the Oort constants and the quantities which can be derived by them.
Wewill also show the rotation curve calculated integratingour profile densitymodel and compare
its results with up to date Oort constants values. The rotation curve will be used to determine
the Galaxy mass at the Sun position and thus determine the Hill radius value for Star-Galaxy
interaction in Chapter 6.
In Section 5.5wewill thendefine theLocal StandardofRest and get the local stellarmean velocity
by averaging over the results of some chosen authors. This result will be employed in Chapter 7
along with the results of the PDMF integration to calculate the duration and frequency of stellar
interaction with the Sun.

5.2 Setting the context

At the beginning of the 20th century there wasn’t a common approved theory about Galaxy rota-
tion but some astronomer were approaching this issue. Lindblad is one of the first that thought
our Galaxy doesn’t has a solid body rotation but instead that rotation should be different along
the radial distance from the Galactic centre (Lindblad 1925). Lindblad suggested also that the
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Galactic system should be in dynamical equilibrium and divided into subsystems rotating around
the central symmetry axis of the Galaxy.
Dividing the Galaxy into components means that various subsystems could have different veloc-
ities thus being an useful description for the observed high stellar velocities that were out of the
mean velocity observed at that time (according to Lindblad’s hypothesis these high velocity stars
should orbit nearer to Galaxy’s centre).

5.3 Rotation Curve

The kinematics of stars in Galaxies is studied since the beginning of 1900. The first observations
of the rotation of galactic disks were uncertain due to the lack of precision and sensitivity of in-
struments back then. Methods of rotation velocity calculation included observation of single
stars using photographic plates or spectroscopy in the visible wavelength range. In the work of
van Maanen 1916 the author infers a rotation for M101 galaxy from the observation of about 20
single stars in 87 different points of the galaxy with a total observation time of almost 24 hours,
of course this method was the less accurate because is very difficult to observe resolved stars and
their motion in outer galaxies. The spectroscopic method consisted in the observation of optical
emission of HII gas. One of the first astronomers that made this kind of observations was Pease
that from1915 started to calculate the rotational velocities for different disk galaxies fromabsorp-
tion lines as in Pease 1916 where the author calculates the rotation curve for NGC4594 galaxy
using 80 hours of observation and obtaining a rotation curve decreasing with the distance from
the nucleus that fitted with a linear law. Further on another contribution to the calculation of ro-
tation curves for disk galaxies was given by Babcock which in 1939 calculated the rotation curve
and mass for Andromeda galaxy (Babcock 1939). Babcock used spectroscopic observations as
Pease and from the rotation curve inferred, using newtonian physics, a mass of 1.02 · 1011 M⊙.
Rotation curvesonceweremadeonly for inner regionsof galaxies because telescopesonlyworked
in the visiblewavelength range so the observations could onlymap the presence of stars. With the
beginning of radio observation from 1940 the astronomers have been able to add points for outer
zones thanks to the observation of 21 cm emission from HI clouds that extend much more than
stars in the galaxy. A big step forward into the characterization of kinematics and mass of disk
galaxies wasmade by Vera Rubin with her work in 1970-1980 (e.g. in Rubin, Ford, andThonnard
1980) where the presence of darkmatter in the outer zones of the galaxies was evidenced by rota-
tion curves as in Figure 5.1. The observed rotation curves were thus showing an almost constant
velocity for increasing distance from the galactic centre while from a keplerian point of view ve-
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Figure 5.1: This plot represents the rotation curves for 21 disk galaxies taken from the work of
Rubin, Ford, and Thonnard 1980.

locity should decrease as r−1/2. Actually, the observationsmade byRubin and her colleagues were
still too near to the centre of galaxies to evidence the presence of dark matter but paved the way
to further investigations about this topic.
The rotation curve can thus be well approximated by keplerian theory in the first 20− 30 kpc from
centre. From Kepler’s third law:

M =
RV2

G
, (5.1)

we can extrapolate velocity to get the shape of the rotation curve:

V =

√
GM
R

. (5.2)

If we assume a density profile we can substitute the mass and calculate the rotation curve:

M = 4π
∫ R

0

∫ Z

0
ρ(r, z)rdrdz (5.3)

where 0 is the galactic centre position, r is the distance from the galactic centre, and z is the height
on the Galactic plane. Our goal was to calculate the rotation curve starting from the density pro-
file described in Sect. 2.4 and compare the value of the rotation velocity with the one found by
observations (described in the next section). In this way we can check if the calculated Galaxy
mass profile is reliable. We used thus integrated the density profile (2.5). We didn’t assume a
bulge profile since but we simply added the bulge mass value Mbulge = 8.9 · 109 M⊙ taken from
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Figure 5.2: Sketch of the objects involved in the calculations for the differential rotation. The
subscript 0 indicate Sun related sizes. Credits: Fundamental Astronomy 2007.

McMillan 2016. The results of this integration are shown in the next section, compared to the
values given by Oort constants observation.

5.4 Oort Constants

Stars and gas clouds in disk galaxies have a differential rotation, that is, the system doesn’t rotate
like a rigid body but instead velocity depends on the distance from the galaxy centre. We can
model this taking into account the scheme of velocities shown in Figure 5.2 where the motion
of a star S from a distance R from Galaxy centre and the motion of the Sun at a distance R0 are
pictured. We can split the relative velocity, v = V0 − V, into radial, vr, and tangential, vt, velocity
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and write them as:

vr = V cosα− V0 sin l (5.4)

vt = V sinα− V0 cos l (5.5)

where V is the velocity of the star S, V0 is the velocity of the Sun (both with respect to the Galaxy
centre), α is the angle between the velocity vector of the star S and the line of sight, and l is the
galactic longitude. If we takeω as the angular velocity:

ω =
V
R

(5.6)

ans use trigonometry we can re-write the components of relative velocity as follows:

vr = R0(ω−ω0) sin l (5.7)

vt = R0(ω−ω0) cos l−ωr (5.8)

where ω0 is the angular velocity of the Sun and r is the distance between the Sun and the star
S. Measuring the two components of the velocity V gives the angular velocity value, the distance
r, and the distance R from the centre. The problem in using this method is the presence of gas
clouds and dust that cause extinction and make difficult to observe stars at large distances.
For stars in the Solar neighbourhood is possible to introduce the Oort constants, found by Jan
Oort in 1927 (Oort 1927b). If we take into account that near the Sun the distance Sun-S is neg-
ligible with respect to the distance R0, thus r ≪ R0, we can expand (ω−ω0) in Taylor series to
the first term:

ω−ω0 =
(dω
dR

)
R=R0

+ . . . (5.9)

Substituting this expression into (5.7) and (5.8) and substituting the angular velocity we get:

vr ≈
[V0

R0
−

(dV
dR

)
R=R0

]
r cos l sin l ≈ Ar sin(2l) (5.10)

vt ≈
[V0

R0
−

(dV
dR

)
R=R0

]
r cos2 l−ω0r ≈ Ar cos(2l) + Br (5.11)

where the two Oort constants were introduced:

A =
[V0

R0
−

(dV
dR

)
R=R0

]
(5.12)

B = − 1
2

[V0

R0
+
(dV
dR

)
R=R0

]
(5.13)
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Figure 5.3: In this plot are represented (5.10) and (5.11) functions inwhich, from the amplitudes,
is possible to obtain the Oort constants A and B from observations. Credits: Schneider 2015

The constantsA and B have dimensions of [ km s−1

kpc ] and can be used to calculate the Sun’s rotational
velocity, and local information about kinematics:

ω0 = A− B (5.14)(dV
dR

)
R0
= −(A+ B) (5.15)

From observations, we can calculate the Oort constants by interpolating observation with sine
and cosine functions (5.10) and (5.11) and looking for the amplitude of these functions as in
Figure 5.3. Up to date values forOort constants can be found in Bobylev andBajkova 2020where
the authors used Gaia DR2 data for young stars near the Sun (all the stars are at a maximum
distance of 500 pc) to calculate and update Oort constants:

A = 16.25± 0.33 km s1 kpc1 (5.16)

B = -12.58± 0.34 km s1 kpc1 (5.17)
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We can now calculate the Sun’s rotational velocity (and thus by using (2.2) the circular velocity),
and the expected slope for the rotation curve at the Sun’s position:

ω0 = A− B = 28.83 km s−1 kpc−1 (5.18)

V(R⊙) =
ω

R
= 263.4 km s−1 (5.19)(dV

dR

)
R0
= −(A+ B) = −3.67 km s−1 kpc−1 (5.20)

We integrated eq. (2.5) to get the Mass of the Galaxy at the Sun’s position and superposed it to
theMilkyWay rotation curve calculated by Xin and Zheng 2013 in Figure 5.4. Local values from
our model both for the velocity and its derivative are the following:

V(R⊙) = 195.0 km s−1 (5.21)(dV
dR

)
R0
= −7.50 km s−1 kpc−1 (5.22)

these values have an accuracy of∼ 25% on the velocity value given in (5.19)while the slope of the
curve is significantly different from the one given in (5.20). This indicates that our model under-
estimates of the total Galaxy mass. This problem could be resolved by assuming an higher value
for the Oort surface density 2.4 that should increase the stellar mass budget. Another possible
solution could be to add a gas component in the calculation of the density profile or to increase
the object quantity in the low mass tail of our IMFs.

5.5 Local Standard of rest

TheLocal StandardofRest, LSR, is a reference frame inwhichvelocities of stars in theSolarneigh-
bourhood can be calculated in order to link local measurements to the Galactocentric coordinate
system. The use of such a fictitious reference frame is necessary since the Sun is itself moving
around the Galaxy thus the velocities measured from Earth are relative to the Sun’s motion. The
LSR is defined in two different ways: the dynamical LSR is the point instantaneously centred on
the Sun that moves in a circular orbit around the Galaxy centre while the kinematic LSR is the
point with respect to the average velocity of stars is zero. The two points are nearly situated in the
same spatial point, so for our purpose we will refer to the dynamical LSR definition.
Tomeasure velocity in theLSRweneed to introduce theLSRvelocity, which from thedynamical
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Figure 5.4: Rotation curve from Xin and Zheng 2013 calculated by the authors using maser as-
trometry. The result of the integration of our model at the Sun’s position is superposed to the
plot. The red dotted line represents the bulge contribution, dashed green line represents the disk
contribution and dash-dotted line the dark matter halo. The points represent different methods
of calculations of the rotation curve from different authors: red triangles are from HI- and CO-
line tangent velocity method, yellow open circles represent HI tangent velocity method, green
diamonds are relative to HII regions measurements, blue squares are C stars, and cyan reverse
triangles come from the HI-disk thickness method. Black filled circles come from the authors
analysis of masers in HMSFR (High-Mass Star-Forming Regions) data.
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Figure 5.5: Local Standard of Rest reference frame with respect to Galactocentric coordinates. U
points to Galaxy centre, V is in the rotation direction, and W is directed perpendicularly to the
plane. Credits: https://www.handprint.com/ASTRO/galaxy.html

LSR definition will only have a component in the rotation direction:

ULSR = 0 (5.23)

VLSR = V(R⊙) (5.24)

WLSR = 0 (5.25)

where R⊙ is the Sun’s position in Galactocentric coordinates and in this case is the radius of the
circularmotion. In this section, velocity components expressed in uppercase are relative toGalac-
tocentric coordinates while if expressed in lowercase are relative to the LSR, as in Figure 5.5. A
star having velocity (U, V,W) in Galactocentric coordinates will have a velocity relative to the
LSR, (u, v, w) calculated as follows:

u = U− ULSR = U (5.26)

v = V− VLSR (5.27)

w = W−WLSR = W (5.28)
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If the Solar peculiarmotion is (u⊙, v⊙, w⊙)wecanwrite the relative velocity for a starwith respect
to the Sun as follows:

Δu = u− u⊙ (5.29)

Δv = v− v⊙ (5.30)

Δw = w− w⊙ (5.31)

To disentangle these relations we need to calculate the Solar peculiar motion by using observa-
tions. We make the assumption of symmetry with respect both to rotation axis and plane of the
Galaxy and consider a group of stars in the Solar vicinity which can consist of different stellar
types as MS stars, Cepheids, OB stars, and so on (an updated Table with the used stellar sample
for most recent works can be found in Ding, Zhu, and Liu 2019).
Taking into account the relations 5.29, 5.30, and 5.31, we can calculate the average velocity of the
group and get the value of the components of the Solar peculiar motion:

u⊙ = ⟨u⟩ − ⟨Δu⟩ = −⟨Δu⟩ (5.32)

v⊙ = ⟨v⟩ − ⟨Δv⟩ (5.33)

w⊙ = ⟨w⟩ − ⟨Δw⟩ = −⟨Δw⟩ (5.34)

for the axisymmetric hypothesis the contributions of ⟨u⟩ and ⟨w⟩ are zero. Since ⟨Δu⟩, ⟨Δv⟩, ⟨Δw⟩
are given by observations, the only value to be calculated is ⟨v⟩whichwould be null only if all stars
would have a circular orbit. It can be possible to deduce a directly proportional relation between
⟨v⟩ and the radial velocity dispersion of stars σ2R from statistical reflections on stellar dynamics, as
follows:

v⊙ = −Cσ2R − ⟨Δv⟩ . (5.35)

By plotting ⟨Δv⟩ versus σ2R and extrapolating to σ2R = 0 we get the value for the v⊙ component.
Some recent calculations for the Solar peculiar motion are shown in Table 5.1. The authors cited
in the Table use a more complicated relation called Strömberg equation and discussed in Binney
and Tremaine 2008:

⟨Δv⟩ − v⊙ ≃ σ2R
2VLSR

[
σ2Φ
σ2R

− 1− ∂ ln νσ2R
∂ ln R

− R
σ2R

∂(VRVz)

∂z

]
(5.36)

where σ2R and σ2Φ are the dispersion velocities, ν is the density distribution of stars, R is the dis-
tance form the Galactic centre, and VRVz is the covariance. This equation however leads to the
sameapproximationas (5.35) for stellar populations thathave similardensitydistributions. Some
authors, as Golubov et al. 2013 and later Ding, Zhu, and Liu 2019, have also used a modified
Strömberg equation following the idea that stellar populations could not have all the same radial
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gradient. Values in Table 5.1 show that the Sun has an orbit which differs from the circular one,
it is thus moving toward the Galactic centre, faster than it would be on a circular orbit, and has
a component of his motion directed upwards. Once we know the Solar peculiar motion we are
able to determine the velocities for stars in the Solar neighbourhoodwith respect to the LSR, and
in particular and their velocity dispersion.
For our forthcoming discussion we choose to take the solar velocity with respect to the LSR as
the mean of the velocities given in Table 5.1:

u⊙ = 9.57 km s−1; v⊙ = 6.96 km s−1; w⊙ = 7.46 km s−1 (5.37)

The velocity vector will thus be:
vvv = 14.0 km s−1. (5.38)

This is the Sun’s velocity vector in the LSR and its direction is towards the Solar apex which is a
fictitious point that marks direction of the Sun’s movement. Together with the Solar apex we can
define the Solar antapex which is at the opposite point of the apex. In general, we can assume that
the mean peculiar motion of the stars in the LSR has a vector direction that goes from apex to
antapex, thus if we take the reference frame on the Sun we will measure themean velocity (5.38)
for stars in the surroundings and their apparent mean motion will be from apex to antapex.

Authors u⊙ [km s−1] v⊙ [km s−1] w⊙ [km s−1]

Dehnen and Binney 1998 10.00 5.25 7.17
Aumer and Binney 2009 9.96 5.25 7.07

Schönrich, Binney, and Dehnen 2010 11.10 12.24 7.25
Golubov et al. 2013 9.96* 3.06 7.07*

Bobylev and Bajkova 2018 8.16 11.19 8.55
Ding, Zhu, and Liu 2019 8.63 4.76 7.26

Table 5.1: In this table some of the principal estimates for the LSR are reported. An extended
table of latest values can be found in Ding, Zhu, and Liu 2019.
*These valuesweren’t calculated by authors but have been adopted fromAumer andBinney 2009.
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Chapter 6

The Restricted Three-Body problem and its
applications.

6.1 Introduction

In this Chapter is described the dynamical interaction between two objects making use of the
restricted three body problem theory. In order to apply the solution of the restricted three body
problem to our thesis topic we will then, at the end of the Chapter, discuss about the influence
of the Galaxy over Solar System and stars in general. The results we will get from this Chapter
will be employed in Chapter 7 to evaluate the consequences of interaction between stars and the
Solar System.
We will start giving the theory of the restricted three body problemin Section 6.2 and in Section
6.3 we will show the Lagrangian equilibrium points which will be used to define the Hill sphere
in the subsequent Section.
In Section 6.4wewill calculate the radius of theHill sphere and give some values for Sun and stars
of different mass.
InSection6.5wewill give analternativedefinition for the gravitational limit of theSun, theSphere
of Influence, SOI. We will calculate the radius of the SOI for Sun and other stars and compare it
to the Hill radius.
Finally, in Section 6.6 we will apply the results of Section 6.4, 6.5 to the local environment and
make some consideration upon the possible limits of the Solar System.
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6.2 Setting the context: the restricted three-body problem

The three-body problem is a classic dynamical problem and, as the two-body problem, is a special
case of the n-body problem. Only the two-body problemhas an exact solutionwhile for the other
situations numerical methods are required to obtain a solution.
The three-body problem wants to calculate the movement of three point-like masses under the
mutual effect of newtonian gravity. If themotionof themasses is described in an inertial reference
frame, their motion laws will be:

m1r̈rr111 = −Gm1m2
rrr111 − rrr222

| rrr111 − rrr222 |3
− Gm1m3

rrr111 − rrr333
| rrr111 − rrr333 |3

(6.1)

m2r̈rr222 = −Gm2m1
rrr222 − rrr111

| rrr222 − rrr111 |3
− Gm2m3

rrr222 − rrr333
| rrr222 − rrr333 |3

(6.2)

m3r̈rr333 = −Gm3m1
rrr333 − rrr111

| rrr333 − rrr111 |3
− Gm3m2

rrr333 − rrr222
| rrr333 − rrr222 |3

(6.3)

the trajectories can be computed knowing initial position and velocity of the particles and inte-
grating these three functions. The solution can be integrated numerically as we said earlier there
isn’t an analytical solution.
In the restricted three-body problem we can consider one of the three particles as a test particle
thus having negligible mass. In calculations we can then take e.g. m3 → 0 and use M and m in-
stead of m1, m2 for simplicity. We then change the coordinate system and use a reference frame
co-rotatingwith the system, in this way the problem is simplified butwe need to take into account
the presence of fictitious acceleration like the Coriolis and the centrifugal ones.
The co-rotating reference frame has its centre in the mass centre position of the system:

rrr =
Mrrr111 + mrrr222
M+ m

. (6.4)

Calling µ the reduced mass:

µ =
Mm

M+ m
(6.5)

we can equate the centrifugal force of the system with the gravitational one:

µ
v2

R
= G

Mm
R2

(6.6)
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Figure 6.1: Co-rotational reference frame for the restricted three-body problem. Credits: Marco
Monaci.

where v is the theoretical velocity of the mass µ and R = r1 + r2. Since the period for this orbit is
T = 2πR

v we can calculate the angular velocity of the rotating system as follows:

ω =
2π
T

=

√
G
M+ m
R3

. (6.7)

From thedefinitionof centre ofmass ansRwecandefine the parameterαby solving the following
system: r1M = r2M

r1 + r2 = R
(6.8)

α =
m

M+ m
(6.9)

Adding the two fictitious accelerations discussed previously, centrifugal and Coriolis accelera-
tions, needed for a non inertial reference frame, we get:

aaa+ 2ω× vvv+ω× (ω× rrr) = −M
r31
rrr111 −

m
r32
rrr222 (6.10)

where rrr is the position, vvv is the velocity vector, aaa is the acceleration vector,ω× vvv is the Coriolis
acceleration, andω× (ω× rrr) is the centrifugal acceleration.
We then can write the motion equations for the reduced three-body problem in the three spatial
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directions basing on equation (6.10):
ẍ = −GM(x+αR)

ρ31
− Gm(x−(1−α))R

ρ32
+ω2x+ 2ωẏ

ÿ = −GMy
ρ31

− Gmy
ρ32

+ω2y− 2ωẋ

z̈ = −GMz
ρ31

− Gmz
ρ32

(6.11)

The solution for these equations can’t be calculated analytically as mentioned before but we can
find an integral, EJ called Jacobi integral:

EJ =
1
2
v2 + Φeff(rrr) (6.12)

where Φeff(rrr) is the effective potential given by the gravitational potential and the centrifugal re-
pulsive one:

Φeff(rrr) = Φ(rrr) +
1
2
| ω× rrr |2= (6.13)

= − GM
| rrr111 |

− Gm
| rrr222 |

− ω2

2
(x2 + y2) (6.14)

If we take v = 0 in equation (6.12) we can find the zero-velocity curve for a given object with
Jacobi integral EJ = Φeff(rrr). Even since this is not an analytical solution for the problem, it helps
in determining the zones allowed for the motion of the point-like mass because velocity cannot
be v < 0, then the object will never be able to cross the zero-velocity curve. An example of
equipotential curves for Φeff(rrr) is shown in Figure 6.2. A body with Jacobi integral equal to the
value of the effective potential of one of the curves in Figure won’t thus be able to cross the curve
during its motion.

6.3 Lagrangian points.

Theeffective potential (6.13) can be used to calculate particular points inwhich a test particle can
be in equilibrium. If we resolve:

∇Φeff(rrr) = 0 (6.15)

we would find five points of equilibrium called Lagrangian points which co-rotate with the sys-
tem and are indicated with the capital letter L.
These points can be distinguished into point of stable and unstable equilibrium and can be also
calculated making simple physical observations. A scheme for the position of Lagrangian points
is shown in Figure 6.3.
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Figure 6.2: Zero-velocity curves calculated using the relation (6.12) plotted in Binney and
Tremaine 2008.
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Figure 6.3: Representation of the position of Lagrangian points in a Sun-planet system. Credits:
Media INAF

Lagrangian points can be calculated in every situation where two large bodies gravitationally in-
teract such as the Sun and the Earth, the Sun and other planets, or the Earth and the Moon. In
the Sun-Earth system the Lagrangian point L2 hosts some important telescopes such as Gaia and
the James Webb Space Telescope.

Collinear equilibrium points. The first three Lagrangian points are aligned with the main bodies
and can be easily understood by equating the acting forces.
L1 point is between the twobodies and is givenby the equilibriumbetween the gravitational forces
of the two masses. L2 point is located outside the less massive body and L3 point is outside the
mostmassive body, each of them can be calculated equating the sum of gravitational forces to the
centrifugal one.
L1, L2, and L3 are all points of unstable equilibrium and we can see this if we resolve (6.15) and
take y = 0. This solution will give only the collinear equilibrium points as shown in Figure 6.4.

Triangular equilibrium points. The last two Lagrangian points, L4, L5, can be found calculating
the third vertex of the equilateral triangle formed by the centre of mass of the two main bodies

66

https://www.media.inaf.it/2019/03/25/giove-migrante-spaziale/


Figure 6.4: Plot of the effective potential inwhich the threeunstableLagrangianpoints are shown.
The position of the bodies is marked in red withM > m and a separation of 6AU.Credits: Marco
Monaci.
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having by side the distance between the two centre of mass. Also these two points as L1 represent
the equilibrium between the two gravitational forces but in this case the equilibrium is stable.

6.4 Hill sphere.

The effective potential can be used also to compute the radius of the Hill sphere just by taking
into consideration the situation shown in Figure 6.2. We can see that there are some orbits closed
around the twomasses and it’s possible to calculate the radius of the farthest of these closed orbits
because the point L3 in Figure 6.2 is a saddle point. We then can write:

(∂Φeff

∂x

)
rrr222−rrrHHH

= 0 (6.16)

where rrrHHH is the radius of the farthest closed orbit fromm and rrr222 − rrrHHH is the position of the saddle
point in the co-rotating reference frame. Solving this equation using the effective potential (6.13)
leads to: (∂Φeff

∂x

)
rrr222−rrrHHH

= G
[ M
(R0 − rH)2

− m
r2H

− M+ m
R30

( MR0
M+ m

− rH
)]

= 0 (6.17)

in which R0 is the distance between the masses M and m. Since this equation is solvable com-
putationally, we can make the approximations m ≪ M and rH ≪ R0 thus (R0 − rH)−2 can be
expanded:

0 =
M
R20

(
1+

2rH
R0

+ . . .
)
− m

r2H
+

M+ m
R30

rH ≃ 3MrH
R30

− m
r2H

(6.18)

is then possible to obtain the Hill radius as:

rH ≈ R0 3

√
m
3M

= a 3

√
m
3M

(6.19)

whereR0 is usually expressed as the semi-major axis of the orbit, a. Hill radius is also calledRoche
or Jacobi radius and is shown, not to scale, in Figure 6.6 where is represented for the Sun-Earth-
Moon system. TheHill radius can be calculated both for objects of the Solar Systemwith respect
to the Sun and for the Sun with respect to the Galaxy.
In the work of Chebotarev 1965 the author calculates the Hill sphere of the Sun and what could
happen when the Solar System encounters a comet at different distances and different motion
(direct or retrograde with respect to the Sun’s motion). Chebotarev finds that direct motion of a
comet inside theHill sphere of the Sun allows the comet to have a stable orbitwhile for retrograde
motions stable orbits are reached only if the cometary orbit has a maximum radius of 105 AU.
Using values for themass of theGalaxy calculated from our density profile and the rotation curve
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Mass [M⊙] rH [pc] rH [au]
0.1 0.62 1.3·105
1 1.4 2.9·105
10 2.9 6.0·105

Table 6.1: In this Table are shown representative values of Hill radius for different stellar objects
ranging from brown dwarf to high mass stars.

discussed in Section 5.3 and 5.4 we get:

Mgal(R⊙) = 7.52 · 1010 M⊙ (6.20)

while the Sundistance from the centre of theGalaxy is (2.2). We thus can calculate theHill radius
for the Sun:

rH,⊙ ≈ 8.20 kpc 3

√
1M⊙

3 · 7.52 · 1010 M⊙
= 1.35 pc ∼ 2.78 · 105 au (6.21)

In general we can calculate this quantity for every star in the Solar neighbourhood and if we as-
sume that all stars are nearly at the same distance from the Galactic centre, we can see fromTable
6.1 that Hill radius changes only by a factor∼ 2 for mass magnitude. This can be shown consid-
ering two objects of massesm1 andm2 and same semi-major axis a. Their Hill radius with respect
to the Galaxy will then be:

rH,1 ≈ a 3

√
m1

3M
(6.22)

rH,2 ≈ a 3

√
m2

3M
(6.23)

so if we calculate the ratio between the two Hill radius,

rH,1
rH,2

=
3
√
m1

3
√
m2

(6.24)

thus if m1 = 10m2 we obtain rH,1
rH,2

= 3
√
10 ∼ 2. We can also define where the L1 point is positioned

on the semi-major axis a, independently of its value, by calculating a ratio between the two radius,
rH,1 and rH,2 and using (6.24):  rH,1 + rH,2 = a

rH,1
rH,2

= 3
√m1

m2

(6.25)

performing the calculations gives us the following relation:

rH,1
a

=
[
1− rH,2

a

](m1

m2

)1/3
, (6.26)
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Figure 6.5: Hill radius proportions for a Solar-type star and a variable mass companion.

substituting now P1 =
rH,1
a , P2 = rH,2

a , and Rm = (m1
m2
)1/3 we get the following two proportions

which are only dependent on the massesm1,m2 of the objects and which set the position of L1:

P1 =
1

R−1/3
m + 1

(6.27)

P2 = 1− P1 (6.28)

In Figure 6.5 is shown this last relation using a Solar-type star asm1 (thus havingm1 = 1M⊙) and
withm2 ranging from 0.01M⊙ to 100M⊙.
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Figure 6.6: Example of Hill sphere for Sun-Earth system. Credits: Cmglee.
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Figure 6.7: Sketch of bodies involved in the calculations of the SOI radius.

6.5 Sphere of influence

There is an alternative way to define the region in which the presence of a body is gravitationally
dominant and the test object is attracted by it. The Hill radius can be seen as the point at which a
third body would have the same orbital velocity both if it would be bounded the primary or the
secondary body. This is related to the derivative of the effective potential but we can also study
the forces that are exerted on the third body by both of the main bodies. This other point of view
on a three-body dynamical situation leads to the definition of the Sphere of Influence, SOI. The
radius of the SOI is calculated matching the forces exerted by the two main bodies. We will have
thus two scale length definitions for the region in which we can consider a body as the dominant
one and we will take into account both of them since, as we will see further on, the Oort cloud
resides between the two spheres.
We can define the Sphere of Influence, SOI, of a body starting from Figure 6.7. As described in
Kaplan 1976, if we take P1 and P2 as the main bodies and P3 as the test mass, we can write the
motion of P3 with respect to P1 and P2:

r̈rr13 +
G(m1 + m3)

r313
rrr13 = −Gm2

( rrr23
r323

+
rrr12
r312

)
(6.29)

r̈rr23 +
G(m2 + m3)

r323
rrr23 = −Gm1

( rrr12
r312

− rrr13
r313

)
(6.30)

in these equations on the left hand side is shown the gravitational contribute of the body ofwhom
themotion is respect to and on the right hand side there is the contribute of disturbance from the
third object. Taking now the disturbing force Fd and the central force Fc we can see from the ratio
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of these two which one will prevail on the other:

Fd,2
Fc,1

=
Gm2

[(
rrr23
r323
+ rrr12

r312

)
·
(

rrr23
r323
+ rrr12

r312

)]1/2
G(m1 + m3)/r213

(6.31)

Fd,1
Fc,2

=
Gm1

[(
rrr13
r313
+ rrr12

r312

)
·
(

rrr13
r313
+ rrr12

r312

)]1/2
G(m2 + m3)/r213

(6.32)

if we now search for equilibrium we can equate the ratios. Taking into account that usually in
these kind of system one of the masses is prevalent and that the third is smaller than others we
can write m1 ≪ m2 and r13 ≪ r12 and by approximation we get the value for the radius of the
sphere of influence:

rSOI,13 ≈ r12
(m1

m2

)2/5
= a

(m
M

)2/5
, (6.33)

in the last member of the expression the terms are changed to the semi-major axis, a, the massm
of the less massive object, and the massM of the most massive one in order to compare the SOI
radius with theHill one, (6.19). We can thus calculate the same proportion as (6.27) for the SOI
radius. This will tell us what percentage, P1 and P2, of a distance a between two bodies belongs to
the first or the second:

P1 =
1

R2/5m + 1
(6.34)

P2 = 1− P1 (6.35)

where Rm is the mass ratio and P1 =
rSOI,1
a , P2 = rSOI,2

a . This relation is shown in Figure 6.8. If
we compare the two radii we can see there is a difference in the dependence from the mass ratio,
indeedHill radiushas a 1/3dependence fromthemass ratiowhile SOI radiushas a 2/5dependence
as we can see in Figure 6.9 where the two radius are plotted calculating the radii for a stellar object
with variable mass at the Sun’s position (2.2).
We compared Hill and SOI radii for some classic cases as the planets of the Solar System with
respect to the Sun in Table 6.2 were we can see that Hill radius is higher than the SOI one. This
can be explained by considering that Hill radius is calculated looking for the point in which the
twogravitational forces are in equilibrium thus is not taken for granted that a amassnear this point
won’t be affected by the gravitational force of both the objects. On the other side is the SOI radius
that take into account this feature and calculates the zone in which a body can be considered the
only attracting mass and thus the centre of coordinates.
Since anyway the value of the two radii are different but comparable, we will use the Hill radius
in our forthcoming calculations.
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Figure 6.8: This plot represents the proportions of SOI radii for a Sun like star and a variablemass
companion.

6.6 Galaxy influence over the Solar System: implications for

the Oort cloud.

It is possible to characterize the gravitational influence of the Galaxy with respect to the Solar
System following the relations given by Sect. 6.4, 6.5. The results are shown in Table 6.3 where
the column Galaxy Mass represents the mass enclosed at a Solar distance (2.2) calculated using
the Galaxy rotation curve 5.4. From the Table we can see a significant difference between the
Hill radius and the SOI one. We can calculate these quantities also for different stars as shown
in Figure 6.9. The first plot represents the Hill and SOI radii for stars of different mass all at the
same radial distance, taken as Solar. In this case the distance and the Galaxy mass are fixed and
only the star mass varies as m1/3 for the Hill radius and as m2/5 for the SOI radius. The Hill radius
function is then raised by the multiplicative factor 1/ 3

√
3.
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Planet Mass [M⊙] Hill Radius [AU] SOI Radius [AU]
Mercury 1.67·10−7 1.47·10−3 7.82·10−4

Venus 2.46·10−6 6.75·10−3 4.11·10−3

Earth 3.02·10−6 1.00·10−2 6.20·10−3

Mars 3.24·10−7 7.24·10−3 3.86·10−3

Jupiter 9.59·10−4 0.355 0.322
Saturn 2.87·10−4 0.436 0.364
Uranus 4.38·10−5 0.469 0.347
Neptune 5.17·10−5 0.776 0.576

Table 6.2: In this Table are compared values for Hill and SOI radii for planets of the Solar System
with respect to the Sun and for the Sun with respect to the Galaxy.

Sun Mass [M⊙] Galaxy Mass [M⊙] Hill Radius [pc] ([au]) SOI Radius [pc] ([au])
1.00 7.52·1010 1.35 (2.78·105) 0.367 (7.51·104)

Table 6.3: Comparison between the Sun’s Hill radius and SOI radius with respect to the Galaxy.
The Galaxy mass used comes from the integration of our density profile 2.5 made in Sections 5.3
and 5.4.

6.6.1 The problem of the Solar System limit

The limit of the Solar System is not still accurately known as has never been observed a clear-
cut edge of it. We although could state that the gravitational influence of the Sun is delimited
by the Hill radius or the SOI radius. The usual limit of the Solar System is generally referred as
the Oort cloud which is a spherical cloud of comets but a different definition for this limit can
be represented by the heliopause, which states the zone in which the solar wind plasma density
becomes equivalent to the InterstellarMedium. Wewill evaluate both of them in our dissertation
as the heliopause can be a good tracer for the innermost part of the Solar System which hosts
planet orbits, and the Oort cloud, as we will describe in Chapter 7, could have a prominent role
in the dynamical interactions with near stars.

Oort cloud Today, the Oort cloud is considered as the outermost component of the Solar Sys-
tem. This featuremake possible for it to be easily involved into gravitational interactions between
the Sun and other stars. The Oort cloud is composed by a large amount of small bodies which,
when properly perturbed, we can observe from Earth as Long Period Comets, LPCs. Due to the
high distance of the cloud from the Sun we still not observe the cloud itself but only the comets,
thus deducing the presence of it bymaking observations upon gravitational effects of planets and
objects outside the Solar System on the orbits of LPCs. The idea of a spherical distribution of
bodies at a large distance from the Sun -but still under the effect of the Solar System gravitational
influence- comes from the work of Oort which also stated that the comets have always belonged
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Figure 6.9: In this plot Hill and SOI radii are represented. Both the curves are calculated for a
stellar object at the Sun’s position with respect to the Galaxy.

to the Solar System. Oort’s 1950workwas forerun byÖpik’s (Öpik 1932)where the author stud-
ies the effects of a perturbing star upon comets with long period and states the limits of the Solar
System to 106 au (which corresponds with almost 5 pc, way much outer Hill radius) but doesn’t
hypothesize the presence of a cloud of objects as later will do Oort.
Oort dealt with the problem of LPC in 1950 (Oort 1950) when he reviewed Öpik’s work and
extended it taking into account the gravitational effects of planets onto the comets. The problem
which Oort aimed to solve was the possible evaporation of LPCs. Both the planets and passing
stars are a possible gravitational disturbers of the orbit of a comet. Since the orbit of a comet is
defined by a semi-major axis and a perihelion distance, the effects of planets and stars will change
these values. If we only take into account the presence of planets, this will most affect the semi-
major axis of the comet’s orbit thus leaving the perihelion distance almost the same. This would
lead to the increase of semi-major axis and to the comets that leaves the Solar System, causing a
sort of evaporation. Also the presence of near stars could pull out comets from the Solar System
but could have also a stabilizing effect on the orbits of LPCs: the perturbative effect of near stars
tend to increase the perihelion distance more than the semi-major axis thus providing a stabiliz-
ing effect if balanced with the planets gravitational effect. Taking into account these two effects
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Figure 6.10: Outline of a slice of Solar System representing the position and distance of some
components with respect to the Sun. The Oort cloud -which is still not observed- is believed to
have the inner edge at a 1− 2 · 104 au distance and the outer edge positioned at 1− 2 · 105 au from
the Sun. Credits: NASA Science-Solar System Exploration.

Oort calculated the inner and outer radius for the comets cloud:

rin = 1-2 · 104 au ; (6.36)

rout = 1.5-2 · 105 au , (6.37)

the outer radius is uncertain because if we only take into account the stellar effect we can derive
a radius of 2 · 105 AU. In these dimensions should reside a spherical cloud composed by comets
which Oort calculated to beN ∼ 1011 whit a total mass less than Earth’s mass.
More recent works, e.g. the one ofDuncan et al. 2008, are focused on the origin of theOort cloud
and give updated values for the number of comets which should be N ∼ 1011 and for the mass of
the outerOort cloud that should be int the rangeMcloud ∈ [∼ 1, 60]M⊕. Someof the limits usually
used for the typical inner and outer radius of the Oort cloud are shown in Figure 6.9. From these
plots the Oort cloud should reside inside the Hill sphere with inner radius inside the SOI.We do
not expect that the Oort cloud extends outer the Hill sphere because Sun’s gravity couldn’t keep
bound these objects and from the plots we can see that most of the cloud is around the SOI.This
featuremay suggest a sort of evaporation of the outer zones of theOort cloud due to gravitational
perturbations. In Figure 6.10 is represented a schematic view of the position of theOort cloud in
the Solar System.
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Heliopause The heliopause is the limit of the heliosphere and can considered, as for the Oort
cloud, a boundary for the Solar System. The heliosphere is a bubble-shaped region which is filled
by plasma coming from the Solar wind. When the wind reaches high distances from the Sun it
weakens and the heliopause sets the limit of the efficiency of the Solar wind. Outside this limit
the heliosphere interacts with the interstellar medium and causes a bow-shock. The spacecrafts
Voyager 1 and Voyager 2, along with other missions like IBEX¹, measured the position of the
heliopause and found that it has an asymmetric shape, as in Stone et al. 2008, with a radius of 83.7
au in the southern hemisphere and ∼ 73 au in the northern one. In Chapter 7 we will use the
mean of these two values to do our calculation upon a possible deep perturbation onto the Solar
System.

1. Interstellar Boundary EXplorer
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Chapter 7

Results

7.1 Connecting the wires.

In this Chapter we will show the outcomes of this thesis work. We have modelled local Galaxy
taking into account local parameters, as the local stellar density, in Chapter 2 and in Chapter 3
we used the results of Chapter 2 along with stellar evolution concepts to obtain representative
models for the mass distribution of near stars, the PDMF.
We then characterized the motion of these stars assuming a mean velocity given by the LSR, as
explained in Chapter 5, and finally we investigated the possibility of a dynamical interaction be-
tween the Sun and the Galaxy or other stars in Chapter 6.
This Chapter will be thus make use of the estimated quantities and relations coming from previ-
ous Chapters to picture the current situation of Solar System neighbourhood. We will integrate
the PDMF to obtain scale distances and timescales for both the steady and unsteady configura-
tion of stars near the Sun and we will highlight the role of massive stars as sources of high energy
radiation hitting the Solar System and the role of low mass stars and objects which can perturb
our Solar System and conversely be perturbed by the Sun.
In Section 7.2 we will integrate the PDMF to evaluate the mean distance of different star mass
classes.
In Section 7.3 we will show the effects of the presence of high mass stars and the stellar perturba-
tion by low mass bodies.
In Section 7.4 we then will investigate the effect of the Sun on other stars and highlight the pos-
sibility of perturbation of alien Oort clouds and exoplanets.
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Figure 7.1: Thevolumegivenby7.1 for thePDMFmodel in use and its upper and lower boundary
based on the other models considered.

7.2 Stellar mean distance in the Solar neighbourhood

The PDMF, Φ(M), can be used to establish the mean spherical volume centred on the Sun in
which we should find at least one stars of massM. We choose as reference model the PDMF cal-
culated using the Salpeter IMF and constant SFR and indicated as boundaries the PDMFmodels
with highest and lowest values.
The volume will thus be given by:

V(M)dM =
1

Φ(M)
. (7.1)

To get the volume value we integrated this equation into roughly equispaced logarithmic bins of
some Δ logM = 0.3 wide from 1 · 10−3 M⊙ to 102 M⊙. In this way we get the relations shown in
Figure 7.1where the volumes are shown relatively to the stellarmass. Eachpoint has anhorizontal
bar that represents themass range and a vertical bar that represents the upper and lower boundary.
From this relation we can get the mean distance, ⟨l⟩(M), at which we expect to find at least one
star within each bin:

⟨l⟩(M) = 3

√
3V(M)

4π
(7.2)

this relation is integrated in the mentioned bin ranges and shown in Figure 7.2 where the mean
distance is plotted against the mass.
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Figure 7.2: Characteristic distance ⟨l⟩(M) from (7.2) for the considered PDMF model and its
boundaries.

7.3 Stellar interactions with the Sun.

We now report some calculations that show us relevant information on the behaviour of high
mass stars and low mass stars in the Sun vicinity.

7.3.1 A criterion for dynamical perturbation onto the Solar System

It is also possible, knowing the mean distance ⟨l⟩(M), to calculate the boundaries for dynamical
interactions between the Sun and the stars in the Solar neighbourhood. The effects of dynamical
interaction will involve mainly low mass objects as we will show in this paragraph. In Section 6.4
we calculated what fraction P1 of the distance between the Sun and other stars belongs to theHill
radius of the Sun, rH,⊙. We can apply this feature to the mean distance value (7.2) obtaining the
Hill radius value both for the Sun and other stars:

rH,⊙ = P1⟨l⟩(M) ; (7.3)

rH,∗ = ⟨l⟩(M)[1− P1] . (7.4)

For the dynamical interaction to happen, it is necessary to take into account also the dynamical
effect of the Galaxy on the Solar System. If we compare the Hill radius of the Sun with respect
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to the Galaxy, rG,⊙, (which also can represent the Oort cloud limit as discussed in Section 6.6.1)
with the Hill radius of the Sun with respect to a near star, rH,⊙, the condition for the Sun-star
dynamical interaction to happen is the following:

rH,⊙ < rG,⊙ . (7.5)

If this condition is satisfied, the Hill sphere of the interacting star, with radius rH,∗, overlaps the
Hill sphere generated by the influence of the Galaxy over the Sun, of radius rG,⊙, and since this
latter can be assumed to represent the outer radius of theOort cloud, this particular situation lets
the interacting star perturb or even strip objects located in between the two radii. This situation
is depicted in the first panel of Figure 7.3.

7.3.2 The impact of type II Supernovae on the Solar System

We can evaluate the time spent by a star of massM to cross the mean volume described in Sect.
7.2. If we take our reference frame as co-moving with the Sun, the velocity (5.38) will represent
the mean velocity of stars in the Solar neighbourhood while the Sun is at rest:

τcross(M) =
2⟨l⟩(M)

v
(7.6)

The results are shown in Figure 7.4 in which the crossing timescale is plotted against the mass.
We then superposed to this timescale the stellar lifetime, τMS(M), calculated in Section 3.3 from
the work of Buzzoni 2002. In Table 7.1 are summarized some useful quantities.
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Figure 7.3: Sketchof thepossible dynamical interaction situations, basedon the companionmass.
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Figure 7.4: This Figure shows the expected timescale needed for the star to cross the distance
represented in Figure 7.2 compared with the stellar lifetime.
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Mass [M⊙] τcross [yr]
Upper boundary 9.0 3.0·107

Model 12 1.8·107
Lower boundary 14 1.4·107

Table 7.2: In this Table is shown the limit mass at which τcross(M) = τMS(M) for the main Model
and its boundary values.

Mass [M⊙] ⟨l⟩ [pc] Flux [erg s−1 pc−2]

9.0 208 1.8·1029−30

12 141 4.0·1029−30

14 116 5.9·1029−30

Table 7.3: In this Table are reported the mean distance and X-ray flux for stars having τcross = τMS

The intersection between the two curves suggests the possibility of a SNII explosion in the
Solar vicinity since the massive star would explode as a SNII while still travelling the volume and
could possibly hit the Solar Systemwith high energy radiation. We thus wanted to determine the
mass corresponding to:

τcross(M) = τMS(M) (7.7)

to do this we integrated the relation (7.6) in the range [7 − 22] M⊙ using bin of ΔM = 1 M⊙

which is shown in Figure 7.5. The results in Table 7.2 show a limit mass between 9 M⊙ and 14
M⊙. Comparing these results with typical scale distances from 7.2 we get the results shown in
Table 7.3 in which for a fixed velocity of the star (5.38), we can calculate the crossing timescale
and the X-ray flux, knowing the SNII X-ray luminosity∼ 1035−36 erg·s−1 from Weaver et al. 1977.

7.3.3 Effect of lowmass stars onto the Solar SystemOort cloud.

In Figure 7.6, and 7.7 are represented the Hill radii both for the Sun and an interacting star. In
Figure 7.6 are represented, overplotted to the Hill radius of the Sun, the Hill and SOI radius for
the interaction between the Sun and the Galaxy. Indeed all the calculations we will make using
theHill radius can be done also using the SOI radius as both of them are acceptable for the defini-
tion of a dynamical boundary for a star in general as explained in Section 6.4, and the calculation
method would be the same for both. If we would use the SOI radius for our calculations, firstly,
the interaction between two objects would be deeper into the star or Sun system (for instance
the Solar System Oort cloud is thought to begin at about the position of SOI Sun radius) and,
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Figure 7.5: In this plot the (7.6) is integrated in 1 M⊙ bins and is superposed with the stellar
lifetime value.

Ml,⊙ [M⊙] rH,∗ [pc] rG,⊙ [pc] τD,⊙ [yr]
Upper boundary 0.5 0.71 1.2 2.4·105

Model 0.5 1.3 1.2 3.5·105
Lower boundary 1.1 2.5 1.2 3.9·105

Table 7.4: Values for the upper limit of the mass which can continually perturb the Solar System
Oort cloud.

secondly, the frequency of interactions would decrease and the interactions would last less than
the ones computed with Hill radii, as the SOI radii associated are smaller.
Going on with our dissertation we will continue using the Hill radius. We can thus define a limit
mass, Ml,⊙, for which the Sun has an Hill radius lower than the Oort cloud radius, we’ll thus
have rH,⊙(Ml,⊙) = rG,⊙ and rH,⊙(< Ml,⊙) < rG,⊙. Values for Ml,⊙ are shown in Table 7.4
along with the dimension of theHill radius and the timescale for the dynamical interaction, τD,⊙.
The scheme of the problem is shown in Figure 7.3 where the first panel represents objects having
rH,⊙ < rG,⊙ and the second panel represents objects having rH,⊙ > rG,⊙.

We are now in a static situation at which each mass in located at a mean distance ⟨l⟩(M) as
discussed in the previous Section. The presence of a limit mass Ml,⊙ means in this case that the
Solar System is currently under gravitational perturbation by objects of mass M ≤ Ml,⊙. We
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Figure 7.6: The plot shows the comparison between the Hill radius of the Sun with respect near
stars and the Hill radius between the Sun and the Galaxy calculated using the main model for
PDMF and showing the upper and lower boundary.

can evaluate the timescale, τD,⊙ of this interaction considering the stars moving at the velocity v
(5.38). This interaction has begun at rG,⊙ andwill last until the starHill sphere will fully cross the
Sun-Galaxy Hill sphere, so the total distance, d∗ the star has to travel is:

d∗ = rH,∗ + rG,⊙ (7.8)

and the timescale will be:
τD,⊙ =

2d∗
v

. (7.9)

This timescale is suitable also in the caseM > Ml,⊙ with the difference that in this case the inter-
action will begin only after the star has travelled a distance:

dT = ⟨l⟩(M)− (rG,⊙ + rH,∗) . (7.10)
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Figure 7.7: Hill radius of a star with respect to the Sun calculated using main model PDMF. Ver-
tical bars represent upper and lower boundary.

7.4 Sun action onto near stars.

Assuming that other stars have systems of orbiting objects similar to the Solar System, the Sun
could thus perturb alien Oort clouds as well as other stars perturb ours. In the previous Section
we showed that mainly low mass stars perturb the Oort cloud but the calculation could be made
also to establish if the Sun has some perturbative effect onto near stars. Indeed, the situation is
not exactly symmetric to what previously discussed in Subsection 7.3.1 as in this case we must
deal with the Hill radius of the star with respect to the Galaxy, rG,∗, which changes with the star
mass. We thuswant to knowwhether a star ofmassM, which is at a distance ⟨l⟩ > (M) (7.2) from
the Sun, can feel the gravitational presence of the Sun. The Hill radius of the star with respect to
the Sun will then be, making use of (6.25):

rH,∗ = P1⟨l⟩ > (M) (7.11)

while the Sun’s Hill radius will be:

rH,⊙ = ⟨l⟩ > (M)[1− P1] . (7.12)
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Ml,∗ [M⊙] rG,∗ [pc] rH,⊙ [pc] τD,∗ [yr]
Upper boundary 0.45 0.72 1.1 3.2·105

Model 0.45 0.72 1.0 3.2·105
Lower boundary 0.85 0.90 0.98 3.0·105

Table 7.5: In this Table is shown the limit mass Ml,∗ under which the star feels the gravitational
effect of the Sun along with its Hill radius value and the dynamical timescale.

For the interaction to be efficient, theHill radius of the star rH,∗ has to be lower than theHill radius
of the star with respect to the Galaxy rG,∗ which has been calculated in Section 6.4 and shown in
6.9:

rH,∗ < rG,∗ (7.13)

when this happens, the interaction between the Sun and the star becomes effective and the Sun
is able to interact and possibly perturb or strip objects that lie in rH,∗ < r < rG,∗. The relation
between the Star-Galaxy Hill radius and the stellar one are shown in Figure 7.8 while the values
rH,∗ and rH,⊙ are the same as in Figures 7.6, and 7.7. From these plots we can evaluate which is
the mass limitMl,∗ at which the Solar gravitational perturbation is effective. Results are shown in
Table 7.5. In this Table are reported the three values for the main model and its upper and lower
boundary. Along with the limit mass is shown the Hill radius for the star and the timescale, τD,∗
for the dynamical interaction to happen:

τD,∗ =
2(rG,∗ + rH,⊙)

v
(7.14)

where v is the velocity (5.38). This timescale is shown in Figure 7.9. Comparing the results with
ones from the previous Section, 7.4, we can see that this timescale is similar to (7.9) with the
difference that in (7.14) both rG,∗ and rH,⊙ are changing with the mass of the star while in (7.9)
rH,∗ is the one changing while rG,⊙ is fixed. The difference between the two situations is in the
interaction distance which depends on different variables in the two cases and thus leads to two
different values forMl.

7.5 Assessing our model results

This thesis work highlighted some interesting aspects on the interactions in the Solar neighbour-
hood. The main results we got point out two different kinds of interactions, one which is a sort
of indirect interaction in the case of SNII and the other one which is dynamical and includes low
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Figure 7.8: Hill radius of a star with respect to theGalaxy (i.e. the alienOort cloud) calculated for
the chosenPDMFmodel (orangedots). Greendots represent theHill radius of the star calculated
with respect to theGalaxy while blue dots represent the SOI radius calculated with respect to the
Galaxy.

Figure 7.9: In this plots is shown the timescale (7.14) for themodel of PDMF taken into account
along with timescale value for the upper and lower boundary models.
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mass stars.
The PDMF gives us a scale number of high mass stars which is significantly lower than the num-
ber of Sun-like objects or lower mass objects and the theory of the LSR sets a mean velocity for
stars in the Solar neighbourhood that we chose as 5.38. Furthermore, our calculations in Section
7.2 and Section 7.3 show that high mass stars should reside sufficiently far from the Sun to not
have recurring dynamical interactions with it but, considering that highmass stars have a lifetime
very short with respect to low mass stars, we found that stars having mass M ≳ 9.0 M⊙ could
probably explode as SNII in the Solar proximity investing the Solar System with the estimated
minimum flux we calculated in Table 7.3.
Another aspect that arises from our results is that the Sun with its Solar System is not wandering
alone along theGalaxy, instead there seems to be a constant dynamical interplay between our So-
lar System and, mainly, low mass objects in its proximity. This is possible since, according to our
models and calculations, there is a large amount of low mass objects, thus having a much higher
object density with respect to high mass stars which make it easier to find low mass objects near
the Sun. In Section 7.3 our results show that Ml,⊙ can be treated as an upper limit for stars that
are currently able to perturb our Solar System. To know how deep into the Solar System this kind
of interactions are we must compare the dimension of the perturbing star Hill radius, rG,∗ with
the Sun-Galaxy Hill radius, rG,⊙, and the mutual distance between the star and the Sun, ⟨l⟩. The
length of the perturbed zone will then be given by:

r = rH,∗ + rG,⊙ − ⟨l⟩ , (7.15)

in this case the full perturbed zone belongs to the Solar System and is thought to be for most
companion stars a portion of the Oort cloud. In this section we also calculated the duration of
this interaction which is variable with the star mass, and thus, Hill radius.
We made the same but opposite calculation to see what kind of stars are perturbed by our Sun
in Section 7.4 and our results gave the upper limit massMl,∗, lower than the previous case. If we
nowput together this two results we can actually see that stars ofmassM < Ml,∗ both can perturb
the Sun and be perturbed by it. In Figure 7.10 is depicted the Ml,∗ = 0.45 M⊙ star in its static
interaction with the Sun. In this particular case we do not mind anymore of the two Hill radii
values as the two Hill radii of star and Sun with respect to the Galaxy become relevant and, most
importantly, cross each other generating a sort of merging zone between the Solar System Oort
cloud and the alienOort cloud of the star in which there could be an exchange of objects between
the two. This situation closely resembles theRoche lobe filling of a binary system, although in our
case mimicked on a statistical basis.
Finally, we can further investigate the effects of stars onto the Solar System (and vice versa) by
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Figure 7.10: Sketch of the interaction between a star ofMl,∗ = 0.45M⊙ and the Sun.
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Figure 7.11: Expected time between deep perturbations onto planet orbits caused by a passing
star. For low mass objects can apparently perturb the Solar System once every 103 yr.

asking us if it is possible that some star could perturb deep enough tomake some effects onto the
planets orbit. From our calculations there is no current effect onto planets but there could have
been some in the past or it can happen in the future. We used for our calculation the radius of
the heliopause which is slightly higher than the radii of planets orbits but can still well represent
them. We found that this type of perturbation could more probably be made by low mass stars
once every few 103 yr and that should last about 104 yr assuming this type of stars. We plotted time,
frequency and duration of the interactions as shown in Figures 7.11, 7.12, and 7.13 which depict
the dependence from the star mass.

94



Figure 7.12: Frequency of possible planet orbits perturbation on the Solar System calculated us-
ing the velocity (5.38) and the difference between the Hill radius of the star with respect to the
Sun and the position of the heliopause.

Figure 7.13: Duration of a planet orbit perturbation caused by a passing star, calculated as the
sum of theHill radius of the star with respect to the Sun and the heliopause radius by the velocity
5.38.
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One last observation can be done on the data we used in Chapter 4. In Table 7.6 we took from
data givenbyReylé, C. et al. 2021 thefirst 14objects (stars, lowmass stars or browndwarfs)which
liewithin 3pc from the Sun. In theTable is reported alongwith the identification information also
the parallax and the distance in pc, its mass and the three possible Hill radius calculations. Com-
paring these valueswith theHill radius of the Sunwith respect to theGalaxywe find confirmation
of our results in five objects of this sample. The objects are the first four of the list (Proxima Cen-
tauri,αCentauri A,αCentauri B, and Barnard’s Star) and the starαCanisMajoris A, commonly
known as Sirius A.This last object is an exception as our models predicts that this kind of objects
should reside most probably at a mean distance of∼ 50 pc, indeed its Hill radius with respect to
the Galaxy will be higher than the other stars having nearly the same distance, thus this star will
be able to both perturb the Solar System Oort cloud and be perturbed by the Sun. As Sirius A
alsoαCentauri A andαCentauri B are more near than the expectations of our model. This fea-
ture makes thus possible the interaction between these stars and the Sun. Proxima Centauri and
Barnard’s Star are instead in good agreement with our calculations having a mass under the limit
mass we found in Section 7.4. In Figure 7.14 is represented the described interactions between
the Solar SystemOort cloud andOort clouds of the stars in its surroundings according to data in
Table while in Figure 7.15 are plotted along with the Sun Oort cloud, the Hill radius of the stars
calculated with respect to the Sun. While the first plot shows that only 5 objects are currently
merging their Oort clouds with the Solar System one, this latter plot shows that the Oort cloud
is also under the perturbative effect of almost all the stars within 3 pc. We thus made the plot in
Figure 7.16 to understand the effect of the Sun onto near stars of the sample. Orange dots rep-
resent the Star-SunHill radius and green triangles represent the position of the alien Oort cloud,
i.e. the Star-GalaxyHill radius. From this plot we can see that stars havingmass higher than 5M⊙

are currently perturbed by the Sun. We then plotted also the situation of Figure 7.15 in Figure
7.17 in which the purple dots represent the Hill radius of the Sun with respect to the star and the
trianglesmark the position of the Solar SystemOort cloud. As suggested by Figure 7.15 the Solar
SystemOort cloud is currently under the perturbation of all the stars of Table 7.6 exceptαCanis
Majoris A.

97



Figure 7.14: Plot of the stars within 3 pc from the Sun in RA and distance from the Solar System
coordinates. The position of the Sun is plotted along with the position of its Oort cloud (rG,⊙).
The other stars position are taken from the catalogue given by Reylé, C. et al. 2021 and for each
star is plotted the calculated alienOort cloud (rG,∗). This plot highlights the five currentmergings
between the Solar System Oort cloud and alien Oort clouds.
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Figure 7.15: Position of the 13 objects listed in Table 7.6 with respect to the Sun. As Figure 7.14
the coordinates as RA and distance from the Sun. For the Sun is plotted the Solar System Oort
cloudwhile for the stars is plotted the star Hill radius with respect to the Sun. This plot evidences
that almost all the reported stars are currently interacting with the Solar System Oort cloud.
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Figure 7.16: Star-Sun Hill radius is plotted along with its alien Oort cloud for each star of Table
7.6. All the quantities are expressed as a fraction of the distance between the star and the Sun.
There is evidence of interaction for stars having massM > 0.5M⊙.

Figure 7.17: The Solar System Oort cloud (green triangles) is shown against the Sun-Star Hill
radius (violet points). We can assert that the Solar System Oort cloud is under perturbation by a
star if the Sun-starHill radius has a lower valuewith respect to the Solar SystemOort cloud radius
(i.e. the Sun-Galaxy Hill radius).
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Chapter 8

Conclusions and future perspectives

This thesis work started from the simple yet deep question:

”How the interaction between the Sun and other stars in its surroundings
would affect the Solar System?”

Trying to give an adequate answer wemodelled theMilkyWay in order to be able to know how is
populated, in terms of star density and distribution, the local neighbourhood. The results of this
modelling along with local kinematics and three-body dynamics allowed us to obtain the results
we shown in the previous Chapter.
In Chapter 2 we modelled the Milky Way stellar profile starting from an observable quantity
which is the Oort density discussed in Section 2.3. We then adopted a stellar density function
from Jurić et al. 2008 which describes the Galaxy thin disk, thick disk, and halo. The stellar den-
sity function has been thus normalized to the chosenOort density in order tomodel local Galaxy
to be representative of the actual local environment. To have the correct mass distribution along
star classes we introduced three IMF candidates in Section 2.5 with a study on the low mass end
of the Salpeter IMF (Subsection 2.5.1) in Subsection 2.5.4 which highlighted the diverging be-
haviour of it and led us tomake an analogywith the Solar System and choose to keep the function
constant for massesM < 0.1M⊙. The last Section 2.6 presents four different types of SFR func-
tions which have been used to characterize the current local distribution and amount of stars. To
do this, we normalized the SFR function to the local mean density.
In Chapter 3 we discussed of some fundamentals of stellar evolution and in Section 3.3 imple-
mented a stellar lifetime function adopted from Buzzoni 2002 which has been used to compute
the PDMF in the subsequent Section 3.4. The PDMF models have been thus normalized to the
local mean density to be consistent with observations and in subsequent Sections wemade some
calculations upon the remnants mass and numbers.
The Chapter 4 has been then dedicated to the comparison between the predicted number of ob-
jects from our models and the latest Gaia EDR3 data.
InChapter 5wedescribed the local kinematicswith a description of theMilkyWay rotation curve
in Section 5.3 in keplerian approximation and the Oort constants in the subsequent Section 5.4.
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In this Section we also computed and presented the rotation curve obtained from the mass inte-
gration of our density profile. The last step of this Chapter has been the definition of the LSR and
a comparison between some reported values. We thus chose to mean over these values to obtain
a reference velocity to employ in the results calculation.
In Chapter 6 we studied the reduced three-body problem and defined the Hill and SOI radii. In
section 6.6 we thus gave some reference values andmade a discussion over the Solar System edge
definition.
Lastly our results have been discussed in Chapter 7. We found a possible near-Sun source of high
energy radiation in high mass stars flybys, finding that a passing star having a mass higher than
9M⊙ could have exploded as a SNII and invested the Solar System with the X-ray flux reported
in Table 7.3. This result could be further investigated for example to know if this flux could be
potentially harmful (or even deadly to some species) or if it could have some responsibility in the
developing of life on Earth basing on the quantity of radiation absorbed by a body.
We found that our Solar System is currently under perturbation by near lowmass stars ofM < 0.5
M⊙. The presence of these kind of bodies could perturb the orbit of a comet that resides in the
Oort cloud and turn it into a LPC as described in Subsection 6.6.1, otherwise, the comet could
be stripped by the perturbing star. We also found that also our Sun is perturbing near low mass
stars havingM < 0.45M⊙. Since stars having this mass are expected to perturb the Oort cloud
too, our results suggest that there could exist a merging zone between our Oort cloud and alien
Oort clouds, in which comets of both the clouds can be mixed. Finally, we found that there is a
possibility that planets could be affected by the presence of a star for a relatively short period of
time. This aspect could be investigated to calculate how much this kind of interaction is relevant
for the Solar System structure stability.
An interesting possible future investigation could aim at making the calculations reported in this
thesis in a denser environment as could be spiral arms. In this case we expect higher values for
the PDMF since it is normalized to the local surface density, and, since star formation in spiral
galaxies resides in spiral arms, a changing in its highmass end shape with an increase in the num-
ber of highmass stars. This feature should lead to close encounters to bemore frequent reflecting
maybe in more frequent comet showers, deeper interactions, or object stripping.
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Appendix A

Gaia Data.

In Table A.1 the nearest 10 pc objects detected by Gaia satellite are reported as used in Reylé,
C. et al. 2021. For each object is specified its category (Star, Low Mass star, Brown Dwarf, or
Planet), its spectral type, possible exoplanet associated, and its Simbad name. Objects order is by
distance.

NB_OBJ DISTANCE [pc] OBJ_CAT SP_TYPE EXO_COUNT SIMBAD_NAME
1 1.30 LM M5.5 1 alf Cen C
2 1.30 Planet
3 1.34 Star G2 alf Cen A
4 1.34 Star K1 alf Cen B
5 1.82 LM M3.5 Barnard’s Star
6 1.99 BD L7.5 Luhman 16A
7 1.99 BD T0.5 Luhman 16B
8 2.27 BD >Y4 WISEA J085510.74-

071442.5
9 2.40 LM M6 Wolf 359
10 2.54 LM M1.5e 1 HD 95735
11 2.54 Planet
12 2.63 Star A1 alf CMa A
13 2.67 WD DA1.9 alf CMa B
14 2.67 LM M5 G 272-61A
15 2.71 LM M6 G 272-61B
16 2.97 LM M3.5e Ross 154
17 3.15 LM M5 Ross 248
18 3.21 Star K2 1 eps Eri
19 3.21 Planet
20 3.28 LM M2 2 HD 217987
21 3.28 Planet
22 3.28 Planet
23 3.37 LM M4 1 Ross 128
24 3.37 Planet
25 3.40 LM M5 GJ 866 A
26 3.40 LM? GJ 866 B
27 3.40 LM? GJ 866 C
28 3.49 Star K5 61 Cyg A
29 3.49 Star K7 61 Cyg B
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NB_OBJ DISTANCE [pc] OBJ_CAT SP_TYPE EXO_COUNT SIMBAD_NAME
30 3.51 Star F5 alf CMi A
31 3.51 WD DQZ alf CMi B
32 3.52 LM M3 HD 173739
33 3.52 LM M3.5 HD 173740
34 3.56 LM M1 2 GJ 15 A
35 3.56 Planet
36 3.56 Planet
37 3.56 LM M3.5e GJ 15 B
38 3.58 LM M6.5 G 51-15
39 3.63 Star K5 1 GJ 845 A
40 3.63 Planet
41 3.65 BD T1 GJ 845 B
42 3.67 BD T6 GJ 845 C
43 3.67 Star G8.5 tau Cet
44 3.67 LM M5.5 3 L 372-58
45 3.67 Planet
46 3.69 Planet
47 3.69 Planet
48 3.71 LM M4e 3 YZ Cet
49 3.71 Planet
50 3.71 Planet
51 3.71 Planet
52 3.78 LM M3.5 2 BD+05 1668
53 3.78 Planet
54 3.78 Planet
55 3.83 LM M6 2 Teegarden’s Star
56 3.83 Planet
57 3.83 Planet
58 3.93 LM sdM1 Kapteyn’s Star
59 3.96 LM M1 AX Mic
60 4.00 LM M3 HD 239960A
61 4.00 LM M4 HD 239960B
62 4.00 LM M8 SCR J1845-6357
63 4.00 BD T6 SCR J1845-6357B
64 4.04 LM M9 DENIS J104814.6-

395606
65 4.11 LM M4.5 Ross 614 A
66 4.11 LM M5.5 Ross 614 B
67 4.11 BD > T9 UGPS J072227.51-

054031.2
68 4.30 LM M3 3 BD-12 4523
69 4.30 Planet
70 4.30 Planet
71 4.30 Planet
72 4.31 WD DZ Wolf 28
73 4.32 LM M5.5 Wolf 424
74 4.34 LM M7 Wolf 424
75 4.46 LM M2 HD 225213
76 4.46 LM M4.5 2 TZ Ari
77 4.46 Planet
78 4.47 Planet
79 4.54 LM M3 1 BD+68 946
80 4.54 Planet
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NB_OBJ DISTANCE [pc] OBJ_CAT SP_TYPE EXO_COUNT SIMBAD_NAME
81 4.55 LM M2 1 CD-46 11540
82 4.55 Planet
83 4.55 BD Y0pec WISE J163940.83-

684738.6
84 4.55 LM M6.5 LP 731-58
85 4.63 WD DQ LAWD 37
86 4.66 LM M5.5 GJ 1245 A
87 4.66 LM M8 GJ 1245 C
88 4.67 LM M5.5 GJ 1245 B
89 4.67 BD T9 WISEP

J174124.25+255319.5
90 4.67 LM M4 4 BD-15 6290
91 4.67 Planet
92 4.67 Planet
93 4.69 Planet
94 4.69 Planet
95 4.83 LM M5.5 L 143-23
96 4.84 LM M5.5 G 158-27
97 4.86 BD L9 DENIS J025503.3-

470049
98 4.87 Star K7.5e HD 88230
99 4.90 LM M1 BD+44 2051
100 4.90 LM M5.5 BD+44 2051B
101 4.96 LM M3 BD+20 2465
102 4.96 LM M1.5 2 HD 204961
103 4.96 Planet
104 4.96 Planet
105 5.00 LM M5 2 CD-44 11909
106 5.00 Planet
107 5.00 Planet
108 5.00 Star K0.5 GJ 166 A
109 5.00 WD DA2.9 GJ 166 B
110 5.01 LM M4.5 GJ 166 C
111 5.05 LM M4 EV Lac
112 5.09 LM M7 G 9-38 A
113 5.10 LM M7 G 9-38 B
114 5.11 Star K0 70 Oph A
115 5.12 Star K4 70 Oph B
116 5.15 Star A7 alf Aql
117 5.15 BD T6 2MASS

J15065257+7027247
118 5.20 LM M3.5e G 99-49
119 5.21 BD T6 2MASS J08173001-

6155158
120 5.25 LM M4e G 254-29
121 5.32 LM M6.5 WISEA J154045.67-

510139.3
122 5.33 BD T8 2MASS J09393548-

2448279
123 5.37 LM M4e 2 LP 656-38
124 5.37 Planet
125 5.37 Planet
126 5.43 LM M1.5 HD 119850
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NB_OBJ DISTANCE [pc] OBJ_CAT SP_TYPE EXO_COUNT SIMBAD_NAME
127 5.51 LM M4e GJ 169.1 A
128 5.51 WD DC GJ 169.1 B
129 5.58 BD T7.5 2MASS J11145133-

2618235
130 5.58 LM M3 1 HD 265866
131 5.58 Planet
132 5.62 LM M4 LP 816-60
133 5.66 BD Y1 WISE J035000.32-

565830.2
134 5.68 LM M8.5 2MASSI

J1835379+325954
135 5.70 LM M1.5 HD 36395
136 5.70 BD T8 2MASSI J0415195-

093506
137 5.76 LM M1 2 HD 42581
138 5.76 Planet
139 5.76 Planet
140 5.76 BD T7pec HD 42581B
141 5.77 Star G9 sig Dra
142 5.79 LM M4 Ross 47
143 5.88 Star K4 GJ 570 A
144 5.88 LM M1 GJ 570 B
145 5.90 LM? GJ 570 C
146 5.90 BD T7 GJ 570 D
147 5.90 LM M4 L 205-128
148 5.91 LM M4.5 L 347-14
149 5.91 LM M1 BR Psc
150 5.91 LM M3 1 GJ 752 A
151 5.91 Planet
152 5.92 LM M8 GJ 752 B
153 5.92 LM M2.5 CD-40 9712
154 5.92 Star F9 eta Cas A
155 5.92 Star K7e eta Cas B
156 5.94 Star K2 36 Oph A
157 5.95 Star K1 36 Oph B
158 5.95 Star K5 36 Oph C
159 5.97 LM M3 GJ 661
160 5.97 LM? GJ 661
161 5.98 LM M4e YZ CMi
162 5.99 BD Y0.5 WISE J154151.65-

225024.9
163 6.00 LM M4 G 158-50
164 6.00 LM M4 G 158-50
165 6.01 Star K2.5 GJ 783 A
166 6.01 LM M3.5 GJ 783 B
167 6.04 Star G8 2 e Eri
168 6.04 Planet
169 6.04 Planet
170 6.05 LM M5e GJ 268 A
171 6.05 LM M5e GJ 268 B
172 6.09 Star G8 del Pav
173 6.11 BD T2 SIMP

J013656.5+093347.3
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NB_OBJ DISTANCE [pc] OBJ_CAT SP_TYPE EXO_COUNT SIMBAD_NAME
174 6.14 BD T7 2MASSI

J0937347+293142
175 6.16 LM M0 HD 191849
176 6.18 BD Y0 WISE

J220905.73+271143.9
177 6.21 WD DQ9P EGGR 372
178 6.25 LM M3.5 BD-11 3759
179 6.25 LM M3.5e BD+19 5116 A
180 6.26 LM M4e BD+19 5116 B
181 6.30 LM M3 3 BD-07 4003
182 6.30 Planet
183 6.30 Planet
184 6.30 Planet
185 6.32 BD Y0(pec? ) WISE

J140518.39+553421.3
186 6.33 LM M0 HD 79210
187 6.33 LM M0 1 HD 79211
188 6.33 Planet
189 6.35 LM M6.5 LP 368-128
190 6.41 BD T5.5 2MASS

J15031961+2525196
191 6.42 LM M9 LP 944-20
192 6.44 WD DZ11 EGGR 45
193 6.46 LM M4.5e GL Vir
194 6.47 LM M1.5 1 G 202-48
195 6.47 Planet
196 6.49 LM M3e GJ 644 A
197 6.49 LM? GJ 644 B
198 6.49 LM? GJ 644 B
199 6.49 LM M7 GJ 644 C
200 6.49 LM M3.5 Wolf 629
201 6.50 LM M4 L 100-115
202 6.54 Star K3 4 HD 219134
203 6.54 Planet
204 6.54 Planet
205 6.54 Planet
206 6.54 Planet
207 6.55 BD Y0.5 WISEA

J082507.37+280548.2
208 6.60 BD Y0 WISE

J041022.71+150248.4
209 6.65 BD T7.5 2MASS

J05212615+1025328
210 6.66 LM M4 L 471-42
211 6.74 LM M2.5 Ross 104
212 6.74 Star G7 ksi Boo A
213 6.75 Star K5 ksi Boo B
214 6.76 LM M4.5e Ross 619
215 6.77 LM M4e G 41-14 A
216 6.77 LM? G 41-14 B
217 6.77 LM? G 41-14 C
218 6.77 LM M3e GJ 829 A
219 6.77 LM? GJ 829 B
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NB_OBJ DISTANCE [pc] OBJ_CAT SP_TYPE EXO_COUNT SIMBAD_NAME
220 6.79 LM M9.5 2MASS J07200325-

0846499
221 6.79 BD T5 2MASS J07200325-

0846499
222 6.83 BD T6 2MASS

J19284155+2356016
223 6.84 BD T8 WISEPA

J025409.45+022359.1
224 6.86 LM M3 1 BD-17 588A
225 6.86 Planet
226 6.86 LM M2.5 BD-17 588BC
227 6.86 LM? BD-17 588BC
228 6.86 LM M1.5e HD 216899
229 6.89 BD sdT8? 2MASS

J07584037+3247245
230 6.96 LM M4 Wolf 358
231 7.03 LM M2 BD+01 2447
232 7.03 LM M1e HD 199305
233 7.04 LM M4 UCAC4 642-113039
234 7.05 LM M7e LP 914-54
235 7.10 BD Y0 WISE

J205628.91+145953.2
236 7.10 LM M4.5 L 230-188
237 7.12 BD T8.5 WISE

J004945.61+215120.0
238 7.17 LM M5.5 G 157-77
239 7.22 Star K3 GJ 105 A
240 7.22 LM M4 GJ 105 B
241 7.22 LM M7 GJ 105 C
242 7.22 BD L6.5 2MASS J08354256-

0819237
243 7.23 LM M4.5e L 788-34
244 7.24 Star K3 HD 156384A
245 7.24 Star K5 HD 156384B
246 7.24 LM M1.5 2 HD 156384C
247 7.24 Planet
248 7.24 Planet
249 7.24 BD L9 2MASS

J06073908+2429574
250 7.37 BD T8.5 WISEP

J031325.96+780744.2
251 7.41 BD L5.5 2MASSW J1507476-

162738
252 7.43 Star K2.5 HD 4628
253 7.47 Star G2 bet Hyi
254 7.49 BD T8 WISE

J200050.19+362950.1
255 7.51 LM M3.5 G 203-47
256 7.51 WD? G 203-47
257 7.59 Star A4 alf PsA
258 7.59 Star K4 alf PsA B
259 7.60 LM M4e alf PsA C
260 7.61 Star G5 GJ 53 A
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NB_OBJ DISTANCE [pc] OBJ_CAT SP_TYPE EXO_COUNT SIMBAD_NAME
261 7.62 LM M4? GJ 53 B
262 7.63 LM M3 VX Ari
263 7.64 LM M5 G 141-36
264 7.64 LM M1e BD+11 2576
265 7.65 BD Y0 WISE

J173835.53+273259.0
266 7.65 LM M4.5 G 258-33
267 7.66 Star K0 107 Psc
268 7.67 BD Y1 WISEA

J235402.79+024014.1
269 7.67 BD Y1 WISE J081117.81-

805141.3
270 7.67 LM M3 L 499-56
271 7.67 Star A0 alf Lyr
272 7.68 LM M1.5 AN Sex
273 7.70 Star K7 HD 157881
274 7.70 LM M8 SIPS J1259-4336
275 7.71 LM M5.5 LP 881-64
276 7.72 LM M9.5 LP 881-64
277 7.73 LM L0 LP 881-64
278 7.73 LM M4e G 192-13
279 7.73 LM M0 HD 165222
280 7.73 LM M5 G 109-35
281 7.73 LM M5 G 227-22
282 7.75 BD L7.5 WISEP

J180026.60+013453.1
283 7.79 LM M3e GJ 623 A
284 7.80 LM? GJ 623 B
285 7.84 LM M2.5 CD-68 47
286 7.84 LM? CD-68 47
287 7.88 BD T9 WISE

J000517.48+373720.5
288 7.88 BD T8pec 2MASS J07290002-

3954043
289 7.88 LM M4e G 154-44
290 7.91 LM M4.5 SCR J0740-4257
291 7.97 LM M4.5 GJ 831 A
292 7.98 LM? GJ 831 B
293 7.98 Star F6 pi.03 Ori
294 7.98 LM M3 CD-44 3045 A
295 8.02 LM M3 CD-44 3045 B
296 8.02 LM M4.5 G 122-49
297 8.04 LM M3 L 399-68
298 8.04 Star F7 chi Dra A
299 8.05 Star K0 chi Dra B
300 8.05 LM M3.5e 1 Wolf 437
301 8.05 Planet
302 8.07 BD L7 2MASSW

J2148162+400359
303 8.07 LM M2.5 G 262-15
304 8.08 LM M4.5e G 13-22
305 8.08 LM M3.5 L 674-15
306 8.08 WD DA8P EGGR 290
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307 8.11 BD T6.5 2MASS

J00345157+0523050
308 8.11 LM M2? IRAS 21500+5903
309 8.12 WD DAH UCAC4 747-070768
310 8.15 LM M1.5e 1 BD+18 3421
311 8.15 Planet
312 8.16 WD DA LAWD 26
313 8.18 BD T8.5 UGPS

J052127.27+364048.6
314 8.18 Star K2 GJ 66 A
315 8.19 Star K2 GJ 66 B
316 8.21 LM M2 L 173-19
317 8.23 Star K7 HD 217357
318 8.23 LM M3e Ross 318
319 8.23 BD T8 WISE

J115013.85+630241.5
320 8.30 WD DAP LAWD 96
321 8.31 Star G5 mu. Her A
322 8.31 LM M4 mu. Her A
323 8.32 LM M3.5 mu. Her B
324 8.33 LM? mu. Her C
325 8.33 LM M3.5e GJ 747 A
326 8.34 LM? GJ 747 B
327 8.34 WD DA Wolf 489
328 8.35 BD T7 2MASS J03480772-

6022270
329 8.35 LM M4 G 227-29
330 8.36 LM M4 G 130-4
331 8.36 LM M8 SCR J1546-5534
332 8.37 BD T6 SCR J1546-5534
333 8.39 LM M0 HD 32450 A
334 8.39 LM? HD 32450 B
335 8.41 LM M5 SCR J1138-7721
336 8.41 Star G0 bet CVn
337 8.46 LM M4 Ross 64
338 8.47 LM M3 CD-37 10765 A
339 8.49 LM M5 CD-37 10765 B
340 8.49 WD DA5.5 CD-32 5613
341 8.51 Star G7 3 61 Vir
342 8.51 Planet
343 8.53 Planet
344 8.53 Planet
345 8.53 WD DZ13 EGGR 453
346 8.53 LM M4.5e Wolf 461
347 8.53 LM M4.5 G 89-32 A
348 8.54 LM M5 G 89-32 B
349 8.57 BD >Y1?
350 8.57 LM M3 L 49-19
351 8.59 LM M4.5e 1 CD Cet
352 8.59 Planet
353 8.60 Star F9.5 zet Tuc
354 8.60 LM M5.5 NLTT 40406
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355 8.60 BD L9pec 2MASS

J16471580+5632057
356 8.61 LM M9 LP 666-9
357 8.62 LM M4 G 19-7
358 8.65 LM M5 AP Col
359 8.66 LM M5 PM J11413-3624
360 8.68 Star G0 chi01 Ori
361 8.69 LM? chi01 Ori
362 8.69 LM M4.5 LP 991-84
363 8.70 Star F8.5 ksi UMa A
364 8.72 LM M3 ksi UMa A
365 8.73 Star G2 ksi UMa B
366 8.73 Star K2-3 ksi UMa B
367 8.73 BD T8.5 WISE

J111838.70+312537.9
368 8.73 BD L3.5 LSPM J0036+1821
369 8.73 Star K3.5 HD 50281
370 8.73 LM M2 HD 50281B
371 8.74 LM? HD 50281B
372 8.74 LM M1.5 MCC 135
373 8.74 BD Y0?
374 8.76 Star G9 41 Ara A
375 8.77 LM? 41 Ara A
376 8.79 LM M0 41 Ara B
377 8.79 LM M4.5 GJ 791.2 A
378 8.81 LM? GJ 791.2 B
379 8.81 Star K2 2 HD 192310
380 8.81 Planet
381 8.81 Planet
382 8.81 LM M3.5 2 BD-05 5715
383 8.81 Planet
384 8.81 Planet
385 8.81 LM M2 GJ 745 A
386 8.82 LM M2 GJ 745 B
387 8.82 LM M3 L 32-8
388 8.83 LM M2 L 32-9
389 8.83 Star K3 HD 32147
390 8.83 LM M3.5 G 111-47
391 8.84 LM M2e FK Aqr
392 8.85 LM M3.5 FL Aqr
393 8.85 LM? FK Aqr
394 8.85 BD? FL Aqr
395 8.87 LM M2 Ross 695
396 8.87 LM M9 LEHPM 3396
397 8.88 LM? SCR J0630-7643 A
398 8.88 LM? SCR J0630-7643 B
399 8.88 BD T8 2MASSI

J0727182+171001
400 8.89 Star F6.5 GJ 216 A
401 8.89 Star K2.5 GJ 216 B
402 8.89 LM M2 G 113-20
403 8.90 LM M5e G 193-27
404 8.93 LM? G 193-27
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405 9.02 LM M1 SZ UMa
406 9.02 LM M4.5 SZ UMa
407 9.07 LM M2 3 CD-31 9113
408 9.07 Planet
409 9.07 Planet
410 9.07 Planet
411 9.07 Star K0 del Eri
412 9.07 LM M2 HD 115953 A
413 9.08 LM? HD 115953 A
414 9.09 LM? HD 115953 B
415 9.09 LM M5e LP 469-206
416 9.09 WD DQ9 EGGR 246
417 9.09 LM M3.5e V374 Peg
418 9.09 BD L4.5 2MASS

J06523073+4710348
419 9.10 LM M5.5e WT 460
420 9.11 LM L1 WT 460
421 9.11 Star G5 kap01 Cet
422 9.11 BD T7.5 ULAS

J141623.94+134836.3
423 9.11 BD L6 2MASS

J14162408+1348263
424 9.14 WD DZA LAWD 25
425 9.14 LM M6.5e GJ 283 B
426 9.15 BD Y0 WISE J071322.55-

291751.9
427 9.16 BD L5.5 2MASS

J03552337+1133437
428 9.16 BD T9pec WISEP J213456.73-

713743.6
429 9.17 Star K1 HD 103095
430 9.19 LM M3.5 Ross 1015
431 9.19 Star G0 bet Com
432 9.20 BD L5.5 2MASS J17502484-

0016151
433 9.20 BD? 2MASS J17502484-

0016151
434 9.22 BD T9pec WISEP J232519.54-

410534.9
435 9.23 LM M3.5 L 737-9
436 9.23 LM? L 737-9
437 9.23 LM M3 LP 776-46
438 9.23 LM M5.5 LP 469-67
439 9.25 Star F9 gam Pav
440 9.27 LM M4.5 G 112-50
441 9.27 Star G2 1 HD 102365
442 9.28 Planet
443 9.30 LM M4 HD 102365B
444 9.31 BD T9 WISE

J121756.90+162640.8
445 9.31 BD Y0 WISE

J121756.90+162640.8
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446 9.31 LM M5.5 2MASS

J00113182+5908400
447 9.31 LM M3 BD-18 359
448 9.31 LM? BD-18 359
449 9.31 BD L5 2MASS

J18212815+1414010
450 9.31 BD L7 2MASSI J0340094-

672405
451 9.34 LM M3.5 Ross 837
452 9.35 BD T8.5 WISEPA

J045853.89+643452.9
453 9.35 BD T9.5 WISEPA

J045853.89+643452.9
454 9.37 LM M2.5 CD-30 731
455 9.37 WD DQ8 EGGR 41
456 9.38 BD >Y1
457 9.40 LM M3.5e GJ 748
458 9.40 LM? GJ 748
459 9.40 LM M1 CD-45 5378
460 9.40 LM M2.5 3 L 678-39
461 9.41 Planet
462 9.43 Planet
463 9.43 Planet
464 9.43 LM M9e 1RXS J115928.5-

524717
465 9.43 LM M2 G 222-11
466 9.46 LM M5.5 UCAC4 379-100760
467 9.46 LM M2 1 HD 285968
468 9.47 Planet
469 9.48 LM M3e CD-51 6859
470 9.48 LM M5.5 2 G 234-45
471 9.49 Planet
472 9.49 Planet
473 9.49 LM? BPS CS 22879-0089
474 9.49 LM? BPS CS 22879-0089
475 9.50 LM M4.5 L 35-12
476 9.50 LM M5 G 192-15
477 9.52 LM M4.5 G 144-25
478 9.52 LM M2.5 BD+43 2796
479 9.53 LM M4e G 42-24
480 9.53 Star K0 HD 100623
481 9.54 WD DC HD 100623B
482 9.55 LM M5 Wolf 1069
483 9.55 Star G8 61 UMa
484 9.57 LM M5e PM J20502-3424
485 9.57 LM M3 CD-40 5404
486 9.60 BD Y0 WISE J114156.71-

332635.8
487 9.60 LM M5 Wolf 227
488 9.61 BD? Wolf 227
489 9.66 BD L8 2MASS

J14053729+8350248
490 9.66 LM M5 G 161-7
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491 9.66 LM M5 G 161-7
492 9.67 LM M3 CD-48 11837
493 9.67 LM? CD-48 11837 B
494 9.67 BD T9 CFBDS J005910-

011401
495 9.68 LM M3 L 768-119
496 9.68 BD? L 768-119
497 9.69 LM M4.5 AT Mic
498 9.69 LM M4 AT Mic
499 9.71 LM M0.5 1 AU Mic
500 9.71 Planet
501 9.71 LM M5 G 268-110
502 9.72 LM M3.5e G 48-20
503 9.72 WD DA8.1 L 88-59
504 9.73 BD T5.5 WISE

J223617.59+510551.9
505 9.73 BD T1.5 2MASS

J20304235+0749358
506 9.73 LM M5 G 119-36
507 9.74 LM? G 119-36
508 9.74 BD L8.5 2MASS J02572581-

3105523
509 9.77 BD T9
510 9.77 LM M6e LP 655-48
511 9.77 LM M2.5 1 Ross 905
512 9.80 Planet
513 9.80 BD L6 2MASSW

J1515008+484742
514 9.84 Star K5 HD 151288
515 9.85 BD L8.5 CFBDS

J213926+022023
516 9.85 BD T3.5 CFBDS

J213926+022023
517 9.85 LM M1.5 1 BD+61 195
518 9.85 Planet
519 9.86 LM M5 BD+61 195 B
520 9.87 BD T2.5 2MASS

J07584037+3247245
521 9.89 LM M2 GJ 22 A
522 9.89 LM M3 GJ 22 B
523 9.89 LM M4 GJ 22 C
524 9.89 Star K1 12 Oph
525 9.89 LM? UPM J0815-2344
526 9.90 LM? UPM J0815-2344
527 9.90 LM M5 G 203-42
528 9.91 LM M0 HD 232979
529 9.92 LM M3.5 G 160-28
530 9.92 LM M5e GJ 1230 A
531 9.93 LM M4.5e GJ 1230 B
532 9.93 LM? GJ 1230 C
533 9.94 LM M1 BD+16 2708 A
534 9.94 LM M8.5 BD+16 2708 B
535 9.94 BD M9 BD+16 2708 B
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536 9.94 LM M5e L 403-31
537 9.94 LM M6.5 LP 98-79
538 9.96 BD >= Y2 WISE

J182831.08+265037.7
539 9.96 LM M3.5e G 36-24
540 9.97 LM M0e HD 260655
1001 9.98 BD L6.5? CWISE

J061741.79+194512.8
1002 9.99 BD T8? CWISE

J061741.79+194512.8
1003 10.0 BD T9 ULAS

J133553.45+113005.2
1004 10.0 LM M3 Ross 440
1005 10.0 LM M4 Ross 440
1006 10.0 BD Y0 WISE J033605.05-

014350.4
1007 10.0 BD T2pec
1008 10.0 BD Y1 WISE J064723.23-

623235.5
1009 10.1 BD T8.5
1010 10.1 BD >Y1 WISEU J050305.68-

564834.0
1011 10.1 BD T9 WISE

J161441.46+173935.5
1012 10.2 BD T9
1013 10.2 LM M7 G 100-28
1014 10.2 LM G 100-28
1015 10.2 BD T9.5 WISE

J094305.98+360723.5
1016 10.4 BD T7 2MASS

J12373919+6526148
1017 10.4 BD >Y1? CWISEP J144606.62-

231717.8
1018 11.0 BD >Y1 WISEA

J083011.95+283716.0
1019 11.6 BD >Y1?

TableA.1: In thisTable are listed thenearest objects to theSun. Thesedatawere
obtained byReylé, C. et al. 2021 from the third EarlyDataRelease (EDR3) and
represent the objects observed by Gaia over 10 pc distance from Sun.
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