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Abstract

Nowadays, IoT and social networks are the main sources of big data, they generate
a massive amount of assets and companies have to develop data-driven strategies to
exploit the value of information that’s behind data. The shape of data sources is typically
heterogeneous, since data can be generated from different sources distributed all around
the world. The sparsity and the heterogeneous shape of data make much more difficult
the process of data wrangling and knowledge discovering, and these are the reasons why
data-driven companies must use data integration techniques to address this complexity.

The DTIM research group at Universitat Politècnica de Catalunya (UPC) upon
I have been working with is interested in such thematic and in 2015 they developed
Graph-driven Federated Data Management (GFDM), that proposes in a very intuitive
way a graph-based data integration architecture. What we would like to do in this
project is to extend GFDM, to support automatic data aggregation following the OLAP
data processing grounded on multidimensional modeling, as data warehouses do, but
on top of graph data. This idea will be carried out by developing a framework able to
perform OLAP-like queries over GFDM, mainly focusing on the well-known Roll-Up
operation. In this thesis we have developed a method that given a query is able to align
data coming from different data sources and sitting at different granularities level that
participate in the same conceptual aggregation hierarchy. Our method is able to identify
implicit aggregations that would allow to align data from different data sources and
integrate them seeminglessly at the correct granularity level. After an accurate design
and implementation phase we can finally consider our goal accomplished, developing with
success the Implicit Roll-Up algorithm satisfying our requirements.
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Chapter 1

Motivation

The idea of this project came from the very well known necessity of facilitating as much
as possible the data scientist job of data wrangling, since to develop robust mathematical,
machine learning and in particular deep models it is very important to have access to
huge amount of (correct) data. Nowadays, IoT and social networks are the main sources
of big data, generating a massive amount of assets. Accordingly, stakeholders in the
organizations have to deal with heterogeneous datasets generated independently and
by different processes. Clearly handling such resources it is not a trivial task and to
do so without specific tools it may become very complex. Data integration systems
have been developed to overcome these problems, with the purpose of re-conciliating
huge amount of heterogeneous and distributed data sources, facilitating the process of
knowledge discovering, making it possible to navigate data as a single integrated schema.

First, we will discuss the two main approaches of data integration: Physical and
Virtual data integration. Afterwards it will be present Graph-driven Federated Data
Management (GFDM), a virtual data integration system based on graphs developed
by the DTIM research group at Universitat Politècnica de Catalunya (UPC). Finally,
as a goal of this project we would like to develop a framework able to implement the
OLAP (On-line Analytical Processing) operations, typically associated to physical data
integration models, over GFDM which does not support this framework by default.
Consider as an example the following scenario; A company may buy IoT sensor data
from different organizations. The first source of sensor data provides the number of
cars circulating in a certain relevant road of a city per hour. While another source may
provide data of other streets per day. A simple query such as the total number of cars of
any street of that city per day would, typically, only take into account the data source
providing daily data. However, this is a clear example that hour and day participate in
the same aggregation hierarchy, and an implicit aggregation from hour to day might let
us use both the first and the second data source to answer this query.
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1.1 Data integration techniques
The aim of this section is to open a small parenthesis to describe the main data integration
techniques, detailing a bit more precisely their main characteristic, in order to make it
easier to understand the motivations behind this work.

1.1.1 Physical data integration

Physical data integration integrates data by means of ETL (extract-transform-load)
processes. These processes extract data from disparate potentially heterogeneous sources
as Data lakes, information systems or external data sources (E), transform them (T),
cleaning, homogenizing and preparing data to finally load them in a multidimensional
schema (L). Thus, the target multidimensional schema contains instances generated from
the transformation and integration of individual instances extracted from the sources.
The multidimensional view of data is distinguished by the fact, dimension and level
dichotomy, and it is characterized by representing data as if placed in an n-dimensional
space, allowing us to easily understand and analyze data in terms of facts (the subjects
of analysis), dimensions showing the different points of view from where a subject can be
analyzed and levels describing the granularities of each dimension. A multidimensional
schema is a formalism (Entity Relationship like) that allows to model data behaving
to multidimensional domains that will be then implemented into a relational database
through tables.

Querying over multidimensional structures is then mainly performed by means of
OLAP (On-line Analytical Processing) which in essence performs aggregations and other
operations equivalent to descriptive statistics analysis. The most prominent OLAP
operators are Roll-Up and Drill-Down, which are the opposite operation. The Roll-Up
operator aggregates data to a coarser granularity level on an aggregation hierarchy,
while the Drill-Down operator decreases the aggregation level of a dimension. The main
advantage of such integration techniques is the possibility of working directly on clean,
integrated and structured data already integrated in the data warehouse in the form of
a multidimensional schema, while some disadvantages are the computational costs of
ETL cycles and the impossibility of working with "fresh" data. More insights related to
physical data integration can be found in [3].

1.1.2 Virtual data integration

Virtual data integration do not extract, transform and load instances in the target schema.
Even if the concept of target schema also exists in these systems, this target schema does
not contain data but mappings to allow the system to compute, on-the-fly, via query
rewriting, the target concept instances from the data sources at hand. Thus, instead of
ETL, it relies on mappings between the local and target schemata. These mappings are
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used by query rewriting algorithms that compute the result of queries over the target
schema on several queries on the data sources and glue together their results to produce
the illusion of a unified view over them. The main advantages of virtual data integration
techniques are the data freshness since information are retrieved at query time directly
from the real sources and also the exploitation of data locality. The disadvantage of
these approaches are performance problems given that queries are rewritten in runtime
and executed over different sources and finally their results merged together. For this
reason, traditionally, these systems allow very limited query expressiveness (e.g. selections,
projections and joins).

Let us define now the ways to define mappings, having three main approaches. The
simpler vision to define mappings is the monolithic approach GAV (global as view),
characterizing the target schema in terms of queries over the sources (the mapping is a
query over the source). Then there are LAV (local as view) approaches adopting the well
known mediator architecture, characterizing sources in terms of queries over the target
schema. Finally, GLAV (global as local as view) approaches defines a hybrid mapping
view considering both the advantages of GAV and LAV, characterizing queries over the
sources in terms of queries over the target schema.

Consider finally the main solutions to implement virtual data integration, having
classic (relational) database (DB) and knowledge representation (KR) approaches. DB
methods define the integrated schema (TBOX) as an integrated database. The definition
of such structure requires domain experts with accurate understanding of the schema for
the definition of conjunctive queries through data sources relying on shared join predicates.
KR based systems, differently, defines the integrated schema by means of fragment of
(DL-Lite) description logics [6] offering typically a graph-based data model giving the
expressiveness of a graph model and the simplicity of querying it with the drawback of
having complex reasoning mechanisms underneath to enable query answering.

1.1.3 Graph-based data integration

Let us introduce now graph-based solution to perform virtual data integration adopting
KR approaches. These techniques rely typically on KG (Knowledge Graphs) properties to
generate (DL-Lite) ontology describing the integrated schema (TBOX) and linking shared
and distributed data through semantic pointers. The use of RDFS (Resource Description
Framework Schema), or even more complex ontology description languages, as OWL
(Web Ontology Language), will allow defining robust constraints and taxonomies over the
TBOX in the form of description logic fragments. The usage of a graph representation
to describe the integrated schema has many advantages: Firstly, a graph notation will
allow by definition to define flexible and extensible models. The simplicity of a graph
representation will also facilitate the comprehension of the schema and as consequence
the querying will be easier since it will be based on pattern-matching expressions or even
simpler visual queries.
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Graph-based virtual data integration techniques can be distinguished in two main
families; ontology-based data access systems and ontology-mediated queries. In both
the models the queries are executed over an integrated schema (TBOX modeled with
knowledge graphs), formally defined as Global level, which will have the responsibility to
retrieve all the queried data from each source aligning all of them delivering a complete
result to the user through reasoning. The main difference between these approaches is the
way of how mapping are defined. Ontology-based models relies on GAV mappings, while
Ontology-mediated models are based on LAV or GLAV mapping. Ontology-mediated
approaches relies on the concept of wrappers as a named query, each one exposing
the variables that will be extracted to the respective connected source. Typically, the
integration graphs defining the whole integration system (both the TBOX and the
wrappers) are defined through graph semantic having LAV or GLAV mappings as sub-
graphs of the TBOX.

1.2 Graph-driven Federated Data Management
In this section we introduce Graph-driven Federated Data Management system because
it is the starting point of this work, having as goal to develop a framework able to
extend such system. The DTIM research group in Universitat Politècnica de Catalunya
(UPC) is interested in data integration thematic and in 2015 they developed Graph-driven
Federated Data Management (GFDM), that proposes a graph-based architecture to
perform virtual data integration adopting GLAV mappings [1]. GFDM system however
differs to the classic idea of virtual integration systems based on ontology since it actually
performs query answering without relying on reasoning, adopting ontology for the sake
of defining proper constraints and taxonomies over the TBOX allowing to have a well
formatted and easily accessible schema. GFDM is then a virtual data integration system
and as such supports selection, projection and join.

1.3 Contribution
In this work, we aim at also including implicit aggregations and enrich the amount of
automatically supported operations. To do so, we make a multidimensional interpretation
of the graph (i.e., the capability to support dimensions, levels, dimension hierarchies
and measures to generate multidimensional cubes). On top of that multidimensional
interpretation, we will be able to perform OLAP-like aggregation equivalent to that of a
traditional Roll-up. Thus, our approach is the first one to extend a graph-based virtual
data integration system to incorporate OLAP-like aggregations, which do not support
OLAP by default. Let’s identify this structure as a multidimensional graph, which we
denote asMG.
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Let us now consider the chance to have datasets providing data behaving to the
same domain but at different granularities having all the possible granularities in
{0, ..., k, ..., n | 0 < k < n}. Consider now the user querying the kth granularity level.
Then what we would like to do is allow GFDM to generate a result considering not just
information at k granularity but also the union of all the information provided at each
lower granularity level than k, as {0, ..., k − 1}, aggregated to k granularity. Let us call
this operation implicit Roll-Up. Let use Figure 1.1 to make an example. The studied
fact is Sale which is described by the measures total revenue and number of unit, and
it is also represented in a multidimensional space with a spatial, temporal and product
dimension. According to the query (the red dashed line) the user is asking for the second
granularity level of each dimension, respectively Region, Month and Sub Category. Then,
according to what we said before, the expected result would be given by the union of
all the data provided at the queried granularity k and the aggregation of all the lower
granularity level into k. We will finally have a union of all the data already provided at
Region, Month and Sub Category granularity with the data provided at City, Day and
Product granularity aggregated to their respective higher granularity level.

Figure 1.1: Idea of a simplified multidimensional graph MG having three different
granularity level for three dimension and two numerical data. Also, a query have been
depicted as a dashed red line.

1.3.1 Benefits of the approach

The advantages of an implicit Roll-Up operation in this case would be twofold; Firstly this
operation would save a lot of time to data scientist interested in this kind of operation,
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providing a huge automation process underneath GFDM querying mechanism, delivering
correctly aggregated data. Secondly, implicit Roll-Up would also guarantee more correction
and accuracy for the aggregated data since in the aggregation computation it will be
considered both the queried granularity data measures and all the smaller granularity
level measures, and very likely, the lower granularity level will have higher cardinality
and this will lead to a much richer output. The definition of a generic multidimensional
graph structure will also enable the possibility of developing other OLAP-like operators
over GFDM system.

1.4 Outline
The rest of the paper is structured as follows. In Section 2 we will define the requirements
that will be provided as a formal statements of what the framework does. Section 3 will
ground this project, describing all the related works. Then we have Section 4 and 5 where
the former formalizes the model adopted by GFDM and gives some intuitions of how
to implement implicit Roll-Up over GFDM itself and the latter describes how implicit
Roll-Up is implemented, validating theoretically the approach. Then we have Section 6
describing the prominent implementation details and Section 7 showing how the method
implemented performs validating experimentally such approach. Finally, Section 8 will
sum-up the work done, stating the conclusions.
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Chapter 2

Objectives

This section presents the requirements of the to-be vision. All the following functionalities
that the framework will have will be implemented over GFDM as a natural extension of
the system. It will follow also a clear distinction of all the different kind of functionality.

2.1 Functional Requirements
This section will describe the functional requirements as hierarchies. These lists represent
exactly what the system is and what the system does.

1. Perform implicit Roll-Up given a query over a multidimensional graph, automatically
delivering the right data granularity.

1.1 Understanding if it is possible to execute the implicit Roll-Up operation given
the query.

1.1.1 If it is not possible to execute the implicit Roll-Up, the output of the
query would be the baseline rewriting GFDM.

1.1.2 If it is possible to execute the implicit Roll-Up, the output of the query
would be the query generated by performing an implicit Roll-up on top of
the rewriting done by the GFDM.

1.2 Extraction of group by clauses from the query.

1.2.1 Parsing of the group by clauses generating the SQL select statements in
string format.

1.3 Extraction of aggregating clauses from the query.

1.3.1 Parsing of the aggregating clauses generating the SQL statements to
perform aggregation in string format.

1.4 Generation of dimension queries.
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1.5 Generation Roll-Up queries.
1.6 Generation of the SQL query.

1.6.1 Rewriting all the Roll-Up queries into Conjunctive queries respecting the
minimality of the source query generating.

1.6.2 Mapping each Conjunctive query into SQL query.
1.6.3 Wrapping up all the SQL queries with aggregation clauses (e.g. GROUP

BY statement).
1.6.4 Folding all the SQL queries into a single SQL as a union of all of them.
1.6.5 Wrapping up the final SQL query with aggregation clauses (e.g. GROUP

BY statement).
1.7 Possibility to flag if performing implicit Roll-Up or not.

2. Possibility to execute the SQL query generated.

3. Definition of a programmatic model able to defineMG in a domain scenario.

3.1 Definition of the scenario name.
3.2 Definition of the target schema.
3.3 Definition of the query.
3.4 Definition of the wrappers and attributes.
3.5 Definition of the aggregation functions.

4. Automation pipeline able to generate automatically all the configuration files for
GFDM , parsing the programmatic model and generating a directory with the name
of the scenario containing all the configuration files.

4.1 Generation of the target schema triples (global_graph.txt).
4.2 Generation of the LAV mappings for each wrapper (mappings.txt).

4.2.1 For each wrapper, it will be written the line number of the triples in
global_graph.txt that behaves to the respective LAV mapping.

4.3 Generation of the SPARQL query (query.txt).
4.4 Generation of the source graph containing wrappers and attributes triples

(source_graph.txt).
4.5 Generation of a file pointing each wrapper name to the CSV file path containing

the respective data (wrappers_files.txt).
4.6 Generation of a template CSV file wrapper (*wrapperName*.csv).
4.7 Automatic generation of other configuration files independent to the domain

scenario (metamodel.txt,prefixes.txt).
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5. Definition of a model able to run experiments.

5.1 Definition of the parameters to tests.

5.1.1 Number of dimensions.
5.1.2 Number of levels.
5.1.3 Number of wrappers.

5.2 Output generation.

5.2.1 Milliseconds for rewriting of all the Roll-Up queries.
5.2.2 Milliseconds for running the complete SQL query.
5.2.3 Milliseconds for running the algorithm without considering the previous

costs overhead.

5.3 Writing the output in experiments.csv file.

2.2 Non-Functional Requirements
Here will follow all the requirements that are not functionalities.

1. Define theMG by re-using GFDM syntax.

2. The extension should be most transparent as possible to the user.

3. Multi-platform compatibility (using relative paths with ad-hoc system separators).

4. Robustness of the automation pipeline.
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Chapter 3

Related work

This section aims to ground this project into its main study area, providing some
comparison to other works which are similar. As we introduced in Section 1 the interest
area of this project is query answering using views, taking [4] as a theoretical base defining
virtual data integration approaches and also physical data integration techniques formally
defined in [3].

DB-based Data-integration

DB based approach has been the pioneer of data integration, proposing GAV based
systems as TSIMMIS [7], Garlic [8] and MOMIS [9]. Suddenly, with the rising of web
sources also approaches LAV based have been considered having the most prominent
rewriting techniques as the bucket algorithm [12], the inverse rules algorithm [13] and
the MiniCon algorithm[14]. Finally, in the past years also GLAV mapping methodologies
have been considered to manage problems related to data exchanges as in [10]. The
description of DB-based approaches and their related work have been inspired to the
respective chapter in [1]. Table 3.1 describes the works for each kind of mapping model
for DB-based systems.

KR-Based Data-integration

The ontology-based data access (OBDA) approaches for data integration [5] are the main
representative of graph integration techniques and are based on DL-Lite description logics
[6]. The most of OBDA adopts GAV mapping as Ontop [15], Morph [16] and Mastro
[17]. Also, LAV and GLAV have been developed having LAV mapping based system [18],
[19] and [20] and GLAV mapping based [21], [22] and also Graph-driven Federated Data
Management [1]. This paragraph is inspired to Section 2 of [1]. Table 3.1 describes the
works for each kind of mapping model for KR-based systems.
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GAV LAV GLAV
DB [7], [8], [9] [12], [13], [14] [10], [11]
KR [15], [16], [17] [18], [19], [20] [21], [22], [1]

Table 3.1: Related work for the kind data and model (DB and KR) and mapping model
(GAV, LAV and GLAV).

GFDM Data-integration

This work, as we introduced previously, is a framework that extends Graph-driven
Federated Data Management, a graph based ontology-mediated data integration system
[1]. The model adopted in GFDM to describe integration graphs will be the building
block for the definition of a multidimensional graph structure. The flexibility of the graph
data model offered by KGs will be used in this work to define annotations in order to
define the metadata of a multidimensional model, such as facts, measures, dimension
and levels. The main component of GFDM is the Rewriting Algorithm, able to rewrite a
query over the integrated schema as a union of conjunctive queries over the sources. The
framework developed will massively use this feature to extract information behaving to
each wrapper to aggregate them to the queried granularity level.

Multidimensional graph model

As introduced before, to define a multidimensional graph it is necessary to generate
annotations through the graph syntax, describing facts, measures, dimension and levels
over a graph structure. We see several attempts in literature trying to do so; In [2] we
see an attempt of describing multidimensional graph structures as well over a property
graph model, in [23] the multidimensional graph have been described through a collection
of homogeneous labeled graph snapshots, [24] and [28] do so using a homogeneous node
attributed graph and [26] and [29] do so with a heterogeneous attributed graph model.
There are several differences between this work and the works cited above; Firstly,
the graph model adopted here is different, since none of the works presented adopts a
Knowledge graphs representation. Regarding the works cited above, none of that make
annotation over the TBOX as we do in this work, while annotations are directly placed
on data, as the ABOX. This is mainly due to the fact that such works are not grounded
in data integration and for this reason they don’t really need to have a graph schema to
define constraints over data. The multidimensional graph defined over the ABOX will be
parsed with the aim of generating a structure similar to a data cube. Once generated the
data cube, then it will be possible to perform OLAP operations on top of that.

In this works as opposite, the annotations are placed over the target schema (the
TBOX) and the implementation of the OLAP operators will be done by querying properly
the target graph. Then the OLAP operators will be implemented directly over GFDM
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system without relying on separate cube structures.
The last point to observe is the kind of OLAP operation offered by each of the

frameworks cited. The possibility of generating a multidimensional cube starting from
a multidimensional graph, will allow having the typical environment in which OLAP
operators are implemented, and therefore it will be easier to implement more kind of
operators. This framework as opposite offers then just the possibility of performing the
Roll-Up operation.
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Chapter 4

Technology preliminaries

The aim of this section is to describe GFDM system, in order to give to the reader
basic knowledge that will allow understanding all the reasoning behind implicit Roll-Up
algorithm.

4.1 GFDM model
In this section, it will be defined the graph model adopted by GFDM. This section will not
map 1-1 with the paper [1] since the purpose here it is just to give a brief introduction to
the domain in order to make chapter 5 easily accessible even reading just this report. The
GFDM ’s schema is a connected integration graph I, described as a knowledge graph (KG)
via metadata, and this model will be the integrated view of the whole system which will
give the possibility to perform data integration. As we know, KG systems are represented
by means of triples in the form of KG⟨S,P,O⟩ = {(S, P,O)|(S,O) ⊑ VI ∧ P ⊑ EI}, where
S, P and O are respectively the subject, the predicate and the object, while VI and EI
are the vertexes and the edges of I. Consider, from now on, each element with subscript
⟨S,P,O⟩ as composed by a set of triples.

Let us now describe the vertexes and the edges of I and their relationship, using
Figure 4.1 as an example of the following formalization. The integration graph is divided
in two main components connected to each other; The global graph G is a connected
graph that represents metadata related to the reconciliated view of the sources, and it is
also the only part of I that the user can see and query. The source graph S is also a
connected graph that as opposite represents the metadata related to the wrappers and
the attributes exposed by each one of them.

In the global graph G there are three main kinds of vertexes VG, the concepts C, the
features F and also the identifier features F id and two kinds of edges EG, one labeled
hasFeature and it is used to describe features and the other is used to link concepts
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labeled with custom labels.
C ∧ F ⊑ VG (4.1)

F id ⊑ F ⊑ VG (4.2)

hasFeature ⊑ EG (4.3)

customLabel ⊑ EG (4.4)

It will follow now the formalization of the triple notation of G. Consider concepts(G) as
all the concepts Ci in the global graph G defined by equation 4.5, linkedFeatures(Ci)
as all the features F(i,j) where Ci has a directed edge, labelled with hasFeature, in F(i,j)

defined by equation 4.6 and linkedConcepts(Ci) as all the concept C(i,j) where Ci has a
directed edge, labelled with a custom label, in C(i,j) defined by equation 4.7.

⟨C⟩ ≡ concepts(G) ≡ {C0, ..., Cn} (4.5)

⟨F ⟩ ≡ linkedFeatures(Ci) ≡ {F(i,0), ..., F(i,m)} (4.6)

⟨C⟩ ≡ linkedConcepts(Ci) ≡ {C(i,0), ..., C(i,o)} (4.7)

The triples representing concept to feature relationship are described in Equation 4.8
as the union of all the triples in the form ⟨Ci, hasFeature, F(i,j)⟩ where Ci is a concept
in concepts(G) and F(i,j) is the jth feature in linkedFeatures(Ci). Then the triples
representing concept to concept relationship are described in Equation 4.9 as the union of
all the triples in the form ⟨Ci, customLabel, C(i,j)⟩ where Ci is a concept in concepts(G)
and C(i,j) is the jth concept in linkedConcepts(Ci). Consider also predicate(Ci, C(i,j)) as
the predicate linking Ci to C(i,j). Example 1 shows the relationship between concepts and
features and Example 2 shows the relationship between concepts and concepts depicted
in Figure 4.1.

C → F⟨S,P,O⟩ ≡ ∪ni=0 ∪mj=0 ⟨Ci, hasFeature, F(i,j)⟩ (4.8)

C → C⟨S,P,O⟩ ≡ ∪ni=0 ∪oj=0 ⟨Ci, predicate(Ci, C(i,j)), C(i,j)⟩ (4.9)

Formally we have that G is given by the union of the triples describing concept to feature
and concept to concepts relationships as illustrated in equation 4.10.

G⟨S,P,O⟩ ≡ C → C⟨S,P,O⟩ ∪ C → F⟨S,P,O⟩ (4.10)

The source graph S, that is responsible for defining the semantic of the sources, is divided
in two main kind vertexes VS as well. There are the wrappers W and the attributes A
linked to each other by the label hasAttribute.

W ∧ A ⊑ VS (4.11)

hasAttribute ⊑ ES (4.12)
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Let us see now the triple notation for S. Let wrappers(S) be all the wrappers Wi in S,
defined by equation 4.13. Let also attributes(Wi) be all the attributes A(i,j) associated
to a given wrapper Wi with a hasAttribute relationship, defined in equation 4.14. The
triple notation for S is finally described in equation 4.15, and it is given by the union of
all the triple in the form ⟨Wi, hasAttribute, A(i,j)⟩ for each Wi in wrappers(S) and for
each A(i,j) that is the jth attribute in attributes(Wi), as shown in Example 3.

⟨W ⟩ ≡ wrappers(S) ≡ {W0, ...,Wn} (4.13)

⟨A⟩ ≡ attributes(Wi) ≡ {A(i,0), ..., A(i,m)} (4.14)

S⟨S,P,O⟩ ≡ ∪ni=0 ∪mj=0 ⟨Wi, hasAttribute, A(i,j)⟩ (4.15)

Consider now the relationship sameAs that will link each A in S to the respective F in
G. The function sameAsTriples(G,S) will generate all the triples that link each A to its
respective F , as shown in Example 4. Let us finally see the triple notation for I as the
union of all the triple of G, all the triple of S and the triple connecting the two graph
with sameAs relationship in equation 4.15.

I⟨S,P,O⟩ ≡ G⟨S,P,O⟩ ∪ S⟨S,P,O⟩ ∪ sameAsTriples(G,S) (4.16)

The final step in the model description is the concept of LAV (Local as View) mappings.
Lav mappings are strictly related to each wrapper and represent the covered area of W
in G, as a connected sub-graph of G (this is a simplification of LAV mappings since in [1]
they are actually composed by triples of the sub-graph of G plus the related triples in S).
Let us use mapping(W ) denoting the LAV mapping related to W .

mapping(W )⟨S,P,O⟩ ⊑ G⟨S,P,O⟩ (4.17)

Example 1. In Figure 4.1 the triples involving C and F in G are ⟨Item, hasFeature, name⟩,
⟨Item, hasFeature, price⟩, ⟨Sales, hasFeature, id⟩, ⟨Sales, hasFeature, number_of_unit⟩.

Example 2. In Figure 4.1 the only triple involving C and C in G is ⟨Sales, product, Item⟩.

Example 3. According to Figure 4.1 the triples for S would be ⟨w1, hasAttribute, name_a⟩,
⟨w1, hasAttribute, price_a⟩, ⟨w1, hasAttribute, id_w1_a⟩, ⟨w2, hasAttribute, id_w2_a⟩
and ⟨w2, hasAttribute, number_of_unit_a⟩.

Example 4. Taking Figure 4.1 as an example, the triples holding the relationships
sameAs are ⟨name_a, sameAs, name⟩, ⟨price_a, sameAs, price⟩, ⟨id_w1_a, sameAs, id⟩,
⟨id_w2_a, sameAs, id⟩ and ⟨number_of_unit_a, sameAs, number_of_unit⟩.
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Figure 4.1: A graphical representation of the graph model adopted by GFDM. The
example depicts an integration graph I related to sales, and a query φ over G (the dashed
red line), the LAV mapping of wrapper w1 (blue dashed line) and the LAV mapping of
w2 (green dashed line).

4.2 Query answering
This section will describe how querying works in GFDM and what output does a query
generate. A query is defined by φ and it is a connected sub-graph of G.

φ⟨S,P,O⟩ ⊑ G⟨S,P,O⟩ (4.18)

The algorithm that is responsible for query answering is the Rewriting Algorithm (RA)
and its semantic is clearly explained in paper [1]. Its purpose is to find all the single LAV
mapping holding equation 4.19 and 4.21, or any possible graph connected combination
of LAV mappings in G (the combination is done with shared F id in mappings), as
{mapping(W0) ∪ ... ∪mapping(Wn)}, holding equation 4.19 and 4.21.

φ⟨S,P,O⟩ ⊑ mapping(Wi)⟨S,P,O⟩ (4.19)

φ⟨S,P,O⟩ ⊑ {mapping(W0)⟨S,P,O⟩ ∪ ... ∪mapping(Wn)⟨S,P,O⟩} (4.20)

mapping(Wi)⟨S,P,O⟩ ∩ φ⟨S,P,O⟩ ̸= ∅ (4.21)

Let us call each mapping, or mapping combination, holding these properties conjunctive
query CQ (this definition is a simplification because CQ is a source query in the form of
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a relational algebra query, composed by wrappers, join conditions between shared F id

and projections).
CQ ≡ {mapping(W0), ...,mapping(Wn)} (4.22)

Consider now rewrite(φ, φmin) as the execution of RA over φ being minimal for φmin.
The minimal property is satisfied if removing any mapping in any CQi, equation 4.20 or
4.19 do not hold anymore for φmin (e.g. the mapping/s are not covering anymore φmin).
Then ⟨CQ⟩ will be minimal pruning all the CQi non minimal.

⟨CQ⟩ ≡ rewrite(φ, φmin) ≡ {CQ0, ..., CQn} (4.23)

Finally, each CQi can be converted in a SQL query φsql.

φsql ≡ toSql(CQi) (4.24)

4.3 Multidimensional graph
This section will describe how annotations will be placed into the model described
previously in order to transform an integration graph into a multidimensional graph. It
will be shown an intuition of how facts, measures, dimension, levels and aggregations can
be represented into GFDM by adopting its own model and syntax and how it will be
possible to use annotations to perform the join of dimensional data to implement the
Roll-Up operation.

4.3.1 Star schema representation

The star schema is a well-known design pattern able to represent a multidimensional data
as relational model. The representation adopted to design a multidimensional graph is
inspired to the idea of star schema, as shown in Figure 4.2. A concept vertex VG have
been used to define the study fact, which is related by concept to concept relationships
to each lower granularity level of each related dimension, defining the dimension name
as a label over the edge EG. Let us now describe how a dimension will be represented
in GFDM with the help of Figure 4.2. As in the multidimensional cube model, where
each dimension is divided in levels, each one associated to an identifier, the same idea is
replicated into the multidimensional graphMG. A dimension will be represented as a
sequence of connected levels in a multidimensional graph. Each level is represented as a
concept vertex VG, and levels are linked via partOf relationship as edges EG describing
the different granularity. Then each level as in the star schema is represented with an
identifier that will be represented by an identifier feature vertex F id. Figure 4.2 depicts a
dimension with three level, as City, Region and Country, each one linked to at least an
identifier feature via hasFeature relationship, having respectively city, region and country.
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Figure 4.2: Star schema in GFDM.

4.3.2 Aggregation function

Let see now how to place annotation into the integration graph describing aggregation
operations. Aggregation functions are very important to annotate an aggregation semantic
for a specific feature into a multidimensional graphMG. That feature vertex will then take
the role of a measure, since it will have an aggregation semantic. In GFDM aggregations
will be represented using the graph syntax, making pointing to a concept vertex VG , with
the semantic of an aggregation to a feature vertex using the label aggregates for the edge
EG. In Figure 4.3 have been depicted a clear example, having the feature number_of_
unit linked to an aggregating function sum and the feature total_ revenue linked to both
avg and sum aggregating function. It is very important having the aggregation functions
represented into MG since being the Roll-Up performed implicitly, it is important for
the algorithm knowing the semantic of the aggregation.

Figure 4.3: Example of aggregation functions avg and sum.
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4.3.3 Join dimensional data within a dimension

In this section, we introduce the intuition of how the join of dimensional data will be
executed. As we know this operation is very important for the Roll-Up since it will allow
to aggregate data at a lower granularity to the desired higher granularity and this feature
can already be achieved in GFDM. To execute the join of dimensional data, it will be
exploited the Rewriting Algorithm described in section 4.2, since it will allow executing
join operations through different wrapper attributes pointing to the same identifier feature.
The idea we got to solve this problem is using look-up tables to perform the join of
dimensional data; Look-up tables, that will be represented as wrappers, will lead the
join operation within dimensions storing into tables how a level maps to the following
higher granularity one. This kind of approach will need a preliminary phase in which all
the look-up table wrappers Wlut are going to be loaded into the system, or linked to any
multidimensional data repository. Figure 4.4 depicts an example of a multidimensional
integration graph I, having on the right-hand sideMG describing a dimension with two
levels, and on the left-hand side S that contains wrappers and their attributes. Also,
a visual query φ over MG is represented as a red dashed line. We can see that three
wrappers have been depicted in the figure, where w1 and w2 are regular data wrapper
having a single attribute, respectively city and country, while the third wrapper w3 is a
look-up table wrapper Wlut that will allow joining city to country. In particular, Wlut

stores the functional dependency of each instance of city, describing how each city can
be converted into its respective a country. Given a query φ that contains two or more
consecutive levels, with their respective identifier feature, for a dimension, it will be
possible to join all the queried identifier feature if there is a Wlut bridging each level
identifier to the consecutive one. Let finally perform a rewrite operation for φ respecting
the minimal property for φ itself as described in equation 4.25.

rewrite(φ, φ) ≡ {CQ1, CQ2} (4.25)

CQ1 ≡ {mapping(W1),mapping(W3)} (4.26)

CQ2 ≡ {mapping(W2),mapping(W3)} (4.27)

Finally, we see each CQ converted as relational algebra expressions as follows.

relationalAlgebra(CQ1) ≡ Πcity_3,region_3,revenue(w11city_1=city_3w3) (4.28)

relationalAlgebra(CQ2) ≡ Πcity_3,region_3,revenue(w21region_2=region_3w3) (4.29)

4.3.4 Join with minimal property

The approach illustrated so far has actually a problem in joining dimensional data. The
issue is that we are using the join operation expecting to aggregate lower granularity
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Figure 4.4: How dimensional data are joined within a dimension over GFDM, where the
dashed red line is a visual query φ and the dashed green line is a minimal query φmin.

data to higher granularity data but what actually happens is also the opposite operation,
having higher granularity levels joined with lower granularity one performing implicit
Drill-Down for higher granularity levels. As we can see, equation 4.26 performs a Roll-Up
of data aggregating through look-up wrappers lower granularity to higher granularity
data, while 4.27 performs the opposite operation doing a Drill-Down aggregating through
look-up wrappers higher granularity to lower granularity data. The operation described
in equation 4.27 is clearly wrong, being unknown how a levels Drill-Downs. The result
of such operation would then generate many record for each granularity level as the
possible Drill-Downs producing in consequence incorrect data aggregations. This problem
has been solved by adopting the minimal property. Consider φ and φmin in Figure 4.4
with the goal of aggregating the City granularity to Region granularity, performing joins
just in the upward direction (lower to higher granularity). Let now rewrite φ with the
minimality for φmin as shown in equation 4.30.

rewrite(φ, φmin) ≡ {{mapping(W1),mapping(W3)}} ≡ {CQ1} (4.30)

Applying the minimal property the covering mappings {mapping(W2),mapping(W3)}
have been removed because the combination of wrapper is not minimal for φmin (e.g.
if removing mapping(W3), mapping(W2) covers as well φmin). The minimal property
will be used in this way to allow the join of dimensional data, preserving correctness of
information.
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Chapter 5

Description of the method

In this chapter we first describe the model developed, aimed to support the operation of
implicit Roll-Up, and after it will follow a detailed explanation of the algorithm that will
implement the implicit Roll-Up operation itself. The model will extend the system GFDM
defined in chapter 4, and in particular, section 4.3.3 is the starting point of the reasoning
behind the implicit Roll-Up algorithm, since it is related to the join of dimensional data.

5.1 Preparation
This section will formalize the Multidimensional Cube modelMC and the Multidimen-
sional Graph modelMG, showing and comparing the characteristics of each one. Let us
start definingMC as

MC ≡ ⟨F ,D,L,M, levels : D → ⟨L⟩, partOf : L → L′⟩ (5.1)

where F is the described fact, D are all the multidimensional spaces known as dimensions,
L are all the different granularity levels behaving to D andM are all the study measures.
Finally, we have levels and partOf that are both functions. The first, for a given D, gets
all the levels L in D and the second describes the functional dependency of the given
L. Let us now introduce the formalization of multidimensional graph model MG as a
concrete implementation of the well knownMC over the graph model proposed in [1].

MG ≡ ⟨F ,D,L,M,AF , levels : D → ⟨L⟩, aggregates : AF → ⟨M⟩, partOf : L → L′⟩
(5.2)

The multidimensional graph model considers in addition the aggregating functions AF ,
each one associated to a set of measuresM by the function aggregates. InMG model
aggregating functions needs to be "hard-coded" into the schema in order to perform
implicit Roll-Up, since being the operation performed implicitly, it will not be possible
to choose it while executing the query. The connections between G and MG is done
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generating taxonomies between VG and EG , and VMG and EMG , and the relationships are
the following;

L ∧ AF ⊑ C ⊑ VMG (5.3)

M⊑ F ⊑ VMG (5.4)

partOf ∧ aggregates ⊑ EMG (5.5)

From now on it will be introduced the triple notation behind each element ofMG relying
on the triple syntax introduced in section 4.1 and Figure 5.1 will be used as an example.

Figure 5.1: Running example, where the dashed red line is the query φ triggered.

We now introduce the triple notation forMG starting defining the triples involved in
a dimension D. Example 1 also shows an example of dimension triples in the running
example for the geographic dimension. Consider levels(D) as a totally-ordered set
describing all the levels Li in the given D, ordered by lower level granularity lo higher
level granularity, formally defined by equation 5.6.

⟨L⟩ ≡ levels(D) ≡ {L0, ...,Ln} (5.6)

Equation 5.7 describes the triples that associate each level Li to its identifier feature F id

as the union of all the triples in the form ⟨Li, hasFeature, id(Li)⟩, where Li is a level
in levels(D) and id(Li) is its identifier feature. Equation 5.8 represents all the triples
that describes the functional dependencies as the union of all the triples in the form
⟨Li, partOf,Li+1⟩, where Li is a level in levels(D) and Li+1 is its right higher granularity
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level. Formally, the triples in D are then given by the union of all the triples describing
the functional dependencies in D and all the tripled describing the identifier features for
each L in D, as showed in equation 5.9.

L → F id
⟨S,P,O⟩ ≡ ∪ni=0⟨Li, hasFeature, id(Li)⟩ (5.7)

L → L′

⟨S,P,O⟩ ≡ ∪n−1
i=0 ⟨Li, partOf,Li+1⟩ (5.8)

D⟨S,P,O⟩ ≡ L → L
′

⟨S,P,O⟩ ∪ L → F id
⟨S,P,O⟩ (5.9)

Let us introduce now the triple notation for a fact F and an example of its triple notation
can be found in Example 2. Consider dimensions(F) as all the dimension Di in F and
measures(F) as all the measuresMi in F .

⟨D⟩ ≡ dimensions(F) ≡ {D0, ...,Dn} (5.10)

⟨M⟩ ≡ measures(F) ≡ {M0, ...,Mm} (5.11)

Let now consider all those triples linking the fact to all the dimensions D and measuresM
in F , having respectively ⟨F , dimensionName, lowerGranularityLevel(Di)⟩ where the
fact is linked to the lower granularity level of the ith dimension and ⟨F , hasFeature,Mi⟩
where the fact is linked to the ith measure. Equation 5.12 describes the union of all the
triples linking F to each lowerGranularityLevel(Di) with Di in dimensions(F) with
a dimensionName relationship, and equation 5.13 describes then the union of all the
triples linking F to each Mi in measures(F) with a hasFeature relationship. Then
the triple notation of F , as defined in equation 5.14, is given by the union of all the
dimensions in F , all the labels linking the fact to the dimensions and to all the measures.

F → L⟨S,P,O⟩ ≡ ∪ni=0⟨F , dimensionName, lowerGranularityLevel(Di)⟩ (5.12)

F →M⟨S,P,O⟩ ≡ ∪mi=0⟨F , hasFeature,Mi⟩ (5.13)

F⟨S,P,O⟩ ≡ ⟨D⟩⟨S,P,O⟩ ∪ F → L⟨S,P,O⟩ ∪ F →M⟨S,P,O⟩ (5.14)

Let us finally see the triple notation for an aggregating function AF that showed in
Example 3. Consider functions(MG) as all the aggregating function AF i inMG, given
by Equation 5.15 and aggregates(AF i) as all the measures M(i,j) associated to the
aggregating function AF i, given by Equation 5.16. Consider an aggregating function AF
can be linked to many measuresM.

⟨AF⟩ ≡ functions(MG) ≡ {AF0, ...,AFn} (5.15)

⟨M⟩ ≡ aggregates(AF i) ≡ {M(i,0), ...,M(i,m)} (5.16)

The triples describing an aggregating function are in the form ⟨AF i, aggregates,M(i,j)⟩
where AF i is the given aggregation function in functions(MG) and M(i,j) is the jth
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measure in aggregates(AF i). Equation 5.17 describes the union of all the triples for
AF i and each measureM(i,j) and equation 5.18 describes the union of all the triples of
each AF i in aggregates(AF i) associated to eachM(i,j).

AF i⟨S,P,O⟩ ≡ ∪mj=0⟨AF i, aggregates,M(i,j)⟩ (5.17)

AF ⟨S,P,O⟩ ≡ ∪ni=0AF i⟨S,P,O⟩ (5.18)

Let us finally formalize the triple notation ofMG as the union of the triples of each fact
⟨F⟩, the triples of each aggregation functions ⟨AF⟩ and the triples of G, as shown in
Equation 5.19. Follows the description of taxonomies for the elements described above in
Equation 5.20 and 5.21.

MG⟨S,P,O⟩ ≡ F⟨S,P,O⟩ ∪ G⟨S,P,O⟩ ∪ AF ⟨S,P,O⟩ (5.19)

G⟨S,P,O⟩ ⊑MG⟨S,P,O⟩ ⊑ I⟨S,P,O⟩ (5.20)

D⟨S,P,O⟩ ⊑ F⟨S,P,O⟩ ⊑MG⟨S,P,O⟩ (5.21)

Example 1. The triples representing the geographic dimension in Figure 5.1 are
⟨City, partOf,Region⟩ and ⟨Region, partOf, Country⟩ that describe the functional de-
pendencies and then ⟨City, hasFeature, city_id⟩, ⟨Region, hasFeature, region_id⟩ and
⟨Country, hasFeature, country_id⟩ describing the identifier features for each level.

Example 2. The triples describing the Sale fact in Figure 5.1 are given by a
union of all the triples of the item and geographic dimension with also the triples
⟨Sale, item, Product⟩ and ⟨Sale, geographic, City⟩ that link the fact to each dimension
and also the triples ⟨Sale, hasFeature, total_revenue⟩ and ⟨Sale, hasFeature, number_of_unit⟩
that link the fact to each measure.

Example 3. ⟨sum, aggregates, number_of_unit⟩, ⟨sum, aggregates, total_revenue⟩
and ⟨avg, aggregates, total_revenue⟩ describe the aggregation functions in Figure 5.1.

Let us consider now the querying forMG, where φ is a pattern matching or visual
query overMG. Introduce also the concept of dimension query Dφ and Rφ. Example 4
shows a complete example of the rationale that will be explained from now on, describing
what dimension queries and Roll-Up queries are and how they are generated. A dimension
query is a sub-graph of a given D in φ and its purpose is to allow joining dimensional data
at low level granularity aggregating them to the required higher granularity asked by φ
through Wlut (method described in section 4.3.3). Let us take as example the dimension
queries for the geographic dimension in Figure 5.2 (image (d), (e) and (f)). The queried
granularity in φ in the running example is Country since it is the higher granularity level
that contains the identifier. Then what we would like to achieve is to include in the
query result all the data at Country granularity provided by Dφ(1,2), the data at Region
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(a) Dφ(0,0) (b) Dφ(0,1) (c) Dφ(0,2)

(d) Dφ(1,0) (e) Dφ(1,1) (f) Dφ(1,2)

Figure 5.2: Dimension queries Dφ for item and geographic dimension.

granularity joined with the relative Country provided by Dφ(1,1) and also the data at
City granularity joined firstly with Region and finally with Country provided by Dφ(1,0).
Let now formalize the definition of dimension query Dφ. Let dimensions(φ) be a set of
dimensions Di in φ as shown in Equation 5.22 and consider also Equation 5.23 as all the
levels L(i,j) in Di.

⟨D⟩ ≡ dimensions(φ) ≡ {D0, ...,Dn} (5.22)

⟨L⟩ ≡ levels(Di) ≡ {L(i,0), ...,L(i,m)} (5.23)

Let then formalize with Equation 5.24 the triples for a dimension query Dφ(i,j) associated
to the ith dimension Di and the jth level L(i,j) in Di. A dimension query Dφ(i,j) associated
to Di and L(i,j) is calculated as the triple in Di minus the union of all the triples in the
form ⟨L(i,j), hasFeature, id(L(i,j))⟩ representing all the identifier features of all the level
with smaller granularity then L(i,j).

Dφ(i,j)⟨S,P,O⟩ ≡ Di⟨S,P,O⟩ − {∪j
z=0⟨L(i,z−1), hasFeature, id(L(i,z−1))⟩} (5.24)

Once given the triple notation of a dimension query for a fixed Di and L(i,j), now it is
possible to calculate the union set of all the dimension queries for a dimension Di as the
union of all the dimension queries for each L(i,j) in Di as described in Equation 5.25. It
is also possible to define the union set of all the dimension queries in φ as the union of
all the dimension queries calculated above with Equation 5.25 for each dimension Di in
dimensions(φ) as shown in Equation 5.26.

Dφi ≡ ∪mj=0Dφ(i,j) ≡ {Dφ(i,0), ...,Dφ(i,m)} (5.25)

Dφ ≡ ∪ni=0Dφi ≡ {{Dφ(0,0), ...,Dφ(0,m)}, ..., {Dφ(n,0), ...,Dφ(n,m)}} (5.26)

Then we will have that the number of dimension queries for the ith dimension Di in
dimensions(φ) is given by the number of levels in Di, as described in Equation 5.27.
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Finally, Equation 5.28 describes the total number of dimension query for φ as the sum of
the number of dimension query for each Di in dimensions(φ).

cardinality(Dφi) ≡ size(levels(Di)) (5.27)

cardinality(Dφ) ≡
n∑

i=0

cardinality(Dφi) (5.28)

A Roll-Up query Rφ is a sub-graph of φ and it is a query that has as dimensions one
possible combination of the dimension queries (e.g. one entry of the Cartesian Product
of dimension queries Dφi). There will be generated one Roll-Up query for each possible
dimensional wrapper, and each query will then be used to get the data associated to
just one wrapper configuration. Figure 5.3 depicts all the Roll-Up queries generated for
the running example and Figure 5.4 depicts which wrapper is covered by each Roll-Up
query, assuming the existence of the look-up tables Wlut (Figure 5.3(j)). Equation 5.29
computes the Cartesian Product set between each set of dimension query Dφi, each one
associated to a dimension Di.

×Dφ ≡ {Dφ0 × ...×Dφn} (5.29)

Then it will be possible to calculate the triples of a Roll-Up query of a single entry of the
Cartesian Product set associated to ×Dφi as described in Equation 5.30. The formula
consists of making the union of all the dimension queries triples in ×Dφi and the factual
data that is given removing all the dimensions to φ, that will actually be replaced by
the triples of a combination of dimension query. Afterwards it will be also possible to
calculate all the triples of each Roll-Up query as the union set of each Rφi as described
in Equation 5.31.

Rφi⟨S,P,O⟩ ≡ {∪size(Rφi)−1
j=0 ×Dφ(i,j)⟨S,P,O⟩} ∪ {φ− dimensions(φ)} (5.30)

⟨Rφ⟩⟨S,P,O⟩ ≡ ∪ni=0Rφi⟨S,P,O⟩ (5.31)

Then, referring to Equation 5.22 describing all the Di in φ we have that the number of
Roll-Up queries is given by the multiplication of all the number of dimension queries in
each Di (given by Equation 5.27). The number of the Roll-Up queries for φ is given by
Equation 5.32.

cardinality(Rφ) ≡
n∏

i=0

cardinality(Dφi) (5.32)

Taxonomies in Equation 5.33 and 5.34 describe the relationships between queries.

Dφ⟨S,P,O⟩ ⊑ D⟨S,P,O⟩ (5.33)

Dφ⟨S,P,O⟩ ⊑ Rφ⟨S,P,O⟩ ⊑ φ⟨S,P,O⟩ ⊑ G⟨S,P,O⟩ ⊑MG⟨S,P,O⟩ (5.34)
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(a) Rφ0 (b) Rφ1 (c) Rφ2

(d) Rφ3 (e) Rφ4 (f) Rφ5

(g) Rφ6 (h) Rφ7 (i) Rφ8

Figure 5.3: Roll-Up queries Rφ for item and geographic dimension.
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(a) Wrapper covered by Rφ0 (b) Wrapper covered by Rφ1 (c) Wrapper covered by Rφ2

(d) Wrapper covered by Rφ3 (e) Wrapper covered by Rφ4 (f) Wrapper covered by Rφ5

(g) Wrapper covered by Rφ6 (h) Wrapper covered by Rφ7 (i) Wrapper covered by Rφ8

(j) Look-up table wrappers Wlut

Figure 5.4: Which Rφi covers which wrapper.
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Let us finally introduce some functions that are traverses overMG that will be useful in
the next section for the execution of the algorithm; measures(φ), features(φ), levels(φ),
dimensions(φ) are respectively all the measuresM, features F , levels L and dimensions
D in φ. Then id(C+) is the identifier feature F id for a given C or L. The functions
lowerGranularityLevel(D) and higherGranularityLevel(D) as respectively the lower
granularity L and the higher granularity L of a given dimension D, holding the relationship
⟨L, hasFeature, id(L)⟩ (e.g. the higher or lower granularity level should be also linked
to an F id). Regarding the generation of dimension queries and Roll-Up queries we have
that dimensionQueries(Di) gets all the dimension queries ⟨Dφ⟩ in Di (as equation 5.25),
cartesianProduct(⟨⟨Dφ⟩⟩) that calculates the Cartesian product of all the dimension
queries as described in equation 5.29 and rollUpQuery(φ, ⟨Dφ⟩i) that generates the
Roll-Up query for the dimension query ⟨Dφ⟩i as described in equation 5.30.

Example 4. Taking as example Figure 5.2, let show how the Roll-Up queries are
generated. Let us start considering all the triples in D1, as ⟨City, partOf,Region⟩,
⟨Region, partOf, Country⟩, ⟨City, hasFeature, city_id⟩, ⟨Region, hasFeature, region_cat_id⟩
and ⟨Country, hasFeature, country_id⟩. Generate now the dimension queries Dφ for
D1. It will be generated a dimension query Dφ(1,i) for each level L(1,i) in D1 as shown in
equation 5.24. For L0 (City granularity) any triple will be removed since it is already the
finest granularity level having Dφ(1,0)⟨S,P,O⟩ ≡ D1⟨S,P,O⟩. For L1 (Region granularity) the
triple ⟨City, hasFeature, city_id⟩ will have to be removed to D1 having Dφ(1,1)⟨S,P,O⟩ ≡
D1⟨S,P,O⟩ − ⟨City, hasFeature, city_id⟩. Finally, for L2 (Country granularity) the triples
⟨City, hasFeature, city_id⟩ and ⟨Region, hasFeature, region_id⟩ will have to be re-
moved to D1 then we have Dφ(1,2)⟨S,P,O⟩ ≡ D1⟨S,P,O⟩ − ⟨City, hasFeature, city_id⟩ −
⟨Region, hasFeature, region_cat_id⟩. Then for equation 5.25D1 will have the dimension
queries Dφ1 ≡ {Dφ(1,0),Dφ(1,1),Dφ(1,1)}, and finally for equation 5.26 the set of dimension
queries, each dimension in φ isDφ ≡ {{Dφ(0,0),Dφ(0,1),Dφ(0,2)}, {Dφ(1,0),Dφ(1,1),Dφ(1,2)}}.
Compute now the Cartesian Product within the dimension queries set according to equa-
tion 5.29 as ×Dφ ≡ {Dφ(0,0),Dφ(0,1),Dφ(0,2)}×{Dφ(1,0),Dφ(1,1),Dφ(1,2)} giving as result
×Dφ ≡ {{Dφ(0,0),Dφ(1,0)}, {Dφ(0,0),Dφ(1,1)}, {Dφ(0,0),Dφ(1,2)}, {Dφ(0,1),Dφ(1,0)},
{Dφ(0,1),Dφ(1,1)}, {Dφ(0,1),Dφ(1,2)}, {Dφ(0,2),Dφ(1,0)}, {Dφ(0,2),Dφ(1,1)}, {Dφ(0,2),Dφ(1,2)}}
Let now generate the Roll-Up queries, that are also represented as example in Figure 5.3,
starting from Rφ0 associated to the first entry {Dφ(0,0),Dφ(1,0)} in ×Dφ as described
in equation 5.30, having Rφ0⟨S,P,O⟩ ≡ Dφ(0,0)⟨S,P,O⟩∪Dφ(1,0)⟨S,P,O⟩∪{φ−dimensions(φ)}
where φ−dimensions(φ) are ⟨Sale, hasFeature, total_revenue⟩, ⟨Sale, geographic, City⟩,
⟨Sale, item, Product⟩ and ⟨Sale, hasFeature, number_of_unit⟩. To compute the entire
set of Roll-Up queries, the previous operation needs to be executed for each entry in the
Cartesian Product set, as defined by equation 5.31.
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5.2 The Implicit Roll-Up algorithm
In this section, it will follow up a detailed explanation of the algorithm developed to
perform implicit Roll-Up. What we would like to achieve with implicit Roll-Up algorithm
is: Given a query φ, understanding what kind of data granularity is asking for and
present as result an aggregation of the information provided from wrappers at the queried
granularity and also an aggregation of data provided by wrappers at lower granularity.
The strategy adopted to achieve such goals is based the idea of dimension queries and
Roll-Up queries, generating and executing each possible combination of dimensional query
covering any possible wrapper and allowing them to join the required dimensional data,
as shown in Figure 4.4. Then we will have that each Roll-Up query will retrieve the
aggregated data of just one possible wrapper configuration. The main flow implicitRollUp
has been shown in Algorithm 1, where its main steps are depicted. The algorithm will take
as input the multidimensional graphMG, the global query φ and the overall semantic of
the explicit final aggregation ⟨AF , ⟨M⟩⟩′ . As output, it will generate a SQL query φsql.

Algorithm 1 implicitRollUp
Input: MG, φ, ⟨AF , ⟨M⟩⟩′

Output: φsql

1: if canAggregate(φ) then
2: ⟨L⟩ ← extractGroupByClauses(φ)
3: ⟨AF , ⟨M⟩⟩ ← extractAggregationClauses(MG, φ)
4: GB ← parseGroupByClauses(⟨L⟩)
5: AGG← parseAggregationClauses(⟨AF , ⟨M⟩⟩)
6: AGG

′ ← parseAggregationClauses(⟨AF , ⟨M⟩⟩′)
7: ⟨Rφ⟩ ← generateRollUpQueries(φ)
8: ⟨φsql⟩ ← rewriteAll(φ, ⟨Rφ⟩)
9: φsql ← makeSqlQuery(⟨φsql⟩, GB,AGG,AGG

′
)

10: return φsql

11: else
12: φsql ← toSql(rewrite(φ, φ))
13: return φsql

14: end if

canAggregate

The procedure canAggregate, illustrated in the Algorithm 2, will be used to detect all the
scenarios in which it will be possible or not to execute the Implicit Roll-Up algorithm; If it
will be possible to extrapolate an aggregation semantic from φ then it will be possible to
execute Implicit Roll-Up as well, otherwise not. The input of this procedure is the source
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query φ, while the output will be a Boolean expression that will be true if it is possible to
aggregate φ otherwise false. The criteria to understand if φ has an aggregation semantic
are the following:

• The query should cover at least a dimension D (e.g. there should be at least a
group by clause). The procedure is described in Algorithm 3.

• The query should cover at least a measureM.

• The query should not cover any other features rather than measures and levels
identifiers.

Algorithm 2 canAggregate
Input: φ
Output: Boolean

1: return extractGroupByClauses(φ) ̸= ∅ ∧ measures(φ) ̸= ∅ ∧ (features(φ) −
id(levels(dimensions(φ)))−measures(φ)) ≡ ∅

clauses extraction

In order to extract the SQL group by semantic, after understanding if it is possible to
have implicit Roll-Up or not, it will be executed two algorithms over the global query φ;
Algorithm 3 will be executed to get the group-by clauses of the final query and Algorithm
4 will get the measures M and the function AF that will be used to aggregate M
itself. Algorithm 3, extractGroupByClauses, will be used to understand which are the
group-by clauses in φ given as input, finding for each Di in dimensions(φ) which level is
the higher granularity one that has also F id (e.g. holds the triple ⟨L, hasFeature, id(L)⟩)
using the traverse higherGranularityLevel(Di). As output, it will be given a set of
levels ⟨L⟩ and each level name will be a group-by clause. This algorithm is strictly
associated to the procedure parseGroupByClauses that will allow making in a correct
string format (comma separated) all the group-by clauses in a way that can perfectly fit
both into the "SELECT" and "GROUP BY" statements of a SQL query. Algorithm 4,
extractAggregationClauses will be used as opposite to extract the aggregation semantic
for the queried measures M. As input, it will be given the global query φ and the
multidimensional graph MG and as output will be given a set of tuples, having an
AF each one associated to a set of M behaving to φ that the respective aggregating
function will aggregate. The output will be calculated firstly finding all the aggregation
function AF i in functions(MG) and then intersecting all the measure behaving to
the relationship aggregates(AF i) to all the queried measures and keeping the solution
having a non-empty set of measures. For algorithm 4 there is a parsing function as well,
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Algorithm 3 extractGroupByClauses
Input: φ
Output: ⟨L⟩
1: ⟨L⟩ ← ∅
2: for each Di ∈ dimensions(φ) do
3: ⟨L⟩i ← higherGranularityLevel(Di)
4: end for
5: return ⟨L⟩

parseAggregationClauses that will generate a formatted string (comma separated) for
the aggregation part of the SQL query into the "SELECT" statement.

Algorithm 4 extractAggregationClauses
Input: φ,MG
Output: ⟨AF , ⟨M⟩⟩
1: ⟨AF , ⟨M⟩⟩ ← ∅
2: for each AF i ∈ functions(MG) do
3: ⟨M⟩ ← aggregates(AF i) ∩measures(φ)
4: if ⟨M⟩ ≠ ∅ then
5: ⟨AF , ⟨M⟩⟩i ← (AF i, ⟨M⟩)
6: end if
7: end for
8: return ⟨AF , ⟨M⟩⟩

generateRollUpQueries

The following step of the implicitRollUp algorithm will be performed by Algorithm 5,
generateRollUpQueries. The input of the algorithm is φ and the output is a set of
Roll-Up queries ⟨Rφ⟩. Algorithm 5 will firstly generate the dimension queries ⟨⟨Dφ⟩⟩
for each dimension Di in dimensions(φ) as dimensionQueries(Di). Then it will be
calculated the Cartesian product for ⟨⟨Dφ⟩⟩ as cartesianProduct(⟨⟨Dφ⟩⟩). Finally, for
each set of the Cartesian product ⟨Dφ⟩i there will be generated a Roll-Up query Rφ as
rollUpQuery(φ, ⟨Dφ⟩i).

rewriteAll

Finally, once generated all the Roll-Up queries it will be possible to use the rewriting
algorithm to rewrite each Roll-Up query into a query in SQL format. Algorithm 6
takes as input the query overMG and the set of Roll-Up queries ⟨Rφ⟩ giving as output
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Algorithm 5 generateRollUpQueries
Input: φ
Output: ⟨Rφ⟩
1: ⟨⟨Dφ⟩⟩ ← ∅
2: for each Di ∈ dimensions(φ) do
3: ⟨⟨Dφ⟩⟩i ← dimensionQueries(Di)
4: end for
5: ×Dφ← cartesianProduct(⟨⟨Dφ⟩⟩)
6: ⟨Rφ⟩ ← ∅
7: for each ⟨Dφ⟩i ∈ ×Dφ do
8: ⟨Rφ⟩i ← rollUpQuery(φ, ⟨Dφ⟩i)
9: end for

10: return ⟨Rφ⟩

a set of SQL queries ⟨φsql⟩ each one of that aggregates one possible combination of
wrapper to the queried granularity. Algorithm 6 rewriteAll will perform multiple call
of the function rewrite for each ⟨Rφ⟩i, checking the minimal property for φ. The
minimal constraints will be given by φmin that will be generated removing all the triple
⟨L, hasFeature, id(L)⟩ to φ rather than in the higher granularity level of each dimension.
Let us explain now why it is important to guarantee the minimal property for φmin. The
minimal property will allow not to perform impossible Drill-Down operations through
look-up tables, and executing joins just in the upward direction and not in the opposite,
guaranteeing to aggregate dimensional data correctly. Therefore, all CQi non minimal will
be automatically discarded (e.g. the join operation aggregating data at higher granularity
level to low granularity level not be considered).

Algorithm 6 rewriteAll
Input: φ, ⟨Rφ⟩
Output: ⟨φsql⟩
1: φmin ← φ
2: for each Di ∈ dimensions(φ) do
3: φmin ← φmin⟨S,P,O⟩ − {∪size(levels(Di))−1

j=0 ⟨Llevels(Di)j , hasFeature, id(Llevels(Di)j)⟩}
4: end for
5: ⟨φsql⟩ ← ∅
6: for each Rφi ∈ ⟨Rφ⟩ do
7: CQ ← rewrite(Rφ, φ)
8: ⟨φsql⟩i ← toSql(CQ)
9: end for

10: return ⟨φsql⟩
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makeSqlQuery

Algorithm 7 takes as input the set of SQL queries ⟨φsql⟩ generated by the procedure
above, the group by clauses GB, the implicit aggregation clauses AGG and the explicit
aggregation clauses AGG

′ , producing as output a single SQL queries. It performs three
important operations:

• It transforms each SQL query ⟨φsql⟩ wrapping each one of them with a group by
clause, aggregating all the information for each granularity level. This operation
allows making aggregation within each data wrapper, delivering the correct gran-
ularity for each one of them according to the implicit aggregation semantic of
AGG.

• The SQL queries will be flattened folding all the SQL queries into a single query
applying the UNION SQL operation, generating a single table having all the data
wrappers aligned to the queried granularity.

• Finally, to preserve the correctness of the final result, it will be performed the final
explicit aggregation with the semantic of AGG

′ .

Algorithm 7 makeSqlQuery
Input: ⟨φsql⟩, GB,AGG,AGG

′

Output: φsql

1: for each qi ∈ ⟨φsql⟩ do
2: ⟨φsql⟩i ← wrapGroupBy(qi, GB,AGG)
3: end for
4: φsql ← ⟨φsql⟩1
5: ⟨φsql⟩ ← {⟨φsql⟩ − ⟨φsql⟩1}
6: for each qi ∈ ⟨φsql⟩ do
7: φsql ← {φsql + ”UNION” + qi}
8: end for
9: if AGG

′ ̸= null then
10: φsql ← wrapGroupBy(φsql, GB,AGG

′
)

11: end if
12: return φsql
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Algorithm 8 wrapGroupBy
Input: φsql, GB,AGG
Output: φsql

1: return ”SELECT” +GB + AGG+ φsql + ”GROUP BY ” +GB + AGG
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Chapter 6

Implementation

In this section, it will be explained how all the algorithm and functions illustrated in
section 5 have been actually implemented. Since this work is about graph, let’s illustrate
the main ways to deal with this kind of data structure. The most typical way to query
a graph structure is by using traverse operations. Nowadays, there exists a lot of
graph databases in-memory or not that allow to store graphs structure, offering traverse
operations, typically in the form of pattern-matching queries.

In this work, by the way, we defined a new programmatic graph data model from
scratch to overcome few limitations given by the original system. Since GFDM needs
configuration files to describe the entire integration graph I and this procedure is very
error-prone to do it as "handwriting", the new graph data model have been developed right
to automate such procedure. It has been developed a domain specific language, that will
be detailed in section 6.3 in order to define each testing scenario more easily, automating
the file generation procedure. Once defined the domain specific language, a new model
and traverses over the model itself to generate I configuration files, it was pretty
straightforward to keep defining all the remaining traverses to implement the implicit
Roll-Up algorithm directly over this data model as well. The entire implementation process
has been done using as language Scala1 because it is very good for mathematical models
and domain specific language definition. The decision of using Scala as programming
language have been also very good since a functional programming style is less error-prone
rather than the typical imperative one. For this reason the development of the system
have been very quick staring from the first releases.

6.1 Modules
This section is aimed to describe the code organization and clearly show how the different
modules of the application interfaces to each other. Figure 6.1 depicts a UML package

1https://www.scala-lang.org
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diagram that describes so. We want to first make clear that the organization described in
Figure 6.1 will not exactly map 1-1 with the real source code, since its purpose is just
to make clear the software structure and its behavior. Since in this work we are doing
an extension of GFDM, in the diagram we can clearly distinguish the package GFDM
that contains all the module behaving to the extended system and ImplicitRollUp that
contains all the sources behaving to the framework developed. The package model contains
the object-oriented models and all the traverses, and the algorithm package contains the
algorithm illustrated in section 5.2, implemented into the source file ImplicitRollUp. This
module uses the interface QueryRewriting to generate the SQL view and wrap it up with
the aggregation syntax. The traverses into the module Graph will be able to generates
the configuration file into the package configurationScenarions/scenario, that will be used
by the module ModelGeneration to crate an instance of I, that will finally be used by
QueryRewriting. The DSL module adorns the Graph and the Scenario model structures.
Finally, the package Scenarios will contain the running examples that will be generally
written using the DSL syntax.

Figure 6.1: UML package diagram.
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6.2 Execution flow
The sequence diagram in Figure 6.2 describes clearly how the communication between
the different modules is performed. The execution flow starts in a Scenario where using
the DSL or not both the semantic of I and the scenario will be described. The Utils
module contains the automation flaw that generates all the configuration files (described
in section 2.1) that GFDM needs. Right after, the ImplicitRollUp module will execute
the implicit Roll-Up algorithm that is also described in section 5.2. The implicit Roll-Up
algorithm will also need the rewriting algorithm module to execute the query rewriting
and producing a relational algebra expression that will be converted to a SQL expression
by the module Sql.

Figure 6.2: UML sequence diagram.
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6.3 Domain Specific Language
In this section will follow some code snippets describing the grammar of the DSL (domain
specific language). In particular, two kinds of DSL have been developed; The first one
is related to the generation of the integration graph I and the second is specific to the
generation of a configuration scenario. Let us start with a code snippet that will show
how to build I. On the top side of the code it will be defined all the features we would
like to use. After, it will be defined I using the intuitive semantic of the DSL. As we
know I is composed both byMG and S. The first listing starts describingMG. Since φ
is subsumed byMG we have the same syntax for the definition of a query.

Listing 6.1: Multidimensional graph definition
val REGION = IdFeature("Region")
val COUNTRY = IdFeature("Country")

val NAME = IdFeature("Name")
val CATEGORY = IdFeature("Category")

val REVENUE = Measure("Revenue")

val multidimensionalGraph =
Concept("Sales")
.hasFeature {REVENUE}
.->("location") { // Concept to concept/level relationship
Level("Region")
.hasFeature {REGION}
.partOf { // Level to level relationship
Level("Country")
.hasFeature {COUNTRY}

}
}
.->("product") {
Level("Name")
.hasFeature {NAME}
.partOf {
Level("Category")
.hasFeature {CATEGORY}

}
}

The second listing describes the DSL for the generation of S. It will be possible to define
both wrappers and attributes, and to describe the sameAs relationship with F .
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Listing 6.2: Source graph definition
val w1 =

Wrapper("W1")
.hasAttribute {
Attribute("country") sameAs COUNTRY

}
.hasAttribute {
Attribute("region") sameAs REGION

}
.hasAttribute {
Attribute("revenue") sameAs REVENUE

}

Finally, the last DSL proposed will help to deal with the generation of a scenario and
also the run of the scenario itself. As we know a scenario is composed by the scenario
name, a target graph, that can be both G orMG, all the wrappers, all the aggregation
functions and finally the query.

Listing 6.3: Scenario generation
class ScenarioName extends Scenario {
scenario {
"ScenarioName"

}

targetGraph{
// The target graph

}

wrapper {
// One wrapper, if there are more than one repeat this block

}

query {
// The query

}

aggregation {
// One aggregation function, if there are more than one repeat

this block
}

}
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Finally, once crated the scenario, it will be possible to run it and flag if running implicit
Roll-Up or not.

Listing 6.4: Running a scenario
object ScenarioRun extends App {
new ScenarioName().run(executeImplicitRollUp = true)

}
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Chapter 7

Experimentation

7.1 Performance analysis
In this section, it will follow the description of the overall experimentation phase to
understand the implicit Roll-Up algorithm performances. In [1] we already have a detailed
performance analysis where the scrutinized variables were:

• The number of features per concept.

• The number of edges covered by a query.

• The overall number of wrappers.

• The number of edges covered by a wrapper.

• The fraction of features in a concept covered by a query.

• The fraction of features in a concept covered by a wrapper.

In this work, the analysis have been carried on considering the three main variables that
would affect the performances of the algorithm;

• The number of dimension, as nDimension.

• The number of levels, as nLevel.

• The number of wrappers for each possible dimensional combination, as nWrapper.

According to this variable configuration, it will hold that the total amount of Roll-Up
queries ⟨Rφ⟩ and then also the total amount of possible dimensional combination of data
wrappers are given by equation 7.1.

nRollUpQueries ≡ nLevelsnDimension (7.1)
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The experimentation have been carried out analyzing the performances of the system
studying the performance trend of each of the variable doing studies over multiple values
of a variable and fixing the value of the remaining two variables. In doing this the cost of
each call of the function rewrite (e.g. the rewriting algorithm) have been considered as a
constant value by considering very few wrappers, that as we know from [1] is one of the
main cost factor of RA. The study will analyze the trend of the computation time required
for the rewrite of all the Roll-Up queries timeRewriteRollUpQuery, the execution of the
SQL query timeExecuteSQL and the execution of the Roll-Up algorithm timeAlgorithm
minus the rewriting and SQL execution time. The analysis will also consider the variable
nRollUpQueries given by equation 7.1 because according to our expectation this variable
is the main cost factor.

Number of dimensions

Let us now study the complexity curve of the algorithm by analyzing the variable
nDimension that represents the number of dimension of the experiment multidimen-
sional graph. We will then fix the value of variables nLevel = 2 and nWrapper = 1,
executing the algorithm with a linear increment of nDimension as ⟨nDimension⟩ ≡
{1, ..., 10}. Then we would have the number of Roll-Up query given by nRollUpQueries ≡
2⟨nDimension⟩i . Figure 7.1 shows clearly that the main complexity factor of the algorithm is
the time of rewriting all the Roll-Up queries timeRewriteAllRollUpQuery (blue curve),
and such complexity has the exponential trend described in equation 7.1. The figure also
shows that growing the variable nDimension there is an exponential growth also for the
number of Roll-Up queries nRollUpQueries.

Figure 7.1: Trend of timeRewriteAllRollUpQuery (blue), as the time spent for the
execution of the RA for each Roll-Up query, timeExecuteSQL (green) as the time spent
for the execution of the Roll-Up SQL query, timeAlgorithm (grey) as the time spent
for the execution of the implicit Roll-Up algorithm and the increment of the number of
Roll-Up queries nRollUpQueries (yellow), incrementing the variable nDimension.
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Number of levels

Let now study the variable nLevel representing the number of levels of each dimension.
The analysis have been carried on fixing the value of the variable nDimension = 2 and
nWrapper = 1 and having a linear increment for the variable nLevel as ⟨nLevel⟩ ≡
{1, ..., 10}. Then the number of Roll-Up query for each experiment would be given by
nRollUpQueries ≡ ⟨nLevel⟩2i . As we can see from the chart depicted in Figure 7.2 the
trends respect the expectations having a quadratic growth for the time for the execution
of all the Roll-Up queries timeRewriteAllRollUpQuery (bluecurve) being still the most
relevant cost for the algorithm.

Figure 7.2: Trend of timeRewriteAllRollUpQuery (blue), as the time spent for the
execution of the RA for each Roll-Up query, timeExecuteSQL (green) as the time spent
for the execution of the Roll-Up SQL query, timeAlgorithm (grey) as the time spent
for the execution of the implicit Roll-Up algorithm and the increment of the number of
Roll-Up queries nRollUpQueries (yellow), incrementing the variable nLevel.

Number of wrappers

Let us finally try to see how the number of wrappers can affect the implicit Roll-Up
algorithm. What we expect is that the variable nWrapper affects just the RA costs,
having any influence on the implicit Roll-Up algorithm itself rather than over the rewrite
method. The experiments have been carried on adopting the variables nDimension = 2
and nLevel = 2, increasing linearly the variable nWrapper as ⟨nWrapper⟩ ≡ {1, ..., 10}.
As we can see in Figure 7.3, the total number of wrappers would then be calculated
summing the number of data wrappers and the total of look up wrappers, having
nTotalWrapper ≡ nWrappers ∗ nLevelsnDimension + (nLevel − 1) ∗ nDimension ≡
nWrappers∗ 2+2. According to timeRewriteAllRollUpQuery we can clearly see that it
is way higher increasing the variable nWrapper then increasing nDimension and nLevel,
then we can state that nWrapper has a strong impact on RA.
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Figure 7.3: Trend of timeRewriteAllRollUpQuery (blue), as the time spent for the
execution of the RA for each Roll-Up query, timeExecuteSQL (green) as the time spent
for the execution of the Roll-Up SQL query, timeAlgorithm (grey) as the time spent
for the execution of the implicit Roll-Up algorithm and the increment of the number of
Roll-Up queries nRollUpQueries (yellow), incrementing the variable nWrapper.

Trend analysis

Let finally show how each variable affect the time of execution of the implicit Roll-Up
algorithm itself without considering the external costs as the RA and the SQL execution.
Figure 7.4 shows how each variable affects the performance of the algorithm. What we
see from Figure 7.4 is that the variable nWrapper and as consequence nTotalWrapper
doesn’t affect the performance of the implicit Roll-Up algorithm, while the number
of dimension nDimension and the number of levels for each dimension nLevel does
respectively with an exponential and a quadratic growth.

Figure 7.4: How each variable affects the implicit Roll-Up algorithm.
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7.2 Acceptance test
This section will show the procedure adopted for the validation of the implicit Roll-Up
algorithm developed. The correctness of the algorithm have been asserted by means of
Acceptance Tests. During the design phase, we developed experiments aimed to test the
correctness of the algorithm over the following circumstances:

• Correctness of the implicit data aggregation within wrappers, aggregating each
wrapper data to the queried granularity.

• Correctness of the overall data aggregation aggregating data between wrappers
leading to a final correct result.

Then, by developing experimental scenarios by using the DSL as shown in section 6.3
it has been possible to define acceptance tests for both of the previous scenarios, where
several tests have been run with several configurations of the variables representing
the number of dimensions nDimension, the number of levels nLevels, the number of
wrappers nWrapper and the configuration of the wrappers itself.
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Chapter 8

Conclusions

In this work, we presented a framework built over GFDM able to perform automatic
Roll-Up operation, delivering data at the correct queried granularity level. During the
first part of the work, we studied the graph model proposed by GFDM, able to define
integration graphs. Then we proposed a model able to represent multidimensional schema
through GFDM syntax, annotating with the graph semantic facts, dimension, levels and
aggregations. Such model have been called Multidimensional Graph. Afterwards, once
chosen the data model, it has been possible to define the automatic data aggregation
algorithm (e.g. the Roll-Up operation). This operation consists of three key operation;
For first, each data source will be aggregated to the correct data granularity through
the execution of the Rewriting Algorithm and dimensional data will be joined by using
look-up tables. Secondly, the query will be parsed, extracting the aggregation semantic.
Finally, all the queries generated by the Rewriting Algorithm will then be converted in
SQL expressions, wrapped up with the aggregation semantic, glued up into a single SQL
query and wrapped up again with the final aggregation semantic. According to the goals
of this project, we can state we have successfully completed all the requirements and
delivered a working artifact able to address such functionalities. We can finally consider
implicit Roll-Up operation feasible and the experimental results shows which are the
criticism of this approach.

8.1 Future improvement
In this section it will be listed some possible improvements for this project.

OLAP functionalities

In this work we presented a flexible multidimensional model built on top of GFDM
graph syntax. As we introduced in Section 1 our approach is the first one to extend a
graph-based virtual data integration system to incorporate OLAP-like aggregations, and
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also according to Section 3 we do so defining annotations over the schema (the TBOX)
and not directly over the data sources (the ABOX). A possible improvement of this
project may be reusing the existing multidimensional graph structure that is used for
the definition of the TBOX for the implementation of any other OLAP operator directly
over GFDM, such as Drill-Down, Drill-Across, change base and slicing, enriching the
functionalities of the framework proposed. Another possible approach of extension of
this framework is adopting an approach similar to what [2] did, implementing OLAP
operators not directly over the original system, but parsing the multidimensional graph
in order to generate a separate model similar to a data cube.

Aggregation function semantics

A possible improvement of this work is guaranteeing correctness of aggregation function
implicitly. According to what we did, the aggregation operation have been divided in two
main steps. Firstly, data are aggregated to the queried data granularity within wrappers
through implicit aggregation functions pointing to measures annotated into the TBOX.
Secondly, aggregated source data are glued together and aggregated a second time by
using an explicit aggregation function to preserve correctness in the aggregation. This two
phases aggregation is clearly due to the necessity of preserving the correctness property of
aggregation operators, since some operators are not commutative and associative. These
properties may be annotated into the multidimensional graph to automatically detect
how operators have to be applied.
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