
Alma Mater Studiorum · Università di
Bologna

SCUOLA DI SCIENZE

Laurea Magistrale in Informatica

Verification of Quantum Bit
Commitment Protocols using

Bisimulation Techniques

Relatore:
Chiar.mo Prof.
Ugo Dal Lago

Correlatore:
Dott.
Andrea Colledan

Presentata da:
Marco Vitale

Sessione III
Anno Accademico 2020-2021

A nonno Angelo

Introduction

Given the current progress in the development of more and more performing
quantum computers, the field of quantum cryptography is making a return,
after its golden age in the 1990s. The main feature that made quantum
cryptography so interesting is that, in certain cases, it can provide the so-
called unconditional security, which is a security notion that declares that
the system is secure against adversaries with unlimited computing resources
and time. This allows the creation of cryptographic protocols based on the
principles of quantum mechanics and mathematically verifiable. However,
the security proof related to these protocols can often be tedious and very
complicated, as demonstrated by the first proof of the BB84 protocol by
Dominic Meyers [34].

A different approach for the verification of quantum cryptographic protocols
is given by the so-called process algebras. This method has been used suc-
cessfully in the field of classical cryptographic protocols, for example to prove
the security of El Gamal encryption from the Decision Diffie-Hellman (DDH)
[41]. The main step of the process algebra approach is given by the use of
the notion of bisimulation. In the last years, indeed, several quantum pro-
cess algebras have been proposed, like qCCS [18, 49] and CQP [20], and they
have been used to verify different types of quantum protocols, starting from
quantum teleportation and arriving to quantum key distribution protocols
like the BB84 [17] and the EDP-based protocol [29].

During this thesis, focusing on qCCS, we use the process algebra approach

i

ii INTRODUZIONE

combined with different types of notions deriving from bisimulation, to ana-
lyze the security proprieties of two different types of quantum bit commitment
protocols : the BB84 quantum bit commitment protocol [6] and the Kent rel-
ativistic bit commitment protocol [28].

In details:

• In Chapter 1 we briefly introduce quantum computing, focusing mainly
on the peculiarities that the quantum world brings to computer science.

• In Chapter 2 we first present classical cryptography and the concept
of perfect security and then introduce its quantum derivations. We
also show the two reference protocols of this thesis, together with some
execution examples and their security details.

• In Chapter 3 we introduce process algebras, using CCS as a baseline
and presenting different notions of behavioral equivalences.

• In Chapter 4 we broaden the discussion on behavioral equivalences,
introducing the fundamental notion of our work, bisimulation, and also
presenting its probabilistic version.

• In Chapter 5 we introduce qCCS, the extension of CCS dedicated to
quantum processes, and we expand our discussion on bisimulation, pre-
senting three variants designed to compare quantum systems.

• Lastly, Chapter 6 is dedicated to our research work, in which, using
qCCS and different notions of bisimulation, we analyze the security
proprieties of the BB84 quantum bit commitment and the Kent rela-
tivistic bit commitment protocols.

Contents

Introduction i

1 Introduction to Quantum Computing 1

1.1 Qubits . 1

1.2 Gates and Circuits . 7

1.3 Algorithms . 13

2 Quantum Cryptography 19

2.1 Classical Cryptography . 19

2.1.1 Perfect Secrecy . 21

2.2 BB84 Quantum Key Distribution 24

2.3 BB84 Quantum Bit Commitment 27

2.3.1 Security . 28

2.4 Kent Relativistic Bit Commitment 31

2.4.1 Security . 33

3 Process Algebras 39

3.1 Background . 39

3.2 CCS . 41

3.2.1 Syntax . 41

3.2.2 Operational Semantics 43

3.3 Behavioral Equivalence . 45

3.3.1 Isomorphism Equivalence 47

iii

iv CONTENTS

3.3.2 Trace Equivalence . 48
3.3.3 Simulation Equivalence 49

4 Bisimulation on Abstract Labelled Transition Systems 53

4.1 Bisimulation Equivalence . 53
4.1.1 Strong Bisimulation . 54
4.1.2 Weak Bisimulation . 60

4.2 Probabilistic Bisimulation . 64
4.2.1 Lifting relations . 65
4.2.2 Probabilistic Bisimulation Equivalences 69

5 Bisimulation on Quantum Processes 71

5.1 qCCS . 71
5.1.1 Syntax . 72
5.1.2 Transitional Semantics 75

5.2 Quantum Bisimulation Equivalences 78
5.2.1 State-Based Bisimulation 79
5.2.2 Distribution-Based Bisimulation 82
5.2.3 Bisimulation Metrics 85

6 Cryptographic Proofs in qCCS 91

6.1 BB84 Quantum Bit Commitment 91
6.1.1 Correctness . 92
6.1.2 Security Against a Passive Attacker 99
6.1.3 Security Against an Active Attacker 101

6.2 Kent Relativistic Bit Commitment 105
6.2.1 Correctness . 105
6.2.2 Security against Passive Attacker 112
6.2.3 Security against Active Attacker 114

Conclusions 117

List of Figures

1.1 Bloch Sphere . 4

1.2 . 9

1.3 EPR-pair and measuring circuit 11

1.4 Circuit for Deutsch’s algorithm 14

1.5 Circuit for Deutsch-Jozsa algorithm 16

2.1 Example of QKD execution 26

2.2 Example of QBC execution 29

2.3 Example of Kent 2012 execution 33

3.1 LTS of the coffee machine . 46

3.2 Two non-isomorphic LTSs . 48

4.1 Two trace equivalent but not simulation equivalent LTSs . . . 54

4.2 Two simulation equivalent but not bisimilar LTSs 55

4.3 Two bisimulation equivalent LTSs 59

4.4 Relation between equivalences relations 59

4.5 Two weak bisimilar LTSs . 62

5.1 pLTS for EPR-pair and measuring 79

5.2 The pLTSs representing two state-based bisimilar configurations 81

6.1 pLTS representing QBC84test(1) 94

6.2 pLTS representing QBC84spec(1) 95

6.3 QBC84spec(n) . 96

v

vi LIST OF FIGURES

6.4 QBC84test(n)(1) . 97
6.5 QBC84test(n)(2) . 97
6.6 QBC84test(n)(3) . 98
6.7 QBC84test(n)(4) . 98
6.8 pLTS of KENT12spec(1) . 108
6.9 KENT12test(n)(1) . 110
6.10 KENT12test(n)(2) . 110
6.11 KENT12test(n)(3) . 111
6.12 KENT12test(n)(4) . 111

Chapter 1

Introduction to Quantum

Computing

The first step in the work must undoubtedly be to present the fundamental
principle of the quantum world. In fact, the first chapter will serve us as
an introduction. Starting with qubits and continuing with circuits and algo-
rithms, the intersection of the quantum world with computer science will be
discussed.

Note that the purpose of this chapter is not to present a fully fledged in-
troduction to the foundations of quantum mechanics, but rather to help the
reader understand the following chapters by providing what is strictly nec-
essary.

1.1 Qubits

When we talk about classical computing, the bit is the fundamental unit
of information. A bit can be seen as a bidimensional classical deterministic
system, i.e., two different values can be “encapsulated” in a single bit, 0 or
1. A computer uses different logic gates, such as NOT, AND, OR, etc., to
control and manipulate these bits.

1

2 1. Introduction to Quantum Computing

Example 1.1.1. A bit can be viewed as a coin, with 0 corresponding to
heads and 1 to tails.

Going into the quantum world, the analogue of the bit is the quantum bit,
or qubit. But what is a qubit? A qubit is a physical object that represents a
bidimensional quantum system. But, for the purpose of our introduction, the
optimal way to describe a qubit is as a mathematical object, as Nielsen
and Chuang do in [38].

Two of the possible states for a qubit are |0〉 and |1〉, that correspond to
states 0 and 1 of a classical bit. The ‘|〉’ notation is called Bra-Ket or Dirac’s
notation, and it is the standard notation for quantum states.

Then, what are the main differences between a bit and a qubit? The pecu-
liarities that make qubits stand out are quantum-mechanical in nature.

The first characteristic of a qubit is that it can be in a state different from
|0〉 or |1〉. Such a state is called superposition and is given through a linear
combination of |0〉 and |1〉:

|q〉 = c0 |0〉+ c1 |1〉 , (1.1)

with c0, c1 ∈ C

Example 1.1.2. A qubit can be viewed like a special kind of coin which,
when in a superposition, is both heads and tails at the same time:

|coin〉 = c0 |heads〉+ c1 |tails〉 .

With a bit of basic linear algebra, we can represent a qubit as a column vector
of dimension two composed of complex numbers c0, c1, where |c0|2+ |c1|2 = 1.
The states |0〉 and |1〉 mentioned above are also called computational basis
states and form an orthonormal basis for the two-dimensional complex vector
space in which the qubit stays.

1.1 Qubits 3

We take advantage of this use of linear algebra to expose the first postulate of
quantum mechanics. This postulate affirms that associated to each quantum
system, there is a Hilbert space called state space of the system. The column
vector presented ahead to describe a quantum system is also called state
vector, and it is in the state space of the system.

But what it is a Hilbert space? To answer this question, we need to take a
step back, starting from the definition of inner product.

Definition 1.1.3. An inner product on a complex vector space V is a
function 〈 · , · 〉 from V× V to C, that satisfies, for all Vi ∈ V, c ∈ C:

1. Nondegenerate: 〈V0, V0〉 ≥ 0, 〈V0, V0〉 = 0 iff V0 = 0.

2. Respect addition:〈V0 + V1, V2〉 = 〈V0, V2〉+ 〈V1, V2〉

3. Respect scalar multiplication: 〈c · V0, V1〉 = c × 〈V0, V1〉, 〈V0, c · V1〉 =

c× 〈V0, V1〉, with c as the complex conjugate of c.

4. Skew symmetric: 〈V0, V1〉 = 〈V1, V0〉, with 〈V1, V0〉 as the complex con-
jugate of 〈V1, V0〉.

Having this, we can proceed, giving the definition of Hilbert space.

Definition 1.1.4. A Hilbert space is a complex vector space along with
an inner product, that is also complete.

During this introduction, we will not argue about the notion of completeness,
which can be deepened by the reader in [48].

Returning to our journey, the second main difference from a bit is that a qubit
cannot be directly observed to determine the value of c0 and c1. This idea is
as counterintuitive as it seems and lies at the heart of quantum computation.
When we perform a measurement on a qubit we get either the result 0 with
probability |c0|2, bringing the system to the state |0〉, or the result 1 with
probability |c1|2, bringing the system to the state |1〉.

In other words, the act of measuring a qubit will collapse the whole system

4 1. Introduction to Quantum Computing

into a classical one, a bit. In quantum mechanics theory, this relies on the
Heisenberg’s uncertainty principle [22], that states that it is impossible to do
an observation, like a measurement, on a quantum system without disturbing
it. Leaving aside the incredibly interesting theoretical implications of the
principle, in practice measurements make us lose almost all the additional
information introduced by a qubit.

Example 1.1.5. The measurement collapses our special coin in superposi-
tion to either heads or tail:

Measure(|coin〉) =

|heads〉 with probability |c0|2

|tails〉 with probability |c1|2.

Because |c0|2+|c1|2 = 1, another way to describe a qubit is using a geometrical
representation. Equation 1.1 can be rewritten as

|q〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 . (1.2)

Coordinates θ and ϕ are used to define a point in a three-dimensional sphere
called Bloch Sphere, represented in Figure 1.1.

Figure 1.1: Bloch Sphere

Using the Block sphere, the measurement operation can be viewed as a col-
lapse to the north or the south pole, and the probability of which pole it will

1.1 Qubits 5

collapse to depends entirely on the direction in which the qubit is pointing.
More precisely, the angle θ controls the chance of collapsing north, that is
|0〉, or south, that is |1〉.

Example 1.1.6. When a qubit represented in the Bloch sphere is pointing
to the “equator” (θ = 90°), there is a perfect 1

2
chance that the measurement

operation will collapse to either |0〉 or |1〉.

Obviously, a qubit, like a bit, is not enough for computing. When we want to
combine multiple qubits, for instance |q0〉 = |0〉 and |q1〉 = |1〉, the composite
system, denoted using the usual Dirac notation, becomes |q̃〉 = |01〉 with re-
spect to the computational basis states. Also in this case, all the peculiarities
of a single qubit are here, e.g., the two qubits can also exist in superpositions
of these four states:

|q̃〉 = c00 |00〉+ c01 |01〉+ c10 |10〉+ c11 |11〉 . (1.3)

Like in the previous case, the measurement projects the state in one of the
possible states, let us call it x, with probability given by |cx|2.

It can be noticed that the number of complex coefficients rises exponentially
when we are combining qubits. This happens because the basic operation
used to combine quantum systems is a tensor product. In fact, a string of
qubits of length n is an element of (C2)⊗n and we can describe it with a 2n

dimensional column vector.

Example 1.1.7. A qubyte is an element of

C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2 = (C2)⊗8

and can be described as a 256-dimensional column vector.

The act of considering multiple qubits leads us to another concept of quan-
tum mechanics, namely entanglement. A good way to show entanglement is
through a special two-qubit state called Bell state or EPR-pair [16]:

6 1. Introduction to Quantum Computing

|00〉+ |11〉√
2

. (1.4)

In this particular state, the act of measuring one of the two qubits has an
interesting effect. The measuring of the first qubit, for example, results in
0 or 1 with the same probability 1

2
, propelling the whole system into either

state |00〉 or |11〉, respectively. This means that any following measurement
operations on the second qubit will lead to the same result. In other words,
the two qubits are entangled or correlated.

The EPR-pair will be useful when we discuss quantum cryptography in Chap-
ter 2.

We have talked about the measurement of a single qubit, describing it in
a simple manner in Equation 1.1, but quantum mechanics allows us to do
more. Given any basis states |x〉 , |y〉, it is possible to express an arbitrary
qubit state as a linear combination of those states:

|q′〉 = c0 |x〉+ c1 |y〉 . (1.5)

What is even more interesting, is that if the states are orthonormal, it be-
comes possible to perform a measurement in the |x〉 , |y〉 basis. In this case,
the measurement gives as result |x〉 with probability |c0|2 and |y〉 with prob-
ability |c1|2.

Example 1.1.8. Given two orthonormal basis states |+〉 = |0〉+|1〉√
2

, |−〉 =
|0〉−|1〉√

2
, the qubit |q〉 in Equation 1.1 can be re-expressed in terms of those

states in this way:

|q〉 = c0 |0〉+ c1 |1〉 =
c0 + c1√

2
|+〉+

c0 − c1√
2
|−〉 .

During this section, we have presented qubits (and more in general quantum
systems) using the language of state vectors. A good way to conclude this
part is to introduce another possible formulation, also known as density ma-
trix. These matrices are a representation of a linear operator, called density

1.2 Gates and Circuits 7

operator, and allow us to have a different (but mathematically equivalent)
way of describing systems whose state is not fully known.

Let us take the general system described in Equation 1.4 as an example and
call |q0〉 and |q1〉 the two possible outcome given by a measurement on the
first qubit. The density matrix (or operator) ρ that describe the system is

ρ ≡
∑
i

1

2
|qi〉 〈qi| . (1.6)

This different solution for describing a quantum system gives the same results
as the so-called vector language, but in some cases it can make our work
easier, as we will see in the following chapters.

To conclude this section, note that the details of the implementation of the
qubits are not discussed because the interest of this thesis is towards the
theoretical aspect of quantum computing.

1.2 Gates and Circuits

As we have already said, a classical computer uses classical logic gates to
control and manipulate bits, but what about quantum gates?

Definition 1.2.1. A complex square matrix U is unitary if

U †U = UU † = I,

where I is the identity matrix and U † is the adjoint of U , which is obtained
by transposing and then complex conjugating U .

Definition 1.2.2. A quantum gate is an operator, represented by a unitary
matrix, that acts on qubits.

The main intuition behind quantum gates is that a unitary matrix is a re-

versible matrix. Having reversible matrices that act on the basic unit of

8 1. Introduction to Quantum Computing

information means that any operation, omitting the act of measurement,
can be reversed.

Example 1.2.3. The OR gate cannot be applied directly to qubits because,
given an output value of |1〉, we cannot determine if the input was |01〉, |10〉
or |11〉. In contrast, the NOT operation can be carried out without problems.

Being most of the classical gates not reversible, what are the main operators
in the quantum world?

Pauli gates

The simplest single-qubit gates are the Pauli X, Y, Z gates:

X =

[
0 1

1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0

0 −1

]
. (1.7)

The names of these three gates derive from their behavior, since they respec-
tively perform a rotation around the x, y or z axes of the Bloch sphere by π
radians. The X gate is also called NOT gate with respect to the standard
basis because, as is clearly visible from the Bloch sphere, a π rotation around
the x-axis turns |0〉 into |1〉 and vice-versa. The Z gate is sometimes called
phase-flip gate because, with respect to the standard basis, it leaves |0〉
unchanged and maps |1〉 to − |1〉.

Example 1.2.4. The application of the X gate to the state |1〉 is represented
very clearly using the Bloch sphere:

The Hadamard gate

H =
1√
2

[
1 1

1 −1

]
. (1.8)

The Hadamard gate is one of the most widely used gates that act on single
qubits. The reason is that it maps the basis states into a perfect superposi-

1.2 Gates and Circuits 9

(a) Before the application of X (b) After the application of X

Figure 1.2

tion:
H |0〉 =

|0〉+ |1〉√
2

, H |1〉 =
|0〉 − |1〉√

2
. (1.9)

Both ending states have equal probabilities of being observed in either of
the basis states, the only notable difference being the sign of the second
component, which, in the jargon, indicates a different phase. This does not
affect the probabilities, and therefore does not worry us.

The CNot Gate

CNot =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (1.10)

When acting on multiple qubits, the controlled not gate is an interesting gate.
Let us see how it works in details:

• When the first qubit is |0〉 then the CNot gate does nothing:

CNot |00〉 = |00〉 CNot |01〉 = |01〉 (1.11)

10 1. Introduction to Quantum Computing

• When the first qubit is |1〉, then the second qubit is flipped:

CNot |10〉 = |1〉 |1〉 CNot |11〉 = |1〉 |0〉 (1.12)

In other words, the CNot gate use the first qubit as the “control qubits” for
reversing the second one:

CNot |xy〉 = |x〉 |x⊕ y〉 , (1.13)

where ⊕ is the xor operation. In general, the pattern obtained from CNot
can be used on any single qubit reversible gate. Given a reversible single-bit
gate U , the “controlled-U” (“CU”) gate can be described as

CU =

1 0 0 0

0 1 0 0

0 0 U00 U01

0 0 U10 U11

 . (1.14)

Also note that this pattern can be easily extended to multiple-qubit gates,
although the details are beyond the scope of this thesis.

Toffoli gate

Toffoli =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

. (1.15)

To conclude the series of presented gates, we introduce the Toffoli gate. It is a
3-qubit gate, which is known to be a universal gate for classical computation.

1.2 Gates and Circuits 11

Figure 1.3: EPR-pair and measuring circuit

This means that we can express any other classical logical gate in terms of
one or more Toffoli gates. It is also called CCNOT gate because the last
qubit is flipped only if the first two are |1〉.

Circuits

Like in the classical case, a combination of sequential and parallel quantum
gates is called a quantum circuit. However, contrary to their classical
counterpart, quantum circuits have some limitations:

• The fan-in of the wires is not permitted. This happens simply because
the OR operation is not reversible. Note that this is true for all non-
injective operations.

• The fan-out of the wires, the inverse of fan-in, in which we duplicate a
bit, is not permitted, as we will see in Theorem 1.2.5.

• Loops are not permitted. Quantum circuits need to be acyclic.

Gates in a circuit are represented as boxes, together with a letter which
describes the gate we are referring to, connected by wires.

Figure 1.3 represents the circuit that creates an EPR-Pair (Equation 1.4)
with a measurement operation downstream. The H box is a Hadamard gate,
the following one is a CNot gate, with the topmost qubit acting as the control
qubit, and the second qubit acting as the target. In the end, the last two
boxes with the meter symbol represent the measurement operation.

12 1. Introduction to Quantum Computing

No-Cloning Theorem

The most important concept of this section, derived directly from the defini-
tion of quantum gates, is called the No-Cloning Theorem [47].

Theorem 1.2.5. It is impossible to create an independent and identical
copy of an arbitrary quantum state.

Proof. To be able to copy a qubit into another, the “copy” operation needs
to be a represented by a unitary matrix, and therefore needs to be a linear
map, so let us assume it is and let us call it C. Then we can define C :

C2 ⊗ C2 → C2 ⊗ C2 on a pair of qubits independent from each other as

C(|q〉 ⊗ |0〉) = (|q〉 ⊗ |q〉). (1.16)

Now suppose q = |0〉+|1〉√
2

. Applying C needs to result in

C

(
|0〉+ |1〉√

2
⊗ |0〉

)
=

(
|0〉+ |1〉√

2
⊗ |0〉+ |1〉√

2

)
. (1.17)

However, being C linear we would have

C

(
|0〉+ |1〉√

2
⊗ |0〉

)
=

1√
2
C((|0〉+ |1〉)⊗ |0〉) (1.18)

=
1√
2
C(|0〉 |0〉+ |1〉 |0〉) (1.19)

=
1√
2

(C(|0〉 |0〉) + C(|1〉 |0〉)) (1.20)

=
|00〉+ |11〉√

2
6=
(
|0〉+ |1〉√

2
⊗ |0〉+ |1〉√

2

)
(1.21)

Thus C cannot be a linear map.

1.3 Algorithms 13

The no-cloning theorem is a milestone in the field of quantum information,
with enormous consequences on quantum cryptography, as we will see in
Chapter 2.

1.3 Algorithms

To conclude the chapter, we will give a brief introduction to quantum algo-
rithms.

What makes quantum computing so interesting from the scientific perspective
is the idea of quantum advantage or quantum supremacy [40, 19]. Quantum
advantage is the goal of demonstrating that a controlled quantum system can
perform tasks faster than the best solution in the classical world. Note that
this would allow solving problems that a classical computer cannot solve
due to the unfeasible amount of time required. One of the simplest ways
of achieving quantum supremacy, Preskill suggests, is to concretely run a
quantum algorithm which has a super-polynomial speedup over its classical
counterpart.

To achieve this speedup, many algorithms use the concept of quantum par-
allelism, but what is it and how does it work? Quantum parallelism relies
on the exponential number of states that a number of qubits can represent,
and allows quantum computers to evaluate a function f on many values si-
multaneously. But not all that glitters is gold. The fact that we are able to
evaluate f simultaneously on many values does not mean that the informa-
tion contained in the result of f can then be extracted easily. As we stated
in Section 1.1, the measurement operation collapses the system to a single
state, making us lose almost all the information related to the multitude of
evaluations. Therefore, most quantum algorithms are designed in such a way
as to extract useful information before the act of measuring.

During the years, several algorithms were discovered and proposed, but they
all follow a basic framework: The algorithm starts with the qubits in a par-

14 1. Introduction to Quantum Computing

ticular state. From there, the system is put into a superposition of states,
which is transformed using unitary operations and then measured. In the
continuation of this section, a number of quantum algorithms are presented,
in a simplified way.

Deutsch’s Algorithm

Figure 1.4: Circuit for Deutsch’s algorithm

A function f : {0, 1} → {0, 1} is called constant if f(0) = f(1), and is
called balanced otherwise. Deutsch’s algorithm is used to determine, given
a function f as a “black box”, or rather without any knowledge of its internal
workings, if it is constant or balanced.

While a classical computer needs to evaluate all the inputs to give the correct
answer, Deutsch’s algorithm can evaluate both inputs simultaneously.

We have already seen the Hadamard gate, but we do not know anything
about Uf . We can define it as follows

Uf =

f(x) 0 0

f(x)⊕ 1 0 0

0 0 f(x)

0 0 f(x)⊕ 1

 . (1.22)

1.3 Algorithms 15

Example 1.3.1. If we have a balanced f like

f(0) = 1 f(1) = 0,

we can define Uf as

Uf =

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 .

Let us begin to describe Deutsch’s algorithm. First, two Hadamard gates are
used to put the input qubits |0〉 and |1〉 into a superposition:

|ψ1〉 = H(|0〉)⊗H(|1〉) =

[
|0〉+ |1〉√

2

] [
|0〉 − |1〉√

2

]
. (1.23)

The application of Uf takes the resulting system to the following state:

|ψ2〉 =

±
[
|0〉−|1〉√

2

] [
|0〉−|1〉√

2

]
if f is balanced,

±
[
|0〉+|1〉√

2

] [
|0〉−|1〉√

2

]
otherwise.

(1.24)

One last Hadamard gate reverts the superposition to a state where the first
qubits is either |1〉 if f is balanced, or |0〉 otherwise:

|ψ3〉 =

± |1〉
[
|0〉−|1〉√

2

]
if f is balanced,

± |0〉
[
|0〉−|1〉√

2

]
otherwise.

(1.25)

As we already saw, the sign does not impact on the measurement operation,
which returns 1 on the first qubit if f is balanced, 0 otherwise.

16 1. Introduction to Quantum Computing

Deutsch-Jozsa Algorithm

Figure 1.5: Circuit for Deutsch-Jozsa algorithm

The Deutsch-Jozsa algorithm is the generalization of Deutsch’s algorithm.
In this case, f : {0, 1}n → {0, 1}. Let us start as always by analyzing the
classical case. A classical computer performing a deterministic computation
needs to query f on at least 2n

2
+ 1 values, because the first 2n

2
could always

output 0 before getting a 1, in which case f is balanced. With the Deutsch-
Jozsa Algorithm, using the usual unitary transform Uf , we need only one

query, obtaining an exponential speedup.

Also in this case, Hadamard gates are used to create a superposition:

|ψ1〉 =
∑

q∈{0,1}n

|q〉√
2n

[
|0〉 − |1〉√

2

]
. (1.26)

Then Uf is applied, resulting in

|ψ2〉 =
∑

q∈{0,1}n

(−1)f(q) |q〉√
2n

[
|0〉 − |1〉√

2

]
. (1.27)

Note that the first n amplitudes represent all the function evaluations. The
last Hadamard gates are used to interfere, and then to extract the results:

1.3 Algorithms 17

|ψ3〉 =
∑

q∈{0,1}n

∑
r∈{0,1}n

(−1)q·r+f(q) |r〉
2n

[
|0〉 − |1〉√

2

]
. (1.28)

If the measurement operation of the n qubits results in at least one 1 then
the function is balanced; otherwise the function is constant.

Concluding, there are a few other algorithms which are certainly more practi-
cal than the aforementioned ones, like Grover’s search algorithm, which gives
a quadratic speed-up over the best classical solution, or Shor’s algorithm,
that solves the problem of factoring integers and computing the discrete log-
arithm in polynomial time, giving a super-polynomial speedup over classical
solution. Although they are that are very fascinating, their presentation is
far beyond the goal of this brief introduction.

Chapter 2

Quantum Cryptography

Having presented the principles of quantum mechanics that interest us and
the way in which they bond to quantum computing, we can delve into one of
the areas in which our research work is based, quantum cryptography. The
area of quantum cryptography is obtained by merging quantum computation
and classical cryptography. Having already robustly introduced the former,
the first section of this chapter is dedicated to the latter.

2.1 Classical Cryptography

Being cryptography an immense and fascinating field, exactly as in the pre-
vious chapter, this section wants to give a minimal idea of the concept used
in the continuation of the work.

Cryptography is the science of securing digital information, systems, and dis-
tributed computations against adversarial attacks using mathematical tech-
niques. This definition is something different from what we can find in dic-
tionaries, in which cryptography is often defined as an art. Historically,
cryptography was undoubtedly an art but beginning with Shannon [44] and
continuing in the 70s, the world of cryptography radically changed. Through
a succession of scientific papers, a rich theory began to appear, enabling its

19

20 2. Quantum Cryptography

study as a mathematical discipline and therefore a science.

To achieve the goal just stated, focusing on digital information security, an
encryption scheme (also called cipher) is used to combine messages with
some extra information, to produce a ciphertext. Beginning with a little ter-
minology, the action of transforming a message, or plaintext, into a ciphertext
is called encryption, while the opposite operation is called decryption.

To allow us to present cryptographic protocols, we need to outline a common
scenario. We obviously need two entities, the sender and the receiver, who
historically are called Alice and Bob in the literature, while the villain, or
the malevolent entity who is attempting to intercept messages, is often called
Eve.

In the area called private key cryptography, the security of the cryptosystem
relies on a key, shared in advance between Alice and Bob and unknown to
Eve. It may be useful for us to define a more specific scenario in which Alice
wants to send Bob a message, let us call it m, through an insecure channel.
To do this Alice uses an algorithm, let us call it Enc, which turns m into a
ciphertext c, using a key k. Bob then uses k and another algorithm Dec for
turning c back into m. Having these elements, we can give the first definition
of encryption scheme:

Definition 2.1.1. An encryption scheme Π is composed by three sets
(M, C,K) and a triple of algorithms (Gen,Enc,Dec) that satisfy the follow-
ing conditions:

• M is a finite set containing all possible plaintexts.

• C is a finite set containing all possible ciphertexts.

• K is a finite set containing all possible keys.

• Gen : 1→ K, Enc :M×K → C, Dec : C ×K →M.

• Dec(Enc(m, k), k) = m.

2.1 Classical Cryptography 21

2.1.1 Perfect Secrecy

The concept of perfect secrecy is probably one of the most interesting concepts
in cryptography. Introduced by Claude Shannon in [44], it responds to the
question: When can an encryption scheme be defined as secure? For the
definition of perfect secrecy, it makes sense to present an often quoted cipher
in the literature, called Vernam cipher or more commonly one-time pad

(OTP).

Definition 2.1.2. TheVernam cipher is a triple of algorithms (Gen,Enc,Dec)

such that:

• K =M = C = (0, 1)n,

• Pr(K = k) = 1
2n

with n as the length of k,

• Enc(m, k) = m⊕ k e Dec(c, k) = c⊕ k.

Remark. it is simple to notice that the Vernam cipher is correct:

Dec(Enc(m, k), k) = (m⊕ k)⊕ k = m⊕ (k ⊕ k) = m⊕ 0n = m.

Note that in the context of perfect secrecy, the processes of choosing the
message and the key, and the processes of encryption and the decryption are
seen as probabilistic processes. This last point therefore allows us to compute
probabilities such as Pr(K = k). We have therefore arrived to the definition
of perfect secrecy.

Definition 2.1.3. An encryption scheme (Gen,Enc,Dec) is perfectly se-

cret if and only if, for every p ∈ P and c ∈ C such that Pr(C = c) > 0:

Pr(M = m | C = c) = Pr(M = m).

But what does this mean? It means that the event that a specific plaintext
has been encrypted is independent of the observed ciphertext. In other words,
knowing c brings no advantage when trying to recover the original plaintext
m.

22 2. Quantum Cryptography

In his article, Shannon shows how, for each perfectly secure encryption
scheme, the uncertainty of the key used for encryption measured in the form
of entropy of the key space is at least as large as the uncertainty of the en-
crypted message. In addition to this, the following theorem derives directly
from Definition 2.1.3:

Theorem 2.1.4. If (Gen,Enc,Dec) is a perfectly secret encryption scheme,
we necessarily have that |K| ≥ |M|.

Proof. Assume by contradiction that if |K| < |M| then the encryption
scheme can be perfectly secret. Considering the uniform distribution over
M, let c ∈ C to be a ciphertext that occurs with probability (C = c) > 0

andM(c) to be the set of messages m1,m2, ... that are possible decryptions
of c for some key k. Then, obviously |M(c)| ≤ |K|. Indeed, if |K| < |M|
there is some m′ ∈M such that m′ 6∈ M(c), but:

Pr(M = m′ | C = c) = 0 6= Pr(M = m′) (2.1)

Then the encryption scheme cannot be perfectly secret.

Hence, connecting the dots, we can join Definition 2.1.3 and one-time pad
with the following theorem:

Theorem 2.1.5. Vernam’s cipher or one-time pad is perfectly secret.

Proof. For OTP to be perfectly secret we need:

Pr(M = m | C = c) = Pr(M = m). (2.2)

Then, recalling Bayes’ Theorem:

Pr(M = m | C = c) =
Pr(C = c | M = m) · Pr(M = m)

Pr(C = c)
. (2.3)

2.1 Classical Cryptography 23

Having this, we proceed by parts. For an arbitrary c ∈ C, m ∈ M, k ∈ K
and |k| = n:

Pr(C = c | M = m) = Pr(m⊕ k = c)

= Pr(k = m⊕ c)

= 2−n.

(2.4)

Fixing any distribution overM, for any c ∈ C:

Pr(C = c) =
∑
m∈M

Pr(C = c | M = m) · Pr(M = m)

=
∑
m∈M

2−n · Pr(M = m)

= 2−n.

(2.5)

Then, back to Equation 2.3:

Pr(M = m | C = c) =
Pr(C = c | M = m) · Pr(M = m)

Pr(C = c)

=
2−n · Pr(M = m)

2−n

= Pr(M = m).

(2.6)

Then OTP is perfectly secret.

Aside from the public key cryptography revolution, which lies well beyond
the scope of this short introduction, a pair of observations can be made to
end this section. As neat as it is and with excellent security properties,
Vernam’s cipher is hardly ever used, due to known limitations. Its worst
flaw lies in the fact that the key needs to be as long as the message, and this
causes several problems regarding the choice, distribution and archiving of
the keys in case of very long messages. Furthermore, the cipher is secure
if the key is used once. These downsides did not stop it from being used
historically, but nowadays other symmetrical or asymmetrical cryptosystems
are preferred even if they do not achieve perfect secrecy.

24 2. Quantum Cryptography

2.2 BB84 Quantum Key Distribution

While we are presenting perfect secrecy and one-time pad, one of the great-
est limitations to its use lies in the problem of keys distribution. In 1984,
Charles H. Bennett and Gilles Brassard published a paper [6] in which the
principles of quantum mechanics are exploited to design the first quantum
key distribution (QKD) protocol.

But what peculiarities of quantum mechanics are the most useful in the
environment of cryptography?

1. The no cloning Theorem (1.2.5) asserts that an intruder cannot make
perfect copies of qubits.

2. The act of measuring modifies the qubits irreparably.

Having this in mind, we can proceed to describe the BB84 protocol.

First, let us start by describing the environment. In a QKD setting, the
goal is to share a private key between two parties, Alice and Bob, using an
insecure public channel. In this protocol, Alice uses two different orthogonal
bases for the preparation of some qubits, which she will then send to Bob.
For a better understanding, each qubit sent by Alice is in the form |qx,y〉 with
x representing the actual bit to be sent and y representing which one of the
two bases is used. Thus, they can be in one of the four following possible
states:

|q0,0〉 = |0〉 , |q1,0〉 = |1〉 , |q0,1〉 = |+〉 , |q1,1〉 = |−〉 . (2.7)

Remark. |+〉 and |−〉 have been presented in Example 1.1.8.

For clarity, let the computational basis states |0〉 , |1〉 be called Plus or “+
basis" and |+〉 , |−〉 be called Times or “× basis".

Example 2.2.1. The action of preparing a qubit can be viewed as an en-
coding. Suppose Alice wants to encode 1 using the × basis, then we can

2.2 BB84 Quantum Key Distribution 25

represent the qubit as |q1,1〉 = |−〉.

Now we can give the specification of the protocol:

Protocol 1 BB84 Quantum Key Distribution
QKD84(n):

1: Alice randomly generates two bistring of length n.
2: Alice then prepares a string of qubits of length n using as value the

values of the first bistring, and as bases the values of the second one.
Subsequently, she sends the string to Bob.

3: Bob receives the qubits and randomly generates another bitstring of
length n.

4: Bob measures each qubit using the randomly generated bistring as bases.
5: Alice and Bob publicly compare which bases they use, every time they

disagree they discard the respective bit.
6: Bob then chooses half of the remaining bistring and announces it to Alice.

If they disagree on more than a small percentage of bits, they abort the
protocol. Otherwise, the remaining bitstring can be use as the private
key.

Example 2.2.2. An example of the protocol running can lead to a better
understanding.

1. Let us call K̃a and B̃a the two bitstrings generated by Alice. Let us
assume n = 8, K̃a = 11010010 and B̃a = 10110001

2. Let q̃ be the resulting string of qubits. Alice prepares q̃ using K̃a and
B̃a. Then q0 = |−〉 , q1 = |1〉 , q2 = |+〉 , q3 = |−〉 q4 = |0〉 , q5 = |0〉 , q6 =

|1〉 , q7 = |+〉

3. Let us call B̃b the bitstring generated by Bob and assume B̃b = 01100101.

4. The measurement on q̃ with B̃b as bases lead to a bistring K̃b =

01010110 with Kb0,1,3,5 to be random due to basis discrepancy.

5. After the comparison and the discarding, K̃a = 0010 and K̃b = 0010

26 2. Quantum Cryptography

Figure 2.1: Example of QKD execution

6. Bob now chooses half of the remaining bits, for example the third and
the fifth, to announce. Since the comparison of the same values with
Alice gives a positive result, they conclude with the same string 10.

The previous procedure can be reduced to Figure 2.1.

The security of this protocol is provable and relies on quantum mechanics.
Let us start a little analysis by imposing a new requirement: the message
that Alice and Bob use to compare and announce the bitstring needs to be
authenticated, otherwise the protocol is vulnerable to a man-in-the-middle
attack. Having said that, we can go ideally through the protocol steps. After
the preparation of the string of qubits, they pass through a public channel
before arriving to Bob. During this passage, an intruder, let us call her Eve
as always, can obviously intercept the string since the channel is public. But
what exactly can she do with it? Theorem 1.2.5 asserts that qubits cannot
be perfectly copied. This means that if she wants to intercept some qubits,
she also needs to resend them to Bob, without being able to keep a copy.
Furthermore, she cannot even measure the string without changing it and
consequently be detected. The formal proof of the unconditional security of
the protocol can be found in [34] and will not be discussed, in order to give
more space to the following protocols.

2.3 BB84 Quantum Bit Commitment 27

2.3 BB84 Quantum Bit Commitment

The bit commitment (or coin tossing) version of BB84 is designed to achieve
a different goal using the same bases and the same two mistrusting parties
of QKD. In this setting, Alice wants to commit a single bit to Bob, but she
does not want Bob to learn the value of her commitment until she chooses
to unveil it at a later time. We can view this scenario as a real experiment:
for the commitment phase, Alice writes on a sheet of paper the value of a
certain commitment, locks the sheet into a safe and sends the safe to Bob.
For the unveiling phase, Alice sends the key used to lock the safe to Bob,
who will be able to see the value contained in the sheet of paper and be sure
of the safety of the process. Having already presented the principles of BB84
quantum key distribution, we can go directly into the protocol definition.

Protocol 2 BB84 Quantum Bit Commitment
QBC84(n):

1: (Commit): Alice randomly generates a bitstring of length n and chooses
the value of the commitment.

2: Alice then prepares a string of qubits of length n using as values the values
of the bitstring and as basis the value of the commitment. Subsequently,
she sends the string to Bob.

3: Bob receives the qubits and randomly generates another bitstring of
length n.

4: Bob measures each qubit using the randomly generated bistring as bases.
5: (Unveil): Alice sends to Bob the value of the commitment and the ran-

domly generated bistring
6: Bob discards all the measurement results done with an incorrect basis. If

the length of remaining bitstring is below a certain threshold, he aborts
the protocol.

7: Bob checks if all the remaining bits are consistent with Alice bitstring.
Otherwise, he aborts the protocol

Example 2.3.1. As in Example 2.2.2, it can be useful to give an example

28 2. Quantum Cryptography

of a protocol execution done correctly:

1. (Commit) Let suppose Alice chooses n = 8 and threshold t = n/2, and
randomly generates K̃a = 11010010 and ba = 1, with ba value of the
commitment

2. As ba = 1, Alice prepares q̃ using the × basis. Then q1 = |−〉 , q2 =

|−〉 , q3 = |+〉 , q4 = |−〉 q5 = |+〉 , q6 = |+〉 , q7 = |−〉 , q8 = |+〉

3. Bob randomly generates B̃b = 01100101

4. Then he measures q̃ with B̃b, obtaining K̃b = 01011010. Due to basis
discrepancy, Kb1 , Kb4 , Kb5 , Kb7 are completely random value.

5. (Unveil) Bob receives K̃a and ba then discards all the random bits
obtained with a wrong basis, leading to a new bitstring K̃ ′a. Given that
|K̃ ′b| ≥ t, the protocol can continue.

6. Bob now deletes the respective bits on K̃a and begins a comparison of
the result with K̃ ′b, which will give a positive result. Then Bob accepts
the commitment.

The procedure can be viewed in Figure 2.2.

2.3.1 Security

Given that the BB84 quantum bit commitment protocol will be dealt in
detail in Section 6.1, we will examine in detail the security proof concerning
the protocol.

First, as stated by Bennet and Brassard themselves in their paper, the proto-
col is not unconditionally secure given the EPR-paradox. In 1.3 we presented
an EPR-pair, but not the paradox itself. The Einstein–Podolsky–Rosen para-
dox is an experiment, resulted in a famous paper [16], in which they ques-
tioned the completeness of quantum mechanics. Briefly, given two entangled
system and supposing that there is no longer any interaction between the two
parts, as in Equation 1.4, the paradox lies in the fact that the two system,

2.3 BB84 Quantum Bit Commitment 29

Figure 2.2: Example of QBC execution

with a measurement on one of them, can simultaneously have exact values
of position and momentum contradicting Heisenberg’s uncertainty principle,
viewed in Section 1.1. A famous attack expects Alice to prepare two strings
of qubits in which each qubit of the first string is entangled with the corre-
sponding qubit in the second one. Then she will send one of the two strings
and keep the remaining one. In step 5, Alice then measures the remaining
string of qubits, allowing her to know the measurement values obtained by
Bob. This enables Alice to send the dual of the committed value together
with a consistent bitstring, which will be considered valid by Bob and will
allow Alice to cheat with probability of success pwin ≈ 1.

An even more interesting and general result was given independently by
Meyers [35] and Lo and Chau [32] with their famous No-Go Theorem1.

Theorem 2.3.2. Unconditionally secure (non-relativistic) quantum bit com-
mitment is impossible.

1In the field of theoretical physics, a no-go theorem is a particular theorem that states
that a specific situation is not physically possible.

30 2. Quantum Cryptography

Proof. We follow the specific analysis of the ideal case, which includes BB84,
from Lo and Chau [31] that proceeds as follows. In the ideal case, given q̃,
Bob has absolutely no information about the value of the commitment ba.
In this case, the density matrix ρ associated with the possible values of the
commitment are the same:

TrA |0〉 〈0| ≡ ρq̃0 = ρq̃1 ≡ TrA |1〉 〈1| . (2.8)

Then, using Schmidt decomposition [25]:

|0〉 =
∑
k

√
λk |êk〉A ⊗ |φ̂k〉q̃ |1〉 =

∑
k

√
λk |ê′k〉A ⊗ |φ̂k〉q̃ . (2.9)

With λk as the eigenvalues of TrA |0〉 〈0| and TrA |1〉 〈1|, and |êk〉A , |ê′k〉A and
|φ̂k〉q̃ as the orthonormal bases of the corresponding Hilbert spaces. Note
that all the |φ̂k〉q̃ and λk are the same for the two states. The only visible
difference resides in Alice’s |êk〉A , |ê′k〉A. Now, if we consider a unitary trans-
formation U which maps|êk〉A to |ê′k〉A, it acts only on Alice’s system, and
clearly transform |0〉 to |1〉. Therefore, is clear that Alice has no physical
constraint that prevents her from cheating and changing the value of ba in
the unveil phase.

The non-ideal case will not be treated because it is applied to different, non-
thorough commitment schemes; however, it can be found in [31].

Following this result, it is clear that if Alice has a quantum computer – a
challenging hypothesis from a technological perspective, but not forbidden
by the laws of physics – she can cheat with probability 1 on an ideal case like
the one discussed earlier and with large probability in the non-ideal one.

2.4 Kent Relativistic Bit Commitment 31

2.4 Kent Relativistic Bit Commitment

When Bennet and Brassard proposed the BB84 bit commitment protocol,
they were conscious about its insecurity degree, given the EPR-paradox, but
considering the technology of the time it was stated to be secure because of
the difficulty to replicate and the impossibility of preserving the state for a
considerable amount of time. Later attempts to find unconditionally secure
protocols were made [10, 9, 1], but all these schemes then fell due to Theorem
2.3.2.

However, the world is relativistic. Indeed, classical relativistic protocols have
been proven to be secure against Mayer and Lo-Chau attack and are conjec-
tured to be unconditionally secure.

For the conjecture of unconditional security, a couple of assumptions need
to be declared. The provided quantum theory needs to be correct, and the
background space-time is approximately Minkowski. That means that an
adversary cannot surreptitiously make major changes to the local space-time
geometry.

The proposed quantum relativistic bit commitment protocol relies on the
fact that the committer is bounded, by Minkowski causality, to choose a
specific commitment at the space-time point where the protocol starts. This
protocol relies on the impossibility of completing a non-local measurement
on a distributed state outside the joint future light cone of its components.

The implementation of the protocol requires only that the receiver send a
quantum state to the committer, who needs to carry out individual measure-
ments on them as soon as they are received. The basic protocol with
security parameter n and using BB84 basis goes as follows:

Definition 2.4.1. Two points are said to be lightlike separated if the
spacetime interval among them is zero.

In other words, this means that a beam of light could travel directly from

32 2. Quantum Cryptography

one event to the other, and there will be an agreement about the order in
which these events occurred.

Protocol 3 Kent 2012 Relativistic Quantum Bit Commitment
KENT12 (n):

1: (Commit) Alice and Bob agree on a space-time point P , a set of coor-
dinates (x, y, z, t) for Minkowski space, with P as the origin, and two
points Q0 = (x, 0, 0, x) and Q1 = (−x, 0, 0, x) lightlike separated from P .
They each have agents, separated in secure laboratories, adjacent to each
of the points P,Q0, Q1.

2: Bob randomly chooses two sets of strings K̃b and B̃b of size n.
3: Bob prepares a string of Qubit q̃ of size n using K̃b as values, B̃b as bases,

according to the BB84 basis.
4: Bob sends q̃ to Alice to arrive at the space-time point P .
5: Alice’s measures the qubits string according to the value she wants to

commit. If she wants to commit 0 she measures q̃ with base 0, otherwise
if she wants to commit 1 she uses the base 1 and sends the outcome over
secure classical channel to her agents at Q0 and Q1, according to the
BB84 bases.

6: (Unveil) To unveil her committed bit, Alice’s agents at Q0 and Q1 reveal
the measurement outcome to Bob’s agents.

7: Bob’s agents compare the revealed data to check that the outcomes de-
clared by Alice’s agents are both the same and consistent with the list
of states sent by Bob at P . If this is true, Bob accepts the commitment;
otherwise, Bob has detected Alice cheating.

Example 2.4.2. As usual, we will give an example of correct execution,
using the same random values of the other examples:

1. (Commit) Omitting step 1 and assuming n = 8 Bob randomly choose
K̃a = 11010010 and B̃a = 10110001.

2. The preparation of q̃ leads to q1 = |−〉 , q2 = |1〉 , q3 = |+〉 , q4 =

|−〉 q5 = |0〉 , q6 = |0〉 , q7 = |1〉 , q8 = |+〉.

2.4 Kent Relativistic Bit Commitment 33

Figure 2.3: Example of Kent 2012 execution

3. Assuming a committing value ba = 1, the measurement leads to Ka =

01010110 with positions 1,2,4,5 to be random due to basis discrepancy.
Then Alice sends Ka = 01010110 to her two agents.

4. (Unveil) After the send operation by Alice’s agents, The consistency
check done by Bob lead to an acceptation of the committed value.

Also in this case, Figure 2.3 represents this execution.

2.4.1 Security

Shortly after the publication of the protocol’s paper, two independent anal-
yses has been proposed: the first from Kaniewski et al. [27], the second
from Croke and Kent itself [11]. To discuss the conjecture of unconditional
security, we follow step by step the second one, presenting the lemmas, the
main theorem and the respective proofs. First, it is clear that the protocol

34 2. Quantum Cryptography

is secure against Bob, who learns nothing about the committed values un-
til Alice performs the unveiling procedure. For Alice, the key is that she is
constrained to reveal the values to both Bob’s agents at Q0 and Q1. This is
because, by Minkowski causality, the unveiling of data consistent with a 0 or
1 at a determined space-time point Q0 depends entirely on the series of op-
erations done on the “line” P → Q0. Specifically, calling a strategy S a series
of operations, if Alice follows a strategy S0 and a strategy S1, respectively on
the line (P → Q0] and (P → Q1], Alice has probability pi of producing data
consistent with the values ba = i at Qi. This implies that, with probability
at least p, by combining the data obtained after the execution of S0 and S1,
Alice can produce data consistent with both sets of measurements in com-
plementary bases. That is, for each qubit |qi〉 she can choose a subset of two
states from the BB84 bases {|0〉 , |1〉 , |+〉 , |−〉}, one from each basis, which
must include |qi〉. But how much is the probability p? And how is related
with the security parameter n? Before arriving to it, we need a couple of
lemmas, taken directly from [11].

Lemma 2.4.3. Given a single qubit |q〉, randomly chosen from the uni-
form distribution, Alice’s probability p of choosing one of the subsets B0 =

{|0〉 , |+〉}, B1 = {|+〉 , |1〉}, B1 = {|1〉 , |−〉}, B3 = {|−〉 , |0〉}, which includes
|q〉 is p ≤ 1

2
(1 + 1√

2
), for any strategy S.

Proof. Recalling the standard discrimination problem, in which Bob chooses
a state σ̂j from the set of possible one, with associated probability pj. Alice’s
measurement, meant to determine the state, can be described by a positive
operator-valued measure (POVM) {π̂j} where the outcome π̂j leads to the
choice of the state σ̂j. Then the probability that Alice identified the correct
state is

pcorrect =
∑
j

pj · Tr(σ̂jπ̂j). (2.10)

It is clearly visible that the probability p for our protocol is a variation of

2.4 Kent Relativistic Bit Commitment 35

the standard discrimination problem. Here, Bob prepares a random state
from the BB84 set of states, while Alice get two non-orthogonal guesses at
the state. We write the BB84 states as follows:

|s0〉 = |0〉 |s1〉 = |+〉 |s2〉 = |1〉 |s3〉 = |−〉 . (2.11)

In this way, we can define as Gi = {|si〉 , |si+1〉}, for i = 0 . . . 3 and |s3+1〉 =

|si〉, Alice’s possible guesses. Each of these guesses corresponds to a mea-
surement outcome, so we can associate each one with a POVM element π̂i.
Then, using ρ̂j as the corresponding density matrix of |sj〉, the probability
that Alice wins is:

pwin =
1

4
·
∑
i

Tr (ρ̂j(π̂i + π̂i+1))

=
1

2
·
∑
i

Tr

(
1

2
π̂j(ρ̂j + ρ̂i+1)

)
.

(2.12)

Therefore, up to a factor of 2, the problem is equivalent to that of discrimi-
nating between a set of equiprobable states, and maximizing the probability
of Alice’s victory corresponds to minimizing the probability of error in dis-
criminating those states.

Then, given that a necessary and sufficient condition on a POVM, realizing
a minimum error measurement in the standard case is:

∀j, Γ̂− pj ρ̂j ≥ 0, (2.13)

with

Γ̂ =
∑
i

piρ̂iπ̂i and pcorrect = Tr(Γ̂) (2.14)

Returning to our problem:

36 2. Quantum Cryptography

Γ̂ =
1

4

4∑
i=1

π̂i

(
1

2
ρ̂i +

1

2
ρ̂i+1

)
. (2.15)

For our set then

Γ̂ =
1

8

(
1 +

1√
2

)
Î . (2.16)

Recalling the factor of 2, Alice’s optimal guessing probability is

pwin = 2Tr(Γ̂) =
1

2

(
1 +

1√
2

)
. (2.17)

Lemma 2.4.4. Given a string of qubits |q̃〉 of length n, randomly chosen
from the uniform distribution and using any strategy S, Alice’s win probability
pi0,...,in−2;j0,...,jn−2 ≤ 1

2

(
1 + 1√

2

)
for any i0, ..., in−2; j0, ..., jn−2 consistent with

S .

Proof. First, pi1,...,in−2;j1,...,jn−2 is Alice’s probability of choosing a subset of
from G0 = {|0〉 , |+〉}, G1 = {|+〉 , |1〉}, G2 = {|1〉 , |−〉}, and G3 = {|−〉 , |0〉}
that includes |qn−1〉, conditioned on the first n−1 qubits being |qi0〉 , ..., |qin−2〉,
and her guesses Gj0 , ..., Gjn−2. Then, suppose by contradiction that a strat-
egy S violates this bound for some values i0, ..., in−2; j0, ..., jn−2. Having this,
Alice can proceed as follows.

1. Prepare an entangled state of two qubits and a string of length n − 1

of BB84 states |si0〉 , ..., |sin−2〉.

2. Apply the strategy S to the string of qubits and one of the two qubit
of the entangled state, ignoring the knowledge of her own bistring.

3. For the first n−1 qubits, check the guesses produced by S. If the result
does not agree with Gj0 , ..., Gjn−2, return to step 1, otherwise proceed
to the next step.

2.4 Kent Relativistic Bit Commitment 37

4. Apply a teleportation operation on the unknown BB84 state |qn−1〉 of
length n and the other entangled qubit, obtaining teleportation unitary
U .

5. Examine the output of the strategy S, obtaining a guess at a sub-
set containing the teleported unknown qubit U |qn−1〉, and apply the
inverse U† to obtain a guess Gi containing |qn−1〉.

The guess obtained in the last step is, by assumption, correct with probability
pi1,...,in−2;j1,...,jn−2 >

1
2

(
1 + 1√

2

)
.

Note that in this iteration, |qn−1〉 is left isolated until step 5. Hence, Alice
would have a strategy that produces a guess for any unknown state |qn−1〉
with probability p > 1

2

(
1 + 1√

2

)
, violating Lemma 2.4.3.

Having given the two previous lemma’s proofs, we can now go to present the
main theorem.

Theorem 2.4.5. Given a bistring of qubits |q̃〉 of length n, randomly chosen
from the uniform distribution, Alice’s probability of being able to produce data
consistent with measurements in complementary BB84 bases is

pn ≤
(

1

2
(1 +

1√
2

)

)n
Proof. The proof follows directly from Lemma 2.4.1.

Chapter 3

Process Algebras

Another step in introducing our research work is dedicated to process al-
gebras. We start this chapter with a short historical background, passing
through a well-known process algebra and ending with various notions of
behavioral equivalence. A more in-depth view of the topics covered in this
chapter can be found in [21].

3.1 Background

The process algebra approach to the verification of concurrent systems has
been very successful in the field of theoretical computer science. At the be-
ginning, various sequential formalisms capturing the concept of computable
function were proposed, among the most famous we can find the Turing
machine [45] or the λ-calculus [8]. The journey of models for concurrent
computation started around the 60s with the so-called Petri nets [37] and
began to arouse great interest in the scientific community between the 70s
and the early 80s with the work of Robin Milner [36], Tony Hoare [24], Jan
Bergstra and Jan Willem Klop [7]. But what are process algebras? Process
algebras are a family of mathematically rigorous frameworks that provide
a way for modelling and verifying properties of concurrent communicating

39

40 3. Process Algebras

systems, using algebraic laws for a formal manipulation and analysis.

In other words, a process algebra (or process calculus) provides not only the
constructs to describe a system, but also a formal semantics to describe its
evolution. Note that in the continuation of the chapter, we use the terms
“system”, “program” and “agent” equivalently.

But what is a process algebra made of?

• A syntax is the basic component of a process algebra. It is the set
of rules that defines the correct combination of symbols into terms, or
processes.

• A semantics, which can be of three different types:

– Operational, in which a system is modeled as a labelled transition
system.

– Algebraic, in which the definition of a system is given by a set of
algebraic laws.

– Denotational, which maps a system to a mathematical model in
which the denotation of any system is determined directly from
the denotation of a subset of its components.

For this brief introduction we prefer to present a process algebra using the
operational approach, and therefore it is important to give the definition of
labelled transition system.

Definition 3.1.1. A labelled transition system (LTS) is a triple
〈S, Act,→〉 where:

1. S is a finite set of states.

2. Act is a set of transition labels.

3. → is a transition relation, that is, a subset of S × Act× S.

The set S contains process algebra terms, while the labels contained in Act

3.2 CCS 41

represent the actions carried out by the transition relation →, which allow
the system to evolve.

3.2 CCS

The Calculus of Communicating Systems (CCS) is one of the most successful
process calculi. It was introduced by Robin Milner in the 80s [36] and it is
still being extended as of today to model different types of systems, such as
quantum systems, as we will see in Chapter 5. To introduce CCS, we start
with the syntax, and then we pass to the operational semantics.

3.2.1 Syntax

The building blocks of the syntax are actions and operators. Actions repre-
sent an atomic and instantaneous execution step and are used to represent
internal or external computation steps. External actions are in turn divided
into two types, input and output actions.

Example 3.2.1. For clarity, thinking about a coffee machine, an input action
can be used to represent the insertion of a coin, an internal action to represent
the preparation of a coffee and an output action to represent the dispensing
of that coffee.

The main difference between internal and external actions is that the former
are invisible to an external observer. This peculiarity will be crucial for the
continuation of the thesis. To formalize these intuitions, let us introduce the
set ActCCS of CCS’s actions. Assume a countably infinite set A of labels
not containing the symbol τ . The actions in CCS are given by the following
BNF:

α ::= τ, representing an internal action.

| a, with a ∈ A, representing the input action on port a.

| a, with a ∈ A, representing the output action on port a.

(3.1)

42 3. Process Algebras

Then we can formally define ActCCS as

ActCCS = A ∪ {a | a ∈ A} ∪ {τ}. (3.2)

Having presented the actions, we can now delve into the operators, defin-
ing the CCS’s processes that represent a system. Being the main purpose of
CCS that of modelling concurrent systems, the main operation that a process
must be able to perform is the parallel execution of two different systems,
often called parallel composition. In addition to this, the processes must also
be able to represent the classic operations, like the execution of actions, also
called prefixing, the nondeterministic choice, or situations in which deter-
mined actions are not allowed, often called restriction. Given this, assume a
set SCCS of valid CCS’s processes, ranged over by P,Q, ... and a relabelling
function f , then we can define, using the usual Backus-Naur form, CCS’s
syntax as

P,Q ::= nil, representing the terminated process.

| α.P, with α ∈ ActCCS, representing the prefixing operation.

| P + Q, representing the choice operation.

| P ‖Q, representing the parallel composition.

| P\L, with L ⊆ A, representing the restriction operation.

| P [f], representing the relabelling operation.

(3.3)

Going into more detail:

• α.P allows an action α to be executed before a process description P .

• The choice operator P +Q allows to describe a system that can behave
nondeterministically like either P or Q, depending on external details.

• P ‖Q defines a system that is composed by processes P and Q, running
in parallel.

• The restriction operator P\L, with L ⊆ A, allows describing a system

3.2 CCS 43

in which the actions contained in L are not permitted for the process
P .

• P [f] with the relabelling function f : A → A, allows defining a system
that behaves like P , in which, for each α that P executes, P [f] executes
f(α).

Example 3.2.2. We can define a coffee machine using CCS syntax in this
way:

P := coin.(coffee.nil + tea.nil) (3.4)

With coin, coffee and tea ∈ ActCCS.

3.2.2 Operational Semantics

The last step in defining a process algebra is to describe the meaning of the
operators with a precise semantics. For this step, we use the operational
approach. But what is an operational semantics? In Section 3.1 we intro-
duced it as a means to model a system as a labelled transition system. More
precisely, using Definition 3.1.1, we can think of the states S of the transition
system as just processes of our process algebra, while the transition label Act
with the transition relation→ models the reduction steps that take one state
to another.

Before talking about the operational semantics of CCS, let us define briefly
what an inference system is.

Definition 3.2.3.

An inference systems is a set of inference rules of the form:

p1, p2, ..., pn
c

where c is the conclusion and p1, p2, ..., pn are the premises. If all p1, p2, ..., pn
are true, then c is true.

44 3. Process Algebras

Having this, we can specify the semantics of CCS in the form of a ternary
relation→CCS from SCCS to SCCS inductively, using a collection of inference
rules :

• Prefix Operator

α.P
α−→ P

(3.5)

This rule says that processes in the form α.P may perform α and then
behave like P . It is the operator used for the sequential composition.

• Choice Operator

P
α−→ P ′

P +Q
α−→ P ′

,
Q

α−→ Q′

P +Q
α−→ Q′

(3.6)

These two rules describe the choice operator: given an action α that
brings process P (or Q) into process P ′ (or Q′), the composite sys-
tem P + Q can perform the same α and behave like P ′ (or Q′). In
other words, the choice operation serves as an abstraction to express
nondeterministic alternatives among possible behaviors. This nonde-
terminism can come for internal, external or mixed factors.

• Parallel Composition Operator

P
α−→ P ′

P‖Q α−→ P ′‖Q
,

Q
α−→ Q′

P‖Q α−→ P‖Q′
(3.7)

These rules of parallel composition describe a situation in which, given
an action α that brings process P (or Q) into process P ′ (or Q′),
the composite system P ‖Q can perform the same α and behave like
P ′‖Q (or P‖Q′). Parallel composition allows processes P and Q to
perform computations simultaneously, together with interaction within
synchronous or asynchronous channels. This is clearly the key transi-
tion that differentiates process algebras like CCS from sequential mod-
els of computation.

• Restriction Operator

α 6∈ L P
α−→ P ′

P\L α−→ P ′\L
(3.8)

3.3 Behavioral Equivalence 45

The rule for the restriction operator describes that, with the same
premise of the choice or parallel operator, a process P\L, performing
α 6∈ L may behave like P ′\L. This means that the action restriction
persists after the transition.

• Relabelling Operator

P
α−→ P ′

P [f]
f(α)−−→ P ′[f]

(3.9)

This rule says that, given an action α that brings process P into pro-
cess P ′, a process subjected to relabelling P [f] may behave like P ′[f]

performing the action given by application of the function f on α. Also
in this case this means that the relabelling operation persists after the
transition.

Recalling Definition 3.1.1, we can view a system described by CCS terms as
an LTS. Recall that SCCS is the set of valid CCS processes and ActCCS is
the set of valid actions:

System0 := 〈SCCS, ActCCS,→CCS〉 (3.10)

is a valid LTS.

Example 3.2.4. Abstracting away the overline for actions, the process from
Example 3.2.2 can be described by Figure 3.1, with P1 = (coffee.nil+tea.nil),
and P2 = P3 = nil

3.3 Behavioral Equivalence

When we talk about software or system verification, it is fundamental to
have a rich theory which can be used to compare the behavior of different
systems. Thanks to the operational approach used in the previous section
for describing CCS, we can describe concurrent systems as LTSs, and then

46 3. Process Algebras

Figure 3.1: LTS of the coffee machine

we can inherit the different notions of behavioral equivalence proposed in the
literature over them. For this chapter, we will refer to [21] for proofs and
definitions.

But first, what is an equivalence?

Definition 3.3.1. A binary relation R is an equivalence relation on a set
S if, for s1, s2, s3 ∈ S, R is:

• Reflexive, if s1Rs1.

• Symmetric, when s1Rs2 if and only if s2Rs1.

• Transitive, if s1Rs2 and s2Rs3, then s1Rs3.

Two small remarks: in the continuation, we will talk only about determinis-

tic LTSs, furthermore, all the equivalence notions presented are supposed to
be strong equivalences. A strong equivalences is a particular type of equiv-
alence in which there is no distinction between internal (τ) and external
actions, in fact all the actions are considered observable.

Definition 3.3.2. Let L = 〈S, Act,→〉 be an LTS, then L is deterministic

if, for all P ∈ S and α ∈ Act, if P α−→ P ′ and P α−→ P ′′ then P ′ = P ′′.

3.3 Behavioral Equivalence 47

3.3.1 Isomorphism Equivalence

As LTSs can be viewed as an edge-labelled directed graph, the notion of graph
isomorphism leads to the definition of isomorphism equivalence.

Definition 3.3.3.

• Given two LTSs, L0 = 〈S0, Act,→0〉 and L1 = 〈S1, Act,→1〉, an iso-

morphism between them is a bijection f : S0 → S1 such that, for all
P,Q ∈ S0 and α ∈ A:

P
α−→0 Q if and only if f(P)

α−→1 f(Q).

• If there exists an isomorphism between two LTSs L0, L1, we say that
they are isomorphic, written:

L0
∼= L1.

Proposition 3.3.4. The isomorphism on LTSs is an equivalence relation.

Proof. Given Definition 3.3.1, we need to prove that ∼= is reflexive, symmetric
and transitive. The first property is clearly trivial. For symmetry, being f
a bijection means that there exists an inverse function of f , f ′ : S1 → S0,
that is a bijection, and therefore ∼= is symmetric. Lastly, transitivity is also
simple. Given an additional LTS L2 = 〈S2, Act,→2〉, if L0

∼= L1 then there
is a bijection f such that, given P,Q ∈ S0 and α ∈ Act:

P
α−→0 Q if and only if f(P)

α−→1 f(Q).

L1
∼= L2 means that there is a bijection f ′ such that, given P ′, Q′ ∈ S1 and

α ∈ Act:
P ′

α−→0 Q
′ if and only if f ′(P ′) α−→1 f

′(Q′).

Thus, combining f, f ′ we obtain a new function f ′′ = f ′ ◦ f that is clearly a
bijection, and therefore L0

∼= L2.

48 3. Process Algebras

Given that whatever is done on S0 can be done on S1, any two isomorphic
LTSs are then indistinguishable by any observer. However, the isomorphism
equivalence is somewhat too discriminating, as we show in the example below:

Example 3.3.5. Consider the two LTSs in Figure 3.2. The two LTSs are not
isomorphic because there is no bijection between the set of states included
in their definition, but they clearly behave similarly.

Figure 3.2: Two non-isomorphic LTSs

Furthermore, when we come to finding an isomorphism between two LTSs,
we need to recall that graph isomorphism is an NP problem [3], even if it has
recently been proved to be solvable in quasipolynomial time [2, 23]. These
problems lead us to the next equivalence, which is weaker.

3.3.2 Trace Equivalence

Since LTSs are very similar to automata, we could also consider equivalences
defined on automata, like trace equivalence.

Definition 3.3.6. Given an LTS L0 = 〈S0, Act,→0〉 and a state P ∈ S0:

• A trace of P is a sequence of actions α0, α1, ..., αn ∈ Act, such that
P

α0−→ P ′
α2−→ ...

αn−→ P ′′

• The set of traces of P , denoted as Tr(P) is:

Tr(P) = {seq ∈ Act∗ | ∃P ′ ∈ S0. P
seq−→
∗
P ′}

3.3 Behavioral Equivalence 49

• Two LTSs L0 and L1 are trace equivalent if:

Tr(L0) = Tr(L1)

Following the last section, we give an example to clarify the notion of trace
equivalence and to compare it with isomorphic equivalence.

Example 3.3.7. The two LTSs in Figure 3.2 are trace equivalent. It is clear
that isomorphic equivalence is finer than trace equivalence.

The limits of trace equivalence relies on the fact that, like language equiva-
lence over automata, the verification of trace equivalence is PSPACE-complete
[21]. For this reason, we continue by introducing a more checkable alternative
for behavioral equivalence.

3.3.3 Simulation Equivalence

Simulation equivalence is the last notion we cover in this chapter, but it will
also be the starting point for Chapter 4.

Definition 3.3.8. Given an LTS L = 〈S, Act,→〉, two processes P,Q ∈ S
and a binary relation R ⊆ S × S:

• R is a simulation if (P,Q) ∈ R implies, for all α ∈ Act, whenever
P

α−→ P ′, then Q α−→ Q′, for some Q′ such that (P ′, Q′) ∈ R.

• If there exists a simulation R such that (P,Q) ∈ R, process P is said
to be simulated by process Q, written:

P . Q.

• If P . Q and Q . P , P and Q are said to be simulation equivalent,
written:

P ' Q.

50 3. Process Algebras

The name simulation equivalence derives directly from the intuition that a
state can simulate whatever action another state performs, reaching another
state that it is still able to simulate.

Note that the notion of simulation equivalence is defined only on states, but
it can be lifted to LTSs easily.

Corollary. Given two LTSs, L0 = 〈S0, Act0,→0〉 and L1 = 〈S1, Act1,→1〉,
with S0 ∩ S1 = ∅, we can create another LTS L2 = L1 ∪ L2 in this way:
L2〈S0 ∪ S0, Act0 ∪ Act1,→0 ∪ →1〉. And then a simulation R : S0 × S1 is
also a simulation on (S0 ∪ S1)× (S0 ∪ S1)

To delve into the notion of simulation, we expose some interesting proprieties
taken directly from [21].

Proposition 3.3.9. Given an LTS L = 〈S, Act,→〉, the following relations
are all simulations:

• IdP = {(P, P) | ∀P ∈ S}.

• R0R1 = {(P,Q) | ∃R.(P,R) ∈ R0 ∧ (R,Q) ∈ R1}, for all simulations
R0,R1.

•
⋃
i∈I Ri if Ri is a simulation, for all i ∈ I.

Proof. We shall just prove R0R1 and
⋃
i∈I Ri, because the proof of IdP is

immediate.

• For R0R1, given a pair (P,Q) in it, there exists a state R such that

(P,R) ∈ R0 and (R,Q) ∈ R1.

Now let P α−→ P ′. Then there exists R′ such that

R
α−→ R′ and (P ′, R′) ∈ R0.

But, as (R,Q) ∈ R2 we have also, for some Q′:

Q
α−→ Q′ and (R′, Q′) ∈ R1.

3.3 Behavioral Equivalence 51

Then (P ′, Q′) ∈ R0R1, and R0R1 is a simulation.

• For
⋃
i∈I Ri, assuming (P,Q) ∈

⋃
i∈I Ri, there exists a j ∈ I such that

(P,Q) ∈ Rj. Now let P α−→ P ′, then must exist a Q′ such that

Q
α−→ Q′ and (P ′, Q′) ∈ Rj.

Therefore (P ′, Q′) ∈
⋃
i∈I Ri and

⋃
i∈I Ri is a simulation.

A characterization of Definition 3.3.8 related to the . relation is the following
one.

Definition 3.3.10.

.=
⋃
{R : R is a simulation}.

This derives from the fact that a process Q simulates the process P , written
P . Q, if there exists a simulation R containing (P,Q). This clearly means
that . is the union of all simulations, as stated in Definition 3.3.10.

Furthermore, as for the other notions, we prove that the relation ' is an
equivalence relation.

Definition 3.3.11. A binary relation R is a preorder on a set S if, for any
s1, s2, s3 ∈ S, R is:

• Reflexive: s1Rs1.

• Transitive: if s1Rs2 and s2Rs3, then s1Rs3.

Proposition 3.3.12. For any LTS 〈S, Act,→〉:

1. The relation . is a preorder

2. The relation ' is an equivalence relation

Proof.

52 3. Process Algebras

1. As Definition 3.3.11 states, we need to prove that . is reflexive and
transitive.

• Following Proposition 3.3.9, the identity relation IdP is a simula-
tion. Then by Definition 3.3.10, . is reflexive.

• For transitivity, assume that P,Q,R ∈ S, then if P . R there
exists a simulationR0 containing (P,R), and if R . Q there exists
a simulation R1 containing (R,Q). Also in this case, following
Proposition 3.3.9, R0R1 is a simulation containing (P,Q). Then
by Definition 3.3.10, . is transitive.

2. Given that P ' Q means that P . Q and Q . P , reflexivity and
transitivity of ' are already proven from the previous point of this
proof. For symmetry, trivially note that Q ' P implies Q . P and
P . Q, and thus P ' Q

Example 3.3.13. The LTSs in Figure 3.2 are also simulation equivalent.

To conclude the section, we remark that in the analyzed case of deterministic
LTSs, the trace equivalence and simulation equivalence notions coincide.

Chapter 4

Bisimulation on Abstract

Labelled Transition Systems

The last step before getting into our research work is to introduce the notion
of bisimulation. More precisely, we will first talk about bisimulation in the
area of nondeterministic LTSs, pointing out the differences between the de-
terministic version analyzed in the last chapter, and then we will pass into
a probabilistic version of LTSs, which, with small reinterpretations related
to the quantum context, will be the protagonist of the continuation of this
thesis.

The material in this chapter is based on standard textbooks [36, 42, 12].

4.1 Bisimulation Equivalence

In the previous chapter, we introduced the notions of simulation and sim-
ulation equivalence and, like the name suggests, the notion of bisimulation
equivalence is based on them. It was proposed in [39] and [36] and it com-
bines the notion of simulation with its inverse to define a finer equivalence.
In this section, in contrast with the last chapter, we move our attention to
nondeterministic LTSs, in which we present two distinct formulations of

53

54 4. Bisimulation on Abstract Labelled Transition Systems

bisimulation. The former is called strong bisimulation, and like in the pre-
vious chapter, it treats the internal action τ like all the others. The latter,
much more appreciated over the years, differentiates the τ -action from the
others, defining an interesting way to view this relation.

Example 4.1.1. Having moved into the world of non-deterministic LTSs, it
can be useful to remember that simulation equivalence and trace equivalence
do not coincide here, contrary to deterministic LTSs, as can be seen in Figure
4.1.

Figure 4.1: Two trace equivalent but not simulation equivalent LTSs

4.1.1 Strong Bisimulation

The notion of strong bisimulation, as already said, comes by combining a
simulation relation R with its inverse R−1.

Definition 4.1.2. Given an LTS L = 〈S, Act,→〉, two processes P,Q ∈ S, a
binary relation R ⊆ S ×S, is a strong bisimulation if (P,Q) ∈ R implies,
for all α ∈ Act:

• For each P α−→ P ′, then Q α−→ Q′, for some Q′ such that (P ′, Q′) ∈ R.

• For each Q α−→ Q′, then P α−→ P ′, for some P ′ such that (P ′, Q′) ∈ R.

Then if R and its inverse R−1 are both simulations, R is a bisimulation.
Given that, the derivation of the term bisimulation is a clear consequence.

4.1 Bisimulation Equivalence 55

Example 4.1.3. As stated before, bisimulation equivalence is finer than
simulation equivalence, but the difference between the two is very subtle and
to discuss it we avail ourselves of Figure 4.2. In this figure P ' Q, that
means that P . Q and Q . P . More precisely:

• P . Q because there exists a relation
R0 : {(P,Q), (P1, Q1), (P2, Q2), (P3, Q2), (P4, Q3)} that is a simulation.

• Q . P because there exists a relation
R1 : {(Q,P), (Q1, P1), (Q2, P3), (Q3, P4)} that is a simulation.

As can be seen, the inverse of R0, defined as

R−10 : {(Q,P), (Q1, P1), (Q2, P2), (Q2, P3)(Q3, P4)}

is different from R1 and moreover it is not a simulation. In fact, there is no
strong bisimulation containing P and Q, so P 6∼ Q.

Figure 4.2: Two simulation equivalent but not bisimilar LTSs

Going forward, just like in Chapter 3.3.3, we proceed to expose a series of
interesting proprieties of bisimulation.

Proposition 4.1.4. Given an LTS L = 〈S, Act,→〉, the following relations
are all strong bisimulations:

56 4. Bisimulation on Abstract Labelled Transition Systems

1. IdP = ({(P, P) | ∀P ∈ S}.

2. R0R1 = {(P,Q) | ∃R.(P,R) ∈ R0 ∧ (R,Q) ∈ R1}, for all strong bisim-
ulations R0,R1.

3.
⋃
i∈I Ri, if Ri is a strong bisimulation, for all i ∈ I.

4. R−1 = {(Q,P) | (P,Q) ∈ R}, for any strong bisimulation R.

Proof. The proofs for (1), (2), (3) derive directly from the proof of Proposi-
tion 3.3.9. (4) is trivially true given Definition 4.1.2.

Definition 4.1.5. Given an LTS L = 〈S, Act,→〉 and P,Q ∈ S, P and Q
are strongly bisimilar, written P ∼ Q, if there exists a strong bisimulation
R containing (P,Q). An equivalent definition may be

∼=
⋃
{R : R is a strong bisimulation}.

Then, using Proposition 4.1.4 and Definition 4.1.5, we can derive the follow-
ing proposition.

Proposition 4.1.6. For any LTS 〈S, Act,→〉:

1. The relation ∼ is an equivalence relation.

2. The relation ∼ is the largest strong bisimulation.

Proof.

1. To prove that ∼ is an equivalence relation, we rely on Proposition 4.1.4.
Given P,Q,R ∈ S

• For reflexivity, Proposition 4.1.4(1) tell us that for every P ∈ S,
P ∼ P .

• For symmetry, if P ∼ Q, then there exists a strong bisimulation
R containing (P,Q). Proposition 4.1.4(4) states that R−1 is also
a strong bisimulation and therefore Q ∼ P .

4.1 Bisimulation Equivalence 57

• Lastly, for transitivity, if P ∼ Q and Q ∼ R, then there exist two
strong bisimulation R0,R1 with (P,Q) ∈ R0 and (Q,R) ∈ R1.
Thus (P,R) ∈ R0R1 and, by Proposition 4.1.4(2), P ∼ R.

2. The proof that ∼ is the largest strong bisimulation is trivial and derives
directly from Definition 4.1.5. Given that ∼ is a strong bisimulation
and include any other such, it is the largest one.

Another interesting idea that we want to present is a generalization of the
notion of strong bisimulation, called strong bisimulation up to ≈.

Definition 4.1.7. Given an LTS 〈S, Act,→〉 and a binary relation R:

• The relation ∼ R ∼ is a composition of binary relations such that,
given (P,Q) ∈ R, P ∼ R ∼ Q means that there exist P ′, Q′ such that:

P ∼ P ′, Q ∼ Q′, P ′RQ′.

• R is a strong bisimulation up to ∼ if, given (P,Q) ∈ R and α ∈ Act,
PRQ implies:

– For each P α−→ P ′, then Q α−→ Q′, for some Q′ such that P ′ ∼ R ∼
Q′.

– For each Q α−→ Q′, then P α−→ P ′, for some Q′ such that P ′ ∼ R ∼
Q′.

Lemma 4.1.8. If R is a strong bisimulation up to ∼, then ∼ R ∼ is a
strong bisimulation.

Proof. Given Definition 4.1.11, two processes P,Q ∈ S and P ∼ R ∼ Q,
thanks to the symmetry of strong bisimulation, we need only need to prove
that, if P α−→ P ′, there must be a Q′ such that Q α−→ Q′ and P ′ ∼ R ∼ Q′.
To prove this, we proceed by parts, noting that, for some P1 and Q1, P ∼
P1RQ1 ∼ Q:

58 4. Bisimulation on Abstract Labelled Transition Systems

• If P ∼ P1 and P α−→ P ′ then P1
α−→ P ′1 and P ′ ∼ P ′1.

• If Q1 ∼ Q and Q1
α−→ Q′1 then Q′ α−→ Q′ and Q′1 ∼ Q′.

• If P1RQ1 and P1
α−→ P ′1 then Q1

α−→ Q′1 and P ′1 ∼ R ∼ Q′1.

Composing these three elements and recalling the transitivity of ∼, we obtain
that P ′ ∼ R ∼ Q′ and then ∼ R ∼ is a strong bisimulation.

Example 4.1.9. To make clear why strong bisimulation up to ∼ is more
general than strong bisimulation, we rely on a simple example, using Figure
4.3. In this figure are represented the LTSs of two bisimilar processes P,Q.
Then, we can define a relation R that is a bisimulation in this way:

R : {(P,Q), (P1, Q1), (P2, Q2), (P3, Q2)}

Note that R contains what may seem to be a redundancy: the pairs (P2, Q2)

and (P3, Q2) have the same second member, and their first member are also
bisimilar because they are both dead process and the only transition that
leads to them comes from the same process and with the same action. The
intuition here, derived from [36], is that with the bisimulation up to ∼ we can
use relations which do not require to list members of bisimulation which are
identical “up to ∼”. In fact, we can define a relation R′ that is a bisimulation
up to ∼ for P and Q in this way:

R′ : {(P,Q), (P1, Q1), (P2, Q2)}

This can be very useful in the presence of large LTSs.

4.1 Bisimulation Equivalence 59

Figure 4.3: Two bisimulation equivalent LTSs

To conclude the section, we can summarize all the various strong equivalences
relations introduced in Chapters 3 and 4 using Figure 4.4.

In Figure 4.4 the arrows from equivalences notions means that the former is
finer (included) than the latter.

Figure 4.4: Relation between equivalences relations

60 4. Bisimulation on Abstract Labelled Transition Systems

4.1.2 Weak Bisimulation

The notion of weak bisimulation or observational equivalence is probably one
of the most used equivalences in literature. The main intuition here relies on
the fact that the τ -actions are internal actions and then an external observer
cannot distinguish between them. Note that this matches much more closely
the real world, in which we often want to equate systems with different
internal behavior, but with the same external behavior.

To introduce the concept of weak bisimulation, we need a few preliminary
definitions.

Definition 4.1.10. Given an LTS L = 〈S, Act,→〉, two processes P,Q ∈ S
and a sequence of actions s = α1, α2, ..., αn:

• If s ∈ Act∗, then ŝ ∈ (Act − {τ})∗ is the sequence of actions obtained
by deleting all the τ -actions from s.

• If s ∈ Act∗, then P s−→ Q if:

P
α1−→ . . .

αn−→ Q

• Let s ∈ (Act− {τ})∗, then P s
=⇒ Q if:

P
τ∗−→ α1−→ τ∗−→ . . .

τ∗−→ αn−→ τ∗−→ Q

Intuitively, P α
=⇒ P ′ means that the system described by the process P turns

into the system described by the process P ′ performing a sequence of invisible
τ -actions and exactly one α action, with α 6= τ .

Then we can give the definition of weak bisimulation.

Definition 4.1.11. Given an LTS L = 〈S, Act,→〉 and two processes P,Q ∈
S, a binary relation R ⊆ S × S, is a weak bisimulation if (P,Q) ∈ R
implies, for all α ∈ Act:

• For each P α−→ P ′, then Q α̂
=⇒ Q′, for some Q′ such that (P ′, Q′) ∈ R.

4.1 Bisimulation Equivalence 61

• For each Q α−→ Q′, then P α̂
=⇒ P ′, for some P ′ such that (P ′, Q′) ∈ R.

Recalling the last section, we can give the analogous version of definition and
proposition for weak bisimulation.

Proposition 4.1.12. Given an LTS L = 〈S, Act,→〉, the following relation
are all weak bisimulations:

1. IdP = ({(P, P) | ∀P ∈ S}.

2. R0R1 = {(P,Q) | ∃R.(P,R) ∈ R0 ∧ (R,Q) ∈ R1}, for all weak bisimu-
lations R0,R1.

3.
⋃
i∈I Ri, if Ri is a weak bisimulation, for all i ∈ I.

4. R−1 = {(Q,P) | (P,Q) ∈ R}, for all weak bisimulation R.

Proof. Also in this case, the proof derives directly from Proposition 4.1.4.
The only difference is that for R0R1, we need a further result: If (R,Q) ∈ Ri

and R α̂
=⇒ R′, then for some Q′, Q α̂

=⇒ Q′ and (R′, Q′) ∈ Ri.

The definition of weakly bisimilar processes is the following.

Definition 4.1.13. Given an LTS L = 〈S, Act,→〉 and two processes P,Q ∈
S, P and Q are weakly bisimilar, written P ≈ Q, if there exists a weak
bisimulation R containing (P,Q). An equivalent definition may be

≈=
⋃
{R : R is a weak bisimulation}.

Having these two alternative definitions for weak bisimulation, we can prove
that it is an equivalence relation.

Proposition 4.1.14. For any LTS 〈S, Act,→〉:

1. The relation ≈ is an equivalence relation.

2. The relation ≈ is the largest weak bisimulation.

62 4. Bisimulation on Abstract Labelled Transition Systems

Proof. The proof follows identically the proof of Proposition 4.1.6, using
Proposition 4.1.12 and Definition 4.1.13.

It is easy to see that the definition of weak bisimulation is coarser than
Definition 4.1.2.

Example 4.1.15. To give a clear vision of how different are the notion of
weak and strong bisimulation, we can use Figure 4.5. In this simple case,
P ≈ Q but P 6∼ Q, due to the τ -action from P1 to P2.

Figure 4.5: Two weak bisimilar LTSs

As stated in [43] and contrary to what it seems, the bisimulation up to tech-
nique applies well in the strong bisimulation case, but does not directly gen-
eralize to the weak case. For this reason, we introduce a notion very similar
to weak bisimilarity, called expansion, which allows us to derive an up-to
method for weak bisimilarity as well.

Let us start by giving the definition of expansion.

Definition 4.1.16. Given an LTS L = 〈S, Act,→〉 and two processes P,Q ∈
S, a binary relation T ⊆ S × S, is an expansion if (P,Q) ∈ T implies, for
all α ∈ Act:

• For each P α−→ P ′, then Q α
=⇒ Q′, for some Q′ such that (P ′, Q′) ∈ T .

• For each Q α−→ Q′, then P α̂−→ P ′, for some P ′ such that (P ′, Q′) ∈ T .

4.1 Bisimulation Equivalence 63

We can state that expansion is a preorder derived from ≈ by the comparison
of the number of silent actions.

Definition 4.1.17. Given an LTS L = 〈S, Act,→〉 and two processes P,Q ∈
S, we say that Q expands P , written P / Q, if there exists an expansion
T containing (P,Q) An equivalent definition may be

/=
⋃
{T , with T expansion }.

As can be noted, the expansion relation is an asymmetric version of ≈, indeed
P / Q means that P ≈ Q and also that Q uses at least as many resources
as P , i.e., P uses no more τ -actions than Q. Moreover, as the next theorem
proves, this relation resides “between” strong and weak bisimulation.

Theorem 4.1.18. It holds that ∼⊂/ and /⊂≈ .

Proof. The inclusion /⊆≈ is trivial. For ∼⊆/ simply note that if α
=⇒ is

a transition that includes 0 or more τ -actions, then α−→⊆ α
=⇒, and the same

reasoning also applies to α̂−→. For the strictness note that given a process
P ∈ S:

P 6∼ τ.P, P / τ.P, τ.P 6/ P, τ.P ≈ P.

Since /⊂≈ we can now define the expansion up to /.

Definition 4.1.19. T is an expansion up to / if, given (P,Q) ∈ S and
α ∈ Act, PT Q implies:

• For each P α−→ P ′, then Q α
=⇒ Q′, for some Q′ such that P ′ ∼ R / Q′.

• For each Q α−→ Q′, then P α̂−→ P ′, for some Q′ such that P ′ / R / Q′.

Lemma 4.1.20. If T is an expansion up to /, then T is an expansion.

Proof. The proof derives directly from the proof of Lemma 4.1.8, obviously
with the respective changes due to the definition of expansion.

64 4. Bisimulation on Abstract Labelled Transition Systems

4.2 Probabilistic Bisimulation

In the last section, we have presented the notion of bisimulation in two dif-
ferent versions. A strong one, in which τ -actions are treated like all the other
actions, and a weak one, in which instead τ -actions are indistinguishable to
an external observer. In this section, we want to take another step to get
closer to our research work, presenting the notion of bisimulation based on a
probabilistic version of LTSs, called probabilistic labelled transition systems
(pLTSs). Clearly, we must start by presenting the basic definitions and lem-
mas about pLTSs. However, we will give particular emphasis to those which
are called lifted relations, and then we conclude the section talking about
probabilistic bisimulation itself.

First, let us prepare the scene by giving some basic definitions regarding
the field of probability, starting from the definition of discrete probability
distribution and point distribution.

Definition 4.2.1.

• A discrete probability distribution over a set S, is a function ν :

S → [0, 1] with
∑

s∈S ν(s) = 1, with countable support
dνe = {s ∈ S | ν(s) > 0}.

• The point distribution, denoted by s̄ is a distribution that assigns 1
to s and 0 to all other elements of S, so that ds̄e = {s}.

Now using D(S) to denote the set of all the probability distributions over S,
ranged over by λ, γ. . . , we can proceed giving the definition of probabilistic
labelled transition system.

Definition 4.2.2. A probabilistic labelled transition system is a triple
〈S, Act,→〉 where:

1. S is a finite set of states.

4.2 Probabilistic Bisimulation 65

2. Act is a set of transition labels, containing the silent transition τ .

3. → is a transition relation, that is, a subset of S × Act×D(S).

4.2.1 Lifting relations

When we move into the probabilistic setting, systems are often modelled as
distributions over states. Then we need to lift the relation presented on state
to distribution, in order to compare different systems.

Definition 4.2.3. Let R ⊆ S × D(S) be a relation from states to dis-
tributions. We use R† to indicate the corresponding lifted relation over
distributions. Here R† is the smallest relation R† ⊂ D(S) × D(S) that
satisfies:

1. sRγ implies s̄R†γ, where s̄ is the point distribution.

2. Linearity: given a finite set I, if λiR†γi for all i ∈ I, then (
∑

i∈I pi ·
λi)R†(

∑
i∈I pi · γi) for any choice of pi ∈ [0, 1], such that

∑
i∈I pi = 1.

Now we can give an alternative characterization of lifting, taken by [13],
which will be useful in the following pages.

Lemma 4.2.4. λR†γ if and only if there is a finite index set I, such that:

1. λ =
∑

i∈I pi · s̄i.

2. γ =
∑

i∈I pi · γi.

3. siRγ, ∀i ∈ I.

Proof.
(⇐) Suppose that there is an index set I that respects (1), (2), (3). By clause
(3) and 4.2.3(1) we have s̄iR†γi for each i ∈ I. Using also the linearity rule
in 4.2.3 we obtain that (

∑
i∈I pi · s̄i)R†(

∑
i∈I pi · γi).

(⇒) Now let us proceed by induction:

66 4. Bisimulation on Abstract Labelled Transition Systems

• if λR†γ because λ = s̄ and sRγ then we only take I to be the set {i}
with pi = 1 and γi = γ.

• if λR†γ because λ =
∑

i∈I pi · λi, γ =
∑

i∈I pi · γi and λiR†γi for
each i ∈ I then, by induction hypothesis, there are index sets Ki such
that λi =

∑
k∈Ki

pik · s̄ik , γi =
∑

k∈Ki
pik · γjk and sikR γjk for each

i ∈ I and k ∈ Ki. It follows that λ =
∑

i∈I
∑

k∈Ki
pipik · s̄ik, γ =∑

i∈I
∑

k∈Ki
pipik · γjk and sikR γjk for each i ∈ I and k ∈ Ki. In

conclusion, it suffices to take {ik | i ∈ I, k ∈ K} as the index set and
{pipik | i ∈ I, k ∈ K} as the collection of probabilities.

We proceed by defining the notion that allows us to “decompose” the states
of a distribution, called left-decomposability.

Definition 4.2.5. Given a finite set I, a relation R ⊂ D(S) × D(S) over
distributions is called left-decomposable if (

∑
i∈I pi · λi)Rγ implies that γ

can be written as (
∑

i∈I pi · γi) for every i ∈ I such that λiRγi.

Given the definition of left-decomposability, the next lemma tells us that any
lifted relation is left-decomposable.

Lemma 4.2.6. For any R ⊆ S ×D(S), the lifted relation R† over distribu-
tion is left-decomposable.

Proof. Given a finite set I, suppose that λ =
∑

i∈I pi · λi and λR†γ, we need
to find a family of γi such that:

1. λiR†γi.

2. γ =
∑

i∈I pi · γi,

From the alternative definition on lifting given as Lemma 4.2.4 we know that:

λ =
∑
k∈K

pk · s̄k, skRγj, γ =
∑
k∈K

pk · tk.

4.2 Probabilistic Bisimulation 67

Now let us define γi to be

∑
s∈〈λi〉

λi(s) ·

 ∑
{k∈K | s=sk}

pk
λ(s)

· γj

 . (4.1)

We can simply note that λs can be written as
∑
{k∈K | s=sk} pk and conse-

quently:

λi =
∑
s∈〈λi〉

λi(s) ·

 ∑
{k∈K | s=sk}

pk
λ(s)

· s̄j

 . (4.2)

Since sjRγk, this proved (1).

Let us go into (2). First, we are shortening the sum
∑
{k∈K | s=sk}

pk
λ(s)
· γj to

Ξ(s). Hence,
∑

i∈I pi · γi can be written as:∑
s∈〈λ〉

∑
i∈I

pi · λi(s) · Ξ(s)

=
∑
s∈〈λ〉

λ(s) · Ξ(s).
(4.3)

Lastly, λ(s) · Ξ(s) =
∑
{k∈K | s=sk} pk · tk and thus we have:∑
i∈I

pi · γi =
∑
s∈λ

∑
{k∈K | s=sk}

pj · γj

=
∑
k∈K

pk · tk = t.
(4.4)

When we are considering the transition relation → over distributions, it is
clear that there will be some small differences compared to a standard LTS.
The next definition helps us understand those differences.

Definition 4.2.7. Considering a pLTS 〈S, Act,→〉, we establish the follow-
ing transition over distributions:

1. τ̂−→
†
. Let s τ̂−→ λ if either s τ−→ λ or λ = s , and lift it to distributions.

68 4. Bisimulation on Abstract Labelled Transition Systems

2. α̂−→
†
. Let s α̂−→ λ if s α−→ λ for α ∈ Act and α 6= τ , and lift it to

distributions.

3. τ̂
=⇒
†
. The transition τ̂

=⇒
†
is equal to (

τ̂−→
†
)∗, the reflexive and transitive

closure of τ̂−→.

4. α̂
=⇒
†
.The transition α̂

=⇒
†
is equal to (

τ̂
=⇒ α̂−→ τ̂

=⇒)† for α ∈ Act and α 6= τ .

For point distributions, we write s α̂
=⇒
†
P rather than s̄ α̂

=⇒
†
γ.

It is important to point out that here α̂
=⇒
†
is not a lifted transition. However,

the following proposition and lemma show that it is still both linear and left-
decomposable.

Proposition 4.2.8. If two binary relations R1and R2 are both linear and
left-decomposable, then so is R1R2.

Proof. Let us suppose that

(λ, γ) ∈ R1R2.

Then for some Q we have

(λ, ν) ∈ R1 and (ν, γ) ∈ R2.

Now, since R1 is linear and left-decomposable, (
∑

i∈I pi ·λi)R1ν implies that
ν can be written as (

∑
i∈I pi · νi). Following the same argument since R2 is

also linear and left-decomposable and ν = (
∑

i∈I pi · νi), implies that γ can
be written as (

∑
i∈I pi · γi).

Lemma 4.2.9. The transition relations α̂
=⇒
†
are both left-decomposable and

linear.

Proof. The proof relies on the fact that both properties are preserved by com-
position. So if two relations R1,R2 are both linear and left-decomposable,
then so is R1 ·R2. Then since α̂

=⇒
†
is formed by recurrent composition of τ̂−→

†

4.2 Probabilistic Bisimulation 69

and exactly one α̂−→
†
which we know are both linear and left-decomposable,

then also α̂
=⇒
†
it is.

Note that in the continuation we will use R and R† interchangeably, e.g., we
will usually write α̂−→ for α̂−→

†
and so on.

4.2.2 Probabilistic Bisimulation Equivalences

Having presented probabilistic LTSs and the lifted relations on them, we can
go forward presenting briefly the notions of strong probabilistic bisimulation
and weak probabilistic bisimulation starting, as in the previous chapter, with
the notion of probabilistic simulation.

Definition 4.2.10. Given an pLTS L = 〈S, Act,→〉, two processes P,Q ∈ S,
a distribution λ ∈ D(S) and a binary relation R ⊆ S × S, R is a proba-

bilistic simulation if (P,Q) ∈ R implies for all α ∈ Act:

• For each P α−→ λ, then Q α−→ γ, for some γ ∈ D(S) such that (λ, γ) ∈ R.

The intuition here, similarly as simulation equivalence on LTSs, is that Q can
simulate the behavior of P if whatever action of P can lead to a distribution
λ, then also Q, performing the same action, can lead to a distribution γ and
so on.

The definition of probabilistic simulation brings us directly to the notion of
strong probabilistic bisimulation.

Definition 4.2.11. Given a pLTS L = 〈S, Act,→〉, two processes P,Q ∈ S,
a binary relation R ⊆ S × S, is a strong probabilistic bisimulation if
(P,Q) ∈ R implies, for all α ∈ Act:

• For each P α−→ λ, then Q α−→ γ, for some γ ∈ D(S) such that (λ, γ) ∈ R.

• For each Q α−→ γ, then P α−→ λ, for some λ ∈ D(S) such that (λ, γ) ∈ R.

Note that also in this case, the bisimulation notion derive from the compo-
sition of a simulation R and its inverse R−1.

70 4. Bisimulation on Abstract Labelled Transition Systems

The differentiation between τ -actions and normal action lead us to the last
definition of this chapter.

Definition 4.2.12. Given a pLTS L = 〈S, Act,→〉 and two distributions
λ, γ ∈ S, a binary relation R ⊆ D(S) × D(S), is a weak probabilistic

bisimulation if (λ, γ) ∈ R implies, for all α ∈ Act and all finite set of
probabilities {pi | i ∈ I} with

∑
i∈I pi = 1:

• For each λ α
=⇒
∑

i∈I pi · λi, then γ
α
=⇒
∑

i∈I pi · γ′i, for some γi such that
(λi, γi) ∈ R for each i ∈ I.

• For each γ α
=⇒
∑

i∈I pi · γi, then λ
α
=⇒
∑

i∈I pi · λ′i, for some λi such that
(λi, γi) ∈ R for each i ∈ I.

All the equivalence notions presented in this section were dealt with quickly
because they derive entirely from the nondeterministic case. Furthermore,
they will only serve us as a baseline to better understand the successive
notions in the next chapter.

Chapter 5

Bisimulation on Quantum

Processes

After presenting quantum computing, process algebras and bisimulation, we
are ready to present all notions used for the cryptographic proof in Chapter
6. In this chapter, we start by presenting a quantum extension of CCS,
called quantum CCS (qCCS), of which we will present the modified syntax
and semantics. Then, we present three different bisimulation notions used in
the literature to compare quantum processes.

5.1 qCCS

As in the theory of the concurrent systems, the process algebra’s approach
has also landed in the verification of quantum systems. Several proposals
have been made, like QPAlg [26] or CQP [20]. For our research work, having
presented CCS, we use a quantum extension of it, called qCCS [18, 49].

71

72 5. Bisimulation on Quantum Processes

5.1.1 Syntax

Having moved into the quantum world, qCCS syntax needs to define actions
and operators to model quantum systems. Being qCCS an extension of CCS,
most of the operators and actions derive from it. But, when we come to define
the actions, we must consider not only the input and output of classical
variables through classical channels, but also of quantum variables and their
related communication channels. Furthermore, we also need to be able to
model the application of quantum gates and the measurement.

More formally, in qCCS three types of data are considered: Real for real
numbers, Bool for booleans and Qbt for qubits. Therefore, cVar , ranged
over by x, y, . . . , and qVar , ranged over q, r, . . . , are respectively the count-
ably infinite sets that represent the classical variables and the quantum vari-
ables. Let us assume a set Exp, ranged over by e, e′, . . . , which includes
cVar as a subset, of classical expressions and a set bExp, ranged over by
b, b′, . . . , of Boolean valued expressions. Let cChan, ranged over by c, d, . . . ,
and qChan, by c, d, . . . , be the sets of classical and quantum channels. A re-
labelling function f is defined as a map on cChan ∪ qChan to itself such that
f(cChan) ⊆ cChan and f(qChan) ⊆ qChan. Sequences of classical or quan-
tum variables are often abbreviated with x̃ or q̃ respectively. Consider also
a set of process constants, i.e., names for processes, ranged over by A,B, . . . ,
assigned to each of them, there are two non-negative integers arc(A) and
arq(A). If, for example, |x̃| = arc(A) and |q̃| = arq(A) then A(x̃, q̃) is called
a process constant. Furthermore, when arq(A) and arc(A) are both equal to
0, then we also use A as the only process constant produced by A.

Thanks to the notation presented erlier, we can now easily introduce the
actions of qCCS, with the following BNF:

5.1 qCCS 73

α ::= τ, for the internal action.

| c!e, with c ∈ cChan and e ∈ Exp, for the classical output.

| c?x, with c ∈ cChan and x ∈ cVar , for the classical input.

| c!q, with c ∈ qChan and q ∈ qVar , for the quantum output.

| c?q, with c ∈ qChan and q ∈ qVar , for the quantum input.

| Ψ[q̃], for the super-operator application.

| M [q̃;x], for the measurement operation.
(5.1)

Then, we can define ActqCCS as

ActqCCS = {c!x, c?x | c ∈ cChan, x ∈ cVar}

∪ {c!q, c?q | c ∈ qChan, q ∈ qVar}

∪ {τ}.

(5.2)

Remark. The application of the quantum super-operator and the quantum
measurement are not in ActqCCS, because those actions are invisible from
the outside.

Thus, assuming a set SqCCS of valid qCCS processes, ranged over by P,Q, . . . ,
we can define qCCS syntax. Note that we present an extension of qCCS, in
which the probabilistic choice is added directly to the syntax, as proposed in
[17].

74 5. Bisimulation on Quantum Processes

P,Q ::= nil, for the terminated process.

| α.P, for the prefixing operation.

| P + Q, for the choice operation.

| P ‖Q, for the parallel composition.

| P\L, for the restriction operation.

| P [f], for the relabelling operation.

| A(ẽ, q̃), for the process constant.

| if b then Q, with b ∈ bExp for the conditional operation.

|
∑
i∈I

pi Pi, for the probabilistic choice operation.

(5.3)

Furthermore, let qv be a function from qProc → 2qVar that represents the sets
of free quantum variables. We can define qv(P) with P ∈ qProc inductively
as follows:

qv(nil) = ∅ qv(τ.P) = qv(P)

qv(c!e.P) = qv(P) qv(c?x.P) = qv(P)

qv(c!q.P) = qv(P) ∪ {q} qv(c?q.P) = qv(P)− {q}

qv(Ψ[q̃].P) = qv(P) ∪ q̃ qv(M [q̃;x].P) = qv(P) ∪ q̃

qv(P +Q) = qv(P) ∪ qv(Q) qv(P ‖Q) = qv(P) ∪ qv(Q)

qv(P\L) = qv(P) qv(P [f]) = qv(P)

qv(A(ẽ, q̃)) = q̃ qv(if b then P) = qv(P)

(5.4)

To prevent physically unimplementable quantum processes, we add the fol-
lowing requirement: In c!q.P , q 6∈ qv(P) and qv(P) ∩ qv(Q) = ∅ in P ‖Q.

Example 5.1.1. As for Chapter 3, we give an example to understand how
a simple quantum system can be modeled as a qCCS process. The circuit in

5.1 qCCS 75

Figure 1.3, assuming q0 = q1 = |0〉, can be defined as

P = H[q0].Cnot[q0, q1].M [q0;x0].M [q1;x1].out!(x0, x1).nil

It is also easy to check qv(P). Given that qv(out!(x0, x1).nil) = qv(nil) = ∅,
and qv(H[q0].Cnot[q0, q1].M [q0;x0].M [q1;x1]) = {q0, q1}, qv(P) = {q0, q1} ∪
∅ = {q0, q1}.

5.1.2 Transitional Semantics

Before presenting the transitional semantics of qCCS we need to prepare
the scene. First, a process P is called closed if fv(P) = ∅, or rather it
contains no free classical variable. Let us assume an evaluation function
ψ{v/x} to be a function that maps x to v. Let us also assume that each
quantum variable q ∈ qVar has an associated 2-dimensional Hilbert space
Hq that represents the state space of the system, also called a q-system.
That means for any q̃ ⊂ qVar , Hq̃ =

⊗
q∈q̃Hq, and this is valid for every

subset of qVar . In particular, the state space of the whole environment is
defined as H = HqVar , which is a countably infinite dimensional Hilbert
space. Supposing that P is a closed quantum process, a pair in the form
〈P, ρ〉 is called a configuration, where ρ ∈ D(H) is a density operator on H.
Given that H is infinite dimensional, ρ should be understood as a density
operator on some finite dimensional subspace of H which contains Hqv(P).
The set of all configurations is denoted by CON , and is ranged over by
B,C Lastly, we use D(CON) for denoting the set of all the probability
distributions over CON and we overload the notation using λ, γ, . . . , like
with D(S), for ranging over the set. More precisely:

D(CON) = {λ : CON → [0, 1] |
∑

λ(C)>0

λ(C) = 1} (5.5)

The transitional semantics of qCCS is hence given by the following pLTS:

〈CON , ActqCCS,→qCCS〉, (5.6)

76 5. Bisimulation on Quantum Processes

with →⊆ CON × Act × D(CON) is the smallest relation satisfying the
following inference rules:

• Classical channel rules:

The three rules just defined describe, like the in the standard descrip-
tion of CCS, the action of communication using a classical variable.
The value v in the rule OutC represents the result of the evaluation of
e. Note also that the rules do not modify in any way the context ρ
because they only deal with classical variables.

• Quantum channel rules:

The rules above in this case describe communication involving quantum
variables. It is important to note that also in this case, the rules do not

5.1 qCCS 77

modify the context ρ. At first sight this appears to be contradictory
with the input rule, but the intuition behind it is that it is intended
to describe the input of a qubit from inside the context, and when the
qubit is already described in it, the input action is only a declaration.

• Quantum rules:

The rules Meas and Op describe respectively the operations of the
measurement and the application of a quantum operator on a sequence
of qubits r̃. As can be seen, the act of measuring or applying the
quantum operator are modelled using τ -actions, which are by definition
invisible from the outside.

• Distribution rule:

The distribution rule is an extension of qCCS proposed in [17] to allow
the probabilistic choice directly at the syntax level, which will be of
crucial in the following chapter.

78 5. Bisimulation on Quantum Processes

• Standard rules:

For clarity, in the premise of Cho1 and Cho2 , the term JbK = (true/false)

means that the evaluation of the expression b ∈ bExp leads to the result
of (true/false); Furthermore the function qbv(α) is used to represent
the bounded quantum variables of α, i.e. qbv(c.q) = {q}, for α 6=
c.q, qbv(α) = ∅. Lastly, the symmetric form of Par and Sum has been
omitted.

Example 5.1.2. Now, with a complete vision of qCCS, we can describe the
system in Example 5.1.1 more accurately. Given the same process

P = H[q0].Cnot[q0, q1].M [q0;x0].M [q1;x1].out!(x0, x1).nil,

we can associate to P a density operator ρ = |00〉 〈00| to form the configura-
tion B = 〈P, ρ〉. This configuration can be viewed in Figure 5.1.

With the subscript 0 or 1 in B0, B1 we mean that the first measurement lead
to a result of 0 or 1. In the same way, the second digit in the subscript of
B0,0, B1,1 correspond to the second measurement operation on q1. Note that
all the quantum operation and measurement are treated like τ -actions.

5.2 Quantum Bisimulation Equivalences

In Chapter 4 we have presented various notions of weak and strong bisimula-
tion, starting from nondeterministic LTSs and continuing to pLTSs. Having

5.2 Quantum Bisimulation Equivalences 79

Figure 5.1: pLTS for EPR-pair and measuring

seen in Equation 5.6 that pLTSs, when acting on configurations, can be
used to represent quantum systems, in this section we investigate the vari-
ous bisimulation notions based on it. Note that all the notions proposed are
intended to be weak bisimulations.

5.2.1 State-Based Bisimulation

The notion of bisimulation, when it is applied thinking about the state space
of the system associated to a determined configuration, leads us to the first
equivalence of this section, the so called state-based bisimulation. We call
this type of bisimulation state-based, as in [17], because it only compares
individual configurations and not combinations of them. Let us prepare the
scene, assume B = 〈P, ρ〉 is a configuration, we refer to qv(P) as qv(B), and
env(B) = trqv(P)(ρ) as the quantum environment of the process P in B.

Definition 5.2.1. Given a pLTSs 〈CON , Act,→〉 and two configurations
B,C ∈ CON , a binary relation R ⊆ CON×CON is a state-based ground

bisimulation if (B,C) ∈ R implies, for all α ∈ Act:

• qv(B) = qv(C), env(B) = env(C).

• For each B α−→ λ then C α̂
=⇒ γ, for some γ such that (λ, γ) ∈ R.

80 5. Bisimulation on Quantum Processes

• For each C α−→ γ then B α̂
=⇒ λ, for some λ such that (λ, γ) ∈ R.

The next definition is used to characterize the closure under super-operators.

Definition 5.2.2. A relation R ⊆ CON ×CON is said to be closed under

super-operators if, (B,C) ∈ R implies (Φ(B),Φ(C)) ∈ R for any Φ ∈
SO(Hqv(B)∪qv(C)).

Combining the definitions of state-ground bisimulation and closure under
super-operators, we arrive at the main definition of the section.

Definition 5.2.3. A binary relation R ⊆ CON × CON is a state-based

bisimulation if it is closed under super-operators and it is a state-based
ground bisimulation.

Thus, we can define when two configurations are state-based bisimilar.

Definition 5.2.4. Given a pLTSs 〈CON , Act,→〉 and two quantum configu-
rations B,C ∈ CON , B and C are state-based bisimilar, written B ≈s C
if there exists a state-based bisimulation R containing (B,C).

Note that the definition of state-based bisimilarity can be easily lifted to
quantum processes.

Definition 5.2.5. Two quantum process terms P and Q are state-based
bisimilar, written P ≈s Q if for any evaluation ψ and for any quantum state
ρ ∈ D(H), 〈Pψ, ρ〉 ≈s 〈Qψ, ρ〉.

Example 5.2.6. For a better comprehension of state-based bisimilarity, we
make a simple example of two state-based bisimilar qCCS configurations.
Given LqCCS = 〈CON , ActqCCS,→qCCS〉, let us define two processes P,Q:

P = in?q.M [q;x].out!x.nil\{in} Q = H[q].M [q;x].out!x.nil

Then, given a density operator ρ, we can define the following two state-based
bisimilar configurations B,C ∈ CON :

B = 〈P, |+〉q 〈+| ⊗ ρ〉 C = 〈Q, |0〉q 〈0| ⊗ ρ〉

5.2 Quantum Bisimulation Equivalences 81

Figure 5.2: The pLTSs representing two state-based bisimilar configurations

The pLTSs that describe B and C are represented in Figure 5.2.

Given this, we can proceed by giving a proposition that further characterize
the notion of state-based bisimulation.

Proposition 5.2.7. Given λ, γ ∈ D(CON) and supposing that λ ≈s γ and
λ

α̂
=⇒ λ′. Then there exists some γ′ such that γ α̂

=⇒ γ′ and λ′ ≈s γ′

Proof. By Lemmas 4.2.4, 4.2.6, 4.2.9, the following propriety holds:

(∗) If λ ≈s γ and λ τ̂
=⇒ λ′ then there is some γ′ with γ τ̂

=⇒ γ′ and λ′ ≈s γ′

Suppose that λ α
=⇒ λ′ and λ ≈s γ. If α is τ then γ′ follows by the application

of propriety (*). Differently, by definition we know λ
τ̂
=⇒ λ1, λ1

α−→ λ2 and

λ2
τ̂
=⇒ λ′. The application of propriety (*) gives us a γ1 such that γ τ̂

=⇒ γ1 and

λ1 ≈s γ1, the application of Lemma 4.2.6 gives us a γ2 such that γ1
α̂
=⇒ γ2

and λ2 ≈s γ2. Lastly, a further application of propriety (*) gives us γ2
τ̂
=⇒ γ′,

such that λ′ ≈s γ′. The result follows from the transitivity of τ̂
=⇒.

82 5. Bisimulation on Quantum Processes

Lastly, we prove that ≈s is an equivalence relation.

Theorem 5.2.8. For any pLTSs 〈CON , Act,→〉:

1. The relation ≈s is the largest state-based bisimulation on CON .

2. The relation ≈s is an equivalence relation.

3. The lifted relation ≈s⊂ D(CON) × D(CON) is both linear and left-
decomposable.

Proof.

1. ≈s it is certainly a state-based bisimulation, it remains to be proven
the fact that it is the largest:
Definition 5.2.4 may be equivalently expressed as follows:

≈s =
⋃
{R : R is a state-based bisimulation}.

That means that ≈s includes any state-based bisimulation, therefore is
the largest one.

2. Reflexivity and symmetry of ≈s are trivial and will not be discussed.
Coming to transitivity, we only need to show that ≈s · ≈s is a state
based bisimulation. Suppose B1 ≈s B2 and B2 ≈s B3, then if B1

α−→ λ1

there exists some B2
α̂
=⇒ λ2 such that λ1 ≈s λ2, since B1 ≈s B2. From

B2 ≈s B3 and Proposition 5.2.7, it follows that B3
α̂
=⇒ λ3 and λ2 ≈s λ3.

Therefore, we see that λ1(≈s · ≈s)λ3.

3. ≈s⊂ D(CON) × D(CON) it is trivially linear by Definition 4.2.3 and
it is left-decomposable by Lemma 4.2.6.

5.2.2 Distribution-Based Bisimulation

As stated in [15, 17], state-based bisimulation is sometimes too discriminat-
ing when it is applied to probabilistic automata. When pLTSs and distri-

5.2 Quantum Bisimulation Equivalences 83

butions of quantum configurations are considered, state-based bisimulations
are predictably also too discriminating, in the sense that it can distinguish
distributions which will never be distinguished by any outside observer. This
leads to a characterization of an intruder with unrealistic power. Further-
more, in this setting, the quantum states “accompanying” the processes are
very likely to be combined when interacting with each other, as pointed out
in the following example, taken by [17].

Example 5.2.9. Given a density operator ρ, a super-operator Ψ which car-
ries out a measurement operation, and a two-outcome measurement O =

c0 |0〉 〈0| + c1 |1〉 〈1|, we can declare two configurations B and C as B :=

〈Ψ[q].nil, |+〉q 〈+| ⊗ ρ〉 and C := 〈M [q;x].nil, |+〉q 〈+| ⊗ ρ〉 with |+〉 = |0〉+|1〉√
2

.
Since the two configurations are both performing a measurement and ig-
noring the output, we definitely want B ≈s C. However, this is not true.
Let B0 = 〈nil, |0〉q 〈0| ⊗ ρ〉, B1 = 〈nil, |1〉q 〈1| ⊗ ρ〉, BI = 〈nil, Iq/2⊗ ρ〉
and λ = 1

2
B0 + 1

2
B1, then BI 6≈s λ because otherwise, using the left-

decompositivity of ≈s, we would need that BI ≈s B0, BI ≈s B1 which is
obviously false.

The evidence in Example 5.2.9, applies to every state-based bisimulation
because of the result of Lemma 4.2.6. The rest of this section proposes
definitions and theorems directly on distributions, in order to make indistin-
guishable configurations, like those in the previous example, bisimilar.

As usual, let us begin with some basic definitions.

Definition 5.2.10. Given a pLTS 〈CON , Act,→〉, a distribution λ ∈ D(CON)

is transition consistent if for any λ′ in his support and for α ∈ Act, with
α 6= τ , λ′ α̂=⇒ γ′ for some γ′ implies λ α̂

=⇒ γ for some γ.

Definition 5.2.11. A decomposition λ =
∑

i∈I pi · λi with pi > 0, for each
i ∈ I, is called a tc-decomposition of λ if, for each i ∈ I, λi is transition
consistent.

Having given the context, we can proceed and give the definition of a notion of

84 5. Bisimulation on Quantum Processes

bisimulation directly on distributions, called distribution-based bisimulation,
and some related theorems. Note that for a distribution λ =

∑
i piλi, for

each i, qv(λ) =
⋃
i qv(λi), env(λ) =

∑
i pi · env(λi) and Ψ(λ) =

∑
i piΨ(λi).

Definition 5.2.12. Given a pLTS 〈CON , Act,→〉 and two distributions
λ, γ ∈ D(CON), a binary relation R ⊆ D(CON) × D(CON) is called a
distribution-based ground bisimulation, if (λ, γ) ∈ R implies, for all
α ∈ Act:

1. qv(λ) = qv(γ), env(λ) = env(γ).

2. For each λ α̂−→ λ′, then γ α̂
=⇒ γ′, for some γ′ such that and (λ′, γ′) ∈ R.

3. For each γ α̂−→ γ′, then λ α̂
=⇒ λ′, for some λ′ such that and (λ′, γ′) ∈ R.

4. if λ is not transition consistent and λ =
∑

i∈I pi·λi is a tc-decomposition,
then there exists a transition γ

τ̂
=⇒
∑

i∈I pi · γi such that for each i,
(λi, γi) ∈ R.

It may be interesting to note that, in contrast with Definition 5.2.1, when
we move to distributions we have a further clause. The intuition here comes
from the fact that the transition described in 5.2.12(2) is possible only when
λ is transition consistent. This means that all the configurations contained in
the support of the starting distribution, λ in the definition, can perform weak
α-transitions because of the splitting into transition consistent components
stated in 5.2.12(4).

As in the previous section, combining the definition of closure under super-
operators and Definition 5.2.12 we arrive at the definition of distribution-
based bisimulation.

Definition 5.2.13. A binary relation R ⊆ D(CON)×D(CON) is a
distribution-based bisimulation if it is a distribution-based ground bisim-
ulation and it is also closed under super-operators.

Then we proceed, as usual, to define when distributions on configurations
are distribution-based bisimilar.

5.2 Quantum Bisimulation Equivalences 85

Definition 5.2.14. Given a pLTSs 〈CON , Act,→〉 and two quantum distri-
butions λ, γ ∈ D(CON), λ and γ are state-based bisimilar, overloading
the notation, written λ ≈ γ, if there exists a distribution-based bisimulation
R containing (λ, γ).

Lastly, we conclude the section with the following two theorems.

Theorem 5.2.15. For any pLTS 〈CON , Act,→〉:

1. The relation ≈ is the largest bisimulation on D(CON).

2. The relation ≈ is an equivalence relation.

Proof. The proof for (1) and (2) follows exactly the proof of (1) and (2) of
Theorem 5.2.8.

Theorem 5.2.16. Given λ, γ ∈ D(CON), thus λ ≈s γ implies λ ≈ γ, but
λ ≈ γ does not imply λ ≈s γ.

Proof. Just observing the definitions of state-based and distribution-based
ground bisimulation, it is easy to note that the three clauses in Definition
5.2.3 correspond to the first three clauses in Definition 5.2.13, so the former
implication is trivially proven. For the latter we need a counterexample:
Example 5.2.9 shows two configurations, B and C, that are distribution-based
bisimilar but not state-based bisimilar. Recalling that a configuration can be
expressed as a point distribution then we have proven the non-implication.

Theorem 5.2.16 only states that the definition of distribution-based bisimu-
lation is coarser then its state-based counterpart.

5.2.3 Bisimulation Metrics

All the bisimulation relations defined in the previous section and chapters
represent exact bisimulations. That is, they distinguish two processes as

86 5. Bisimulation on Quantum Processes

bisimilar or not bisimilar. To close the gap between these dual statements and
capture the idea that a process approximately implements its specification,
in [14], the notion of approximate bisimulation is proposed in the context
of pLTSs. This idea has been used successfully in [49] in the context of
quantum processes, and finally it has been extended in [17] to a distribution-
based setting.

Let us start as always by giving some basic definitions.

Definition 5.2.17. A metric on a set X is a function d : X ×X → [0,∞),
where [0,∞) is the set of non-negative real numbers, which satisfies:

1. Triangle inequality : d(x, y) ≤ d(x, z) + d(z, y), for any z.

2. Symmetry : d(x, y) = d(y, x).

3. Identity of indiscernibles : d(x, y) = 0⇔ x = y.

Definition 5.2.18. A pseudometric on a set X is a function d : X×X → R
that satisfies:

1. Triangle inequality : d(x, y) ≤ d(x, z) + d(z, y), for any z.

2. Symmetry : d(x, y) = d(y, x).

3. d(x, x) = 0

Note that the difference between a metric d and a pseudometric d′ is that if
d(x, y) = 0 then x = y, whereas, if d′(x, y) = 0 there can exist some x, y such
that x 6= y. Having this, we can go directly to the notion of approximate
bisimulation.

Definition 5.2.19. Given a pLTS 〈CON , Act,→〉, two distributions λ, γ ∈
D(CON) and µ ∈ [0, 1], a binary relation R ⊆ D(CON) × D(CON) closed
under super-operators, is called µ-bisimulation, if (λ, γ) ∈ R implies, for
all α ∈ Act:

1. qv(λ) = qv(γ), d(env(λ), env(γ)) ≤ µ.

5.2 Quantum Bisimulation Equivalences 87

2. For each λ α̂−→ λ′, then γ α̂
=⇒ γ′, for some γ′ such that and (λ′, γ′) ∈ R.

3. For each γ α̂−→ γ′, then λ α̂
=⇒ λ′, for some λ′ such that and (λ′, γ′) ∈ R.

4. if λ is not transition consistent and λ =
∑

i∈I pi·λi is a tc-decomposition,
then exist a transition γ τ̂

=⇒
∑

i∈I pi · γi such that, for each i such that
(λi, γi) ∈ R,

∑
i pi ≥ 1− µ.

A pair of observations can be done: first, with d(env(λ), env(γ)) in Definition
5.2.19(1) we intend the trace distance between the two environments. Then,
as can be easily seen, Definition 5.2.19 follows directly from Definition 5.2.13,
with the differences given by the trace distance.

As usual, we define when two quantum distributions are stated to be µ-
bisimilar.

Definition 5.2.20. Given a pLTSs 〈CON , Act,→〉 and two quantum dis-
tributions λ, γ ∈ D(CON), λ and γ are µ-bisimilar, written λ

µ
≈ γ if there

exists a µ-bisimulation R containing (λ, γ).

Moreover, using the previous definitions, we can introduce the concept of
bisimulation distance.

Definition 5.2.21. Given a pLTSs 〈CON , Act,→〉 and two distributions
λ, γ ∈ D(CON), the bisimulation distance between distributions is a func-
tion db : D(CON)×D(CON)→]0, 1], defined as follows:

db(λ, γ) = inf {µ ≥ 0 |λ
µ
≈ γ}.

Note that the bisimulation distance function can be defined also on processes.

Definition 5.2.22. Given a pLTSs 〈CON , Act,→〉 and two configurations
B = 〈P, ρ〉 , C = 〈Q, ρ〉 ∈ CON , the bisimulation distance between pro-
cesses is a function db : qProc × qProc →]0, 1] defined as follows:

db(P,Q) = inf{µ ≥ 0 | ∀ψ, ρ ∈ D(H), 〈Pψ, ρ〉
µ
≈ 〈Qψ, ρ〉}.

88 5. Bisimulation on Quantum Processes

Then, the next theorem shows that the bisimulation distance is a pseudo-
metric on D(CON).

Theorem 5.2.23. The bisimulation distance db is a pseudo-metric on D(CON).

Proof. We need to prove that the bisimulation distance satisfies the clauses
of Definition 5.2.18. Note that the bisimulation distance db between two
distributions is the smallest µ for which exists a µ-bisimulation containing
(λ, γ). Furthermore, given a µ-bisimulation containing (λ, γ), µ is the upper-
bound of the trace distance between env(λ) and env(γ) that is a metric on
Hilbert space. Therefore, given the close link between the trace distance and
the bisimulation distance, the latter is clearly a pseudometric. Lastly, note
that db is not a metric on D(CON) because there exists infinite number of
configurations with the same env.

Example 5.2.24. As we have already said, the notion of approximate bisim-
ulation can be used to capture the idea that a process approximately imple-
ments its specification. To give an example of two approximately bisimilar
configurations, given LqCCS = 〈CON , ActqCCS,→qCCS〉, let us define two
processes Ptest(n), Pspec(n) as follows:

Ptest(n) = H[q̃].M [q̃; x̃].(if eq1(x) then out!x.nil else fail !0.nil)

Pspec(n) = H[q̃].M [q̃; x̃].out!x.nil

Here, the function symbol eq1 returns true if every bit of the input string
is equal to 1, while, the parameter n is used to define the length of the
string q̃. Then, given a density operator ρ, we can define the configurations
B,C ∈ D(CON):

B = 〈Ptest(n), ρ〉 C = 〈Pspec(n), ρ〉

Here, we have B
µ
≈ C with µ = 1

2n
. Note that this is true because the only

visible action that can lead to an inconsistent transition between B and C is
the output action fail !0 , which is performed with probability 1

2n
.

5.2 Quantum Bisimulation Equivalences 89

Lastly, we conclude the section and the chapter with a theorem that shows
how the approximate bisimulation relates to the distribution-based bisimu-
lation.

Theorem 5.2.25. For any λ, γ ∈ D(CON), λ ≈ γ iff db(λ, γ) = 0

Proof. If db(λ, γ) = 0 then there exists a µ-bisimulation with µ = 0 con-
taining (λ, γ). Recalling that λ ≈ γ if there is a distribution-state bisimula-
tion R containing (λ, γ) and observing the definitions of µ-bisimulation and
distribution-state bisimulation, note that the only difference resides in the
respective clauses (2), in which in Definition 5.2.12 we have env(λ) = env(λ),
while in Definition 5.2.19 we have d(λ, γ) ≤ µ with d as the trace distance.
Being µ = 0 then d(λ, γ) = 0 and this implies that env(λ) = env(γ).

Chapter 6

Cryptographic Proofs in qCCS

In this chapter we use the previously introduced notions of bisimulation on
quantum systems to verify the correctness and the security degree of the
two bit commitment schemes presented in Chapter 2: the BB84 quantum
bit commitment and the Kent relativistic bit commitment. Note that we
investigate different notions of security, based on the intruder capabilities.

6.1 BB84 Quantum Bit Commitment

For the analysis of the BB84 quantum bit commitment scheme, we represent
the protocol as a quantum process in which the two co-protagonists, Alice
and Bob, are seen as parallel quantum processes. We follow the method in
[17] starting by “breaking” the protocol into two phases: in the former, we
abstract the security of the protocol, analyzing only its correctness, in the
latter, instead, we analyze the security degree, modifying Alice’s process to
become the intruder and using the notion of µ-bisimulation to analyze the
asymptotic security of the protocol. Note that the variable of the possession
of a quantum computer exposed at the end of Section 2.3 allows us to define
two different types of intruders.

91

92 6. Cryptographic Proofs in qCCS

6.1.1 Correctness

Following [17], the protocol is initially described without the privacy ampli-
fication phase, and only its correctness is analyzed.

As already said, we model the BB84 quantum bit commitment protocol as
a quantum process, called QBC84 (n), with n as the security parameter.
The process is designed to simply run in parallel two quantum processes that
impersonate Alice and Bob. As in [17], we design the protocol so that returns
a substring of Bob’s bitstring that matches with Alice’s base, that is up to
immediately before step 6 of Protocol 2. We do this in order to later put
BB84 in a test environment. Let us describe QBC84 (n):

Alice(n) :=
∑

ba∈{0,1}

∑
K̃a∈{0,1}n

1

2n+1
SetK̃a

[q̃].Hba [q̃].A2B!q̃.UnveilA(ba, K̃a)

UnveilA(ba, K̃a) := b2a?u.a2b!(ba, K̃a).nil

Bob(n) := A2B?q̃.
∑

B̃b∈{0,1}n

1

2n
MB̃b

[q̃; K̃b]. Set0̃[q̃].b2a!1.UnveilB(B̃b, K̃b)

UnveilB(B̃b, K̃b) := a2b?(ba, K̃a).out!(cmp(K̃a, ba, B̃b), cmp(K̃b, ba, B̃b), ba).nil

QBC84 (n) := Alice(n)‖Bob(n)

(6.1)

The extensive use of the probabilistic choice is clearly visible directly at
syntax level. For example, we design the choice of Alice’s commitment ba as
a probabilistic process, described by the first use of the probabilistic choice
operator. The second probabilistic choice, instead, describes the choice of
the random bitstring K̃a. The fraction 1

2n+1 represents the probability of
each distribution, and it is the combination of the two previous probabilities.
Continuing our analysis of Alice’s process, the operator SetK̃a

is used to
prepare the string of qubits q̃, setting the i-th qubit to the state |Ka〉i. The
operatorHba [q̃] instead applies the Hadamard gateH on q̃ if ba = 1, otherwise
it does nothing. Moving to the analysis of the process that models Bob, also

6.1 BB84 Quantum Bit Commitment 93

in this case we use a probabilistic choice to model the random bitstring of
bases B̃b generated by him, together with the associated probability. The
operatorMB̃b

[q̃; K̃b] performs a measurement on each of the qubits of q̃ using
as bases the corresponding basis in B̃b. Lastly, during the unveil phase, Bob
sends through the classical channel out the substrings of K̃a and K̃b using the
function symbol cmp, together with the value of the commitment ba. Here,
the function cmp(x̃, y, z̃) returns a substring of x̃: for i = 0 . . . n − 1, if the
i-th bit of z̃ corresponds to y it appends the i-th bit of x̃ to the substring.
For the sake of showing the correctness of the processes just described, we
put QBC84 (n) in a test environment:

Test := out?(K̃a, K̃b, ba).(if K̃a = K̃b then bit!ba.nil else fail !0.nil)

QBC84test(n) := (QBC84 (n)‖Test)\ {a2b, b2a,A2B, out}
(6.2)

The process Test simply give in output the value of the commitment if the
protocol execution was successful, otherwise it uses the channel fail to output
0, representing the failure of the protocol execution. We also remark that we
have left the part of privacy amplification for a second part.
Having this, we need to design an ideal specification, with which we can
compare QBC84test(n). Our specification needs to model what we want
QBC84 (n) to do ideally: first, we want our protocol to never fail, then, hav-
ing modelled the choice of the commitment value as a probabilistic choice,
we want it to be uniformly distributed. Now we are ready to present our
ideal specification of BB84 quantum bit commitment:

QBC84spec(n) :=
n∑
i=0

∑
x̃∈{0,1}i

(
n
i

)
2n+i

Set0̃[q̃].bit! first(x̃).nil (6.3)

With first(x̃) to be a function that takes a string of bits and return the first bit
of the bitstring. Note that, both in the ideal specification and in the process
Bob(n) we have used the operator Set0̃[q̃] only for technical reasons. This

94 6. Cryptographic Proofs in qCCS

way, we are able to equate the environments related to the configurations in
which the processes must be placed.

We are now ready to compare the BB84 quantum bit commitment in a test
environment, QBC84test(n), with our ideal specification, QBC84spec(n), using
the notion of distributed-based bisimulation.

Proposition 6.1.1. Given a density operator ρ, it holds that:

〈QBC84test(n), ρ〉 ≈ 〈QBC84spec(n), ρ〉

Figure 6.1: pLTS representing QBC84test(1)

Proof. The proof is very tedious, to simplify it we first analyze a simpli-
fied version in which the security parameter n is fixed to 1, and then we
use the same concepts for the analysis of the protocol for every n. Fig-
ure 6.1 represents the pLTSs of QBC84test(1) and Figure 6.2 represents the
pLTSs of QBC84spec(1), together with a quantum state ρ ∈ D(H) where
B = 〈QBC84test(1), ρ〉 and C = 〈QBC84spec(1), ρ〉. In the figure, the sub-
script of the B-configurations denotes the choices for ba and K̃a, while the
superscript denotes the choices for B̃b and K̃b. The proof of distribution-
based bisimilarity is given, starting from the bottom, as follows:

6.1 BB84 Quantum Bit Commitment 95

Figure 6.2: pLTS representing QBC84spec(1)

1. B′ and C ′ are clearly bisimilar as they are both dead, with qv = 0 and
the accompanied quantum stares are |0〉q̃〈0| ⊗ trqρ.

2. For every i ∈ {0, 1}, the configurations B0,i
0,i , B

1,i
1,i and C ′i are bisimilar,

as they all have qv = 0, and the only visible action that they can
perform is bit!i, through which they become B′ and C ′.

3. Almost the same as in case (2), all the configuration in {Bk,h
i,j | i, j, k, h ∈

0, 1, i 6= k} are bisimilar to C ′ε.

4. For every i ∈ {0, 1}, the configurations B0
0,i, B1

1i and Ci are bisimilar,
as they all have qv = q̃ and the only action they can perform is τ ,
through which they become a configuration in (2).

5. As in (4), all the configuration in {Bk
i,j | i, j, k ∈ 0, 1, i 6= k} are bisimilar

to Cε.

6. B0,0, B0,1 are bisimilar to (1
2
C0 + 1

2
Cε), as the all have qv = q̃ and they

can perform action τ through which become a distribution of (4) or (5)
with half probability for each one.

7. B1,0, B1,1 are bisimilar to (1
2
C1 + 1

2
Cε) as in (6)

96 6. Cryptographic Proofs in qCCS

Figure 6.3: QBC84spec(n)

8. Lastly, B is bisimilar to C as B τ−→
∑1

i,j=0
1
4
Bi,j while C

τ−→ 1
4
C0 + 1

2
Cε+

1
4
C1, and from (6) and (7), the resulting distributions are bisimilar.

For QBC84test(n) and QBC84spec(n), the proof is a little longer and more
convoluted, but it follows the same methodology used in the previous case.

Figure 6.3 represents the pLTS of QBC84spec(n), together with a quantum
state ρ ∈ D(H), where C = 〈QBC84spec(n), ρ〉. Note that the only case in
which the channel bit receives the empty string ε is when every bit of B̃b is
different from ba, and this happens 1

2n
of the times.

For QBC84test(n), the analysis needs to be done by parts because the full
graph representing it is too large to be shown. Figures 6.4, 6.5, 6.6, 6.7,
represents the parts of the pLTS of QBC84test(n), together with the same
quantum state ρ, where B = 〈QBC84test(n), ρ〉. Exactly as in the case with
n = 1, the subscripts separated by the comma for theB-configurations denote
the choices of ba, K̃a, while the superscripts denote B̃b, K̃b. In particular:

• Figure 6.4 represents the initial part of the graph. As n increases, the
number of the possible equiprobable states grows exponentially.

6.1 BB84 Quantum Bit Commitment 97

Figure 6.4: QBC84test(n)(1)

• Figure 6.5 represents the next part of the process, for the single state
B0,0n , and depicts the choice of Bob’s string of bases. Also in this case,
the number of possible equiprobable states grows exponentially with n.

Figure 6.5: QBC84test(n)(2)

• Figure 6.6 proceeds to the next part, taking into consideration the case
in which at least one of the bases in the string chosen match with Alice’s
basis – in this case all of them – and this happens with probability
p = 1− 1

2n
.

98 6. Cryptographic Proofs in qCCS

Figure 6.6: QBC84test(n)(3)

• Lastly, Figure 6.7 shows the case in which every single bit of Bob’s
bitstring representing the bases does not match Alice’s. In this case,
the measurement returns a completely random string and the protocol
returns the empty string.

Figure 6.7: QBC84test(n)(4)

The proof of distribution-based bisimilarity betweenQBC84test(n) andQBC84spec(n)

is given, as always starting from the bottom:

1. Like before, B′ and C ′ are bisimilar as they are both dead, they are
both closed and the accompanied quantum states are |0〉q̃〈0| ⊗ trqρ.

6.1 BB84 Quantum Bit Commitment 99

2. For every i ∈ {0, 1}, j̃, k̃, h̃ ∈ {0, 1}n, the configurations Bk̃,h̃

i,j̃
with at

least a bit of k̃ matching i are bisimilar to C ′i

3. As in (2), all the configurations in {Bk̃,h̃

i,j̃
| i ∈ {0, 1}, j̃, k̃, h̃ ∈ {0, 1}n, i 6=

k̃} are bisimilar to C ′ε. Note that with i 6= k̃ we mean that every bit of
k̃ is different from i.

4. For every i ∈ {0, 1}, j̃, k̃ ∈ {0, 1}n, the configurations Bk̃
i,j̃

with at least
a bit of k̃ matching with i are bisimilar to Ci as they all have qv = q̃

and the only action they can perform is τ , through which they become
a configuration in (2).

5. As in (4), all the configurations in {Bk̃
i,j̃
| i ∈ {0, 1}, j̃, k̃ ∈ {0, 1}n, i 6= k̃}

are bisimilar to Cε.

6. For every j̃, the configurations B0,j̃ with j̃ ∈ {0, 1}n are bisimilar to
1
2n
Cε + (1− 1

2n
C0) as they all have qv = q̃ and they can perform action

τ through which become a distribution of (4) or (5) with the respective
probability.

7. As in (6), For every j̃, the configurations B1,j̃ with j̃ ∈ {0, 1}n are
bisimilar to 1

2n
Cε + (1− 1

2n
C1)

8. Lastly B is bisimilar to C as B τ−→
∑n

i=0

∑1n

j̃=0n
1

2n+1Bi,j̃, while C
τ−→

1
2n
Cε + 1

2
(1− 1

2n
)C0 + 1

2
(1− 1

2n
)C1, and from (6) and (7), the resulting

distributions are bisimilar.

6.1.2 Security Against a Passive Attacker

At the end of Section 2.3, we mentioned the fact the variable deriving from
the possession or non-possession of a quantum computer by Alice leads to the
definition of two different types of intruders. In this subsection we investigate
the notion of security considering the case in which Alice does not have a
quantum computer, and we call her a passive attacker. Note that in this case

100 6. Cryptographic Proofs in qCCS

we need to prove that the protocol is secure against Alice. As already said,
Alice here becomes the intruder and her job is simply trying to commit the
dual value of the real bit commitment. It is also important to note that in
this part we add the privacy amplification phase. The modified protocol is
the following:

Alice(n)′ :=
∑

ba∈{0,1}

∑
K̃a∈{0,1}n

1

2n+1
SetK̃a

[q̃].Hba [q̃].A2B!q̃.UnveilA
′(ba, K̃a)

UnveilA
′(ba, K̃a) := b2a?u.a2b!(¬ba, K̃a).nil

Bob(n) := A2B?q̃.
∑

B̃b∈{0,1}n

1

2n
MB̃b

[q̃; K̃b]. Set0̃[q̃].b2a!1.UnveilB(B̃b, K̃b)

UnveilB(B̃b, K̃b) := a2b?(ba, K̃a).out!(cmp(K̃a, ba, B̃b), cmp(K̃b, ba, B̃b), ba).nil

Bob ′(n) := (Bob(n)‖out?(K̃ ′a, K̃
′
b, ba).(if len(K̃ ′a = K̃ ′b ≥ n/2)

then outb!(K̃
′
a, K̃

′
b, ba).nil)

QBC84 ′(n) := (Alice(n)′‖Bob ′(n))

(6.4)

Note that there are few changes, indeed, the modified UnveilA
′ simply sends

the dual of ba, modeling the fact that the opponent tries to cheat by changing
the value of the commitment in the middle of the protocol execution. The
modified process impersonating Bob, called Bob ′(n), instead, adds the miss-
ing parts of the protocol, related to the privacy amplification phase. Note
that these changes do not invalidate our distribution-based bisimulation proof
of Proposition 6.1.1, because the most significant change is represented by
process Bob ′(n) and the added if-then statement, that is modeled as a τ -
action and does not lead to any inconsistency in the distributions.

Again, the protocol is put in a test environment. This time, the environment
must contain a way to detect Alice’s cheating because our intent is not to
evaluate the similarity of the protocol with its specification, but to evaluate
its security aspects. The test environment is the following:

6.1 BB84 Quantum Bit Commitment 101

Test ′ := outb?(K̃a, K̃b, ba).(if K̃a = K̃b then hacked!0.nil)

QBC84test
′(n) := (QBC84 ′(n)‖Test ′)\ {a2b, b2a,A2B, out, outb}

(6.5)

Here, if K̃a and K̃b coincide, it means that Bob would consider the commit-
ment of the dual value as valid and then the protocol would be compromised.
To investigate the security degree of the protocol we prove the following
proposition:

Proposition 6.1.2. Given a density operator ρ, it holds that:

〈QBC84test ′(n), ρ〉
cn

≈ 〈Set0̃[q̃].nil, ρ〉

Proof. Let suppose that B = 〈QBC84test ′(n), ρ〉 and C = 〈Set0̃[q̃].nil, ρ〉. For
the proof of B

cn

≈ C, we only need to compute the probability of B performing
hacked!0, because this is the only visible action that B can do which con-
tributes to a possible transition inconsistency of distributions obtained from
C. If the total probability of their appearance is upper bounded by cn with
c = 1

2
, then B

cn

≈ C. Analyzing the protocol, for each qubit sent by the evil
Alice, Bob chooses the wrong basis with probability 1

2
, making half of the

bases incorrect on average. For each of the wrong bases, the probability of
measuring the same string that Alice want to encode is exactly 1

2
. Therefore,

the total probability of B performing hacked!0 is p = 1
2

n
2 .

As the process Set0̃[q̃].nil never perform hacked!0, this indicates the insecu-
rity degree of QBC84 (n) to be at most cn, which decreases exponentially to
0 when n→∞.

6.1.3 Security Against an Active Attacker

In this case instead, we analyze the case in which Alice has a quantum com-
puter. This setting includes an active version of the attacker, impersonated
by Alice, who wants to cheat on Bob using the EPR-paradox described in

102 6. Cryptographic Proofs in qCCS

Chapter 2. Given that the attack modifies in an important way the behavior
of Alice, we prefer to modify the whole protocol and start again from the
correctness test, analyzing first if the protocol follows its specification and
then evaluating its security properties.

The modified protocol is the following:

Alice ′′(n) :=
∑

ba∈{0,1}

∑
K̃a∈{0,1}n

1

2n+1
SetK̃a

[q̃]. SetK̃a
[r̃].Hba [q̃].Cnot[q̃, r̃].

.A2B!q̃.UnveilA
′′(ba, K̃a)

UnveilA
′′(ba, K̃a) := b2a?u.Mba [r̃; K̃ ′a]. Set0̃[r̃].a2b!(ba, K̃

′
a).nil

Bob ′′(n) := A2B?q̃.
∑

B̃b∈{0,1}n

1

2n
MB̃b

[q̃; K̃b].b2a!1.UnveilB
′(B̃b, K̃b)

UnveilB
′(B̃b, K̃b) := a2b?(ba, K̃a). Set0̃[q̃].

.out!(cmp(K̃a, ba, B̃b), cmp(K̃b, ba, B̃b), ba).nil

QBC84 ′′(n) := Alice ′′(n)‖Bob ′′(n)

(6.6)

Note that in this design choice we model the exact attack described by Bennet
and Brassard, but for the moment Alice remains honest. In Alice ′′(n) we have
added a Set operator that prepares another string of qubits r̃ in the same
way as q̃. After the application of the Hadamard gate, a CNot gate is applied
to [q̃, r̃]. The meaning of the operation is to create a series of entangled pairs
of qubits by applying the CNot gate to every pair |q〉i , |r〉i.

Thus, we follow the steps of Section 6.1.1 and we put QBC84 ′′(n) in the
same test environment:

Test ′′ := out?(K̃a, K̃b, ba).(if K̃a = K̃b then bit!ba.nil else fail !0.nil)

QBC84test
′′(n) := (QBC84 ′′(n)‖Test ′′)\ {a2b, b2a,A2B, out}

(6.7)

6.1 BB84 Quantum Bit Commitment 103

The ideal specification of the protocol here changes slightly because we must
consider that the second string of qubits changes the environment of the
processes.

QBC84spec
′(n) :=

n∑
i=0

∑
x̃∈{0,1}i

(
n
i

)
2n+i

Set0̃[q̃]. Set0̃[r̃].bit! first(x̃).nil (6.8)

We are now ready to compare this modified version of BB84 quantum bit
commitment in a test environment with this new ideal specification using, as
usual, the notion of distributed-based bisimulation.

Proposition 6.1.3. Given a density operator ρ, it holds that:

〈QBC84test ′′(n), ρ〉 ≈ 〈QBC84′spec(n), ρ〉

Proof. The proof follows from the proof of Proposition 6.1.1: no new visible
action has been added, and the operation Set0̃[r̃] added in the new specifi-
cation balances the new string of qubits introduced for the EPR attack in
Alice ′′.

To analyze the security propriety related to this particular setting, we remark
that the BB84 quantum bit commitment protocol is unsafe if the attacker
has quantum memory and uses the EPR-paradox to build some EPR-pairs.
For this reason, our goal here is to prove that the bisimilarity relation found
in the passive attacker case turns out to be impossible in this setting.

Let us define the last modification of the BB84 quantum bit commitment
scheme, adding the privacy amplification phase and modifying Alice’s un-
veiling process to make her cheat:

104 6. Cryptographic Proofs in qCCS

Alice ′′′(n) :=
∑

ba∈{0,1}

∑
K̃a∈{0,1}n

1

2n+1
SetK̃a

[q̃]. SetK̃a
[r̃].Hba [q̃].Cnot[q̃, r̃].

.A2B!q̃.UnveilA
′′′(ba, K̃a)

UnveilA
′′′(ba, K̃a) := b2a?u.M¬ba [r̃; K̃ ′a]. Set0̃[r̃].a2b!(¬ba, K̃ ′a).nil

Bob ′′(n) := A2B?q̃.
∑

B̃b∈{0,1}n

1

2n
MB̃b

[q̃; K̃b].b2a!1.UnveilB
′(B̃b, K̃b)

UnveilB
′(B̃b, K̃b) := a2b?(ba, K̃a). Set0̃[q̃].

.out!(cmp(K̃a, ba, B̃b), cmp(K̃b, ba, B̃b), ba).nil

Bob ′′′(n) := (Bob ′′(n)‖out?(K̃ ′a, K̃
′
b, ba).(if len(K̃ ′a = K̃ ′b ≥ n/2)

then outb!(K̃
′
a, K̃

′
b, ba).nil)

QBC84 ′′′(n) := (Alice ′′′(n)‖Bob ′′′(n))

(6.9)

Then, we put QBC84 ′′′(n) under test, using the same test environment of
Section 6.1.2.

Test ′′′ := outb?(K̃a, K̃b, ba). (if K̃a = K̃b then hacked!0.nil)

QBC84test
′′′(n) := (QBC84 ′′′(n)‖Test ′′′)\ {a2b, b2a,A2B, out, outb}

(6.10)

Then, to prove the protocol is unsecure in this setting, we need to prove the
following proposition:

Proposition 6.1.4. Given a density operator ρ, it holds that:

〈QBC84test ′′′(n), ρ〉
cn

6≈ 〈Set0̃[q̃]. Set0̃[r̃].nil, ρ〉

Proof. To prove this proposition for every cn, we need to find a distribution
that is inconsistent between the two. Let then supposeB = 〈QBC84test ′′′(n), ρ〉
and C = 〈Set0̃[q̃]. Set0̃[r̃].nil, ρ〉. As in the proof of Proposition 6.1.1, we need
to compute the probability of B performing hacked!0, because C does not

6.2 Kent Relativistic Bit Commitment 105

contain any visible action. By the EPR-paradox, when Bob performs the
measurement of q̃, it modifies r̃ such that Alice can use it to perform a new
measurement that returns a bistring consistent with the new value of the
commitment and also consistent with the result of Bob’s bitstring with prob-
ability pwin = 1. Then B and C are not approximately bisimilar for any n and
the resulting protocol is not secure under the active attacker assumption.

6.2 Kent Relativistic Bit Commitment

For the analysis of the Kent relativistic bit commitment protocol, we will
follow step by step Section 6.1. In fact, we model the protocol as a concurrent
execution of quantum processes, which in this case model the activity of Alice
and Bob, together with their respective agents. In the first part we design a
light version of the protocol, in which we do not consider Bob’s consistency
check. This first version is then put in a classical test environment to check
if there exists a bisimilarity relation with its ideal specification. Lastly, we
analyze the security of the protocol under two different assumptions: in the
former the adversary is designed as a passive attacker, in the latter instead
we give more power to the adversary by modeling them as an active attacker.

6.2.1 Correctness

Being already familiar with qCCS, we can directly describe the Kent rela-
tivistic bit commitment protocol as a process, KENT12 (n), that returns the
two bitstrings obtained by Bob’s agents. Note also that this model underlies
the first step of agreement between the parties. The protocol design is the
following:

106 6. Cryptographic Proofs in qCCS

Bob(n) :=
∑

K̃b,B̃b∈{0,1}n

1

22n
SetK̃b

[q̃].Hba [q̃].B2A!q̃.out!(K̃b, B̃b).nil

Alice(n) := B2A?q̃.
∑

ba∈{0,1}

1

2
Mba [q̃; K̃a]. Set0̃[q̃].

.a2a1!(K̃a, ba).a2a2!(K̃a, ba).nil

Alice1 := a2a1?(K̃a1 , ba1).a12b1!(K̃a1 , ba1).nil

Alice2 := a2a2?(K̃a2 , ba2).a22b2!(K̃a2 , ba2).nil

Bob1 := a12b1?(K̃a1 , ba1).out!(K̃a1 , ba1).nil

Bob2 := a22b2?(K̃a2 , ba2).out!(K̃a2 , ba2).nil

KENT12 (n) := Bob(n)‖Alice(n)‖Alice1‖Alice2‖Bob1‖Bob2
(6.11)

Firstly, note that the protocol design is particularly simple because with
qCCS we can abstract away the relativistic part by the syntax. Differently
from the BB84 quantum bit commitment scheme, here it is Bob that starts
the protocol by randomly generating the two bitstrings which he needs to
prepare the qubit string. This double random generation leads to a much
larger number of distributions, as can be seen by the probability parameter
1

22n
. Note also that we have added the commitment value ba in the classical

communication channel from Alice’s agents to Bob’s agents. This has no
effect on the security properties of the protocol and does not add any con-
straints, as demonstrated in [33], but it will help us in the following proofs.

To show the correctness of the protocol we put it in a new test environment,
and we modify the syntax introducing the following syntax sugar:

switch x case y : P1 case z : P2 ... otherwise : Pn,

that correspond to:

if b1 then P1 else if b2 then P2 ... else Pn,

6.2 Kent Relativistic Bit Commitment 107

with x, y, z ∈ Real, b1 = (x = y), b2 = (x = z) ∈ Bool and P1, P2, Pn ∈
qProc.

Thus, the test environment is the following:

Test := out?(K̃b, B̃b, K̃a1 , K̃a2 , ba1 , ba2).(if K̃a1 = K̃a2 then

(if ba1 = ba2 then (switch cons
(
ba1 , K̃a1 , K̃b, B̃b

)
case 0 : bit!0.nil

case 1 : bit!1.nil

case ε : bit!ε.nil

otherwise: fail !0.nil)

else fail !0.nil) else fail !0.nil)

KENT12test(n) := (KENT12 (n) ‖Test)\ {B2A, a2a1, a2a2, a12b1, a22b2, out}
(6.12)

The function cons(x, ỹ, z̃, w̃) checks the consistency of the value x̃, represent-
ing the basis, and the string ỹ, with respect to the string z̃, using the string
w̃ as bases, and returns the value obtained by the consistency check. If the
check fails because the string is entirely different from the committed value,
it returns the empty string. Instead, if the check fails because x is incon-
sistent with the other values, it returns an error value, which falls into the
otherwise case into the switch operator.

Having this we can proceed using the same ideal specification of Section 6.1:

KENT12spec(n) :=
n∑
i=0

∑
x̃∈{0,1}i

(
n
i

)
2n+i

Set0̃[q̃].bit! first(x̃).nil (6.13)

With first(x̃) to be a function that takes a string of bits and returns its first
bit.

We compareKENT12test(n) andKENT12spec(n) using the notion of distributed-
based bisimulation.

108 6. Cryptographic Proofs in qCCS

Proposition 6.2.1. Given a density operator ρ, it holds that:

〈KENT12test(n), ρ〉 ≈ 〈KENT12spec(n), ρ〉

Proof. As in Proposition 6.1.1, to simplify the proof, we start our analysis
using n = 1. Note that the pLTS representing KENT12spec(1) is very similar
to the one that represent QBC84spec(1), because of the formalization of the
two processes. The only visible difference is given by the inversion of roles
concerning the act of sending q̃, as can be viewed in Figure 6.8. Furthermore,
the pLTS representing KENT12test(1) is equal to the pLTS of QBC84test(1)

because the formalization of the specification is the same.

Figure 6.8: pLTS of KENT12spec(1)

Remember that the superscripts of the B-configurations denote Bob’s choices
of B̃b and K̃b, while the subscripts denote Alice’s choices of ba and the ob-
tained measurement K̃a. Then we can follow the same steps of the proof of
Proposition 6.1.1:

1. B′ and C ′ are clearly bisimilar because they are both dead, with qv = 0

and the accompanied quantum stares are |0〉q̃〈0| ⊗ trqρ.

6.2 Kent Relativistic Bit Commitment 109

2. For every i ∈ {0, 1}, the configurations B0,i
0,i , B

1,i
1,i and C ′i are bisimilar,

as they all have qv = 0, and the only visible action that they can
perform is bit!i, through which they become B′ and C ′.

3. Almost the same as in point (2), all the configuration in {Bi,j
k,h | i, j, k, h ∈

0, 1, i 6= k} are bisimilar to C ′ε.

4. For every i ∈ {0, 1}, the configurations B0,i
0 , B1i

1 and Ci are bisimilar,
as they all have qv = q̃ and the only action they can perform is τ ,
through which they become a configuration in (2).

5. As in (4), all the configurations in {Bi,j
k | i, j, k ∈ 0, 1, i 6= k} are bisim-

ilar to Cε.

6. B0,0, B0,1 are bisimilar to (1
2
C0 + 1

2
Cε), as they all have qv = q̃ and they

can perform action τ , through which become a distribution of (4) or
(5) with half probability for each one.

7. B1,0, B1,1 are bisimilar to (1
2
C1 + 1

2
Cε), as in (6)

8. In the end, B is bisimilar to C as B τ−→
∑1

i,j=0
1
4
Bi,j while C

τ−→
1
4
C0 + 1

2
Cε + 1

4
C1, and from (6) and (7), the resulting distributions

are bisimilar.

Instead, when we move to the proof of bisimilarity between KENT12test(n)

and KENT12spec(n), things differ sightly from the QBC84test(n) proof. This
happens because of the change of the number of possible distributions, given
by the choice of K̃b and B̃b by Bob. However, even in this case we do an
analysis by parts, given the exponential number of states resulting from the
increase in the number of distributions. Then:

• Figure 6.9 represents the initial part of the graph. As n increases, the
number of the possible equiprobable states grows exponentially due to
the two random bitstrings.

110 6. Cryptographic Proofs in qCCS

Figure 6.9: KENT12test(n)(1)

• Figure 6.10 represents the following part of the pLTS, focusing on the
individual state B0n,0n . This part depicts the choice of the Alice’s
commitment ba.

Figure 6.10: KENT12test(n)(2)

• Figure 6.11 represents the next part, considering the case in which
Alice’s commitment matches with at least one basis in the bitstring of
bases chosen by Bob. Remember that this happens with probability
p = 1− 1

2n
.

6.2 Kent Relativistic Bit Commitment 111

Figure 6.11: KENT12test(n)(3)

• Lastly, Figure 6.12 shows the case in which Alice’s commitment does
not match with any single bit of the Bob’s bitstring representing the
bases. In this case, the measurement returns a completely random
bitstring and the protocol returns the empty string because Bob cannot
check the consistency of Alice’s measurement bistring.

Figure 6.12: KENT12test(n)(4)

Given that KENT12spec(n) follows exactly Figure 6.3, we can proceed to the
proof, starting from the bottom:

1. As above, B′ and C ′ are bisimilar as they are both dead, they are both

112 6. Cryptographic Proofs in qCCS

closed and the accompanied quantum stares are |0〉q̃〈0| ⊗ trqρ.

2. For every k ∈ {0, 1}, ĩ, j̃, h̃ ∈ {0, 1}n, the configurations B ĩ,j̃

k,h̃
with at

least a bit of ĩ matching k are bisimilar to C ′k

3. As in (2), all the configurations in {B ĩ,j̃

k,h̃
| k ∈ {0, 1}, ĩ, j̃, h̃ ∈ {0, 1}n, k 6=

ĩ} are bisimilar to C ′ε.

4. For every k ∈ {0, 1}, ĩ, j̃ ∈ {0, 1}n, the configurations B ĩ,j̃
k with at with

at least a bit of ĩ matching with k are also bisimilar to Ck as they all
have qv = q̃ and the only action they can perform is τ , through which
they become a configuration in (2).

5. As in (4), all the configurations in {B ĩ,j̃
k | k ∈ {0, 1}, ĩ, j̃ ∈ {0, 1}n, ĩ 6=

k} are bisimilar to Cε.

6. For every ĩ and j̃ ∈ {0, 1}n, the distributions B ĩ,j̃ are bisimilar to
1
2n
Cε + 1

2
(1 − 1

2n
)C0 + 1

2
(1 − 1

2n
)C1 as they all have qv = q̃ and they

can perform action τ through which become a distribution of (4) or (5)
with the respective probability.

7. Lastly B is bisimilar to C as B τ−→
∑n

i=0

∑1n

j̃=0n
1

22n
B ĩ,j̃, while C τ−→

1
2n
Cε+

1
2
(1− 1

2n
)C0+ 1

2
(1− 1

2n
)C1, and from (6) the resulting distributions

are bisimilar.

6.2.2 Security against Passive Attacker

As in the previous section, we want to build progressively stronger intruders.
We start with an investigation of the notion of security of the Kent relativis-
tic bit commitment protocol, considering the case in which Alice is a passive
attacker. As we know, Kent’s protocol is conjectured to be unconditionally
secure, so we need to prove this using the approximate bisimulation tech-
nique. Note that here, like in Section 6.1.2, the only changes to Kent’s pro-
cesses derive from Alice’s attempt to commit the opposite value with respect

6.2 Kent Relativistic Bit Commitment 113

to that used for the measurement. The modified protocol is the following:

Bob(n) :=
∑

K̃b,B̃b∈{0,1}n

1

22n
SetK̃b

[q̃].Hba [q̃].B2A!q̃.out!(K̃b, B̃b).nil

Alice ′(n) := B2A?q̃.
∑

ba∈{0,1}

1

2
Mba [q̃; K̃a]. Set0̃[q̃].

.a2a1!(K̃a,¬ba).a2a2!(K̃a,¬ba).nil

Alice1 := a2a1?(K̃a1 , ba1).a12b1!(K̃a1 , ba1).nil

Alice2 := a2a2?(K̃a2 , ba2).a22b2!(K̃a2 , ba2).nil

Bob1 := a12b1?(K̃a1 , ba1).out!(K̃a1 , ba1).nil

Bob2 := a22b2?(K̃a2 , ba2).out!(K̃a2 , ba2).nil

KENT12 (n)′ := Bob(n)‖Alice ′(n)‖Alice1‖Alice2‖Bob1‖Bob2
(6.14)

Then we can put the protocol into a test environment:

Test ′ := out?(K̃b, B̃b, K̃a1 , K̃a2ba1 , ba2).(if K̃a1 = K̃b2 then

(if ba1 = ba2 then (switch cons(ba1 , K̃a1 , K̃b, B̃b)

case 0 : hacked!0.nil

case 1 : hacked!0.nil

otherwise: nil)))

KENT12 ′test(n) := (KENT12 ′(n) ‖Test ′)\ {B2A, a2a1, a2a2, a12b1, a22b2, out}
(6.15)

Thus, given the test environment, we use the following proposition to show
the security degree of KENT12test

′(n).

Proposition 6.2.2. Given a density operator ρ, it holds that:

〈KENT12test
′(n), ρ〉

cn

≈ 〈Set0̃[q̃].nil, ρ〉

114 6. Cryptographic Proofs in qCCS

Proof. Also in this case, the proof follows directly from 6.1.2. Supposing
B = 〈KENT12test

′′(n), ρ〉 and C = 〈Set0̃[q̃].nil, ρ〉, we need to compute the
probability of B performing hacked!0. Analyzing this modified protocol, the
probability of Alice’s victory, resulting in hacked!0 in the test environment,
depends solely on the probability with which the bits obtained by the qubit
measured with a wrong basis are consistent with respect to Bob’s correspond-
ing bit. We know that a measurement performed with the wrong basis has an
equal probability of returning 0 or 1. Then, given that Bob’s bases are cho-
sen randomly, on average the probability of Alice’s victory is phacked!0 = 1

2

n/2.

Therefore B
1
2

n/2

≈ C.

6.2.3 Security against Active Attacker

Thanks to [11], in this case we can analyze the environment in which the
intruder, Alice, can perform every strategy based on classical computation
she wants. We start by modifying the protocol:

Bob(n) :=
∑

K̃b,B̃b∈{0,1}n

1

22n
SetK̃b

[q̃].Hba [q̃].B2A!q̃.out!(K̃b, B̃b).nil

Alice ′′(n) := B2A?q̃.
∑

ba∈{0,1}

1

2
Mba [q̃; K̃a]. Set0̃[q̃].

.a2a1!strat1(K̃a,¬ba).a2a2!strat2(K̃a,¬ba).nil

Alice1 := a2a1?(K̃a1 , ba1).a12b1!(K̃a1 , ba1).nil

Alice1 := a2a2?(K̃a2 , ba2).a22b2!(K̃a2 , ba2).nil

Bob1 := a12b1?(K̃a1 , ba1).out!(K̃a1 , ba1).nil

Bob2 := a22b2?(K̃a2 , ba2).out!(K̃a2 , ba2).nil

KENT12 (n)′′ := Bob(n)‖Alice ′′(n)‖Alice1‖Alice2‖Bob1‖Bob2
(6.16)

Alice, in this case, after having measured the strings of qubits with the com-
mitment value, attempts to cheat using two ideal strategies represented by

6.2 Kent Relativistic Bit Commitment 115

the two functions strat1 and strat2, which take as input the string resulting
from the measurement operation and the dual of the value of the commit-
ment, trying to return a string of bits consistent with the latter. Note that
strat1 and strat2 can represent every strategy based on classical computation.

As usual, we put KENT12 ′′(n) in the same test environment of the previous
section.

Test ′ := out?(K̃b, B̃b, K̃a1 , K̃a2ba1 , ba2).(if K̃a1 = K̃b2 then

(if ba1 = ba2 then (switch cons(ba1 , K̃a1 , K̃b, B̃b)

case 0 : hacked!0.nil

case 1 : hacked!0.nil

otherwise: nil)))

KENT12 ′′test(n) := (KENT12 ′′(n) ‖Test ′)\ {B2A, a2a1, a2a2, a12b1, a22b2, out}
(6.17)

As in Proposition 6.1.2, to show the security degree of KENT12 ′′test(n) it
suffices to prove the following property:

Proposition 6.2.3. Given a density operator ρ, it holds that:

〈KENT12test
′′(n), ρ〉

cn

≈ 〈Set0̃[q̃].nil, ρ〉

Proof. The proof here follows the security proofs in Section 2.4.1. Let us
suppose B = 〈KENT12test

′′(n), ρ〉 and C = 〈Set0̃[q̃].nil, ρ〉, thanks to Lemma
2.4.3 we know that for a single qubit, the probability of Alice winning is
p ≤ 1

2
(1 + 1√

2
), and thanks to Lemma 2.4.1 and Theorem 2.4.5 we know that

the probability of Alice winning for n qubits is pn ≤ (1
2
(1 + 1√

2
))n. Then,

assuming that the strategy ST = {strat1, strat2} is optimal, pn(ST) = (1
2
(1+

1√
2
))n. Remembering that the only case in which there is an inconsistency of

transitions between B and C concerns the transition hacked!0, and that this
transition occurs only when Alice wins, given that there are not modifications
on env(B) or env(C) with respect to Proposition 6.2.2, B

cn

≈ C with c =
1
2
(1 + 1√

2
).

Conclusions

The first part of this thesis has been used to introduce all the topics needed
for the comprehension of our research work. We started by giving a brief
introduction to quantum computing, presenting the physical principles that
acts on qubits together with some famous quantum gates and algorithms.
We consequently presented quantum cryptography, laying the foundations of
perfect secrecy and introducing the two examined protocols: the BB84 quan-
tum bit commitment and Kent’s relativistic bit commitment protocol. Sub-
sequently, we presented CCS and various notions of behavioral equivalence
used in the literature to compare different systems, immediately followed by
the notion of bisimulation, declined in several ways, up to its probabilis-
tic version. Afterwards, we presented a quantum extension of CCS, called
qCCS, with its syntax and its operational semantics. Relatively to qCCS, we
presented the notions of state-based bisimulation, distribution-based bisim-
ulation and approximate bisimulation, giving examples using qCCS. Lastly,
we presented the core of our research work, some cryptographic proofs of the
aforementioned protocols, using qCCS and the notions of distributed-based
bisimulation and approximate bisimulation.

For each of the two protocols, we followed the same pattern:

• Firstly, we analyzed only the correctness of the desired protocols, by
initially describing a simpler version of them and putting it in a test
environment. This environment was then compared with an ideal spec-
ification of the protocol itself, using the notion of distribution-based

117

118 Conclusions

bisimulation.

• Next, we introduced an intruder, impersonated by Alice and modelled
like a passive attacker, and added the missing parts from the initial
design. Thus, we added the protocol to a modified test environment,
and we used the notion of approximate bisimulation to analyze the
security of the protocol.

• Lastly, we modeled a more powerful intruder, called active attacker,
and added the protocol to a test environment. Finally, we used again
the notion of approximate-bisimulation to analyze the security of the
protocol under this new assumption. Note that we were able to demon-
strate that the equivalence notions used on qCCS can capture both the
case in which a protocol is secure, as in Kent’s protocol, and the case in
which the protocol is not secure, as in BB84 under the active attacker
hypotesis.

To the best of our knowledge, this is the first time that the security of quan-
tum bit commitment protocols has been examined using a quantum process
algebra.

Related and Future Work

With this thesis, we have brought the process algebra approach to bit com-
mitment protocols, including a state-of-the-art relativistic protocol that is
conjectured to be unconditionally secure. Furthermore, we have defined op-
ponents that lead to increasingly powerful security notions. In our opinion,
there are mainly two directions for future work.

First, bisimilarity checking is a long and tedious task, as can be seen in the
proof of propositions 6.1.1 or 6.2.2. This clearly becomes a problem when the
number of parties increases or when more complex protocols are considered.
Given these aspects, a formal framework for the semi-automated verification
of security proofs of quantum cryptographic protocols has been proposed in

Conclusions 119

[30]. In this paper the syntax of qCCS is partially changed, but it is still
the closest proposal to our work, and with some minimal modification the
models that we have presented can be proven in that framework. It is also
important to point out that our approach is not the only direction taken
by the scientific community for the verification of quantum cryptographic
protocols. For example, following the work in [4, 5], in [46] the first quan-
tum relational Hoare Logic (qRHL) is proposed, together with a tool used
for the verification of the security proof of different quantum cryptographic
protocols.

Lastly, in this thesis we have pursued various notion of security which, how-
ever, are weaker than the notion of mutual information between the states
normally used in the security proofs of quantum cryptographic protocols.
Even if we went further than the work started in [17], both defining a more
powerful intruder from a quantum perspective in Section 6.1.3 and using
generic classical (optimal) strategies in Section 6.2.3, these security notions
may not be enough. An interesting direction of research, from our viewpoint,
could be that of defining a new action that represents a generic sequence of
quantum operations bounded in space. This way, we would be able to de-
fine a powerful version of the intruder that is capable of carrying out every
quantum operation (bounded in space) and every classical operation, taking
another step forward and getting closer to the notion of mutual information
between the states. Note that, for us, this is possible given the current use
of the operator Set0, for example in equations 6.1 and 6.6, which is used to
“balance” two environments.

Bibliography

[1] M Ardehali. “Quantum bit commitment based on EPR”. In: Arxiv
preprint quant-ph/9505019 (1995).

[2] László Babai. “Graph isomorphism in quasipolynomial time”. In: Pro-
ceedings of the forty-eighth annual ACM symposium on Theory of Com-
puting. 2016, pp. 684–697.

[3] László Babai and Eugene M Luks. “Canonical labeling of graphs”. In:
Proceedings of the fifteenth annual ACM symposium on Theory of com-
puting. 1983, pp. 171–183.

[4] Gilles Barthe et al. “Probabilistic relational reasoning for differential
privacy”. In: Proceedings of the 39th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. 2012, pp. 97–110.

[5] Gilles Barthe et al. “Probabilistic relational verification for crypto-
graphic implementations”. In: ACM SIGPLAN Notices 49.1 (2014),
pp. 193–205.

[6] Charles H Bennett and Gilles Brassard. Proceedings of the ieee inter-
national conference on computers, systems and signal processing. 1984.

[7] Jan A. Bergstra and Jan Willem Klop. “Algebra of communicating
processes with abstraction”. In: Theoretical computer science 37 (1985),
pp. 77–121.

[8] Paul Bernays. “Alonzo Church. An unsolvable problem of elementary
number theory. American journal of mathematics, vol. 58 (1936), pp.
345–363.” In: The Journal of Symbolic Logic 1.2 (1936), pp. 73–74.

121

122 Conclusions

[9] G Brassard et al. “Proceedings of the 34th Annual IEEE Symposium
on the Foundation of Computer Science”. In: (1993).

[10] Gilles Brassard and Claude Crépeau. “Quantum bit commitment and
coin tossing protocols”. In: Conference on the Theory and Application
of Cryptography. Springer. 1990, pp. 49–61.

[11] Sarah Croke and Adrian Kent. “Security details for bit commitment
by transmitting measurement outcomes”. In: Physical Review A 86.5
(2012), p. 052309.

[12] Yuxin Deng. Semantics of Probabilistic Processes: An Operational Ap-
proach. Springer, 2015.

[13] Yuxin Deng and Yuan Feng. “Open bisimulation for quantum pro-
cesses”. In: IFIP International Conference on Theoretical Computer
Science. Springer. 2012, pp. 119–133.

[14] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. “Measur-
ing the confinement of probabilistic systems”. In: Theoretical Computer
Science 340.1 (2005), pp. 3–56.

[15] Laurent Doyen, Thomas A Henzinger, and Jean-François Raskin. “Equiv-
alence of labeled Markov chains”. In: International journal of founda-
tions of computer science 19.03 (2008), pp. 549–563.

[16] Albert Einstein, Boris Podolsky, and Nathan Rosen. “Can quantum-
mechanical description of physical reality be considered complete?” In:
Physical review 47.10 (1935), p. 777.

[17] Yuan Feng and Mingsheng Ying. “Toward automatic verification of
quantum cryptographic protocols”. In: arXiv preprint arXiv:1507.05278
(2015).

[18] Yuan Feng et al. “Probabilistic bisimulations for quantum processes”.
In: Information and Computation 205.11 (2007), pp. 1608–1639.

[19] Richard P Feynman. “Simulating physics with computers”. In: Feynman
and computation. CRC Press, 2018, pp. 133–153.

BIBLIOGRAPHY 123

[20] Simon J Gay and Rajagopal Nagarajan. “Communicating quantum
processes”. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming languages. 2005, pp. 145–157.

[21] Roberto Gorrieri and Cristian Versari. Introduction to concurrency the-
ory: transition systems and CCS. Springer, 2015.

[22] Werner Heisenberg. “Über den anschaulichen Inhalt der quantenthe-
oretischen Kinematik und Mechanik”. In: Original Scientific Papers
Wissenschaftliche Originalarbeiten. Springer, 1985, pp. 478–504.

[23] Harald Andrés Helfgott, Jitendra Bajpai, and Daniele Dona. “Graph
isomorphisms in quasi-polynomial time”. In: arXiv preprint arXiv:1710.04574
(2017).

[24] Charles Antony Richard Hoare. “Communicating sequential processes”.
In: Communications of the ACM 21.8 (1978), pp. 666–677.

[25] Lane P Hughston, Richard Jozsa, and William K Wootters. “A com-
plete classification of quantum ensembles having a given density ma-
trix”. In: Physics Letters A 183.1 (1993), pp. 14–18.

[26] Philippe Jorrand and Marie Lalire. “Toward a quantum process alge-
bra”. In: Proceedings of the 1st Conference on Computing Frontiers.
2004, pp. 111–119.

[27] Jędrzej Kaniewski et al. “Secure bit commitment from relativistic con-
straints”. In: IEEE Transactions on Information Theory 59.7 (2013),
pp. 4687–4699.

[28] Adrian Kent. “Unconditionally secure bit commitment by transmit-
ting measurement outcomes”. In: Physical review letters 109.13 (2012),
p. 130501.

[29] Takahiro Kubota et al. “Application of a process calculus to secu-
rity proofs of quantum protocols”. In: Proceedings of the International
Conference on Foundations of Computer Science (FCS). The Steering
Committee of The World Congress in Computer Science, Computer . . .
2012, p. 1.

124 Conclusions

[30] Takahiro Kubota et al. “Semi-automated verification of security proofs
of quantum cryptographic protocols”. In: Journal of Symbolic Compu-
tation 73 (2016), pp. 192–220.

[31] Hoi-Kwong Lo and Hoi Fung Chau. “Is quantum bit commitment really
possible?” In: Physical Review Letters 78.17 (1997), p. 3410.

[32] Hoi-Kwong Lo and Hoi Fung Chau. “Why quantum bit commitment
and ideal quantum coin tossing are impossible”. In: Physica D: Nonlin-
ear Phenomena 120.1-2 (1998), pp. 177–187.

[33] Tommaso Lunghi et al. “Experimental bit commitment based on quan-
tum communication and special relativity”. In: Physical review letters
111.18 (2013), p. 180504.

[34] Dominic Mayers. “Unconditional security in quantum cryptography”.
In: Journal of the ACM (JACM) 48.3 (2001), pp. 351–406.

[35] Dominic Mayers. “Unconditionally secure quantum bit commitment is
impossible”. In: Physical review letters 78.17 (1997), p. 3414.

[36] Robin Milner. A calculus of communicating systems. Springer, 1980.
[37] Tadao Murata. “Petri nets: Properties, analysis and applications”. In:

Proceedings of the IEEE 77.4 (1989), pp. 541–580.
[38] Michael A Nielsen and Isaac Chuang. Quantum computation and quan-

tum information. 2002.
[39] D Park. “A new equivalence notion for communicating systems”. In:

Bulletin EATCS 14 (1981), pp. 78–80.
[40] John Preskill. “Quantum computing and the entanglement frontier”.

In: arXiv preprint arXiv:1203.5813 (2012).
[41] Ajith Ramanathan et al. “Probabilistic bisimulation and equivalence

for security analysis of network protocols”. In: International Confer-
ence on Foundations of Software Science and Computation Structures.
Springer. 2004, pp. 468–483.

[42] Davide Sangiorgi. Introduction to bisimulation and coinduction. Cam-
bridge University Press, 2011.

BIBLIOGRAPHY 125

[43] Davide Sangiorgi and Robin Milner. “Techniques of ‘weak bisimulation
up to’”. In: Proc. CONCUR. Vol. 92. Citeseer. 1992, pp. 32–46.

[44] Claude E Shannon. “Communication theory of secrecy systems”. In:
The Bell system technical journal 28.4 (1949), pp. 656–715.

[45] Alan Mathison Turing et al. “On computable numbers, with an appli-
cation to the Entscheidungsproblem”. In: J. of Math 58.345-363 (1936),
p. 5.

[46] Dominique Unruh. “Quantum relational Hoare logic”. In: Proceedings
of the ACM on Programming Languages 3.POPL (2019), pp. 1–31.

[47] William K Wootters and Wojciech H Zurek. “A single quantum cannot
be cloned”. In: Nature 299.5886 (1982), pp. 802–803.

[48] Noson S Yanofsky and Mirco A Mannucci. Quantum computing for
computer scientists. Cambridge University Press, 2008.

[49] Mingsheng Ying et al. “An algebra of quantum processes”. In: ACM
Transactions on Computational Logic (TOCL) 10.3 (2009), pp. 1–36.

Ringraziamenti

Se devo essere sincero, non avrei mai pensato di trovarmi a scrivere dei
ringraziamenti così sentiti per la fine del mio secondo ciclo di studi uni-
versitari, ma durante la stesura di questa tesi e in generale durante tutta il
mio percorso di laurea magistrale, ho affrontato situazioni che mai e poi mai
mi sarei aspettato di affrontare. Questi momenti li ho superati perché ho
anche ricevuto un incredibile sostegno.

Voglio innanzitutto ringraziare il mio relatore di tesi, il Professor Ugo Dal
Lago. La sua esperienza, i suoi consigli e la sua pazienza sono stati fon-
damentali per portare a termine questo lavoro di tesi e di certo saranno di
grandissima importanza nei miei studi futuri. Senza di lei e senza il suo
corso di Crittografia sicuramente i miei studi avrebbero preso una direzione
differente.

Voglio ringraziare il mio correlatore di tesi, il Dottor Andrea Colledan, so-
prattutto per i suggerimenti che mi hanno permesso di migliorare vari punti
di questa tesi e più in generale la mia scrittura scientifica.

Ci tenevo anche a ringraziare tutto il corpo docenti della Laurea Triennale e
Magistrale in Informatica dell’Università di Bologna. Ricorderò voi e tutto
il tempo passato in facoltà come uno dei periodi più belli e stimolanti della
mia vita.

Un enorme ringraziamento va alla mia ragazza Giulia e alla mia famiglia
per l’incredibile supporto e per la loro vicinanza durante questo difficilissimo
periodo storico. Senza di voi non ce l’avrei mai fatta.

Per ultimi, ma non di certo per importanza, voglio ringraziare tutti i miei
amici. Nello specifico il mio migliore amico di sempre Alessandro, la mia
compagnia che ormai è diventata come una seconda famiglia e per finire
gli amici che ho conosciuto casualmente per questioni lavorative e che sono
diventati ormai parte integrante della mia vita.

