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Sommario

Il campo della stima dell’orientamento del volto, o Head Pose Estimation (HPE), é

una popolare ed attiva area di ricerca. Durante gli anni molti approcci sono stati

costantemente sviluppati, portando ad un progressivo aumento dell’accuratezza

delle predizioni; nonostante ció la stima dell’orientamento del volto rimane un

argomento di ricerca aperto, soprattuto in ambienti non vincolati. In questa tesi,

esamineremo la crescente quantitá di dataset disponibili e le metodologie utilizzate

per l’acquisizione delle annotazioni (etichette) relative all’orientamento del volto.

Discuteremo l’evoluzione del campo proponendo una classificazione dei metodi per

Head Pose Estimation e spiegandone i relativi vantaggi e svantaggi, il tutto con un

focus principale sulle recenti tecniche basate sul deep learning. Alla fine del lavoro

viene poi presentato un confronto e una discussione approfonditi delle prestazioni.

La tesi indica anche direzioni promettenti per la ricerca futura sull’argomento.



Abstract

Head pose estimation is an active and popular area of research. Over the

years many approaches have constantly been developed, leading to a progressive

improvement in accuracy; nevertheless, head pose estimation remains an open

research topic, especially in unconstrained environments. In this thesis, we will

review the increasing amount of available datasets and the methodologies used

to acquire ground-truth annotations. We will discuss the evolution of the field

by proposing a classification of head pose estimation methods and by explaining

their advantages and disadvantages, all with a main focus on the recent deep

learning based techniques. An in-depth performance comparison and discussion is

presented at the end of the work. The thesis also states promising directions for

future research on the topic.

Key words : Head pose estimation, Head pose database, Face analysis, Face

alignment, Face landmark detection, Deep learning, Convolutional neural networks
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Chapter 1

Introduction

The capacity to estimate the head pose of another person is a common human

ability that presents a unique challenge for computer vision systems. People have

the ability to quickly and effortlessly interpret the orientation and movement of a

human head, thereby allowing one to infer the intentions of others who are nearby

and to comprehend an important non-verbal form of communication.

Head pose is an important cue in computer vision when using facial information

and has a wide variety of uses in human-computer interaction.

Over the last three decades, methods for head pose estimation have received

increasing attention due to their application in several image analysis tasks. Al-

though many techniques have been developed in the years to address this issue,

head pose estimation remains an open research topic, particularly in unconstrained

environments (due to internal and external conditions and complex imaging feature

face [57]).

In a computer vision context, head pose estimation (HPE) is the process of

inferring the orientation of a human head from digital imagery. Like other facial

vision tasks, an ideal head pose estimator must demonstrate invariance to a variety

of image-changing factors, such as camera distortion, projective geometry, multi-

source non-Lambertian lighting, as well as biological appearance, facial expression,

and the presence of accessories like glasses and hats [55].

1



2 1. Introduction

1.1 Motivation

HPE systems play an important role in the development of different intelligent

environments, so that several computer vision applications rely on a robust HPE

system as a prerequisite: for example, applications of gaze estimation [91], virtu-

al/augmented reality [95], and human-computer interaction [94], strongly benefit

from knowing the exact position of the head in 3D space.

Some application examples are:

� Human Social Behaviour Analysis: People use the orientation of their

heads to convey rich, inter-personal information. For example, there is im-

portant meaning in the movement of the head as a form of gesturing in a

conversation [92] to indicate when to switch roles and begin speaking or to

indicate who is the intended target subject. People nod to indicate that they

understand what is being said, and they use additional gestures to indicate

dissent, confusion, consideration, and agreement [93].

In addition to the information that is implied by deliberate head gestures,

there is much that can be inferred by observing a person’s head. For instance,

quick head movements may be a sign of surprise or alarm, these could also

trigger reflexive responses from other observers [90].

Therefore, HPE can be used in smart rooms to monitor participants in a

meeting and to record their activities, in particular, their attention can be

indirectly related to their head pose [87]. Systems exploiting head pose

estimation to analyse people’s behaviour and human interaction in meetings

and workplaces have been proposed in [88] [89] [145] [145].

There are also studies on systems for automatic pain monitoring that show

how including head pose can improve the performance for both person-

specific and general classifiers [36].

� Driving Safety & Assistance: HPE systems are particularly useful for

assisting drivers by providing contextual alert signals, for example in the

case of pedestrians outside the driver’s field of view [48].
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Moreover, the head pose can give clues about the intention of the pedestrian

e.g. a pedestrian will wait for a stopped automobile driver to look at him

before stepping into a crosswalk (this is an example of pattern recognition),

very important also in the case of autonomous vehicles.

Applications to infer the driver’s pose are very important for safety, as they

can provide insights about distraction, intention, sleepiness, awareness or

detect blind spots of the driver [146], for this reason, in recent years many

datasets that address this specific scenario have been published [32] [33] [35].

Figure 1.1: An example of application to driver assistance. Right: Green box

indicates yaw < ±45° and potential awareness of vehicle. Left: Red box indicates

possible inattention (image from [61]).

� Surveillance and Safety: Head pose estimation in surveillance video im-

ages is an important task in computer vision because it tracks the visual

attention and provides insight on human behavioural intentions [83] [84].

Systems for direct an automated surveillance network have been proposed

in [85] [86].

� Targeted Advertisement: Methods to track visual attention in wandering

people have been proposed in the literature [82]. These systems count people

looking at particular outdoor advertisements (targeted advertisement) and

can determine what a person is looking at if movement is unconstrained.

Systems like these can be used for behaviour analysis and cognitive science

in real-world applications also in indoor environments, such as TV viewers’

behaviour analysis [81].



4 1. Introduction

� Interface Design: By perceiving the human attention when they look at

an interface (e.g. the page of web or software), it is possible to evaluate the

property and significance of the displayed visual elements and further guide

the design or rearrangement of these elements [80].

Therefore, head pose estimation can get used to monitor human social activi-

ties, to observe the behaviour of specific targets, but also to enhance the function of

some face-related tasks, including expression detection, gaze estimation, full-body

pose estimation (as shown in figure 1.2) and identity recognition.

(a) Full-body pose estimation (b) Wollaston’s illusion

Figure 1.2: Example of tasks strongly linked to head pose estimation: (a) Fre-

quently human pose estimators do not estimate sufficient keypoints for accurate

HPE, for this reason integrating specific methods could be beneficial, for example,

in sports broadcasting or by coaching staff to estimate participants fields of views

and situational awareness when analysing plays [61]; (b) Despite the eyes are in

the same position in both face images, the perception is that the two gazes are

differently oriented. Gaze prediction comes from a combination of both eyes and

head pose direction [58].

The intrinsic interaction between head pose and other face parts is also con-

firmed in more recent research. Studies in [96] [97] [98] [99] suggest that the

mutual relationship between face parts can be exploited not only for HPE, but

also for other visual tasks such as gender recognition, race classification, and age

estimation, making head pose estimation a very important and useful task.
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The contributions of the thesis are:

� a complete and updated review of all the available databases for the head

pose estimation task with an exhaustive explanation of different acquisition

methods;

� a categorization and explanation of the different approaches used in the

literature for head pose estimation, with a specific focus on modern deep

learning approaches;

� report and discussion of most existing head pose estimation methods and

their performance on common datasets;

The remainder of the thesis is organized as follows: Chapter 2 contains an

introduction to some common concepts of the machine learning field; Chapter 3

discusses some preliminary concepts of the computer vision field related to facial

analysis; in Chapter 4 existing datasets, acquisition methods, recent and promi-

nent approaches for head pose estimation are reported and discussed; Chapter 5

concludes the thesis summarizing the contribution of the proposed work and high-

lighting potential future directions to explore. Appendix A contains a table with

currently available links to download the presented datasets.

Note: All numerical results reported in the following tables are borrowed from

the original publications.
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Chapter 2

Background on Machine Learning

The last few years have seen an increasing interest of the artificial intelli-

gence community for deep learning techniques. These computational models are

representation-learning methods with multiple levels of representation, obtained

by composing multiple non-linear processing layers that can learn hierarchical rep-

resentations with increasing levels of abstraction. The key aspect of deep learning

is that, differently from conventional feature, these layers of features are not de-

signed by humans, instead they are learned directly from data. Convolutional

neural networks are deep feed-forward neural network architectures that are easy

to train and generalize much better than common neural networks. These architec-

tures have proved to be very effective in many tasks and they are widely adopted

by the computer vision community.

It is assumed that the reader of this thesis has prior knowledge in the field of

machine learning with a focus on deep learning. The apprehension is assumed to

be at least on a level corresponding to a master’s degree in computer science. Due

to this assumption, basic concepts like, but not limited to, loss functions will be

omitted or described on a very high level.

7
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2.1 Neural Networks

Neural networks, also known as artificial neural networks (ANNs), are a subset

of machine learning and are at the heart of deep learning algorithms. Their name

and structure are inspired by the human brain, mimicking the way that biological

neurons signal to one another.

Neural networks are weighted graphs. They consist of an ordered set of layers,

where every layer is a set of nodes. The first layer of the neural network is called

the input layer, the last one is called the output layer, and the layers in between

are called hidden layers. Layers are semantic groups of nodes. Nodes belonging to

one layer are connected to the nodes in the following and/or the previous layers.

These connections are weighted edges, and they are referred to as weights.

Given an input, neural network nodes return outputs, which are real numbers.

The output of a node is calculated by applying a function α (called activation

function) to the weighted sum of outputs of the nodes belonging to the previous

layer. Preceding that, the output of the input layer (o(0)) is equal to the input.

By calculating the layers outputs consecutively we calculate the result returned by

the output layer. This process is called inference. Therefore a Neural Network is

just a mathematical function mapping some set of input values to output values.

The goal is to approximate some function f ∗. These are called networks because

they can be represented by composing together many functions. Indeed, we can

see each layer as a function and these functions are connected in a chain to form

f(x) = fn(fn−1(...f 1(x)...)) , where f 1 is the first layer of the network, f 2 is the

second, and so on [63].

For example, for a classifier, y = f ∗(x) maps an input x to a category y. A neu-

ral network defines a mapping y = f(x, θ) and learns the value of the parameters

θ that result in the best function approximation.

Neural networks can be more complex and this complexity is added by the

addition of more hidden layers. A neural network that is made up of more than

three layers i.e. has one input layer, several hidden layers, and one output layer is

known as a Deep Neural Network. These networks are what support and underpin

the idea and concepts of Deep Learning where the model basically trains itself to
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process and predict from data.

Figure 2.1: An example of Shallow network and Deep network

There are different types of Neural Networks, the main three types that have

demonstrated impressive performance in complex machine learning tasks, such as

image classification or speech recognition, are:

� Feed-Forward NN: also called Multi-Layer Perceptron (MLP), is the most

basic deep neural network, it’s composed of fully connected layers and the

input goes from the left to the right, there are no backward connections (the

network is acyclic).

� Convolutional NN: is the most commonly employed type of deep neural

network in Computer Vision tasks, but can also be used for other types

of input like audio. This is a feed-forward neural network that has one or

multiple convolutional layers. Using this kind of layers the network is able

to capture the high-level representation of the input data, making it able

to solve complex tasks, such as image classification, object detection, face

authentication, etc.

� Recurrent NN: is another class of artificial neural networks designed to

recognize patterns in sequences of data e.g. in text, handwriting, spoken

words, etc. In this kind of network, there are backward connections (the

network is cyclic), the input of a RNN consists of the current input and the
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previous samples. Each neuron owns an internal memory (hidden state) that

keeps the information of the computation from the previous samples.

(a) MLP (b) CNN
(c) RNN

Figure 2.2: Three different types of neural network

2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a specialized kind of feed-forward

neural network for processing data that has a known grid-like topology, such as im-

ages, videos and time-series. The name “convolutional neural network” indicates

that the network employs a specialized kind of linear operation called convolution.

At the most basic level, a convolutional neural network is a multi-layer, hierar-

chical neural network. There are only three peculiarities that distinguish CNNs

from simple feed-forward neural networks: sparse connectivity, weight sharing, and

spatial pooling or sub-sampling layers.

A modern deep convolutional neural network consists of several layers, as shown

in Fig. 2.3. Several stages of convolution, non-linearity are stacked, followed by

more convolutional and fully-connected layers. Intuitively, the low-level convolu-

tional filters, such as those in the first convolutional layers, can provide a low-level

encoding of the input data, mid-level filters compose the previous information to

a higher level of abstraction and by moving to higher layers more and more com-

plicated structures are encoded. In the case of image data, local combinations

of edges forms motifs, motifs assemble into parts and parts compose objects. In

addition to convolutional and fully-connected layers, various optional layers can

be considered such as pooling and normalization layers. The following sections

describe in detail components characterizing a classic CNN.
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Figure 2.3: CNNs base model

2.2.1 Fully Connected Layers

As the name suggests, for two consecutive layers to be fully connected, all the

nodes in layer l(k) must be connected to all the nodes in the following layer l(k+1).

The weight matrix connecting these Fully Connected layers, or Dense Layers,

is defined as w(k) ∈ Rm(k−1)×m(k)
.

Most fully connected layers also include a bias term (b(k) ∈ Rm(k)
) to account

for the constants in the system.

The output of a fully connected layer, o(k) is

o(k) = (o(k−1))Tw(k) + b(k)
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Figure 2.4: An example of two Fully Connected layers, l(k−1) and l(k), connected

by the weight matrix w(k)

2.2.2 Convolutional Layers

Convolutional Layer is the building block of a Convolutional Neural Network.

In the context of a convolutional neural network, a convolution is the simple ap-

plication of a filter to an input that results in an activation. Repeated application

of the same filter to an input results in a map of activations called a feature map,

indicating the locations and strength of a detected feature in an input, such as an

image.

The technique was designed for two-dimensional input, the multiplication is

performed between an array of input data and a two-dimensional array of weights,

called a filter or a convolutional kernel.

The filter is smaller than the input data and the type of multiplication applied

between a filter-sized patch of the input and the filter is a dot product. A dot

product is an element-wise multiplication between the filter-sized patch of the

input and filter, which is then summed, always resulting in a single value. Because
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it results in a single value, the operation is often referred to as the “scalar product”.

Using a filter smaller than the input is intentional as it allows the same filter (set

of weights) to be multiplied by the input array multiple times at different points

on the input. Specifically, the filter is applied systematically to each overlapping

part or filter-sized patch of the input data, left to right, top to bottom.

This systematic application of the same filter across an image is a powerful

idea. If the filter is designed to detect a specific type of feature in the input, then

the application of that filter systematically across the entire input image allows

the filter an opportunity to discover that feature anywhere in the image.

Indeed, pixels that are close together in an image (e.g. adjacent pixels) tend to

be strongly correlated and can represent meaningful features such as edges, while

pixels that are far apart in the image tend to be weakly correlated or uncorrelated.

Therefore, each neuron at layer l(k) is connected via a parametric kernel to

a fixed subset of neurons at layer l(k−1), this subset is called receptive field. The

kernel is convolved over the hole previous layer.

Figure 2.5: An example of a Convolutional Layer

Convolutional Neural Networks do not learn a single filter, in fact, they learn

multiple features in parallel for a given input. A Convolutional Layer simultane-
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ously applies multiple trainable filters to its inputs, this diversity allows special-

ization (detecting multiple features), e.g. not just lines, but the specific lines seen

in specific training data.

Colour images are composed of multiple sub-layers, typically one for each colour

channel, such as red, green, and blue (RGB). Grayscale images have just one

channel, but some images may have much more.

From a data perspective, this means that a single image provided as input to

the model is, in fact, three images.

A filter must always have the same number of channels as the input, often

referred to as filter depth.

Figure 2.6: An example of a Convolutional Filter

The two main advantages of a Convolutional Layer over a Fully Connected

Layer are:

� Parameters sharing: maintain the same feature detector used in one part

of the input data across other sections of the input;

� Sparsity of the connections: each neuron is connected only with its re-

ceptive field;
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(a) (b)

Figure 2.7: Dense vs Sparse connectivity. Input neurons in x that affect the output

h3 have been highlighted. In Dense connectivity (a) all the inputs affect h3. In

Sparse connectivity (b) only three input neurons affect h3, as this is formed by

convolution with a kernel of width 3.

The hyperparameters of Convolutional Layers are: spatial filter size, depth,

stride and padding. Filter size corresponds to the spatial extend (width and height)

of the filters that are convolved with the input image at different spatial locations.

The depth of the output controls the number of filters that connect to the same

region of the input volume. The stride controls the filter shift and determines

the dimension of the resulting activation map, higher stride reduce receptive fields

overlap and reduce spatial dimensions. The padding parameter allows to control

the spatial size of activation maps by extending the input activation map. This is

commonly done by adding zeros at activation map outer edges.

2.2.3 Pooling Layers

Pooling is a way of reducing the dimensionality of a layer, in order to reduce

the computational load, the memory usage and the number of parameters (thereby

limiting the risk of overfitting). Moreover, it also introduces some level of invari-

ance to small translations in the input.

Just like in Convolutional Layers, each neuron in a Pooling Layer is connected

to the outputs of a limited number of neurons in the previous layer, located within
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a small rectangular receptive field. However, a pooling neuron has no weights, all

it does is aggregate the inputs using an aggregation function, such as:

� Max Pooling: takes the maximum value in a channel within the receptive

field;

� Average Pooling: averages the values within the receptive field per chan-

nel;

Figure 2.8: An example of the results for Max Pooling and Average Pooling

2.2.4 Non-Linear Activation Layers

A non-linear activation layer is usually applied after each convolutional layer

or fully-connected layer. Various non-linear functions are used to introduce non-

linearity into a CNN as shown in Figure 2.9. Traditional non-linear activation

functions are sigmoid and hyperbolic tangent. These functions tend to saturate

respectively at zero and one, and minus one and one, causing the so-called van-

ishing gradient problem: if the activity in the network during training is close to

zero then the gradient for the sigmoid function may go to zero. For this reason,

non-saturated activation functions such as the Rectified Linear Unit (ReLU) have

been introduced [63]. ReLU is a piecewise linear function that prunes the negative



2.2 Convolutional Neural Networks 17

part to zero and retains the positive part. It allows a network to easily obtain

sparse representation that is desirable because is more biologically plausible and

leads to mathematical advantages, such as information disentangling and linear

separability. Due to its simplicity and its stability to enable fast training, ReLU

is the most used activation function at the moment.

Other variants of ReLU, such as LeakyReLU, PReLU or ExponentialReLU, are

widely used and are some of the key-factors of surpassing human-level performance

on some tasks [63].

Figure 2.9: Various examples of Non-Linear Activation Functions

2.2.5 Normalization Layers

Normalization layer enables to control distribution across layers to significantly

speed up training and improve performances. The distribution of input layers

activations (σ, µ) is normalized such that it has zero-mean and a unit standard

deviation.

In Batch Normalization (BN), now considered standard practice in the design

of CNNs, the normalized value is further scaled and shifted. The parameter (γ, β)

are learned during the training phase.
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y =
x− µ√
σ2 + ε

γ + β

Batch Normalization is usually performed between the convolutional or fully-

connected layers and the non-linear function. It alleviates a lot of problems with

properly initializing CNNs by explicitly forcing activations through a network to

take on a unit normal distribution at the very beginning of training.

2.3 Data Augmentation

There exists a lot of ways to improve the results of a neural network by changing

the way we train it. In particular, data augmentation is a common practice to

virtually increase the size of the training dataset, since it is not always possible

to get new data, or can be too expensive. Data augmentation is also used as a

regularization technique, making the model more robust to slight changes in the

input data.

In the data augmentation process some operations (rotation, zoom, shift, flips,

etc.) are applied randomly to the input data. By this means, the model is never

shown twice the exact same example and has to learn more general features about

the classes it has to recognize.

Data augmentation is fundamentally important for improving the performance

of neural networks in the following aspects:

1. It is inexpensive to generate a huge number of synthetic data with annota-

tions in comparison to collecting and labelling real data.

2. Synthetic data can be accurate, so it has ground-truth by nature.

Figure 2.10: Data augmentation example
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2.4 Transfer Learning

Training a convolutional neural network requires a huge amount of data, mak-

ing computation particularly time-consuming. To overcome this problem the trans-

fer learning technique is introduced. It consists of using knowledge from a similar

task to solve a problem at hand. In practice, it usually means employing, as ini-

tializations for the deep neural network, the weights learned from a similar task,

rather than starting from a random initialization of the weights, and then further

training the model on the available labelled data to solve the task at hand.

Transfer learning enables to train models on datasets as small as a few thousand

examples, and it can deliver a very good performance. Transfer learning from pre-

trained models can be performed in three ways:

1. Feature Extractors: usually, the last layers of the neural network are

doing the most abstract and task-specific calculations, which are generally

not easily transferable to other tasks. By contrast, the initial layers of the

network learn some basic features like edges and common shapes, which are

easily transferable across tasks. We can see from figure 2.11 a hierarchical

representation of this.

A common practice is to take a model pre-trained on large labelled image

datasets (such as ImageNet [68]) and chop off the fully connected layers

at the end. New, fully connected layers are then attached and configured

according to the required number of classes. Transferred layers are frozen,

and the new layers are trained on the available labelled data for the current

task.

In this setup, the pre-trained model is being used as a feature extractor

and the fully connected layers on the top can be considered as s shallow

classifier. This set-up is more robust to overfitting as the number of trainable

parameters is relatively small, so this configuration works well when the

available labelled data is very scarce.
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Figure 2.11: Visualization of Convolutional Kernels at different levels in Convolu-

tional Neural Networks for different classes of images

2. Fine Tuning: transfer the layers from a pre-trained network and train the

entire network on the available labelled data. This set-up needs a little more

labelled data because the entire network is trained and hence there is a large

number of parameters. This set-up is more prone to overfitting when there

is a scarcity of data.

3. Two-Stage Transfer Learning: train the newly attached layers while

freezing the transferred layers for a few epochs before fine-tuning the entire

network. Fine-tuning the entire network without giving a few epochs to the

final layers can result in the propagation of harmful gradients from randomly

initialized layers to the base network. Furthermore, fine-tuning requires a

comparatively smaller learning rate, and a two-stage approach is a convenient

solution to it.
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Figure 2.12: Three methods to use Transfer Learning in CNNs

2.5 Multi-Task Learning

Multi-Task Learning (MTL) is a learning paradigm in machine learning and

its aim is to leverage useful information contained in multiple related tasks to help

improve the generalization performance of all the tasks.

At its early stage, an important motivation of MTL is to alleviate the data

sparsity problem where each task has a limited number of labelled data. In the

data sparsity problem, the number of labelled data in each task is insufficient to

train an accurate learner and instead MTL aggregates the labelled data in all the

tasks, in the spirit of data augmentation, to obtain a more accurate learner for

each task. From this perspective, MTL can help reuse existing knowledge and

reduce the cost of manual labelling for learning tasks.

One reason that MTL is effective is that it utilizes more data from different

learning tasks when compared with single-task learning. With more data, MTL can

learn more robust and universal representations, obtaining more powerful models,

with better knowledge sharing among tasks, better performance on each task, and

a low risk of overfitting in each task.
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MTL is related to other learning paradigms in machine learning, including

transfer learning and multi-label learning.

The setting of MTL is similar to that of transfer learning, but they have a

significant difference. In MTL, there is no distinction among different tasks and

the objective is to improve the performance of all the tasks. However, transfer

learning is to improve the performance of a target task with the help of source

tasks, hence the target task plays a more important role than source tasks. In a

word, MTL treats all the tasks equally, instead in transfer learning the target task

attracts most attentions.

From the knowledge flow perspective, flows of knowledge transfer in transfer

learning are from source task(s) to the target task, instead in multi-task learn-

ing, there are flows of knowledge sharing between any pair of tasks (as shown in

figure 2.13)

(a) MTL vs Transfer learning (b) MTL vs Multi label learning

Figure 2.13: Illustrations for differences between MTL and other learning

paradigms

In multi-label learning, each data point is associated with multiple labels which

can be categorical or numeric. If each of all the possible labels is treated as a task,

multi-label learning can be viewed in some sense as a special case of multi-task
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learning where different tasks always share the same data during both the training

and testing phases.

MTL is also different from continual learning in which tasks come sequentially,

tasks are learned one by one, while MTL is to learn multiple tasks together, typi-

cally by learning a joint representation of the data.
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Chapter 3

Background on Face Vision

This chapter presents some concepts related to the field of computer vision

when dealing with face images or video. These concepts are not described in

depth, but can be useful to have an overview of the field and the terminology

used. This can also be helpful to understand the more complex and advanced

state-of-the-art methodologies of the head pose estimation sub-field presented in

the following chapters.

3.1 Face Related Computer Vision Tasks

In the last decades, a number of popular research subjects related to face have

grown up in the community of computer vision, however, these tasks embrace

wide and different concepts. In our industry, terms such as face detection and face

recognition are sometimes used interchangeably, but there are actually some key

differences.

� Face Detection: is a computing technology capable of locating the presence

of human faces within digital images and video. It was introduced in 2001

and can be considered a subcategory of object detection technology.

Face detection does not identify people or give names to faces. The tech-

nology simply checks to see whether there is, in fact, a person in a certain

photograph or video. It uses machine learning algorithms to scan digital

25
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images for human faces, typically by looking for the eyes first and then cal-

culating the edges of each human face. This is how the system pinpoints

exactly where human faces are and counts how many people are present in

photos or videos.

� Face Recognition: is the task of making a positive identification of a face

in a photo or video image against a pre-existing database of faces. It begins

with detection - distinguishing human faces from other objects in the image

- and then works on the identification of those detected faces. Where face

detection simply identifies the presence of a face in an image, face recognition

either verifies or identifies an actual person.

Once a system establishes that there is, in fact, a face present, it uses a series

of algorithms to examine that face and get details about it. These details

are known as “facial landmarks” and the more landmarks a face recognition

system can read, the more accurate the system will be, this specific activity

is called Face Landmark Detection. These landmarks are used to create

a precise geometrical/mathematical representation of the face and find a

match with a specific person.

Typically, to obtain better performance in the recognition task once the

geometric structure of a face is computed, translation, rotation and scale

transformations are applied to obtain a canonical alignment of the face, for

this reason, this task is also known as Face Alignment.

Sub-tasks of face recognition are Face Verification and Face Identifica-

tion. Face verification is the task of comparing a candidate’s face to another

and verifying whether there is a match. It’s a one-to-one mapping: the sys-

tem checks if this person is the correct one. This can be done Frontal-Frontal,

so comparing two frontal pose images, or Frontal-Profile [51].

Face identification is distinct from face verification, indeed the latter is car-

ried out with the individual’s consent. Instead, face identification, on the

other hand, scans faces and then runs them against a database to identify

the people, usually on behalf of law enforcement. Individuals cannot opt out
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of the process.

� Face Analysis: unlike face recognition, face analysis doesn’t pursue iden-

tification or verification. Instead, it focuses on gathering actionable insights

from facial expressions and positioning, without putting a name to the face.

Face analysis can figure out where human eyes are focused and can even

“read” the emotions on human faces.

A typical task is Face Attribute Estimation, also called Face Attribute

Classification or Face Attribute Prediction, various attributes of a facial im-

age, such that soft-biometrics traits [59] (e.g. whether someone has a beard)

or whether the person is wearing a hat, and so on are detected.

Facial attribute analysis aims to build a bridge between human-understandable

visual descriptions and abstract feature representations required by machine

learning models. This task is strictly connected with the task of face image

synthesis (also called face generation) which is the task of generating (or

interpolating) new faces from an existing dataset.

The synthesis of new images is very important because it can be used as a

data augmentation technique (described in detail in section 3.1.2) employed

to cover more real-world scenarios and wide-range of attribute types, or

also to solve the problem of imbalanced data distribution of facial attribute

images [50].

On the other hand, face analysis can be a significant quantitative perfor-

mance evaluation criterion for face synthesis models, where the accuracy

gap between real images and generated images can reflect the performance

of deep generative algorithms.

Finally, many face analysis tasks and face synthesis methods benefit from

Face Segmentation, this segments the face images according to the dif-

ferent regions in the face (eyes, nose, ears, etc.) at a pixel-level granularity,

dividing the image into different parts according to visual understanding,

giving additional information that can improve the performance of many

algorithms.
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(a) Original (b) Face Detection (c) Face Recognition

(d) Face Landmarks (e) Face Attributes (f) Face Verification

(g) Face Synthesis (h) Face Emotion Detection (i) Face Segmentation

Figure 3.1: Example of different Computer Vision face related tasks
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3.1.1 Facial Analysis

Face Analysis detects faces in images or video and then uses face tracking

and action units to accurately provide information for the faces detected. It is very

useful to track and respond to human behaviour in real-time, or to build engaging

customer experiences and maximize their satisfaction or moreover to get insights

into the effect of various stimuli and emotions.

For these reasons, there are many sub-tasks that interest facial analysis and

that can be solved with a multi-task model or from different algorithms separately.

The most common are:

� Facial attribute prediction is a Computer Vision (CV) task about de-

ducing the set of attributes belonging to a face. Examples of attributes are:

colour of hair, hairstyle, age, gender, etc.

� Face emotion recognition: is the task of analysing facial expressions to

reveal information on one’s emotional state. The emotions are typically clas-

sified in some standard classes, such as happy, angry, sad, neutral, surprise,

disgust or fear.

� Head pose estimation: is the task of finding the relative orientation (and

position) of the human’s head with respect to the camera. In particular, in

the head pose estimation task, it is common to predict relative orientation

with Euler angles - pitch, yaw and roll.

� Gaze estimation: is a task to predict where a person is looking at given the

person’s full face. The task contains two directions: 3-D gaze vector and 2-D

gaze position estimation. 3-D gaze vector estimation is to predict the gaze

vector, which is usually used in automotive safety. 2-D gaze position esti-

mation is to predict the horizontal and vertical coordinates on a 2-D screen,

which allows utilizing gaze point to control a cursor for human-machine in-

teraction.

Facial analysis is a challenging task: it can involve face localization first and

then for example face alignment or face segmentation before attribute prediction.
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Moreover, faces are inherently difficult to analyse due to their complex appearance

[49]. Indeed, the appearance can be altered, being even more complex, by face

variations. The most common forms of face variations are the following:

� Occlusions : hairstyle, make-up, glasses (especially sunglasses), hats and

other kinds of objects can hide meaningful pixels needed by the models to

detect a face and its attributes. In case of extreme occlusion, a model may

not be able to localize a face at all.

� Illumination: extreme lightning or extreme shadowing can make the work of

a detection/analysis algorithm much harder (if not impossible) as occlusion

do.

� Expression: emotions can alter the way a face normally appear. If a face

detection, or face analysis, system has never seen faces subject to emotions

during training, it can fail to detect them correctly.

� Pose: high-degree rotations in terms of pitch (x-axis), yaw (y-axis) and roll

(z-axis) can eventually alter both the appearance of a face and hide its facial

features.

(a) Occlusion (b) Illumination (c) Expression (d) Pose

Figure 3.2: Example of face variations

Thus, it’s very important that a machine learning model is trained on difficult

exemplars of faces in order to generalize well to faces captured in-the-wild (faces

captured under any kind of conditions).
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Facial analysis is not only an academic challenge, but also a way to improve

existing applications. For example, a photo app can detect the “smiling” attribute

in order to decide which is the best photo among a given sequence; biometric

capabilities can be used to unlock phones, make secure digital payments or also

determine whether drivers are focused on the road.

Soft-biometric characteristics play a major role in facial research and appli-

cations [59]. Recently, there is a high interest in studying these attributes and

mitigating their effects on recognition performances for fair face recognition sys-

tems, but also are important for access control, human-computer interaction, and

law enforcement.

3.1.2 Data Augmentation

Deep learning strongly relies on large and complex training sets to generalize

well in unconstrained settings. However, collecting and labelling a large quantity

of real samples is widely recognized as a laborious, expensive and error-prone

activity, and existing datasets are still lack of variations compared to the samples

in the real world. Data augmentation is a valid alternative to compensate for the

insufficient facial training data. Typically referred to as face data augmentation,

this technique is used to enlarge the training or testing data size by transforming

collected real face samples or simulated virtual face samples [52].

The two main advantages of face data augmentation are:

1. If controllable generation method is adopted, faces with specific features and

attributes can be obtained.

2. It can generate faces without self-occlusion and balanced datasets with more

intra-class variations.

At the same time, face data augmentation has some limitations:

1. The generated data can lack realistic variations in appearance, such as vari-

ations in lighting, make-up, skin colour, occlusion and sophisticated back-

ground, which means the synthetic data domain has different distribution
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with respect to real data domain. That is why some researchers use do-

main adaptation and transfer learning techniques to improve the utility of

synthetic data.

2. The creation of high-quality synthetic data is challenging. Most generated

face images lack facial details, and, usually, the resolution is not high. Fur-

thermore, some other problems are still under study, such as identity pre-

serving and large-pose variation [52].

There are different transformation types that can be applied in face data aug-

mentation (as shown in figure 3.3):

� Generic transformations: the generic data augmentation techniques can

be divided into two categories: geometric transformation and photometric

transformation. These methods have been adapted to various learning-based

computer vision tasks. Geometric transformation alters the geometry of an

image by transferring image pixel values to new positions. This kind of

transformation includes translation, rotation, reflection, flipping, zooming,

scaling, cropping, padding, perspective transformation, elastic distortion,

lens distortion, mirroring, etc.

Photometric transformation alters the RGB channels by shifting pixel colours

to new values, and the main approaches include colour jittering, grayscaling,

filtering, lighting perturbation, noise adding, etc.

� Component transformations: the component data augmentation tech-

nique focuses on the semantic content of the image, some elements such as

hairstyle, makeup and warn accessories (eyeglasses, hat, etc.) can affect face

detection and recognition due to the occlusion and appearance variation of

face it caused. Altering the original image by generating numerous sam-

ples with different component characteristics in the training data makes the

algorithm more robust.

� Attribute transformations: the attribute data augmentation, similarly

to the component technique, focuses on the semantic content of the input.
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In this case, new images are generated by changing the soft-biometric char-

acteristics of the face, such as age, skin colour, gender, etc.

These last two types of data augmentation are face synthesis techniques,

therefore are typically based on generative models.

Figure 3.3: An overview of transformation types. (a) Generic transformations, (b)

Component transformations, (c) Attribute transformations (image from [52])

3.2 3D Morphable Face Models

More than two decades ago, 3D Morphable Face Models (3DMM) were pro-

posed for general face representation as well as image analysis. Today they have

continued to attract considerable interest because of their ability to model intrinsic

properties of 3D faces, such as shape and skin texture, rather than their appear-

ance, with many uses in face recognition, entertainment, healthcare, forensics,

computer graphics, animations and more.

The last few years seem to have re-discovered Morphable Face Models especially

due to advances in deep learning and their application in state-of-the-art face

analysis.

The basic 3D model consists of two components, vertexes (points in the space)

and faces (triangles formed by vertexes). Vertexes define the shape of the model’s

faces and make the model connected. Vertexes and faces together are called mesh.

The more vertexes in the mesh are, the more detailed the 3D object results.
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Therefore a face 3DMM serves to estimate the 3D shape of a head from an

image, so as to create a 3D representation of that person.

Initially, this idea of morphing started out from the core concept of isolating

the core parts of a face (features) that could change from one face to another

one. Finding these features was accomplished up to 2015 by using PCA (principal

component analysis) on some 3D datasets of heads. By doing this a 1D vector

representation of each face is created, where the value of a single feature told how

far away (deformed) from the average face mesh that specific feature is.

To find the 1D vector that corresponds to a specific face, first a 3D face template

is (manually) aligned over the target image (to make sure to have the correct

rotation, orientation, azimuth, etc..) and then an optimisation process is executed

to try to tune the values of the initial 1D representation of the template 3D face

mesh, so as to minimize the RMSE between the target image and the 2D projection

of the face mesh. Actually, a face can be represented by two 1D vectors S and T

that represent shape and texture (face colour) respectively.

With this representation, that describes a face by a 1D vectors of values, the

objective is to find the 1D vector that morphed the model face mesh into a 3D

face that, when projected on a 2D surface (like when a picture was taken), would

be close to the original image.

The position of the face must be known in order to make the correct 2D pro-

jection work, therefore this process is not end-to-end.

To overcome the limitations of PCA new modern approaches uses Deep Con-

volutional Neural Networks to learn 3DMM parameters independently and largely

replaced traditional optimization based methods with more accurate results and

shorter running time [164].

Figure 3.4: 20 Years of 3D Morphable Models (image from [53])
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3.3 3D Dense Face Alignment

Face alignment in 2D aims at locating a sparse set of fiducial facial land-

marks from a face image. It is called sparse because it uses a limited number of

facial keypoints (68 is a common number). Instead, 3D face alignment aims to

fit a 3D morphable model (3DMM) from a 2D image, obtaining a representation

with a much higher number of points (tens of thousands of points) and having

the potential to deal with larger poses and occlusions [4]. 3DMM is more flexible

compared to 2D models, for this reason, the 3D solution has advantages in the

alignment of faces in large poses. However, the 3D solution is more complicated

in modelling, fitting and data labelling [77].

A relevant, but different, problem is the 3D face reconstruction, which

recovers a 3D face from given 2D landmarks, capturing fine facial details.

In recent years, 3D face reconstruction and face alignment tasks have gradually

been combined into one task: 3D dense face alignment, which is the reconstruc-

tion of a face’s 3D geometric structure with pose information. It requires methods

to offer pixel-wise facial region correspondence between two face images. 3D dense

face alignment can power face-related tasks such as facial recognition, animation,

facial tracking, attribute classification and image restoration [164].

Recent studies on 3DDFA are mainly divided into two categories: 3D Mor-

phable Model (3DMM) parameters regression and dense vertices regression. Dense

vertices regression methods directly regress the coordinates of all the 3D points

(usually more than 20,000) through a fully convolutional network. The resolution

of reconstructed faces however relies on the size of the feature map which in turn

is based on heavy networks which are slow and memory-consuming. Compared

with dense vertices, 3DMM parameters regressors have low dimensionality and

low redundancy, which the researchers regard as more appropriate to regress using

a lightweight network. The regression however becomes challenging, as different

3DMM parameters influence the reconstructed 3D face differently, and parameters

must be re-weighted according to their importance during training.
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Figure 3.5: Example of 3D dense face alignment



Chapter 4

Head Pose Estimation

Recently, head pose estimation has become a popular area of research. Ap-

plications of HPE are wide-ranging and include (but are not limited to) virtual

& augmented-reality, driver assistance, markerless motion capture or as an inte-

gral component of gaze-estimation, since gaze and head pose are tightly linked (as

shown in section 1). It is also important in providing visual cues for the targets

of conversation, to indicate appropriate times for speaker/listener role switches as

well as to indicate agreement [61] [62].

In the context of computer vision, head pose estimation is most commonly

interpreted as the ability to infer the orientation of a person’s head relative to

the view of a camera. More rigorously, head pose estimation is the ability to

infer the orientation of a head relative to a global coordinate system, but this

subtle difference requires knowledge of the intrinsic camera parameters to undo

the perceptual bias from perspective distortion [55].

At the coarsest level, head pose estimation applies to algorithms that identify

a head in one of a few discrete orientations, e.g., a frontal versus left/right profile

view. At the fine (i.e., granular) level, a head pose estimate might be a continuous

angular measurement across multiple Degrees of Freedom (DoF). A system that

estimates only a single DoF, perhaps the left to right movement, is still a head pose

estimator, as is the more complex approach that estimates a full 3D orientation

and position of a head.

37
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(a) Coarse pose estimation (b) Fine pose estimation

Figure 4.1: Example of coarse and fine head pose estimation

In particular, in the head pose estimation task, it is common to predict relative

orientation with Euler angles - pitch, yaw and roll. They define the object’s

rotation in a 3D environment, if the right prediction about these three angles

can be made, it can be found in which direction the human head will be facing.

Figure 4.2: Euler angles in Head Pose Estimation. The rotation occurring around

the axis passing from the head through the neck is called yaw. The rotation

occurring around the axis passing through the ears is named pitch. The rotation

occurring around the axis connecting the nose with the occipital bone is known as

roll (image source [54]).

Despite the head pose estimation task may seem to be easily solved, achieving

acceptable quality on it has become possible only with recent advances in Deep

Learning.
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Challenging conditions like extreme pose, bad lighting, occlusions and other

faces in the frame make it difficult for data scientists to detect and estimate head

poses (examples in figure 3.2).

Despite this SOTA methods for head pose estimation satisfy all the following

criteria, firstly proposed by Erik Murphy-Chutorian in [55], on standard datasets:

� Accurate: the system should provide a reasonable estimate of the pose with

a mean absolute error of 5° or less.

� Monocular: the system should be able to estimate head pose from a sin-

gle camera. Although accuracy might be improved by stereo or multi-view

imagery, this should not be a requirement for the system to operate.

� Autonomous: there should be no expectation of manual initialization, de-

tection, or localization, precluding the use of pure-tracking approaches that

measure the relative head pose w.r.t. some initial configuration and shape/-

geometric approaches that assume facial feature locations are already known.

� Multi-Person: the system should be able to estimate the pose of multiple

people in one image.

� Identity & Lighting Invariant: the system must work across all identities

with the dynamic lighting found in many environments.

� Resolution Independent: the system should apply to near-field and far-

field images with both high and low resolution.

� Full Range of Head Motion: the methods should be able to provide a

smooth, continuous estimate of pitch, yaw and roll, even when the face is

pointed away from the camera.

� Real-Time: the system should be able to estimate a continuous range of

head orientation with fast (30fps or faster) operation.



40 4. Head Pose Estimation

4.1 Datasets

In order to truly make progress in the problem of predicting pose from im-

age intensities, real datasets which contain precise pose annotations, numerous

identities, different lighting conditions, all of this across large poses occur.

Most of the HPE models are evaluated using publicly available datasets. These

datasets significantly evolved during the last years, especially in terms of complex-

ity of environmental conditions.

Most datasets provide rotation information by means of Euler angles, which

define the orientation of a rigid body with respect to a fixed coordinate system.

Accordingly, three rotations are always sufficient to reach any target position.

These rotation angles can be extrinsic or intrinsic, the former expresses the ro-

tations with respect to the xyz axes of an original motionless coordinate system,

the latter expresses rotations with respect to axes of a rotating XY Z coordinate

system, rigidly attached to the moving body.

Since various formalisms exist to express a rotation in three dimensions beyond

Euler angles e.g., rotation matrices, unit quaternions, Rodrigues’ formula, among

others, the datasets contain different forms of representation (many of these for-

malisms use more than the minimum number of three parameters). More details

about some of the representations exploited by the models to solve the HPE task

can be found in section 4.2.

Head pose datasets can be categorized by different aspects, such as imaging

characteristics, data diversity, acquisition scenario, annotation type, and annota-

tion technique [32]. These aspects play an important role on whether and how the

dataset identifies the challenges of the head pose estimation task.

� Imaging characteristics: relate to the image resolution, number of cameras,

bit depth, frame rate, modality (RGB, grayscale, depth, infrared), geometric

setup and field of view.

� Data diversity: incorporates aspects such as the number of subjects, the dis-

tribution of age, gender, ethnicity, facial expressions, occlusions (e.g. glasses,
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hands, facial hair) and head pose angles. Data diversity is essential to train-

ing and evaluating robust estimation models.

� Acquisition scenario: covers the circumstances under which the acquisition

of the head pose takes place. The most important distinction is between

in-laboratory vs. in-the-wild acquisition. While the former restricts the

data by defining a rather well-defined, static environment, the latter offers

more variety through being acquired in unconstrained environments, such as

outside, thus covering many challenging conditions like differing illumination

and variable background. Head movement can be staged by following a

predefined trajectory or can be naturalistic by capturing head movement

while the subject performs a different task, such as driving a car.

� Annotation type: describes what meta-information, such as head pose, comes

alongside the image data and how it is represented. For example, the head

pose can be defined by a full 6 degrees of freedom (DoF) transformation

from the camera coordinate system to the head coordinate system (covering

3 DoF for translation and 3 DoF in rotation) or only a subset of them can be

provided. Annotation types can differ also in their granularity of sampling

the DoF space: there are discrete annotation types that classify a finite set of

head poses, and there are continuous annotation types that offer head pose

annotations on a continuous scale for all the DoFs.

� Annotation technique: there are different methods for obtaining the head

pose annotation (label) accompanying each image. The annotation technique

has a large impact on data quality. These are described in more detail in

section 4.3.

Database Year # sub-

jects

# images Yaw Pitch Roll DB

type

GT

method

Pose

type

BU [30] 2000 5 200 3 3 3 C MS C

PIE [39] 2000 68 40.000 3 C CA D

IDIAP-HP [31] 2003 16 66.295 3 3 3 C MS C

CAS-PEAL [19] 2004 1.040 99.594 3 3 C CA D

Pointing’04 [29] 2004 15 2.790 3 3 C DS D

FacePix [28] 2005 30 5.430 3 C CR D
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Bosphorus [25] 2008 105 4.652 3 3 C DS D

ETH [27] 2008 26 10.000 3 3 C ICP C

BJUT-3D [26] 2009 500 46.500 3 3 C

Taiwan RoboticsLab [40] 2009 90 6.660 3 C CA D

Multi-Pie [24] 2010 337 75.000 3 C CA D

AFLW [23] 2011 25.993 3 3 3 W E C

BIWI Kinect [5] 2011 20 15.000 3 3 3 C ICP C

AFW [22] 2012 205 468 3 3 3 W M D

ICT-3DHP [21] 2012 10 1.400 3 3 3 C IS C

BioVid Heat Pain [36] 2013 90 9.000 3 3 3 C ICP C

CAVE [38] 2013 56 5.880 3 C CA D

McGill [20] 2013 60 18.000 3 W M D

Dali3DHP [17] 2014 33 60.000 3 3 3 C IS C

MTFL [107] 2014 12.995 3 W M D

300W-LP [4] 2015 122.450 3 3 3 H (W+S) S C

AFLW2000-3D [4] 2015 2.000 3 3 3 W E C

AISL [18] 2015 20 6.480 3 3 C CR† D

CMU Panoptic� [8] 2015 1.342.018 3 3 3 C P C

CCNU [15] 2016 58 4.350 3 3 C IS C

GI4E-HP [14] 2016 10 36.000 3 3 3 C MS C

Synthetic [16] 2016 37 74.000 3 3 3 S S C

UMDFace [6] 2016 8.277 367.888 3 3 3 W E C

DriveAHead [35] 2017 20 ∼ 1 M 3 3 3 W∗ O C

Pandora [7] 2017 22 250.000 3 3 3 C∗ IS C

SASE [12] 2017 50 30.000 3 3 3 C ICP C

SyLaHP [41] 2017 30 ∼ 101 K 3 3 3 S S C

SynHead [11] 2017 10 510.960 3 3 3 S S C

UbiPose [10] 2018 22 10.400 3 3 3 C ICP C

VGGFace2 [3] 2018 9.131 ∼ 3,31 M 3 3 3 W E C

DD-Pose [32] 2019 27 ∼ 330 K 3 3 3 W∗ O C

GOTCHA-I [42] 2019 62 137.826 3 3 3 W E D

M2FPA [9] 2019 229 397.544 3 3 C CA D

AutoPOSE [33] 2020 20 1.018.885 3 3 3 C∗ O C

MDM corpus [34] 2021 59 ∼ 10,5 M 3 3 3 W∗ ICP C

UET-Headpose [2] 2021 9 12.848 3 3 3 C IS C

Database:

• � = Processing operations needed to extract head pose information from original data [61]

DB Type:

• C = Constraint, faces of real people taken in a constraint environment (a lab, an office, etc.)

• W = In-the-Wild, images of real people captured under any kind of conditions

• S = Synthetic, synthetic generated images

• H = Hybrid, a mixture of previous types

• ∗ = Dataset build for the driving context

Pose Type:

• C = Continuous, pose estimate in continuous range

• D = Discrete, few discrete orientations are acquired

GT Type:
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• CA = Camera array

• CR = Camera ring

• CR† = It’s not the camera that rotates around the person, but the seat that rotates on itself

• DS = Directional suggestion

• E = Estimation with neural networks or other algorithms

• ICP = ICP algorithm

• IS = Inertial sensor

• L = Laser pointer directional suggestion

• M = Manual annotation

• MS = Magnetic sensor

• O = Optical motion capture system

• P = Panoptic studio

• S = Synthetic images generation

Table 4.1: Available datasets for Head Pose Estimation. The most used in the

literature are in bold.

There are many available datasets in the literature:

� 300W-LP [4]: The 300W-LP (Large Pose) is a synthetic extension of the

300W database [37], generated to augment the number of challenging samples

with extreme poses. It includes 122.450 images with yaw angle in range ±89°.

� AFLW [23]: Annotated Facial Landmark in the Wild is a challenging dataset

which was collected from the internet, in totally unconstrained conditions.

It contains a collection of 25.993 faces with head poses ranging between ±
120° for yaw and ±90° for pitch and roll. The pitch, yaw and roll angles

were obtained automatically from the labelled landmarks using the POSIT

algorithm [75], assuming the structure of a mean 3D face, for this reason,

several annotations errors were found [172].

� AFLW2000-3D [4]: This dataset contains the first 2.000 identities of the

in-the-wild AFLW [23] dataset which have been re-annotated with 68 3D

landmarks using a 3D model which is fit to each face. Consequently, this

dataset contains accurate fine-grained pose annotations and is a prime can-

didate to be used as a test in head pose estimation task. Yaw varies ±120°,

while roll and pitch ±90°.
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� AFW [22]: Annotated Faces in the Wild represents a small database (it’s

a subset of AFWL [23]), which is normally used for testing purposes only.

AFW has 250 images and inside these images 468 faces in a very challenging

environment are included. The yaw angles vary between ±90° with a step

size of 15°. The ground-truth is manually annotated, so it may contain errors.

� AISL [18]: The Aisl head orientation database is a collection of small scale

head images with various backgrounds of an indoor scene. This dataset

contains 6.480 images of 20 subjects under 36 yaw angles, 3 pitch angles and

3 different backgrounds. The orientation is determined by two categories:

yaw angle in 360° with an interval of 10°, and pitch angle in the range ±45°

with an interval of 45°.

� AutoPOSE [33]: It’s a large-scale dataset that provides 1.1 million images

taken from a car’s dashboard view. AutoPOSE’s ground-truth head orienta-

tion was acquired with a sub-millimetre accurate motion capturing system

placed in a car simulator. The rotations are limited to the range [-90°, +90°],

the average pitch angle is shifted in the negative values of the rotation angles,

this is due to the placement of the camera in the dashboard.

� BioVid Heat Pain [36]: It contains videos and physiological data of 90

persons subjected to well-defined pain stimuli of 4 intensities, built for the

development of automatic pain monitoring systems. It includes information

about head pose of the recorded subjects for all 3 angles pitch, yaw, roll, all

in the range ±50°.

� BIWI Kinect [5]: It’s gathered in a laboratory setting by recording RGB-

D video of different subjects across different head poses, using a Kinect v2

device. It contains roughly 15.000 frames and the rotations are ±75° for yaw,

±60° for pitch and±50° for roll. A 3D model was fit to each individual’s point

cloud and the head rotations were tracked to produce the pose annotations.

This dataset is commonly used as a benchmark for pose estimation using

depth methods that attest to the precision of its labels.
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� BJUT-3D [26]: The database consists of 46.500 images collected from the

3D faces of 250 male and 250 female participants. The total number of poses

in the database is 93. The pitch rotation is quantized into 9 angles [-40°,

+40°], where the difference between two consecutive poses is 10°. Similarly,

the yaw rotation is divided into 13 angles [-60°, +60°], with the same angular

step size as for the pitch.

� Bosphorus [25]: It contains 5 thousand high resolution face scans from 105

different subjects. The 3D scans are obtained by a commercial structured-

light based 3D digitizer. It offers 13 discrete head pose annotations (seven

yaw angles, four pitch angles, and two roll angles), with different facial ex-

pressions and occlusions.

� BU [30]: The Boston University Head Tracking dataset includes only 200

images and 5 subjects, which is the main drawback of this database. The

acquisition process is repeated in two sessions: initially illumination condi-

tions are uniform; then subject faces are exposed to rather complex scenarios

with changing illumination. All three rotation angles were recorded thanks

to a magnetic tracker attached to each participant’s head. Pose variation is

mainly less than 30°. Since the presence of facial occlusions (e.g., eyeglasses,

facial hair, etc.) is very limited, most methods perform very well.

� CAS-PEAL [19]: The CAS-PEAL is a large dataset having 99.594 images,

with a total number of 1.040 participants, with 595 males and 445 female

subjects. The CAS-PEAL dataset contains a total of 21 poses combining

different yaw and pitch angles: the yaw orientation varies between -45° and

+45° with an interval of 15° between two consecutive poses; the pitch ori-

entation has only three poses -30°, 0° and +30°. Although the dataset has

sufficient data for evaluation and training, its complexity is low, as the num-

ber of poses is quite limited.

� CAVE [38]: The Columbia Gaze dataset contains a total of 5.880 images

of 56 different subjects (32 male, 24 female) of different ethnic groups and
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ages. The dataset is mainly created to solve the gaze estimation task, but

contains also information about head pose of the participants, therefore it

can be used to solve the discrete head pose estimation task. For each subject

a combination of five horizontal head poses (0°, ±15°, ±30°), seven horizontal

gaze directions (0°, ±5°, ±10°, ±15°), and three vertical gaze directions (0°,

±10°) are available.

� CCNU [15]: All images in CCNU are low-resolution images collected in a

classroom. The database consists of 58 participants, captured in 75 different

poses, for a total number of 4.350 images. The face images are collected

so that illumination conditions and facial expressions are changing, thus

adding more complexity to the images. For obtaining the ground-truth data,

SensoMotoric Instruments (SMI) eye tracking glasses are used. The head

orientation changes from -90° to +90° in the horizontal direction, while the

vertical direction spans in the range -45° to +90°.

� CMU Multi-Pie [24]: This is a database collected from subjects exhibiting

multiple expressions under different illumination conditions in a constraint

environment. All high-resolution images are captured using a system of

15 cameras for a total of 75 thousand images. The only angle of rotation

available is the yaw with an incrementation step of 15°.

� CMU Panoptic Dataset [8]: It’s a large scale dataset providing 3D pose

annotations for multiple people engaging social activities. It contains 65

videos with multi-view annotations captured inside a dome from approxi-

mately 30 HD cameras. The panoptic dataset includes 3D facial landmarks

and calibrated camera extrinsics and intrinsics, but does not include head

pose information. By using landmarks and camera calibrations it is possible

to locate and crop images of subjects’ heads and compute the corresponding

camera-relative Euler angles.

After processing the dataset to address the head pose problem [61], it con-

tains 1.342.018 images. The yaw angle distribution is almost uniform and

ranges in ±179°, but at angles near 90° and -90° there are fewer images due
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to the effect of Gimbal lock. For the two angles pitch and roll the magnitudes

are in the range ±89°.

� CMU-PIE [39]: The CMU Pose, Illumination, and Expression (PIE) dataset

contains over 40.000 facial images of 68 people. Using the CMU 3D Room

each person is imaged across 13 different poses, under 43 different illumina-

tion conditions and with 4 different expressions. The pose ground-truth was

obtained with a 13 cameras array, each positioned to provide a specific rela-

tive pose angle. This consisted of 9 cameras at approximately 22.5° intervals

across yaw, one camera above the centre, one camera below the centre, and

one in each corner of the room.

� Dali3DHP [17]: This database is an extreme head pose database collected

from a camera mounted on a treadmill. The dataset was collected in two

different sessions from 33 individuals. Ground-truth data is collected using

Shimmer sensor 2 which was attached to each person’s head. The database

is large since it contains more than 60.000 depth and colour images. All

the three rotation angles pitch, yaw and roll were defined at the time the

acquisition took place, covering the following head angles: pitch [-65.76°,

+52.60°], roll [-29.85°, +27.09°], and yaw [-89.29°, +75.57°].

� DD-Pose [32]: It contains 330 thousand measurements from multiple cam-

eras acquired by an in-car setup during naturalistic drives by 27 subjects.

Large out-of-plane head rotations and occlusions are induced by complex

driving scenarios, such as parking and driver-pedestrian interactions. Pre-

cise continuous 6 DoF head pose annotations are obtained by a motion cap-

ture sensor and a novel calibration device. The angles vary in the following

ranges, ignoring outliers with less than 10 measurements in a 3° neighbour-

hood: pitch ∈ [-69°, +57°], yaw ∈ [-138°, +126°], roll ∈ [-63°, +60°].

� DriveAHead [35]: It’s another driver head pose dataset, it contains frame-

by-frame head pose labels obtained from a motion-capture system for 20

subjects (about 1 million of frames). It includes parking manoeuvres, driv-
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ing on the highway and through a small town, different occlusions and illu-

minations, thus providing distributions of head orientation angles and head

positions which are typical for naturalistic drives. Images were collected with

a resolution of 512×424 pixels, 6 DoF, the range of angles is [-45°, +45°] for

pitch, [-40°, +40°] for roll and mainly [-90°, +90°] for yaw.

� ETH [27]: The ETH Face Pose Range Image Dataset contains more than

10 thousand images of 20 persons (3 of them being female) at a resolution

of 640 × 480 pixels. Each person freely turned her head while the scanner

captured range images at 28 fps. Yaw varies between -90° to +90°, pitch

between -45° to +45°, whereas roll is not considered.

� FacePix [28]: The FacePix database is built depicting 30 individuals, for

a total number of 5.430 images. It is an imbalanced dataset with 25 males

and 5 females. Yaw rotation varies from -90° (extreme left profile) to +90°

(extreme right profile), with a step size of 2°; no other rotation angles were

considered.

� GI4E-HP [14]: It contains 36 thousand images from 10 subjects recorded

with a web-cam in an in-laboratory environment. Head pose annotations are

given in 6 DoF using a magnetic reference sensor. All transformations and

camera intrinsics are provided. Head pose annotations are given relative to

an initial subjective frontal pose of the subject.

� GOTCHA-I [42]: This dataset is a collection of 682 videos of 62 subjects in

11 different indoor and outdoor environments to address both security and

surveillance problems. To obtain ground-truth a 3D head model is recon-

structed and elaborated using Blender software. There are 137.826 labelled

frames with 2.223 head pose per subject in the range of [-40°, +40°] in yaw,

[-30°, +30°] in pitch and [-20°, +20°] in roll, with a step of 5°.

� ICT-3DHP [21]: It’s a large dataset which was collected in-the-wild, i.e.,

captured in an unconstrained environment. All images were acquired through
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the Polhemus Fastrack1 flock of birds tracker attached to a cap the partic-

ipants that contains a magnetic sensor, so that the dataset contains both

RGB and depth data. The database is evaluated for all three rotation an-

gles including pitch, yaw and roll. No accurate information about the angle

ranges is provided.

� IDIAP Head Pose [31]: It contains 66.295 head images stemmed from a 8

video meeting recording, each approximately one minute in duration, of a few

people in a meeting room. In each sequence, two subjects, which are always

visible, were continuously annotated using a magnetic sensor. Therefore,

each image has a complete annotation of a head pose orientation from pitch

(range [-60°, +15°]), yaw (range ±60°) and roll (range ±30°) angles.

� M2FPA [9]: This dataset totally involves 397.544 images of 229 subjects

with 62 poses (including 13 yaw angles, 6 pitch angles and 44 yaw-pitch

angles), 4 attributes and 7 illuminations. There are 6 classes for pitch in the

range of [-30°, +45°] with a step increment of 15° and 13 measurements for

yaw in the range ±90° with a step increment of 15°.

� McGill [20]: The database consists of 60 videos of 60 different participants,

in total it contains 18.000 video frames. The videos were recorded in both

indoor and outdoor environments. The participants were free to behave as

they want during the video collection process, therefore arbitrary illumina-

tion conditions and background clutter are present, especially outdoor. Only

yaw angles are estimated using a semi-automatic procedure, with variation

in the range [-90° +90°].

� MDM corpus [34]: The Multimodal Driver Monitoring database was col-

lected with 59 subjects recorded while are driving a car and performing

various tasks. To record the head pose the Fi-Cap device was used, this con-

tinuously tracks the head movement of the driver using fiducial markers, pro-

viding frame-based annotations to train head pose algorithms in naturalistic

1https://polhemus.com/motion-tracking/all-trackers/fastrak
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driving conditions. This set consists of 48.9 hours of recordings (10.541.166

frames), it covers a large range of head poses along all three rotation axes

due to the large number of subjects included, and the variety of primary and

secondary driving activities considered during the data acquisition. Yaw an-

gles range around the origin spanning between -80° to 80°, pitch angles have

an asymmetric range spanning from -50° to 100°.

� MTFL [107]: The Multi-Task Facial Landmark dataset contains 12.995 out-

door face images from the web. These images are from CUHK Face Align-

ment database and AFLW dataset. Each image is annotated with a bounding

box and five facial landmarks. There are ground-truth annotations for gen-

der, age, smiling, wearing glasses and head pose. For the latter, the images

are manually categorized in 5 discrete classes: Left-profile, Left, Frontal,

Right, Right-profile.

� Pandora [7]: It has been specifically created for head centre localization,

head pose and shoulder pose estimation and is inspired by the automotive

context. A frontal fixed device acquires the upper body part of the subjects,

simulating the point of view of the camera placed inside the dashboard. Sub-

jects also perform driving-like actions, such as grasping the steering wheel,

looking to the rear-view or lateral mirrors, shifting gears and so on. Pandora

contains more than 250 thousand full resolution RGB (1920×1080 pixels)

and depth images (512×424) acquired with a Microsoft Kinect 1 device.

Subjects perform wide head movements: ±70° roll, ±100° pitch and ±125°

yaw. Garments as well as various objects are worn or used by the subjects

to create head occlusions. The ground-truth annotations have been collected

using a wearable Inertial Measurement Unit (IMU) sensor.

� Pointing’04 [29]: It is one of the oldest databases, released in 2004, which

was considered as the classical benchmark for HPE (in some studies is also

called PRIMA database [74]). Despite its age, it’s still used for research

purposes, due to its challenging nature and a large variety in consecutive

poses [96–99]. A total number of 15 participants (between 15-40 years) were
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involved for image acquisitions. Some of them wear eyeglasses or show facial

hairs, thus increasing the task complexity. Images were collected in an indoor

lab environment, with very low illumination conditions. Each participant is

asked to look at some markers on the wall, and two rotation angles (yaw and

pitch) are annotated through a subsequent manual labelling process (thus

introducing some errors). The head orientation varies between ±90° both

in the horizontal and vertical directions, while the difference between two

consecutive poses in horizontal and vertical orientation is kept at 15° and

30°, respectively.

� SASE [12]: This is a 3D database collected through Kinect 2 camera. It

consists of both RGB and depth images of 32 male and 18 female subjects.

The total number of frames is 30.000. All subjects have different ethnicity

and hairstyles, with an age range of 7-35 years. All three rotation angles

pitch, yaw, and roll are considered. All participants have different facial ex-

pressions during image acquisition, so that, along with head pose estimation,

the database may also be used for emotion recognition. For each person a

large sample of head poses are included, within the bounds of yaw from -45°

to 45°, pitch -75° to 75° and roll -45° to 45° of rotation around each axis.

� SyLaHP [41]: The Synthetic dataset for Landmark based Head Pose esti-

mation was proposed by Werner et al. [41] along with a benchmark protocol

to learn head pose on top of any landmark detector (called HPFL). It con-

tains about 101 thousand synthetic images from 30 subjects, with varying

ethnicity, age and gender. The angles are in the ranges: ± 70° for pitch,

±90° for yaw and ±55° for roll.

� SynHead [11]: This is a large-scale synthetic dataset for head pose estima-

tion in videos containing 10 head models (5 female and 5 male), 70 motion

tracks and 510.960 frames. Such synthetic dataset, which considers all Euler

angles, generates 100% reliable ground-truth to compensate for errors exist-

ing in manually annotated datasets. The Euler angles are in the range of

[-100°, +100°].



52 4. Head Pose Estimation

� Synthetic [16]: The Synthetic image database is a large database of 74.000

high quality images taken from head models. A total of 37 sequences have

been considered, where each sequence includes 2.000 frames. The head pose

in face images covers ±50° of roll, ±75° for yaw, and ±60° for pitch. The

database is quite challenging as different ages, races, and facial expressions

are included.

� Taiwan RoboticsLab [40]: It contains 6.660 images of 90 subjects. Each

subject has 74 images, where 37 images were taken every 5 degrees from right

profile (defined as +90°) to left profile (defined as -90°) in the yaw rotation

using camera array. The remaining 37 images are generated (synthesized)

by the existing 37 images using commercial image processing software in the

way of flipping them horizontally.

� UbiPose [10]: This dataset relies on videos from the UBImpressed dataset,

which has been captured to study the performance of students from the

hospitality industry at their workplace. The data are recorded using a Kinect

2 sensor, however, the ground-truth head pose is indirectly inferred from

facial landmarks. The validated inferred head poses are 10.4K, most frames

fall within a [20°, 40°] interval.

� UET-Headpose [2]: The UET-Headpose dataset was created to capture the

head pose of annotated people in many conditions, it includes 12.848 images

obtained from 9 people. The dataset has a uniform yaw angle distribution

for all directions in the range [-179°, 179°]. The dataset is obtained by having

the annotated people rotated all yaw directions when collecting the dataset.

Therefore, it is possible to learn all yaw angles within a 360° range.

� UMD Faces [6]: This dataset has 367.888 annotated faces of 8.277 subjects.

It contains information about bounding boxes (verified by humans), twenty-

one keypoint locations, Euler angles and the gender of the subject. These an-

notations have been generated using the All-in-one CNN model [109], there-

fore the dataset may contain erroneous annotations, especially for the pitch,

yaw and roll angles.
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� VGGFace2 [3]: This is a very large HPE database which has been released

in 2018. It contains 3,31 million images. The total number of participants

to create this content are 9.131, whereas the average number of images per

subject is 362,6. The database is constructed with images downloaded from

Google Image Search and show large variations in pose, illumination, age,

profession, and ethnicity. However, pose (pitch, yaw and roll) is estimated

using pre-trained pose classifiers defining 5 classes for angles in ranges [-100°,

-40°), [-40°, -10°), [-10°, +10°), [+10°, +40°) and [+40°, +100°).

4.2 Head pose rotations representations

Many possible representations can be used to express rotations of rigid bodies.

The widely used in the field of head pose estimation is that based on Euler angles,

but other methods are exploited in the literature due to some problems of this

specific representation.

Furthermore, it has been shown that any rotation representation in 3D with

less than five dimensions is discontinuous, making the learning process harder [79].

We will further briefly review different rotation parametrizations, their pros and

cons to see how they might affect the regression performance.

4.2.1 Euler angles

The Euler angles were introduced by Leonhard Euler in rigid body dynamics

to describe the orientation of a reference system attached to a rigid solid in mo-

tion. Three parameters are needed to describe an orientation in a 3 dimensional

Euclidean Space R3.

Thus, the Euler angles are a set of three angular coordinates which specify the

orientation of a reference system with orthogonal axes, usually mobile, with re-

spect to another reference with known orthogonal axis called standard orientation.

This standard initial orientation is normally represented by a motionless (fixed)

coordinate system.
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Euler angles can represent any rotation by means of three successive elemental

rotations around three independent axes.

Rx(α) =


1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)

 Ry(β) =


cos(β) 0 sin(β)

0 1 0

− sin(β) 0 cos(β)

 Rz(γ) =


cos(γ) −sin(γ) 0

sin(γ) cos(γ) 0

0 0 1


These three elemental rotations around distinct axes can be composed to obtain

a single rotation matrix using matrix multiplication:

R = RxRyRz

Matrix multiplication is not commutative and the same thing applies to rota-

tions, therefore the order of application of the three successive elemental rotation

is important.

However, the definition of Euler angles is not unique, in the literature many

different conventions are used, where varies the sequences of rotations and the axes

about which the rotations are carried out.

Figure 4.3: Different processes from the same initial pose to the same final pose

in different rotation order (image from [208]).

Following the Trait-Bryan convention we can define as x, y and z the original

axes and X, Y , and Z the axes after rotation. The line that represents the in-

tersection between plane xy and Y Z is called the line of nodes N , see figure 4.4.

The Euler angles with this convention are: α the rotation angle between x and N ,
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covering a range of 2π; β the rotation angle between z and Z, covering a range of

π; γ the rotation angle between N and X, covering a range of 2π.

Many datasets have annotations of pitch, yaw and roll angles, but not all of

them explicitly mention the order; the process of determining it become tedious

and error-prone.

The main limitation of the Euler angles remains the Gimbal lock: when

the second elemental rotation reaches 90 (or -90) degrees, then first and third

axes become parallel (i.e. linearly dependent), which gives an infinite number of

solutions for the same rotation and the other axis can not be determined. This is

a great limitation when wide ranges of rotations [-180°, +180°] are considered.

Figure 4.4: Euler angles, image from Wikipedia [66]

4.2.2 Rotation matrix

Each rotation can be uniquely described with a rotation matrix. The rotation

matrix R is a special orthogonal 3 × 3 matrix, with a determinant equal to one,

that represents a rotation in Euclidean space.

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 , RTR = RRT = I, det(R) = 1
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Rotations can be composed using multiplication, and the resulting matrix will

remain a rotation matrix. A rotation is represented using nine parameters.

To regress the parameters with back-propagation an orthogonality constraint

must be enforced, otherwise something different from rotation matrix will be ob-

tained during inference [78].

A complaint of rotation matrices is that they’re less intuitive. In general, it’s

not easy to understand what the matrix is doing by simply looking at the matrix.

This is why Euler angles sometimes are more favourable.

Let be the column vector v, the position of each point in the standard initial

orientation and R the rotation matrix. Then, a rotated vector u is obtained by

multiplying the rotation matrix with the vector.

u = R · v

The ease by which vectors can be rotated using a rotation matrix, as well

as the ease of combining successive rotations, make the rotation matrix a useful

and popular way to represent rotations, even though it is less concise than other

representations [58].

4.2.3 Quaternions

Quaternions are a compact way to represent rotations, they have four param-

eters, which can be interpreted as a scalar component plus a three-dimensional

vector component:

q = (s0,
−→v ) = (s0, v1, v2, v3)

Quaternions are quite popular because are more compact than matrix rep-

resentation and it’s simple to combine two individual rotations represented as

quaternions using quaternion product.

Unlike Euler angles, quaternions are free from the Gimbal lock problem, but

still they have an ambiguity caused by their anti-podal symmetry: q and −q
correspond to the same rotation.

Furthermore, it has been recently demonstrated that for 3D rotations, all rep-

resentations are discontinuous in the real Euclidean spaces of four or fewer di-
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mensions and empirical results suggest that continuous representation outperform

discontinuous ones [79]. This means that Euler angles and quaternions represen-

tations might not be well suited for the regression task.

4.3 Creating Ground-Truth data

The images that compose HPE datasets can be collected through different

methods, in this section various methodologies for ground-truth creation are dis-

cussed.

Due to difficulties in ground-truth collection and annotation, head pose datasets

can contain annotation errors and noisy data. Sources of errors may be related to

inappropriate behaviour of the participants at time of acquisition (e.g. participants

who do not correctly look at the suggested direction, the change in head position

when different poses are acquired in subsequent moments, etc.). The acquisition

sensor may also affect data quality (e.g., magnetic sensors vs. camera arrays).

In such complex acquisition scenarios, a valid alternative for training and eval-

uating a head pose estimation framework is constituted by synthetic datasets,

where the chances of errors are comparatively less with respect to those acquired

in more realistic set-ups.

Acquisition methods:

� Manual annotation by a human: It consists in a process by which head pose

images are viewed by a human who assigns a specific label, according to

his/her personal perception about the pose. This methodology has been

used in the case of coarse sets of poses, typically in a single DoF, however, it

is applicable only in the case of small databases and it becomes inappropriate

for fine pose estimation, since the probability of human error in this case is

high.

� Generate synthetic images : A simple way to generate training and testing

data, with nearly perfect ground-truth, is to process head poses synthetically.
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Figure 4.5: Example of manual labelling process used for McGill dataset [20]

Typically, these methods use rendering techniques to create ground-truth

data (as in [11] [16]), and contain high resolution images of 3D morphable

models. Normally a 3D face model is placed on a virtual ground and the

camera is moved randomly on a sphere surface whose centre is the same as

the head model centre. The images are then obtained by changing the camera

view, which is equivalent to rotating the head around the three angles.

The main drawbacks of ground-truth data collected through synthetic models

are the following: (I) the face models used are not representative of the real

population (age, gender, ethnicity, expression, etc.); (II) the background

and also some head parts might be missing from the images. Both these

characteristics make it difficult to assess whether the HPE methods would

generalize well for more realistic surroundings.
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Figure 4.6: Synthetic Head Pose dataset generation: (a) Synthetic [16] used differ-

ent face models to generate synthetic data, taking into account different attributes;

(b) SynHead [11] used a more complex model considering also environment light

and background to increment the dataset dimension; (c) 300W-LP [4] model of

face profiling to generate new synthetic data (images from [16] [11] [4])

Another method to generate new images is the face profiling adopted to gen-

erate new samples in 300W-LP dataset [4]. A 3DMM is fitted to a frontal

image to obtain a depth image from 3D mesh, then by rotating it new syn-

thetic images are generated.
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� Directional suggestion: In a nutshell, ground-truth data are collected by

telling each candidate to look into specific marked points in the measurement

room, while a fixed camera captures images for each viewing direction.

Such method is comparatively a poor source for creating a ground-truth:

first, it assumes that each candidate is accurately directing his/her head

towards a specific point, unfortunately, this is a subjective task that people

tend to perform rather poorly; furthermore, it assumes that each candidate’s

head remains in the same accurate physical location, which is not possible

[44].

Figure 4.7: shows 15 subjects from Pointing’04 database [29] with head yaw angle

45° and pitch angle 0°. Inconsistencies can be observed between the appearances

and the head poses, indeed the appearance of some subjects looks more like a pose

of 90° yaw angle. The acquisition method is not effective (image from [44])

� Laser pointer directional suggestion: This method is somehow similar to the

previous one, with the only difference that a laser pointer is fixed to each

subject’s head, this allows the subject to pinpoint the discrete locations in

the room with much higher accuracy from visual feedback. However, the

head is still assumed to remain in the same exact location, which again can

introduce errors (people have a tendency to shift their head position during

data capture) [73].
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� Camera ring : Also this approach uses a single camera to capture images of

a person and the rotation angle information, but in this case the camera is

mounted on an annular ring that rotates around the subject that is seated

at the centre. This method has two disadvantages: (I) it assumes that each

candidate’s head remains in the same accurate physical location during data

acquisition; (II) it requires more equipment than other methods.

� Camera arrays : In this approach, multiple cameras at known positions si-

multaneously capture images of a person’s face from different angles. If care

is taken to ensure that each subject’s head is in the same location during

capture, this method provides a highly accurate set of ground-truth. Since

there is a limitation in the number of cameras, this method cannot be applied

to a scenario interested in determining continuous pose ranges.

(a) Directional suggestion (b) Laser pointer direction (c) Camera array

Figure 4.8: Some methods for Head Pose datasets creation

� Magnetic sensors : Magnetic Sensors, such as the Polhemus FastTrak or As-

cension Flock of Birds, work by emitting and measuring a magnetic field.

The sensor can be affixed to a subject’s head and used to determine the

position and orientation angles of the head [45].

By exploiting a magnetic field to perform the measurements, this method

is able to collect a very accurate ground-truth. The main drawback is that

these sensors are highly sensitive to the presence of small metals in the envi-

ronment. For this reason, the circumstances in which data can be collected
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are severely restricted and certain applications, such as automotive head pose

estimation, are therefore impossible with these sensors.

� Inertial sensors : As for metallic and pointer sensors, also inertial sensors are

fixed to a person’s head [46]. The most commonly used ones are accelerom-

eters and motion-sensing devices, which are normally coupled with Kalman

filters for noise reduction. Some less expensive sensors are also available in

the market (e.g., Mindflus, InertiaCube), but these do not accurately locate

the head. In some cases, these sensors can be included in a pair of wearable

glasses, such as the SMI-Eye Tracking glasses2 [15]. The main advantage is

that, unlike magnetic sensors, these ones are not affected by metallic inter-

ference.

� Optical motion capture system: These systems are robust and expensive de-

ployments that are, in their most professional form, used for professional

cinematic capture of articulated body movement. Typically, an array of cal-

ibrated near-infrared cameras use multiview stereo and software algorithms

to follow reflective or active markers attached to a person. For head pose es-

timation, these markers can be affixed to the back of a subject’s head [47] and

used to track the absolute position and orientation, as shown in figure 4.9.

� Panoptic studio: Motion capture technology has come a long way in the past

few decades, but the new technology of Panoptic studio has been developed

to try to capture motion accurately without those annoying little markers

used in optical motion systems [8].

The Panoptic studio is a massively multiview system that utilizes an enor-

mous spherical dome and 480 VGA synchronized cameras, 31 HD cameras,

10 Kinect 2 sensors and 5 DLP projectors, designed to reconstruct the la-

belled time-varying 3D structure and motion of multiple people engaged in

social interaction.

The number of large views provide precision over the captured space and

2https://imotions.com/hardware/smi-eye-tracking-glasses/
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facilitate the boosting of weak 2D human pose detectors into a strong 3D

skeletal tracker.

If we consider only the task of head pose, the main disadvantage of this

method is that the cost of implementing this data acquisition system can be

very expensive (see figure 4.11).

(a) Laser pointer directional suggestion [73] (b) SMI Tracker system [15]

(c) Optical motion capture system [35] (d) Panoptic studio [8]

Figure 4.9: Other methods for Head Pose datasets creation

� Iterative closest point : Technically speaking, the ICP [43] is an algorithm

employed to minimize the difference between two clouds of points. Given

3D data in sensor coordinate system and given a model shape in the model

coordinate system, it estimates the optimal rotation and translation that

aligns the model shape and the data shape, minimizing the distance between

the two.

Therefore, starting from a 3DMM of a face and an RGB-D image, that can

be obtained using various tools such as laser scanners, time-of-flight cameras

or using regular cameras (Microsoft Kinect is the most used in the literature)

and applying stereo vision techniques to the left and right images, the ICP
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algorithm [43] can be used to adapt a generic face template to the RGB-D

image. Although this method does not provide perfect estimates of the pose,

it has been proven that the mean translation and rotation errors were around

1 mm and 1 degree respectively [5] [11].

Figure 4.10: Automatic pose labelling using ICP algorithm [43]: A user turns the

head in front of the depth sensor, the scans are integrated into a point cloud model

and a generic template is fit to it. Personalized templates can be used for accurate

rigid tracking (image from [5])

� Estimation with Neural Networks or other algorithms : In some cases, infor-

mation about head pose are computed using deep learning models trained

on other HP datasets. The advantage of this approach is that can be ob-

tained data for “in-the-wild” images; the drawback is that the quality of

these annotations heavily depends on the model and the training data used,

the annotations may be erroneous in many cases.

Other approaches use algorithms that, starting from facial landmarks (typ-

ically 21 or 68 landmarks) and a 3D model, try to minimize the distance

between the projections of the corresponding points on the 3D model and

the actual landmark locations in the image (e.g. POSIT algorithm [23] [75]).

The estimated pose is coarse, but nevertheless gives a valid ground-truth for

approaches trying to find a rough approximation of the pose.
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Figure 4.11: Cost comparison of annotations acquisition of different datasets that

exploit different methods (image from [2]).

4.4 Evaluation metrics

A common informative metric used for evaluating HPE frameworks is the

Mean Absolute Error (MAE) for all the three angles, i.e., pitch, yaw, and

roll. MAE is quite popular (most of the papers discussed in this thesis use it as

main evaluation metric) since it provides a single statistic that gives a quick insight

into the performance, for both fine or coarse pose estimations.

MAE =
1

n

n∑
i=0

(|yi − ŷi|)

However, in scenarios with large-range pose variations (360°), this evaluation

method will not be reasonable. For example, when the actual angle is 170° and

the predicted angle is -170°, then the two angles are only 20° apart, but the MAE

value calculated is 340°, making it bigger than its actual value [2].

For this reason, another measure has been proposed in the literature, called

Mean Absolute Wrapped Error (MAWE) [61] [2]. The difference is clear if we

look at the formula:

MAWE =
1

n

n∑
i=0

min(|yi − ŷi|, 360− |yi − ŷi|)

Another measure, mainly used for coarse head pose estimation, is the so-called

Pose Estimation Accuracy (PEA). Being an accuracy measure, this metric
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depends on the number of poses, and therefore gives little information about the

actual system performance (was a nearby pose selected, or was the misclassification

a widely incorrect estimate?), for this reason few recent researches use it.

Confusion matrices are also employed for the representation in tabular form

when classification in several families is performed; row entries are normally in-

dexed with ground-truth and column entries with predicted poses. Also known as

error matrix, a confusion matrix provides a quick visual feedback about classifi-

cation errors, since all correct predictions are located in the diagonal of the table,

and sources of errors can be investigated by looking at their spread outside the

main diagonal.

In recent studies on head pose estimation in the driving context, new evaluation

metrics have been proposed [32] [33] [35]; however, none of the studies on general

head pose estimation use them.

The first metric is the Balanced Mean Angular Error, introduced to ad-

dress the problem of the higher number of frontal pose images during evaluation,

which leads to an unbalanced amount of different head orientations. The idea is

to split the dataset in bins based on the angular difference from the frontal pose

and average the MAE of each of the bins [32]

BMAE =
d

k

∑
i

φi,i+d i ∈ dN ∩ [0, k]

where φi,i+d is the MAE of all hypotheses, the angular difference between the

ground-truth and frontal pose is between i and i+ d, d is the bin size and k is the

maximum angle degree considered.

Other two metrics employed are the Standard Deviation (Std), which pro-

vides insights into the error distribution around the ground-truth, and finally, the

Root Mean Squared Error, to weight larger errors higher.

RMSE =

√√√√ 1

n

n∑
i=1

(y − ŷ)2

RMSE takes the squared difference of the predicted value and the ground-

truth value, weighing larger errors higher. Thus, high variation in predictions
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of an algorithm results in a higher overall error compared to the mean without

squaring the values [33].

4.5 Methods

The approaches used in the literature to solve the task of head pose estima-

tion are quite different between them, they have different degrees of automation,

different prerequisites and are based on different assumptions.

We try to arrange each system by the approach that underlies its implemen-

tation (taking as reference classifications proposed in previous works [55] [58]),

by giving a description and evaluating advantages and disadvantages of each ap-

proach.

Since head pose estimation has been developed for a long time, many meth-

ods have emerged during this period, however, most current work is based on

deep learning. Indeed, starting from 2015 the methods based on convolutional

neural networks have been used more and more, highlighting a shift in methodol-

ogy, from traditional machine learning (ML) methods towards deep learning (DL)

approaches.

For this reason, we defined the category of classical methods that includes all

the approaches that are little, or no longer, considered in the current research and

we focused our review on deep learning based models. More details about classical

methods can be found in [55] [56]. Other more recent works are [57] [58], with

respect to them we will cover the parts relating to the state-of-the-art models in

more detail, with a special focus on multi-task learning, 3DMM based and CNN

based models.

Classical Methods:

� Appearance template methods: compare a face image to a set of exemplars

templates to find the most similar view [45,102];

� Detector array: use a series of head detectors, each trained for a specific

pose and assign the pose relative to the detector with the greatest support

[103,104,201];



68 4. Head Pose Estimation

� Manifold embedding: embed an image into low-dimensional manifolds that

model the continuous variation in head pose and use these for pose regression

[125–134];

� Tracking methods: use temporal constraints to recover the pose from ob-

served movements in video frames [17,46,135–138];

� Model based methods: use facial keypoints to determine the head pose

from their geometrical configuration using geometric formulation [139–141]

or through keypoint matching with a static face model [142–146];

� Non-linear regression methods: use classical non-linear regression machine

learning models to develop a functional mapping from the image, or feature

data, to a head pose measurement [5, 15,45,47];

� Hybrid classical approaches: combine one or more of the aforementioned

methods in a single model [55,56];

Modern approaches:

� Semantic based methods: compute head pose using probability maps pro-

duced by a face segmentation algorithm [96–100];

� Model based methods: modern model based approaches use CNNs to regress

head pose from landmarks configuration [41,147–149] or to reconstruct 3DMM

and learn its rotation parameters [157,158,160,164].

� Deep learning regression: use deep convolutional neural networks to develop

a mapping from the image to the head pose measurements [7, 11, 61, 62, 79,

168,173–175];

� Multi-task methods: jointly solve head pose with other correlated tasks (e.g.

face detection or face alignment) to improve the overall performance [108–

113,116,119–124];

We tried to organize the different proposed approaches under a unique classi-

fication. This has been a quite challenging activity because the borders between
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the categories are not well defined, but are blurred, there are methods that fall

more into one area, but are also influenced by other approaches. We have taken

as a reference the fundamental approach that underlies the implementation of a

model to categorize it, e.g. some methods that are based on keypoints, but exploit

deep networks for regression, that are classified as model based [147, 148]. The

subdivision into two macro categories helped us to show and discuss the evolution

of the different techniques up to SOTA methods like: POSEidon [7], WHENet [61],

img2pose [60], MNN [119], SynergyNet [160] and SADRNet [164].

A. Appearance template methods

Appearance template methods use image-based comparison metrics to match a

view of a person’s head to a set of exemplars with corresponding (discrete) pose

labels. In the simplest implementation, to an image is given the same pose that

is assigned to the most similar of the exemplars [45] (1999) [102] (2002).

Appearance template methods are among the first approaches adopted for the

head pose estimation task. Their advantages are (I) the fact that are suitable

for both low and high resolution images; (II) the fact that no negative training

data is needed during the training process; (III) the fact the expansion of the

template models can be easily adjusted at any time, allowing the architecture

to adapt to varying conditions, if required.

However, they are limited from the accuracy of head detection models, which

must be reliable. In the case of head localization errors, this leads to serious

degradation in terms of accuracy. Nevertheless, the greatest weakness lies on the

faulty assumption of pairwise similarity. To make this point clearer consider two

images of the same subject but in different poses, and two images of different

subjects but in the same pose. In this latter case, there is a high probability

that the effect of identity causes a wrong association of the image with an

incorrect pose. Moreover, these methods become unreliable when variation in

local appearance occurs, there is no universal solution to deal with occlusions,

such as subjects with eyeglasses, facial hair, etc.

Nowadays there are more efficient approaches that do not suffer from these
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limitations, this is why appearance template methods are no longer used.

Figure 4.12: Appearance template method: compare a new head view to a set of

training examples, each labelled with a discrete pose, and find the most similar

view (image from [55])

B. Detector array

The idea is to train multiple face detectors, each specific to a different discrete

pose, then a test image is evaluated by a sequence of trained detectors, for

arrays of binary classifiers, successfully detecting the face will specify the pose

of the head, assuming that no two classifiers are in disagreement. For detectors

with continuous output, pose can be estimated by the detector with the greatest

support [103] (1998) [104] (2006) [201] (2004).

These methods are similar to appearance template algorithms in the sense that

they also operate directly on cropped face images, however, instead of comparing

an image to a large set of individual templates, the image is evaluated by a

detector trained on many images with a supervised learning algorithm.

One of the many advantages of the detector array method is that no separate

face detection algorithm is required to develop a complete head pose estimation

system. These methods, which work for both low and high resolution images,

are also robust to appearance variations, which was the main drawback of ap-

pearance template methods.

With respect to disadvantages, training many detectors for each discrete head
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pose can be a burdensome task, since both positive (face data) and negative

(non-face examples) data should be provided in the training phase for each

detector. Moreover, as the number of detectors increases, systematic problems

also arise: negative and positive training data for detectors of near poses may be

very similar in appearance, making the training difficult and not very effective

if many poses are considered.

Nowadays methods that direct regress head pose have an equivalent computa-

tional cost, but are more easily trainable and can achieve accurate results also

for continuous pose estimation. For this reason, also detector arrays are no

longer used in real-world applications.

Figure 4.13: Detector array: train a series of head detectors each attuned to a

specific pose and assign a discrete pose to the detector with the greatest support

(image from [55])

C. Manifold embedding based methods

Based on the assumption that informative and discriminative representation of

the data lies on a low-dimensional smooth manifold (differentiable manifold), the

idea is that the continuous variation of head pose can be modelled and inter-

preted as a low-dimensional manifold [131]. The low-dimensional representation

of the head pose images can be learned by unsupervised or supervised manifold

learning.

For head pose estimation, the manifold must be modelled to maintain certain
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local attributes (or geodesic distance) of the high-dimensional pose image set,

and an embedding technique is required to project a new sample into the mani-

fold. This low-dimensional embedding can then be used for head pose estimation

with techniques such as regression in the embedded space or embedded template

matching [57].

Any dimensionality reduction algorithm can be considered an attempt at mani-

fold embedding, but the challenge lies in creating an algorithm that successfully

recovers head pose while ignoring other sources of image variation [55].

Therefore, these approaches are mainly composed of two stages: a first stage

where a feature set is obtained from row image, and a second stage where linear

or non-linear methods make use of labelled training set to create a mapping

from images (features space) to their corresponding poses [133].

The linear methods have the main advantage that embedding can be easily

performed by matrix multiplication. However, the representation ability of non-

linear methods is usually superior to the one offered by linear approaches.

Nevertheless, pose data may be located in multiple different (low-dimensional)

manifolds, owing to changes in appearance, such as different gender, identity, and

lighting. Therefore, some methods based on multi-manifold have been proposed

[129] [132].

Early studies tried to estimate head pose by projecting an image into a PCA

subspace and comparing the results to a set of embedded templates [125] (1998),

obtaining better performances than appearance template methods. The limita-

tion of linear models, like PCA, is that there is no guarantee that the primary

components will relate to pose variation rather than to appearance variation.

Other approaches focused on non-linear methods, such as Isometric features

(Isomap) [126] (2004) [127] (2007), Locally Linear Embedding (LLE) [127] (2007)

and Laplacian Eigenmaps (LE) [127] (2007) [131] (2017), the problem is that

each of these techniques operates in an unsupervised fashion, ignoring the pose

labels, as a result, they have the tendency to build manifolds for identity as well

as pose [127] [131].
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Sundararajan et al. [130] (2015) address the problem of the source variation

by learning a similarity kernel through geometric invariant features using local

keypoint correspondence, outperforming previous methods.

An interesting possibility to enhance the embedding results is to adopt a su-

pervised strategy and use head pose labels in order to learn the manifold struc-

ture. For example, Balasubramanian and Panchanathan [127] (2007) presented

a Biased Manifold Embedding (BME) framework in which the distance met-

ric between features is modified so that heads under similar poses are brought

closer to each other than they would be under the unbiased (unsupervised) case.

Huang et al. [128] (2011), instead, used supervised Local Subspace Learning to

learn a local linear model which showed prominent potential to provide accurate

head pose estimation when the training data is pretty sparse and non-uniformly

sampled.

Among multi-manifold methods, the integration of manifold embedding and

clustering to design an HPE system, which is identity independent, was pre-

sented by Liu et al. [129] (2010). They argued that a single manifold is not

enough for head pose estimation and that appearance variations, such as changes

in identity, scale and illumination, make it necessary the use of multiple different

manifolds to model pose parameters. Thus, the authors presented a clustering

method, called K-manifold clustering, to construct multiple manifolds, each of

which characterizes the underlying subspace of some subjects. Peng et al. [132]

(2014) also learned multiple manifolds, they used Homeomorphic Manifold Anal-

ysis to build a separate manifold for each subject, and learn non-linear mappings

to relate each subject-manifold with a common pose-manifold whose topology

is predefined as a unit circle or sphere.

More recently, a manifold embedding based on Generalized Discriminative Com-

mon Vectors (GDCV) that allows better modelling of a face image subspace was

proposed by Diaz-Chito et al. [133] (2018). Finally, Derkach at al. [134] (2019)

proposed a 3D head pose estimation algorithm based on non-linear manifold

learning using tensor decomposition to generate separate subspaces for each

variation factor. They showed that the coefficients within each of these sub-
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spaces define a continuous curve that can be modelled in terms of trigonometric

functions, which are indeed the bases to explain rotation effects. The proposed

model, based on trigonometric functions, produces competitive pose estimation

results when RGB-Depth images are available.

Summing up, promising performance is achieved by the classical manifold learn-

ing methods, which, however, are highly improved by supervised manifold learn-

ing. It proves that the supervised information represented as angles of head poses

is helpful in head pose estimation. However, there are still hurdles to take. Most

of the methods are tested in different settings, e.g., different databases are used

in different methods. A common framework could help to offer fair justifications.

Moreover, manifold embedding is still challenging when in-the-wild images are

considered given the intrinsic difficulty in modelling the manifolds when more

variation factors are present. This is also due to the problem of heterogeneity of

training data, since in most cases it is not possible to obtain a regular sampling

of different poses for different individuals.

Nowadays other methods are preferred to manifold embedding because they can

obtain very accurate real-time performance in easily implementable frameworks.

Further research on manifold embedding methods is needed in order to fill the

gap with state-of-the-art models.

Figure 4.14: Manifold embedding: directly project a processed image onto the head

pose manifold using linear and non-linear subspace techniques (image from [131])
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D. Tracking methods

Tracking methods track the face movement between consecutive video frames

and from these infer the pose change by utilizing temporal information of already

tracked head parts and smooth motion constraints [56].

In the bottom-up approach, the tracking is based on the facial landmarks ex-

tracted from each frame (figure 4.15). These feature points are then matched

with SIFT descriptors or with 3D face shapes to recover the pose change under

full perspective projection [135] (2001) [46] (2003) [136] (2006).

Tracking can alternatively employ a model-based approach, by finding the trans-

formation of a 3D model that best accounts for the observed movement of the

head. The model used in tracking can be rigid or non-rigid (deformable), the

second one can provide more accurate results. To estimate head pose, one sim-

ply needs to find the rotation and translation of the model that best fits each

new image-based observation [138] (2000) [137] (2001).

These methods demonstrate high accuracy by discovering the small pose shifts

between video frames, but they require initialization from a known head position

and, typically, the subject must maintain a frontal pose before the system has be-

gun and must be reinitialized whenever the track is lost [55]. Another drawback

of tracking approaches is that they are very accurate only in the short-term, due

to tracking error accumulation [56]. Moreover, tracking methods can be trained

only on datasets that contain video sequences, reducing the amount of available

data (especially in unconstrained scenarios).

These methods were of great interest until five-ten years ago when there were

no very accurate methods that could carry out a continuous pose estimation

in real-time (Hyperface [108], which was the state-of-the-art at the time, took

a few seconds for a prediction) and training deep network was difficult due to

computational requirements. Now, methods based on deep learning are able to

obtain an accurate estimate of head pose at tens of frames per second without

incorporating any time constraint, but by estimating the pose from the single

frame each time. For this reason, interest in tracking methods has been lost
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in recent literature, although there are hybrid approaches that also incorporate

time constraints to increase performance [159] (2018).

Figure 4.15: Tracking method: track the face movement between consecutive

frames and from this infer the pose changes (image from [58])

E. Hybrid classical methods

Hybrid approaches combine one or more of the aforementioned methods to es-

timate pose. These systems can be designed to overcome the limitations of any

one specific head pose category, increasing the estimation accuracy. For exam-

ple, a static head pose estimation approach can be supplemented with a tracking

system. For more details [55] [56]. End-to-end approaches that leverage deep

networks are now the most popular systems for head pose estimation, there is

no longer the need to combine different approaches to obtain high accuracy.

F. Segmentation based methods

These methods address the problem of head pose estimation by exploiting the

strong relationship between the head pose and the position of various face parts.

The idea is that the performance of the face pose predictor can be improved if a

prior efficiently parsed image, having information about various facial features,

is provided as input [96–99].

The first step is to perform semantic segmentation over the input image by

training a model for each discrete pose previously defined in a specific set. Each

model parses the face into different parts (e.g. nose, mouth, eyes, hair) and

produces probability maps. Given a new image, the probabilities associated to
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face parts by the different pose-specific models are used as the only information

for estimating the head pose by using specifically designed algorithms or by

training a classifier (e.g. Random Forest, SVMs, etc...).

Huang et al. [101] (2008) were the first to exploit the relation between face

segmentation and head pose estimation. In their method, initially, the face

is segmented into three face parts (skin, hair, background) and then in a sec-

ond stage, using a simple regressor, they estimate basic discrete head poses:

“frontal”, “right-profile” and “left-profile”. Instead, other works perform a 6-

class segmentation and consider a higher number of discrete poses (e.g. 13

poses [96] [98] or 93 poses [97] [99], [100]).

Khan et al. [96] (2017) proposed a simple algorithm to exploit probabilities as-

sociated to face parts in order to predict head pose: first, they run segmentation

models for all different poses, obtaining probability maps; then, they consider

the maximum of such probabilities to assign a pose to each pixel; finally, they

count the total number of pixels associated to each discrete pose and assign to

the face image that with the highest number. Similarly was done in [97] (2020),

but they used the concept of super-pixel, i.e. small meaningful patches belong-

ing to the same object. Instead, other studies used machine learning approaches

to obtain the head pose, starting from probability maps multi-class linear SVM

classifier [98] (2019), Random Forest classifier [99] (2019) and Soft-Max classi-

fier [100] (2021) have been tested to obtain discrete head poses.

The main advantage of these methods is that are able to exploit the strong rela-

tionship between head pose and position of various face parts, which is useful for

accurate pose estimation. Moreover, these methods do not require any landmark

detection process or face alignment step. Finally, these systems are typically

multi-task, they combine HPE, facial expression detection, gender recognition

and age classification in a single framework.

However, to build such a systems, manually segmented face images are needed

for training, and segmentation is required as preprocessing, therefore the com-

putational cost of such methods can be much higher when compared to other
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approaches. Moreover, the proposed methods can solve only the coarse head

pose estimation task because they classify images into a discrete set of poses.

The use of regression models has not been studied in literature yet.

Figure 4.16: Segmentation based method: perform face segmentation and from

probability maps infer head pose (image from [96])

G. Model based methods

Model based methods require either a 3D head model or the localization of facial

keypoints (landmarks), such as eyes, eyebrows, nose, lips, etc. (or both of them

in some cases) and from these estimate the head pose. It is proven that these

factors, such as the location of the face in relation to the contour of the head,

strongly influence the human perception of the head [55]. For this reason, model

based methods are particularly interesting, they can directly exploit properties

which are known to influence human head pose estimation.

Different facial features and keypoints are exploited in different ways in the

literature.

Early approaches, which we can call Geometrical methods, focused on a set of

facial landmarks and estimate the pose directly from the configuration of these

points by using geometric concepts. For example, by computing symmetry axis

connected the eyes/mouth and assuming a fixed ratio between keypoints and

measuring the deviation from one pose to another, or by using the incident angles

between different axes and perspective distortion [139] (1996) [140] (2006) [141]

(2010). Geometrical approaches were among the first used to solve the head

pose estimation task because require few calculations and are quite simple [56].
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However, they have been progressively abandoned with the introduction of non-

rigid face models and neural networks that obtained higher accuracy.

Figure 4.17: Geometrical method: detect facial keypoints and estimate the pose

from the relative configuration of these features (image source [55], [141])

In recent years, with the development of deep learning and due to the high avail-

ability of data, methods that directly extract facial landmarks have improved

enormously their performance and have become the dominant approach in facial

analysis tasks [62]. A by-product of face alignment is the ability to recover the

3D pose of the head in two different ways: (I) the Landmark-to-Pose approach

and (II) by exploiting deformable methods.

In the landmark-to-pose approach the keypoints are given as input to a ML, or

DL, algorithm that regress the head rotation angles.

Werner et al. [41] (2017) proposed a benchmark protocol to learn pose estima-

tor on top of any landmark detector, called HPFL, that trains a Support Vector

Regression (SVR) model using landmarks as features. Gupta et al. [147] (2019)

proposed to use a deep learning architecture to regress head-pose giving as input

uncertainty maps computed from 5 facial keypoints. Even Xia et al. [148] (2019)

used a CNN, but they give as input a heatmap of 68 landmarks stacked with a

transformed version of the input image, so that the neural network can focus on

the area around facial landmarks while extracting features from the image, re-

ducing interference from wild environment. Dapogny et al. [149] (2020) proposed

an attentional cascade model that iteratively refines head pose and landmark es-

timates. The advantage is that using head pose information to refine landmark
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alignment provides more precise landmark estimates (as stated also in [154]),

which in turn helps refine the head pose prediction, further advocating for an

entwined landmark alignment and head pose prediction scheme.

Recently, other researchers have tried to define methods that does not need

training for estimating head pose once facial landmarks are detected. Abate et

al. [150] (2019) used a quad-tree, i.e. a particular kind of unbalanced tree, that

divides the image into smaller and smaller quadrants, to measure the distance

between the representation of the input face with a reference model. Barra et al.

[151] (2020) exploit a spider-web shaped model that uses the landmark locations

to build a feature vector, which in turn is compared to a set of prototypical

vectors to determine the closest one and establish the pose. Unfortunately with

these two methods only discrete pose can be obtained (with 5° of angular step),

they are computationally efficient but less effective than other methods.

Deformable methods, instead, use a non-rigid model and fit it to the image such

that it conforms to the facial structure of each individual and estimate the head

poses from the correspondence between feature points on a 2D face image and

those on a 3D facial model.

The 3D pose information of the head can be inferred by solving the Perspective-

n-Point (PnP) problem, i.e. the problem of estimating the pose of an object

by finding the rotation matrix R and the translation vector t given intrinsic

camera parameters, known locations of n 3D points and their corresponding 2D

projection in the image. Indeed, by looking for the projection relation between

a 3D facial model and a 2D face image, head pose angles can be calculated from

the elements in the rotation matrix directly [142] [143].

The most simple and commonly used pipeline involves a number of steps [62]: (1)

face alignment; (2) definition of 3D human mean face model; (3) approximation

of camera intrinsic parameters; (4) solving 2D-3D correspondence problem using

one of the available PnP algorithms, such as POSIT [75] or DLS [76]. These

methods became very popular, and replaced geometric methods, because there

is no need to include and train a pose estimation model, any method for face
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alignment can be used, Dlib [152] (2014) and FAN [153] (2017) obtained accurate

results in HPE (a survey on face alignment methods [77]).

Other works do not use a mean face model, but try to model precisely the facial

structure. Among them, early deformable approaches [155] (2006) [156] (2012)

were based on Active Shape Models (ASM) [64] and on Active Appearance Mod-

els (AAM) [65], these are statistical shape models made out of object samples.

ASM and AAM guide the learning algorithm to iteratively deforms the model

to find the best match position between the model itself and the data in a new

image [55]. The fitting procedure is very fast, but one major drawback is its

non-robustness to viewpoint changes. In the case of facial images, ASM/AAM

fitting is not appropriate for adopting to faces that exhibit large pose variations.

For multi pose fitting a combination of a small number of 2D AAM models is

needed [167] (2009).

To overcome the drawbacks of the 2D AAM, modern deformable approaches

rely on 3D Morphable Models (3DMM). A 3DMM can be fit to image data or

depth or shape data to adapt the model to the subject’s head, covering larger

pose variations, then the 2D-3D correspondence can be solved more efficiently.

Wu et al. [157] (2017) assumed to have a 3D deformable facial model and fol-

lowed a cascade iterative procedure that iteratively updates the facial landmark

locations, the head pose angles and non-rigid deformations. There is no learn-

ing involved for head pose that is estimated from the 3D deformable model by

minimizing the projection error for all landmark points. Diaz Barros et al. [159]

(2018) proposed a hybrid method that incorporates two strategies: (1) a tempo-

ral tracking scheme, which uses optical flow to compute the correspondences of a

set of keypoints in every pair of frames; (2) a head pose estimation scheme which

estimates pose independently in each frame by aligning 2D facial landmarks to

every image; the head pose in each scheme is estimated by minimizing the re-

projection error from the 3D-2D correspondences. Liu et al. [158] (2021) trained

a CNN to reconstruct a personalized 3D face model from the input head image

and through 3D-2D keypoints matching estimate head pose under constraint

perspective transformation (see figure 4.18).



82 4. Head Pose Estimation

Furthermore, some of the state-of-the-art networks for head pose estimation

follow a different approach, also based on 3DMM. They focus on the 3DMM-

based 3D dense alignment 3D dense reconstruction task and can be also used for

pose estimation, indeed, 3DMM regression contains pose, shape and expression

parameters. There is no keypoints matching involved.

Zhu et al. [4] (2016) proposed an alignment framework termed 3D Dense Face

Alignment (3DDFA), which directly fits a 3D face model to RGB images via

convolutional neural networks. The primary task of 3DDFA is to align facial

landmarks, even for the occluded ones, using a dense 3D model. As a result of

their 3D fitting process, the 3D head pose is produced. SynergyNet [160] (2021)

is a novel network designed to predict complete 3D facial geometry, including

3D alignment, face orientation and 3D face modelling. The network defines a

synergy process that utilizes the relation between 3D landmarks and 3DMM

parameters to improve the overall performance. Despite the large amount of

work on 3DMM-based 3D dense alignment and the fact that many of the pro-

posed approaches directly estimate rotation matrices, Wu et al. were the first

to propose a discussion on the head pose estimation task, previous works only

focus on the evaluation of landmarks and 3D faces. The authors, as well as

evaluate SynergyNet, conducted extensive and detailed benchmarking on other

3DMM-based methods, such as 3DDFA-TAPAMI [161] (2017), 2DASL [162]

(2020) and 3DDFA-V2 [163] (2020), highlighting the better performance of the

proposed network due to the innovative synergy process introduced. SADRNet

is another network proposed very recently by Ruan et al. [164] (2021) that is

one of the state-of-the-art models on AFLW2000 [4] dataset. This is an encoder-

decoder-based architecture that regresses the deformation D and infers the pose

parameters f , R and t to reconstruct the 3D face geometry from a single 2D face

image. The most important novelty introduced in the network is the attention

mechanism used to enhance the visible facial information and estimate the trans-

formation matrix only with visible landmarks, giving robustness to occlusions

and large pose variations.

Finally, with the development of consumer-level depth-image sensors, many
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studies have tried to exploit 3D-face model-based approaches using RGB-D data.

These studies have developed in parallel with the others presented before and

mainly use optimization techniques, such as the ICP algorithm [43], which aim

to minimize the discrepancy between depth data and a parametrized 3D model.

Martin et al. [165] (2014) proposed a real-time head pose estimation method

that first creates a point-cloud based 3D head model from the input depth im-

age and then registers the 3D head model with the iterative closest point (ICP)

algorithm [43] for head pose estimation. Mayer et al. [166] (2015) proposed esti-

mating head poses by registering a 3D morphable model (3DMM) to the input

depth data through a combination of particle swarm optimization (PSO) and

the ICP algorithm [43]. Higher pose estimation accuracy is achieved at the ex-

pense of a much higher computational cost. A 3D morphable model and online

3D reconstruction are used by Yu et al. [10] (2018) for full head pose estimation,

thus also handling extreme poses. Although estimating the head poses on the

depth image can avoid suffering from the cluttered background and illumination

changes, that are common in RGB images, the main disadvantage is that depth

image sensors are not available in most of the current real-world applications.

Summing up, we saw that there is a huge literature of approaches based on the

facial keypoints, that are used as key elements of geometric methods, or given as

input to neural networks (so used as features), or even are the only information

needed in the PnP approach. The advantage is that it has been demonstrated

that there is a close relationship between head pose and the distribution of the

landmarks, these are valuable information to estimate head pose [148]. More-

over, there is a growing number of landmark detectors/trackers that can be

used for research purposes for free and there is a rapid progress in improving

the landmark quality, including unconstrained scenarios with difficult lighting,

out-of-plane head poses, and occlusions [41].

PnP approach is one of the most used in the literature, but has a disadvantage,

many parameters (such as camera pose) typically are approximated and this

can lead to inaccuracies in the results. Moreover, when a mean face model

is used, even with perfect registration, the images of two different people will
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not line up exactly, since the location of facial features varies between people,

leading to errors in the final result [148]. For this reason, recently developed

approaches rely on face reconstruction as previous step to 2D-3D keypoints

matching [158]. Furthermore, these methods need high-resolution images and

the position of landmarks must be initialized before the pose estimation, as

discussed by Mallick [142].

For this reason, recent research is mainly focused on landmark-to-pose ap-

proaches that regress the head pose from landmark configuration using deep

networks, and on 3DMM based approaches that reconstruct and align a 3D

dense face model with the images. Less research has been done in this last case,

but this seems a very interesting approach that obtains impressive results, even

if the head pose is obtained only as a by-product. The disadvantage of 3DDFA

approaches is that the networks are quite complex, fully supervised and depends

on costly face mesh annotations. Nevertheless, SADRNet [164] reconstructs the

3D model of the face (starting from a cropped image) in 13.5 ms. Although,

there is a lot of uncertainty about the performance in low resolution far-field

imagery due to the difficulty in achieving good fitting and precise image feature

location in those conditions.

(a) (b)

Figure 4.18: Example of models based on 3D face reconstruction: (a) A personal-

ized 3D face model is reconstructed from the input head image using a CNN, then

keypoints matching is used to obtain the pose [158]; (b) In SynergyNet a backbone

network learns to regress 3DMM parameters (pose, shape, expression) [160].



4.5 Methods 85

H. Non-linear regression methods

The non-linear regression methods do not require keypoints detection, but di-

rectly predict the head pose angles through images. A model is trained in a

supervised manner and learns a functional mapping from the image space to

discrete/continuous pose directions. The main challenge is to train a model in

a way to ensure that the regression tool will learn a proper mapping.

Early approaches used classical machine learning models such as Support Vector

Regressor (SVR) [45] (2000), Localized Gradient Histograms (LCH) [47] (2007)

or Random Forest (RF) [5] (2011) [15] (2016). Then, widely used became feed-

forward neural networks: Multi-layer Perceptron (MLP), with cropped images

of the head, and Locally Linear Maps (LLM) obtained good results in the pose

estimation task [55,58].

In the last years, there was a shift towards the deep learning paradigm, with the

increasing use of convolutional neural networks to estimate the three-dimensional

head pose from image intensity with higher accuracy.

First attempts with deep models exploited simple architectures [169] (2014) [170]

(2016) and common networks [172] (2017), such as AlexNet [71], VGG [70],

ResNet [69]. Patacchiola et al. [171] (2017) improved the results by introducing

dropout and adaptive gradient methods during the training of the network, and

by training a different specialized network for each rotation angle (pitch, yaw,

roll), that permits fine-tuning for a specific degree of freedom without losing

predictive power on another one. They also released an open-source Python

library called DeepGaze3. Work from Gu et al. [11] (2017) used a recurrent

neural network to regress the head pose Euler angles by exploiting the time

dimension in video sequences. RNN has the ability to learn motion information

implicitly, gaining robustness to large head pose variations and occlusions.

Ruiz et al. [62] (2018) proposed to use a three-branch convolutional neural net-

work structure, that they called Hopenet, where each branch is responsible for

one of the Euler angles. All branches share a backbone network that can be of

3https://github.com/mpatacchiola/deepgaze
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arbitrary structure, e.g. ResNet50 [69], AlexNet [71], VGG [70]. This backbone

network is augmented with a branch-specific fully-connected layer that predicts

a specific angle. By having three cross-entropy losses, one for each Euler angle,

three signals are backpropagated into the network, which improves learning.

The overall framework of Hopenet is adopted also by Zhou et al. [61] (2020)

for their network WHENet. WHENet adopted a lighter backbone w.r.t. pre-

vious work, EfficientNet-B0 [72] was used (it incorporates Inverted Residual

Blocks, from MobileNetV2, to reduce the number of parameters while adding

skip connections). This network is optimized for the full range Euler angles (360

degrees), not only for narrow range as the previous works (180 degrees). This is

achieved by careful choice of the wrapped loss function as well as by developing

an automated labelling method for the CMU Panoptic dataset [8], that is used

during the training of the network.

Figure 4.19: Hopenet architecture [62]: ResNet50 with combined Mean Squared

Error and Cross Entropy Losses (image from [67])

FSA-Net [168] (2019) introduced a feature aggregation method to improve pose

estimation. QuatNet [173] (2019) proposed a Quaternion-based face pose re-

gression framework which claims to be more effective than Euler angle-based

methods. TriNet [79] (2021) used a three vector-based representation that re-

places Euler-based and Quaternion-based representations for increasing efficacy.

RankPose [174] (2020) is another CNN that explored Siamese architecture and



4.5 Methods 87

ranking loss to distinguish pose-related from a mixture of pose-related and ir-

relevant features, such as age, lighting and identity.

Given the fact that the bounding box significantly affects the quality of the

trained NN for the HPE problem [187] [199], Sheka et al. [175] (2021) proposed

to average the results of predictions of the same neural network, but with various

bbox offsets, in what they call offset ensemble.

Recently, some attempts to propose lightweight networks that obtain good

results at lower costs have been made, Berral-Soler et al. [179] (2021) and

Dhingra [180] (2022) proposed respectively RealHePoNet and LwPosr networks.

However, the results are less accurate than those obtained with more complex

models.

Other researchers, to overcome the limitations of publicly available datasets, that

are limited in size, resolution, annotation accuracy and diversity, used synthetic

generated data from high-quality 3D facial models to train their networks [16]

(2016) [11] (2017). Wang et al. [176] (2019) proposed a coarse-to-fine network

to predict head pose trained on synthetically rendered faces. However, they

noticed that the difference (domain gap) between rendered (source domain) and

real-world (target domain) images negatively affects the performance. For this

reason in [177] (2019) and [178] (2021) Domain Adaptation (DA) techniques are

applied to reduce the influence of domain differences.

Finally, some researchers leveraged depth data [5] (2011), [182] (2015), [7] (2017).

Among them the best performing is POSEidon [7] (2017), which is a network

composed of three independent convolutional nets followed by a fusion layer,

specially conceived for understanding the pose by depth. This is the state-of-

the-art model on the BIWI database [5] (see table 4.3).

The main advantage of head pose estimation derived from CNNs is the strong

learning ability, especially for image processing, which make it possible to achieve

the desired effects. These algorithms work properly with high and low resolution

images, and they have demonstrated their representational ability in tolerating

some errors in the training set data. They are not dependent on the head model
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chosen, the landmark detection method, the subset of points used for alignment

of the head model or the optimization method used for aligning 2D to 3D points.

Moreover, they can be computationally efficient, straightforward to implement

and easily updated with the addition of new data (data-driven approach, the

upper limit is high).

However, the performance of these methods drops drastically if the labelled face

images are not properly annotated. There can be difficulties in obtaining suffi-

cient data with head annotations for head pose estimation training, especially

data with changes in appearance (such as sex, age group, and race attribute) or

environmental interference (such as lighting conditions, shooting angle). Many

datasets don’t have a uniform distribution of data (many images contain frontal

or near-frontal faces) causing difficulties in learning large pose variations. More-

over, most powerful CNNs are complex, the number of layers is getting deeper

and deeper, and can require a long training time. All these methods rely on

a face detection step, prior to pose estimation, that can heavily influence the

result.

We noticed that the problem of the amount of data can be addressed by using

synthetic datasets, these provide accurate ground-truth for each pose and con-

tain a uniform distribution of head angles. The disadvantage of synthetic data

is the domain gap with real ones, the performance is lower than using real data;

further research is needed to overcome this limitation.

Figure 4.20: POSEidon architecture [7]: depth images are provided to a head

localization CNN, then the head region is given in input to the POSEidon network

to obtain pitch, yaw and roll estimations (image from [7])
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I. Multi-task methods

The idea behind multi-task methods is to relate head pose estimation to other

face image analysis problems, such as gender recognition, landmark detection,

face expression recognition, race classification, etc. because it is proven that

jointly solving multiple tasks can lead to better performance [105–114].

The multi-task learning (MLT) paradigm encompasses a set of learning tech-

niques that provide effective mechanisms for sharing information among multi-

ple tasks. It enables the use of larger and more diverse datasets, that improve

the regularization during training and the generalization of the final model (for

more details section 2.5).

Among multi-task methods adopting traditional machine learning frameworks

there are [105] (2013) [106] (2014). The former adopts the graph guided FEGA-

MTL framework for head pose classification of mobile targets based on multi-

view image source. The physical space is divided into a discrete number of

planar regions and the model try to learn the pose appearance relationship in

each region. The latter tried to do the same, but evaluating the SVM-MTL

framework.

However, multi-task methods have become very popular with the explosion

of deep learning because of the unique ability of neural networks to trans-

fer and share knowledge among various tasks. MTL has been widely used to

simultaneously learn related tasks, such as: face detection + head pose es-

timation [115] [116] [123] [124] [60], face alignment + head pose estimation

[110] [111] [119] [120] [121], face detection + face alignment + head pose es-

timation [112] [113] [122], face detection + face alignment + head pose es-

timation + gender recognition [108] [117], or also in combination with other

tasks such as face recognition and appearance attributes estimation (age, smile,

etc.) [107] [109] and finally there is head pose estimation + gaze estimation [118].

Zhang et al. [107] (2014) were the first to investigate the possibility of optimizing

multiple tasks by using a Task-Constrained Deep Convolutional Neural Network

(TCDCN) to jointly optimize facial landmark detection with a set of related
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tasks, such as head pose estimation. The proposed network learns a shared

feature space that is optimized to solve all the tasks at the same time. The

network does not perform face detection, therefore it requires an image of a face

as input or an additional preprocessing step. A similar network was proposed

also by Ahn et al. [115] (2018), but their focus was on real-time driving face

detection and head pose estimation.

Ranjan et al. [108] (2017) proposed a new model called Hyperface that performs

face detection, face alignment, pose estimation and gender recognition. The

network is designed to exploit the fact that information contained in features

is hierarchically distributed throughout the network, therefore lower layers re-

spond to edges and corners, and hence contain better localization properties (are

more suitable for face alignment and pose estimation tasks); on the other hand,

higher layers are class-specific and suitable for learning complex tasks such as

face detection and gender recognition. They make use of all intermediate layer

features (called hyperfeatures) through a technique named feature fusion, which

allows to transform features to a common subspace where these can be combined

linearly or non-linearly. They show that fusing intermediate layers improves the

performance for structure dependent tasks of pose estimation and landmarks

localization, as the features become invariant to geometry in deeper layers of

CNN. Recently, Zhang et al. [117] (2020) revised the Hyperface model by using

the differential private stochastic gradient descent to preserve the privacy of the

training data during model training.

Then, Ranjan et al. [109] (2017) proposed another model called All-in-One. It

differs from Hyperface because (I) simultaneously performs a higher number of

tasks and (II) domain-based regularization is adopted by training on multiple

datasets, each one specific to a subset of the tasks.

Xu et al. [110] (2017) have brought into the field a new type of network, i.e. a

cascaded architecture that is designed in a hierarchical way based on coarse-to-

fine principles, which refines the shape and pose sequentially. Other cascaded

architectures have been presented in the literature, the main difference among

them is the number of stages, the type and the number of tasks addressed in
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each stage [113] (2018) [116] (2018).

Kumar et al. [111] (2017) transformed the cascaded regression formulation into

an iterative scheme, by proposing the KEPLER model. In each iteration, a

regressor predicts visibility, pose and the corrections for the next stage, and a

rendering module uses these corrections to prepare new rendered data employed

in the next iteration. The network is trained on three tasks namely, pose,

visibilities and bounded error using ground-truth annotations. The joint training

is helpful since it models the inherent relationship between the visible number

of points, the pose and the amount of correction needed for a keypoint in a

particular pose.

Many other researchers focused on improving the time needed for the network to

resolve the tasks, indeed this is the main drawback of some of the presented mod-

els (e.g. Hyperface [108] or All-in-One [109]) that limits real-world applications.

Cheng et al. [112] (2018) proposed a model that exploits single-shot object de-

tection module (SSD) to perform multi-scale face detection, face alignment and

head pose estimation at the same time at a much higher speed. ASMNet [121]

(2021) is a lightweight CNN assisted by an Active Shape Model (ASM) [64],

used to guide the network towards learning, that achieved an acceptable per-

formance for face alignment and pose estimation while having a significantly

smaller number of parameters and floating point-operations. ATPN [120] (2021)

and MOS [122] (2021) focused on defining a network structure with an even

smaller number of parameters to augment efficiency. Other architectures, such

as Multitask-net [123] (2021) and TRFH [124] (2021), leveraged the feature

pyramid network to detect faces on different scales.

Valle et al. [119] (2020) proposed another type of architecture, an encoder-

decoder CNN (see figure 4.21). They locate the head pose estimation task at

the end of the encoder network, in this way the network bottleneck acts as

embedding representing face pose. Instead, visibility and face alignment tasks

are located at the end of the decoder, since they require information about the

spatial location of landmarks in the image. This is the only paper to propose

an encoder-decoder architecture. The presented model, called MNN, achieves
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results comparable to the state-of-the-art methods for the head pose estimation

task; this is due to the network architecture and to a new training strategy that

uses reannotated datasets.

The main advantage of multi-task approach is that many tasks can be solved

with a single model. Furthermore, all these tasks are strictly related, therefore

the overall performance is improved due to the network’s ability to learn cor-

relations between data from different distributions in an effective way, so more

discriminative features are learned. Also, some methods perform face detection

with head pose estimation, reducing the time needed to perform preprocessing of

the image. Another advantage is that multiple datasets can be used for training,

increasing the amount of available data.

The main disadvantage of multi-task approach is the lack of public benchmark

datasets with all the annotations for all the tasks. It’s difficult to compare multi-

task models among them and to other head pose estimation methods because

they use a different combination of datasets for training and testing, therefore

the better performance of a model could be due mainly to the training strategy

rather than to the architecture of the proposed network. Moreover, some of the

older models were not suited for real-world usage, e.g. Hyperface and All-in-

One architectures took 3.5 seconds to process a single image [109]. Although

newer models have managed to limit this problem, making it possible to obtain

real-time systems.

(a) (b)

Figure 4.21: Multi-task methods: (a) A convolutional neural network with feature

fusion, examples are Hyperface [108] and All-in-One [109] (image from [116]); (b)

Encoder-decoder network, called MNN, adopted in [119]
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Year Paper Approach DoF Dataset

2011 Fanelli et al. [5] Random Forest 3 BIWI

2012 Baltrusaitis et al. [21] CLM-Z Model based 3 BIWI, BU, ICT-3DHP

2014 Ahn et al. [169] DCNN 3 BIWI

2014 Martin et al. [165] Model based 3 BIWI

2014 Peng et al. [132] Manifold embedding 3 Multi-Pie

2014 Tulyakov et al. [17] ML + Tracking 2 Dali3DHP

2014 Zhang et al. [107] Multi-task DCNN 3 AFLW�∗?, AFW�∗?

2015 Drouard et al. [183] Gaussian locally-linear mapping 3 BIWI, Pointing’04

2015 Meyer et al. [166] 3DMM Model based 3 BIWI, ETH

2015 Papazov et al. [181] 3DMM Model based 3 BIWI, Synthetic data

2015 Saeed et al. [182] ML: HoG + SVR 3 BIWI, ICT-3DHP

2015 Sundararajan et al. [130] Manifold embedding 3 AFLW, AFW, McGill

2016 Gu et al. [11] RNN 3 BIWI, ETH, SynHead

2016 Liu et al. [16] DCNN 3 BIWI, Synthetic

2016 Xingyu et al. [170] DCNN (VGG) 3 IDIAP-HP

2017 Amador et al. [172] DCNN 3 300W, AFLW, AFW

2017 Barros et al. [144] PnP Model based 3 BU

2017 Borghi et al. [7] DCNN 3 BIWI, ICT-3DHP, Pandora

2017 Bulat et al. [153] PnP Model based 3 300-VW�, 300W-LP�, AFLW2000�,

Menpo�

2017 Diaz-Chito et al. [133] Manifold embedding 3 CAS-PEAL, CMU-Pie, DrivFace, Point-

ing’04, Taiwan RoboticsLab

2017 Gao et al. [194] Deep label distribution learning 3 AFLW, BJUT-3D, Pointing’04

2017 Gou et al. [184] Model based 3 300W�, BU∗

2017 Khan et al. [96] Segmentation based 2 Pointing’04

2017 Kumar et al. [111] Multi-task DCNN 3 AFLW∗�, AFW∗�

2017 Lathuliere et al. [187] DCNN 3 BIWI

2017 Patacchiola et al. [171] DCNN 3 AFLW, AFW, Pointing’04

2017 Ranjan et al. [108] Multi-task DCNN 3 AFLW†∗, AFW†∗�, CelebA?, FDDB†,

LFWA?, Pascal†

2017 Ranjan et al. [109] Multi-task DCNN 3 Adience�, AFLW†∗�, AFW†∗, CASIA4,

Chalern LAP2015�, CelebA?, FDDB†,

FG-NET�, IJB-A4, Morph�, Pascal†

2017 Wu et al. [157] Model based 3 BU4D-FE◦, BU∗, COFW�, Multi-Pie�∗

2017 Xu et al. [110] Multi-task DCNN 3 300W∗�

2017 Yu et al. [185] Model based 3 BIWI, UbiPose

2018 Ahn et al. [115] Multi-task DCNN 3 AFLW†∗, BIWI†∗, RCVFace†∗, NDS†

2018 Barros et al. [159] Model based + Tracking 3 BU

2018 Cai et al. [113] Multi-task DCNN 3 300W†∗�

2018 Chen et al. [112] Multi-task DCNN 3 AFLW†∗�, AFW∗�, FDDB†, Pascal†,

WIDER†

2018 Gupta et al. [147] Model based MLP 3 AFLW, BIWI

2018 Hong et al. [114] Multi-task Multi-view + Mani-

fold learning

3 BIWI, Pointing’04

2018 Ruiz et al. [62] DCNN 3 300W-LP, AFLW, AFLW2000, BIWI

2018 Yu et al. [10] Model based 3DMM 3 BIWI, UbiPose
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2018 Zhang et al. [195] Multi-task DCNN 3 AFLW∗�

2019 Abate et al. [150] Model based Quad Tree 3 AFLW, BIWI

2019 Benini et al. [98] Segmentation based SVM 2 Pointing’04

2019 Derkach et al. [134] Manifold embedding 3 BIWI, SASE

2019 Hsu et al. [173] DCNN 3 300W-LP, AFLW, AFLW2000, AFW,

BIWI

2019 Khan et al. [97] Segmentation based 3 AFLW, BU, ICT-3DHP, Pointing’04

2019 Khan et al. [99] Segmentation based Random

Forest

3 AFLW, BU, ICT-3DHP, Pointing’04

2019 Kuhnke et al. [177] DCNN 3 Biwi+, SynBIWI+, SynHead++

2019 Liu et al. [196] DCNN 3 300W-LP, AFLW, AFLW2000, AFW,

BIWI

2019 Shao et al. [197] DCNN 3 300W-LP, AFLW2000, BIWI

2019 Wang et al. [176] DCNN 3 BIWI, BU, Pointing’04, Synthetic data

2019 Wang et al. [189] DCNN 3 300W-LP, AFLW, AFLW2000, BIWI

2019 Xu et al. [198] DCNN 3 CAS-PEAL, Multi-Pie, Pointing’04

2019 Xia et al. [148] Model based DCNN 3 300W-LP, AFLW2000, BIWI, CAS-

PEAL, DriveFace

2019 Yang et al. [168] DCNN 3 300W-LP, AFLW2000, BIWI

2020 Barra et al. [151] Model based 3 AFLW, BIWI, Pointing’04

2020 Cao et al. [79] DCNN 3 300W-LP, AFLW2000, BIWI

2020 Dai et al. [174] DCNN 3 300W-LP, AFLW2000, BIWI

2020 Dapongy et al. [149] Model based 3 300W, 300W-LP, AFLW2000, CelebA,

WFLW

2020 Ewaisha et al. [118] Multi-task DCNN 3 CAVE

2020 Valle et al. [119] Multi-task DCNN 3 300W-LP�∗, AFLW�∗, AFLW2000∗,

BIWI∗, COFW�, WFLW�∗

2020 Wang et al. [143] PnP Model based 3 300W, AFLW2000

2020 Zhang et al. [188] DCNN 3 300W-LP, AFLW2000, BIWI

2020 Zhang et al. [117] Multi-task DCNN 3 AFLW†∗�

2020 Zhou et al. [61] DCNN 3 300W-LP, AFLW2000, BIWI, CMU

Panoptic

2021 Albiero et al. [60] Multi-task DCNN 3 300W-LP∗, AFLW2000∗, BIWI∗,

WIDER†∗

2021 Basak et al. [178] DCNN 3 BIWI, SASE, Synthetic data

2021 Berg et al. [191] DCNN 3 BIWI

2021 Berral-Soler et al. [179] DCNN 3 AFLW, Pointing’04

2021 Fard et al. [121] Multi-task DCNN + ASM 3 300W†∗, WFLW†∗

2021 Hu et al. [192] DCNN 3 300W-LP, AFLW2000, BIWI

2021 Khan et al. [100] Segmentation based Soft-max

classifier

3 AFLW, BU, ICT-3DHP, Pointing’04

2021 Liu et al. [158] Multi-task DCNN 3 AFLW�, AFLW2000∗, WIDER∗

2021 Naina Dhingra [193] DCNN 3 300W-LP, AFLW2000, BIWI

2021 Ruan et al. [164] Model based 3DMM + DCNN 3 300W-LP◦�∗, AFLW2000�◦∗, Florence◦

2021 Sheka et al. [175] DCNN 3 300W-LP, AFLW, AFLW2000, BIWI

2021 Viet et al. [123] Multi-task DCNN 3 300W-LP†∗, BIWI†∗, CMU Panoptic†∗

2021 Viet et al. [2] DCNN 3 300W-LP, AFLW2000, CMU Panoptic,

UET-Headpose
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2021 Xia et al. [120] Multi-task DCNN 3 300W-LP∗, 300VW�, WFLW�, WIDER†

2021 Xin et al. [190] Model based Graph Convolu-

tional Network

3 300W-LP, AFLW2000, BIWI

2021 Wu et al. [160] Model based 3DMM + DCNN 3 300W-LP◦�∗, 300VW◦, AFLW�,

AFLW2000◦∗, Florence◦

2022 Cantarini et al. [186] Model based DCNN 3 300W-LP, AFLW2000, BIWI

2022 Naina Dhingra [180] DCNN 3 300W-LP, AFLW2000, BIWI

Table 4.2: Head pose estimation publications most cited in recent literature. For

multi-task models we annotated the specific tasks for which each dataset is used

as follows: ∗ head pose estimation, † face detection, � face alignment, ? gender

classification, 4 face recognition, � age estimation, ◦ face reconstruction.

4.6 Evaluation pipelines

Currently, in the state-of-the-art works [60–62, 79, 148, 160, 164, 174, 175, 190],

there are two primary datasets for training: 300W-LP [4] and BIWI [5], corre-

sponding two main datasets for testing AFLW2000-3D [4] and a part of BIWI [5].

The two most used evaluation protocols are [168]:

� P1 : Training performed on a single dataset (300W-LP [4]), while BIWI

[5] and AFLW2000-3D [4] are used as test sets. Only images with head

rotation angles in the range [-99°, +99°] are typically considered (in the case

of AFLW2000 31 images are discarded);

� P2 : Training and test sets are derived from the BIWI dataset [5], in some

cases random split is applied (typically, 80% and 20% images), in others split

by subject (18 and 2 subjects), recently the most common is the split by

sequence (16-8 sequences for training and test respectively), but also n-fold

cross-validation and leave-one-out cross-validation are used in the literature.

However, a major drawback of the considered evaluation pipelines is that the

head pose angles (including pitch, yaw and roll) are all in the range [-99°, +99°],

therefore the prediction of the models are restricted to a “narrow range”, making

the models themselves less effective with large-angle data, such as from security

cameras [2].
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Name Type
Eval pipeline P1 test

on BIWI

Eval pipeline P1 test

on AFLW2000

Eval pipeline P2
MB

Param

106

Extra

training

data

Data
Full
range

Pre-process.

step

PitchYaw Roll MAE PitchYaw Roll MAE PitchYaw Roll MAE Split

3DDFA [4] MB 12.3 36.2 8.78 19.1 8.53 5.40 8.25 7.39 RGB N

KEPLER [111] MT 17.2 8.8 16.2 13.9 RGB N

Dlib (68 landmarks) [152] MB 13.8 16.8 6.19 12.2 13.6 23.1 10.5 15.8 6-24 RGB N

FAN (12 points) [153] MB 7.48 8.53 7.63 7.89 12.3 6.36 8.71 9.12 183 ∼36.6 RGB N

Liu et al. [16] D 6.10 6.00 5.70 5.90 Rnd RGB N

Drouard et al. [183] ME 5.90 4.70 4.10 5.20 Sbj RGB N VJfd

MT-Net v2 (Euler) [123] MT 7.23 4.64 6.23 6.03 5.33 6.02 5.11 5.48 Seq RGB Y Direct

Shao et al. [197] D 7.25 4.59 6.15 6.00 6.37 5.07 4.99 5.48 93 24.6 RGB N JCFDAfd

HHP-Net [186] MB 7.00 4.14 4.40 5.18 10.12 5.26 7.73 7.70 4.79 3.04 3.21 3.68 Seq 0.4 0.1 RGB N OpenPosekd

VGG-IR-FT [187] D 4.68 3.12 3.07 3.62 Seq 500 RGB N

Hopenet (α = 2) [62] D 6.98 5.17 3.39 5.18 6.56 6.47 5.44 6.16 95.9 23.9 RGB N FRfd

Hopenet (α = 1) [62] D 6.61 4.81 3.27 4.90 6.64 6.92 5.67 6.41 3.39 3.29 3.00 3.23 Seq 95.9 23.9 RGB N FRfd

RetinaFace R50 (5pnt) [60] D 6.42 4.07 2.97 4.49 9.64 5.10 3.92 6.22 RGB N Direct

SSR-Net-MD [168] D 6.31 4.49 3.61 4.65 7.09 5.14 5.89 6.01 4.35 4.24 4.19 4.26 Seq 1.1 0.2 RGB MTCNNfd

MT-Net v2 (Vecotr) [123] MT 4.29 4.62 4.52 4.48 3.90 5.33 3.28 4.17 Seq RGB Y Direct

LwPosr [180] D 4.87 4.11 3.19 4.05 6.38 4.44 4.88 5.35 4.65 3.62 3.78 4.01 Seq 0.15 RGB N MTCNNfd

FSA-Caps (1 × 1) [168] D 5.15 4.56 2.94 4.31 6.19 4.82 4.76 5.25 1.1 RGB N MTCNNfd

FSA-Caps-Fusion [168] D 4.96 4.27 2.76 4.00 6.08 4.50 4.64 5.07 4.29 2.89 3.6 3.6 Seq 5.1 1.2 RGB N MTCNNfd

FDN [188] D 4.96 4.27 2.76 4.00 6.08 4.50 4.64 5.07 3.98 3.00 2.88 3.29 Seq 5.8 RGB N MTCNNfd

QuatNet [173] D 5.49 4.01 2.93 4.14 5.61 3.97 3.92 4.50 RGB

HeadPosr EH38 [193] D 5.10 4.08 3.02 4.06 4.86 4.60 2.87 4.11 RGB N MTCNNfd

HeadPosr EH64 [193] D 5.44 3.37 2.69 3.83 5.84 4.64 4.30 4.92 4.03 2.59 3.53 3.38 Seq RGB N MTCNNfd

HR-AT-nBG [192] D 3.74 3.07 3.11 3.31 Seq RGB N Direct

CNN+Heatmap [147] MB 3.49 3.46 2.74 3.23 8FCV 3.2 RGB N

Gu et al. [11] RNN 4.03 3.91 3.03 3.66 Seq 500 ∼136 RGB N

Gu et al. [11] RNN 3.48 3.14 2.60 3.10 Seq 500 ∼136 RGB+

Time

N

Hybrid Coarse-fine [189] D 6.23 4.82 5.14 5.40 2.64 3.43 2.98 3.02 8FCV 96.7 ∼24 RGB N FRfd

img2pose [60] MT 3.55 4.57 3.24 3.79 5.03 3.43 3.28 3.91 WIDER∗ RGB N Direct

MNN [119] MT 4.61 3.98 2.39 3.662 4.69 3.34 3.88 4.42 RGB N Direct

Ahn et al. [169] D 3.40 2.80 2.60 2.93 Rnd RGB N

TriNet [79] D 4.76 3.05 4.11 3.97 5.77 4.20 4.04 4.67 3.04 2.44 2.93 2.80 3FCV ∼26 RGB N MTCNNfd

3DDFA-TPAMI [161] MB 5.98 4.33 4.30 4.87 RGB N FTFfd

MOS [122] MT 5.42 3.91 3.98 4.43 RGB N Direct

FSA-Net-Wide [2] D 5.69 4.59 2.85 4.37 2.91 UET,

CMU

RGB Y

3DDFA-V2 [163] MB 4.09 3.42 3.48 4.27 RGB N

2DASL [162] MB 5.06 3.85 3.50 4.13 UMD RGB N

SADRNet [164] MB 5.00 2.93 3.54 3.82 60 RGB N

GLDL [196] D 5.61 4.12 3.14 4.29 5.06 3.03 3.68 3.93 RGB N FRfd

KD-ResNet152 [175] D 4.73 3.50 2.87 3.703 4.52 2.97 3.48 3.483 2.88 2.61 2.37 2.62 Seq RGB N Yolo-v5fd

KD-ResNet18 [175] D 5.07 3.96 3.06 4.03 4.69 3.00 3.22 3.64 2.82 2.59 2.15 2.58 Seq RGB N Yolo-v5fd

Direct Regression [191] D 2.75 2.64 2.24 2.54 Seq RGB N FRfd

RankPose [174] D 4.77 3.59 2.76 3.71 4.75 2.99 3.25 3.66 RGB N MTCNNfd

EVA-GCN [190] MB 4.78 4.01 2.98 3.92 5.34 4.46 4.11 4.64 2.82 2.01 1.89 2.24 Seq 1.03 ∼3.3 RGB N FANkd

WHENet [61] D 4.39 3.99 3.06 3.81 6.24 5.11 4.92 5.42 17.1 4.4 CMU RGB Y Yolo-v3fd

WHENet-V [61] D 4.10 3.60 2.73 3.481 5.75 4.44 4.31 4.83 17.1 4.4 RGB N Yolo-v3fd

SynergyNet [160] MB 4.09 3.42 2.55 3.352 3.8 RGB N Direct

Xia et al. [148] MB 2.05 0.63 1.70 1.461 2.52 2.83 2.86 3.74 5FCV RGB N FANkd

Fanelli et al. [5] ML 8.50 7.90 8.90 8.43 Sbj Depth N VJfd

Baltrusaitis et al. [21] MB 5.10 11.30 6.30 7.60 Sbj RGB+D N VJfd

Saeed et al. [182] ML 5.00 4.30 3.90 4.40 Sbj RGB+D N VJfd

LMK [134] ME 3.80 3.60 5.20 4.20 L1O Depth N

DESC [134] ME 3.40 3.30 3.30 3.33 L1O Depth N

Papazov et al. [181] MB 2.50 3.80 3.00 3.20 Depth N VJfd

Martin et al. [165] MB 2.50 2.60 3.60 2.90 Sbj Depth YO Videmofd

Meyer et al. [166] MB 2.40 2.10 2.10 2.20 Sbj Depth N Customfd

Yu et al. [185] MB 1.53 2.49 2.18 2.073 RGB+D Y Dlibfd,kd

HeadFusion [10] MB 1.45 2.54 2.10 2.032 RGB+D Y Dlibfd,kd

POSEidon [7] D 1.60 1.70 1.80 1.701 Sbj 3.4 Depth Y CustomNNfd
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Table 4.3: Evaluation results of head pose estimation on AFLW2000 [4] and BIWI [5]. For the evaluation

protocol P2 many variants are reported in the literature: Random split, Split by subject (18 and 2 subjects),

Split by sequence (16 and 8 sequences), n-fold cross-validation and Leave-one-out cross-validation, the splitting

method is reported here when available. Model type: (D) Deep learning regressor; (MB) Model based; (ME)

Manifold embedding; (ML) Machine learning regressor; (MT) Multi-task; (RNN) Recurrent neural network.

Narrow range models are optimized for ±99°, full range for ±180°, O means ±120°. Extra training data used

are CMU Panoptic [8], UET-Headpose [2], UMDFace [6] and WIDER [1] (∗ head pose are annotate with a deep

learning regressor). In pre-processing fd means face detector, kd means keypoints (landmarks) detector. VJ is

Viola-Jones face detector implemented in openCV [201]; FR is Faster-RCNN [202]; JCFDA [203]; openPose [204];

Yolo [205]; Dlib [152]; FTF is finding tiny faces detector [206]. Other training/testing strategies used for BIWI

dataset are presented in table 4.5.

For this reason, other researchers used additional head pose datasets, such as

Zhou et al. for training the WHENet model [61], where CMU Panoptic dataset [8]

was adopted to increase the amount of data, but also because it provides compre-

hensive yaw angles in the range [-179°, +179°]. This is necessary to obtain a model

optimized for the full range (360°) of face orientation, improving a lot the result

compared to models trained only with 300W-LP [4]. Albiero et al. [60] instead

annotated the WIDER face database [1] using a deep learning regressor, and used

it during training to increase the robustness of the model. Recently, Viet et al. [2]

released the UET-Headpose dataset, also with uniform yaw angle in the range

±179°, that can be used as new benchmark dataset for full range models.

Moreover, the semi-automatic pipeline used to label 300W-LP [4] and AFLW2000-

3D [4] has been criticised for not producing accurate annotations for extreme poses

and occluded faces [153]. Valle et al. [119] re-annotated AFLW2000-3D with poses

estimated from the correct landmarks, this led to an improvement in model per-

formance.

Other researchers employ synthetic datasets for training and tested on real ones

[11, 16, 176–178]. Kuhnke et al. [177] propose novel benchmark datasets that are

derived from BIWI [5] and SynHead [11], namely Biwi+, SynBiwi+, SynHead++.

They propose these new datasets because SynHead was rendered using the Euler

angles provided by BIWI, but with a different sequence of rotation axes. This

rotation order, dissimilar to the BIWI one, causes that several SynHead images

and BIWI images with the same label show different head rotations. For this



98 4. Head Pose Estimation

reason, the reannotated SynHead+ contains SynHead images with correct angles.

For every image in the BIWI dataset, SynBiwi+ has 10 corresponding images

containing the 10 synthetic head models of SynHead. SynHead++ is the union

of SynHead+ and SynBiwi+. To further improve the reproducibility manually

collected bboxes for BIWI are provided in Biwi+ dataset.

Another dataset often used in the literature both for training and testing is the

AFLW [23], however, there isn’t a common evaluation protocol used in the many

studies published. The most common is:

� P3 : Train and test set are defined by a random split, 23.386 images are

used for training the model (of which typically 2.000 are employed as valida-

tion set) and 1.000 images for testing. More details about other evaluation

pipelines for AFLW are in table 4.4.

Name Type Train Test Evaluation

pipeline

Pitch Yaw Roll MAE Data

type

Pre-processing

DLDL (KL) [194] D AFLW AFLW 1 5.75 6.60 RGB

AVM [130] ME AFLW AFLW 2 17.48 RGB VJfd

Dlib† [152] MB Not required AFLW Unknown 13.6 23.1 10.5 15.7 RGB

TRFH [124] MT AFLW AFLW Unknown 23.81 5.49 17.26 15.52 RGB Direct

FAN† [153] MB Not required AFLW Unknown 12.3 6.4 8.7 9.13 RGB

3DDFA† [4] MB Not required AFLW Unknown 8.2 5.4 8.7 7.43 RGB

GLDL [196] D AFLW AFLW Unknown 5.31 6.00 3.75 5.02 RGB FRfd

LeNet-5 [171] D AFLW AFLW 5-FCV 7.15 11.04 4.40 7.53 RGB

MLP+Locations (5pnt.) [147] MB AFLW AFLW 5-FCV 6.64 9.56 4.68 6.96 RGB OpenPosekd

CNN+Heatmaps (5pnt.) [147] MB AFLW AFLW 5-FCV 5.58 6.19 3.76 5.18 RGB OpenPosekd

Segm+CNN [100] SB AFLW AFLW 10-FCV 3.2 4.9 RGB SSDfd

HPE-MSF-CRFs [97] SB AFLW AFLW 10-FCV 4.89 4.25 3.20 4.11 RGB SSDfd

HAG-MSF-CRFs [99] SB AFLW AFLW 10-FCV 4.89 4.25 3.20 4.11 RGB SSDfd

QT PYR [150] MB Not required AFLW 3 7.60 7.60 7.17 7.45 RGB VJfd, Dlibkd

Hybrid Coarse-fine [189] D 300W-LP AFLW 3 5.38 6.18 5.09 5.55 RGB

4D 4S [151] MB Not required AFLW 3 4.82 3.11 2.25 3.39 RGB Dlibkd

KD-ResNet18 [175] D AFLW AFLW 4 6.02 5.45 4.16 5.21 RGB Yolo-v5fd

KD-ResNet152 [175] D AFLW AFLW 4 5.93 5.41 4.07 5.14 RGB Yolo-v5fd

QuatNet [173] D 300W-LP AFLW 5 4.32 3.93 2.59 3.61 RGB

CCR [195] MT AFLW AFLW 6 5.85 5.22 2.51 4.53 RGB

KEPLER [145] MB AFLW AFLW P3 5.85 6.45 8.75 6.45 RGB

Hyperface [108] MT AFLW AFLW P3 6.13 7.61 3.92 5.88 RGB Direct

Hopenet (α = 1) [62] D AFLW AFLW P3 5.89 6.26 3.82 5.32 RGB FRfd

MLP+Locations (5pnt.) [147] MB AFLW AFLW P3 5.84 6.02 3.56 5.14 RGB OpenPosekd

VGG-16 [172] D AFLW AFLW P3 5.24 6.45 3.61 5.10 RGB

AlexNet [172] D AFLW AFLW P3 5.21 6.40 3.47 5.02 RGB

MOS [122] MT AFLW AFLW P3 4.89 RGB Direct

ResNet-50 [172] D AFLW AFLW P3 5.02 6.03 3.22 4.75 RGB

VGG-19 [172] D AFLW AFLW P3 4.93 5.99 3.15 4.69 RGB

ResNet-101 [172] D AFLW AFLW P3 4.98 5.69 3.07 4.59 RGB

ResNet-152 [172] D AFLW AFLW P3 4.88 5.92 2.98 4.58 RGB

CNN+Heatmaps (5pnt.) [147] MB AFLW AFLW P3 4.43 5.22 2.53 4.06 RGB OpenPosekd

MNN [119] MT AFLW AFLW P3 3.07 4.16 2.43 3.22 RGB
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Table 4.4: Evaluation results of head pose estimation on AFLW [23] (ordered by training pipeline). † results

taken from [58]. Evaluation pipeline: (1) Random split - 15.561 images for training, 7.848 for testing; (2) Random

split - 14.000 images for training, 7.041 for testing; (3) Test on all AFLW; (4) First 2.000 images for testing

other for training; (5) Train on other dataset, test on 1.000 random sample from AFLW; (6) Random split -

20.000 images for training other for testing; (n-FCV) n-fold cross-validation. Model type: (D) Deep learning

regressor; (MB) Model based; (ME) Manifold embedding; (ML) Machine learning regressor; (MT) Multi-task;

(RNN) Recurrent neural network; (SB) Segmentation based model. In pre-processing fd means face detector,

kd means keypoints (landmarks) detector. VJ is Viola-Jones face detector implemented in openCV [201]; FR is

Faster-RCNN [202]; openPose [204]; Yolo [205]; Dlib [152]; SSD is Single shot multibox detector [207]. Not all

papers specify the pre-processing applied, some are direct methods that incorporate a detection phase, other use

face crop from gt bbox.

4.7 Discussion

Head pose estimation is an active research field of computer vision. It remains

a challenging task due to internal and external conditions and complex imaging

feature face [57].

New databases are released every year because deep learning models require a

huge quantity of data for training, but especially to overcome limitations of pre-

viously released datasets, such as limited head rotation angle ranges, non-uniform

distribution of angles, data captured in constraint environment, limited quality of

ground-truth annotations, etc.

Almost all most recent databases have annotations for all three rotation angles

(pitch, yaw and roll), mainly acquired using depth cameras or optical motion

capture systems. This is clearly an improvement with respect to first datasets

that, typically, were acquired using direct suggestion or camera array methods,

leading to a discrete number of poses and annotations limited to one or two DoF.

The number and the variety of databases for HPE are increasing year after

year, their complexity is grown from simple images with flat backgrounds, to more

complex scenarios with images acquired in-the-wild. However, a major drawback

of the latter type is that pose is typically annotated manually or estimated with

neural networks trained on other datasets, leading to inaccuracies in the ground-

truth annotations (see for example figure 4.22).
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Figure 4.22: Example of inaccuracies in ground-truth annotations on AFLW2000

dataset [4]. In some cases results from SADRNet [164] model are more accu-

rate that the ground-truth. From the top row to the bottom row there are: the

AFLW2000 [4] images, the sparse alignment results of SADRNet [164] and the

corresponding ground-truth (blue for the former and red the latter), the recon-

structed face models of SADRNet [164], and the ground-truth face models [164].

Vall et al. [119] reannotated AFLW2000 with poses estimated from correct land-

marks and evaluated their MNN model, the MAE fell from 3.83 to 1.71 after the

reannotation (image from [164]).

Among all the databases, Boston University [30] is still used to evaluate head

pose estimation methods even if is one of the oldest, some model-based and seg-

mentation based methods obtain very accurate performance on it, as can be seen

in table 4.5. Also Pointing’04 [29] is still employed for research purposes, even

if it was introduced back in 2004, due to its challenging nature and high image

diversity.

BIWI Kinect [5] has become the de-facto benchmark dataset with a high num-

ber of publications that evaluate their models on it. However, this dataset has two

main disadvantages: it’s a narrow range dataset, head rotation angles go from -75°

to +75°, making it not suitable to evaluate models optimized for full range (360°)

head rotations; furthermore, it’s a dataset with images registered in a constraint

environment, therefore less challenging than other that are captured with different
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lighting conditions, backgrounds, occlusions and so on.

Nowadays synthetic databases [11] [16] [41] enable more precise evaluation and

comparison of HPE methods because they contain nearly perfect ground-truth

data. However, training solely on synthetic data can cause poor performance when

testing on real-world data due to mismatch or shift of underlying data distribution

(domain gap). For this reason, training on a combination of synthetic data and real

ones can lead to an improvement in the final result, see for example FSA-Net [168]

model tested on BIWI dataset [5] in table 4.5.

Name Type Train Test Evaluation pipeline Pitch Yaw Roll MAE MAWE BMAE Data

type

POSEidon [33] D AutoPose AutoPose 18 sequences for train, 1

for test

2.96 3.16 3.99 3.37 11.86 IR

DLDL (KL) [194] D BJUT-3D BJUT-3D 5-fold cross-validation 0.02 0.07 RGB

FSA-Net Caps-Fusion [178] D SynHead BIWI Test on all BIWI 8.58 6.04 9.82 8.29 RGB

KPM [158] MB Not required BIWI Test on all BIWI 7.94 5.81 6.74 6.83 RGB

FSA-Net Caps-Fusion [178] D SGD† (300k) BIWI Test on all BIWI 6.51 5.86 6.63 6.34 RGB

DANN [177] D SynHead++ BIWI+ Test on all BIWI+ 8.08 6.17 3.91 6.05 RGB

QT PYR [150] MB Not required BIWI Test on all BIWI 7.51 4.07 5.50 5.69 RGB

4C 4S [151] MB Not required BIWI Test on all BIWI 3.95 6.21 4.16 4.77 RGB

DC2F [176] D SGD† (208k)

+ BIWI

BIWI Random split BIWI: 12k

train, 3k test

5.48 4.76 4.26 4.54 RGB

FSA-Net Caps-Fusion [178] D SGD† (300k)

+ BIWI

BIWI Random split BIWI: 14k

train, 1k test

4.54 4.62 3.33 4.16 RGB

PADACO [177] D SynHead++ BIWI+ Test on all BIWI+ 4.51 4.11 3.78 4.13 RGB

PADACO [177] D SynBiwi+ BIWI+ Test on all BIWI+ 4.47 4.11 3.56 4.04 RGB

RT-MT-HPE [115] MT BIWI + RCV-

Face

BIWI Random split 37 subjects

for training, 10 for test

4.3 3.4 3.6 3.76 RGB

Liu et al. [16] D Synthetic BIWI Random 30 seq. from syn-

thetic db for training, test

on all BIWI

4.3 4.5 2.4 3.73 RGB

DANN [177] D SynBiwi+ BIWI+ Test on all BIWI+ 3.56 3.43 3.03 3.34 RGB

CCR [184] MB Not required BU Test on 200 images of

5 subjects with uniform

lighting conditions

4.8 5.1 3.3 4.4 RGB

S-FLD-HPE [157] MB Not required BU Test on 200 images of

5 subjects with uniform

lighting conditions

5.3 4.9 3.1 4.4 RGB

CHM+PnP [144] MB Not required BU Test on 200 images of

5 subjects with uniform

lighting conditions

4.58 4.87 2.80 4.08 RGB

EHM+PnP [144] MB Not required BU Test on 200 images of

5 subjects with uniform

lighting conditions

3.39 3.99 2.56 3.31 RGB

HPE-FF [159] MB Not required BU Test on 200 images of

5 subjects with uniform

lighting conditions

3.41 3.90 2.32 3.21 RGB

CLM-Z [21] MB BU BU Unknown 3.00 3.81 2.08 2.97 RGB+D

OpenFace+PnP [32] MB Not required BU Test on all BU 2.6 RGB

HPE-MSF-CRFs [97] SB BU BU 10-fold cross-validation 2.9 2.1 2.2 2.4 RGB

HAG-MSF-CRFs [99] SB BU BU 10-fold cross-validation 2.9 2.1 2.2 2.4 RGB

Segm+CNN [100] SB BU BU 10-fold cross-validation 2.0 2.4 RGB

MSE-MR [133] ME CAS-PEAL-1 CAS-PEAL-1 5-fold cross-validation 2.3 1.0 RGB

MSE-MR [133] ME CAS-PEAL-2 CAS-PEAL-2 5-fold cross-validation 30.6 2.9 RGB

MSE-MR [133] ME CMU-Pie CMU-Pie 5-fold cross-validation 1.9 RGB

Cascade Trees [17] ML Dali3DHP Dali3DHP Leave-one-out cross-val. 7.69 4.73 6.23 RGB+D
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OpenFace+PnP [32] MB Not required DD-Pose Test on all DD-Pose 4 4 5 9 16 RGB

HeHop [35] ML DriveAHead DriveAHead First 5 subjects for test,

other 15 for train

26.3 Depth

OpenFace+PnP [35] MB Not required DriveAHead Test on first 5 subjects 20.6 IR

HPN [35] D DriveAHead DriveAHead First 5 subjects for test,

other 15 for train

13.4 IR+D

Meyer et al. [166] MB Not required ETH Test on all ETH 2.3 2.9 2.6 Depth

Liu et al. [129] ME FacePix FacePix Leave-one-out cross-val. 3.1 RGB

Balasubramanian et al. [127] ME FicePix FacePix 8-fold cross-validation 1.4 RGB

POSEidon [7] D ICT-3DHP ICT-3DHP Unknown 5.0 7.1 3.5 5.2 Depth

OpenFace+PnP [32] MB Not required ICT-3DHP Test on all ICT-3DHP 3.2 RGB

CLM-Z [21] MB ICT-3DHP ICT-3DHP Unknown 3.14 2.90 3.17 3.07 RGB+D

HPE-MSF-CRFs [97] SB ICT-3DHP ICT-3DHP 10-fold cross-validation 3.2 2.6 2.7 3.0 RGB

HPE-MSF-CRFs [99] SB ICT-3DHP ICT-3DHP 10-fold cross-validation 3.2 2.6 2.7 3.0 RGB

Segm+CNN [100] SB ICT-3DHP ICT-3DHP 10-fold cross-validation 2.3 2.9 RGB

AVM [130] ME AFLW McGill 14k random AFLW images

as train, 6833 McGill im-

ages as test

16.29 RGB

PointNet [34] MLP MDM Corpus MDM Corpus 39 subjects for train, 10 as

validation,10 for test

6.33 5.84 5.77 5.98 Depth

Reg-CNN [198] D Multi-Pie Multi-Pie 3-fold cross-validation 0.02 RGB

POSEidon [7] D Pandora Pandora Subjects 10, 14, 16, 20 for

test, the other for training

5.7 4.9 9.0 6.53 Depth

KPM [158] MB Not required Pandora Test on all Pandora 4.99 6.33 3.87 5.06 RGB

Pixel-based segmentation [96] SB Pointing’04 Pointing’04 People 1-7 for train, people

8-15 for test

3.75 RGB

Super-pixel segmentation [96] SB Pointing’04 Pointing’04 People 1-7 for train, people

8-15 for test

5.69 RGB

Khan et al. [98] SB Pointing’04 Pointing’04 10-fold cross-validation 2.79 RGB

Hopenet [158] MB Pointing’04

(reannotated)

Pointing’04

(reannotated)

Train-test split unknown 19.59 26.61 23.10 RGB

FSA-Net [158] MB Pointing’04

(reannotated)

Pointing’04

(reannotated)

Train-test split unknown 18.01 25.90 21.96 RGB

LeNet-5 [171] D Pointing’04 Pointing’04 Leave-one-out cross-val. 10.71 7.74 9.23 RGB

MSE-MR [133] ME Pointing’04 Pointing’04 5-fold cross-validation 9.6 8.1 8.85 RGB

4C 4S [151] MB Not required Pointing’04 Test on all Pointing’04 6.34 10.63 8.48 RGB

3DDFA [158] MB Not required Pointing’04

(reannotated)

Test on all Pointing’04 7.38 6.18 6.77 RGB

KPM [158] MB Not required Pointing’04

(reannotated)

Test on all Pointing’04 5.27 4.30 4.78 RGB

DLDL (KL) [194] D Pointing’04 Pointing’04 5-fold cross-validation 1.69 3.16 2.43 RGB

HPE-MSF-CRFs [97] SB Pointing’04 Pointing’04 10-fold cross-validation 1.32 2.68 1.94 RGB

HAG-MSF-CRFs [99] SB Pointing’04 Pointing’04 10-fold cross-validation 1.18 2.32 1.75 RGB

Segm+CNN [100] SB Pointing’04 Pointing’04 10-fold cross-validation 1.02 2.02 1.52 RGB

Reg-CNN [198] D Pointing’04 Pointing’04 5-fold cross-validation 0.76 1.74 1.25 RGB

LMK [134] ME SASE SASE 28 subjects for training, 12

subjects for testing

7.07 6.50 6.06 6.54 Depth

FSA-Net Caps-Fusion [178] D SGD† SASE Test on all SASE 7.76 6.52 5.61 6.63 RGB

DESC [134] ME SASE SASE 28 subjects for training, 12

subjects for testing

6.64 6.21 4.60 5.82 Depth

FSA-Net Caps-Fusion [178] D 300W-LP SASE Test on all SASE 7.27 5.77 3.72 5.59 RGB

FSA-Net Caps-Fusion [178] D SGD† + SASE SASE Random split SASE: 1k for

train, other for test

7.13 5.10 3.64 5.29 RGB

Gu et al. [11] RNN SynHead SynHead 8 subjects for training, 2

for testing

1.55 1.78 1.66 1.66 RGB

Liu et al. [16] D Synthetic Synthetic Random split: 30 seq. for

train, 7 for test

3.4 2.7 2.2 2.76 RGB

MSE-MR [133] ME Taiwan Taiwan 5-fold cross-validation 5.8 RGB

OpenFace+PnP [10] MB Not required UbiPose Unknown 4.45 9.49 3.83 6.28 RGB

HeadFusion [10] MB UbiPose UbiPose Unknown 4.37 4.63 3.83 4.28 RGB+D

WHENet [2] D 300W-LP +

CMU Panop-

tic

UET-

Headpose-val

53.65 RGB
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FSA-Net-Wide [2] D 300W-LP UET-

Headpose-val

52.76 RGB

FSA-Net-Wide [2] D 300W-LP +

CMU Panop-

tic

UET-

Headpose-val

52.72 RGB

FSA-Net-Wide [2] D UET-

Headpose-

train

UET-

Headpose-val

9.30 RGB

FSA-Net-Wide [2] D 300W-LP +

CMU Panop-

tic + UET-

Headpose-

train

UET-

HEadpose-val

7.29 RGB

Table 4.5: Evaluation results of head pose estimation on other databases. † Syntehtic Generated Data.

Model type: (D) Deep learning regressor; (MB) Model based; (ME) Manifold embedding; (ML) Machine learning

regressor; (MT) Multi-task; (RNN) Recurrent neural network; (SB) Segmentation based model.

Recently, the most active sub-field seems to be “driver head pose estimation”,

in the last five years five public datasets that address this specific scenario have

been released, each with thousands or millions of images. This is mainly due to the

increasing interest in driving assistance systems that aim to monitor the driver’s

attention, behaviour and intention, and the fact that head pose is a key element

to obtain accurate results [33] [32].

Another important trend observed is that the number of head pose publica-

tions has increased in the past few years. More and more people are interested

in this area, leading the development of many different approaches to solve the

same problem. Nowadays, deep learning and methods based on convolutional neu-

ral networks are the most pervasive, these are used to estimate head pose from

monocular images, from a set of detected facial landmarks, from a combination

of both in a multi-task approach, or even are used to perform 3D dense face

alignment/reconstruction, from which the head pose information is obtained as a

by-product.

Segmentation based methods are the only recently developed methods that

mainly rely on classical machine learning models. These showed how a strong

correlation is present between face parts segmentation and its corresponding pose,

and that a higher face segmentation leads to accurate pose estimation and vice

versa [97]. However, seems to have not been thoroughly investigated yet, this might

be because a severe drop in performance is often registered when segmentation is

applied in unconstrained environments [99].
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What emerges most from the literature is the strong correlation between face

alignment and head pose estimation. This correlation is exploited in different ways

in the literature, among the best performing methods:

� Xia et al. [148] perform face alignment and then create a landmark heatmap

that is given as input (along with the facial image) to a CNN. They obtain

the best result on AFLW2000 dataset [4] because the heatmap generator

improves the generalization ability by making the CNN focus on the area

around facial landmarks and reducing the interference from background sig-

nificantly. However, this method does not remarkably improve the perfor-

mance on datasets taken under controllable conditions, such as BIWI [5].

� Valle et al. [119] combine face alignment and head pose estimation in a multi-

task model improving the overall performance, obtaining the best result on

AFLW dataset [23].

� Xin et al. [190] construct a landmark-connection graph to model the complex

non-linear mapping between graph topologies and head pose angles. Their

model has the lowest MAE when trained and tested on BIWI dataset [5]

among the models that use only RGB data.

� Wu et al. [160] exploit facial landmarks to guide 3D facial geometry learn-

ing. Pose in this case is a by-product that a backbone network learns during

3DMM parameter regression. SynergyNet outperforms all deep learning re-

gressors on AFLW2000 dataset [4].

Among the presented methods 3DMM based are very interesting, they focus

on face reconstruction and incorporate occlusion aware mechanisms very useful in

complex scenarios. Moreover, because these methods do not use any ground-truth

head pose label during training, they do not suffer from the inaccuracy of head

pose labels which exist in most publicly available training datasets. Room for

improvement might exist by designing specialized loss functions and addressing

specifically the head pose estimation task.
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From table 4.2 we can see that almost all the models can estimate 3 DoF,

actually some of them (such as 3DMM based) can estimate 6 DoF, but databases

are mainly recorded for 3 DoF or less. This highlights a great evolution, indeed

until a few years ago researchers focused more on yaw estimation, because of its

importance in applications such as human attention, gaze estimation, etc. Deep

learning changed the trend, all three rotation angles are currently being addressed

in most works.

From table 4.3 we can see how methods that use depth data alone, or both RGB

and depth information, can usually achieve better results. The use of depth data

enhances the efficacy under challenging illumination conditions and occlusions,

making the models suitable to particular challenging contexts, such as automotive.

From table 4.5 we can see that recently also thermal infrared images (IR) are used

as input for HPE algorithms, in some cases obtaining better results than with

depth information. However, depth or infrared data are not always available in

real-world contexts, therefore methods based only on monocular images have more

generalization abilities and usually less computational costs.

We also saw that different representations are exploited in the literature, the

majority of methods use the Euler representation [16,62,74,119,147,150,151,168,

182,183,187,188,196,196,197], others use rotation matrix [60,79,134,143,148,166,

181, 185] and in one case quaternions are exploited [173]. Since different datasets

may have different annotations for the angles, to test the methods a representation

is usually chosen and, by the transformation formulas, the labels of the dataset

are normalized accordingly. We do not notice a significant difference in terms of

performances using one representation rather than another.

The main problem that emerges from this analysis is that different experimen-

tal set-ups and different validation protocols are adopted for HPE algorithms, and

this strong influence the final result, making comparison difficult. Different evalu-

ation pipelines (see section 4.6) and different pre-processing methods are used (see

tables 4.3, 4.4). We can categorize pre-processing techniques into three categories:

face detection, face alignment and face segmentation. In the face detection case,

for longer, a very popular technique has been the Viola-Jones method [201], then
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the most used became MTCNN [200], but there is no uniformity in literature.

Among the face alignment methods most used are Dlib [152] and FAN [153]. Seg-

mentation was recently introduced in the field and for now it’s little used and not

thoroughly investigated.

(a)

(b)

Figure 4.23: Influence of bbox margin and background on head pose estimation:

(a) Influence of bbox margin on head pose estimation. The values predicted by

FSA-Net [168] change significantly with the change of bounding box size on all

three axes. The network is not robust to the change of bbox margin; (b) Influence

of background on head pose estimation. The values predicted by SSR-Net-MD

[168] are not robust in different background, e.g. the offset of pitch and yaw

between A1 and A2 is about 5° (images from [199]).

Shao et al. [197] discovered in their experiments that bounding box margin

has a large impact on the final accuracy of the model; head pose estimators are

vulnerable to changes in the background scene around the target face, as shown

in image 4.23. To solve this problem Xue et al. [199] proposed a convolutional

cropping module (CCM) that can learn to crop the input image to an attentional

area for head pose regression, and a background augmentation technique that can

make the network more robust to the background noise. In their experiment SSR-

Net-MD [168] MAE error fell from 6.01 to 5.38 and FSA-Net [168] goes from 5.25
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to 5.13 thanks to CCM and background augmentation. If on one hand this shows

how there are techniques that allow to improve the results obtained, on the other

hand differences in the ways of getting the bounding boxes do not allow for a valid

comparison of the methods for HPE.

The same problem emerged for face landmark detectors, as shown by Xin

et al. [190] in their experiments (see table 4.6). Model-based methods that use

different landmark detectors can get better or worst results mainly due to keypoints

detector accuracy.

Multi-task approaches have the advantage that can be trained and optimized

to solve multiple tasks, reducing the inference of the pre-processing phase.

Landmark detector Pitch Yaw Roll MAE

EVA-GCN + OpenPose 5.52 7.25 4.78 5.85

EVA-GCN + Dlib 5.76 6.39 3.63 5.26

EVA-GCN + RetinaFace 5.33 5.02 4.26 4.87

EVA-GCN + FAN 5.34 4.96 4.11 4.64

EVA-GCN + GT∗ 4.15 3.23 3.05 3.48

Table 4.6: Comparisons of different landmark detectors for EVA-GCN perfor-

mance. GT∗ means ground-truth data (table from [190]).

The last question that arises is about the evaluation metrics used, MAE is the

standard evaluation metric employed, but is optimal only for narrow range models,

as explained in section 4.4. It’s worth noting that also Cao et al. [79] criticised

the use of MAE of Euler angles as evaluation metric, as according to them it

cannot correctly measure the performance on profile images. They proposed to

use the Mean Absolute Error of Vectors (MAEV) to assess the performance. They

used three vectors, extracted from the rotation matrix, to describe head poses and

computed the difference between the ground-truth vectors and the predicted ones.

They showed how this representation is more consistent and how MAEV is a more

reliable indicator for the evaluation of pose estimation results (see figure 4.24).

For three reasons for us, instead, MAWE (details in section 4.4) could be a
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better choice: first, it can be used with Euler angles representation; second, if

used to evaluate narrow range methods gives the same result as MAE; third, at

this point narrow range methods have reached very high accuracy and it seems the

time has come for a switch to full range methods with MAWE as main evaluation

metric.

Figure 4.24: Comparison of pose estimation results with MAE and MAEV evalu-

ation metrics on AFLW2000 profile images. All models are trained on 300W-LP

(image from [79]).

We also suggest using manually annotated bounding boxes released in Biwi+

[177], when the evaluation pipelines P1 and P2 are used, this can make the models

independent from the different results obtained with the various face detectors.

We have seen how deep learning has now become predominant in the field, for

the future we expect it to continue like this, however with the development of new

architectures that aim to obtain excellent results, but reducing the computational

cost.

We expect more and more investigation of some techniques already partially

analysed in the literature, such as domain adaption, partial domain adaption,

inaccurate semi-supervised learning, knowledge transfer motivated by the fact that

obtaining accurate HPE ground-truth is difficult.

For the same reason, we expect an increased use of multi-task learning, which

has seen a strong development from 2017 to today. Indeed, head pose can be
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used as principal task, but also to enhance the function of some other face-related

tasks, including gender classification, expression detection and identity recognition,

increasing the amount of available data.

For deformable models, an important improvement will be the ability to selec-

tively ignore parts of the model that are self-occluded, overcoming a fundamental

limitation in an otherwise very promising category, especially in unconstrained

conditions.

Another interesting direction, not explored yet, is the use of deep learning in

segmentation based methods. A possibility is to use convolutional neural networks

to regress pose angles from segmented faces, or alternatively segmentation based

methods can be extended through geometric/deformable methods, where the fea-

ture extraction and classification could exploit specific deep learning architectures.

Although general head pose estimation will continue to be an exciting field with

a lot of room for improvement, we expect the development of specific sub-fields that

address specific areas of application, such as the “security and surveillance” prob-

lem, recently addressed with the release of GOTCHA-I [42] database, or the“driver

head pose estimation” which is already an active field [32–35,48,146]. Indeed, the

role of head pose estimation in driving systems is becoming more and more im-

portant. By monitoring the head pose of the driver in real-time and analysing the

behaviour of the driver, it will be possible to determine whether the driving status

of the driver is good, having a profound impact on the future of automotive safety.

We expect new datasets will continue to be released with an increasing focus

on 6 degrees of freedom and full range head angles, thanks to the development of

new cheap and powerful RGB-D cameras (such as Microsoft Kinect), and other

acquisition techniques. These will guide the future development of the field.
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Chapter 5

Conclusion

Head pose estimation is a very important task for human-computer interaction

since it provides rich information about the intent, motivation and visual attention

of people.

Despite the extensive research in this field, especially during the last years, HPE

still remains challenging when images are collected under unconstrained conditions.

In this thesis, we presented a detailed list of publicly available databases, their

characteristics and acquisition techniques.

An in-depth survey of head pose estimation methods has been done, by briefly

describing oldest and no more used classical approaches, and then providing an

extensive analysis of recently proposed approaches, mainly based on deep learning.

Indeed, most current heads pose estimation methods exploit convolutional neural

networks, from direct regressors to deformable based approaches passing through

multi-task learning. We have also presented a comparative analysis of the state-

of-the-art performance obtained so far in the field by providing organized and

informative tables.

We also listed possible directions for future work. In particular, we expect the

introduction of new light DL architectures that can perform well on challenging

datasets, i.e., those collected in unconstrained environments. Another interest-

ing direction will be the combination of segmentation based methods with deep

learning, but also deformable methods seems to be very interesting.

111
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We also expect the development of new sub-fields with dedicated databases

and evaluation pipelines, such as the “driver head pose estimation” that is already

very active.

An important trend observed is that the number of head pose publications has

increased in the past few years. This is a sign that more and more people are

interested in this area, which means that the development cycle of new methods

will be faster. A constant and periodic updating of the literature is therefore

important.

We hope that this survey thesis help to clarify the evolution of the field, evalu-

ation methodologies and techniques thanks to the provided comprehensive list of

datasets, methods and algorithms. This work can be used as starting point for

those new to the field that want to orient themselves in it.
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Appendix A

Links to datasets

Database Link

300W-LP [4] https://www.tensorflow.org/datasets/catalog/the300w lp

AFLW [23] https://www.tugraz.at/institute/icg/research/team-

bischof/lrs/downloads/aflw/

AFLW2000-3D [4] https://www.tensorflow.org/datasets/catalog/aflw2k3d

AFW [22] https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/

AISL [18] http://www.aisl.cs.tut.ac.jp/dataset head orientation.html

AutoPOSE [33] https://autopose.dfki.de/

BioVid Heat Pain [36] https://www.iikt.ovgu.de/BioVid.html

BIWI Kinect [5] https://www.kaggle.com/kmader/biwi-kinect-head-pose-database

BJUT-3D [26] http://www.bjpu.edu.cn/sci/multimedia/mul-

lab/3dface/facedatabase.htm

Bosphorus [25] http://bosphorus.ee.boun.edu.tr/default.aspx

BU [30] https://www.cs.bu.edu/groups/ivc/HeadTracking/Home.html

CAS-PEAL [19] http://www.jdl.ac.cn/peal

CAVE [38] https://www.cs.columbia.edu/CAVE/databases/columbia gaze/

CCNU [15]

CMU Panoptic [8] Original database: http://domedb.perception.cs.cmu.edu/

Database processed for head pose:

https://github.com/Ascend-Research/HeadPoseEstimation-

WHENet/issues/13

Dali3DHP [17]

DD-Pose [32] https://dd-pose-dataset.tudelft.nl/eval/

DriveAHead [35] https://cvhci.anthropomatik.kit.edu/ aschwarz/driveahead/

ETH [27] https://data.vision.ee.ethz.ch/cvl/vision2/datasets/headposeCVPR08/

FacePix [28] https://cubic.asu.edu/content/facepix-database

GI4E-HP [14] http://www.unavarra.es/gi4e/databases?languageId=1
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GOTCHA-I [42] https://gotchaproject.github.io/

ICT-3DHP [21] http://multicomp.cs.cmu.edu/resources/ict-3d-headpose-database-2/

IDIAP-HP [31] https://www.idiap.ch/en/dataset/headpose

M2FPA [9] https://pp2li.github.io/M2FPA-dataset/

McGill [20] https://sites.google.com/site/meltemdemirkus/mcgill-unconstrained-face-

video-database

MDM corpus [34] https://ecs.utdallas.edu/research/researchlabs/msp-lab/MDM.html

Multi-Pie [24] https://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-

Pie/Home.html

MTFL [?] http://mmlab.ie.cuhk.edu.hk/projects/TCDCN.html

Pandora [7] https://aimagelab.ing.unimore.it/pandora/

PIE [39] https://www.ri.cmu.edu/project/pie-database/

Pointing’04 [29] http://crowley-coutaz.fr/Head%20Pose%20Image%20Database.html

SASE [12] https://icv.tuit.ut.ee/databases/

SyLaHP https://www.iikt.ovgu.de/LmHeadPoseEstBench.html

SynHead [11] http://www.tnt.uni-hannover.de/papers/view paper.php?id=1419

Synthetic [16] https://liangwei-bit.github.io/web/project/icip16 headpose/

Taiwan RoboticsLab [40] http://robotics.csie.ncku.edu.tw/Databases/FaceDetect PoseEstimate.htm

UbiPose [10] https://www.idiap.ch/en/dataset/ubipose

UET-Headpose [2]

UMDFace [6] http://umdfaces.io/

VGGFace2 [3] https://github.com/ox-vgg/vgg face2

Table A.1: Links to available datasets for head pose estimation
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