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Abstract

L’esistenza di una lunghezza minima, dell’ordine della lunghezza di Planck lPl = 1.6× 10−35

m, pone un limite alla piccolezza delle distanze che possiamo misurare. Tale lunghezza minima
può essere ottenuta con una modificazione del principio di indeterminazione di Heisenberg in un
principio di indeterminazione generalizzato (generalized uncertainty principle o GUP). In ciò
che segue, dapprima vengono analizzate le diverse motivazioni che suggeriscono l’esistenza
di una lunghezza minima: esperimenti mentali, geometria non-commutativa, teorie della
gravità quantistica. Successivamente viene mostrato come il GUP possa essere implementato
a partire da una modifica delle relazioni di commutazione canoniche e si indaga come esso
vada ad agire sul limite Newtoniano della relatività generale. Infine, esaminando l’influenza
del GUP sull’Hamiltoniana di una particella e sulla temperatura della radiazione di Hawking,
che a sua volta implica una deformazione della metrica di Schwarzschild, si osserva come
tali risultati possano essere utilizzati per stimare il parametro di deformazione del principio di
indeterminazione e quindi la scala di lunghezza minima.
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Chapter 1

Introduction

Matter is made of atoms. Nowadays this is common knowledge but it took a long time since
this was first postulated till it actually gained scientific value: the history of atomism has its
roots in ancient Greece and it was only in the 19th century that evidence showed that atoms
were real, physical objects. Atomism as a philosophy was first introduced by a group of
Greek philosophers, called atomists, who proposed, in different ways, that matter is made of
fundamental entities, the atoms, from the prefix ”a-” which is a negation and "tomos" which
means "cut", thus atoms are indivisible, not composed of anything smaller. The most famous
atomist is Democritus (5th century B.C.), according to which atoms of different shapes and
sizes but made of the same substance combined together to form all different materials and
bodies.

We currently know that although matter is, in fact, made of atoms of different shapes and
sizes (and even made of the same substances), these aren’t indivisible: atoms are made of
electrons orbiting around a nucleus, nuclei are made of protons and neutrons, protons and
neutrons are made of quarks bound together by the strong interaction and, as far as we know,
quarks and electrons are elementary particles, i.e. they are point particle with no substructure.
Atoms have a typical dimension of an Ångstrom 1 Å= 10−10 m, nuclei are of the order of a
femtometer 1 fm = 10−15 m, protons and neutrons of a fraction of a femtometer. With the
current technology we can put an upper bound on the dimension of electrons and quarks of
about 10−18 m.

However, we could wonder if, with an improvement of our equipment which would allow us
to investigate smaller distances, also electrons and quarks would reveal a smaller substructure.
Naturally it arises the question if the process of probing smaller and smaller distances is virtually
infinite or if there is a limit below which nothing exists and our currently understanding of
physics ceases to make sense.

Evidences for the existence of a minimal length, of the order of the Planck length lPl, are
multiple and emerging from different arguments in physics. In 1899 Max Planck [1] came
up with a set of natural units, called Planck units, in an attempt to find units of measurement
that were universal, that even an extraterrestrial civilization could use, stripped of the anthro-
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pocentrism inherent to the definition of the meter, the second, the kilogram, the Kelvin. These
units are formulated in terms of universal physical constants: the speed of light c, the reduced
Planck constant ℏ, the gravitational constant G and the Boltzmann constant kB. By means
of a dimensional analysis, using only these constants, he built units of mass, length, time and
temperature:

mPl =

√
ℏc
G

≈ 10−8 kg,

lPl =

√
ℏG
c3

≈ 10−35 m,

tPl =

√
ℏG
c5

≈ 10−43 s,

TPl =

√
ℏc5
Gk2B

≈ 1032 K.

(1.1)

The first concerns about the necessity of a minimal length arose with the advent of quantum
field theory, in which divergences showed up. It was believed that a minimal length of the
order of a femtometer could be used as a cut-off to resolve these divergences. In particular,
W. K. Heisenberg thought that spacetime could be quantized, thus leading to the cut-off. He
even speculated that this quantization could come from letting the position operators be non-
commuting [x̂µ, x̂ν ] ̸= 0, a possibility we will investigate in Section 3.2. However, these
divergences were solved with renormalizations techniques and thus the hypothesis of a cut-off
was abandoned.

In the meantime M. Bronstein, in 1935, was the first to understand that because condensing
more and more energy inside a region leads eventually to the formation of a black hole, it
follows that there exists an uncertainty on position even greater than the usual one coming from
the Heisenberg uncertainty principle. Unfortunately his work got little attention and few years
later, in 1938, during the Stalinian Great Purge, he was executed.

It was only in 1964 that the idea of a minimal length showed up again. C. A. Mead, with
a series of thought experiments that will be analyzed in Section 3.1, in which quantum and
gravitational effects were considered [2], found out that there is a minimal uncertainty of the
order of the Planck length associated with distance measurements. Mead’s work was met with
skepticism, as himself stated in a letter he wrote in 2001 [3]: "years of referee trouble, eventual
publication, a cold shoulder from the physics community". It took five years from when he
first submitted its paper in 1959 till it was finally published.

The presence of a minimal length scale has been more and more studied over the years. This
length could mark the ultimate limit we could push our understanding of the quantum realm.
It could also be used as a cut-off that would cure the non-renormalization of the gravitational
field. A particular attention has been put on the generalized uncertainty principle or GUP,
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which is a modification of the Heisenberg uncertainty principle of the form:

∆x∆p ≥ ℏ
2
(1 + β∆p2), (1.2)

where β = β0/m
2
Pl is called the deformation parameter. Minimizing ∆x we find a minimal

length of lPl

√
β0. We expect β0 to be of the order of the unity, so that the minimal length

is of the order of the Planck length. However this is a free parameter whose value has to be
constrained by experiments. A first estimation of this parameter can already be made: as we
said earlier, the shortest distance currently measured is of the order of 10−18 m, thus β0 has to
be smaller than 1034.

In Section 2 we introduce shortly the concepts of state, observable and measurement in
quantum mechanics, which we need to understand the Heisenberg uncertainty principle. In
Section 3 we review some of the motivations that lead to the GUP and the minimal length
scale: thought experiments, non-commutative geometry and a short mention of quantum
gravity theories. In Section 4 we see how the GUP can be obtained by a modification of the
canonical commutation relations and how the classical limit is affected. Then in Section 5 we
analyze different approaches to the estimation of the deformation parameter appearing in the
GUP. We reserve Section 6 for conclusions.
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Chapter 2

Basics of quantum mechanics

2.1 States, observables and measurements
We start by giving a rather intuitive definition for the concepts of state, observable and measure-
ment that constitute the fundamental framework of quantum mechanics and then see how these
can be mathematically modeled. We don’t pretend this review to be exhaustive, we will only
focus on those concepts that we must know in order to derive and understand the Heisenberg
uncertainty principle.

• The states of a system are the physical conditions or modes of being of the system, for
any state s of the system there exists a device that prepares the system in that state;

• the observables of a system are the numerically quantifiable physical properties of the
system, for every observable Q of the system there exists an apparatus that furnishes the
value of the observable;

• a measurement is the combination of instruments and experimental procedures that
returns the value of an observable of the system in a certain state, a measurement
procedure P (s,Q) consists in preparing the system in a state s and then detecting the
value x of the observable Q with a suitable apparatus.

Given a system in a state s and an observable Q, repeating the measurement procedure
P (s,Q) we get a series of values xi for Q. In general these values will be different from each
other and we can only know the probability p(s,Q, I) that a value of the observable falls in
a certain range I: for a generic state s the outcome of the measurement procedure P (s,Q)
is a statistical process. If instead all the values are the same then the state s′ for which this
happens is called an eigenstate: there exists a function that assigns to each eigenstate s′ of the
observable Q the value x(s′, Q) of Q in that state, called eigenvalue.

We note, however, that the measurement procedure always returns a value for the observable,
even if the system is not in an eigenstate. Because a value can be assigned to an observable
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only if the system is in an eigenstate, we thus infer that the measurement procedure first takes
the system in an eigenstate s′ of the observable Q and then gives the value x = x(s′, Q) of the
observable. This process is called state reduction.

A generic state s can then be seen as a superposition of eigenstates si with different
weights, which determine the probability that a measurement procedure P (s,Q) gives the
value xi(si, Q) ofQ. The states of a collection of states si are said independent if none of them
is a superposition of the others. A collection of independent states is said to be complete.

Recalling that the measurement procedure P (s,Q) is a statistical process we can define the
expectation value of Q in the state s as:

⟨Q⟩s = lim
N→∞

1

N

N∑
i=1

xi, (2.1)

and the associated uncertainty is:

∆Qs =

[
lim

N→∞

1

N

N∑
i=1

(xi − ⟨Q⟩s)2
]1/2

. (2.2)

If we try to carry out two measurementsP (s,Q), P (s, R) for two different observablesQ,R
simultaneously we force the reduction of the state of the system to a common eigenstate of the
two observables. Generally such a common eigenstate does not exist and the two measurements
interfere with each other: this implies that the product of the uncertainties ∆Qs∆Rs cannot
vanish, it results to be bounded from below.

The observables of a set of observables Qi are said compatible if they can be measured
simultaneously without interference. If, repeating the simultaneous measurement procedures
on the system in the state s we obtain always the same values for each compatible observable
then s is said to be a simultaneous eigenstate of all the observables.

2.2 Mathematical formalism
This physical phenomenology has to be modelled by a suitable mathematical apparatus. The
states s of a system are represented by kets |ψ⟩ or, equivalently, by bras ⟨ψ|, which can
be seen as vectors defined, up to a phase factor, in a Hilbert space H with inner product
⟨ψ, ψ⟩ = ⟨ψ|ψ⟩ =

∫
d3xψ∗ψ < ∞. More precisely, because we can multiply such vectors

for a complex number with absolute value of 1, there is a one–to–one correspondence between
the states of the system and 1-dimensional subspaces of the Hilbert space called "rays". A
superposition of states si is a linear combination of kets |ψi⟩. A complete collection of linearly
independent kets constitutes an orthonormal basis of kets. The observables Q are represented
by selfadjoint operators Â. Eigenstates and eigenvalues are determined by the eigenvalue
problem:

Â |ψ⟩ = x |ψ⟩ . (2.3)
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Generally this problem has few solutions as long as we require that the eigenkets belong to the
Hilbert space H. We must then allow the kets to belong to a vector space H′ containing H such
that ⟨ψ|ψ⟩ = ∞. However there is a restriction on vectors of H′, they have to be approximable
by a sequence of vectors of H:

|ψ⟩ = lim
n→∞

|ψn⟩ , (2.4)

with ⟨ψn|ψn⟩ <∞.
The mean value of an observable Q in the state s is:

⟨Q⟩s = ⟨ψ|Â|ψ⟩ , (2.5)

and the uncertainty is:

∆Qs =
[
⟨ψ|(Â− ⟨ψ|Â|ψ⟩ 1̂)2|ψ⟩

]1/2
. (2.6)

Two observables are compatible if the commutator of the corresponding operators vanishes:
[Â, B̂] = 0. If the commutator doesn’t vanish then the product of the uncertainties is bounded
from below, leading to the Heisenberg uncertainty principle.

2.3 The Heisenberg uncertainty principle
The Heisenberg uncertainty principle states that when we try to measure simultaneously two
observables A and B, represented by the selfadjoint operators Â and B̂, the product of their
uncertainties is bounded from below:

∆A∆B ≥
∣∣∣∣12 ⟨ψ|i[Â, B̂]|ψ⟩

∣∣∣∣, (2.7)

where the quantity ⟨ψ|i[Â, B̂]|ψ⟩ is real. If the observables are compatible than the commutator
[Â, B̂] vanishes and so does the product of the uncertainties.

We can demonstrate this result as follows. Let us define two operators Û , V̂ as:

Û = Â− ⟨ψ|Â|ψ⟩ 1̂, (2.8)
V̂ = B̂ − ⟨ψ|B̂|ψ⟩ 1̂. (2.9)

Combining them we define the ket |ϕ⟩ as:

|ϕ⟩ = (Û + iλV̂ ) |ψ⟩ , (2.10)
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where λ is a real parameter that can be obtained using the property of the bra-ket product
⟨ϕ|ϕ⟩ ≥ 0 and by noting that [Û , V̂ ] = [Â, B̂]:

0 ≤ ⟨ϕ|ϕ⟩ = ⟨ψ|(Û − iλV̂ )(Û + iλV̂ )|ψ⟩
= ⟨ψ|Û2 + iλÛ V̂ − iλV̂ Û + λ2V̂ 2|ψ⟩
= ⟨ψ|(Â− ⟨ψ|Â|ψ⟩ 1̂)2|ψ⟩+ λ ⟨ψ|i[Û , V̂ ]|ψ⟩+ λ2 ⟨ψ|(B̂ − ⟨ψ|B̂|ψ⟩ 1̂)2|ψ⟩
= ∆A2 + λ ⟨ψ|i[Â, B̂]|ψ⟩+ λ2∆B2.

(2.11)
Deriving with respect to lambda:

0 =
∂

∂λ
⟨ϕ|ϕ⟩ = ⟨ψ|i[Â, B̂]|ψ⟩+ 2λ∆B2, (2.12)

we find a minimal value for:

λ = − ⟨ψ|i[Â, B̂]|ψ⟩
2∆B2

. (2.13)

This parameter is real because the operator i[Â, B̂] is selfadjoint:

(i[Â, B̂])† = −i(ÂB̂ − B̂Â)†

= −i(B̂†Â† − Â†B̂†)

= −i(B̂Â− ÂB̂)

= −i[B̂, Â]
= i[Â, B̂].

(2.14)

Upon inserting (2.13) in (2.11) we obtain:

∆A2∆B2 ≥ −1

4
( ⟨ψ|[Â, B̂]|ψ⟩)2, (2.15)

and finally we recover the relation:

∆A∆B ≥ 1

2

∣∣∣ ⟨ψ|i[Â, B̂]|ψ⟩
∣∣∣. (2.16)

Using relation (2.16) for position and momentum operators q̂, p̂ and knowing that their canonical
commutation relation is [q̂, p̂] = iℏ1̂, the uncertainty principle takes the simple form:

∆q∆p ≥ 1

2
| ⟨ψ|i[q̂, p̂]|ψ⟩| = ℏ

2
, (2.17)

which states that if we decrease the uncertainty on the position of the particle then we increase
the uncertainty on its momentum and vice versa. It is important to underline that the uncertainty
principle is not due to the interaction between the system and the experimental setup we use to
investigate it but is an intrinsic property of the system itself.
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Chapter 3

Minimal length scale and GUP

A minimal length scale and the generalized uncertainty principle arise from various arguments
in physics. From thought experiments to more formal topics, for example, non-commutative
geometry and theories of quantum gravity, the presence of a minimal length scale seems to be
inevitable. In what follows we provide a series of arguments that show how and when the GUP
and the minimal length scale fall into the picture. This analysis is largely based on the review
given by S. Hossenfelder in [4], occasionally referring to the original papers when deemed
appropriate.

3.1 Thought experiments

3.1.1 Heisenberg microscope in Newtonian gravity
The Heisenberg microscope is a thought experiment whose aim was to provide an intuitive
explanation of the uncertainty principle. In this approach the gravitational interaction between
the particles in exam is usually neglected. However, if we instead include gravitational effects,
we will also be able to obtain a form of a generalized uncertainty principle, which modifies the
resolution ∆xwe can achieve. In this section we use the convention c = ℏ = 1, show explicitly
the gravitational constant G and use the Minkowski metric with signature (+1,−1,−1,−1).
We want to measure the position on the x-axis of a particle, in order to do so we send a photon
with angular frequency ω against the measured particle, the photon scatters and then reaches
the lens of the microscope if its deviation angle is less or equal than the opening angle θ (see
Fig. 3.2). From classical optics we know that the resolution ∆x of the position is limited by
the wavelength of the photon λ = 2π/ω:

∆x ≳
λ

sin θ
>

1

2πω sin θ
. (3.1)

The photon transfers a momentum to the measured particle. Since we do not know the
direction of the photon better than θ, the momentum of the particle in the x direction will have

10



Figure 3.1: Heisenberg microscope in Newtonian gravity: workflow

Heisenberg microscope: a photon with energy ω scatters off a par-
ticle whose position we want to measure and is detected if its de-
viation angle is less or equal than the opening angle θ of the lens

classic optic
∆x ≳ 1

2πω sin θ

∆px ≳ ω sin θ

Heisenberg un-
certainty principle
∆x∆px ≳ 1

2π

the photon exerts a
gravitational pull on
the particle for an

effective time R, the
particle moves by

L ≈ Gω

∆x ≳ Gω sin θ
∆x ≳ 1

2πω sin θ

∆x ≳
√
G = lPl

the photon trans-
fers momentum
to the particle

∆px ≳ ω(1+ Gm
R
) sin θ

∆x ≳ R
m
∆px ≳

√
G

an uncertainty of:
∆px ≳ ω sin θ. (3.2)

By multiplying the two uncertainties we finally obtain Heisenberg’s principle:

∆x∆px ≳
1

2π
. (3.3)

Not knowing precisely the position of the measured particle, it is more accurate to consider
its interaction with the photon not in a particular point but rather in a region of an appropriate
size R. The photon cannot be focused while it is interacting with the particle in the region R,
so the time between the scattering of the photon and the subsequent measurement has to be
at least τ ≳ R. We now take into account gravity and consider the measured particle to be
non-relativistic: the photon carries a certain amount of energy and thus exerts a gravitational
pull on the particle, resulting in an acceleration which is, considering the Newtonian formula
for the gravitational force:

a ≈ Gω

R2
. (3.4)

Assuming the particle is much slower than the photon, this acceleration lasts for the time the
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Figure 3.2: Heisenberg microscope. A photon moving along the x-axis scatters off a particle
within an interaction region of size R and is detected by a microscope (the lens and screen)
with an opening angle of θ.

photon is inside the interaction region, thus the velocity acquired by the particle is:

v ≈ aR ≈ Gω

R
, (3.5)

and the distance travelled is:
L ≈ vR ≈ Gω. (3.6)

Since the direction of the photon was unknown within the angle θ then also the direction of the
acceleration and thus of the motion of the particle are unknown. The projection of L on the
x-axis gives then the additional uncertainty:

∆x ≳ Gω sin θ. (3.7)

Comparing the two expressions (3.1) and (3.7) we obtain:

∆x ≳
√
G = lPl, (3.8)

the uncertainty on the position of the particle is then comparable with the Planck length lPl.
We omitted to take also into account an increase in the particle’s momentum Gmω/R due

to the interaction with the photon. Projecting it on the x-axis the uncertainty in the particle’s
momentum increases to:

∆px ≳ ω

(
1 +

Gm

R

)
sin θ, (3.9)

which translates in a position uncertainty ∆x ≳ τ∆v ≳ R∆px/m:

∆x ≳ ω

(
R

m
+G

)
sin θ, (3.10)

which is however larger than the uncertainty (3.7) and thus we once again find that:

∆x ≳
√
G = lPl. (3.11)
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R. J. Adler and D. I. Santiago proposed a very similar argument [5] but sustained that the
particle’s momentum uncertainty ∆p should be of the order of the photon’s momentum ω,
leading to:

∆x ≳ G∆p. (3.12)

Upon assuming that the usual and the gravitational uncertainty add linearly we find:

∆x ≳
1

∆p
+G∆p. (3.13)

which is a generalized uncertainty principle.

3.1.2 Heisenberg microscope in General Relativity
We now review Heisenberg’s microscope using general relativity following the approach of
Mead [2]. We consider a generic test particle instead of a photon, with four-momentum (ω, k)
and rest mass µ. The particle moves along the x-axis with velocity v:

v =
p

ω
=

k√
µ2 + k2

, (3.14)

with k2 = ω2 − µ2 following from the relativistic energy-momentum relation. We want to
estimate how much the measured particle moves due to the gravitational pull of the test particle.
In order to do so we move to the rest frame of the test particle by boosting in the x-direction:
the measured particle now travels towards the test particle in the direction −x′, and we can use
the Schwarzschild metric. Being on the x-axis we have y = z = 0 and then:

g′00 = 1 + 2ϕ′, (3.15)

g′11 = − 1

g′00
, (3.16)

g′22 = g′33 = −1, (3.17)

where:
ϕ′ = −Gµ

|x′|
=
Gµ

x′
. (3.18)

We now return to the rest frame of the measured particle using the general transformation law
for tensors:

gµν =
∂(x′)α

∂xµ
∂(x′)β

∂xν
g′αβ, (3.19)
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Figure 3.3: Heisenberg microscope in General Relativity: workflow

Heisenberg microscope: a test particle with velocity v, momentum ω, mass
µ scatters off a particle whose position we want to measure and is detected
if its deviation angle is less or equal than the opening angle θ of the lens

we move to the rest
frame of the test

particle boosting in the
x direction and use the
Schwarzschild metric
g′µν(ϕ

′), ϕ′ = Gµ/x′

we go back to the rest
frame of the measured

particle using the
transformation

law of tensors to
calculate gµν(ϕ)

ϕ = ϕ′

1−v2
= −Gω/R

to avoid the formation
of a black hole:
−2ϕ′ < 1

∆x2 ≳ R
ω
≳ 2G(1−v2)

the faster the particles pass by each other, the
less the measured particle moves due to the

gravitational pull of the test particle: considering
the limit case of a photon we set v = 1 in gµν

the measured particle moves with ve-
locity u, its worldline must be time-like
ds2 = (g00 + 2g01u + g11u

2)dt2 ≥ 0

the time τ it takes for the test
particle to move a distance R
away from the measured parti-
cle is at least τ ≳ R/(1 − u)

in this time the
measured par-
ticle moves by:

L = uτ ≳ uR
1−u

≳ Gω

∆x ≳ L sin θ
∆x ≳ 1

2πω sin θ

∆x ≳
√
G = lPl
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and so the metric becomes:

g00 =
1 + 2ϕ

1 + 2ϕ(1− v2)
+ 2ϕ,

g11 =
−1 + 2ϕv2

1 + 2ϕ(1− v2)
+ 2v2ϕ,

g01 = g10 = − 2vϕ

1 + 2ϕ(1− v2)
− 2vϕ,

g22 = g33 = −1,

(3.20)

where:
ϕ =

ϕ′

1− v2
= −Gω

R
, (3.21)

R = vt−x is the mean distance between the two particles. In order to avoid the collapse of the
particle into a black hole we must impose that its mass is never compacted at any given time
in a region with radius less than its Schwarzschild radius RH = 2Gµ (we assumed the particle
has spherical symmetry), thus we must have:

−2ϕ′ = 2
Gω

R
(1− v2) < 1, (3.22)

from which we find:
1

ω
>

2G

R
(1− v2). (3.23)

We know from (3.1) that ∆x ≳ 1/ω but we also know that the uncertainty must be greater than
the dimension of the interaction region ∆x ≳ R and thus:

∆x2 ≳
R

ω
≳ 2G(1− v2). (3.24)

If v2 ≪ 1, that is if the velocity is non-relativistic, we recover relation (3.8). We then analyze
the case in which 1 − v2 ≪ 1, that is when the test particle has relativistic velocity, and see
that from (3.21) this means −ϕ≫ 1.

We note that the faster the particles pass by each other, the shorter the interaction time will
be and thus the less the measured particle moves due to the gravitational pull the test particle
exerts on it. If we consider a photon as the test particle, we are in the case of least influence
and thus if we find a minimal length in this case, it must be present for all other cases. We set
then v = 1 in (3.20) and find:

g00 =
1 + 2ϕ(1 + α)

α
, (3.25)

g11 =
−1 + 2ϕ(1 + α)

α
, (3.26)

g01 = g10 = −2ϕ(1 + α)

α
, (3.27)
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where:
α = 1 + 2ϕ(1− v2) = 1− 2

Gω

R
(1− v2). (3.28)

From (3.22) follows that 0 < α < 1. We observe that the worldline of the measured particle
must be time-like. Denoting its velocity along the x-axis as u we have:

ds2 = g00dt
2 + g01dtdx+ g10dxdt+ g11dx

2 = (g00 + 2g01u+ g11u
2)dt2 ≥ 0. (3.29)

We then get [2]:
u ≥ η − 1

η + 1
, (3.30)

where:
η = −2ϕ(1 + α). (3.31)

The two particles interact until the test particle moves a distance R away from the measured
particle. The velocity of the test particle cannot be greater than 1, thus the time τ it takes for the
test particle to move a distance R away from the measured particle is at least τ ≳ R/(1− u).
In this time, the measured particle moves by:

L = uτ ≳
uR

1− u
≥ R(η − 1)

2
∼ Rη

2
, (3.32)

since, considering the restrictions on ϕ and α, it results η ≫ 1. We finally get:

L ≳ Gω. (3.33)

Projecting on the x-axis we have:

∆x ≳ Gω sin θ, (3.34)

and again, combining it with (3.1), we recover:

∆x ≳
√
G = lPl. (3.35)

Therefore, for every test particle we might consider, a minimal length of the order of the Planck
length is present.

3.1.3 Limit to distance measurements
Consider we want to measure a length D by sending photons to a mirror and using a clock that
detects them when they travel back: knowing the speed of light is universal we can measure
the distance the photons travelled by measuring their travel-time. The position of the clock is
known up to an uncertainty ∆x, and thus the uncertainty on its velocity is:

∆v ∼ 1

2M∆x
, (3.36)
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with M the mass of the clock. A photon takes the time T = 2D to travel to the mirror and
back, during which the clock moves by T∆v and so the uncertainty on its position increases
to:

∆x+
T

2M∆x
. (3.37)

Varying with respect to ∆x we find that the expression has a minimum for:

∆xmin =

√
T

2M
=

√
D

M
. (3.38)

The distance D has to be greater than the Schwarzschild radius of the clock D > 2GM ,
otherwise it would collapse into a black hole, thus losing causal connection with the rest of the
world, hence we recover:

∆xmin ≳ lPl. (3.39)

3.1.4 Limit to clock synchronization
Consider we want to synchronize two clocks by sending photons from one of them to the other.
The energy of the photon is known up to an uncertainty ∆ω, and thus the uncertainty on the
time will be:

∆T ∼ 1

2∆ω
. (3.40)

The clock and the photon interact in a region R for a time τ ≳ R. If the clock remains
stationary, the time it measures is T = τ

√
g00. From (3.20), setting v = α = 1, we get:

T = τ

√
1− 4Gω

r
. (3.41)

The metric depends on the energy ω of the photon which has an uncertainty ∆ω, this error
propagates into T by:

∆T =

∣∣∣∣∂T∂ω
∣∣∣∣∆ω, (3.42)

thus:
∆T =

2Gτ

r
√
1− 4Gω/r

∆ω. (3.43)

Considering that the interaction takes place within the region R we have τ ≳ R ≳ r, then:

∆T ≳
2G√

1− 4Gω/R
∆ω ≳ 2G∆ω. (3.44)

Combining it with (3.40) we find:
∆T ≳ lPl. (3.45)

17



We see in this way that the precision by which clocks can be synchronized is bound from below
by the Planck length.

In general, however, the clock will move towards the photon due to the gravitational pull
the latter exerts on it with a velocity u. The time it records is then:

T =

∫
ds ∼ τ

√
g00 + 2g01u+ g11u2. (3.46)

Using v = 1 and u ≤ 1 we estimate [4]:∣∣∣∣∂T∂ω
∣∣∣∣ ≳ τ

8G

r

1√
1 + 4Gω/r

, (3.47)

and recalling that τ ≳ R ≳ r, we get:

∆T ≳ τ
G

R
∆ω ≳ G∆ω. (3.48)

Combining once again this relation with (3.40) yields:

∆T ≳ lPl, (3.49)

even in the general case the limitation on ∆T stands the same.

3.1.5 Device independent limit for non-relativistic particles
So far we have worked with a particular measurement apparatus. We could thus wonder if the
limitations we found are due to the technological inefficiencies of the apparatus itself instead
of being an intrinsic feature of the phenomena under exam. X. Calmet, M. L. Graesser and S.
D. H. Hsu [6] found the limitation imposed by the Planck length using a device-independent
argument, following just from the uncertainty principle and the formation of black holes as
predicted by general relativity.

Let us consider a position operator x̂with discrete eigenvalues x, which have a separation of
order lPl (equivalent to a spatial lattice). To rule out this model we would have to measure the
distance between two subsequent eigenvalues x, x′ of some test particle with mass M and find
it to be smaller than Planck’s length: |x− x′| < lPl. Using the non-relativistic Schrödinger
equation, the time-evolution of the position operator is given by (in the Heisenberg picture):

dx̂(t)

dt
= i[Ĥ, x̂(t)] =

p̂

M
, (3.50)

and thus:
x̂(t) = x̂(0) + p̂(0)

t

M
, (3.51)
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Figure 3.4: Device independent limit for non-relativistic particles: workflow

Position operator x̂, discrete eigenvalues with
separation lPl, particle of mass M, device of size R

Heisenberg picture
dx̂(t)
dt

= i[Ĥ, x̂(t)] = p̂/M
⇓

x̂(t) = x̂(0) + p̂(0)t/M

Heisenberg uncertainty principle
∆x(0)∆x(t) ≥ t/2M

∆x ≡ max[∆x(0),∆x(t)] ≥
√
t/2M

∆x ≥
√
G

the device cannot be
too small or too big
t > R > 2GM

where t is the time over which the measurement occurs. The two operators are subject to the
uncertainty principle (2.7):

∆x(0)∆x(t) ≥ 1

2i
⟨[x̂(0), x̂(t)]⟩ . (3.52)

From (3.51) we find:

[x̂(0), x̂(t)] = [x̂(0)p̂(0)− p̂(0)x̂(0)]
t

M
= [x̂(0), p̂(0)]

t

M
= i

t

M
, (3.53)

and thus:
∆x(0)∆x(t) ≥ t

2M
. (3.54)

We note that at least one of the two uncertainties must be bigger than
√
t/2M , the measurement

of the discreteness of the position operator is limited by the greater of the two uncertainties and
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thus:

∆x ≡ max[∆x(0),∆x(t)] ≥
√

t

2M
. (3.55)

We point out the analogy of this expression with (3.38) when we discussed how to measure
distances by help of a clock, but in the current case we arrived at the same result without
considering a particular apparatus.

Let us now take into account gravity. Suppose the size of our apparatus is R, then in order
to avoid gravitational collapse, R must be greater than the Schwarzschild radius of the test
particle:

R > 2GM. (3.56)

The apparatus cannot be made arbitrarily small, but it also cannot be made arbitrarily large, in
fact, because nothing can exceed the speed of light, it must be t ≥ R, thus we find:

∆x ≥
√

t

2M
≥
√

R

2M
≥

√
G. (3.57)

We arrived once again to the result (3.8), but this time we found it using just general principles,
without considering a particular experimental setup, for non-relativistic particles.

3.2 Non-commutative geometry
Spacetime coordinates xµ are represented quantically by the selfadjoint operator x̂µ, which
satisfies the commutation relation:

[x̂µ, x̂ν ] = 0, (3.58)

leading to an uncertainty between spacetime coordinates equal to zero:

∆xµ∆xν = 0. (3.59)

The key concept of non-commutative geometry [7, 8] is that position operators don’t commute,
satisfying instead the commutation relation:

[x̂µ, x̂ν ] = iθµν . (3.60)

The tensor θµν appearing in the right side of the equation is a real-valued and antisymmetric
two-tensor of dimension length squared, known as the Poisson tensor, which is the deformation
parameter in this modification of the canonical commutation relation. We note that such tensor
is not a dynamical field and defines a preferred frame, thus violating Lorentz invariance. The
uncertainty relation between the position operators is then:

∆xµ∆xν ≳
1

2
|θµν |. (3.61)
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From this equation we see that as the reduced Planck constant ℏ enters in the relation between
the uncertainties on position and momentum so does the deformation parameter |θµν | in the
relation between the uncertainties on coordinates, thus its physical interpretation is that of a
smallest observable area in the µν-plane. We expect that the entries of θµν are of the order
of the Planck length squared, though these are free parameters which have to be determined
experimentally.

The non-commutation of spacetime coordinatesx can be extended to the algebra of functions
f(x). Because in quantum physics observables are represented by selfadjoint operators, we
need a procedureW that to each element f(x) in the algebra of functionsA assigns a selfadjoint
operator f̂ = W (f) in the algebra of operators Â. We thus have to choose a suitable basis
for each algebra and then find an isomorphism between them. The most common choice for a
basis of the algebra of functions A is a Fourier transform of the function f(x) [4]:

f̃(k) =
1

(2π)4

∫
d4xe−ikµxµ

f(x). (3.62)

The corresponding basis of the algebra of operators Â is the inverse transform with the non-
commutative operator x̂µ:

f̂ = W (f) =
1

(2π)4

∫
d4keikµx̂

µ

f̃(k). (3.63)

Given a vector space A defined over a field K equipped with an additional binary operation:

∗ : A× A→ A, (3.64)

A is an algebra over K if the binary operation ∗ is bilinear. Two algebras A,B defined over
the same field are isomorphic if there exists a linear bijective map W : A → B such that
W (f ∗ g) = W (f) ∗W (g), with f, g ∈ A. We thus construct a new product, the star product
⋆, that defines an isomorphism between the algebra of functions and the algebra of operators,
such that:

W (f ⋆ g) = W (f) ⋆ W (g) = W (f) ·W (g) = f̂ · ĝ, (3.65)

where f, g ∈ A and f̂ , ĝ ∈ Â. We thus find the explicit expression:

W (f ⋆ g) =
1

(2π)4

∫
d4kd4peikµx̂

µ

eipµx̂
µ

f̃(k)g̃(p). (3.66)

Using the Campbell-Baker-Hausdorff formula:

eAeB = eA+B+ 1
2
[A,B]+ 1

12
([A,[A,B]]−[B,[A,B]])+..., (3.67)

we have:
eikµx̂

µ

eipµx̂
µ ≃ ei(kµ+pµ)x̂µ− i

2
kµθµνpν , (3.68)
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and so:
W (f ⋆ g) =

∫
d4k

(2π)4
d4pf̃(k)g̃(p)ei(kµ+pµ)x̂µ− i

2
kµθµνpν . (3.69)

This map can be inverted to:

f(x) ⋆ g(x) =

∫
d4k

(2π)4
d4p

(2π)4
f(k)g(p)e−i(kν+pν)xν− i

2
kνθνµpµ . (3.70)

Equipped with this product we can continue to work with functions as usual, we just have to
keep in mind that they obey a modified product rule.

One of the main consequences of non-commutative geometry is non-locality. We can see
this by considering the star product with a delta function. Let us first rewrite (3.70) as [4]:

f(x) ⋆ g(x) =

∫
d4p

(2π)4
d4yf(x+

1

2
θp)g(x+ y)e−ikνyν

=
1

π4|detθ|

∫
d4zd4yf(x+ z)g(x+ y)e−2izµθ−1

µν y
ν

,

(3.71)

then the star product with the delta function is:

δ(x) ⋆ g(x) =
1

|detθ|

∫
d4ye2ix

µθ−1
µν y

ν

g(x). (3.72)

In contrast to the normal product of functions, the star product describes a highly non-local
operation. Another way to see how the non-vanishing commutator (3.60) requires some
minimal resolution is by considering the product of two Gaussians centered around zero [7].
A normalized Gaussian in position space centered around zero with variance σ2:

ψσ(x) =
1

πσ
e−x2/σ2

, (3.73)

has the Fourier transform:

ψ̃σ(k) =

∫
d2xeikxψσ(x) = e−π2k2σ2

. (3.74)

Given two Gaussians with variance σ2
1 and σ2

2 , their star product is, in the momentum space:

ψ̃σ1 ⋆ ψ̃σ2(k) =

∫
d2pψσ1(k − p)ψσ2(p)e

i
2
kiθijp

j

=
π

(4σ2
1 + σ2

2)
2
e−k2σ2

12/4,
(3.75)

with:
σ2
12 =

σ2
1σ

2
2 + θ2

σ2
1 + σ2

2

. (3.76)
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In the position space this yields:

ψ̃σ1 ⋆ ψ̃σ2(x) =
1

πσ12(4σ2
1 + σ2

2)
2
e−x2/σ2

12 . (3.77)

Multiplying two Gaussians with σ1, σ2 < θ, the resulting width σ12 is larger than θ. Inserting
σ1 = σ2 = σ12 = σ in (3.76), we find σ2 = θ: a Gaussian with width θ squares to itself. Thus
the Gaussian with width θ can be thought of as having a minimum effective size.

3.3 Other motivations
On a final note, a minimal length emerges, in a more theoretical and formal way, in the two
main theories that attempt to describe quantum gravity: string theory and loop quantum gravity
(LQG).

In string theory is the string scale lS that plays the role of a minimal length scale: studying
the scattering of strings and D-branes, it has been shown that at high energies the strings grow
in size, thus leading to a form of generalized uncertainty principle.

In LQG some operators, e.g. the area and volume operators acting on the spin network
ψs representing quantum states of the gravitational field, have a discrete spectrum and thus
a minimal value is identifiable. For example, the eigenvalues of the area operator Â of a
two-dimensional surface Σ are given by [9]:

Âψs = 8πl2Plγ
∑
i

√
ji(ji + 1)ψs, (3.78)

where ji is a positive, half-integer number representing the spin of the link i of the spin network,
the sum is taken over all the intersections of the surface Σ with the spin network, and γ is the
Immirzi parameter, of order of the unity. Clearly the smallest area eigenvalue is:

Amin = 4π
√
3γl2Pl. (3.79)

From these considerations emerges that rather than speaking of a precise minimal length,
we should speak more generally of a minimal length scale. This is expected to be of the order
of the Planck length but it is, in principle, a free parameter whose value has to be constrained
by observations.
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Chapter 4

GUP

In this section we study the connection between the GUP and the canonical commutation
relations and analyze briefly some of the problems arising from this method. We then proceed
to see how the Newtonian gravitational potential is influenced, critically reviewing some of the
approaches to this issue that are fundamentally fallacious and make, indeed, wrong predictions.

4.1 Modified commutators
We can obtain the GUP from a modified commutation relation for position and momentum
operators. This modification could also imply a modification of the commutator of these
operators with themselves, thus the geometry in position or momentum space would become
non-commuting.

Let us consider the canonical commutation relations for the operators representing the wave
vector and the spacetime coordinates kµ = (ω, k) and xµ = (t, x) (we drop the hat for operators
in order to lighten the notation), with the three vector components labeled with small Latin
indices:

[xµ, xν ] = 0, [xµ, kν ] = iδµν , [kµ, kν ] = 0. (4.1)
We define the momentum as pµ = (E, p) = f(kµ), with f an injective function, so that
f−1(pµ) = kµ is well defined. The commutation relations associated with these variables are:

[xµ, xν ] = 0, [xµ, pν ] = i
∂fν
∂kµ

, [pµ, pν ] = 0. (4.2)

The uncertainty relation between xi and pi is then:

∆xi∆pi ≥
1

2

〈
∂fi
∂ki

〉
. (4.3)

Let us say that the expression defining p = f(k) is expandable as:

p ≈ k(1 + β0k
2/m2

Pl), (4.4)
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plus higher orders in k/mPl, with β0 a dimensionless parameter; the inverse relation will then
be:

k ≈ p(1− β0p
2/m2

Pl). (4.5)

Hence we find:
∂fi
∂kj

≈ δij

(
1 + β0

p2

m2
Pl

)
+ 2β0

pipj
m2

Pl

, (4.6)

and the commutator of xi and pj becomes:

[xi, pj] ≈ i
(
δij + βδijp

2 + 2βpipj
)
, (4.7)

where β = β0/m
2
Pl. We can now write (4.3) as:

∆xi∆pi ≥
1

2

(
1 + β0

⟨p2⟩
m2

Pl

+ 2β0
⟨p2i ⟩
m2

Pl

)
≥ 1

2

(
1 +

β0
m2

Pl

∆p2i

)
,

(4.8)

recalling that ∆p2 = ⟨p2⟩− ⟨p⟩2. We thus reproduced the GUP we saw emerging in Section 3:

∆xi ≥
1

2

(
1

∆pi
+ β∆pi

)
. (4.9)

However, this determination for pµ and kµ doesn’t come without complications. For
example, it arises the problem of how these quantities transform if we change reference frame. If
we assume thatkµ obeys the normal Lorentz transformationΛ and perform such a transformation
on it, obtaining kµ′ = Λµ′

ν k
ν , then we have:

pµ′ = f(kµ′) = f(Λµ′

ν k
ν) = f(Λµ′

ν f
−1(pν)), (4.10)

and we can construct the modified Lorentz transformation obeyed by the momentum: pµ′ =
Λ̃µ′

ν (p
ν). In particular, we can choose a function f such that it maps an infinite value of kµ

in a finite value of pµ at the Planck energy, thus making the Planck length Lorentz invariant
(EPl ∼ 1/lPl). This is the main concept of Doubly Special Relativity or DSR (sometimes
referred to as Deformed Special Relativity), "doubly" because in this theory there are now
an observer-independent maximum speed, the speed of light, and an observer-independent
maximum energy or mass, the Planck energy or mass (EPl = mPl) [10, 11].

Another issue is how momenta must be summed. The function f must be non linear in kµ if
we want the Planck energy to be a Lorentz invariant, thus the modified Lorentz transformation
Λ̃ has also to be non linear in kµ. Hence, the sum of the transformations of momenta is different
from the transformation of the sum of momenta:

Λ̃µ′

ν (p
ν
1 + pν2) ̸= Λ̃µ′

ν (p
ν
1) + Λ̃µ′

ν (p
ν
2). (4.11)
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We can obviate this problem by defining a new, non-linear addition operator ⊕, making use of
the normal behaviour under Lorentz transformation of the wave vector. The sum kµ1 + kµ2 is
invariant under the normal Lorentz transformation, thus we define the new addition operator
as:

pµ1 ⊕ pµ2 = f(kµ1 + kµ2 ) = f(f−1(pµ1) + f−1(pµ2)). (4.12)

We now note that, having chosen f in such a way that it has a maximum value for the Planck
energy (or equivalently the Planck mass mPl ≈ 10−8 kg), then the sum of momenta will never
exceed this value. However, while this doesn’t represent a problem in the realm of particle
physics, it is an issue at bigger scales, where this mass is easily exceeded. This takes the name
of soccer ball problem, because it arises for macroscopic objects, for example a soccer ball
[12]. Anyway, solutions to this problem are beyond our scope as we already dwelled enough
on implications of the commutation relations (4.2). We just pointed out this and others issues
to stress that the investigation of these relations is still under development and much effort is
being put in it. The main point we must take away from this section is that the GUP can be
obtained, formally, from the modified commutation relations (4.2).

4.2 Newtonian limit
We know that a freely-falling object in a gravitational field moves along geodesics defined by:

d2xα

dτ 2
+ Γα

µν

dxµ

dτ

dxν

dτ
= 0, (4.13)

where xµ are the coordinates of the particle, τ its proper time and Γα
µν the Christoffel symbols

which are related to the metric gµν by:

Γα
µν =

1

2
gαβ(gµβ,ν + gνβ,µ − gµν,β), (4.14)

where the comma denotes partial derivative w.r.t. the coordinates xµ. We want to tie the metric
to the Newtonian gravitational potential. In order to do so we put ourselves in the weak field
limit of the geodesic equation, that is we consider a metric gµν static and very close to the
Minkowski metric ηµν :

gµν = ηµν + ϵhµν , (4.15)

where |ϵ| ≤ 1 is the deformation parameter, and consider the non-relativistic limit, that is the
particle’s speed is far from the speed of light and the four-velocity of the particle can be written
as:

uµ = (γ, γu⃗) = (γ, γϵv⃗) , (4.16)

where v ≪ c = 1 and γ = 1/
√
1− u2. We now expand to first-order in ϵ:

uµ =
(
1 +O(ϵ2), ϵv⃗ +O(ϵ2)

)
, (4.17)
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thus:
d2xα

dτ 2
= ϵ

(
0,
dv⃗

dt

)
+O(ϵ2), (4.18)

and:

Γα
µν =

1

2
gαβ(gµβ,ν + gνβ,µ − gµν,β)

=
ϵ

2
gαβ(hµβ,ν + hνβ,µ − hµν,β)

=
ϵ

2
ηαβ(hµβ,ν + hνβ,µ − hµν,β) +O(ϵ2).

(4.19)

Recalling that t = γτ , the geodesic equation (4.13) becomes, to first-order in ϵ:

0 =
d2xα

dτ 2
+ Γα

µν

dxµ

dτ

dxν

dτ
≃ ϵ

d2xi

dt2
+ Γi

µνδ
µ
0δ

ν
0

≃
(
d2xi

dt2
− 1

2
ηiih00,i

)
,

(4.20)

in which we used:

Γi
µνδ

µ
0δ

ν
0 = Γi

00 ≃
ϵ

2
ηii(h0i,0 + h0i,0 − h00,i) = − ϵ

2
ηiih00,i , (4.21)

remembering that being hµν time-independent, its derivatives are different from zero only when
not taken w.r.t the time. From (4.20) we see that:

d2xi

dt2
=

1

2
h00,i , (4.22)

and defining the gravitational potential V as:

V = −1

2
h00, (4.23)

from (4.22) we find:
d2xi

dt2
= −∂V

∂xi
. (4.24)

The Newtonian limit is recovered for spherically symmetric body using the Schwarzschild
metric:

ds2 = gµνdx
µdxν =

(
1− 2GM

r

)
dt2 −

(
1− 2GM

r

)−1

dr2 − r2dΩ2, (4.25)

where M is the mass of the body and dΩ2 = dθ2 + sin2 θdϕ2. From (4.23), we find:

V (r) =
g00 − 1

2
= −GM

r
, (4.26)
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which is the Newtonian potential.
Now we see what are the effects of the GUP. In Section 5.2 we will show how the GUP

modifies the Hawking radiation temperature and how the Schwarzschild metric can be then
deformed in order to recover this modified temperature. The deformation of the metric we will
later make use of is obtained by expanding the first component as [13]:

g00 ≃ 1− 2GM

r
+ ϵ

G2M2

r2
, (4.27)

with |ϵ| ≤ 1 the deformation parameter. Once again, according to (4.23), we have:

V (r) = −GM
r

+ ϵ
G2M2

2r2
≡ VN(r) + VGUP (r). (4.28)

The deformation parameter ϵ and β0 can be shown to be related as:

β0(ϵ) ≃ −π2GM
2

ℏ
ϵ2, (4.29)

VGUP can then be approximated as:

VGUP = ϵ
G2M2

2r2
≃
√
|β0|

mPl

M
V 2
N . (4.30)

We see that the Equivalence Principle is satisfied, in fact:

r̈ = −dV (r)

dr
= −GM

r2
+ ϵ

G2M2

r3
. (4.31)

This correction to the Newtonian potential can be used to investigate non-relativistic phenom-
ena.

4.3 Other approaches
We know that the classical "counterpart" of the commutator is the Poisson bracket. In some
works [14, 15] in order to analyze the classical limit, the modified commutation relations (4.7)
have been used to construct modified Poisson brackets:

[q̂, p̂] = iℏ(1 + βp̂2) → {q, p} = (1 + βp2), (4.32)

with q, p canonical variables satisfying:

{q, q} = {p, p} = 0. (4.33)
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Given the Hamiltonian H(q, p) we have:

q̇ = {q,H} = (1 + βp2)
∂H

∂p
,

ṗ = {p,H} = −(1 + βp2)
∂H

∂q
.

(4.34)

Considering now a particle of mass m moving in a Newtonian potential, its Hamiltonian is:

H =
p2

2m
− GMm

q
, (4.35)

and (4.34) becomes:

q̇ = {q,H} = (1 + βp2)
p

m
, (4.36)

ṗ = {p,H} = −(1 + βp2)
GMm

q2
. (4.37)

From (4.36) we have:
mq̇ = p+ βp3, (4.38)

and then:
mq̈ = (1 + 3βp2)ṗ. (4.39)

Inserting (4.37), to first-order in β we find:

q̈ ≃ −(1 + 4βp2)
GM

q2
. (4.40)

Solving (4.38) for p, to first-order in β we get:

p ≃ mq̇ − β(mq̇3)

1 + 3β(mq̇)2
, (4.41)

and thus we find, again in first-order in β:

q̈ ≃ −[1 + 4β(mq̇)2]
GM

q2
. (4.42)

This clearly violates the Equivalence Principle, because the acceleration of the body depends
on its mass and velocity and thus the results obtained using the modified Poisson brackets
(4.34) aren’t valid.

In the approach followed by S. Benczik et al. in [15], one starts from the conservation of
the energy E = mE , from which:

p2 = 2m2(E − VN). (4.43)
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Inserting this expression in (4.36) we get, to first-order in β:

q̇2 ≃ 2(E − VN)[1 + 4βm2(E − VN)]. (4.44)

Here the term in β depends on the mass of the particle and on its velocity, roughly q̇ ∼
(E − VN)

1/2 and thus violates the Equivalence Principle. In fact in [15], the deformation
parameter is estimated as being very small:

β0 ≤ 10−66, (4.45)

which makes perturbations induced by the GUP too small to be relevant even in the quantum
realm, thus contradicting the very reason why the GUP is introduced.

As pointed out in [16], this error comes from the limit (4.32). In fact, the semiclassical
limit of the commutator for a generic state ψ with ⟨p̂⟩ ≠ 0 is formally given by:

{q, p} = lim
ℏ→0

⟨ψ|[q̂, p̂]|ψ⟩
iℏ

= lim
ℏ→0

[
1 + β0

G

ℏ
(
⟨p̂⟩2 +∆p2

)]
. (4.46)

Macroscopic objects with non vanishing momentum are better represented by semiclassical
states ψcl defined by:

lim
ℏ→0

⟨p̂⟩ = p, (4.47)

lim
ℏ→0

∆p2 = lim
ℏ→0

(〈
p̂2
〉
− ⟨p̂⟩2

)
= 0. (4.48)

Thus the limit (4.46) becomes:

{q, p} = lim
ℏ→0

(
1 + β0

Gp2

ℏ

)
, (4.49)

which diverges badly like ℏ−1.
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Chapter 5

GUP phenomenology

The phenomenology of the GUP is vast and has been largely investigated. We will focus
on its consequences on two main areas: the Hamiltonian of a free particle, applied to the
1-dimensional potential barrier, the Lamb shift, the Landau levels and the Hawking radiation
temperature, which can be reproduced starting from a deformed Schwarzschild metric.

5.1 Single particle Hamiltonian
In this section we will analyze how the GUP affects some well understood low energy systems
and how the corrections it determines can be used to experimentally estimate the deformation
parameter β0, based on the work of S. Das and E. C. Vagenas [17].

We showed in Section 4.1 that the commutator of position and momentum operators can
be modified (4.7) in such a way that leads to the GUP (4.8). If we now define two operators
xi, pi as:

xi = x0i, (5.1)
pi = p0i(1 + βp20), (5.2)

where:

p20 =
3∑

j=1

p20j, (5.3)

and with x0i, p0j satisfying the canonical commutation relation:

[x0i, p0j] = iℏδij, (5.4)

we recover (4.7) to first-order in β, thus in the following we neglect terms of order β2 and
higher.
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Any Hamiltonian H of the form:

H =
p2

2m
+ V (r), r = (x1, x2, x3), (5.5)

can be written, using (5.2), as:

H =
p20
2m

+ V (r) + β

m
p40 +O(β2) ≡ H0 +H1 +O(β2), (5.6)

where:

H0 =
p20
2m

+ V (r), (5.7)

H1 =
β

m
p40. (5.8)

It is remarkable that using the modified Hamiltonian in the time-dependent Schrödinger equa-
tion:

Hψ(r, t) = iℏ
∂ψ(r, t)
∂t

(5.9)

the continuity equation is still fulfilled [17]:

∇ · J +
∂ρ

∂t
= 0, (5.10)

with ρ the usual probability density:
ρ = |ψ|2, (5.11)

and J the probability current:

J =
ℏ

2mi
(ψ∗∇ψ − ψ∇ψ∗)− βℏ3

mi
[(ψ∗∇∇2ψ − ψ∇∇2ψ∗) + (∇2ψ∗∇ψ −∇2ψ∇ψ∗)]

≡ J0 + J1.

(5.12)

In what follows, for the different phenomena in exam we first review the standard approach
with the usual HamiltonianH0 and then proceed taking into account the modified Hamiltonian
H .

5.1.1 STM and 1-dimensional potential barrier
The scanning tunneling microscope or STM is a type of microscope which allows to image and
manipulate single atoms. The STM consists of an extremely sharp and conductive tip, which
moves upon the surface one wants to investigate (Fig. 5.1). A voltage is applied between the
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Figure 5.1: Schematic picture of an STM. The sharp conductive tip is located on top of an
atom of the surface to analyze. A voltage is applied between them. Electrons move due to the
tunnelling effect, thus creating a current.

two. When the tip is located upon an atom, electrons move due to quantum tunnelling and thus
create a current. The voltage applied can be modeled by a 1-dimensional potential barrier :

V (x) = 0 for x < 0 and x > a, (5.13a)
V (x) = V0 for 0 < x < a, (5.13b)

where V0 is the height of the potential barrier (Fig. 5.2). The time-independent Schrödinger

Figure 5.2: Potential barrier of height V0 for 0 < x < a and 0 for x < 0, x > a.

equation for electrons with potential energy V (x) is, in the position representation:

Hϕ(x) = − ℏ2

2m

d2ϕ(x)

dx2
+ V (x)ϕ(x) = wϕ(x), (5.14)
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where w is the energy eigenvalue and we consider the case w < V0. This equation can be
written as:

d2ϕ

dx2
+ k2ϕ = 0 for x < 0 and x > a, (5.15a)

d2ϕ

dx2
+ k′2ϕ = 0 for 0 < x < a, (5.15b)

where:

k2 =
2mw

ℏ2
, (5.16)

k′2 =
2m(w − V0)

ℏ2
. (5.17)

We are interested in solutions of (5.15) of the form:

ϕ(x) = e(ikx) + Ae(−ikx) for x < 0, (5.18a)
ϕ(x) = Be(ik

′x) + Ce(−ik′x) for 0 < x < a, (5.18b)
ϕ(x) = De(ikx) for x > a. (5.18c)

The coefficients A,B,C,D are determined by imposing that ϕ(x) and its first derivative
dϕ(x)/dx are continuous at x = 0, a:

ϕ(0 + 0) = ϕ(0− 0), (5.19a)
ϕ(a+ 0) = ϕ(a− 0), (5.19b)
dϕ(0 + 0)

dx
=
dϕ(0− 0)

dx
, (5.19c)

dϕ(a+ 0)

dx
=
dϕ(a− 0)

dx
, (5.19d)

where f(x± 0) is an abbreviation for limϵ→0+ f(x± ϵ). The resulting linear system is:

B + C = 1 + A, (5.20a)
Deika = Beik

′a + Ce−ik′a, (5.20b)
k′(B − C) = k(1− A), (5.20c)
kDeika = k′(Beik

′a − Ce−ik′a). (5.20d)
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Solving the system we find:

A =
−i(k2 − k′2) sin(k′a)

2kk′ cos(k′a)− i(k2 + k′2) sin(k′a)
, (5.21a)

B =
k(k + k′)e−ik′a

2kk′ cos(k′a)− i(k2 + k′2) sin(k′a)
, (5.21b)

C =
−k(k − k′)eik

′a

2kk′ cos(k′a)− i(k2 + k′2) sin(k′a)
, (5.21c)

D =
2kk′

eika[2kk′ cos(k′a)− i(k2 + k′2) sin(k′a)]
. (5.21d)

From collision theory we know that the reflection and transmission amplitudes are respectively:

r = A, t = D, (5.22)
thus the reflection and transmission coefficients are:

R =
δ2 sinh2(k̃′a)

(2kk̃′a2)2 + δ2 sinh2(k̃′a)
, (5.23)

T =
(2kk̃′a2)2

(2kk̃′a2)2 + δ2 sinh2(k̃′a)
, (5.24)

where:

δ =
2mV0a

2

ℏ2
, (5.25)

k̃′2 =
δ

a2
− k2, (5.26)

and of course R+ T = 1. It can be shown that when k′a≫ 1, the transmission coefficient can
be approximated with:

T0 =
16w(V0 − w)

V 2
0

e−2k′a. (5.27)

We now take into account the GUP. The time-independent Schrödinger equation for elec-
trons with potential energy V (x) and with the modified Hamiltonian (5.6) is, in the position
representation:

Hϕ(x) =

[
− ℏ2

2m

d2

dx2
+ V (x) +

βℏ4

m

d4

dx4

]
ϕ(x) = wϕ(x), (5.28)

where w is the energy eigenvalue and we consider the case w < V0. This equation can be
written as:

d2ϕ

dx2
+ k2ϕ− l2Pl

d4ϕ

dx4
= 0 for x < 0 and x > a, (5.29a)

d2ϕ

dx2
+ k′2ϕ− l2Pl

d4ϕ

dx4
= 0 for 0 < x < a, (5.29b)
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where k, k′ given by (5.16), (5.17) and l2Pl = 2βℏ2. We are interested in solutions of (5.29) of
the form:

ϕ(x) = Ae(ik1x) +Be(−ik1x) + A1e
(x/lPl) for x < 0, (5.30a)

ϕ(x) = Fe(ik
′
1x) +Ge(−ik′1x) +H1e

(x/lPl) + L1e
(−x/lPl) for 0 < x < a, (5.30b)

ϕ(x) = Ce(ik1x) +D1e
(−x/lPl) for x > a. (5.30c)

where:

k1 = k(1− βℏ2k2), (5.31)
k′1 = k′(1− βℏ2k′2). (5.32)

The coefficients are determined by imposing thatϕ(x) and its derivatives of ordern, dnϕ(x)/dxn,
with n = 1, 2, 3, are continuous at x = 0, a:

ϕ(0 + 0) = ϕ(0− 0), (5.33a)
ϕ(a+ 0) = ϕ(a− 0), (5.33b)
dnϕ(0 + 0)

dxn
=
dnϕ(0− 0)

dxn
, (5.33c)

dnϕ(a+ 0)

dxn
=
dnϕ(a− 0)

dxn
. (5.33d)

The resulting linear system is:

A+B + A1 = F +G+H1 + L1, (5.34a)

ik1(A−B) +
A1

lPl

= k′1(F −G) +
H1 − L1

lPl

, (5.34b)

− k′21 (A+B) +
A1

l2Pl

= k′21 (F +G) +
H1 − L1

l2Pl

, (5.34c)

− ik1
3(A−B) +

A1

l3Pl

= k′31 (F −G) +
H1 − L1

l3Pl

, (5.34d)

Fek
′
1a +Ge−k′1a +H1e

a/lPl + L1e
−a/lPl = Ceik1a +D1e

−a/lPl , (5.34e)

k′1(Fe
k′1a +Ge−k′1a) +

H1

lPl

ea/lPl − L1

lPl

e−a/lPl = ik1Ce
ik1a − D1

lPl

e−a/lPl , (5.34f)

k′21 (Fe
k′1a +Ge−k′1a) +

H1

l2Pl

ea/lPl +
L1

l2Pl

e−a/lPl = −k21Ceik1a +
D1

l2Pl

e−a/lPl , (5.34g)

k′31 (Fe
k′1a −Ge−k′1a) +

H1

l3Pl

ea/lPl − L1

l3Pl

e−a/lPl = −ik31Ceik1a −
D1

l3Pl

e−a/lPl . (5.34h)
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Solving the system we find:

B

A
=

(k21 + k′21 )(e
2k′21 a − 1)

e2k
′
1a(k1 + ik′1)

2 − (k1 − ik′1)
2
, (5.35a)

C

A
=

4ik1k
′
1e

−ik1ae−ik′1a

e2k
′
1a(k1 + ik′1)

2 − (k1 − ik′1)
2
, (5.35b)

F

A
=

−2k1(k1 − ik′1)

e2k
′
1a(k1 + ik′1)

2 − (k1 − ik′1)
2
, (5.35c)

G

A
=

2e2k
′
1ak1(k1 + ik′1)

e2k
′
1a(k1 + ik′1)

2 − (k1 − ik′1)
2
. (5.35d)

We can now compute the conserved probability currents using (5.12):

J = k1
(
|A|2 − |B|2

)
for x < 0, (5.36)

J = k1|C|2 for x > a. (5.37)

The reflection and transmission coefficients are respectively:

R =

∣∣∣∣BA
∣∣∣∣2 = [1 + (2k1k

′
1)

2

(k21 + k′21 )
2 sinh2(k′1a)

]−1

, (5.38)

T =

∣∣∣∣CA
∣∣∣∣2 = [1 + (k21 + k′21 )

2 sinh2(k′1a)

(2k1k′1)
2

]−1

, (5.39)

with R + T = 1. It can be shown that when k′a≫ 1, T can be approximated with:

T = T0

[
1 +

4mβ(2w − V0)
2

V0
+

2βa[2m(V0 − w)]3/2

ℏ

]
, (5.40)

where T0 as given by (5.27).
The transmission coefficient T is proportional to the current I flowing between the tip and

the sample in the STM. This current is usually amplified by an amplifier of gain G. The gain
in current given by the GUP is:

δI

I0
=
δT

T0
=

4βm

V0
(2w − V0)

2 +
2βa

ℏ
[2m(V0 − w)]3/2

=
4β0m

mPlEPl

(2w − V0)
2

V0
+

2
√
2β0a

lPl

(
m

mPl

)3/2(
V0 − w

EPl

)3/2

.

(5.41)

Assuming the following approximate values:
m = me = 0.5 MeV,
w, V0 = 10 eV,
a = 10−10 m,
I = 10−9 A,
G = 109,

(5.42)
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we obtain:

k′ = 1010 m−1, (5.43a)
δI

I0
=
δT

T0
= 10−48β0, (5.43b)

δI ≡ GδI = 10−48β0 A. (5.43c)

The time τ it would take for the excess current δI to add the charge of just one electron,
e = 10−19 C, is:

τ =
e

δI
= 1029β−1

0 s. (5.44)

If we assume β0 ≈ 1, this is a time much bigger than the age of the universe (1018 s), by that
time Earth would have been already wiped out by the Sun and we wouldn’t be able to conclude
our measurement. However, if we manage to increase δI by a factor 1021, by a combination
of increase in I , G and β0, the above time reduces to τ = 108 s, i.e. a year, and we can hope
to measure the excess current. If instead the excess current cannot be measured in such a time
scale, this puts an upper bound on β0 of:

β0 < 1021. (5.45)

5.1.2 Lamb shift
The Hamiltonian of an hydrogen atom is:

H0 =
p20
2m

− k

r
, (5.46)

where k = e2/4πϵ0. Using p20 = 2m(H0+k/r), the deformation term (5.8) can be written as:

H1 = 4βm

[
H2

0 + k

(
1

r
H0 +H0

1

r

)
+

(
k

r

)2
]
. (5.47)

We can compute how this term affects the energy eigenfunctions and eigenvalues of the system
by using the time-independent perturbation theory [18].

We suppose that the time-independent Hamiltonian H of the system can be expressed as:

H = H0 + λH ′, (5.48)

where the unperturbed Hamiltonian H0 is sufficiently simple so that the corresponding time-
independent Schrödinger problem:

H0ψ
(0)
n = E(0)

n ψ(0)
n , (5.49)
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can be solved exactly and the perturbation energy H ′ is small compared to H0. The param-
eter λ is real and allows us to distinguish between the various orders of perturbation. The
eigenfunctions ψ(0)

n corresponding to eigenvalues E(0)
n form a complete orthonormal set:

⟨ψ(0)
i |ψ(0)

j ⟩ = δij. (5.50)

We want to solve the perturbed Schrödinger problem:

Hψn = Enψn. (5.51)

The basic assumption of perturbation theory is that the eigenfunctions ψn corresponding to
eigenvalues En can be expanded as a power series in λ:

ψn =
∞∑
j=0

λjψ(j)
n , (5.52)

En =
∞∑
j=0

λjE(j)
n , (5.53)

where the index j labels the order of the perturbation. Inserting (5.52), (5.53) into the
Schrödinger equation (5.51) we have:

(H0 + λH ′)(ψ(0)
n + λψ(1)

n + λ2ψ(2)
n + . . . ) = (E(0)

n + λE(1)
n + λ2E(2)

n + . . . )

× (ψ(0)
n + λψ(1)

n + λ2ψ(2)
n + . . . ). (5.54)

Now we equate the terms in the same order of λ on both sides of the equation:

H0ψ
(0)
n = E(0)

n ψ(0)
n ,

λ(H0ψ
(1)
n +H ′ψ(0)

n ) = λ(E(0)
n ψ(1)

n + E(1)
n ψ(0)

n ),

λ2(H0ψ
(2)
n +H ′ψ(1)

n ) = λ2(E(0)
n ψ(2)

n + E(1)
n ψ(1)

n + E(2)
n ψ0)

n ),

...
λj(H0ψ

(j)
n +H ′ψ(j−1)

n ) = λj(E(0)
n ψ(j)

n + E(1)
n ψ(j−1)

n + · · ·+ E(j)
n ψ(0)

n ).

(5.55)

We note that to zero-order of perturbation we recover the unperturbed Schrödinger problem.
To obtain the first-order energy correction E(1)

n , we multiply the first-order equation in λ by
ψ

(0)∗
n and, using bra-ket notation, we have:〈

ψ(0)
n

∣∣H0 − E(0)
n

∣∣ψ(1)
n

〉
+
〈
ψ(0)
n

∣∣H ′ − E(1)
n

∣∣ψ(0)
n

〉
= 0. (5.56)

Recalling that the unperturbed Hamiltonian operator is selfadjoint:〈
ψ(0)
n

∣∣H0

∣∣ψ(1)
n

〉
= E(0)

n

〈
ψ(0)
n

∣∣ψ(1)
n

〉
, (5.57)
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we see that the first term in (5.56) vanishes. Being the eigenfunctions orthonormal we have
⟨ψ(0)

n |ψ(0)
n ⟩ = 1 and then:

E(1)
n =

〈
ψ(0)
n

∣∣H ′∣∣ψ(0)
n

〉
, (5.58)

thus the first-order correction is just the average value of the perturbation energy over the
unperturbed state.

We are now interested in finding ψ(1)
n . In order to do so we expand ψ(1)

n in the basis of the
unperturbed eigenfunctions ψ(0)

j :

ψ(1)
n =

∑
j

cnjψ
(0)
j . (5.59)

Upon inserting this expression in the first-order equation in λ of (5.55) we have:

(H0 − E(0)
n )
∑
j

cnjψ
(0)
j + (H ′ − E(1)

n )ψ(0)
n = 0. (5.60)

We now multiply this expression for ψ(0)∗
l and, using bra-ket notation, we have:

c
(1)
nl (E

(0)
l − E(0)

n ) +H ′
ln − E(1)

n δnl = 0, (5.61)

where H ′
nl ≡ ⟨ψ(0)

l |H ′|ψ(0)
n ⟩. If l = n, (5.61) reduces to E(1)

n = H ′
nn = ⟨ψ(0)

n |H ′|ψ(0)
n ⟩, which

is the result (5.58). If l ̸= n we have:

c
(1)
nl =

H ′
nl

E
(0)
n − E

(0)
l

. (5.62)

Combining (5.59) and (5.62) we see that ψ(1)
n is given by:

ψ(1)
n =

∑
l ̸=n

H ′
nl

E
(0)
n − E

(0)
l

ψ
(0)
l . (5.63)

To first-order of perturbation, the perturbed eigenfunction ψn is:

ψn = ψ(0)
n + ψ(1)

n . (5.64)

We now return to the hydrogen atom. To first-order of perturbation, the eigenkets of the
system are:

|ψnlm⟩′ = |ψnlm⟩+
∑

n′l′m′ ̸=nlm

H ′
n′l′m′,nlm

En − En′
|ψn′l′m′⟩ , (5.65)

where n, l,m are respectively the principal, orbital and magnetic quantum numbers and
H ′

n′l′m′,nlm ≡ ⟨n′l′m′|H ′|nlm⟩. Using (5.47) we find:

H ′
n′l′m′,nlm

4βm
=

[
(En)

2δnn′ + k(En + En′) ⟨n′l′m′|1
r
|nlm⟩+ k2 ⟨n′l′m′| 1

r2
|nlm⟩

]
. (5.66)
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Hence the first-order shift in the ground state wavefunction is [17]:

∆ψ100(r) ≡ ψ′
100(r)− ψ100(r) =

H ′
200,100

E1 − E2

ψ200(r). (5.67)

We recall that the wavefunctions of the hydrogen atom are factorized in a spatial and an angular
part:

ψnlm(r) =
χnl(r)

r
Ylm(θ, ϕ), (5.68)

with:

χ10 =
2

a
3/2
0

r exp

{
− r

a0

}
, (5.69)

χ20 =
1

√
2a

3/2
0

r exp

{
− r

2a0

}(
1− r

2a0

)
, (5.70)

Y00 =
1√
4π
, (5.71)

and the energy eigenvalues are:
En = −E0

n2
, (5.72)

where E0 = e2/8πϵ0a0 = k/2a0 = 13.6 eV, a0 = 4πϵ0ℏ2/mee
2 = 5.3 × 10−11 m, me = 0.5

Mev/c2. We can then compute the first-order shift in the ground state wavefunction (5.67)
finding:

∆ψ100(r) =
928

√
2βmE0

81
ψ200(r). (5.73)

We now see how this calculations can help us estimate the parameter β0 with the Lamb shift.
According to Dirac equation, for a given n the energy levels 2S1/2 and 2P1/2 of the hydrogen
atom should have the same energy. However Lamb and Retherford, in 1947, first discovered
in their experiment that this was not the case and there was, indeed, a difference between the
levels 22S1/2 and 22P1/2, the former having a greater energy than the latter [19]. The Lamb
shift arises from the interaction between the electron of the atom and the fluctuations of the
quantized electromagnetic field: even when no external field is applied, there are still vacuum
fluctuations. Although these fluctuations average to zero, their mean-square value does not and
thus the position coordinate of the electron has a non-vanishing mean-square fluctuation. The
expression for the Lamb shift of the n-th level of the hydrogen atom is [20]:

∆En =
4α2

3m2
ln

(
1

α

)
|ψnlm(0)|2, (5.74)

where α = e2/4πϵ0ℏc ≈ 1/137 is the fine structure constant. Varying ψnlm(0), the additional
contribution to the Lamb shift due to the GUP in proportion to its original value is given by:

∆En(GUP )

∆En

= 2
∆ψnlm(0)

ψnlm(0)
. (5.75)
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For the ground state, using ψ100(0) = a
−3/2
0 π−1/2 and ψ200(0) = a

−3/2
0 (8π)−1/2, we have:

∆En(GUP )

∆En

= 2
∆ψnlm(0)

ψnlm(0)
=

928βmE0

81

≈ 10β0
m

mPl

E0

mPlc2

≈ 10× (0.42× 10−22)× (1.12× 10−27)β0

≈ (0.47× 10−48)β0.

(5.76)

If we assume β0 ≈ 1, this predicts an additional energy that is too small to be measurable. If
instead we consider β0 as a free parameter, an accuracy in the measurement of the Lamb shift
of 1 part in 1012 puts an upper bound on β0 of:

β0 < 1036. (5.77)

Of course this constraint can be weakened by increasing accuracy of measurements.

5.1.3 Landau levels
We consider a particle of mass m and electric charge e in a constant magnetic field B = Bẑ,
whose vector potential is A = Bxŷ using the Landau gauge, where ẑ, ŷ are, respectively,
the versors along the z-axis and the y-axis. The particle then moves in the xy-plane with
momentum p = (px, py, 0). The Hamiltonian is:

H0 =
1

2m
(p − eA)2

=
p2x
2m

+
p2y
2m

− eB

m
xpy +

e2B2

2m
x2.

(5.78)

Since py commutes with H0 we can replace it with its eigenvalue ℏk:

H0 =
p2x
2m

+
1

2
mω2

c

(
x− ℏk

mωc

)2

, (5.79)

where ωc = eB/m is the cyclotron frequency. We see that this is the Hamiltonian of an
harmonic oscillator in the x direction with equilibrium position x0 = ℏk/mωc. Because py
commutes with the Hamiltonian, the eigenfunctions factorize into a product between eigen-
functions eiky of the momentum along the y direction and eigenfunctions ϕn of the harmonic
oscillator shifted by x0 in the x-axis:

ϕk,n(x, y) = eikyϕn(x− x0), (5.80)
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and the energy eivengalues are:

En = ℏωc

(
n+

1

2

)
, n ∈ N. (5.81)

Such energy levels take the name of Landau levels.
Now we consider the GUP modified Hamiltonian of the system, which can be shown to be

(see Appendix A of [17]):

H =
1

2m
(p − eA)2 + β

m
(p − eA)4 = H0 + 4βmH2

0 . (5.82)

The eigenfunctions remain the same while the eigenvalues are increased by the term:

∆En(GUP ) = 4βm ⟨ϕn|H2
0 |ϕn⟩

= 4βm(ℏωc)
2

(
n+

1

2

)2

.
(5.83)

The additional contribution to the energy of Landau levels due to the GUP in proportion to its
original value is given by:

∆En(GUP )

En

= 4βm(ℏωc)

(
n+

1

2

)
≈ β0

m

mPl

ℏωc

mPlc2
.

(5.84)

For an electron in a magnetic field of B = 10 T, ωc ≈ 103 GHz and we have:

∆En(GUP )

En

≈ (0.42× 10−22)× (5.48× 10−32)β0 = (2.3× 10−54)β0. (5.85)

If we assume β0 ≈ 1, this predicts an additional energy that is too small to be measured. If
instead we consider β0 as a free parameter, an accuracy of 1 part in 103 in direct measurements
of Landau levels using a STM puts an upper bound on β0 of:

β0 < 1050. (5.86)

This constraint can be weakened by increasing accuracy of measurements.

5.2 Hawking radiation and Schwarzschild metric
Another way we have to estimate β0 is by investigating how the GUP affects gravity and thus
the motion of bodies. We see how the GUP modifies the Hawking radiation temperature and,
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knowing the connection between Hawking’s temperature and the Schwarzschild metric, we
find a deformed metric that can reproduce the modified Hawking temperature. These results,
obtained by F. Scardigli and R. Casadio in [13] have been used to compute corrections for the
deflection of light passing near the Sun, for the perihelion precession of Mercury and for the
periastron precession in the binary pulsars system Pulsar PRS B 1913+16, thus allowing to
estimate β0 using astronomical data collected over the years.

In what follows we set c = kB = 1 and show explicitly the gravitational constant G and
the Planck constant ℏ. The Planck lenght is defined as l2Pl = Gℏ/c3, the Planck energy as
EPl = ℏc/2lPl and the Planck mass as mPl = EPl/c

2. Thus G = l2Pl/ℏ = lPl/2mPl and
ℏ = 2lPlmPl.

5.2.1 Hawking temperature
We consider a generic metric of the form:

ds2 = gµνdx
µdxν = F (r)dt2 − F (r)−1dr2 − r2dΩ2, (5.87)

where dΩ2 = dθ2 + sin2 θdϕ2. At the moment we don’t impose any specific expression for
F (r). The horizons are given by the positive zeros of F (r). Denoting as rH the position of an
horizon we consider the region with r ≥ rH . Performing the Wick rotation t → iτ , passing
from the Minkowski time to the Euclidean time, the metric becomes:

ds2 = −[F (r)dτ 2 + F (r)−1dr2 + r2dΩ2]. (5.88)

Using now two new variables α,R defined by:

Rdα = F (r)1/2dτ,

dR = F (r)−1/2dr,
(5.89)

the metric takes the form:

ds2 = −[R2dα2 + dR2 + r2(R)dΩ2]. (5.90)

We note that the first two terms in ds2 are the squared length element of the 2-dimensional
Euclidean plane in polar coordinates, thus the Euclidean time τ is proportional to the polar
angle α, whose period are respectively Θ and 2π. We see from the second equation of (5.89)
that R depends only on r, we can then integrate the first of the two equations over a full period
both for α and Θ:

R(r)

∫ 2π

0

dα = F (r)1/2
∫ Θ

0

dτ, (5.91)

and thus:
2πR(r) = Θ

√
F (r). (5.92)
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Focusing on what happens very near to the horizon, we can expand F (r) around rH :

F (r)1/2
∣∣
r=rH

= [F (rH) + F ′(rH)(r − rH) + . . . ]1/2 ≃
√
F ′(rH)

√
r − rH , (5.93)

recalling that rH is a zero for F (r). Then (5.92) becomes:

2πR(r) ≃ Θ
√
F ′(rH)

√
r − rH , (5.94)

and the second of the equations (5.89) is now:

dR(r) ≃ dr√
F ′(rH)

√
r − rH

, (5.95)

which, upon integration, yields:

R(r) ≃ 2

√
r − rH√
F ′(rH)

. (5.96)

Combining (5.94) and (5.96) we find:

Θ =
4π

F ′(rH)
. (5.97)

According to QFT, the temperature of the radiation near the black hole horizon, as seen by a
distant observer, is in general:

T = ℏΘ−1 = ℏ
F ′(rH)

4π
. (5.98)

For a Schwarzschild metric describing static, non-rotating and electrically neutral black holes,
F (r) is given by:

F (r) = 1− 2GM

r
, (5.99)

whereM is the mass of the black hole. The horizon is at rH = 2GM and thus (5.98) becomes:

TH =
ℏ

8πGM
, (5.100)

which is the standard Hawking radiation temperature.

5.2.2 GUP modified temperature
We use now a GUP of the form:

∆x∆p ≥ ℏ
2

(
1 + β0

∆p2

m2
Pl

)
=

ℏ
2

(
1 + β0

4l2Pl

ℏ2
∆p2

)
. (5.101)
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From classical optics we know that the smallest part δx of an object resolvable with a beam of
photons of energy E is roughly:

δx ≃ ℏ
2E

. (5.102)

Taking into account the GUP (5.101) we have:

δx ≃ ℏ
2E

+ 2β0l
2
Pl

E

ℏ
. (5.103)

We now consider an ensemble of unpolarized photons of Hawking radiation near the event
horizon of a Schwarzschild black hole. The uncertainty on the position of these photons can
be estimated as:

δx ≃ µRH , (5.104)
where µ is a constant who will be later constrained and RH = 2GM is the Schwarzschild
radius. Being the photons unpolarized they have two degrees of freedom and thus, from the
equipartition principle, their average energy is related to the temperature as:

E = T. (5.105)

Inserting (5.104) and (5.105) in (5.103) we have:

2µGM ≃ ℏ
2T

+ 2β0GT. (5.106)

To fix µ we impose that, upon considering the semiclassical limit β0 → 0, (5.106) must reduce
to the usual Hawking temperature (5.100). Thus we find µ = 2π and solving for the mass we
get:

M =
ℏ

8πGT
+ β0

T

2π
. (5.107)

Inverting in order to find T we have:

T =
π

β0

(
M −

√
M2 − β0ℏ

4π2G

)
=

π

β0

(
M −M

√
1− β0m2

Pl

M2π2

)
, (5.108)

where ℏ/4G = m2
Pl. The term proportional to β0 is small because of the fraction mPl/M ,

hence we can expand in powers of β0:

T =
π

β0

[
M −M

(
1− β0

m2
Pl

2π2M2
− β2

0

1

8

m4
Pl

π4M4
+ . . .

)]
≃ m2

Pl

2πM
+ β0

m4
Pl

8π3M3

=
ℏ

8πGM

(
1 + β0

ℏ
16π2GM2

)
= TH

(
1 + β0

m2
Pl

4π2M2

)
.

(5.109)
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We note that to zero-order in β0 we recover the standard Hawking temperature (5.100). For
this expansion to be valid, the term of first-order in β0 has to be little:

β0
m2

Pl

4π2M2
≪ 1, (5.110)

thus a first, rough estimation of β0 for a black hole of one solar mass, for whichM ≃ 1038mPl,
is in order:

β0 ≤ 1.3× 1078. (5.111)

5.2.3 GUP modified metric
Having just seen how the GUP affects the Hawking temperature and knowing how the latter
is related to the element F (r) of the generic metric (5.88) we can wonder how the modified
Hawking temperature (5.109) could be predicted by a suitably deformed metric. Since we are
interested only in small corrections, we consider a modification of the Schwarzschild metric of
the form:

F (r) = 1− 2GM

r
+ ϵ

G2M2

r2
. (5.112)

The horizon is located at the modified Schwarzschild radius defined by:

r2 − 2GMr + ϵG2M2 = 0, (5.113)

thus, keeping only the solution closest to the Schwarzschild radius RH , we find the position of
the horizon to be:

rH = RH
1 +

√
1− ϵ

2
, (5.114)

with ϵ ≤ 1. Then:

F ′(r) =
2GM

r2
− 2ϵ

G2M2

r3
, (5.115)

and evaluating it at rH we get:

F ′(rH) =
2GM

R2
H

4

(1 +
√
1− ϵ)2

− 2ϵ
G2M2

R3
H

8

(1 +
√
1− ϵ)3

=
2

GM

√
1− ϵ

(1 +
√
1− ϵ)2

≃ 1

RH

(
1− ϵ2

16
+ . . .

)
.

(5.116)

The modified Hawking radiation temperature is thus:

T (ϵ) = ℏ
F ′(rH)

4π
=

ℏ
2πGM

√
1− ϵ

(1 +
√
1− ϵ)2

, (5.117)
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which has to return the same result of the temperature T (β0) given by (5.108), that is T (ϵ) has
to fulfill (5.107):

M =
ℏ

8πGT (ϵ)
+ β0

T (ϵ)

2π
. (5.118)

We can now relate the parameters β0 and ϵ:

β0(ϵ) = −π2GM
2

ℏ
ϵ2

1− ϵ
. (5.119)

Expanding for |ϵ| ≪ 1 we have:

β0(ϵ) = −π2GM
2

ℏ
ϵ2
(
1 + ϵ+ ϵ2 + . . .

)
≃ −π2GM

2

ℏ
ϵ2. (5.120)

We note that from this relation β0 results negative. Modification caused by the GUP have been
investigated in [13] for the following phenomena and the value of β0 has been estimated using
astronomical data:

• the deflection of light passing near the surface of the Sun, from which is estimated:
|β0| ≤ 5.3× 1078;

• the perihelion precession of Mercury, from which is estimated: |β0| ≤ 3× 1072;

• the periastron precession in the bynary pulsars system Pulsar PRS B 1913+16, from
which is estimated: |β0| ≤ 2× 1071.
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Chapter 6

Conclusions

We have seen that evidences for the existence of a minimal length scale, which we expect to
be of the order of the Planck length lPl, are multiple and quite convincing. The presence of a
minimal length scale can be obtained from thought experiments considering just the Heisenberg
uncertainty principle and the formation of black holes expected from general relativity, it is
an inevitable feature of non-commutative geometries and shows also both in quantum string
theory and loop quantum gravity. The main model implementing a minimal length is the
generalized uncertainty principle, using which is simple to show that distance measurements
have a smaller achievable resolution of lPl

√
β0. The GUP itself emerges from geometries

based on a modification of the canonical commutation relations. Much effort has been put into
finding phenomenological implications of the GUP, both in the microscopic and macroscopic
field, thus opening a way to experimentally test this theory and determine the value of the
deformation parameter β0 although, unfortunately, there is still not a generally agreed upon
value for it. We should also mention here that there is, of course, evidence against the need of
a minimal length scale found, for example, in scenarios of emergent gravity. We stress this out
in order to show that the debate is far from being settled. However, the study of the minimal
length scale and of the GUP is a very promising field that we hope can lead us to a better
understanding of the quantum realm and the structure of spacetime itself.
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