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1 Introduction

In this thesis, I describe three algorithms, and their implementation using
the Scala programming language [OSV16], for computing strong bisimulation
equivalence on finite labeled transition systems, LTSs for short. Moreover, I
introduce the BPP nets, and a bisimulation-based, behavioral equivalence for
BPP nets, called team bisimulation equivalence. I have also implemented two
algorithms for computing the team bisimulation equivalence on BPP nets.

This thesis is organized as follow. Section 2 introduces the basic definition
about labeled transition systems, and the bisimulation equivalence. Section 3
on the next page describes the first algorithm for computing the bisimulation
equivalence on LTSs. In particular, it outlines the theory about the fixed points,
and how to express the bisimulation equivalence as a fixed point of a monotone
functional F. Section 4 on page 9 describes the second algorithm for computing
the bisimulation equivalence on LTSs by means of successive refinements of
an initial Partition. Section 5 on page 14 describes a data structure called
Refinable data structure used for implementing the third algorithm. This is the
quickest algorithm known for computing the bisimulation equivalence. Section 6
on page 25 describes the implementation that I have done through the Scala
programming language of the three algorithms. In Section 7 on page 33 I do a
comparison between the second algorithm and the third algorithm. Section 8 on
page 37 describes the BPP nets and an equivalence relation on BPP nets called
team bisimulation equivalence. Section 9 on page 46 describes how to compute
the team bisimulation equivalence on BPP nets through the fixed point approach,
also I outline the implementation through the Scala Programming Language.
Section 10 on page 51 describes how to compute team bisimulation equivalence
adapting the second algorithm for computing bisimulation equivalence on LTSs.
Also I outline the implementation through the Scala Programming Language.

2 Labeled transition systems and bisimulation

The definition of LTS is the following:

Definition 2.1 (Labeled transition system). A labeled transition system (LTS
for short) is a triple TS = (Q,A,→) where:

• Q is the nonempty, countable set of states;

• A is the countable set of labels (or actions);

• →⊆ Q×A×Q is the transition relation.

A finite labeled transition system is a labeled transition system with a finite
set of states and finitely many transitions. Transition systems are introduced as
a suitable semantic model of reactive systems, see [GV15] for more details. For
example a coffee machine can be easily described by the LTS in Figure 1 on the
next page, where

Q = { q1, q2 } ,
A = { coin, coffee } ,
→ = { (q1, coin, q2), (q2, coffee, q1) } .
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q1 q2

coin

coffee

Figure 1: Coffee Machine

q q′ q′′

a a

a

Figure 2: An LTS with three states

Definition 2.2 (Bisimulation). Let TS = (Q,A,→) be a transition system. A
bisimulation is a relation R ⊆ Q×Q such that if (q1, q2) ∈ R then for all µ ∈ A

• ∀ q′1 such that q1
µ−→ q′1, ∃q′2 such that q2

µ−→ q′2 and (q′1, q
′
2) ∈ R

• ∀ q′2 such that q2
µ−→ q′2, ∃q′1 such that q1

µ−→ q′1 and (q′1, q
′
2) ∈ R

Two states q and q′ are bisimilar (or bisimulation equivalent), denoted q ∼ q′, if
there exists a bisimulation R such that (q, q′) ∈ R.

For example the relation R = { (q, q′), (q, q′′) } is a bisimulation for the LTS

in Figure 2. Indeed if we take the first pair (q, q′) we can see that q
a−→ q and

q′
a−→ q′′ and (q, q′′) ∈ R, at the same time we see that q′

a−→ q′′ and q replies with

q
a−→ q and (q, q′′) ∈ R. Moreover for the second pair (q, q′′) it is true that q

a−→ q

and q′′
a−→ q′′ with (q, q′′) ∈ R (the case where q′′ moves first is symmetric), so

R is a bisimulation.
The goal of this article is to show three algorithms for computing ∼ defined

as follow:
∼=

⋃
{R ∈ Q×Q | R is a bisimulation } (1)

Proposition 2.1. ∼ is an equivalence relation.

3 Bisimulation as a fixed point

It is possible to see the bisimulation equivalence ∼ as the greatest fixed point of
a suitable function between relations. Before diving into the algorithm, I will
explain some theory behind fixed points. The material in this section is taken
from [Ace+07, Chapter 4].

3.1 Partially ordered set

A partially ordered set or poset is a pair (D,≤), where D is a set and
≤⊆ D×D is a relation:
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• reflexive: d ≤ d ∀d ∈ D

• antisymmetric : d ≤ e ∧ e ≤ d =⇒ d = e ∀d, e ∈ D

• transitive: d ≤ e ∧ e ≤ f =⇒ d ≤ f ∀d, e, f ∈ D

A poset (D,≤) is totally ordered if: (d ≤ e) ∨ (e ≤ d)∀d, e ∈ D. As an example
of poset we can take (N,≤) namely the set of natural number with the usual
ordering ≤. Also the power set together with inclusion relation (2S ,⊆) is an
example of poset. Let us now introduce two definitions.

3.2 Least upper bound

Let (D,≤) a poset and X a subset of D.

• d ∈ D is an upper bound for X if and only if x ≤ d ∀x ∈ X.

• d is sup (or Least upper bound) for X, usually written in its contracted
form

⋃
X, if and only if:

– d is upper bound for X, and

– d ≤ d′ ∀d′ ∈ D that is upper bound for X.

3.3 Greatest lower bound

• d ∈ D is a lower bound for X if and only if d ≤ x ∀x ∈ X.

• d is inf (or greatest lower bound) for X, usually written in its contracted
form

⋂
X, if and only if:

– d is lower bound for X, and

– d′ ≤ d ∀d′ ∈ D that is lower bound for X.

3.4 Lattice

A poset (D,≤) is a lattice iff ∀d, e ∈ D there are both the sup
⋃
{ d, e } and

the inf
⋂
{ d, e }.

A poset is called a complete lattice iff there are both the sup
⋃
X and the

inf
⋂
X for every subset X of D.

Remark 3.1. A complete lattice has a minimal element ⊥ (bottom) given by
⋂

D
(greatest lower bound of D) and a maximal element > (top) given by

⋃
D (least

upper bound of D)

3.5 Monotonic functions and fixed points

Given a poset (D,≤), a function f : D → D is monotonic if and only if:

d ≤ d′ =⇒ f(d) ≤ f(d′)∀d, d′ ∈ D

An element d is a fixed point if and only if d = f(d), a post-fixed point
if and only if d ≤ f(d) and a pre-fixed point if and only if f(d) ≤ d.
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Theorem 3.1 (Knaster 1928 - Tarski 1955). Let (D,≤) be a complete lattice
and f : D → D a monotonic function. The function f has a greatest fixed point
Zmax and a least fixed point Zmin defined as follow:

Zmax =
⋃
{ x ∈ D | x ≤ f(x) }

Zmin =
⋂
{ x ∈ D | f(x) ≤ x }

3.6 How to compute fixed points

Let f : D → D be a function on a set D. For every n ∈ N, we define fn(d) for
every d ∈ D like the following:

f0(d) = d

fn+1(d) = f(fn(d))

Theorem 3.2. Let (D,≤) be a finite complete lattice and f : D → D a mono-
tonic function. Then we get the least fixed point as:

Zmin = fm(⊥) for some m ∈ N

while the greatest fixed point as:

Zmax = fm(>) for some m ∈ N

where > and ⊥ are both defined in Section 3.4.

3.7 Computing bisimulation equivalence

Now that we have seen some theory about fixed point, it is possible to think to ∼
as a greatest fixed point of a suitable function F that transforms binary relations
R on states. We will use the algorithm outlined in section 3.6 to compute the
relation ∼.

Remark 3.2. 2Q×Q, that is the set of all binary relations on Q is a complete
lattice (finite if Q is finite) with > = Q×Q

Let us now define F:

Definition 3.1. Given an LTS TS = (Q,A,→), the functional F : P(Q×Q)→
P(Q×Q) (i.e., a transformer of binary relations over Q) is defined as follow. If
R ⊆ Q×Q, then (q1, q2) ∈ F (R) if and only if for all µ ∈ A:

• ∀ q′1 such that q1
µ−→ q′1, ∃q′2 such that q2

µ−→ q′2 and (q′1, q
′
2) ∈ R

• ∀ q′2 such that q2
µ−→ q′2, ∃q′1 such that q1

µ−→ q′1 and (q′1, q
′
2) ∈ R

Proposition 3.1. For any LTS TS = (Q,A,→), we have that:

1. The functional F is monotone, i.e. if R1 ⊆ R2 then F (R1) ⊆ F (R2).

2. Relation R ⊆ Q×Q is a bisimulation (see Definition 2.2 at page 5) if and
only if R ⊆ F (R).

Theorem 3.3. ∼ is the greatest fixed point of F.
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1 X := Q×Q
2 Y := F(X)

3 while X 6= Y do {

4 X:=Y

5 Y:=F(X)

6 }

Listing 1: Pseudocode for computing bisimulation equivalence

Proof. F is monotone so for the Knaster-Tarski theorem (descibed in section 3.5)
we have that Zmax =

⋃
{R | R ⊆ F (R) }, but since R is a bisimulation if and

only if R ⊆ F (R) for the point 2 of Proposition 3.1 we have that:

Zmax =
⋃
{R | R is a bisimulation }

so we have proved that Zmax = ∼ where ∼ is defined in equation 1.

From Theorem 3.3 on the preceding page, and the technique outlined in
Section 3.6 on the previous page, we can derive the algorithm in Listing 1 that
compute bisimulation equivalence; that is the greatest fixed point of F.

In order to prove the correctness of the algorithm in Listing 1 let us define ∼
by means of stratified bisimulation relations, see [AIS11] for more details.

Definition 3.2. The stratified bisimulation relations ∼k⊆ Q×Q for k ∈ N are
defined as follow:

• E ∼0 F for all E,F ∈ Q

• E ∼k+1 F iff for each a ∈ A: if E
a−→ E′ then there is F ′ ∈ Q such that

F
a−→ F ′ and E′ ∼k F ′; and if F

a−→ F ′ then there is E′ ∈ Pr such that
E

a−→ E′ and E′ ∼k F ′.

Given a labelled transition system {Q,A,→}, let next(E, a) be:

next(E, a) =
{
E′ ∈ Q | E a−→ E′

}
for E ∈ Q and a ∈ A. Let also next(E, ∗) be:

next(E, ∗) =
⋃
a∈A

next(E, a)

An LTS is image-finite if and only if the set next(E,a) is finite for every E ∈ Q
and a ∈ A. The following lemma is a standard one.

Lemma 3.1. Assume that (Q,A,→) is an image-finite LTS and let E,F ∈ Q.
Then E ∼ F if and only if E ∼k F for all k ∈ N.

Given a finite state labeled transition system TS = (Q,A,→), it is easy to
see from the algorithm in Listing 1 that the i-th application of functional F (
defined in Definition 3.1 on the previous page), F i(. . . F 1(F 0(Q × Q)) . . . ) in
symbol F i corresponds to ∼i, where ∼i is defined in Definition 3.2, indeed we
have:

∼0 = F 0(Q×Q) = Q×Q
∼k+1 = F k+1(Q×Q) = F (F k(Q×Q)) = F (∼k)
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q0 q1 q2 q3 q4

a

a a

a

a

a

Figure 3: Example for explaining fixed point algorithm

Given a finite LTS TS = (Q,A,→), the algorithm in Listing 1 on the previous
page, applies the functional F to an initial relation R = Q×Q, until it reaches
the greatest fixed point, that is F will eventually reach a k ∈ N such that

F k(Q×Q) = F k+1(Q×Q) =∼k+1=∼k=∼

For checking the termination’s condition of while in Listing 1 on the preceding
page, it is enough to see that no couples have been removed from the application
of the functional F. That is, if X = F k(Q) it is equal to Y = F k+1(Q) = F (X)
for a k ∈ N then X is the greatest fixed point of the functional F . In fact the
relation that is given in output from the application of the functional F is a
non-increasing chain of sets, if you don’t remove couples then you must stop.

As an example of application of the algorithm in Listing 1, consider the LTS
in Figure 3. We have that:

Q = { q0, q1, q2, q3, q4 }
F 0(Q×Q) = Q×Q
F 1(Q×Q) = { (q0, q1), (q0, q2), (q0, q3), (q1, q2), (q1, q3), (q2, q3) }∪

∪ { (q1, q0), (q2, q0), (q3, q0), (q2, q1), (q3, q1), (q3, q2) }∪
∪ { (q0, q0), (q1, q1), (q2, q2)(q3, q3), (q4, q4) }

F 2(Q×Q) = { (q0, q1), (q0, q2), (q1, q2) }∪
∪ { (q1, q0), (q2, q0), (q2, q1) }∪
∪ { (q0, q0), (q1, q1), (q2, q2)(q3, q3), (q4, q4) }

F 3(Q×Q) = { (q0, q1), (q1, q0) }∪
∪ { (q0, q0), (q1, q1), (q2, q2)(q3, q3), (q4, q4) }

Since the time complexity of computing the bisimulation equivalence through
the fixed point approach relies heavily on the way the fixed point approach is
implemented, the discussion about the complexity is done in the Section 6.1 on
page 25. In the aforementioned Section I explain how I have implemented, by
means of the programming language Scala, the algorithm for computing the
bisimulation equivalence through the fixed point approach.

4 Kannellakis and Smolka’s algorithm

The material for introducing the Kannellakis and Smolka’s algorithm in this
section is taken from [AIS11], from page 8 to page 13. The original article by
Kannellakis and Smolka is available at [KS90].

4.1 Preliminaries

Definition 4.1. Let TS = (Q,A,→) be a finite labeled transition system. A
partition is a set of mutually disjoint sets of elements of Q. Let π be a partition,
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a a a a

Bi B1
i B2

i

Bj Bj

a a a a

Figure 4: Splitter

in symbols, π = {B1, . . . , Bn } where each Bi is a set, called block, of elements
of Q. We have that

• Bi ∩Bj = ∅ for each 1 ≤ i < j ≤ n

•
⋃n
i=1Bi = Q

A block is a set of bisimilar states (or processes).

Suppose P = { 1, 2, 3, 4, 5 }, we have that:

• { { 1, 3 } , { 4 } , { 2, 5 } } is a partition of P.

• { { 1, 3 } , { 3, 4 } , { 2, 5 } } is not a partition of P.

Definition 4.2 (Splitter). A block Bj is a splitter for a block Bi if there is
some states in Bi that afford an a-labeled transition that ends in Bj and other
states in Bi that cannot do an a-labeled transition that ends in Bj . Formally a
block Bj is a splitter for a block Bi if, given an action a ∈ A, we can divide Bi
in two non empty set B1

i and B2
i :

B1
i =

{
s | s ∈ Bi and s

a−→ s′, for some s′ ∈ Bj
}

and

B2
i = Bi \Bi1

For example in the Figure 4 we have that block Bj , given an action a ∈ A, is
a splitter for block Bi.

So we can rewrite

π = {B1, . . . , Bi, . . . , Bn } with

π′ =
{
B1, . . . , B

1
i , B

2
i , . . . , Bn

}
The partition π′ is a refinement of the partition π, indeed for every block B1 in
π′ there is a block B2 in π such that B1 ⊆ B2.

4.2 The algorithm

The algorithm by Kannellakis and Smolka starts by an initial partition composed
of one element that is the set Q and iterates until no further refinement is
possible. For example consider the labeled transition system depicted in Figure 5,

10
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Figure 5: LTS for explaining the algorithm by Kannellakis and Smolka

s0

s1 s2
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t1

t2

t5

t3 t4

a a

a b a

a

a

a a

a

b

a
a

a b

a

a

Figure 6: An LTS with 11 states and 16 transitions

the initial partition is πinit = { Pr } where Pr = { s, s1, s2, t, t1 }. The block
Pr is a splitter for itself, indeed only some states in Pr afford an a-labeled
transition, so we can replace Pr with two sets of states that is, the states that
can do an a-labeled transition and the states that cannot. So Pr is replaced
by two sets Pr1 = { s, t } and Pr2 = { s1, s2, t } and πinit becomes π′init where
π′init =

{
Pr1, P r2

}
. At this point we see that no other refinement is possible so

we have finished. When we say that no other refinement is possible in a partition
π it means that for every block B1 ∈ π,B2 ∈ π , s1 ∈ B1, s2 ∈ B1, s′1 ∈ B2, and

a ∈ A such that s1
a−→ s′1 there is an s′2 ∈ B2 such that s2

a−→ s′2. As another
example for explaining Kannellakis and Smolka’s algorithm consider the LTS in
Figure 6. The example is taken from [AIS11]. Let the initial partition associated
with this LTS be {Q } where

Q = { si, tj | 0 ≤ i ≤ 4, 0 ≤ j ≤ 5 }

The block Q is a splitter for itself. Indeed some states in Q afford b-labelled
transitions while others do not. If we split Q by Q with respect to action b we
obtain a new partition consisting of the blocks

{ s1, t1 } and { si, tj | 0 ≤ i ≤ 4, 0 ≤ j ≤ 5 with i, j 6= 1 }

Note now that the former block is a splitter for the latter one with respect to
action a. Indeed only states s0 and t0 in that block afford a-labelled transitions
that lead to a state in the block { s1, t1 }. The resulting splitting yields the

11



partition
{ { s0, t0 } , { s1, t1 } , { si, tj | 2 ≤ i ≤ 4, 2 ≤ j ≤ 5 } }

The above partition can be refined further. Indeed, some states in the third
block have a-labelled transitions leading to states in the first block, but others
do not. Therefore the first block is a splitter for the third one with respect to
action a. The resulting splitting yields the partition

{ { s0, t0 } , { s1, t1 } , { s3, s4, t2, t4, t5 } , { s2, t3 } }

We continue by observing that the block { s3, s4, t2, t4, t5 } is a splitter for itself

with respect to action a. For example t5
a−→ t4 but the only a-labelled transition

from s4 is s4
a−→ s0 from s3 is s3

a−→ s0, from t2 t2
a−→ t0, from t4 is t4

a−→ t0.The
resulting splitting yields the partition

{ { s0, t0 } , { s1, t1 } , { t5 } , { s3, s4, t2, t4 } , { s2, t3 } }

Now we have that t1 by making action b can reach state t5 that is in block { t5 },
whereas s1 by making action b can reach only s4 that is in block { s3, s4, t2, t4 },
so we have that Set { t5 }, is a splitter for block { s1, t1 }; the partition can be
further refined in

{ { s0, t0 } , { t1 } , { s1 } , { t5 } , { s3, s4, t2, t4 } , { s2, t3 } }

Now we have that s0 by making action a can reach s1 that is in block { s1 },
whereas t0 by making action a cannot reach the block { s1 } so we have that
the block { s1 } is a splitter for the block { s0, t0 }, the partition can be further
refined in

{ { s0 } , { t0 } , { t1 } , { s1 } , { t5 } , { s3, s4, t2, t4 } , { s2, t3 } }

We can continue by observing that s3 and s4 by making action a can reach the
block { s0 } but this is not true for the states t2 and t4, so the partition can be
further refined in

{ { s0 } , { t0 } , { t1 } , { s1 } , { t5 } , { s3, s4 } , { t2, t4 } , { s2, t3 } }

Now we have that s2 by making action a can reach the state s4 that is in block
{ s3, s4 }, whereas t3 by making action a can reach only t4 that is in block
{ t2, t4 }. We have that the block { s3, s4 } is a splitter for the block { s2, t3 }
and the partition becomes

{ { s0 } , { t0 } , { t1 } , { s1 } , { t5 } , { s3, s4 } , { t2, t4 } , { s2 } , { t3 } }

Now we have finished because the partition cannot be further refined.
The pseudo-code for Kannellakis and Smolka’s algorithm is given in Listing 3

on the following page. The algorithm uses the function split(B, a, π) described
in Listing 2 on the next page, which given a partition π, a block B in π and an
action a, splits B with respect to each block in π and action a. For example if
we take the LTS in Figure 6 on the preceding page, the call

split({ s1, t1 } , b, { { s0, t0 } , { s1, t1 } , { t5 } , { s3, s4, t2, t4 } , { s2, t3 } })

12



1 function split(B,a,π){
2 choose some state s ∈ B
3 B1, B2 := ∅
4

5 for each state t ∈ B do

6 if s and t can reach the same set of blocks

7 in π via a-labelled transitions then

8 B1 := B1 ∪ { t }
9 else

10 B2 := B2 ∪ { t }
11

12 if B2 is empty then

13 return {B1 }
14 else

15 return {B1, B2 }
16 }

Listing 2: Pseudo Code for Split(B,a,π)

1 π := {Q }
2 changed := true

3 while changed do

4 changed := false

5 find := false

6 for each block B ∈ π do

7 if find then

8 break

9 for each action a do

10 sort the a-labelled transitions from states in B

11 if split(B,a,π) = {B1, B2 } 6= {B } then{

12 refine π by replacing B with B1 and B2

13 changed := true

14 find := true

15 break

16 }

Listing 3: The algorithm by Kannellakis and Smolka in pseudocode
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Figure 7: Partition

returns the pair ({ s1 } , { t1 }) because the only block in the partition that can
be reached from s1 via b-labeled transition is { s3, s4, t2, t4 }, whereas t1 can also
reach the block { t5 }. The complexity of the algorithm is O(nm) where n is
the number of states and m is the number of transitions, indeed the maximum
number of blocks that we have to check is n because a block composed of one
element cannot be further split. Deciding if a block B can be split or not costs
O(m) because we have to scan all the transitions that have the start state that
belongs to B. So the complexity is O(nm).

5 Valmari’s algorithm

The Valmari’s algorithm, described in [Val09], by the use of a suitable data
structure is able to compute the bisimulation equivalence on a finite label
transition system in O(m log n) time where m is the number of transitions and
n is the number of states. In the following I will present this kind of data
structure called refinable data structure. Valmari’s algorithm is an adaptation
of the algorithm proposed by Paige and Tarjan described in [PT87]. Indeed
the algorithm proposed by Paige and Tarjan was defined on labeled transition
systems that have the set of labels composed of only one action (see Definition 2.1
on page 4, for the definition of labeled transition system).

5.1 Refinable data structure

The refinable data structure maintains a partition {A1, . . . , Am } of a set of
Items = { 1, . . . , n }, where n is the size of the set Items, as the one in Figure 7;
the items in our case can be the states or the transitions; that is we will use in
the algorithm some refinable data structures whose items are states and some
whose items are transitions. Both states and transitions are represented as
natural numbers. Each set in Figure 7 may be 1-marked, 2-marked or unmarked
as in the Figure 8 on the following page. The partition is refinable, meaning
that is possible to replace each set Ai with two new disjoint subsets Ai1 and Ai2
providing that

• Ai1 ∪Ai2 = Ai,

• Ai1 , Ai2 6= ∅,

• Ai1 ∩Ai2 = ∅.
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Figure 8: Set
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first[s] mid1 [s] mid2 [s] end[s] ufirst[u] uend[u]loc[e]

Figure 9: Refinable data structure

For deciding in which subset the items have to go, the refinable data structure
uses the mark-1 and mark-2. Given a set Ai, we indicate with A1

i the elements
e ∈ Ai that are 1-marked, with A2

i the elements e ∈ Ai that are 2-marked and,
with Ai \ (A1

i ∪A2
i ) the unmarked elements. Also we have that

A1
i ∩A2

i = ∅
A1
i ∩ (Ai \ (A1

i ∪A2
i )) = ∅

A2
i ∩ (Ai \ (A1

i ∪A2
i )) = ∅

Some instances of the data structure uses bunches that are a partition P of the
set {A1, . . . , An }. A bunch Uu = {Au1, . . . , Aug } is a subset of the partition
P. The refinable data structure, showed in its completeness in Figure 9, comes
with some methods that are listed below.

5.2 Methods implemented for the refinable data structure

Here, I will show the methods that are implemented for the refinable data
structure, taken from [Val09], from page 127 to page 130.

Size(s) Returns the number of elements in the set with index s, that is As.

Set(e) Returns the index of the set that element e belongs to, that is, the s
such that e ∈ As.

Mark1(e), Mark2(e)

Marks the element e for splitting, at a later time, by means of the meth-
ods Split1(s) and Split2(s) the set As that contains e. Mark1(e)

adds e to A1
s and Mark2(e) to A2

s, unless e is already in A1
s ∪A2

s. The
set A1

s is the set of all elements e1 ∈ As that are 1-marked. The set
A2
s is the set of all elements e2 ∈ As that are 2-marked. Mark1(e) and

Mark2(e) do nothing if the element e is already in the set A1
s or A2

s,
that is if e ∈ A1

s ∪A2
s.
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Split1(s)

If A1
s = ∅, that is if there is no 1-marked elements inside As returns

zero, if As = A1
s ∪A2

s, that is if there is no unmarked elements inside
As, then Split1(s) unmarks all 1-marked elements in As and returns
zero, otherwise, it updates As with As := As − A1

s, that is remove
all 1-marked elements inside As creates a new set Az := A1

s , Az now
contains all the 1-marked elements that was formerly in As. Next,
puts Az into the same bunch of As, and returns z . In the end,
A1
z = A2

z = A1
s = ∅, that is Az does not contain any 1-marked elements

(A1
z = ∅) or 2-marked elements (A2

z = ∅), also As does not contain any
1-marked elements (A1

s = ∅) because the 1-marked elements that was
formerly in As are now in the new set Az. The 2-marked elements
inside As, that is the set A2

s, has not changed.

Split2(s)

If A2
s = ∅, that is if there is no 2-marked elements inside As returns

zero, if As = A1
s ∪A2

s, that is if there is no unmarked elements inside
As, then Split2(s) unmarks all 2-marked elements in As and returns
zero, otherwise, it updates As with As := As − A2

s, that is remove
all 2-marked elements inside As creates a new set Az := A2

s , Az now
contains all the 2-marked elements that was formerly in As. Next,
puts Az into the same bunch of As, and returns z . In the end,
A1
z = A2

z = A2
s = ∅, that is Az does not contain any 1-marked elements

(A1
z = ∅) or 2-marked elements (A2

z = ∅), also As does not contain any
2-marked elements (A2

s = ∅) because the 2-marked elements that was
formerly in As are now in the new set Az. The 1-marked elements
inside As, that is the set A1

s, has not changed..

No marks(s)

Returns True if and only if A1
s = A2

s = ∅, that is if As does not contain
1-marked elements (A1

s = ∅), nor 2-marked elements (A2
s = ∅).

First(s), Next(e)

Since the set As is represented as a vector, as we can see in Figure 7,
page 14.

As = { elems[i], elems[i+ 1], . . . , elems[j] }

First(s) returns the first element of the set As that in our case is
elems[i].

Assuming that e = elems[i], Next(e) returns elems[i+ 1]. If e i the
last element of the set As, in our example elems[j], Next(e) returns 0.

Bunch(s)

Returns the index of the bunch that set s belongs to.

Bunch first(u),Bunch next(e)

Let Uu = {Au1, . . . , Aug } be a bunch. With these operations, the
elements of Au1 ∪ Au2 ∪ · · · ∪ Aug can be scanned, similarly to how
First(s) and Next(e) scans a set in the partition.

Has many(u)

Returns False if and only if bunch Uu consists of precisely one set.
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Extract set(u)

Let Uu =
{
Au1

, . . . , Aug

}
be a bunch. If g = 1 then this operation

returns zero without changing anything. Otherwise, it selects some i,
introduces a new bunch {Aui }, removes Aui from Ui, and returns ui.
The chosen i is such that if Uu has a unique biggest set, then it is not
Aui

.

Left neighbour(e), Right neighbour(e)

If the partition consists of one set, then both of these return zero.
Otherwise, at least one of them returns an element that is not currently
in the same set as e, but was in the same set until the most recent
splitting of the set. The other one may return zero or an element. I
will explain why these methods are used in section where i explain the
algorithm.

The algorithm uses also the variables sets and bunches that record the
numbers of sets and bunches respectively. The implementation in pseudo code of
these methods, taken from [Val09], on pages 129 and 130, is reported in Listing 4
and Listing 5. Moreover the algorithm uses the following arrays taken from
[Val09] on pages 129 and 130:

elems Contains 1, 2, . . . , items in such an order that elements that belong to
the same set are one after another. It is also the case that the sets
that belong to the same bunch are one after another in elems.

first, end

Indicate the segment in elems where the elements of a set are stored,
That is, As = { elems[f ], elems[f + 1], . . . , elems[l − 1] } , where f =
first[s] and l = end[s].

mid1, mid2

Let f and l be as above, and let m1 = mid1[s] and m2 = mid2[s].
Then A1

s = { elems[f ], . . . , elems[m1 − 1] }, the unmarked elements
are elems[m1], . . . , elems[m2 − 1].

Also we have A2
s = { elems[m2], . . . , elems[l − 1] }.

loc Tells the location of each element in elems, that is, elems[loc[e]] = e.

sidx The index of the set that e belongs to is sidx[e]. That is e ∈ Asidx[e]

uidx The index of the bunch that As belongs to is uidx[s]. That is, As ∈
Uuidx[s].

ufirst, uend

We have that Uu is { elems[f ], elems[f + 1], . . . , elems[l − 1] }, where
f = ufirst[u] and l = uend[u]

5.3 The algorithm

In this section I will present the pseudo code as outlined in [Val09] from page
131 to page 137. The algorithm assumes that states and labels are represented
as numbers. In symbols the states and labels are represented respectively as:
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1 Size(s)

2 return end[s] - first[s]

3

4 Set(e)

5 return sidx[e]

6

7 First(s)

8 return elems[first[s]]

9 /* Certainly exists , because the Ai are non -empty */

10

11 Next(e)

12 if (loc[e] + 1 ≥ end[first[s]] then

13 return 0

14 else

15 return elems[loc[e] + 1]

16

17 Mark1(e)

18 s:= sidx[e]; l:= loc[e]; m:=mid1[s]
19 if m ≤ l < mid2[s] then

20 mid1[s] := m + 1

21 elems[l] := elems[m]; loc[elems[l]] := l;

22 elems[m] := e; loc[e] := m

23

24 Mark2(e)

25 s:= sidx[e]; l:= loc[e]; m:=mid2[s]− 1
26 if mid1[s] ≤ l < m then

27 mid2[s] := m

28 elems[l] := elems[m]; loc[elems[l]] := l;

29 elems[m] := e; loc[e] := m

30

31 Split1(s)

32 if mid1[s] = mid2[s] then mid1[s] := first[s]
33 if mid1[s] := first[s]
34 else

35 sets := sets + 1; uidx[sets] := uidx[s]

36 first[sets ]:= first[s]; end[sets ]:=mid1[s]; first[s]:=mid1[s]
37 mid1[sets] := first[sets]; mid2[sets] := end[sets]
38 for l:= first[sets] to end[sets] - 1 do

39 sidx[elems[l]]:= sets

40 return sets

41

42 Split2(s)

43 if mid1[s] = mid2[s] then mid2[s] := end[s]
44 if mid2[s] := end[s] then return 0
45 else

46 sets := sets + 1; uidx[sets] := uidx[s]

47 first[sets ]:=mid2[s]; end[sets ]:= end[s]; end[s]:=mid2[s]
48 mid1[sets] := first[sets]; mid2[sets] := end[sets]
49 for l:= first[sets] to end[sets] - 1 do

50 sidx[elems[l]]:= sets

51 return sets

52

53 No_marks(s)

54 if mid1[s] = first[s] ∧ mid2[s] = end[s] then

55 return True

56 else

57 False

Listing 4: Main features of the refinable partition data structure
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1 Bunch(s)

2 return uidx[s]

3

4 Bunch_first(u)

5 return elems[ufirst[u]]

6

7 Bunch_next(e)

8 if loc[e] + 1 ≥ uend[uidx[sidx[e]]] then

9 return 1
10 else

11 return elems[loc[e] + 1]
12

13 Has_many(u)

14 if end[sidx[elems[ufirst[u]]]] 6= uend[u] then

15 return True

16 else

17 return False

18

19 Extract_set(u)

20 s1 := sidx[elems[ufirst[u]]]; s2 := sidx[elems[uend[u]-1]]
21 if s1 = s2 then

22 return 0
23 else

24 bunches := bunches + 1
25 if Size(s1) ≤ Size(s2 then

26 ufirst[u] := end[s1]
27 else

28 uend[u] := first[s2]; s1 := s2
29 ufirst[bunches] := first[s1]; uend[bunches ]:= end[s1]

30 uidx[s1]:= bunches

31 return s1
32

33 Left_neighbour(e)

34 l:= first[sidx[e]];

35 if l > 1 then

36 return elems[l−1]
37 else

38 return 0
39

40 Right_neighbour(e)

41 l:= end[sidx[e]]

42 if l≤items then

43 return elems[l]

44 else

45 return 0

Listing 5: Bunch- and neighbour-features of the refinable partition data structure
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S = { 1, 2, . . . , n }, L = { 1, 2, . . . , α }. For the transition relation we have that
∆ ⊆ S × L × S and m = |∆|. The algorithm also takes an initial partition
I = { S1, . . . , Sk }. The initial partition can be given in input to the algorithm
or not. If the partition is not given in input, we have that k = 1 and the initial
partition is equal to Q, where Q is the set of all states of the LTS. If the partition
is given in input to the algorithm we may choose to divide the set of states Q of
the LTS in two disjoint subsets S1 and S2 such that:

1. S1 ∪ S2 = Q,

2. S1 ∩ S2 = ∅.

The set S1 is the set of all states that can do at least one transition, while the
set S2 is the set of deadlock states. The input of the algorithm consists of :

n : The number of states;

α : The number of labels;

∆ : The transition relation

{ S1, . . . , Sk } The initial partition

In addition we have that

∆a,B = ∆ ∩ (S × { a } ×B)

∆s,a,B = ∆ ∩ ({ s } × { a } ×B)

Transitions are represented as three array tail , label , head. Each transitions
(s, a, s′) has an index t in the range 1, . . . ,m such that:

tail[t] = s, label[t] = a, and, head[t] = s′

It is also assumed that the indices of the transitions that share the same head
state s are available as:

In transitions[s] = { (s1, a, s2) ∈ ∆ | s2 = s }

The algorithm uses the following data structures taken from [Val09] on page 132.

Blocks This is a refinable partition data structure on the states { 1, . . . , n }. Its
sets are the blocks and when the algorithm ends each blocks represent
the states that are bisimilar.

Splitters

This is a refinable partition data structure on transition relation →
that is on { 1, . . . ,m } where m is the number of transitions. Each set
in Splitters contains the indices of transitions that can do the same
action and end in a state that belongs to the same block. Formally

Splitters = {∆a,B | a ∈ L ∧B ∈ Blocks ∧∆a,B 6= ∅ } where

∆a,B = { (s, l, s′) | l = a ∧ s′ ∈ B }

The bunch feature of Splitters will be used.
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1 Update(b, b’)

2 if Blocks.Size(b) ≤ Blocks.Size(b’) then

3 s := Blocks.First(b)

4 else

5 s := Blocks.First(b’)

6 while s 6= 0 do

7 for t ∈ In_transitions[s] do

8 p := Splitters.Set(t); o := Outsets.Set(t)

9 if Splitters.No_marks(p) then

10 Touched_Splitters.Add(p)

11 if Outsets.No_marks(o) then

12 Touched_Outsets.Add(p)

13 Splitters.Mark1(t); Outsets.Mark1(t)

14 s := Blocks.Next(s)

15 while ¬ Touched_Splitters.Empty do

16 p := Touched_Splitters.Remove

17 u := Splitters.Bunch(p); if Has_many(u) then u := 0

18 p’ := Splitters.Split1(p);

19 if u 6=0 ∧ p’ 6= 0 then

20 Unready_Bunches.Add(u)

21 while ¬ Touched_Outsets.Empty do

22 o:= Touched_Outsets.Remove;

23 o’ := Outsets.Split1(o)

Listing 6: Update

Outsets This is a refinable data structure like Splitters but finer, that is
transitions that are in the same set share the initial state. Outsets

= {∆s,a,B | s ∈ S ∧ a ∈ L ∧B ∈ Blocks ∧∆s,a,B 6= ∅ }

Unready Bunches

This is an initially empty stack. It contains the indices of the bunches
of Splitters that consists of two or more sets.

Touched Blocks

This is an initially empty stack that contains the sets in the refinable
data structure Block that have been marked (with mark-1 or mark-2).

Touched Splitters, Touched Outsets

These are initially empty stacks that contains the transition in Splitters
and Outsets that have been marked. It is necessary to introduce these
stacks because when a set in Blocks is split it is necessary to update
these two.

5.3.1 Update procedure

Before discussing the main procedure in Listing 7, it is important to understand
the update subroutine in Listing 6. Whenever a set has been split in refinable
data structure Blocks, it is necessary to update the refinable data structure
Splitters and Outsets accordingly.

For example if a set Bi in the refinable data structure Blocks, has been split
in B1

i and B2
i we have to update Splitters; in particular those transitions of

type ∆a,Bi
, where a ∈ Labels must be updated in ∆a,B1

i
and ∆a,B2

i
. The same

procedure discussed above must be repeated for Outsets. The parameters b and
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1 Main_part

2 initialize Blocks to { S }
3 initialize Splitters to =

{
∆a,B

∣∣ a ∈ L ∧B ∈ Blocks ∧∆a,B 6= ∅
}

4 make every set of Splitters a singleton bunch

5 initialize Outsets to =
{

∆s,a,B

∣∣ a ∈ L ∧B ∈ Blocks ∧∆s,a,B 6= ∅
}

6 for i := 2 to k do

7 for s ∈ Si do Blocks.Mark1(s)

8 b := Blocks.Split1 (1); Update(1, b)

9 for u := 1 to Splitters.bunches do

10 t := Splitters.Bunch_first(u)

11 while t 6= 0 do

12 s := tail[t]; b := Blocks.Set(s)

13 if Blocks.No_marks(b) then Touched_Blocks.Add(b)

14 Blocks.Mark1(s); t := Splitters.Bunch_next(t)

15 while ¬Touched_Blocks.Empty do

16 b := Touched_Blocks.Remove

17 b’= Blocks.Split1(b); if b′ 6= 0 then Update(b, b’)

18 while ¬Unready_Bunches.Empty do

19 u := Unready_Bunches.Remove; p := Splitters.Extract_set(u)

20 if Splitters.Has many(u) then Unready_Bunches.Add(u)

21 t := Splitters.First(p)

22 while t 6=0 do

23 if t = Outsets.First( Outsets.Set(t) ) then

24 s := tail[t]; b := Blocks.Set(s)

25 if Blocks.No marks(b) then Touched_Blocks.Add(b)

26 t1 := Outsets.Left_neighbour(t)

27 t2 := Outsets.Right_neighbour(t)

28 if t1 > 0 ∧ tail[t1] = s ∧
29 Splitters.Bunch(Splitters.Set(t1)) = u

30 ∨ t2 > 0 ∧ tail[t2] = s ∧
31 Splitters.Bunch(Splitters.Set(t2)) = u

32 then Blocks.Mark1(s) else Blocks.Mark2(s)

33 t := Splitters.Next(t)

34 while 6= Touched_Blocks.Empty do

35 b := Touched_Blocks.Remove

36 b’ := Blocks.Split1(b); if b’ 6= 0 then Update(b, b’)

37 b’ := Blocks.Split2(b); if b’ 6= 0 then Update(b, b’)

Listing 7: Main
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Figure 11: Splitter example

b′, given in input to the Update subroutine, represent the indices of the spltted
sets. The splitted sets are B1

i and B2
i .

The Update procedure starts by scanning the indices of the transitions that
end in the smallest set between B1

i and B2
i by means of In Transitions[s],

that records the transitions that end in s; then Update marks the transitions that
belong to the set In Transitions[s], and proceed with the splitting operation.
The process of updating Splitters it is a bit more involved because we have to
take into account the stack Unready Bunches. For deciding which set has been
marked the update procedure uses Touched Splitters and Touched Outsets

respectively.

5.3.2 Main Procedure

The main procedure, that is showed in Listing 7 on the previous page, consists
of two parts. The first one is between line 9 and line 17 included; its duty is
to split the refinable data structure Blocks into different set, where each set
represents the states that can do an a-labeled transition. Just for a reminder the
refinable data structure Blocks at the end of the algorithm contains different
sets, where each set represents states that are bisimilar.

For detecting the states that can do an a-labeled transition the algorithm
scans one at a time the bunches of Splitters. Each bunch in Splitters is
grouped initially by label. That is, if we have only two labels in an LTS like
the one in Figure 10, the Splitters will be initially like the one in Figure 11.
Next for each bunch Bu ∈ Splitters, each transition t ∈ Bu, will be scanned
one at a time, and for each t the start state s = tail[t], line 12, Listing 7 on
the preceding page, will be marked in the refinable data structure Blocks. Next,

23



after all the transitions t ∈ Bu, have been scanned Blocks is split, according to
the marked states. After each splitting of Blocks, Splitters and Outsets are
updated. When all bunches in Splitters have been scanned, the second part of
the algorithm processes the bunches of Splitters that contains more than one
set. The refinable data structure Splitters contains sets of transitions. For
each bunch B that contains two or more sets, the algorithm extracts a Set S (of
transitions), makes a new bunch that contains only S, (the bunch B now does
not contain S) and for each transition (s1, a, s2) ∈ S checks if s1 appears as a
tail in other transitions but in the same bunch where before was S.

Just for a reminder a transition t is represented as a triple

(tail[t], label[t], head[t])

meaning that there is a transition t that starting from state tail[t] and by
doing an action label[t], ends in head[t].

For a summary of the second part: given a bunch B in Splitters that
contains two or more sets one have to do the following steps:

1. Extract a set S from B and create a new bunch that contain only S and
remove S from B.

2. For each transition t ∈ S check if the tail state of t appears also elsewhere
as a tail state of another transition t′ ∈ B, B that now does not contain S,
if yes mark t with mark1 else mark t with mark2.

3. Split the marked states in Blocks and next update the sets of transitions
Splitters and Outsets.

4. continue until there is no more Bunch in Splitters that contains two or
more sets.

Thanks to three tricks, the algorithm runs in O(m log n) times where m is the
number of transitions an n is the numbers of states. The tricks are the following:

1. Every time in the second part of the algorithm we extract a set (line 19
in Listing 7 on page 22), from bunches of Splitters who contains more
than two sets we choose the smallest from the first set and last one set. In
this way when a transition is used ( for deciding if it must be mark-1 or
matk-2) it belongs to a set whose size is at most the half of the previous
one. Because all transitions in a set of a Splitters have the same label
there can be at most n2 of them (each state has a transition to all other
states). Thus each transition can be used at most log2 n

2.

2. Update defined in Listing 6 on page 21, takes two parameters b and b′ that
are the indices of the set that has been splitted (B1

i and B2
i ) and chooses

the smallest from these two. So when a state is used it belongs to a set
whose size is at most half the size in the previous time. Thus each state
can be used at most log2 n times for splitting

3. The third tricks is that the set of labels are never scanned so we can omit
to take into account the set of labels.
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6 Implementation

I have implemented all the three algorithms outlined above through the Scala
Programming language [OSV16]. Full code is available at [Bar21]. The labeled
transition system given in input is specified through a textual form. For example
the LTS in Figure 10 on page 23, can be given in input to the algorithms in this
way:

states=q0,q1,q2,q3

relation=q0,a,q1;q0,a,q2;q1,b,q2,q1,b,q3

relation=q3,a,q1;q3,a,q2

The lines that start with the word states define states, while the lines that
start with the word relation defines the transition relation.

6.1 Implementation of fixed point approach

In this Section I explain how I have implemented the fixed point approach for
computing the bisimulation equivalence described in Section 3 on page 5.

Given a finite LTS (Q,A,→) where Q is the finite set of states, A is the
finite set of actions and →⊆ Q×A×Q is the transition relation composed of m
transitions, the implementation computes the greatest fixed point of functional F
defined in Definition 3.1 on page 7 through the method explained in Section 3.6
on page 7.

The implementation simply, starts with the relation R = Q×Q, where R is
the Cartesian product of the set Q with itself. Then iterates until -under certain
conditions- no other couples (q1, q2) ∈ R can be removed.

I have implemented the relation R = Q×Q -and the subsets of R- as a List
of couples (q1, q2) ∈ R where q1 ∈ Q and q2 ∈ Q. The LTS in this algorithm is
implemented as a class that has one, fundamental, field: a vector v that takes
in input a state q ∈ Q and an action a ∈ A and returns a vector of transitions
(q, a, q′) where q′ ∈ Q. The vector of transitions that is returned from the vector
v, -vector v that takes in input a state q ∈ Q and an action a ∈ A- are all the
transitions that start from q and by doing an action a end in q′. The vector
v takes in input a state q and an action a as numbers so the LTS has two
additional fields that are two maps. The first map takes in input a state q and
gives in output a number associated to the state q, the second map takes in
input an action a and gives in output a number associated to the action a.

6.1.1 Detailed steps

For computing the bisimulation equivalence the algorithm initially sets R to
Q×Q. R is the List of couples (q1, q2) -with q1 ∈ Q and q2 ∈ Q- of length n2

where n = |Q|.
For each couple (q1, q2) ∈ R the algorithm does the following: for each label

a ∈ A :

1. Builds a list l1 of transitions (q1, a, q
′
1) where q′1 ∈ Q. Each tuple (q1, a, q

′
1)

represents the transition that starting from q1 and by doing a fixed action
a ends in q′1. The list l1 is built by means of vector v described above. v
takes in input q1 and a, and returns l1.
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2. Builds a list l2 of transitions (q2, a, q
′
2) where q′2 ∈ Q. Each tuple (q2, a, q

′
2)

represents the transition that starting from q2 and by doing an action a
ends in q′2. The list l2 is built similarly to the list l1 described in the
point 1 of this list.

3. For each (q1, a, q
′
1) ∈ l1 the algorithm checks if exist a transition t =

(q2, a, q
′
2) ∈ l2 and (q′1, q

′
2) ∈ R. If t exists return true else false.

4. Similarly to the previous point, but considering first the state q2; for each
(q2, a, q

′
2) ∈ l2 the algorithm checks if exist a transition t = (q1, a, q

′
1) ∈ l1

and (q′1, q
′
2) ∈ R. If t exists return true else false.

Then if for all a ∈ A both the checks in point 3 and 4 of the list above returns
true, then the couple (q1, q2) can stay in the relation R, otherwise it will be
removed.

When there is no more couples to be removed from R the algorithm ends
and returns the relation R, that contains the bisimulation equivalence ∼.

For checking if a couple (q1, q2) belongs to R or not in O(1) time, the
algorithm uses a vector m. The vector m takes in input a couple (q1, q2) and
returns true if (q1, q2) ∈ R, false otherwise.

When the algorithm finishes to scan the relation R, divides R in two relations:
R1 and R2. R1 is the set of couples that satisfies the point 3 and 4 of the list
above, R2 is the set of couples that does not satisfies the point 3 and 4 of
the list above. The couples (q1, q2) ∈ R2 will be marked as false in the vector m
described in the previous paragraph.

6.1.2 Time complexity

For defining the time complexity of the algorithm described in this Section
(Section 6.1) we have to do the following considerations:

1. Initially the length of the relation R = Q × Q is equal to n2 because
n = |Q|. In the worst case, the algorithm, at every step removes one couple
(q1, q2) ∈ R at a time so this loop -that we call loop1- costs in the worst
case O(n2).

2. At every step of the loop1 we have to iterate over all the couples of the
relation R, in order to check all the couples (q1, q2) ∈ R for deciding if
(q1, q2) can stay in R or has to be removed. This loop -that we call loop2-
also costs in the worst case O(n2).

3. For deciding if a couple (q1, q2) can stay in R we have to build the lists
l1 and l2 described in Section 6.1.1 for every a ∈ A. Next, for every
tuple (q1, a, q

′
1) ∈ l1 we have to search if exists in l2 a suitable tuple

(q2, a, q
′
2) ∈ l2 such that (q′1, q

′
2) ∈ R. That is, if given an action a ∈ A,

for every q′1 such that q1
a−→ q′1 exists a state q′2 such that q2

a−→ q′2 and
(q′1, q

′
2) ∈ R. If we say that the length of the list l1 of transitions starting

from q1 is i and i can be at most m where m is the number of transitions,
for every couple (q1, q2) ∈ l1 we have to iterate over all the couples of the
list l2. This costs O(ij) where j is the length of the list l2 of transitions
starting from q2.
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So if i ≤ m and j ≤ m where i and j are respectively the length of l1 and
l2, deciding if a couple (q1, q2) can stay in R costs O(m2), I have omitted
the case when q2 moves first, that is the case when for every transition
that belongs to l2 we have to search if exists a suitable transition in the
list l1, but it is symmetric to the case when q1 moves first, hence costs
O(m2).

Considering that the length of l1 can be at most m is a pessimistic
reasoning because l1 represents the transitions that -given an action
a ∈ A- start from q1 and by doing an action a end in a state q′ ∈ Q. The
length of l1 is certainly less than m. Same for the list l2.

In the random LTSs that I have built for doing the tests, and also in other
LTSs we may consider that the length of l1 and l2 be at most m

n because
the transitions that start from a random state q -given an action a- if the
transitions are set randomly are seldom m. If the transitions that start
from a state q are m it means that all the transitions in the LTS start
from q. So if i ≤ m

n and j ≤ m
n , where i and j are the length of l1 and l2

respectively we have that deciding if a couple (q1, q2) can stay in R costs
O((mn )2).

For what we have said above the time complexity of the implementation that I
have done for computing the bisimulation equivalence through the fixed point
approach is:

1. O(n2n22(mn )2) = O(n2m2) if we consider, the length of l1 an l2 be at
most m

n .

2. Otherwise if we consider the length of l1 an l2 be at most O(m) the time
complexity is O(n2n2m2).

The Scala code is available in Listing 8 on the next page.

6.2 Implementation of Kannellakis and Smolka

For the purpose of this Section we can think of a partition as a list of blocks,
and of a block as a list of states.

I have implemented -for this implementation- the LTS by means of a vector
v, that takes in input a state q and an action a and gives in output a vector of
transitions of the form (q, a, q′) with q′ ∈ Q. The vector v formally:

v : Q×A→ Vector[(Q,A,Q)]

takes in input a state q and an action a and gives in output a vector of transitions
(q, a, q′). The transitions (q, a, q′) start from q and by doing an action a end
in q′. Each block is implemented as a list of states, and a partition as a list
of blocks. The algorithm also uses a vector blockOfNode of length n, where
n is the number of states. The vector blockOfNode takes in input a state q
and returns the index of the block B -that contains q- in the partition. That is
given a partition π = {B1, . . . , Bi, . . . , Bn } and a state q ∈ Bi, blockOfNode(q)
returns i. The program also uses a variable numBlocks that records the number
of Blocks in the partition.
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1 class FixedPointFinal(val l: Lts) {

3 def fixedPointBisim (): List[(Node , Node)] = {

5 val start = l.nodes.flatMap(x => l.nodes.map(y => (x, y)))

6 val matrix= (0 until l.numNodes)

7 .map(_ => true)

8 .toVector

9 .map(_ => (0 until l.numNodes)

10 .map(_ => true). toVector)

12 def check(p: Node , q: Node ,

13 matrix: Vector[Vector[Boolean ]])

14 : Boolean = {

15 def checkAction(action:Int) ={

16 val indexP = l.indexNodes getOrElse(p.name ,-1)

17 val indexQ = l.indexNodes getOrElse(q.name ,-1)

18 val v1 = l.vectorTrans(indexP )( action)

19 val v2 = l.vectorTrans(indexQ )( action)

20 v1.forall(x => v2.exists(y => matrix(x._3)(y._3)) )

21 }

22 l.numIndex.forall(x => checkAction(x))

23 }

24 @tailrec

25 def updateMatrix(matrix: Vector[Vector[Boolean]],

26 toMark:List[(Node ,Node )]): Vector[Vector[Boolean ]] = {

28 toMark match {

29 case ::(head , next) =>

30 val i = l.indexNodes getOrElse(head._1.name , -1)

31 val j = l.indexNodes getOrElse(head._2.name , -1)

32 val newLines = matrix(i). updated(j,false)

33 updateMatrix(matrix.updated(i,newLines),next)

34 case Nil => matrix

35 }

36 }

37 @tailrec

38 def iterate(rel: List[(Node , Node)],

39 matr:Vector[Vector[Boolean ]]): List[(Node , Node)]

40 = {

41 val (guess1 ,toBeMarked) = rel.partition(x => {

42 check(x._1 , x._2, matr) &&

43 check(x._2 , x._1, matr)

44 })

45 if (toBeMarked.isEmpty)

46 rel

47 else {

48 val newMatrix= updateMatrix(matr ,toBeMarked)

49 iterate(guess1 ,newMatrix)

50 }

52 }

53 iterate(start ,matrix)

54 }

55 }

Listing 8: Scala fixed point
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1 class KS5(val l: Lts) {

2 @tailrec

3 final def iterateBlock(scanned: List[List[Node]],

4 toScan: List[List[Node]],

5 blockOfNode: Vector[Int],

6 numBlocks: Int

7 )

8 : (List[List[Node]], Vector[Int], Int , Boolean) = {

9

10 toScan match {

11

12 case ::(head , next) =>

13

14 val ris = split(head , blockOfNode , numBlocks)

15

16 val (b1, b2, new_blockOfNode , new_numBlocks) = ris

17

18 if (b2.isEmpty) {

19

20 iterateBlock(head :: scanned ,

21 next , blockOfNode , numBlocks)

22

23 }

24

25 else {

26 val two_blocks = b1 :: b2 :: next

27

28 (two_blocks ::: scanned ,

29 new_blockOfNode , new_numBlocks , true)

30

31 }

32 case Nil => (scanned , blockOfNode , numBlocks , false)

33 }

34 }

35 @tailrec

36 final def iter(part: List[List[Node]],

37 blockOfNode: Vector[Int],

38 numBlocks: Int

39 ): List[List[Node]] = {

40

41 val ris_itB = iterateBlock(Nil , part , blockOfNode , numBlocks)

42

43 val (new_part , new_blockOfNode , new_numBlocks , flag) = ris_itB

44

45 if (flag) {

46 iter(new_part , new_blockOfNode , new_numBlocks)

47 }

48 else

49 part

50 }

51 }

Listing 9: Partial code for Kannelakis and Smolka’s algorithm
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1 class KS5(val l: Lts) {

2 val tr: Vector[Vector[Vector [(Int , Int , Int )]]] = l.vectorTrans

3 def split(ln: List[Node],

4 blockOfNode: Vector[Int],

5 numBlocks: Int

6 ): (List[Node], List[Node], Vector[Int], Int) = {

7 def check(vec1:Set[Int], t: Node , action: Int): Boolean = {

8 val numt = l.indexNodes.getOrElse(t.name , -1)

9 val vec2 = tr(numt)( action ).map(x => blockOfNode(x._3))

10 vec1 == vec2.toSet

11 }

12 @tailrec

13 def iterAction(actions: List[Int])

14 : (List[Node], List[Node], Vector[Int], Int) = {

15 actions match {

16 case ::( cons_a , tail_a) =>

17 val s = ln.head

18 val nums = l.indexNodes.getOrElse(s.name , -1)

19 val vec1 = tr(nums)( cons_a)

20 .map(x => blockOfNode(x._3))

21 .toSet

22 val (b1, b2) = ln.partition(t => check(vec1 , t, cons_a ))

23 if (b2.isEmpty) {

24 iterAction(tail_a)

25 }

26 else {

27 @tailrec

28 def UpdateVector(list: List[Node],

29 vec: Vector[Int],

30 index: Int)

31 : Vector[Int] = {

32 list match {

33 case ::(head , next) =>

34 UpdateVector(next ,

35 vec.updated(

36 l.indexNodes.getOrElse(head.name , -1),

37 index

38 ),

39 index)

40 case Nil => vec

41 }

42 }

43

44 val new_blockOfNode = UpdateVector(b2,

45 blockOfNode , numBlocks + 1)

46 (b1 , b2 , new_blockOfNode , numBlocks + 1)

47 }

48 case Nil => (ln, Nil , blockOfNode , numBlocks)

49 }

50 }

51 iterAction(l.numIndex)

52 }

53 }

Listing 10: Split code from Kannelakis and Smolka
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6.2.1 Schema of the implementation

The algorithm starts with a partition P that contains a unique block B. B
contains all states of the LTS. Next the algorithm scans one at a time each block
B in the partition P and does the following: for each a ∈ A:

1. Create two empty set B1 and B2

2. Select a state s ∈ B

3. For each state t ∈ B, if s and t can reach the same set of blocks in the
partition P via a-labelled transitions then add t to the set B1 otherwise
add t to the set B2.

4. If B2 is not empty replace B with B1 and B2 in the partition P. If B2 is
empty go ahead with the next label -indexed with a-. If there is no more
label to check go ahead with the next block and repeat the procedure
in this list starting over to scan all the labels. If there is no more block
to check stop and give in output the partition P that now contains the
bisimulation equivalence ∼.

6.2.2 Detailed steps

For implementing the schema outlined above, I have created the programs showed
in Listing 10 on the preceding page and in Listing 9 on page 29. The program
in Listing 9 has the burden to scan all the blocks B in the partition P in order
to check if the block B can be split in two non-empty set:

1. B1: the set of states that can reach the same set of blocks via a-labeled
transitions.

2. B2: the set of states that cannot reach the same set of block via a-labeled
transitions.

If there is no more blocks that can be split the algorithm stops and returns the
bisimulation equivalence contained in P.

For checking if a block B -given a partition P- can be split in two blocks
B1 and B2, I have created the program in Listing 10 on the preceding page. In
particular the function split takes in input:

1. A block B.

2. A vector blockOfNode that given in input a state p returns the index i
such that p ∈ Bi.

3. A variable numBlocks that keeps track of the number of blocks in the
partition.

The function split for each action a does the following steps with the block B
that takes in input:

1. Select a state s that belongs to the Block B

2. Create a vector vec1. The vector vec1 contains the transitions (s, a, s′)
with s′ ∈ Q that start from s and by doing an action a end in s′. The
vector vec1 is created by means of the vector v described in the initial
part of the Section 6.2.
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3. Transform the vector vec1 that contains the transitions (s, a, s′) with
s′ ∈ Q in a vector of indexes. The indexes are all the i such that s′ ∈ Bi.

4. For each state t ∈ B create a vector vec2 following the same procedure for
building the vector vec1.

5. For each state t ∈ B, compare the vector vec1 with the vector vec2. If
vec1 is equal to vec2, that is s and t can reach the same blocks by doing
an a-action add t to B1, otherwise add t to B2. If B2 is not empty replace
the block B in the partition P with B1 and B2.

6.2.3 Note on time complexity

In the LTS that I have used for this implementation, the list of transitions are
specified through a vector v that takes in input a state q ∈ Q and an action
a ∈ A and gives in output a vector of transitions (q, a, q′) with q′ ∈ Q. The
meaning of (q, a, q′) is that there is a transition that starts from a state q and
by doing an action a ends in a state q′.

The implementation in this Section does not maintain the vector v sorted.
That is for all states q ∈ Q and actions a ∈ A the vector vecq,a of transitions
(q, a, q′) that v gives in output when (v) takes in input q and a is not sorted
by the indexes of the blocks the states q′ belong. In other words v remains the
same during the execution of the algorithm.

For this reason, for checking if two states (q1, q2) -given an action a- can
reach the same blocks (when I say blocks, I mean indexes of blocks), we have to
do the following:

1. Build the vector vec1 composed of tuples (q1, a, q
′
1) of three items, with

q′1 ∈ Q and a and q1 fixed. The meaning of (q1, a, q
′
1) is that there is a

transition that starts from a state q1 and by doing an action a ends in a
state q′1. The vector vec1 is created by means of the vector v that takes in
input q1 and a and returns vec1.

2. Transform the vector vec1 in a vector of indexes by means of the vector
blockOfNode, that takes in input a state s and returns the index i such
that s ∈ Bi. The vector blockOfNode is applied one at a time to all the
q′1 such that q1

a−→ q′1.

3. Build the vector vec2 in the same way the vector vec1 is built by giving q2
and a to v.

For checking if vec1 it is equal to vec2 we have to sort vec1 and vec2 and then
check if vec1 is equal to vec2. All the operation cost O(j log j) where j is the
maximum length between vec1 and vec2. Indeed once vec1 and vec2 are sorted
it is easy in linear time to check if vec1 is equal to vec2.

For this reason, deciding if a block B can be split in two block B1 and B2

does not cost O(m) and for this reason the time complexity of the algorithm of
Kannellakis and Smolka is not O(mn).

Let α, be the maximum number of the vectors veci that we have to sort,
and β the maximum length among the vectors veci. The time complexity of the
algorithm of Kannellakis and Smolka is O(n · (m+ α · β log β)).
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I have chosen to implement the Kannelakis and Smolka algorithm without
keeping the vector of transition sorted -despite the time complexity seems to
be higher than O(nm)- because I have seen -in many tests- that if I keep the
vector of transition sorted, the execution time slow down a lot. Indeed I have
implemented a second version of the Kannellakis and Smolka’s algorithm where
I keep the vector of transitions sorted after a splitting of a Block happened. The
cost of keeping the vector v of transitions sorted slow down a lot the execution
time. Also I noticed that the execution of sorting the indexes of blocks reachable
from a state q and an action a is irrelevant compared to the cost of keeping the
vector v of transitions sorted.

6.3 Implementation of Valmari’s algorithm

The implementation of Valmari’s algorithm consists more or less of 1100 lines of
code so it is impossible to present the full code here, that however can be found
in [Bar21]. The algorithm assumes that the states and the labels of the labeled
transition system given in input is specified through numbers; for this reason is
necessary to process the LTS that is given in textual form for converting it in
numeric form, this necessarily introduces an overhead. All the code that I have
implemented for the Valmari’s algorithm is based on the detailed pseudo code
that is described in the article of Antti Valmari [Val09]. The Scala programming
language is used mainly as a functional language, as a result the variables cannot
be modified once they have been initialized, hence the loops like while are
forbidden and must be substituted by means of recursive functions in particular
through tail recursive function that a compiled time are as efficient as the
while loops.

Given an LTS (Q,A,→), the time complexity of the implementation of
Valmari’s algorithm is O(m log n), where m is the number of transitions and n
is the number of states. In the calculation of the time complexity, I have not
included the time needed for translating the LTS from the textual form to the
numeric form. Also, I have not included the time needed for the initialization
of the refinable partition data structures Splitters and Outsets described in
Section 5.3 on page 17. The choice of not including the time needed for the
translation and the initialization comes from the fact that, these actions are not
closely related to the algorithm.

7 Results

In this Section I show the results of the tests that I have done in order to see
how the algorithms of Kannellakis&Smolka and Valmari perform in real cases.

As I stated in the previous Sections I have implemented the algorithms of
Kannellakis&Smolka and Valmari through the Scala programming language.

In order to do the tests I have created a certain number of random LTSs.
For building the LTSs I have designed a program -in Scala- that takes in input 4
parameters:

1. The number of states, that is the size of Q where Q is the set of states.

2. The size of the set A, where A is the set of labels or actions.
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Figure 12: LTSs with 100 000 transitions and labels taken randomly from a set
of length 10. States vary on x-axis

3. The number of transitions that we want in our LTSs. A transition is
represented as (q, a, q′), where q and q′ are taken randomly from the set of
states Q, and a is taken randomly from the set of labels or actions A.

4. The number of LTSs that we want to build.

After we have provided the four parameter, the program returns n LTSs where
n is specified by the fourth item of the previous list. The LTSs given in output
have the characteristics specified by the the first three items.

The program used for creating the LTSs also takes care of removing duplicate
transitions, that is let T = { (q, a, q′) | q, q′ ∈ Q, a ∈ A } the set of transitions,
for each (q1, a, q2), (q′1, a

′, q′2) ∈ T , it is always the case that: q1 6= q′1 or a 6=
a′ or q2 6= q′2. For this reason the effective number of transitions may be slightly
less than the desired number.

I have carried out two tests where I have measured the time execution in
millisecond of the algorithms of Kannellakis&Smolka and Valmari.

Both the tests have been conducted on a laptop with the following character-
istics:

OS Windows 10 Home

CPU AMD A9-9420 RADEON R5, 5 COMPUTE CORES 2C+3G 3.00 GHz

RAM 8,00 GB

7.1 First test

The goal of the first test is to measure the time execution of the algorithm of
Kannellakis&Smolka and Valmari when we keep fixed the number of transitions
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States Time KS Time Valmari
(ms) (ms)

1000 509.15 1860.4
5000 2918.8 4518.35

10 000 10 274.6 6363.45
15 000 20 210.75 7339.2
20 000 32 674.1 7167.2
25 000 39 255.45 6797.45
30 000 51 847.45 6768.2

Table 1: Results of the test done on LTSs with 100 000 transitions and label
taken randomly from a set of length 10. States vary on the first column.

Class Number Number of states Number of samples

1 1000 20
2 5000 20
3 10 000 20
4 15 000 20
5 20 000 20
6 25 000 20
7 30 000 20

Table 2: Description of the classes for the first test

and we change the number of states. For doing the test I have built seven classes
of LTSs. Each class has a number of transitions fixed to 100 000 and states that
vary. For each class the number of states and the number of samples for each
class, are specified by means of the Table 2. For each class I have built 20 LTSs,
and I have taken the arithmetic mean of time execution in milliseconds of the 20
samples. The results are shown in Figure 12 on the previous page and available
in tabular format in Table 1.

As stated by Valmari [Val09] it is difficult to get full control of the activities
that is going on in a modern computer. As a consequence, the measurements
contain some noise, hence the results should be considered as typical, not as
the absolute truth. For example as we can see in Table 1 the time execution
of the Valmari’s algorithm contains an anomaly: the time execution does not
grow when states are grater than 20 000. This may be caused by this fact: when
the number of states grow the Valmari’s alghorithm removes the unreachable
states early in the algorithm and this affect the time execution. Also the time
execution depends on the size of the result, that is on the number of classes
found. The smaller it is, the less splitting of blocks hence minor time execution.

Despite of what we have said above we can see in Figure 12 on the preceding
page that when we keep fixed the number of transitions and let vary the number of
states, the time execution of the Kannellakis&Smolka’s algorithm grows linearly
in the number of states while the Valmari’s algorithm grows slower (more or less
in a logarithmic scale) .
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Figure 13: LTSs with 10 000 states and labels taken randomly from a set of
length 10. Transitions vary on x-axis

Transitions Time KS Time Valmari
(ms) (ms)

50 000 7403.7 3417.35
100 000 10 274.6 6363.45
150 000 11 494.85 8058.85
200 000 12 379.6 10 161.65

Table 3: Results of the test done on LTSs with 10 000 states and label taken
randomly from a set of length 10. Transitions vary on the first column.

7.2 Second test

The goal of the second test is to measure the time execution of the algorithm of
Kannellakis&Smolka and Valmari when we keep fixed the number of states and
we change the number of transitions. For doing the tests I have built four classes
of LTSs. Each class has a number of states fixed to 10 000 and transitions that
vary. For each class the number of transitions and the number of samples for
each class are specified by means of the Table 4 on the next page. As in the
previous test for each class I have built 20 LTSs, and I have taken the arithmetic
mean of the time execution in milliseconds of the 20 samples. The results are
shown in Figure 13 and available in tabular form in Table 3.

As we can see when we keep fixed the number of states and vary the number
of transitions, the time execution of both the algorithms grows linearly.
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Class Number Number of transitions Number of samples

1 50 000 20
2 100 000 20
3 150 000 20
4 200 000 20

Table 4: Description of the classes for the second test.

8 BPP nets and team bisimilarity

In this Section, I describe the BPP nets, a subclass of finite Place/Transition Petri
nets, and a bisimulation-based, behavioral equivalence, called team bisimilarity.
A BPP net is a simple type of finite Place/Transition Petri net whose transitions
have singleton pre-set. The description done in this section is taken from [Gor21b].
For a full description of Petri Nets, and subclasses of finite Place/Transition
Petri nets, as well as the main behavioral equivalences see [Gor17].

8.1 Definitions

Definition 8.1 (Multiset). Let N be the set of natural numbers. Given a finite
set S, a multiset over S is a function m : S → N. The support set dom(m) of
m is { s ∈ S | m(s) 6= 0 }. The set of all multisets over S, denoted by M (S),
is ranged over by m. We write s ∈ m if m(s) > 0. The multiplicity of s in
m is given by the number m(s). The size of m, denoted by |m| is the number∑

s∈Sm(s). A multiset m such that dom(m) = ∅ is called empty and is denoted
by θ. We write m ⊆ m′ if m(s) ≤ m′(s) for all s ∈ S.

Multiset union ⊕ is defined as follows: (m⊕m′)(s) = m(s) +m(s′); the
operation ⊕ is commutative, associative and has θ as neutral element. Multiset
difference 	 is defined as follows: (m1 	m2)(s) = max {m1(s)−m2(s), 0 }.
The scalar product of a number j with m is the multiset j · m defined as
(j ·m)(s) = j · (m(s)).

By si we also denote the multiset with si as only element. Hence, a multiset
m over S = { s1, . . . , sn } can be represented as k1 · s1 ⊕ k2 · s2 ⊕ · · · ⊕ kn · sn,
where kj = m(sj) ≥ 0 for j = 1, . . . , n.

Definition 8.2 (BPP net). A labeled BPP net is a tuple N = (S,A, T ) where

• S is the finite set of places, ranged over by s (possibly indexed),

• A is the finite set of labels, ranged over by l (possibly indexed), and

• T ⊆ S×A×M (S) is the finite set of transitions, ranged over by t (possibly
indexed).

Given a transition t = (s, l,m), we use the notation:

• •t to denote its pre-set s (which is a single place) of tokens to be consumed;

• l(t) for its label l, and

• t• to denote its post-set s (which is a multiset, possibly even empty) of
tokens to be produced.
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Figure 14: Four seasons

Hence, transitions t can be also represented as •t
l(t)−−→ t•. In a BPP net for

every transition t ∈ T we have that: |•t| = 1, that is every transition has exactly
one input place.

Graphically, a place is represented by a little circle, a transition by a little
box, which is connected by a directed arc from the place in its pre-set and to the
places in its post-set (if any); the out-going arcs may be labeled with a number
to denote the number of tokens produced by the transition (if the number is
omitted, then the default value is 1).

For example in Figure 14 we have a BPP net that represents the four seasons
of the year where

S = { spring, summer, autumn, winter }
A = { warm up, cool down }
T = { (spring, warm up, summer),(summer, cool down, autumn) }∪
∪ { (autumn, cool down, winter),(winter, warm up, spring) }

Definition 8.3 (Marking, BPP net system, firing sequence, reachable place,
dynamically reduced). A multiset over S is called a marking. Given a marking
m and a place s, we say that the place s contains m(s) tokens, graphically
represented by m(s) bullets inside place s. A BPP net system N(m0) is a tuple
(S,A, t,m0), where (S,A, T ) is a BPP net and m0 is a marking over S, called
the initial marking. We also say that N(m0) is a marked net.

A transition t is enabled at marking m, denoted by m[t〉, if •t ⊆ m. The
execution (or firing) of t enabled at m produces the marking m′ = (m	 •t)⊕ t•.
This is written m[t〉m′. This procedure is called the token game.

A firing sequence starting at m is defined inductively as follows:

• m[ε〉m is a firing sequence (where ε denotes the empty sequence of transi-
tions) and

• if m[σ〉m′ is a firing sequence and m′[t〉m′′, then m[σt〉m′′ is a firing
sequence.

If σ = t1 . . . tn for (n ≥ 0) and m[σ〉m′ is a firing sequence, then there
exist m1, . . . ,mn+1 such that m = m1[t1〉m2[t2〉 . . .mn[tn〉mn+1 = m′ and σ =
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Figure 15: The net representing a semi-counter in (a), and a variant in (b)

t1 . . . tn is called a transition sequence starting at m and ending at m′. The set
of reachable markings from m is

[m〉 = {m′ | ∃σ.m[σ〉m′ } .

Note that the reachable markings can be countably infinite. The set of
reachable places from s is

reach(s) =
⋃

m∈[s〉

dom(m)

Note that reach(s) is always a finite set, even if [s〉 is infinite. A BPP net
system N(m0) = (S,A, T,m0) is dynamically reduced if

∀s ∈ S ∃m ∈ [m0〉.m(s) ≥ 1

and also,
∀t ∈ T ∃m,m′ ∈ [m0〉 such that m[t〉m′

Example 8.1. By using the drawing convention for Petri nets mentioned above,
Figure 15a shows the simplest BPP net representing a semi-counter, that is, a
counter which cannot test for zero. The number represented by this semi-counter
is given by the number of tokens which are present in place s2, that is, in the
place ready to perform the action dec. Figure 15a represents a semi-counter
holding number 0; note also that the number of tokens which can be accumulated
in s2 is unbounded. Indeed, the set of reachable markings for a BPP net can be
countably infinite. In Figure 15b a variant semi-counter is outlined, which holds
number 2 (that is two tokens are ready to perform action dec).
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8.2 Additive closure

In this Section I introduce a relation R⊕ ⊆ M (S) ×M (S), where M (S) is
defined in Definition 8.1 on page 37, that will be used for defining the Team
bisimulation.

Definition 8.4 (Additive closure). Given a BPP net N = (S,A, T ) and a place
relation R ⊆ S × S, we define a marking relation R⊕ ⊆M (S)×M (S), called
the additive closure of R, as the least relation induced by the following axiom
and rule.

(θ, θ) ∈ R⊕
(s1, s2) ∈ R (m1,m2) ∈ R⊕

(s1 ⊕m1, s2 ⊕m2) ∈ R⊕

Note that, by definition, two markings are related by R⊕ only if they have
the same size; in fact, the axiom states that the empty marking is related to
itself, while the rule, assuming by induction that m1 and m2 have the same
size, ensures that s1 ⊕ m1 and s2 ⊕ m2 have the same size. Note also that
there may be several proofs of (m1,m2) ∈ R⊕ depending on the chosen order
of the elements of the two markings and on the definition of R. For instance,
if R = { (s1, s3), (s1, s4), (s2, s3), (s2, s4) } then (s1 ⊕ s2, s3 ⊕ s4) ∈ R⊕ can
be proved by means of the pairs (s1, s3) and (s2, s4), as well as by means of
(s1, s4), (s2, s3). An alternative way to define that two markings m1 and m2 are
related by R⊕ is to state that m1 can be represented as s1 ⊕ s2 ⊕ · · · ⊕ sk, m2

can be represented as s′1 ⊕ s′2 ⊕ · · · ⊕ s′k and (si, s
′
i) ∈ R for i = 1, . . . , k.

Now I list some properties of the additive closure R⊕.

Proposition 8.1. For each BPP net N = (S,A, T ) and each place relation
R ⊆ S ×R, if (m1,m2) ∈ R⊕ then |m1| = |m2|

Proposition 8.2. For each BPP net N = (S,A, T ) and each place relation
R ⊆ S × S the following hold:

1. If R is is reflexive, then R⊕ is reflexive.

2. If R is symmetric, then R⊕ is symmetric.

3. If R is transitive, then R⊕ is transitive.

4. If R1 ⊆ R2, then R⊕1 ⊆ R
⊕
2 , that is the additive closure is monotone.

A consequence of the proposition above is that if R is an equivalence relation,
then its additive closure R⊕ is also an equivalence relation.

I present in the following Proposition a theorem that its necessary for imple-
menting one of the algorithm for computing R⊕.

Proposition 8.3 (Additivity/subtractivity). Given a BPP net N = (S,A, T )
and a place relation R, the following hold:

1. If (m1,m2) ∈ R⊕ and (m′1,m
′
2) ∈ R⊕ then (m1 ⊕m′1,m2 ⊕m′2) ∈ R⊕.

2. If R is an equivalence relation, (m1 ⊕m′1,m2 ⊕m′2) ∈ R⊕ and (m1,m2) ∈
R⊕ then (m′1,m

′
2) ∈ R⊕.
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Example 8.2. The requirement that R is an equivalence relation is strictly
necessary for Proposition 8.3. As a counterexample, consider

R = { (s1, s3), (s1, s4), (s2, s4) }

We have that (s1 ⊕ s2, s3 ⊕ s4) ∈ R⊕ and (s1, s4) ∈ R⊕, but (s2, s3) /∈ R⊕.

Some useful properties of additively closed place relations are the following.
The proofs of these properties can be found on [Gor21b, Section 3.1].

Proposition 8.4. For each BPP net N = (S,A, T ) and for each family of place
relations Ri ⊆ S × S (i ∈ I), the following hold:

1. ∅⊕ = { (θ, θ) }, that is, the additive closure of the empty place relation is a
singleton marking relation, relating the empty marking to itself.

2. (IS)∅ = IM , that is the additive closure of the identity relation on
places IS = { (s, s) | s ∈ S } is the identity relation on markings IM =
{ (m,m) | m ∈M (S) }.

3. (R⊕)−1 = (R−1)⊕, that is, the inverse of an additively closed relation R is
the additive closure of its inverse R−1.

4. (R1 ◦R2)⊕ = (R⊕1 ) ◦ (R⊕2 ), that is, the additive closure of the composition
of two place relations is the compositions of their additive closures.

5.
⋃
i∈I(R

⊕
i ) ⊆ (

⋃
i∈I Ri)

⊕, that is, the union of additively closed relations is
included into the additive closure of their union.

8.3 Algorithms for checking the additive closure

Given a BPP net (S,A, T ), in this section I present two algorithms for checking
if two marking m1 and m2 are related by R⊕ ⊆ M (S) ×M (S), under the
condition that R ⊆ S × S is an equivalence relation.

8.3.1 First algorithm

The first algorithm is described in [Gor21b]. The description that I do in
the following is taken from [Gor21a] and [Gor21b]. The algorithm, establishes
whether an R−preserving bijection between the two markings exists, by first
implementing the equivalence relation R as an adjacency matrix A of size n
(the entry A[s, s′] is marked 1 if (s, s′) ∈ R, 0 otherwise), and then by checking
whether for each place/token s in m1 there exists a place/token s′ in m2 such
that the entry A[s, s′] is is marked 1. The complexity of this algorithm is not
very high: first, the generation of the adjacency matrix takes O(n2) time, and
then checking whether (m1,m2) ∈ R⊕ takes O(k2) time, if k is the size of m1

and m2. Note that if we want to perform additional team equivalence checks
on the same net, we can reuse the already computed matrix A, so that the new
checks will take only O(k2) time from the second check on. It is important to
mention that this algorithm is correct only if R is an equivalence relation, so
that R⊕ is is subtractive. In fact, assuming that (m1,m2) ∈ R⊕, when we match
one place, say s1 in m1 with one place, say s2 in m2 such that (s1, s2) ∈ R, then
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1 Let N = (S,A, T ) be a BPP net.

2

3 Let R ⊆ S × S be a place relation , which is an equivalence.

4

5 Let A be the adjacency matrix generated as follows:

6 A[s, s′] = 1 if (s, s′) ∈ R ; otherwise A[s, s′] = 0.
7

8 Let m1 = k1 · s11 ⊕ k2 · s12 ⊕ · · · ⊕ kj1 · s1j1 such that:

9 ki > 0 for i = 1, . . . j1 and
∑j1

i=1 ki = k.
10 Let M1 be an array of length j1 such that:

11 M1[j] = kj , for j = 1, . . . , j1.
12

13 Let m2 = h1 · s21 ⊕ h2 · s22 ⊕ · · · ⊕ hj2 · s2j2 such that:

14 hi > 0 for i = 1, . . . j2 and
∑j2

i=1 hi = k.
15 Let M2 be an array of length j2 such that:

16 M2[j] = hj , for j = 1, . . . , j2.
17

18 Let P be the set of currently matched R-related places ,

19 initialized to ∅
20 for i = 1 to j1 do

21 for j = 1 to M1[i] do

22 h = 1
23 b = true
24 while (h ≤ j2 and b) do

25 if M2[h] 6= 0 and A[s1i, s2h] == 1 then

26 add (s1i, s2h) to P
27 M2[h] = M2[h]− 1
28 b = false
29 else

30 h = h+ 1
31 end if

32 end while

33 if h > j2 then

34 return false
35 end if

36 end for

37 end for

38 return P

Listing 11: Checking the Additive Closure of an Equivalence Place Relation
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1 Let N = (S,A, T ) be a BPP net , with S = { s1, . . . , sn }
2

3 Let m1 and m2 be two markings on S.
4

5 Let R ⊆ S × S be an equivalence place relation.

6

7 Let P = {B1, . . . , Bl }, 1 ≤ l ≤ n be the partition of S,
8 in the equivalence classes (called blocks) of R where:

9

10 Bi ∩Bj = ∅ for i 6= j,
11

12
⋃l

i=1Bi = S,
13

14 ∀s, s′ ∈ Bi (s, s′) ∈ R for i = 1, . . . , l and , finally

15

16 ∀s ∈ Bi, ∀s′ ∈ Bj if i 6= j, then (s, s′) /∈ R.

17

18 Let count1, count2 be two integer variables

19 for all blocks in P do

20 count1, count2 = 0
21 for all places s in the current block do

22 count1 = count1 +m1(s)
23 count2 = count2 +m2(s)
24 end for

25 if not count1 == count2 then

26 return false

27 end if

28 end for

29 return true

Listing 12: Algorithm for checking whether (m1,m2) ∈ R⊕

we need that also (m1 	 s1,m2 	 s2) ∈ R⊕ (cf. Example 8.2). The pseudo-code
is available in Listing 11 on the previous page.

Of course, two markings m1 and m2 are not team bisimilar if they have
different size, or if the Algorithm described in this Section fails by singling out a
place s in the residual of m1 (that is, in the portion of m1 which has not been
scanned yet) which has no matching team bisimilar place in (the residual of)
m2.

8.3.2 Second algorithm

The second algorithm is described in [Gor21a]. The algorithm described in
[Gor21a] is a slight generalization of the algorithm proposed originally in [Lib19].
The description that I do in the following is taken from [Gor21a].

The algorithm checks whether (m1,m2) ∈ R⊕ simply by checking if, for
each equivalence class of R, the number of places/tokens of m1 in that class
equals the number of places/tokens of m2 in the same class. In this way, we are
sure that there is an R-preserving bijective mapping between the two markings.
The complexity of this new algorithm is O(n), because we have essentially to
scan all the (equivalence classes and then the) places (in these classes), and this
complexity holds already for the first check. Therefore, this new algorithm is
better than the one described in Section 8.3.1 on page 41, while it may be less
performant than the original one, from the second check onwards, only if the
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markings are small compared to the size of the net: more precisely, if k <
√
n.

The pseudo-code is available in Listing 12 on the previous page. The reason why
this second algorithm usually outperforms the one described in Section 8.3.1 is
that, by exploiting the partition of S induced by R, there is no need to build
any auxiliary data structure for representing R.

Two markings m1 and m2 are not team bisimilar, if for some equivalence
class B of ∼, the number of all the tokens in the places of m1 belonging to B is
different from the number of all the tokens in the places of m2 belonging to B.

8.4 Team bisimulation on places

Now that we have defined the additive closure R⊕ we are ready to define the
Team bisimulation on places.

Definition 8.5 (Team bisimulation). Let N = (S,A, T ) be a BPP net. A team
bisimulation is a place relation R ⊆ S × S such that if (s1, s2) ∈ R then for all
l ∈ A

• ∀m1 such that s1
l−→ m1, ∃m2 such that s2

l−→ m2 and (m1,m2) ∈ R⊕,

• ∀m2 such that s2
l−→ m2, ∃m1 such that s1

l−→ m1 and (m1,m2) ∈ R⊕.

Two places s and s′ are team bisimilar (or team bisimulation equivalent),
denoted s ∼ s′, if there exists a team bisimulation R such that (s, s′) ∈ R

Example 8.3. If we consider the BPP nets in Figure 15 on page 39, it is easy
to see that relation:

R = { (s1, s3), (s1, s4), (s2, s5), (s2, s6) }

is a team bisimulation. In fact, the pair (s1, s3) is a team bisimulation pair

because, to transition s1
inc−−→ s1 ⊕ s2, s3 can respond with s3

inc−−→ s4 ⊕ s5, and
(s1 ⊕ s2, s4 ⊕ s5) ∈ R⊕; symmetrically, if s3 moves first. Also the pair (s1, s4) is

a team bisimulation pair because, to transition s1
inc−−→ s1 ⊕ s2, s4 can respond

with s4
inc−−→ s3 ⊕ s6 and (s1 ⊕ s2, s3 ⊕ s6) ∈ R⊕; symmetrically, if s4 moves first.

Also the pair (s2, s5) is a team bisimulation pair: to transition s2
dec−−→ θ, s5

responds with s5
dec−−→ θ, and (θ, θ) ∈ R⊕. Similarly for the pair (s2, s6). Hence,

relation R is a team bisimulation, indeed.

Example 8.4. Consider the nets in Figure 16 on the next page. It is easy to
realize that relation

R = { (s1, s4), (s2, s5), (s2, s6), (s2, s7), (s3, s8), (s3, s9) }

is a team bisimulation.

Now I list some properties of team bisimulation relations. The proofs of these
properties can be found on [Gor21b, Section 3.2].

Proposition 8.5. For each BPP net N = (S,A, T ), the following hold:

1. The identity relation IS = { (s, s) | s ∈ S } is a team bisimulation;
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Figure 16: Two team bisimilar BPP nets

2. the inverse relation R−1 = { (s′, s) | (s, s′) ∈ R } of a team bisimulation R
is a team bisimulation;

3. the relational composition

R1 ◦R2 = { (s, s′′) | ∃s′.(s, s′) ∈ R1 ∧ (s′, s′′) ∈ R2 }

of two team bisimulations R1 and R2 is a team bisimulation;

4. the union
⋃
i∈I Ri of team bisimulations Ri is a team bisimulation.

As stated in Definition 8.5 on the preceding page, given two places s and
s′ we have that s ∼ s′, if there exists a team bisimulation containing the pair
(s, s′). This means that ∼ is the union of all team bisimulations, that is,

∼=
⋃
{R ⊆ S × S | R is a team bisimulation } . (2)

By Proposition 8.5, point 4, ∼ is also a team bisimulation, hence the largest
such relation.

Proposition 8.6. For each BPP net N = (S,A, T ), relation ∼⊆ S × S is the
largest team bisimulation relation.

A team bisimulation relation need not be reflexive, symmetric, or transitive.
Nonetheless, the largest team bisimulation relation ∼ is an equivalence relation.
As a matter of fact, as the identity relation IS is a team bisimulation by
Proposition 8.5, point 1, we have that IS ⊆∼, and so ∼ is reflexive. Symmetry
derives from the following argument. For any (s, s′) ∈∼, there exists a team
bisimulation R such that (s, s′) ∈ R; by Proposition 8.5, point 2, relation R−1

is a team bisimulation containing the pair (s′, s); hence, (s′, s) ∈∼ because
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R−1 ⊆∼. Transitivity also holds for ∼. Assume (s, s′) ∈∼ and (s′, s′′) ∈∼;
hence, there exist two team bisimulations R1 and R2 such that (s, s′) ∈ R1 and
(s′, s′′) ∈ R2; by Proposition 8.5, point 3, relation R1 ◦R2 is a team bisimulation
containing the pair (s, s′′); hence, (s, s′′) ∈∼, because R1 ◦ R2 ⊆∼. Summing
up, we have the following.

Proposition 8.7. For each BPP net N = (S,A, T ), relation ∼⊆ S × S is an
equivalence relation.

8.5 Team bisimilarity over markings

Starting from team bisimilarity ∼, which has been computed over the places
of an unmarked BPP net, we can extend team bisimulation equivalence over
its markings in a distributed way: m1 is team bisimulation equivalent to m2 if
they are related by the additive closure of ∼, that is, if (m1,m2) ∈∼⊕, usually
denoted by m1 ∼⊕ m2.

If team bisimilarity ∼ is implemented as a matrix A such that

A[s, s′] =

{
1 if s ∼ s′

0 if s 6∼ s′

then for checking if (m1,m2) ∈∼⊕ we can use the algorithm outlined in
Section 8.3.1 on page 41. Otherwise if ∼ is implemented by equivalence classes
we can use the algorithm outlined in Section 8.3.2 on page 43.

In the following I list some properties of ∼⊕.

Proposition 8.8. For each BPP net N = (S,A, T ), if m1 ∼⊕ m2, then |m1| =
|m2|
Proposition 8.9. For each BPP net N = (S,A, T ), relation ∼⊕⊆ M (S) ×
M (S) is an equivalence relation.

Example 8.5. If we take the semi-counter depicted in Figure 15 on page 39,
the marking s1 ⊕ 2 · s2 is team bisimilar to the following markings of the net in
(b): s3 ⊕ 2 · s5, or s3 ⊕ s5 ⊕ s6, or s3 ⊕ 2 · s6, or s4 ⊕ 2 · s5, or s4 ⊕ s5 ⊕ s6, or
s4 ⊕ 2 · s6.

Example 8.6. If we take the two BPP nets depicted in Figure 16 on the
preceding page, it is clear that, for instance, s1 ⊕ 3 · s2 is team bisimilar to
any marking obtained with one token on place s4 and three tokens distributed
over the places s5, s6 and s7; for example s1 ⊕ 3 · s2 ∼⊕ s4 ⊕ 2 · s5 ⊕ s7 or
s1 ⊕ 3 · s2 ∼⊕ s4 ⊕ s6 ⊕ 2 · s7.

9 Team bisimilarity over places as a fixed point

In this Section I describe Team bisimilarity over places as a fixed point. The
description done in this Section is taken from [Gor21b, Section 3.4].

The Team bisimulation equivalence over places can be characterized nicely as
the greatest fixed point of a suitable monotone relation transformer, essentially
by extending the characterization developed for ordinary bisimulation over LTSs
done in Section 3 on page 5.

Even if the discussion done in this Section is similar to the one done in
Section 3 on page 5 for LTSs, for the sake of clarity I will report it anyway.
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Definition 9.1. Given a BPP net N = (S,A, T ), the functional F : P(S×S)→
P(S × S) (i.e., a transformer of binary relations over S) is defined as follows. If
R ⊆ S × S, then (s1, s2) ∈ F (R) if and only if for all l ∈ A

• ∀m1 such that s1
l−→ m1, ∃m2 such that s2

l−→ m2 and (m1,m2) ∈ R⊕

• ∀m2 such that s2
l−→ m2, ∃m1 such that s1

l−→ m1 and (m1,m2) ∈ R⊕

As we can see the Definition 9.1 is similar to the one described in Definition 3.1
on page 7. The only difference is that in the case of BPP net the two markings
m1 and m2 must belong to R⊕.

As in the case of LTSs we have that

Proposition 9.1. For each BPP net N = (S,A, T ), we have that:

1. The functional F is monotone, that is, if R1 ⊆ R2 then F (R1) ⊆ F (R2).

2. A relation R ⊆ S × S is a team bisimulation if and only if R ⊆ F (R).

As stated in Section 3.5 on page 6 a fixed point for F is a relation R such
that R = F (R). Knaster–Tarski’s fixed point theorem, outlined in Theorem 3.1
on page 7 and described in [Ace+07, p. 80], ensures that the greatest fixed point
of the monotone functional F is⋃

{R ⊆ S × S | R ⊆ F (R) }

It is possible to show that this greatest fixed point is ∼. ∼ is defined in Equation 2
on page 45. As stated in Section 3.5 on page 6, a post-fixed point of F is a
relation R such that R ⊆ F (R). By Proposition 9.1, point 2, we know that the
team bisimulations are the post-fixed points of F . As we can see in Equation 2
on page 45 team bisimilarity ∼ is the union of all the team bisimulations. Hence,
we conclude that ∼ is the greatest fixed point of F , that is

∼=
⋃
{R ⊆ S × S | R ⊆ F (R) }

The following theorem provides a direct proof of this fact.

Theorem 9.1. Team bisimilarity ∼ is the greatest fixed point of F .

Proof. We first prove that ∼ is a fixed point, that is, ∼= F (∼), by proving that
∼⊆ F (∼) and that F (∼) ⊆∼. Since ∼ is a team bisimulation, ∼⊆ F (∼) by
Proposition 9.1, point 2. As F is monotonic, by Proposition 9.1, point 1, we
have that F (∼) ⊆ F (F (∼)), that is, also F (∼) is a post-fixed point of F i.e., a
team bisimulation. Since we know that ∼ is the union of all team bisimulation
relations (as well as the greatest post-fixed point of F), it follows that F (∼) ⊆∼.

Now we want to show that ∼ is the greatest fixed point. Assume T is another
fixed point of F , i.e. T = F (T ). Then, in particular, we have that T ⊆ F (T ),
i.e., T is a team bisimulation by Proposition 9.1, point 2, hence T ⊆∼

There is a natural iterative way of approximating ∼ by means of a descending
(actually, initially descending, and then constant from a certain point onwards)
chain of relations indexed on the natural numbers. We will see that there is a
strict relation between this chain of relations and the functional F above.
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Definition 9.2. Given a BPP net N = (S,A, T ), for each natural i ∈ N, we
define the binary relation ∼i over S as follows:

• ∼0= S × S.

• s1 ∼i+1 s2 if and only if for all l ∈ A

– ∀m1 such that s1
l−→ m1, ∃m2 such that s2

l−→ m2 and m1 ∼⊕i m2

– ∀m2 such that s2
l−→ m2, ∃m1 such that s1

l−→ m1 and m1 ∼⊕i m2

We denote by ∼ω the relation
⋃
i∈N ∼i.

Intuitively, s1 ∼i s2 if and only if the two places are team bisimilar up to
paths of length at most i. Hence, all the places are in the relation ∼0.

Proposition 9.2. For each i ∈ N we have that:

• relation ∼i is an equivalence relation,

• ∼i= F i(S × S)

• ∼i+1⊆∼i

Moreover, ∼ω=
⋂
i∈N ∼i is an equivalence relation.

Hence, we have a non-increasing chain of equivalence relations,

∼0= F 0(S × S) ⊇∼1= F 1(S × S) ⊇ · · · ⊇∼i= F i(S × S) ⊇ · · · ⊇∼ω

with relation ∼ω as its limit. Interestingly, this limit coincides with team
bisimilarity ∼, as proved below. Some auxiliary lemmata are needed.

Lemma 9.1. For each BPP net N = (S,A, T ), it holds that there exists an
index k such that ∼k=∼k+1= · · · =∼ω, i.e., the chain is initially decreasing, but
becomes constant from index k onwards.

Proof. Since the BPP net is finite, the initial relation ∼0= S×S is finite as well.
Therefore, it is not possible that ∼i= F i(S×S) ⊃∼i+1 for all i ∈ N. This means
that there exists an index k such that ∼k= F k(S × S) = F (F k(S × S)) =∼k+1.
Hence ∼k=∼j for each j > k, and so ∼k=∼ω.

Theorem 9.2. For each BPP net N = (S,A, T ), it holds that ∼=∼ω.

Proof. We prove first that ∼⊆∼i for all i by induction on i. Indeed, ∼⊆∼0 (the
universal relation); moreover, assuming ∼⊆i, by monotonicity of F and the fact
that ∼ is a fixed point for F , we get ∼= F (∼) ⊆ F (∼i) =∼i+1. Hence ∼⊆∼ω.

Now we prove that ∼ω⊆∼, by showing that relation ∼ω is a team bisimulation.
Indeed by Lemma 9.1, we know that ∼ω=∼k for some k ∈ N. As ∼k+1= F (∼k
) =∼k, we have that ∼k, thanks to Definition 9.2, satisfies Definition 9.1 on the
preceding page, so that, by Preposition 9.1 on the previous page, point 2, ∼k is
a team bisimulation.

The characterization of ∼ as the limit of the non-increasing chain of relations
∼i offers an easy algorithm to compute team bisimilarity ∼ over BPP nets; just
start from the universal relation R0 = S×S and then iteratively apply functional
F ; when Ri+1 = F (Ri) = Ri, then stop and take Ri as the team bisimilarity
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relation. The aforementioned approach is the same followed for computing the
bisimulation equivalence on finite labeled transition system, outlined in Listing 1
on page 8. Of course, this algorithm always terminates by the argument in
Lemma 9.1 on the previous page: since S is finite, we are sure that an index
k exists such that Rk+1 = F (Rk) = Rk. As I said before the algorithm is the
same as the one in Listing 1 on page 8.

9.1 Implementation

For computing the team bisimulation equivalence through the fixed point ap-
proach on BPP nets, I have followed the same procedure for computing the
bisimulation equivalence on labeled transition systems, through the fixed point
approach, outlined in Section 6.1 on page 25. The only change that I have done
is to take into account the additive closure R⊕. In the following, I will describe
the algorithm outlined in Section 6.1 on page 25 with the changes done for taking
into account the additive closure R⊕.

Given a BPP net N = (S,A, T ), the implementation simply, starts with the
relation R = S × S, where R is the Cartesian product of the state S with itself.
Then iterates until -under certain conditions- no other couples (s1, s2) ∈ R can
be removed. The conditions that the couples (s1, s2) ∈ R must satisfy are the
ones defined in Definition 8.5 on page 44.

I have implemented the relation R = S × S -and the subsets of R- as a List
of couples (s1, s2) ∈ R where s1 ∈ S and s2 ∈ S. The BPP net in this algorithm
is implemented as a class that has one, fundamental, field: a vector v that takes
in input a place s ∈ S and an action a ∈ A and returns the list of multisets that
are reachable from the place s, when s does the action a. The vector v takes in
input a place s and an action a as numbers so the class used for implementing
the BPP nets, has two additional fields that are two maps. The first map takes
in input a place s ∈ S and gives in output a number associated to the state s,
the second map takes in input an action a ∈ A, and gives in output a number
associated to the action a.

9.1.1 Detailed steps

For computing the team bisimulation equivalence the algorithm initially sets R
to S × S. R is, at the beginning, the list of couples (s1, s2) -with s1 ∈ S and
s2 ∈ S- of length n2 where n = |S|.

For each couple (s1, s2) ∈ R the algorithm does the following: for each label
a ∈ A:

1. Builds a list l1 of multisets. The list l1 contains all the multisets that
the place s1 reaches by doing an action a. The list l1 is built by means of
vector v described above. The vector v takes in input the place s1 and the
action a and returns l1

2. Builds a list l2 of multisets. The list l2 contains all the multisets that
the place s2 reaches by doing an action a. The list l2 is built by means of
vector v described above. The vector v takes in input the place s2 and the
action a and returns l2
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3. For each multiset m1 ∈ l1, the algorithm checks if exists a multiset
m2 ∈ l2, such that (m1,m2) ∈ R⊕. If (m1,m2) ∈ R⊕ return true else
false.

4. Similarly to the previous point, for each multiset m2 ∈ l2, the algorithm
checks if exists a multiset m1 ∈ l1, such that (m1,m2) ∈ R⊕. If (m1,m2) ∈
R⊕ return true else false.

Then if for all a ∈ A both the checks in point 3 and 4 of the list above
returns true, the the couple (s1, s2) can stay in the relation R, otherwise it will
be removed.

When there is no more couples to be removed from R the algorithm ends
and returns the relation R, that contains the team bisimulation equivalence ∼.

Given two multisets m1 and m2, for checking if (m1,m2) ∈ R⊕, I have
implemented the Algorithm described in Section 8.3.1 on page 41.

For checking if a couple (s1, s2) belongs to R or not in O(1) time, as required
by the Algorithm described in Section 8.3.1 on page 41, I have implemented
a matrix m. The matrix m takes in input a couple of places (s1, s2), with
s1 ∈ S and s2 ∈ S, and returns true if (s1, s2) ∈ R, false otherwise. The matrix
m corresponds to the matrix A in the pseudo-code available in Listing 11 on
page 42.

When the algorithm finishes to scan the relation R, divides the relation R
in two relations: R1 and R2. R1 is the set of couples that satisfies the point
3 and 4 of the list above, R2 is the set of couples that does not satisfies the
point 3 and 4 of the list above. The couples (s1, s2) ∈ R2 will be marked as false
in the matrix m described in the previous paragraph.

I have implemented the steps described above through the Scala programming
language. The code is available at [Bar21].

9.1.2 Time complexity

The discussion about the time complexity of computing the team bisimulation
equivalence through the fixed point approach on BPP nets, is similar the discus-
sion done for computing the bisimulation equivalence on LTSs through the fixed
point approach, done in Section 6.1.2 on page 26. The only difference is that we
have to take into account the cost for checking if (m1,m2) ∈ R⊕, where m1 and
m2 are two multisets and R is an equivalence relation.

The steps are the following:

1. Initially the length of the relation R = S × S is equal to n2 because
n = |S|. In the worst case, the algorithm, at every step removes one couple
(s1, s2) ∈ R at a time so this loop -that we call loop1- costs in the worst
case O(n2).

2. At every step of loop1 we we have to iterate over all the couples (s1, s2)
of the relation R, for deciding if (s1, s2) can stay in R or not. This loop
-that we call loop2- also costs in the worst case O(n2).

3. For deciding if a couple (s1, s2) can stay in R, we have to build the lists
l1 and l2 described in Section 9.1.1 on the preceding page, for every
a ∈ A. Next, for every multiset m1 ∈ l1, we have to search if exists
in l2 a multiset m2 ∈ l2 such that (m1,m2) ∈ R⊕. That is, given an
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action a ∈ A, for every multiset m′1 such that s1
a−→ m′1 exists a multiset

m′2 such that s2
a−→ m′2 and (m1,m2) ∈ R⊕. The cost of checking if

(m1,m2) ∈ R⊕ is O(k2) where k is the size of m1 and m2 because we have
employed the Algorithm outlined in Section 8.3.1 on page 41 for checking
if (m1,m2) ∈ R⊕. If we say that the length of the list l1 of multisets is i
and i can be at most m, where m is the number of transitions, for every
multiset m1 ∈ l1 we have to iterate over all the multiset m2 ∈ l2. This
costs O(i · j · p2) where j is the length of the list of multiset l2 and p is
the least number such that |t•| ≤ p for all the transition t ∈ T .

So if i ≤ m and j ≤ m where i and j are respectively the length of l1
and l2, and p is the least number such that |t•| ≤ p for all the transition
t ∈ T , deciding if a couple of places (s1, s2) can stay in R costs O(m2 · p2),
because for every multiset m1 that belongs to l1 we have to iterate over
all the multiset m2 that belongs to l2 and then check if (m1,m2) ∈ R⊕.
I have omitted the case when s2 moves first, that is the case when for
every multisets m2 that belongs to l2 we have to search if exists a suitable
multisets m1 that belongs to l1 and then cheking if (m1,m2) ∈ R⊕, but
it is symmetric to the case when s1 moves first, hence costs O(m2 · p2).

Considering that the length of l1 can be at most m where m is the number
of transitions f the BPP net is a pessimistic reasoning because l1 represents
the transitions that -given a place s1 ∈ S and an action a ∈ A- starts from
s1 and by doing an action a end in a multiset m′ ∈M (S). The length of
l1 is certainly less than m. Same for the list l2.

In a random BPP net we may consider that the length of l1 and l2 be
at most m

n , where n is the number of places of the BPP net, because the
transitions that start from a random state q -given an action a- if the
transitions are set randomly are seldom m. If the transitions that start
from a state q are m it means that all the transitions in the BPP net start
from q. So if i ≤ m

n and j ≤ m
n , where i and j are the length of l1 and l2

respectively we have that the cost of deciding if a couple (s1, s2) can stay in
R is O((mn )2 · p2), where p is the least number such that |t•| ≤ p for all the
transition t ∈ T . The factor p2 is the cost of checking if (m1,m2) ∈ R⊕,
through the algorithm described in Section 8.3.1 on page 41.

For what we have said above the time complexity of the implementation that
I have done for computing the time bisimulation equivalence through the fixed
point approach is:

1. O(n2 ·n2 · 2(mn )2 · p2) = O(n2 ·m2 · p2) if we consider, the length of l1 and
l2 be at most m

n .

2. Otherwise if we consider the length of l1 and l2 be at most O(m) the
time complexity is O(n2 · n2 ·m2 · p2).

10 K&S’s algorithm for team bisimilarity

In this section, I explain the steps followed in order to implement the Kannellakis
and Smolka’s algorithm for computing team bisimilarity over places through the
Scala programming language.
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For the purpose of this Section we can think of a partition as a list of blocks,
and of a block as a list of places.

I have implemented a BPP net by means of a vector v, that takes in input
a place s and an action a and gives in output the list of multisets reachable
from s, when s does an action a. That is, when v takes in input a place s and
an action a gives in output all the multiset m ∈M (S) such that (s, a,m) ∈ T ,
where T is the set of transition of the BPP net on which we have to compute
the team bisimulation equivalence. The algorithm also uses a vector indexes of
length n, where n is the number of places of the BPP net. The vector indexes
takes in input a place p and return the index of the block B, that contains p in
the partition. That is, given a partition π = {B1, . . . , Bi, . . . , Bn } and a place
p ∈ Bi, indexes(p) returns i. The program also uses a variable numBlocks that
records the number of Blocks in the partition. In addition the BPP net has two
fields that i call map1 and map2; map1 maps each place s ∈ S to an ID, map2 maps
each label a ∈ A to an ID. The IDs are represented as natural numbers. These
map are necessary because the vectors v and numBlocks takes their input as a
natural number.

10.1 Implementation

Given a BPP net (S,A, T ), the algorithm starts with a partition π that contains
a unique block B. B contains all places of the BPP net, that is B is equal to
S. Next the algorithm scans one at a time each block B in the partition π and
does the following: for each a ∈ A:

1. Create two empty set B1 and B2

2. Select a place s ∈ B and by means of the vector v get the list of all
multisets reachable from s when s does an action a, this list is called l1.
The vector v takes in input s and a and gives in output l1.

3. For each multiset mi that belongs to l1 create a vector veci of length
numBlocks + 1 with all elements of veci set to 0, that is

∀k such that 0 ≤ k ≤ numBlocks + 1we have that veci(k) = 0

The vector veci has length numBlocks + 1 because the vectors in Scala
starts at index 0. The element veci(j) contains the number of places/tokens
of mi that belong to the block j. In my implementation the blocks
are numbered starting from 1, this is the reason why veci has length
numBlocks + 1. After the vector veci has been created, update veci in
the following way:

for each p ∈ dom(mi) : veci(indexes(p)) = veci(indexes(p)) + mi(p)

Given a place p ∈ S, index(p) returns the number i of the block such that
p ∈ Bi.
When all the veci has been built from all the multisets mi ∈ l1, put all the
veci in a list called markBlocks. The list markBlocks is a list of vector of
the same length, that is for all i and j such that veci, vecj ∈ markBlocks,
we have that |veci| = |vecj| = numBlocks + 1. After markBlocks has been
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created, sort markBlocks by lexicographic order. That is, given two vector
veci = ei1 , . . . , eik and vecj = ej1 , . . . , ejk , let l the first position where
veci and vecj differ, we say that veci < vecj if ond only if: eil < ejl .
After the list markBlocks has been sorted, remove the duplicates from it.

4. For each place p ∈ B create markBlockp in the same way as markBlocks
has been created in the two previous points.

5. For all p ∈ B, if markBlocks is equal to markBlockp, add p to the set B1,
otherwise add p to the set B2.

6. If B2 is not empty replace B with B1 and B2 in the partition P , and
update numBlocks with numBlocks + 1 and for all the places that belong
to B2, update the vector indexes in this way:

∀place s ∈ B2 indexes(s) = numBlocks

If B2 is empty go ahead with the next label -indexed with a-. If there is no
more label to check go ahead with the next block and repeat the procedure
in this list starting over to scan all the labels. If there is no more block to
check stop and give in output the partition π that now contains the team
bisimulation equivalence ∼.

The code is available at [Bar21].

10.2 Time complexity

For defining the time complexity of computing the team bisimulation equivalence
on a BPP net (S,A, T ) through the implementation of Kannellakis and Smolka’s
algorithm defined in Section 10.1 on the previous page, we have to do the
following considerations:

1. The number of blocks that can be created is at most n, where n is the
number of places, because a block composed of one place cannot be further
split.

2. When we look for a block to be split, in the worst case we have to look
for all the blocks in the partition, so we have to build the list of vectors
markBlocks, defined in point 3 of the previous list, for each place s ∈ S.
In order to build the vectors markBlocks for each place s ∈ S we have
to scan all transitions, and this takes O(m) and then for each multiset
m1, we have to build a vector, like the vectors veci in point 3 of the
previous list, that records the number of places/tokens of m1 that belongs
to each block of the partition and this takes O(n), because the number of
places/tokens in a multiset can be at most n. Next, we have to sort the
vectors markBlocks and deletes the duplicates, this depends on the number
of the vectors markBlocks and on the length of each vector markBlocks.
Moreover, in order to decide if veci < vecj , where veci and vecj are two
vectors that belongs to markBlocks we have to scan veci and vecj and this
takes O(n), because the number of blocks can be at most n, where n is
the number of places. Let α the number of vectors markBlocks and β the
maximum length among the vectors markBlocks. We have that the time
complexity of computing the team bisimulation equivalence through the
implementation in this section is O(n · ((m · n) + α · β log β · n)).
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11 Conclusions and future work

In this thesis, I have implemented three algorithms for computing bisimulation
equivalence on labeled transition system and two algorithms for computing team
bisimulation equivalence on BPP nets. The language that I have used is Scala
[OSV16].

As future work, there is the possibility to lower the time complexity of com-
puting the team bisimulation, by adapting the algorithm described in Section 5
on page 14.
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