Alma Mater Studiorum • University of Bologna

SCHOOL OF SCIENCE

Master's Degree in Computer Science

Implementation of Algorithms for Bisimulation Equivalence

Supervisor:	Author:
Prof.	ANDREA BARONI
ROBERTO GORRIERI	

Acknowledgements

I would like to express my very great appreciation to Professor Roberto Gorrieri, for helping me in writing this thesis.

I wish to thank my parents for their support and encouragement throughout my years as a student at the University of Bologna.

Contents

1 Introduction 4
2 Labeled transition systems and bisimulation 4
3 Bisimulation as a fixed point 5
3.1 Partially ordered set 5
3.2 Least upper bound 6
3.3 Greatest lower bound 6
3.4 Lattice 6
3.5 Monotonic functions and fixed points 6
3.6 How to compute fixed points 7
3.7 Computing bisimulation equivalence 7
4 Kannellakis and Smolka's algorithm 9
4.1 Preliminaries 9
4.2 The algorithm 10
5 Valmari's algorithm 14
5.1 Refinable data structure 14
5.2 Methods implemented for the refinable data structure 15
5.3 The algorithm 17
5.3.1 Update procedure 21
5.3.2 Main Procedure 23
6 Implementation 25
6.1 Implementation of fixed point approach 25
6.1.1 Detailed steps 25
6.1.2 Time complexity 26
6.2 Implementation of Kannellakis and Smolka 27
6.2.1 Schema of the implementation 31
6.2.2 Detailed steps 31
6.2.3 Note on time complexity 32
6.3 Implementation of Valmari's algorithm 33
7 Results 33
7.1 First test 34
$7.2 \quad$ Second test 36
8 BPP nets and team bisimilarity 37
8.1 Definitions. 37
8.2 Additive closure 40
8.3 Algorithms for checking the additive closure 41
8.3.1 First algorithm 41
8.3.2 Second algorithm 43
8.4 Team bisimulation on places 44
8.5 Team bisimilarity over markings 46
9 Team bisimilarity over places as a fixed point 46
9.1 Implementation 49
9.1.1 Detailed steps. 49
9.1.2 Time complexity 50
10 K\&S's algorithm for team bisimilarity 51
10.1 Implementation 52
10.2 Time complexity 53
11 Conclusions and future work 54

1 Introduction

In this thesis, I describe three algorithms, and their implementation using the Scala programming language [OSV16, for computing strong bisimulation equivalence on finite labeled transition systems, LTSs for short. Moreover, I introduce the BPP nets, and a bisimulation-based, behavioral equivalence for BPP nets, called team bisimulation equivalence. I have also implemented two algorithms for computing the team bisimulation equivalence on BPP nets.

This thesis is organized as follow. Section 2 introduces the basic definition about labeled transition systems, and the bisimulation equivalence. Section 3 on the next page describes the first algorithm for computing the bisimulation equivalence on LTSs. In particular, it outlines the theory about the fixed points, and how to express the bisimulation equivalence as a fixed point of a monotone functional F. Section 4 on page 9 describes the second algorithm for computing the bisimulation equivalence on LTSs by means of successive refinements of an initial Partition. Section 5 on page 14 describes a data structure called Refinable data structure used for implementing the third algorithm. This is the quickest algorithm known for computing the bisimulation equivalence. Section 6 on page 25 describes the implementation that I have done through the Scala programming language of the three algorithms. In Section 7 on page 33 I do a comparison between the second algorithm and the third algorithm. Section 8 on page 37 describes the BPP nets and an equivalence relation on BPP nets called team bisimulation equivalence. Section 9 on page 46 describes how to compute the team bisimulation equivalence on BPP nets through the fixed point approach, also I outline the implementation through the Scala Programming Language. Section 10 on page 51 describes how to compute team bisimulation equivalence adapting the second algorithm for computing bisimulation equivalence on LTSs. Also I outline the implementation through the Scala Programming Language.

2 Labeled transition systems and bisimulation

The definition of LTS is the following:
Definition 2.1 (Labeled transition system). A labeled transition system (LTS for short) is a triple $T S=(Q, A, \rightarrow)$ where:

- Q is the nonempty, countable set of states;
- A is the countable set of labels (or actions);
- $\rightarrow \subseteq Q \times A \times Q$ is the transition relation.

A finite labeled transition system is a labeled transition system with a finite set of states and finitely many transitions. Transition systems are introduced as a suitable semantic model of reactive systems, see GV15 for more details. For example a coffee machine can be easily described by the LTS in Figure 1 on the next page, where

$$
\begin{aligned}
Q & =\{q 1, q 2\} \\
A & =\{\text { coin, coffee }\} \\
\rightarrow & =\{(q 1, \text { coin }, q 2),(q 2, \text { coffee }, q 1)\}
\end{aligned}
$$

Figure 1: Coffee Machine

Figure 2: An LTS with three states

Definition 2.2 (Bisimulation). Let $T S=(Q, A, \rightarrow)$ be a transition system. A bisimulation is a relation $R \subseteq Q \times Q$ such that if $\left(q_{1}, q_{2}\right) \in R$ then for all $\mu \in A$

- $\forall q_{1}^{\prime}$ such that $q_{1} \xrightarrow{\mu} q_{1}^{\prime}, \exists q_{2}^{\prime}$ such that $q_{2} \xrightarrow{\mu} q_{2}^{\prime}$ and $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in R$
- $\forall q_{2}^{\prime}$ such that $q_{2} \xrightarrow{\mu} q_{2}^{\prime}, \exists q_{1}^{\prime}$ such that $q_{1} \xrightarrow{\mu} q_{1}^{\prime}$ and $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in R$

Two states q and q^{\prime} are bisimilar (or bisimulation equivalent), denoted $q \sim q^{\prime}$, if there exists a bisimulation R such that $\left(q, q^{\prime}\right) \in R$.

For example the relation $R=\left\{\left(q, q^{\prime}\right),\left(q, q^{\prime \prime}\right)\right\}$ is a bisimulation for the LTS in Figure 2. Indeed if we take the first pair $\left(q, q^{\prime}\right)$ we can see that $q \xrightarrow{a} q$ and $q^{\prime} \xrightarrow{a} q^{\prime \prime}$ and $\left(q, q^{\prime \prime}\right) \in R$, at the same time we see that $q^{\prime} \xrightarrow{a} q^{\prime \prime}$ and q replies with $q \xrightarrow{a} q$ and $\left(q, q^{\prime \prime}\right) \in R$. Moreover for the second pair $\left(q, q^{\prime \prime}\right)$ it is true that $q \xrightarrow{a} q$ and $q^{\prime \prime} \xrightarrow{a} q^{\prime \prime}$ with $\left(q, q^{\prime \prime}\right) \in R$ (the case where $q^{\prime \prime}$ moves first is symmetric), so R is a bisimulation.

The goal of this article is to show three algorithms for computing \sim defined as follow:

$$
\begin{equation*}
\sim=\bigcup\{R \in Q \times Q \mid R \text { is a bisimulation }\} \tag{1}
\end{equation*}
$$

Proposition 2.1. ~ is an equivalence relation.

3 Bisimulation as a fixed point

It is possible to see the bisimulation equivalence \sim as the greatest fixed point of a suitable function between relations. Before diving into the algorithm, I will explain some theory behind fixed points. The material in this section is taken from Ace+07, Chapter 4].

3.1 Partially ordered set

A partially ordered set or poset is a pair (D, \leq), where D is a set and $\leq \subseteq \mathrm{D} \times \mathrm{D}$ is a relation:

- reflexive: $d \leq d \forall d \in D$
- antisymmetric : $d \leq e \wedge e \leq d \Longrightarrow d=e \forall d, e \in D$
- transitive: $d \leq e \wedge e \leq f \Longrightarrow d \leq f \forall d, e, f \in D$

A poset (D, \leq) is totally ordered if: $(d \leq e) \vee(e \leq d) \forall d, e \in D$. As an example of poset we can take (\mathbb{N}, \leq) namely the set of natural number with the usual ordering \leq. Also the power set together with inclusion relation $\left(2^{S}, \subseteq\right)$ is an example of poset. Let us now introduce two definitions.

3.2 Least upper bound

Let (D, \leq) a poset and X a subset of D .

- $d \in D$ is an upper bound for X if and only if $x \leq d \forall x \in X$.
- d is sup (or Least upper bound) for X, usually written in its contracted form $\bigcup X$, if and only if:
- d is upper bound for X, and
$-d \leq d^{\prime} \forall d^{\prime} \in D$ that is upper bound for X .

3.3 Greatest lower bound

- $d \in D$ is a lower bound for X if and only if $d \leq x \forall x \in X$.
- d is \inf (or greatest lower bound) for X , usually written in its contracted form $\bigcap \mathrm{X}$, if and only if:
-d is lower bound for X , and
$-d^{\prime} \leq d \forall d^{\prime} \in D$ that is lower bound for X .

3.4 Lattice

A poset (D, \leq) is a lattice iff $\forall d, e \in D$ there are both the $\sup \bigcup\{d, e\}$ and the $\inf \bigcap\{d, e\}$.

A poset is called a complete lattice iff there are both the sup $\bigcup X$ and the $\inf \bigcap X$ for every subset X of D.
Remark 3.1. A complete lattice has a minimal element \perp (bottom) given by $\bigcap \mathrm{D}$ (greatest lower bound of D) and a maximal element T (top) given by $\cup \mathrm{D}$ (least upper bound of D)

3.5 Monotonic functions and fixed points

Given a poset (D, \leq), a function $f: D \rightarrow D$ is monotonic if and only if:

$$
d \leq d^{\prime} \Longrightarrow f(d) \leq f\left(d^{\prime}\right) \forall d, d^{\prime} \in D
$$

An element d is a fixed point if and only if $d=f(d)$, a post-fixed point if and only if $d \leq f(d)$ and a pre-fixed point if and only if $f(d) \leq d$.

Theorem 3.1 (Knaster 1928-Tarski 1955). Let (D, \leq) be a complete lattice and $f: D \rightarrow D$ a monotonic function. The function f has a greatest fixed point Zmax and a least fixed point Zmin defined as follow:

$$
\begin{aligned}
Z \max & =\bigcup\{x \in D \mid x \leq f(x)\} \\
Z \min & =\bigcap\{x \in D \mid f(x) \leq x\}
\end{aligned}
$$

3.6 How to compute fixed points

Let $f: D \rightarrow D$ be a function on a set D. For every $n \in \mathbb{N}$, we define $f^{n}(d)$ for every $d \in D$ like the following:

$$
\begin{aligned}
f^{0}(d) & =d \\
f^{n+1}(d) & =f\left(f^{n}(d)\right)
\end{aligned}
$$

Theorem 3.2. Let (D, \leq) be a finite complete lattice and $f: D \rightarrow D$ a monotonic function. Then we get the least fixed point as:

$$
Z \min =f^{m}(\perp) \text { for some } m \in \mathbb{N}
$$

while the greatest fixed point as:

$$
Z \max =f^{m}(\top) \text { for some } m \in \mathbb{N}
$$

where \top and \perp are both defined in Section 3.4.

3.7 Computing bisimulation equivalence

Now that we have seen some theory about fixed point, it is possible to think to \sim as a greatest fixed point of a suitable function F that transforms binary relations R on states. We will use the algorithm outlined in section 3.6 to compute the relation \sim.
Remark 3.2. $2^{Q \times Q}$, that is the set of all binary relations on Q is a complete lattice (finite if Q is finite) with $\mathrm{T}=Q \times Q$

Let us now define F :
Definition 3.1. Given an LTS $T S=(Q, A, \rightarrow)$, the functional $F: \mathcal{P}(Q \times Q) \rightarrow$ $\mathcal{P}(Q \times Q)$ (i.e., a transformer of binary relations over Q) is defined as follow. If $R \subseteq Q \times Q$, then $\left(q_{1}, q_{2}\right) \in F(R)$ if and only if for all $\mu \in A$:

- $\forall q_{1}^{\prime}$ such that $q_{1} \xrightarrow{\mu} q_{1}^{\prime}, \exists q_{2}^{\prime}$ such that $q_{2} \xrightarrow{\mu} q_{2}^{\prime}$ and $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in R$
- $\forall q_{2}^{\prime}$ such that $q_{2} \xrightarrow{\mu} q_{2}^{\prime}, \exists q_{1}^{\prime}$ such that $q_{1} \xrightarrow{\mu} q_{1}^{\prime}$ and $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in R$

Proposition 3.1. For any LTS $T S=(Q, A, \rightarrow)$, we have that:

1. The functional F is monotone, i.e. if $R_{1} \subseteq R_{2}$ then $F\left(R_{1}\right) \subseteq F\left(R_{2}\right)$.
2. Relation $R \subseteq Q \times Q$ is a bisimulation (see Definition 2.2 at page5) if and only if $R \subseteq F(R)$.

Theorem 3.3. \sim is the greatest fixed point of F.

```
X := Q\timesQ
Y := F(X)
while X }\not=\textrm{Y}\mathrm{ do {
    X:=Y
    Y:=F(X)
}
```

Listing 1: Pseudocode for computing bisimulation equivalence

Proof. F is monotone so for the Knaster-Tarski theorem (descibed in section 3.5) we have that $Z \max =\bigcup\{R \mid R \subseteq F(R)\}$, but since R is a bisimulation if and only if $R \subseteq F(R)$ for the point 2 of Proposition 3.1 we have that:

$$
Z \max =\bigcup\{R \mid R \text { is a bisimulation }\}
$$

so we have proved that $Z \max =\sim$ where \sim is defined in equation 1 .
From Theorem 3.3 on the preceding page, and the technique outlined in Section 3.6 on the previous page we can derive the algorithm in Listing 1 that compute bisimulation equivalence; that is the greatest fixed point of F .

In order to prove the correctness of the algorithm in Listing 1 let us define \sim by means of stratified bisimulation relations, see AIS11 for more details.

Definition 3.2. The stratified bisimulation relations $\sim_{k} \subseteq Q \times Q$ for $k \in \mathbb{N}$ are defined as follow:

- $E \sim_{0} F$ for all $E, F \in Q$
- $E \sim_{k+1} F$ iff for each $a \in A$: if $E \xrightarrow{a} E^{\prime}$ then there is $F^{\prime} \in Q$ such that $F \xrightarrow{a} F^{\prime}$ and $E^{\prime} \sim_{k} F^{\prime}$; and if $F \xrightarrow{a} F^{\prime}$ then there is $E^{\prime} \in \operatorname{Pr}$ such that $E \xrightarrow{a} E^{\prime}$ and $E^{\prime} \sim_{k} F^{\prime}$.

Given a labelled transition system $\{Q, A, \rightarrow\}$, let $\operatorname{next}(E, a)$ be:

$$
\operatorname{next}(E, a)=\left\{E^{\prime} \in Q \mid E \xrightarrow{a} E^{\prime}\right\}
$$

for $E \in Q$ and $a \in A$. Let also $\operatorname{next}(E, *)$ be:

$$
\operatorname{next}(E, *)=\bigcup_{a \in A} \operatorname{next}(E, a)
$$

An LTS is image-finite if and only if the set $\operatorname{next}(\mathrm{E}, \mathrm{a})$ is finite for every $E \in Q$ and $a \in A$. The following lemma is a standard one.

Lemma 3.1. Assume that (Q, A, \rightarrow) is an image-finite LTS and let $E, F \in Q$. Then $E \sim F$ if and only if $E \sim_{k} F$ for all $k \in \mathbb{N}$.

Given a finite state labeled transition system $T S=(Q, A, \rightarrow)$, it is easy to see from the algorithm in Listing 1 that the i-th application of functional F (defined in Definition 3.1 on the previous page, $F^{i}\left(\ldots F^{1}\left(F^{0}(Q \times Q)\right) \ldots\right)$ in symbol F^{i} corresponds to \sim_{i}, where \sim_{i} is defined in Definition 3.2 indeed we have:

$$
\begin{aligned}
\sim_{0} & =F^{0}(Q \times Q)=Q \times Q \\
\sim_{k+1} & =F^{k+1}(Q \times Q)=F\left(F^{k}(Q \times Q)\right)=F\left(\sim_{k}\right)
\end{aligned}
$$

Figure 3: Example for explaining fixed point algorithm

Given a finite LTS $T S=(Q, A, \rightarrow)$, the algorithm in Listing 1 on the previous page, applies the functional F to an initial relation $R=Q \times Q$, until it reaches the greatest fixed point, that is F will eventually reach a $k \in \mathbb{N}$ such that

$$
F^{k}(Q \times Q)=F^{k+1}(Q \times Q)=\sim_{k+1}=\sim_{k}=\sim
$$

For checking the termination's condition of while in Listing 1 on the preceding page, it is enough to see that no couples have been removed from the application of the functional F. That is, if $X=F^{k}(Q)$ it is equal to $Y=F^{k+1}(Q)=F(X)$ for a $k \in \mathbb{N}$ then X is the greatest fixed point of the functional F. In fact the relation that is given in output from the application of the functional F is a non-increasing chain of sets, if you don't remove couples then you must stop.

As an example of application of the algorithm in Listing 1, consider the LTS in Figure 3. We have that:

$$
\begin{aligned}
Q= & \left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\} \\
F^{0}(Q \times Q)= & Q \times Q \\
F^{1}(Q \times Q)= & \left\{\left(q_{0}, q_{1}\right),\left(q_{0}, q_{2}\right),\left(q_{0}, q_{3}\right),\left(q_{1}, q_{2}\right),\left(q_{1}, q_{3}\right),\left(q_{2}, q_{3}\right)\right\} \cup \\
& \cup\left\{\left(q_{1}, q_{0}\right),\left(q_{2}, q_{0}\right),\left(q_{3}, q_{0}\right),\left(q_{2}, q_{1}\right),\left(q_{3}, q_{1}\right),\left(q_{3}, q_{2}\right)\right\} \cup \\
& \cup\left\{\left(q_{0}, q_{0}\right),\left(q_{1}, q_{1}\right),\left(q_{2}, q_{2}\right)\left(q_{3}, q_{3}\right),\left(q_{4}, q_{4}\right)\right\} \\
F^{2}(Q \times Q)= & \left\{\left(q_{0}, q_{1}\right),\left(q_{0}, q_{2}\right),\left(q_{1}, q_{2}\right)\right\} \cup \\
& \cup\left\{\left(q_{1}, q_{0}\right),\left(q_{2}, q_{0}\right),\left(q_{2}, q_{1}\right)\right\} \cup \\
& \cup\left\{\left(q_{0}, q_{0}\right),\left(q_{1}, q_{1}\right),\left(q_{2}, q_{2}\right)\left(q_{3}, q_{3}\right),\left(q_{4}, q_{4}\right)\right\} \\
F^{3}(Q \times Q)= & \left\{\left(q_{0}, q_{1}\right),\left(q_{1}, q_{0}\right)\right\} \cup \\
& \cup\left\{\left(q_{0}, q_{0}\right),\left(q_{1}, q_{1}\right),\left(q_{2}, q_{2}\right)\left(q_{3}, q_{3}\right),\left(q_{4}, q_{4}\right)\right\}
\end{aligned}
$$

Since the time complexity of computing the bisimulation equivalence through the fixed point approach relies heavily on the way the fixed point approach is implemented, the discussion about the complexity is done in the Section 6.1 on page 25. In the aforementioned Section I explain how I have implemented, by means of the programming language Scala, the algorithm for computing the bisimulation equivalence through the fixed point approach.

4 Kannellakis and Smolka's algorithm

The material for introducing the Kannellakis and Smolka's algorithm in this section is taken from AIS11], from page 8 to page 13. The original article by Kannellakis and Smolka is available at KS90.

4.1 Preliminaries

Definition 4.1. Let $T S=(Q, A, \rightarrow)$ be a finite labeled transition system. A partition is a set of mutually disjoint sets of elements of Q. Let π be a partition,

Figure 4: Splitter
in symbols, $\pi=\left\{B_{1}, \ldots, B_{n}\right\}$ where each B_{i} is a set, called block, of elements of Q. We have that

- $B_{i} \cap B_{j}=\emptyset$ for each $1 \leq i<j \leq n$
- $\bigcup_{i=1}^{n} B_{i}=Q$

A block is a set of bisimilar states (or processes).
Suppose $P=\{1,2,3,4,5\}$, we have that:

- $\{\{1,3\},\{4\},\{2,5\}\}$ is a partition of P.
- $\{\{1,3\},\{3,4\},\{2,5\}\}$ is not a partition of P.

Definition 4.2 (Splitter). A block B_{j} is a splitter for a block B_{i} if there is some states in B_{i} that afford an a-labeled transition that ends in B_{j} and other states in B_{i} that cannot do an a-labeled transition that ends in B_{j}. Formally a block B_{j} is a splitter for a block B_{i} if, given an action $a \in A$, we can divide B_{i} in two non empty set B_{i}^{1} and B_{i}^{2} :

$$
\begin{aligned}
& B_{i}^{1}=\left\{s \mid s \in B_{i} \text { and } s \xrightarrow{a} s^{\prime}, \quad \text { for some } s^{\prime} \in B_{j}\right\} \text { and } \\
& B_{i}^{2}=B_{i} \backslash B_{1}^{i}
\end{aligned}
$$

For example in the Figure 4 we have that block B_{j}, given an action $a \in A$, is a splitter for block B_{i}.

So we can rewrite

$$
\begin{aligned}
\pi & =\left\{B_{1}, \ldots, B_{i}, \ldots, B_{n}\right\} \text { with } \\
\pi^{\prime} & =\left\{B_{1}, \ldots, B_{i}^{1}, B_{i}^{2}, \ldots, B_{n}\right\}
\end{aligned}
$$

The partition π^{\prime} is a refinement of the partition π, indeed for every block B_{1} in π^{\prime} there is a block B_{2} in π such that $B_{1} \subseteq B_{2}$.

4.2 The algorithm

The algorithm by Kannellakis and Smolka starts by an initial partition composed of one element that is the set Q and iterates until no further refinement is possible. For example consider the labeled transition system depicted in Figure 5 ,

Figure 5: LTS for explaining the algorithm by Kannellakis and Smolka

Figure 6: An LTS with 11 states and 16 transitions
the initial partition is $\pi_{\text {init }}=\{\operatorname{Pr}\}$ where $\operatorname{Pr}=\left\{s, s_{1}, s_{2}, t, t_{1}\right\}$. The block Pr is a splitter for itself, indeed only some states in Pr afford an a-labeled transition, so we can replace Pr with two sets of states that is, the states that can do an a-labeled transition and the states that cannot. So Pr is replaced by two sets $\operatorname{Pr}^{1}=\{s, t\}$ and $\operatorname{Pr}^{2}=\left\{s_{1}, s_{2}, t\right\}$ and $\pi_{\text {init }}$ becomes $\pi_{\text {init }}^{\prime}$ where $\pi_{\text {init }}^{\prime}=\left\{\operatorname{Pr}^{1}, \operatorname{Pr}^{2}\right\}$. At this point we see that no other refinement is possible so we have finished. When we say that no other refinement is possible in a partition π it means that for every block $B_{1} \in \pi, B_{2} \in \pi, s_{1} \in B_{1}, s_{2} \in B_{1}, s_{1}^{\prime} \in B_{2}$, and $a \in A$ such that $s_{1} \xrightarrow{a} s_{1}^{\prime}$ there is an $s_{2}^{\prime} \in B_{2}$ such that $s_{2} \xrightarrow{a} s_{2}^{\prime}$. As another example for explaining Kannellakis and Smolka's algorithm consider the LTS in Figure 6. The example is taken from AIS11. Let the initial partition associated with this LTS be $\{Q\}$ where

$$
Q=\left\{s_{i}, t_{j} \mid 0 \leq i \leq 4,0 \leq j \leq 5\right\}
$$

The block Q is a splitter for itself. Indeed some states in Q afford b-labelled transitions while others do not. If we split Q by Q with respect to action b we obtain a new partition consisting of the blocks

$$
\left\{s_{1}, t_{1}\right\} \text { and }\left\{s_{i}, t_{j} \mid 0 \leq i \leq 4,0 \leq j \leq 5 \text { with } i, j \neq 1\right\}
$$

Note now that the former block is a splitter for the latter one with respect to action a. Indeed only states s_{0} and t_{0} in that block afford a-labelled transitions that lead to a state in the block $\left\{s_{1}, t_{1}\right\}$. The resulting splitting yields the
partition

$$
\left\{\left\{s_{0}, t_{0}\right\},\left\{s_{1}, t_{1}\right\},\left\{s_{i}, t_{j} \mid 2 \leq i \leq 4,2 \leq j \leq 5\right\}\right\}
$$

The above partition can be refined further. Indeed, some states in the third block have a-labelled transitions leading to states in the first block, but others do not. Therefore the first block is a splitter for the third one with respect to action a. The resulting splitting yields the partition

$$
\left\{\left\{s_{0}, t_{0}\right\},\left\{s_{1}, t_{1}\right\},\left\{s_{3}, s_{4}, t_{2}, t_{4}, t_{5}\right\},\left\{s_{2}, t_{3}\right\}\right\}
$$

We continue by observing that the block $\left\{s_{3}, s_{4}, t_{2}, t_{4}, t_{5}\right\}$ is a splitter for itself with respect to action a. For example $t_{5} \xrightarrow{a} t_{4}$ but the only a-labelled transition from s_{4} is $s_{4} \xrightarrow{a} s_{0}$ from s_{3} is $s_{3} \xrightarrow{a} s_{0}$, from $t_{2} t_{2} \xrightarrow{a} t_{0}$, from t_{4} is $t_{4} \xrightarrow{a} t_{0}$. The resulting splitting yields the partition

$$
\left\{\left\{s_{0}, t_{0}\right\},\left\{s_{1}, t_{1}\right\},\left\{t_{5}\right\},\left\{s_{3}, s_{4}, t_{2}, t_{4}\right\},\left\{s_{2}, t_{3}\right\}\right\}
$$

Now we have that t_{1} by making action b can reach state t_{5} that is in block $\left\{t_{5}\right\}$, whereas s_{1} by making action b can reach only s_{4} that is in block $\left\{s_{3}, s_{4}, t_{2}, t_{4}\right\}$, so we have that Set $\left\{t_{5}\right\}$, is a splitter for block $\left\{s_{1}, t_{1}\right\}$; the partition can be further refined in

$$
\left\{\left\{s_{0}, t_{0}\right\},\left\{t_{1}\right\},\left\{s_{1}\right\},\left\{t_{5}\right\},\left\{s_{3}, s_{4}, t_{2}, t_{4}\right\},\left\{s_{2}, t_{3}\right\}\right\}
$$

Now we have that s_{0} by making action a can reach s_{1} that is in block $\left\{s_{1}\right\}$, whereas t_{0} by making action a cannot reach the block $\left\{s_{1}\right\}$ so we have that the block $\left\{s_{1}\right\}$ is a splitter for the block $\left\{s_{0}, t_{0}\right\}$, the partition can be further refined in

$$
\left\{\left\{s_{0}\right\},\left\{t_{0}\right\},\left\{t_{1}\right\},\left\{s_{1}\right\},\left\{t_{5}\right\},\left\{s_{3}, s_{4}, t_{2}, t_{4}\right\},\left\{s_{2}, t_{3}\right\}\right\}
$$

We can continue by observing that s_{3} and s_{4} by making action a can reach the block $\left\{s_{0}\right\}$ but this is not true for the states t_{2} and t_{4}, so the partition can be further refined in

$$
\left\{\left\{s_{0}\right\},\left\{t_{0}\right\},\left\{t_{1}\right\},\left\{s_{1}\right\},\left\{t_{5}\right\},\left\{s_{3}, s_{4}\right\},\left\{t_{2}, t_{4}\right\},\left\{s_{2}, t_{3}\right\}\right\}
$$

Now we have that s_{2} by making action a can reach the state s_{4} that is in block $\left\{s_{3}, s_{4}\right\}$, whereas t_{3} by making action a can reach only t_{4} that is in block $\left\{t_{2}, t_{4}\right\}$. We have that the block $\left\{s_{3}, s_{4}\right\}$ is a splitter for the block $\left\{s_{2}, t_{3}\right\}$ and the partition becomes

$$
\left\{\left\{s_{0}\right\},\left\{t_{0}\right\},\left\{t_{1}\right\},\left\{s_{1}\right\},\left\{t_{5}\right\},\left\{s_{3}, s_{4}\right\},\left\{t_{2}, t_{4}\right\},\left\{s_{2}\right\},\left\{t_{3}\right\}\right\}
$$

Now we have finished because the partition cannot be further refined.
The pseudo-code for Kannellakis and Smolka's algorithm is given in Listing 3 on the following page. The algorithm uses the function $\operatorname{split}(B, a, \pi)$ described in Listing 2 on the next page, which given a partition π, a block B in π and an action a, splits B with respect to each block in π and action a. For example if we take the LTS in Figure 6 on the preceding page, the call

$$
\operatorname{split}\left(\left\{s_{1}, t_{1}\right\}, b,\left\{\left\{s_{0}, t_{0}\right\},\left\{s_{1}, t_{1}\right\},\left\{t_{5}\right\},\left\{s_{3}, s_{4}, t_{2}, t_{4}\right\},\left\{s_{2}, t_{3}\right\}\right\}\right)
$$

```
function split(B,a,\pi){
    choose some state s\inB
    B},\mp@subsup{B}{2}{\prime}:=
    for each state t\inB do
        if s and t can reach the same set of blocks
        in \pi via a-labelled transitions then
            B
        else
            B2:= B2\cup{t}
    if }\mp@subsup{B}{2}{}\mathrm{ is empty then
        return { 涪}
    else
        return { B , 隹 }
}
```

Listing 2: Pseudo Code for $\operatorname{Split}(\mathrm{B}, \mathrm{a}, \pi)$

```
\pi:={Q}
changed := true
while changed do
    changed := false
    find := false
    for each block }B\in\pi\mathrm{ do
        if find then
        break
        for each action a do
            sort the a-labelled transitions from states in B
            if split(B,a,\pi)={\mp@subsup{B}{1}{},\mp@subsup{B}{2}{}}\not={B} then{
                refine \pi by replacing B with B
                changed := true
                find := true
                break
            }
```

Listing 3: The algorithm by Kannellakis and Smolka in pseudocode

Figure 7: Partition
returns the pair ($\left\{s_{1}\right\},\left\{t_{1}\right\}$) because the only block in the partition that can be reached from s_{1} via b-labeled transition is $\left\{s_{3}, s_{4}, t_{2}, t_{4}\right\}$, whereas t_{1} can also reach the block $\left\{t_{5}\right\}$. The complexity of the algorithm is $O(n m)$ where n is the number of states and m is the number of transitions, indeed the maximum number of blocks that we have to check is n because a block composed of one element cannot be further split. Deciding if a block B can be split or not costs $O(m)$ because we have to scan all the transitions that have the start state that belongs to B . So the complexity is $O(n m)$.

5 Valmari's algorithm

The Valmari's algorithm, described in Val09, by the use of a suitable data structure is able to compute the bisimulation equivalence on a finite label transition system in $O(m \log n)$ time where m is the number of transitions and n is the number of states. In the following I will present this kind of data structure called refinable data structure. Valmari's algorithm is an adaptation of the algorithm proposed by Paige and Tarjan described in PT87. Indeed the algorithm proposed by Paige and Tarjan was defined on labeled transition systems that have the set of labels composed of only one action (see Definition 2.1 on page 4 for the definition of labeled transition system).

5.1 Refinable data structure

The refinable data structure maintains a partition $\left\{A_{1}, \ldots, A_{m}\right\}$ of a set of Items $=\{1, \ldots, n\}$, where n is the size of the set Items, as the one in Figure 7 . the items in our case can be the states or the transitions; that is we will use in the algorithm some refinable data structures whose items are states and some whose items are transitions. Both states and transitions are represented as natural numbers. Each set in Figure 7 may be 1-marked, 2-marked or unmarked as in the Figure 8 on the following page. The partition is refinable, meaning that is possible to replace each set A_{i} with two new disjoint subsets $A_{i_{1}}$ and $A_{i_{2}}$ providing that

- $A_{i_{1}} \cup A_{i_{2}}=A_{i}$,
- $A_{i_{1}}, A_{i_{2}} \neq \emptyset$,
- $A_{i_{1}} \cap A_{i_{2}}=\emptyset$.

Figure 8: Set

Figure 9: Refinable data structure

For deciding in which subset the items have to go, the refinable data structure uses the mark- 1 and mark-2. Given a set A_{i}, we indicate with A_{i}^{1} the elements $e \in A_{i}$ that are 1-marked, with A_{i}^{2} the elements $e \in A_{i}$ that are 2-marked and, with $A_{i} \backslash\left(A_{i}^{1} \cup A_{i}^{2}\right)$ the unmarked elements. Also we have that

$$
\begin{aligned}
A_{i}^{1} \cap A_{i}^{2} & =\emptyset \\
A_{i}^{1} \cap\left(A_{i} \backslash\left(A_{i}^{1} \cup A_{i}^{2}\right)\right) & =\emptyset \\
A_{i}^{2} \cap\left(A_{i} \backslash\left(A_{i}^{1} \cup A_{i}^{2}\right)\right) & =\emptyset
\end{aligned}
$$

Some instances of the data structure uses bunches that are a partition P of the set $\left\{A_{1}, \ldots, A_{n}\right\}$. A bunch $U_{u}=\left\{A_{u 1}, \ldots, A_{u g}\right\}$ is a subset of the partition P. The refinable data structure, showed in its completeness in Figure 9, comes with some methods that are listed below.

5.2 Methods implemented for the refinable data structure

Here, I will show the methods that are implemented for the refinable data structure, taken from Val09, from page 127 to page 130.

Size(s) Returns the number of elements in the set with index s, that is A_{s}.
Set (e) Returns the index of the set that element e belongs to, that is, the s such that $e \in A_{s}$.

Mark1(e), Mark2(e)
Marks the element e for splitting, at a later time, by means of the methods Split1 (s) and Split2(s) the set A_{s} that contains e. Mark1 (e) adds e to A_{s}^{1} and Mark2(e) to A_{s}^{2}, unless e is already in $A_{s}^{1} \cup A_{s}^{2}$. The set A_{s}^{1} is the set of all elements $e_{1} \in A_{s}$ that are 1-marked. The set A_{s}^{2} is the set of all elements $e_{2} \in A_{s}$ that are 2-marked. Mark1 (e) and Mark2 (e) do nothing if the element e is already in the set A_{s}^{1} or A_{s}^{2}, that is if $e \in A_{s}^{1} \cup A_{s}^{2}$.

If $A_{s}^{1}=\emptyset$, that is if there is no 1 -marked elements inside A_{s} returns zero, if $A_{s}=A_{s}^{1} \cup A_{s}^{2}$, that is if there is no unmarked elements inside A_{s}, then Split1 (s) unmarks all 1-marked elements in A_{s} and returns zero, otherwise, it updates A_{s} with $A_{s}:=A_{s}-A_{s}^{1}$, that is remove all 1-marked elements inside A_{s} creates a new set $A_{z}:=A_{s}^{1}, A_{z}$ now contains all the 1-marked elements that was formerly in A_{s}. Next, puts A_{z} into the same bunch of A_{s}, and returns z. In the end, $A_{z}^{1}=A_{z}^{2}=A_{s}^{1}=\emptyset$, that is A_{z} does not contain any 1-marked elements $\left(A_{z}^{1}=\emptyset\right)$ or 2-marked elements $\left(A_{z}^{2}=\emptyset\right)$, also A_{s} does not contain any 1-marked elements $\left(A_{s}^{1}=\emptyset\right)$ because the 1-marked elements that was formerly in A_{s} are now in the new set A_{z}. The 2 -marked elements inside A_{s}, that is the set A_{s}^{2}, has not changed.

Split2(s)
If $A_{s}^{2}=\emptyset$, that is if there is no 2 -marked elements inside A_{s} returns zero, if $A_{s}=A_{s}^{1} \cup A_{s}^{2}$, that is if there is no unmarked elements inside A_{s}, then Split2 (s) unmarks all 2-marked elements in A_{s} and returns zero, otherwise, it updates A_{s} with $A_{s}:=A_{s}-A_{s}^{2}$, that is remove all 2-marked elements inside A_{s} creates a new set $A_{z}:=A_{s}^{2}, A_{z}$ now contains all the 2 -marked elements that was formerly in A_{s}. Next, puts A_{z} into the same bunch of A_{s}, and returns z. In the end, $A_{z}^{1}=A_{z}^{2}=A_{s}^{2}=\emptyset$, that is A_{z} does not contain any 1-marked elements $\left(A_{z}^{1}=\emptyset\right)$ or 2 -marked elements $\left(A_{z}^{2}=\emptyset\right)$, also A_{s} does not contain any 2-marked elements $\left(A_{s}^{2}=\emptyset\right)$ because the 2-marked elements that was formerly in A_{s} are now in the new set A_{z}. The 1-marked elements inside A_{s}, that is the set A_{s}^{1}, has not changed..

No_marks (s)

Returns True if and only if $A_{s}^{1}=A_{s}^{2}=\emptyset$, that is if A_{s} does not contain 1-marked elements $\left(A_{s}^{1}=\emptyset\right)$, nor 2-marked elements $\left(A_{s}^{2}=\emptyset\right)$.

First(s), Next(e)
Since the set A_{s} is represented as a vector, as we can see in Figure 7 . page 14.

$$
A_{s}=\{\operatorname{elems}[i], \text { elems }[i+1], \ldots, \text { elems }[j]\}
$$

First(s) returns the first element of the set A_{s} that in our case is elems $[i]$.
Assuming that $e=\operatorname{elems}[i], \operatorname{Next}(\mathrm{e})$ returns elems $[i+1]$. If e i the last element of the set A_{s}, in our example elems $[j]$, Next (e) returns 0 .

Bunch (s)

Returns the index of the bunch that set s belongs to.

Bunch_first(u), Bunch_next (e)

Let $U_{u}=\left\{A_{u 1}, \ldots, A_{u g}\right\}$ be a bunch. With these operations, the elements of $A_{u 1} \cup A_{u 2} \cup \cdots \cup A_{u g}$ can be scanned, similarly to how First(s) and Next(e) scans a set in the partition.

Has_many (u)

Returns False if and only if bunch U_{u} consists of precisely one set.

Let $U_{u}=\left\{A_{u_{1}}, \ldots, A_{u_{g}}\right\}$ be a bunch. If $g=1$ then this operation returns zero without changing anything. Otherwise, it selects some i, introduces a new bunch $\left\{A_{u_{i}}\right\}$, removes $A_{u_{i}}$ from U_{i}, and returns u_{i}. The chosen i is such that if U_{u} has a unique biggest set, then it is not $A_{u_{i}}$.

Left_neighbour (e), Right_neighbour (e)
If the partition consists of one set, then both of these return zero. Otherwise, at least one of them returns an element that is not currently in the same set as e, but was in the same set until the most recent splitting of the set. The other one may return zero or an element. I will explain why these methods are used in section where i explain the algorithm.

The algorithm uses also the variables sets and bunches that record the numbers of sets and bunches respectively. The implementation in pseudo code of these methods, taken from Val09, on pages 129 and 130, is reported in Listing 4 and Listing 5. Moreover the algorithm uses the following arrays taken from Val09 on pages 129 and 130:
elems Contains $1,2, \ldots$, items in such an order that elements that belong to the same set are one after another. It is also the case that the sets that belong to the same bunch are one after another in elems.

first, end

Indicate the segment in elems where the elements of a set are stored, That is, $A_{s}=\{\operatorname{elems}[f]$, elems $[f+1], \ldots$, elems $[l-1]\}$, where $f=$ first $[s]$ and $l=e n d[s]$.
mid1, mid2
Let f and l be as above, and let $m_{1}=\operatorname{mid} 1[s]$ and $m_{2}=\operatorname{mid} 2[s]$. Then $A_{s}^{1}=\left\{\right.$ elems $[f], \ldots$, elems $\left.\left[m_{1}-1\right]\right\}$, the unmarked elements are elems $\left[m_{1}\right], \ldots$, elems $\left[m_{2}-1\right]$.
Also we have $A_{s}^{2}=\left\{\right.$ elems $\left[m_{2}\right], \ldots$, elems $\left.[l-1]\right\}$.
loc Tells the location of each element in elems, that is, elems $[l o c[e]]=e$.
sidx The index of the set that e belongs to is $\operatorname{sidx}[e]$. That is $e \in A_{\text {sidx[e] }}$
uidx The index of the bunch that A_{s} belongs to is uidx $[s]$. That is, $A_{s} \in$ $U_{u i d x[s]}$.
ufirst, uend
We have that U_{u} is $\{\operatorname{elems}[f], \operatorname{elems}[f+1], \ldots, \operatorname{elems}[l-1]\}$, where $f=u$ first $[u]$ and $l=u e n d[u]$

5.3 The algorithm

In this section I will present the pseudo code as outlined in Val09 from page 131 to page 137. The algorithm assumes that states and labels are represented as numbers. In symbols the states and labels are represented respectively as:

```
Size(s)
    return end[s] - first[s]
Set(e)
    return sidx[e]
First(s)
    return elems[first[s]]
    /*Certainly exists, because the }\mp@subsup{A}{i}{}\mathrm{ are non-empty */
Next(e)
    if (loc[e] + 1 \geq end[first[s]] then
        return 0
    else
        return elems[loc[e] + 1]
Mark1 (e)
    s:= sidx[e]; l:= loc[e]; m:=mid
    if m}\leql<\mp@subsup{m}{id}{2}[s] the
            mid}[\mp@code{[s] := m + 1
            elems[l] := elems[m]; loc[elems[l]] := l;
            elems[m] := e; loc[e] := m
Mark2(e)
    s:= sidx[e]; l:= loc[e]; m:=mid [s] - 1
    if }\mp@subsup{\operatorname{mid}}{1}{}[s]\leql<m the
            mid}[\mp@code{s] := m
            elems[l] := elems[m]; loc[elems[l]] := l;
            elems[m] := e; loc[e] := m
Split1(s)
    if }\mp@subsup{\operatorname{mid}}{1}{[s]}=\mp@subsup{\operatorname{mid}}{2}{[s]}\mathrm{ then mid}\mp@code{[s]:= first[s]
    if mid
    else
            sets := sets + 1; uidx[sets] := uidx[s]
            first[sets]:= first[s]; end[sets]:=mid}[\mp@code{ls]; first[s]:=mid
            mid}[\mp@code{sets]:= first[sets]; mid}\mp@subsup{\mp@code{m}}{[sets]:= end[sets]}{
            for l:= first[sets] to end[sets] - 1 do
                sidx[elems[l]]:= sets
            return sets
Split2(s)
    if mid
    if mid}\mp@subsup{\mp@code{m}}{2}{[s]}:=\mathrm{ end[s] then return 0
    else
            sets := sets + 1; uidx[sets] := uidx[s]
            first[sets]:=mid_[s]; end[sets]:=end[s]; end[s]:=mid [s]
            mid}[\mathrm{ [sets]:= first[sets]; mid
            for l:= first[sets] to end[sets] - 1 do
            sidx[elems[l]]:= sets
            return sets
No_marks(s)
    if mid
            return True
    else
            False
```

Listing 4: Main features of the refinable partition data structure

```
Bunch(s)
    return uidx[s]
Bunch_first(u)
    return elems[ufirst[u]]
Bunch_next(e)
    if loc[e] + 1 \geq uend[uidx[sidx[e]]] then
            return 1
    else
            return elems[loc[e] + 1]
Has_many(u)
    if end[sidx[elems[ufirst[u]]]] \not= uend[u] then
        return True
    else
            return False
Extract_set(u)
    s
    if s}\mp@subsup{\textrm{s}}{1}{}=\mp@subsup{\textrm{s}}{2}{}\mathrm{ then
        return 0
    else
        bunches := bunches + 1
        if Size(s
            ufirst[u] := end[s1]
            else
            uend[u] := first[s2]; s
            ufirst[bunches] := first[s, ]; uend[bunches]:= end[s [s
            uidx[s1]:= bunches
            return si
Left_neighbour(e)
    l:= first[sidx[e]];
    if l > 1 then
        return elems[l-1]
    else
            return 0
Right_neighbour(e)
    l:= end[sidx[e]]
    if l\leqitems then
            return elems[l]
    else
            return 0
```

Listing 5: Bunch- and neighbour-features of the refinable partition data structure
$S=\{1,2, \ldots, n\}, L=\{1,2, \ldots, \alpha\}$. For the transition relation we have that $\Delta \subseteq S \times L \times S$ and $m=|\Delta|$. The algorithm also takes an initial partition $I=\left\{S_{1}, \ldots, S_{k}\right\}$. The initial partition can be given in input to the algorithm or not. If the partition is not given in input, we have that $k=1$ and the initial partition is equal to Q, where Q is the set of all states of the LTS. If the partition is given in input to the algorithm we may choose to divide the set of states Q of the LTS in two disjoint subsets S_{1} and S_{2} such that:

1. $S_{1} \cup S_{2}=Q$,
2. $S_{1} \cap S_{2}=\emptyset$.

The set S_{1} is the set of all states that can do at least one transition, while the set S_{2} is the set of deadlock states. The input of the algorithm consists of :
n : The number of states;
α : The number of labels;
Δ : The transition relation
$\left\{S_{1}, \ldots, S_{k}\right\}$ The initial partition
In addition we have that

$$
\begin{aligned}
\Delta_{a, B} & =\Delta \cap(S \times\{a\} \times B) \\
\Delta_{s, a, B} & =\Delta \cap(\{s\} \times\{a\} \times B)
\end{aligned}
$$

Transitions are represented as three array tail, label, head. Each transitions $\left(s, a, s^{\prime}\right)$ has an index t in the range $1, \ldots, m$ such that:

$$
\operatorname{tail}[t]=s, \operatorname{label}[t]=a, \text { and, head }[t]=s^{\prime}
$$

It is also assumed that the indices of the transitions that share the same head state s are available as:

$$
\text { In_transitions }[\mathbf{s}]=\left\{\left(s_{1}, a, s_{2}\right) \in \Delta \mid s_{2}=s\right\}
$$

The algorithm uses the following data structures taken from Val09 on page 132.
Blocks This is a refinable partition data structure on the states $\{1, \ldots, n\}$. Its sets are the blocks and when the algorithm ends each blocks represent the states that are bisimilar.

Splitters

This is a refinable partition data structure on transition relation \rightarrow that is on $\{1, \ldots, m\}$ where m is the number of transitions. Each set in Splitters contains the indices of transitions that can do the same action and end in a state that belongs to the same block. Formally

$$
\begin{aligned}
\text { Splitters } & =\left\{\Delta_{a, B} \mid a \in L \wedge B \in \text { Blocks } \wedge \Delta_{a, B} \neq \emptyset\right\} \quad \text { where } \\
\Delta_{a, B} & =\left\{\left(s, l, s^{\prime}\right) \mid l=a \wedge s^{\prime} \in B\right\}
\end{aligned}
$$

The bunch feature of Splitters will be used.

```
Update(b, b')
if Blocks.Size(b) \leq Blocks.Size(b') then
    s := Blocks.First(b)
else
    s := Blocks.First(b')
while s }\not=0\mathrm{ do
    for t \in In_transitions[s] do
        p := Splitters.Set(t); o := Outsets.Set(t)
        if Splitters.No_marks(p) then
            Touched_Splitters.Add(p)
        if Outsets.No_marks(o) then
            Touched_Outsets.Add(p)
        Splitters.Mark1(t); Outsets.Mark1(t)
    s := Blocks.Next(s)
while \neg Touched_Splitters.Empty do
    p := Touched_Splitters.Remove
    u := Splitters.Bunch(p); if Has_many(u) then u := 0
    p' := Splitters.Split1(p);
    if u\not=0 ^ p'\not= 0 then
            Unready_Bunches.Add(u)
while \neg Touched_Outsets.Empty do
    o:= Touched_Outsets.Remove;
    o' := Outsets.Split1(o)
```

Listing 6: Update

Outsets This is a refinable data structure like Splitters but finer, that is transitions that are in the same set share the initial state. Outsets $=\left\{\Delta_{s, a, B} \mid s \in S \wedge a \in L \wedge B \in\right.$ Blocks $\left.\wedge \Delta_{s, a, B} \neq \emptyset\right\}$

Unready_Bunches
This is an initially empty stack. It contains the indices of the bunches of Splitters that consists of two or more sets.

Touched_Blocks

This is an initially empty stack that contains the sets in the refinable data structure Block that have been marked (with mark-1 or mark-2).

Touched_Splitters, Touched_Outsets
These are initially empty stacks that contains the transition in Splitters and Outsets that have been marked. It is necessary to introduce these stacks because when a set in Blocks is split it is necessary to update these two.

5.3.1 Update procedure

Before discussing the main procedure in Listing 7 it is important to understand the update subroutine in Listing 6. Whenever a set has been split in refinable data structure Blocks, it is necessary to update the refinable data structure Splitters and Outsets accordingly.

For example if a set B_{i} in the refinable data structure Blocks, has been split in B_{i}^{1} and B_{i}^{2} we have to update Splitters; in particular those transitions of type $\Delta_{a, B_{i}}$, where $a \in$ Labels must be updated in $\Delta_{a, B_{i}^{1}}$ and $\Delta_{a, B_{i}^{2}}$. The same procedure discussed above must be repeated for Outsets. The parameters b and

```
Main_part
initialize Blocks to {S }
```



```
make every set of Splitters a singleton bunch
```



```
for i := 2 to k do
    for s\inS S do Blocks.Mark1(s)
    b := Blocks.Split1(1); Update(1, b)
for u := 1 to Splitters.bunches do
    t := Splitters.Bunch_first(u)
    while t}\not=0\mathrm{ do
        s := tail[t]; b := Blocks.Set(s)
        if Blocks.No_marks(b) then Touched_Blocks.Add(b)
        Blocks.Mark1(s); t := Splitters.Bunch_next(t)
    while \negTouched_Blocks.Empty do
        b := Touched_Blocks.Remove
        b'=Blocks.Split1(b); if b'}=0\mathrm{ then Update(b, b')
while \negUnready_Bunches.Empty do
    u := Unready_Bunches.Remove; p := Splitters.Extract_set(u)
    if Splitters.Has many(u) then Unready_Bunches.Add(u)
    t := Splitters.First(p)
    while t\not=0 do
        if t = Outsets.First( Outsets.Set(t) ) then
            s := tail[t]; b := Blocks.Set(s)
            if Blocks.No marks(b) then Touched_Blocks.Add(b)
            t1 := Outsets.Left_neighbour(t)
            t2 := Outsets.Right_neighbour(t)
            if }\mp@subsup{t}{1}{}>0\wedge\operatorname{tail}[\mp@subsup{t}{1}{}]=s
            Splitters.Bunch(Splitters.Set (t (t)) = u
            \ t2 > 0 ^ tail [ t 2] = s ^
            Splitters.Bunch(Splitters.Set (t ( ) ) = u
            then Blocks.Mark1(s) else Blocks.Mark2(s)
        t := Splitters.Next(t)
    while }\not=\mathrm{ Touched_Blocks.Empty do
        b := Touched_Blocks.Remove
        b' := Blocks.Split1(b); if b' }=0\mathrm{ (b then Update(b, b')
        b' := Blocks.Split2(b); if b' #= 0 then Update(b, b')
```

Listing 7: Main

Figure 10: A Lts

Bunch of b-labeled transitions
Figure 11: Splitter example
b^{\prime}, given in input to the Update subroutine, represent the indices of the spltted sets. The splitted sets are B_{i}^{1} and B_{i}^{2}.

The Update procedure starts by scanning the indices of the transitions that end in the smallest set between B_{i}^{1} and B_{i}^{2} by means of In_Transitions [s], that records the transitions that end in s; then Update marks the transitions that belong to the set In_Transitions [s], and proceed with the splitting operation. The process of updating Splitters it is a bit more involved because we have to take into account the stack Unready_Bunches. For deciding which set has been marked the update procedure uses Touched_Splitters and Touched_Outsets respectively.

5.3.2 Main Procedure

The main procedure, that is showed in Listing 7 on the previous page, consists of two parts. The first one is between line 9 and line 17 included; its duty is to split the refinable data structure Blocks into different set, where each set represents the states that can do an a-labeled transition. Just for a reminder the refinable data structure Blocks at the end of the algorithm contains different sets, where each set represents states that are bisimilar.

For detecting the states that can do an a-labeled transition the algorithm scans one at a time the bunches of Splitters. Each bunch in Splitters is grouped initially by label. That is, if we have only two labels in an LTS like the one in Figure 10 , the Splitters will be initially like the one in Figure 11 Next for each bunch $B u \in$ Splitters, each transition $t \in B u$, will be scanned one at a time, and for each t the start state $s=$ tail $[\mathrm{t}]$, line 12, Listing 7 on the preceding page, will be marked in the refinable data structure Blocks. Next,
after all the transitions $\mathrm{t} \in \mathrm{Bu}$, have been scanned Blocks is split, according to the marked states. After each splitting of Blocks, Splitters and Outsets are updated. When all bunches in Splitters have been scanned, the second part of the algorithm processes the bunches of Splitters that contains more than one set. The refinable data structure Splitters contains sets of transitions. For each bunch B that contains two or more sets, the algorithm extracts a Set S (of transitions), makes a new bunch that contains only S , (the bunch B now does not contain S) and for each transition $(s 1, a, s 2) \in S$ checks if $s 1$ appears as a tail in other transitions but in the same bunch where before was S .

Just for a reminder a transition t is represented as a triple

$$
(\operatorname{tail}[\mathrm{t}], \text { label }[\mathrm{t}], \text { head }[\mathrm{t}])
$$

meaning that there is a transition t that starting from state tail $[\mathrm{t}]$ and by doing an action label $[\mathrm{t}]$, ends in head $[\mathrm{t}]$.

For a summary of the second part: given a bunch B in Splitters that contains two or more sets one have to do the following steps:

1. Extract a set S from B and create a new bunch that contain only S and remove S from B .
2. For each transition $t \in S$ check if the tail state of t appears also elsewhere as a tail state of another transition $t^{\prime} \in B$, B that now does not contain S , if yes mark t with mark1 else mark t with mark2.
3. Split the marked states in Blocks and next update the sets of transitions Splitters and Outsets.
4. continue until there is no more Bunch in Splitters that contains two or more sets.

Thanks to three tricks, the algorithm runs in $O(m \log n)$ times where m is the number of transitions an n is the numbers of states. The tricks are the following:

1. Every time in the second part of the algorithm we extract a set (line 19 in Listing 7 on page 22, from bunches of Splitters who contains more than two sets we choose the smallest from the first set and last one set. In this way when a transition is used (for deciding if it must be mark-1 or matk-2) it belongs to a set whose size is at most the half of the previous one. Because all transitions in a set of a Splitters have the same label there can be at most n^{2} of them (each state has a transition to all other states). Thus each transition can be used at most $\log _{2} n^{2}$.
2. Update defined in Listing 6 on page 21 takes two parameters b and b^{\prime} that are the indices of the set that has been splitted (B_{i}^{1} and B_{i}^{2}) and chooses the smallest from these two. So when a state is used it belongs to a set whose size is at most half the size in the previous time. Thus each state can be used at most $\log _{2} n$ times for splitting
3. The third tricks is that the set of labels are never scanned so we can omit to take into account the set of labels.

6 Implementation

I have implemented all the three algorithms outlined above through the Scala Programming language OSV16. Full code is available at Bar21. The labeled transition system given in input is specified through a textual form. For example the LTS in Figure 10 on page 23, can be given in input to the algorithms in this way:

```
states=q0,q1,q2,q3
relation=q0,a,q1;q0,a,q2;q1,b,q2,q1,b,q3
relation=q3,a,q1;q3,a,q2
```

The lines that start with the word states define states, while the lines that start with the word relation defines the transition relation.

6.1 Implementation of fixed point approach

In this Section I explain how I have implemented the fixed point approach for computing the bisimulation equivalence described in Section 3 on page 5 .

Given a finite $\operatorname{LTS}(Q, A, \rightarrow)$ where Q is the finite set of states, A is the finite set of actions and $\rightarrow \subseteq Q \times A \times Q$ is the transition relation composed of m transitions, the implementation computes the greatest fixed point of functional F defined in Definition 3.1 on page 7 through the method explained in Section 3.6 on page 7

The implementation simply, starts with the relation $R=Q \times Q$, where R is the Cartesian product of the set Q with itself. Then iterates until -under certain conditions- no other couples $\left(q_{1}, q_{2}\right) \in R$ can be removed.

I have implemented the relation $R=Q \times Q$-and the subsets of R - as a List of couples $\left(q_{1}, q_{2}\right) \in R$ where $q_{1} \in Q$ and $q_{2} \in Q$. The LTS in this algorithm is implemented as a class that has one, fundamental, field: a vector v that takes in input a state $q \in Q$ and an action $a \in A$ and returns a vector of transitions (q, a, q^{\prime}) where $q^{\prime} \in Q$. The vector of transitions that is returned from the vector v, -vector v that takes in input a state $q \in Q$ and an action $a \in A$ - are all the transitions that start from q and by doing an action a end in q^{\prime}. The vector v takes in input a state q and an action a as numbers so the LTS has two additional fields that are two maps. The first map takes in input a state q and gives in output a number associated to the state q, the second map takes in input an action a and gives in output a number associated to the action a.

6.1.1 Detailed steps

For computing the bisimulation equivalence the algorithm initially sets R to $Q \times Q . R$ is the List of couples $\left(q_{1}, q_{2}\right)$-with $q_{1} \in Q$ and $q_{2} \in Q$ - of length n^{2} where $n=|Q|$.

For each couple $\left(q_{1}, q_{2}\right) \in R$ the algorithm does the following: for each label $a \in A$:

1. Builds a list 11 of transitions $\left(q_{1}, a, q_{1}^{\prime}\right)$ where $q_{1}^{\prime} \in Q$. Each tuple (q_{1}, a, q_{1}^{\prime}) represents the transition that starting from q_{1} and by doing a fixed action a ends in q_{1}^{\prime}. The list 11 is built by means of vector v described above. v takes in input q_{1} and a, and returns 11 .
2. Builds a list 12 of transitions $\left(q_{2}, a, q_{2}^{\prime}\right)$ where $q_{2}^{\prime} \in Q$. Each tuple $\left(q_{2}, a, q_{2}^{\prime}\right)$ represents the transition that starting from q_{2} and by doing an action a ends in q_{2}^{\prime}. The list 12 is built similarly to the list 11 described in the point 1 of this list.
3. For each $\left(q_{1}, a, q_{1}^{\prime}\right) \in 11$ the algorithm checks if exist a transition $t=$ $\left(q_{2}, a, q_{2}^{\prime}\right) \in 12$ and $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in R$. If t exists return true else false.
4. Similarly to the previous point, but considering first the state q_{2}; for each $\left(q_{2}, a, q_{2}^{\prime}\right) \in 12$ the algorithm checks if exist a transition $t=\left(q_{1}, a, q_{1}^{\prime}\right) \in 11$ and $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in R$. If t exists return true else false.

Then if for all $a \in A$ both the checks in point 3 and 4 of the list above returns true, then the couple $\left(q_{1}, q_{2}\right)$ can stay in the relation R, otherwise it will be removed.

When there is no more couples to be removed from R the algorithm ends and returns the relation R, that contains the bisimulation equivalence \sim.

For checking if a couple $\left(q_{1}, q_{2}\right)$ belongs to R or not in $O(1)$ time, the algorithm uses a vector m. The vector m takes in input a couple (q_{1}, q_{2}) and returns true if $\left(q_{1}, q_{2}\right) \in R$, false otherwise.

When the algorithm finishes to scan the relation R, divides R in two relations: R_{1} and $R_{2} . R_{1}$ is the set of couples that satisfies the point 3 and 4 of the list above, R_{2} is the set of couples that does not satisfies the point 3 and 4 of the list above. The couples $\left(q_{1}, q_{2}\right) \in R_{2}$ will be marked as false in the vector m described in the previous paragraph.

6.1.2 Time complexity

For defining the time complexity of the algorithm described in this Section (Section 6.1) we have to do the following considerations:

1. Initially the length of the relation $R=Q \times Q$ is equal to n^{2} because $n=|Q|$. In the worst case, the algorithm, at every step removes one couple $\left(q_{1}, q_{2}\right) \in R$ at a time so this loop -that we call loop1- costs in the worst case $O\left(n^{2}\right)$.
2. At every step of the loop1 we have to iterate over all the couples of the relation R, in order to check all the couples $\left(q_{1}, q_{2}\right) \in R$ for deciding if (q_{1}, q_{2}) can stay in R or has to be removed. This loop -that we call loop2also costs in the worst case $O\left(n^{2}\right)$.
3. For deciding if a couple $\left(q_{1}, q_{2}\right)$ can stay in R we have to build the lists 11 and 12 described in Section 6.1.1 for every $a \in A$. Next, for every tuple $\left(q_{1}, a, q_{1}^{\prime}\right) \in 11$ we have to search if exists in 12 a suitable tuple $\left(q_{2}, a, q_{2}^{\prime}\right) \in 12$ such that $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in R$. That is, if given an action $a \in A$, for every q_{1}^{\prime} such that $q_{1} \xrightarrow{a} q_{1}^{\prime}$ exists a state q_{2}^{\prime} such that $q_{2} \xrightarrow{a} q_{2}^{\prime}$ and $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in R$. If we say that the length of the list 11 of transitions starting from q_{1} is i and i can be at most m where m is the number of transitions, for every couple $\left(q_{1}, q_{2}\right) \in 11$ we have to iterate over all the couples of the list 12. This costs $O(i j)$ where j is the length of the list 12 of transitions starting from q_{2}.

So if $i \leq m$ and $j \leq m$ where i and j are respectively the length of 11 and 12, deciding if a couple $\left(q_{1}, q_{2}\right)$ can stay in $R \operatorname{costs} O\left(m^{2}\right)$, I have omitted the case when q_{2} moves first, that is the case when for every transition that belongs to 12 we have to search if exists a suitable transition in the list 11 , but it is symmetric to the case when q_{1} moves first, hence costs $O\left(m^{2}\right)$.
Considering that the length of 11 can be at most m is a pessimistic reasoning because 11 represents the transitions that -given an action $a \in A$ - start from q_{1} and by doing an action a end in a state $q^{\prime} \in Q$. The length of 11 is certainly less than m. Same for the list 12 .
In the random LTSs that I have built for doing the tests, and also in other LTSs we may consider that the length of 11 and 12 be at most $\frac{m}{n}$ because the transitions that start from a random state q-given an action a - if the transitions are set randomly are seldom m. If the transitions that start from a state q are m it means that all the transitions in the LTS start from q. So if $i \leq \frac{m}{n}$ and $j \leq \frac{m}{n}$, where i and j are the length of 11 and 12 respectively we have that deciding if a couple $\left(q_{1}, q_{2}\right)$ can stay in R costs $O\left(\left(\frac{m}{n}\right)^{2}\right)$.

For what we have said above the time complexity of the implementation that I have done for computing the bisimulation equivalence through the fixed point approach is:

1. $O\left(n^{2} n^{2} 2\left(\frac{m}{n}\right)^{2}\right)=O\left(n^{2} m^{2}\right)$ if we consider, the length of 11 an 12 be at most $\frac{m}{n}$.
2. Otherwise if we consider the length of 11 an 12 be at most $O(m)$ the time complexity is $O\left(n^{2} n^{2} m^{2}\right)$.

The Scala code is available in Listing 8 on the next page.

6.2 Implementation of Kannellakis and Smolka

For the purpose of this Section we can think of a partition as a list of blocks, and of a block as a list of states.

I have implemented -for this implementation- the LTS by means of a vector v, that takes in input a state q and an action a and gives in output a vector of transitions of the form $\left(q, a, q^{\prime}\right)$ with $q^{\prime} \in Q$. The vector v formally:

$$
v: Q \times A \rightarrow \operatorname{Vector}[(Q, A, Q)]
$$

takes in input a state q and an action a and gives in output a vector of transitions $\left(q, a, q^{\prime}\right)$. The transitions (q, a, q^{\prime}) start from q and by doing an action a end in q^{\prime}. Each block is implemented as a list of states, and a partition as a list of blocks. The algorithm also uses a vector blockOfNode of length n, where n is the number of states. The vector blockOfNode takes in input a state q and returns the index of the block B -that contains q - in the partition. That is given a partition $\pi=\left\{B_{1}, \ldots, B_{i}, \ldots, B_{n}\right\}$ and a state $q \in B_{i}$, blockOfNode (q) returns i. The program also uses a variable numBlocks that records the number of Blocks in the partition.

```
class FixedPointFinal(val l: Lts) {
    def fixedPointBisim(): List[(Node, Node)] = {
        val start = l.nodes.flatMap(x => l.nodes.map(y => (x, y)))
        val matrix= (0 until l.numNodes)
            .map(_ => true)
            .toVector
            .map(_ => (0 until l.numNodes)
                .map(_ => true).toVector)
        def check(p: Node, q: Node,
                matrix: Vector[Vector[Boolean]])
            : Boolean = {
            def checkAction(action:Int) ={
                val indexP = l.indexNodes getOrElse(p.name, -1)
            val indexQ = l.indexNodes getOrElse(q.name,-1)
            val v1 = l.vectorTrans(indexP)(action)
            val v2 = l.vectorTrans(indexQ)(action)
            v1.forall(x => v2.exists(y => matrix(x._3)(y._3)) )
            }
            l.numIndex.forall(x => checkAction(x))
        }
        @tailrec
        def updateMatrix(matrix: Vector[Vector[Boolean]],
        toMark:List[(Node,Node)]):Vector[Vector[Boolean]] = {
            toMark match {
                case ::(head, next) =>
                    val i = l.indexNodes getOrElse(head._1.name, -1)
                    val j = l.indexNodes getOrElse(head._2.name, -1)
                    val newLines = matrix(i).updated(j,false)
                    updateMatrix(matrix.updated(i,newLines), next)
                case Nil => matrix
            }
        }
        @tailrec
        def iterate(rel: List[(Node, Node)],
                    matr:Vector[Vector[Boolean]]):List[(Node, Node)]
        = {
            val (guess1,toBeMarked) = rel.partition(x => {
                check(x._1, x._2, matr) &&
                    check(x._2, x._1, matr)
            })
            if (toBeMarked.isEmpty)
            rel
        else {
            val newMatrix= updateMatrix(matr,toBeMarked)
            iterate(guess1,newMatrix)
            }
        }
        iterate(start,matrix)
    }
}
```

Listing 8: Scala fixed point

```
class KS5(val l: Lts) {
    @tailrec
    final def iterateBlock(scanned: List[List[Node]],
                                    toScan: List[List[Node]],
                                    blockOfNode: Vector[Int],
                                    numBlocks: Int
                    )
        : (List[List[Node]], Vector[Int], Int, Boolean) = {
        toScan match {
            case ::(head, next) =>
            val ris = split(head, blockOfNode, numBlocks)
            val (b1, b2, new_blockOfNode, new_numBlocks) = ris
                if (b2.isEmpty) {
                iterateBlock(head :: scanned,
                next, blockOfNode, numBlocks)
            }
            else {
                val two_blocks = b1 :: b2 :: next
                    (two_blocks ::: scanned,
                new_blockOfNode, new_numBlocks, true)
            }
            case Nil => (scanned, blockOfNode, numBlocks, false)
        }
    }
    @tailrec
    final def iter(part: List[List[Node]],
                    blockOfNode: Vector[Int],
                    numBlocks: Int
                    ): List[List[Node]] = {
        val ris_itB = iterateBlock(Nil, part, blockOfNode, numBlocks)
        val (new_part, new_blockOfNode, new_numBlocks, flag) = ris_itB
        if (flag) {
            iter(new_part, new_block0fNode, new_numBlocks)
        }
        else
            part
    }
}
```

Listing 9: Partial code for Kannelakis and Smolka's algorithm

```
class KS5(val l: Lts) {
    val tr: Vector[Vector[Vector[(Int, Int, Int)]]] = l.vectorTrans
    def split(ln: List[Node],
                    blockOfNode: Vector[Int],
                    numBlocks: Int
                    ): (List[Node], List[Node], Vector[Int], Int) = {
        def check(vec1:Set[Int], t: Node, action: Int): Boolean = {
            val numt = l.indexNodes.getOrElse(t.name, -1)
            val vec2 = tr(numt)(action).map(x => blockOfNode(x._3))
            vec1 == vec2.toSet
        }
        @tailrec
        def iterAction(actions: List[Int])
        : (List[Node], List[Node], Vector[Int], Int) = {
        actions match {
            case ::(cons_a, tail_a) =>
                val s = ln.head
                val nums = l.indexNodes.getOrElse(s.name, -1)
                val vec1 = tr(nums)(cons_a)
                    .map(x => blockOfNode(x._3))
                    .toSet
                val (b1, b2) = ln.partition(t => check(vec1, t, cons_a))
                if (b2.isEmpty) {
                    iterAction(tail_a)
                }
                else {
                    @tailrec
                        def UpdateVector(list: List[Node],
                                    vec: Vector[Int],
                                    index: Int)
                            : Vector[Int] = {
                list match {
                        case ::(head, next) =>
                        UpdateVector(next,
                        vec.updated(
                            l.indexNodes.getOrElse(head.name, -1),
                                    index
                                    ),
                                    index)
                                    case Nil => vec
                }
            }
                        val new_blockOfNode = UpdateVector(b2,
                        blockOfNode, numBlocks + 1)
                        (b1, b2, new_blockOfNode, numBlocks + 1)
                }
                case Nil => (ln, Nil, blockOfNode, numBlocks)
            }
        }
        iterAction(l.numIndex)
    }
3
```

Listing 10: Split code from Kannelakis and Smolka

6.2.1 Schema of the implementation

The algorithm starts with a partition P that contains a unique block B . B contains all states of the LTS. Next the algorithm scans one at a time each block B in the partition P and does the following: for each $a \in A$:

1. Create two empty set B_{1} and B_{2}
2. Select a state $s \in B$
3. For each state $t \in B$, if s and t can reach the same set of blocks in the partition P via a-labelled transitions then add t to the set B_{1} otherwise add t to the set B_{2}.
4. If B_{2} is not empty replace B with B_{1} and B_{2} in the partition P . If B_{2} is empty go ahead with the next label -indexed with a-. If there is no more label to check go ahead with the next block and repeat the procedure in this list starting over to scan all the labels. If there is no more block to check stop and give in output the partition P that now contains the bisimulation equivalence \sim.

6.2.2 Detailed steps

For implementing the schema outlined above, I have created the programs showed in Listing 10 on the preceding page and in Listing 9 on page 29. The program in Listing 9 has the burden to scan all the blocks B in the partition P in order to check if the block B can be split in two non-empty set

1. B_{1} : the set of states that can reach the same set of blocks via a-labeled transitions.
2. B_{2} : the set of states that cannot reach the same set of block via a-labeled transitions.

If there is no more blocks that can be split the algorithm stops and returns the bisimulation equivalence contained in P .

For checking if a block B-given a partition P - can be split in two blocks B_{1} and B_{2}, I have created the program in Listing 10 on the preceding page. In particular the function split takes in input:

1. A block B.
2. A vector blockOfNode that given in input a state p returns the index i such that $p \in B_{i}$.
3. A variable numBlocks that keeps track of the number of blocks in the partition.

The function split for each action a does the following steps with the block B that takes in input:

1. Select a state s that belongs to the Block B
2. Create a vector vec1. The vector vec1 contains the transitions (s, a, s^{\prime}) with $s^{\prime} \in Q$ that start from s and by doing an action a end in s^{\prime}. The vector vec1 is created by means of the vector v described in the initial part of the Section 6.2
3. Transform the vector vec1 that contains the transitions (s, a, s^{\prime}) with $s^{\prime} \in Q$ in a vector of indexes. The indexes are all the i such that $s^{\prime} \in B_{i}$.
4. For each state $t \in B$ create a vector vec2 following the same procedure for building the vector vec1.
5. For each state $t \in B$, compare the vector vec1 with the vector vec2. If vec1 is equal to vec2, that is s and t can reach the same blocks by doing an a-action add t to B_{1}, otherwise add t to B_{2}. If B_{2} is not empty replace the block B in the partition P with B_{1} and B_{2}.

6.2.3 Note on time complexity

In the LTS that I have used for this implementation, the list of transitions are specified through a vector v that takes in input a state $q \in Q$ and an action $a \in A$ and gives in output a vector of transitions $\left(q, a, q^{\prime}\right)$ with $q^{\prime} \in Q$. The meaning of $\left(q, a, q^{\prime}\right)$ is that there is a transition that starts from a state q and by doing an action a ends in a state q^{\prime}.

The implementation in this Section does not maintain the vector v sorted. That is for all states $q \in Q$ and actions $a \in A$ the vector $v e c_{q, a}$ of transitions (q, a, q^{\prime}) that v gives in output when (v) takes in input q and a is not sorted by the indexes of the blocks the states q^{\prime} belong. In other words v remains the same during the execution of the algorithm.

For this reason, for checking if two states $\left(q_{1}, q_{2}\right)$-given an action a - can reach the same blocks (when I say blocks, I mean indexes of blocks), we have to do the following:

1. Build the vector vec1 composed of tuples $\left(q_{1}, a, q_{1}^{\prime}\right)$ of three items, with $q_{1}^{\prime} \in Q$ and a and q_{1} fixed. The meaning of $\left(q_{1}, a, q_{1}^{\prime}\right)$ is that there is a transition that starts from a state q_{1} and by doing an action a ends in a state q_{1}^{\prime}. The vector vec1 is created by means of the vector v that takes in input q_{1} and a and returns vec1.
2. Transform the vector vec1 in a vector of indexes by means of the vector blockOfNode, that takes in input a state s and returns the index i such that $s \in B_{i}$. The vector blockOfNode is applied one at a time to all the q_{1}^{\prime} such that $q_{1} \xrightarrow{a} q_{1}^{\prime}$.
3. Build the vector vec2 in the same way the vector vec 1 is built by giving q_{2} and a to v.

For checking if vec 1 it is equal to $v e c 2$ we have to sort $v e c 1$ and $v e c 2$ and then check if $v e c 1$ is equal to $v e c 2$. All the operation $\operatorname{cost} O(j \log j)$ where j is the maximum length between $v e c 1$ and $v e c 2$. Indeed once $v e c 1$ and $v e c 2$ are sorted it is easy in linear time to check if vec1 is equal to vec 2 .

For this reason, deciding if a block B can be split in two block B_{1} and B_{2} does not cost $O(m)$ and for this reason the time complexity of the algorithm of Kannellakis and Smolka is not $O(m n)$.

Let α, be the maximum number of the vectors veci that we have to sort, and β the maximum length among the vectors veci. The time complexity of the algorithm of Kannellakis and Smolka is $O(n \cdot(m+\alpha \cdot \beta \log \beta))$.

I have chosen to implement the Kannelakis and Smolka algorithm without keeping the vector of transition sorted -despite the time complexity seems to be higher than $O(n m)$ - because I have seen -in many tests- that if I keep the vector of transition sorted, the execution time slow down a lot. Indeed I have implemented a second version of the Kannellakis and Smolka's algorithm where I keep the vector of transitions sorted after a splitting of a Block happened. The cost of keeping the vector v of transitions sorted slow down a lot the execution time. Also I noticed that the execution of sorting the indexes of blocks reachable from a state q and an action a is irrelevant compared to the cost of keeping the vector v of transitions sorted.

6.3 Implementation of Valmari's algorithm

The implementation of Valmari's algorithm consists more or less of 1100 lines of code so it is impossible to present the full code here, that however can be found in Bar21. The algorithm assumes that the states and the labels of the labeled transition system given in input is specified through numbers; for this reason is necessary to process the LTS that is given in textual form for converting it in numeric form, this necessarily introduces an overhead. All the code that I have implemented for the Valmari's algorithm is based on the detailed pseudo code that is described in the article of Antti Valmari Val09. The Scala programming language is used mainly as a functional language, as a result the variables cannot be modified once they have been initialized, hence the loops like while are forbidden and must be substituted by means of recursive functions in particular through tail recursive function that a compiled time are as efficient as the while loops.

Given an $\operatorname{LTS}(Q, A, \rightarrow)$, the time complexity of the implementation of Valmari's algorithm is $O(m \log n)$, where m is the number of transitions and n is the number of states. In the calculation of the time complexity, I have not included the time needed for translating the LTS from the textual form to the numeric form. Also, I have not included the time needed for the initialization of the refinable partition data structures Splitters and Outsets described in Section 5.3 on page 17. The choice of not including the time needed for the translation and the initialization comes from the fact that, these actions are not closely related to the algorithm.

7 Results

In this Section I show the results of the tests that I have done in order to see how the algorithms of Kannellakis\&Smolka and Valmari perform in real cases.

As I stated in the previous Sections I have implemented the algorithms of Kannellakis\&Smolka and Valmari through the Scala programming language.

In order to do the tests I have created a certain number of random LTSs. For building the LTSs I have designed a program -in Scala- that takes in input 4 parameters:

1. The number of states, that is the size of Q where Q is the set of states.
2. The size of the set A, where A is the set of labels or actions.

Figure 12: LTSs with 100000 transitions and labels taken randomly from a set of length 10. States vary on x -axis
3. The number of transitions that we want in our LTSs. A transition is represented as $\left(q, a, q^{\prime}\right)$, where q and q^{\prime} are taken randomly from the set of states Q, and a is taken randomly from the set of labels or actions A.
4. The number of LTSs that we want to build.

After we have provided the four parameter, the program returns n LTSs where n is specified by the fourth item of the previous list. The LTSs given in output have the characteristics specified by the the first three items.

The program used for creating the LTSs also takes care of removing duplicate transitions, that is let $T=\left\{\left(q, a, q^{\prime}\right) \mid q, q^{\prime} \in Q, a \in A\right\}$ the set of transitions, for each $\left(q_{1}, a, q_{2}\right),\left(q_{1}^{\prime}, a^{\prime}, q_{2}^{\prime}\right) \in T$, it is always the case that: $q_{1} \neq q_{1}^{\prime}$ or $a \neq$ a^{\prime} or $q_{2} \neq q_{2}^{\prime}$. For this reason the effective number of transitions may be slightly less than the desired number.

I have carried out two tests where I have measured the time execution in millisecond of the algorithms of Kannellakis\&Smolka and Valmari.

Both the tests have been conducted on a laptop with the following characteristics:
OS Windows 10 Home
CPU AMD A9-9420 RADEON R5, 5 COMPUTE CORES 2C+3G 3.00 GHz
RAM $8,00 \mathrm{~GB}$

7.1 First test

The goal of the first test is to measure the time execution of the algorithm of Kannellakis\&Smolka and Valmari when we keep fixed the number of transitions

States	Time KS (ms)	Time Valmari (ms)
1000	509.15	1860.4
5000	2918.8	4518.35
10000	10274.6	6363.45
15000	20210.75	7339.2
20000	32674.1	7167.2
25000	39255.45	6797.45
30000	51847.45	6768.2

Table 1: Results of the test done on LTSs with 100000 transitions and label taken randomly from a set of length 10 . States vary on the first column.

Class Number	Number of states	Number of samples
1	1000	20
2	5000	20
3	10000	20
4	15000	20
5	20000	20
6	25000	20
7	30000	20

Table 2: Description of the classes for the first test
and we change the number of states. For doing the test I have built seven classes of LTSs. Each class has a number of transitions fixed to 100000 and states that vary. For each class the number of states and the number of samples for each class, are specified by means of the Table 2. For each class I have built 20 LTSs, and I have taken the arithmetic mean of time execution in milliseconds of the 20 samples. The results are shown in Figure 12 on the previous page and available in tabular format in Table 1.

As stated by Valmari Val09 it is difficult to get full control of the activities that is going on in a modern computer. As a consequence, the measurements contain some noise, hence the results should be considered as typical, not as the absolute truth. For example as we can see in Table 1 the time execution of the Valmari's algorithm contains an anomaly: the time execution does not grow when states are grater than 20000 . This may be caused by this fact: when the number of states grow the Valmari's alghorithm removes the unreachable states early in the algorithm and this affect the time execution. Also the time execution depends on the size of the result, that is on the number of classes found. The smaller it is, the less splitting of blocks hence minor time execution.

Despite of what we have said above we can see in Figure 12 on the preceding page that when we keep fixed the number of transitions and let vary the number of states, the time execution of the Kannellakis\&Smolka's algorithm grows linearly in the number of states while the Valmari's algorithm grows slower (more or less in a logarithmic scale).

Figure 13: LTSs with 10000 states and labels taken randomly from a set of length 10. Transitions vary on x-axis

Transitions	Time KS (ms)	Time Valmari (ms)
50000	7403.7	3417.35
100000	10274.6	6363.45
150000	11494.85	8058.85
200000	12379.6	10161.65

Table 3: Results of the test done on LTSs with 10000 states and label taken randomly from a set of length 10 . Transitions vary on the first column.

7.2 Second test

The goal of the second test is to measure the time execution of the algorithm of Kannellakis\&Smolka and Valmari when we keep fixed the number of states and we change the number of transitions. For doing the tests I have built four classes of LTSs. Each class has a number of states fixed to 10000 and transitions that vary. For each class the number of transitions and the number of samples for each class are specified by means of the Table 4 on the next page. As in the previous test for each class I have built 20 LTSs, and I have taken the arithmetic mean of the time execution in milliseconds of the 20 samples. The results are shown in Figure 13 and available in tabular form in Table 3

As we can see when we keep fixed the number of states and vary the number of transitions, the time execution of both the algorithms grows linearly.

Class Number	Number of transitions	Number of samples
1	50000	20
2	100000	20
3	150000	20
4	200000	20

Table 4: Description of the classes for the second test.

8 BPP nets and team bisimilarity

In this Section, I describe the BPP nets, a subclass of finite Place/Transition Petri nets, and a bisimulation-based, behavioral equivalence, called team bisimilarity. A BPP net is a simple type of finite Place/Transition Petri net whose transitions have singleton pre-set. The description done in this section is taken from Gor21b. For a full description of Petri Nets, and subclasses of finite Place/Transition Petri nets, as well as the main behavioral equivalences see Gor17.

8.1 Definitions

Definition 8.1 (Multiset). Let \mathbb{N} be the set of natural numbers. Given a finite set S, a multiset over S is a function $m: S \rightarrow \mathbb{N}$. The support set $\operatorname{dom}(m)$ of m is $\{s \in S \mid m(s) \neq 0\}$. The set of all multisets over S, denoted by $\mathscr{M}(S)$, is ranged over by m. We write $s \in m$ if $m(s)>0$. The multiplicity of s in m is given by the number $m(s)$. The size of m, denoted by $|m|$ is the number $\sum_{s \in S} m(s)$. A multiset m such that $\operatorname{dom}(m)=\emptyset$ is called empty and is denoted by θ. We write $m \subseteq m^{\prime}$ if $m(s) \leq m^{\prime}(s)$ for all $s \in S$.

Multiset union \oplus_{-}is defined as follows: $\left(m \oplus m^{\prime}\right)(s)=m(s)+m\left(s^{\prime}\right)$; the operation \oplus is commutative, associative and has θ as neutral element. Multiset difference $\quad \ominus$ _ is defined as follows: $\left(m_{1} \ominus m_{2}\right)(s)=\max \left\{m_{1}(s)-m_{2}(s), 0\right\}$. The scalar product of a number j with m is the multiset $j \cdot m$ defined as $(j \cdot m)(s)=j \cdot(m(s))$.

By s_{i} we also denote the multiset with s_{i} as only element. Hence, a multiset m over $S=\left\{s_{1}, \ldots, s_{n}\right\}$ can be represented as $k_{1} \cdot s_{1} \oplus k_{2} \cdot s_{2} \oplus \cdots \oplus k_{n} \cdot s_{n}$, where $k_{j}=m\left(s_{j}\right) \geq 0$ for $j=1, \ldots, n$.

Definition 8.2 (BPP net). A labeled BPP net is a tuple $N=(S, A, T)$ where

- S is the finite set of places, ranged over by s (possibly indexed),
- A is the finite set of labels, ranged over by l (possibly indexed), and
- $T \subseteq S \times A \times \mathscr{M}(S)$ is the finite set of transitions, ranged over by t (possibly indexed).

Given a transition $t=(s, l, m)$, we use the notation:

- ${ }^{\bullet} t$ to denote its pre-set s (which is a single place) of tokens to be consumed;
- $l(t)$ for its label l, and
- t^{\bullet} to denote its post-set s (which is a multiset, possibly even empty) of tokens to be produced.

Figure 14: Four seasons

Hence, transitions t can be also represented as ${ }^{\bullet} t \xrightarrow{l(t)} t^{\bullet}$. In a $B P P$ net for every transition $t \in T$ we have that: $|\bullet t|=1$, that is every transition has exactly one input place.

Graphically, a place is represented by a little circle, a transition by a little box, which is connected by a directed arc from the place in its pre-set and to the places in its post-set (if any); the out-going arcs may be labeled with a number to denote the number of tokens produced by the transition (if the number is omitted, then the default value is 1).

For example in Figure 14 we have a $B P P$ net that represents the four seasons of the year where

$$
S=\{\text { spring, summer, autumn, winter }\}
$$

$A=\{$ warm up, cool down $\}$
$T=\{$ (spring, warm up, summer),(summer, cool down, autumn) $\} \cup$
$\cup\{$ (autumn, cool down, winter),(winter, warm up, spring) $\}$
Definition 8.3 (Marking, BPP net system, firing sequence, reachable place, dynamically reduced). A multiset over S is called a marking. Given a marking m and a place s, we say that the place s contains $m(s)$ tokens, graphically represented by $m(s)$ bullets inside place s. A BPP net system $N\left(m_{0}\right)$ is a tuple (S, A, t, m_{0}), where (S, A, T) is a BPP net and m_{0} is a marking over S, called the initial marking. We also say that $N\left(m_{0}\right)$ is a marked net.

A transition t is enabled at marking m, denoted by $m[t\rangle$, if $t \subseteq m$. The execution (or firing) of t enabled at m produces the marking $m^{\prime}=(m \ominus \bullet t) \oplus t^{\bullet}$. This is written $m[t\rangle m^{\prime}$. This procedure is called the token game.

A firing sequence starting at m is defined inductively as follows:

- $m[\varepsilon\rangle m$ is a firing sequence (where ε denotes the empty sequence of transitions) and
- if $m[\sigma\rangle m^{\prime}$ is a firing sequence and $m^{\prime}[t\rangle m^{\prime \prime}$, then $m[\sigma t\rangle m^{\prime \prime}$ is a firing sequence.

If $\sigma=t_{1} \ldots t_{n}$ for ($n \geq 0$) and $m[\sigma\rangle m^{\prime}$ is a firing sequence, then there exist m_{1}, \ldots, m_{n+1} such that $m=m_{1}\left[t_{1}\right\rangle m_{2}\left[t_{2}\right\rangle \ldots m_{n}\left[t_{n}\right\rangle m_{n+1}=m^{\prime}$ and $\sigma=$

Figure 15: The net representing a semi-counter in (a), and a variant in (b)
$t_{1} \ldots t_{n}$ is called a transition sequence starting at m and ending at m^{\prime}. The set of reachable markings from m is

$$
[m\rangle=\left\{m^{\prime} \mid \exists \sigma \cdot m[\sigma\rangle m^{\prime}\right\} .
$$

Note that the reachable markings can be countably infinite. The set of reachable places from s is

$$
\operatorname{reach}(s)=\bigcup_{m \in[s\rangle} \operatorname{dom}(m)
$$

Note that $\operatorname{reach}(s)$ is always a finite set, even if $[s\rangle$ is infinite. A BPP net system $N\left(m_{0}\right)=\left(S, A, T, m_{0}\right)$ is dynamically reduced if

$$
\forall s \in S \exists m \in\left[m_{0}\right\rangle . m(s) \geq 1
$$

and also,

$$
\forall t \in T \exists m, m^{\prime} \in\left[m_{0}\right\rangle \quad \text { such that } \quad m[t\rangle m^{\prime}
$$

Example 8.1. By using the drawing convention for Petri nets mentioned above, Figure 15 a shows the simplest BPP net representing a semi-counter, that is, a counter which cannot test for zero. The number represented by this semi-counter is given by the number of tokens which are present in place s_{2}, that is, in the place ready to perform the action dec. Figure 15 a represents a semi-counter holding number 0 ; note also that the number of tokens which can be accumulated in s_{2} is unbounded. Indeed, the set of reachable markings for a BPP net can be countably infinite. In Figure 15b a variant semi-counter is outlined, which holds number 2 (that is two tokens are ready to perform action dec).

8.2 Additive closure

In this Section I introduce a relation $R^{\oplus} \subseteq \mathscr{M}(S) \times \mathscr{M}(S)$, where $\mathscr{M}(S)$ is defined in Definition 8.1 on page 37, that will be used for defining the Team bisimulation.

Definition 8.4 (Additive closure). Given a BPP net $N=(S, A, T)$ and a place relation $R \subseteq S \times S$, we define a marking relation $R^{\oplus} \subseteq \mathscr{M}(S) \times \mathscr{M}(S)$, called the additive closure of R, as the least relation induced by the following axiom and rule.

$$
\overline{(\theta, \theta) \in R^{\oplus}} \quad \frac{\left(s_{1}, s_{2}\right) \in R \quad\left(m_{1}, m_{2}\right) \in R^{\oplus}}{\left(s_{1} \oplus m_{1}, s_{2} \oplus m_{2}\right) \in R^{\oplus}}
$$

Note that, by definition, two markings are related by R^{\oplus} only if they have the same size; in fact, the axiom states that the empty marking is related to itself, while the rule, assuming by induction that m_{1} and m_{2} have the same size, ensures that $s_{1} \oplus m_{1}$ and $s_{2} \oplus m_{2}$ have the same size. Note also that there may be several proofs of $\left(m_{1}, m_{2}\right) \in R^{\oplus}$ depending on the chosen order of the elements of the two markings and on the definition of R. For instance, if $R=\left\{\left(s_{1}, s_{3}\right),\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{2}, s_{4}\right)\right\}$ then $\left(s_{1} \oplus s_{2}, s_{3} \oplus s_{4}\right) \in R^{\oplus}$ can be proved by means of the pairs $\left(s_{1}, s_{3}\right)$ and $\left(s_{2}, s_{4}\right)$, as well as by means of $\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right)$. An alternative way to define that two markings m_{1} and m_{2} are related by R^{\oplus} is to state that m_{1} can be represented as $s_{1} \oplus s_{2} \oplus \cdots \oplus s_{k}, m_{2}$ can be represented as $s_{1}^{\prime} \oplus s_{2}^{\prime} \oplus \cdots \oplus s_{k}^{\prime}$ and $\left(s_{i}, s_{i}^{\prime}\right) \in R$ for $i=1, \ldots, k$.

Now I list some properties of the additive closure R^{\oplus}.
Proposition 8.1. For each BPP net $N=(S, A, T)$ and each place relation $R \subseteq S \times R$, if $\left(m_{1}, m_{2}\right) \in R^{\oplus}$ then $\left|m_{1}\right|=\left|m_{2}\right|$

Proposition 8.2. For each BPP net $N=(S, A, T)$ and each place relation $R \subseteq S \times S$ the following hold:

1. If R is is reflexive, then R^{\oplus} is reflexive.
2. If R is symmetric, then R^{\oplus} is symmetric.
3. If R is transitive, then R^{\oplus} is transitive.
4. If $R_{1} \subseteq R_{2}$, then $R_{1}^{\oplus} \subseteq R_{2}^{\oplus}$, that is the additive closure is monotone.

A consequence of the proposition above is that if R is an equivalence relation, then its additive closure R^{\oplus} is also an equivalence relation.

I present in the following Proposition a theorem that its necessary for implementing one of the algorithm for computing R^{\oplus}.

Proposition 8.3 (Additivity/subtractivity). Given a $B P P$ net $N=(S, A, T)$ and a place relation R, the following hold:

1. If $\left(m_{1}, m_{2}\right) \in R^{\oplus}$ and $\left(m_{1}^{\prime}, m_{2}^{\prime}\right) \in R^{\oplus}$ then $\left(m_{1} \oplus m_{1}^{\prime}, m_{2} \oplus m_{2}^{\prime}\right) \in R^{\oplus}$.
2. If R is an equivalence relation, $\left(m_{1} \oplus m_{1}^{\prime}, m_{2} \oplus m_{2}^{\prime}\right) \in R^{\oplus}$ and $\left(m_{1}, m_{2}\right) \in$ R^{\oplus} then $\left(m_{1}^{\prime}, m_{2}^{\prime}\right) \in R^{\oplus}$.

Example 8.2. The requirement that R is an equivalence relation is strictly necessary for Proposition 8.3. As a counterexample, consider

$$
R=\left\{\left(s_{1}, s_{3}\right),\left(s_{1}, s_{4}\right),\left(s_{2}, s_{4}\right)\right\}
$$

We have that $\left(s_{1} \oplus s_{2}, s_{3} \oplus s_{4}\right) \in R^{\oplus}$ and $\left(s_{1}, s_{4}\right) \in R^{\oplus}$, but $\left(s_{2}, s_{3}\right) \notin R^{\oplus}$.
Some useful properties of additively closed place relations are the following. The proofs of these properties can be found on Gor21b, Section 3.1].

Proposition 8.4. For each BPP net $N=(S, A, T)$ and for each family of place relations $R_{i} \subseteq S \times S(i \in I)$, the following hold:

1. $\emptyset^{\oplus}=\{(\theta, \theta)\}$, that is, the additive closure of the empty place relation is a singleton marking relation, relating the empty marking to itself.
2. $\left(\mathscr{I}_{S}\right)^{\emptyset}=\mathscr{I}_{M}$, that is the additive closure of the identity relation on places $\mathscr{I}_{S}=\{(s, s) \mid s \in S\}$ is the identity relation on markings $\mathscr{I}_{M}=$ $\{(m, m) \mid m \in \mathscr{M}(S)\}$.
3. $\left(R^{\oplus}\right)^{-1}=\left(R^{-1}\right)^{\oplus}$, that is, the inverse of an additively closed relation R is the additive closure of its inverse R^{-1}.
4. $\left(R_{1} \circ R_{2}\right)^{\oplus}=\left(R_{1}^{\oplus}\right) \circ\left(R_{2}^{\oplus}\right)$, that is, the additive closure of the composition of two place relations is the compositions of their additive closures.
5. $\bigcup_{i \in I}\left(R_{i}^{\oplus}\right) \subseteq\left(\bigcup_{i \in I} R_{i}\right)^{\oplus}$, that is, the union of additively closed relations is included into the additive closure of their union.

8.3 Algorithms for checking the additive closure

Given a BPP net (S, A, T), in this section I present two algorithms for checking if two marking m_{1} and m_{2} are related by $R^{\oplus} \subseteq \mathscr{M}(S) \times \mathscr{M}(S)$, under the condition that $R \subseteq S \times S$ is an equivalence relation.

8.3.1 First algorithm

The first algorithm is described in Gor21b. The description that I do in the following is taken from Gor21a and Gor21b]. The algorithm, establishes whether an R-preserving bijection between the two markings exists, by first implementing the equivalence relation R as an adjacency matrix A of size n (the entry $A\left[s, s^{\prime}\right]$ is marked 1 if $\left(s, s^{\prime}\right) \in R, 0$ otherwise), and then by checking whether for each place/token s in m_{1} there exists a place/token s^{\prime} in m_{2} such that the entry $A\left[s, s^{\prime}\right]$ is is marked 1 . The complexity of this algorithm is not very high: first, the generation of the adjacency matrix takes $O\left(n^{2}\right)$ time, and then checking whether $\left(m_{1}, m_{2}\right) \in R^{\oplus}$ takes $O\left(k^{2}\right)$ time, if k is the size of m_{1} and m_{2}. Note that if we want to perform additional team equivalence checks on the same net, we can reuse the already computed matrix A, so that the new checks will take only $O\left(k^{2}\right)$ time from the second check on. It is important to mention that this algorithm is correct only if R is an equivalence relation, so that R^{\oplus} is is subtractive. In fact, assuming that $\left(m_{1}, m_{2}\right) \in R^{\oplus}$, when we match one place, say s_{1} in m_{1} with one place, say s_{2} in m_{2} such that $\left(s_{1}, s_{2}\right) \in R$, then

```
Let N=(S,A,T) be a BPP net.
Let R\subseteqS\timesS be a place relation, which is an equivalence.
Let A be the adjacency matrix generated as follows:
A[s,\mp@subsup{s}{}{\prime}]=1 if (s,\mp@subsup{s}{}{\prime})\inR ; otherwise }A[s,\mp@subsup{s}{}{\prime}]=0
Let m
ki}>0 for i=1,\ldots\mp@subsup{j}{1}{}\mathrm{ and }\mp@subsup{\sum}{i=1}{\mp@subsup{j}{1}{}}\mp@subsup{k}{i}{}=k
Let }\mp@subsup{M}{1}{}\mathrm{ be an array of length j}\mp@subsup{j}{1}{}\mathrm{ such that:
M1[j]=\mp@subsup{k}{j}{}, for j=1,\ldots,\mp@subsup{j}{1}{}.
Let m}\mp@subsup{m}{2}{}=\mp@subsup{h}{1}{}\cdot\mp@subsup{s}{21}{}\oplus\mp@subsup{h}{2}{}\cdot\mp@subsup{s}{22}{}\oplus\cdots\oplus\mp@subsup{h}{\mp@subsup{j}{2}{}}{}\cdot\mp@subsup{s}{2\mp@subsup{j}{2}{}}{}\mathrm{ such that:
hi}>0\mathrm{ for }i=1,\ldots\mp@subsup{j}{2}{}\mathrm{ and }\mp@subsup{\sum}{i=1}{\mp@subsup{j}{2}{}}\mp@subsup{h}{i}{}=k
Let }\mp@subsup{M}{2}{}\mathrm{ be an array of length j}\mp@subsup{j}{2}{}\mathrm{ such that:
M2[j]=h; for j=1,\ldots,jo.
Let P be the set of currently matched R-related places,
initialized to \emptyset
for i=1 to jl do
    for j=1 to }\mp@subsup{M}{1}{}[i] d
        h=1
        b= true
        while ( }h\leq\mp@subsup{j}{2}{}\mathrm{ and b) do
        if }\mp@subsup{M}{2}{}[h]\not=0\mathrm{ and }A[\mp@subsup{s}{1i}{},\mp@subsup{s}{2h}{}]==1 the
                add ( s1i, s2h) to P
                M}\mp@subsup{M}{2}{[h]= M M [h]-1
                b= false
            else
                h=h+1
            end if
        end while
        if h>j j then
        return false
        end if
    end for
end for
return P
```

Listing 11: Checking the Additive Closure of an Equivalence Place Relation

```
Let }N=(S,A,T) be a BPP net, with S={ s1,\ldots, sn 
Let m}\mp@subsup{m}{1}{}\mathrm{ and m}\mp@subsup{m}{2}{}\mathrm{ be two markings on S.
Let }R\subseteqS\timesS\mathrm{ be an equivalence place relation.
Let }P={\mp@subsup{B}{1}{},\ldots,\mp@subsup{B}{l}{}},1\leql\leqn be the partition of S
in the equivalence classes (called blocks) of R where:
    Bi\cap B
    \bigcup li=1 }\mp@subsup{|}{i}{l}=S
    \foralls,\mp@subsup{s}{}{\prime}\in\mp@subsup{B}{i}{}(s,\mp@subsup{s}{}{\prime})\inR for i=1,\ldots,l and, finally
```



```
Let count , count ( be two integer variables
for all blocks in P do
    \mp@subsup{count }{1}{},\mp@subsup{\mathrm{ count }}{2}{}=0
    for all places s in the current block do
        \mp@subsup{count}{1}{}=\mp@subsup{\mathrm{ count }}{1}{}+\mp@subsup{m}{1}{}(s)
        \mp@subsup{count }{2}{}=\mp@subsup{\mathrm{ count }}{2}{}+\mp@subsup{m}{2}{}(s)
    end for
    if not count }==\mp@subsup{\mathrm{ count }}{2}{}\mathrm{ then
        return false
    end if
end for
return true
```

Listing 12: Algorithm for checking whether $\left(m_{1}, m_{2}\right) \in R^{\oplus}$
we need that also $\left(m_{1} \ominus s_{1}, m_{2} \ominus s_{2}\right) \in R^{\oplus}$ (cf. Example 8.2). The pseudo-code is available in Listing 11 on the previous page

Of course, two markings m_{1} and m_{2} are not team bisimilar if they have different size, or if the Algorithm described in this Section fails by singling out a place s in the residual of m_{1} (that is, in the portion of m_{1} which has not been scanned yet) which has no matching team bisimilar place in (the residual of) m_{2}.

8.3.2 Second algorithm

The second algorithm is described in Gor21a. The algorithm described in Gor21a is a slight generalization of the algorithm proposed originally in Lib19. The description that I do in the following is taken from Gor21a.

The algorithm checks whether $\left(m_{1}, m_{2}\right) \in R^{\oplus}$ simply by checking if, for each equivalence class of R, the number of places/tokens of m_{1} in that class equals the number of places/tokens of m_{2} in the same class. In this way, we are sure that there is an R-preserving bijective mapping between the two markings. The complexity of this new algorithm is $O(n)$, because we have essentially to scan all the (equivalence classes and then the) places (in these classes), and this complexity holds already for the first check. Therefore, this new algorithm is better than the one described in Section 8.3.1 on page 41, while it may be less performant than the original one, from the second check onwards, only if the
markings are small compared to the size of the net: more precisely, if $k<\sqrt{n}$. The pseudo-code is available in Listing 12 on the previous page. The reason why this second algorithm usually outperforms the one described in Section 8.3.1 is that, by exploiting the partition of S induced by R, there is no need to build any auxiliary data structure for representing R.

Two markings m_{1} and m_{2} are not team bisimilar, if for some equivalence class B of \sim, the number of all the tokens in the places of m_{1} belonging to B is different from the number of all the tokens in the places of m_{2} belonging to B.

8.4 Team bisimulation on places

Now that we have defined the additive closure R^{\oplus} we are ready to define the Team bisimulation on places.

Definition 8.5 (Team bisimulation). Let $N=(S, A, T)$ be a BPP net. A team bisimulation is a place relation $R \subseteq S \times S$ such that if $\left(s_{1}, s_{2}\right) \in R$ then for all $l \in A$

- $\forall m_{1}$ such that $s_{1} \xrightarrow{l} m_{1}, \exists m_{2}$ such that $s_{2} \xrightarrow{l} m_{2}$ and $\left(m_{1}, m_{2}\right) \in R^{\oplus}$,
- $\forall m_{2}$ such that $s_{2} \xrightarrow{l} m_{2}, \exists m_{1}$ such that $s_{1} \xrightarrow{l} m_{1}$ and $\left(m_{1}, m_{2}\right) \in R^{\oplus}$.

Two places s and s^{\prime} are team bisimilar (or team bisimulation equivalent), denoted $s \sim s^{\prime}$, if there exists a team bisimulation R such that $\left(s, s^{\prime}\right) \in R$
Example 8.3. If we consider the BPP nets in Figure 15 on page 39, it is easy to see that relation:

$$
R=\left\{\left(s_{1}, s_{3}\right),\left(s_{1}, s_{4}\right),\left(s_{2}, s_{5}\right),\left(s_{2}, s_{6}\right)\right\}
$$

is a team bisimulation. In fact, the pair $\left(s_{1}, s_{3}\right)$ is a team bisimulation pair because, to transition $s_{1} \xrightarrow{i n c} s_{1} \oplus s_{2}, s_{3}$ can respond with $s_{3} \xrightarrow{i n c} s_{4} \oplus s_{5}$, and $\left(s_{1} \oplus s_{2}, s_{4} \oplus s_{5}\right) \in R^{\oplus}$; symmetrically, if s_{3} moves first. Also the pair $\left(s_{1}, s_{4}\right)$ is a team bisimulation pair because, to transition $s_{1} \xrightarrow{i n c} s_{1} \oplus s_{2}, s_{4}$ can respond with $s_{4} \xrightarrow{\text { inc }} s_{3} \oplus s_{6}$ and $\left(s_{1} \oplus s_{2}, s_{3} \oplus s_{6}\right) \in R^{\oplus}$; symmetrically, if s_{4} moves first. Also the pair $\left(s_{2}, s_{5}\right)$ is a team bisimulation pair: to transition $s_{2} \xrightarrow{\text { dec }} \theta, s_{5}$ responds with $s_{5} \xrightarrow{\text { dec }} \theta$, and $(\theta, \theta) \in R^{\oplus}$. Similarly for the pair $\left(s_{2}, s_{6}\right)$. Hence, relation R is a team bisimulation, indeed.

Example 8.4. Consider the nets in Figure 16 on the next page. It is easy to realize that relation

$$
R=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{5}\right),\left(s_{2}, s_{6}\right),\left(s_{2}, s_{7}\right),\left(s_{3}, s_{8}\right),\left(s_{3}, s_{9}\right)\right\}
$$

is a team bisimulation.
Now I list some properties of team bisimulation relations. The proofs of these properties can be found on Gor21b, Section 3.2].

Proposition 8.5. For each BPP net $N=(S, A, T)$, the following hold:

1. The identity relation $\mathscr{I}_{S}=\{(s, s) \mid s \in S\}$ is a team bisimulation;

Figure 16: Two team bisimilar BPP nets
2. the inverse relation $R^{-1}=\left\{\left(s^{\prime}, s\right) \mid\left(s, s^{\prime}\right) \in R\right\}$ of a team bisimulation R is a team bisimulation;
3. the relational composition

$$
R_{1} \circ R_{2}=\left\{\left(s, s^{\prime \prime}\right) \mid \exists s^{\prime} .\left(s, s^{\prime}\right) \in R_{1} \wedge\left(s^{\prime}, s^{\prime \prime}\right) \in R_{2}\right\}
$$

of two team bisimulations R_{1} and R_{2} is a team bisimulation;
4. the union $\bigcup_{i \in I} R_{i}$ of team bisimulations R_{i} is a team bisimulation.

As stated in Definition 8.5 on the preceding page given two places s and s^{\prime} we have that $s \sim s^{\prime}$, if there exists a team bisimulation containing the pair $\left(s, s^{\prime}\right)$. This means that \sim is the union of all team bisimulations, that is,

$$
\begin{equation*}
\sim=\bigcup\{R \subseteq S \times S \mid R \text { is a team bisimulation }\} \tag{2}
\end{equation*}
$$

By Proposition 8.5, point $4, \sim$ is also a team bisimulation, hence the largest such relation.

Proposition 8.6. For each BPP net $N=(S, A, T)$, relation $\sim \subseteq S \times S$ is the largest team bisimulation relation.

A team bisimulation relation need not be reflexive, symmetric, or transitive. Nonetheless, the largest team bisimulation relation \sim is an equivalence relation. As a matter of fact, as the identity relation \mathscr{I}_{S} is a team bisimulation by Proposition 8.5, point 1 , we have that $\mathscr{I}_{S} \subseteq \sim$, and so \sim is reflexive. Symmetry derives from the following argument. For any $\left(s, s^{\prime}\right) \in \sim$, there exists a team bisimulation R such that $\left(s, s^{\prime}\right) \in R$; by Proposition 8.5, point 2 , relation R^{-1} is a team bisimulation containing the pair $\left(s^{\prime}, s\right)$; hence, $\left(s^{\prime}, s\right) \in \sim$ because
$R^{-1} \subseteq \sim$. Transitivity also holds for \sim. Assume $\left(s, s^{\prime}\right) \in \sim$ and $\left(s^{\prime}, s^{\prime \prime}\right) \in \sim$; hence, there exist two team bisimulations R_{1} and R_{2} such that $\left(s, s^{\prime}\right) \in R_{1}$ and $\left(s^{\prime}, s^{\prime \prime}\right) \in R_{2}$; by Proposition 8.5, point 3 , relation $R_{1} \circ R_{2}$ is a team bisimulation containing the pair $\left(s, s^{\prime \prime}\right)$; hence, $\left(s, s^{\prime \prime}\right) \in \sim$, because $R_{1} \circ R_{2} \subseteq \sim$. Summing up, we have the following.
Proposition 8.7. For each $B P P$ net $N=(S, A, T)$, relation $\sim \subseteq S \times S$ is an equivalence relation.

8.5 Team bisimilarity over markings

Starting from team bisimilarity \sim, which has been computed over the places of an unmarked BPP net, we can extend team bisimulation equivalence over its markings in a distributed way: m_{1} is team bisimulation equivalent to m_{2} if they are related by the additive closure of \sim, that is, if $\left(m_{1}, m_{2}\right) \in \sim \oplus$, usually denoted by $m_{1} \sim^{\oplus} m_{2}$.

If team bisimilarity \sim is implemented as a matrix A such that

$$
A\left[s, s^{\prime}\right]= \begin{cases}1 & \text { if } s \sim s^{\prime} \\ 0 & \text { if } s \nsim s^{\prime}\end{cases}
$$

then for checking if $\left(m_{1}, m_{2}\right) \in \sim \sim^{\oplus}$ we can use the algorithm outlined in Section 8.3.1 on page 41. Otherwise if \sim is implemented by equivalence classes we can use the algorithm outlined in Section 8.3 .2 on page 43

In the following I list some properties of \sim^{\oplus}.
Proposition 8.8. For each $B P P$ net $N=(S, A, T)$, if $m_{1} \sim^{\oplus} m_{2}$, then $\left|m_{1}\right|=$ $\left|m_{2}\right|$
Proposition 8.9. For each $B P P$ net $N=(S, A, T)$, relation $\sim{ }^{\oplus} \subseteq \mathscr{M}(S) \times$ $\mathscr{M}(S)$ is an equivalence relation.
Example 8.5. If we take the semi-counter depicted in Figure 15 on page 39 , the marking $s_{1} \oplus 2 \cdot s_{2}$ is team bisimilar to the following markings of the net in (b): $s_{3} \oplus 2 \cdot s_{5}$, or $s_{3} \oplus s_{5} \oplus s_{6}$, or $s_{3} \oplus 2 \cdot s_{6}$, or $s_{4} \oplus 2 \cdot s_{5}$, or $s_{4} \oplus s_{5} \oplus s_{6}$, or $s_{4} \oplus 2 \cdot s_{6}$.
Example 8.6. If we take the two BPP nets depicted in Figure 16 on the preceding page, it is clear that, for instance, $s_{1} \oplus 3 \cdot s_{2}$ is team bisimilar to any marking obtained with one token on place s_{4} and three tokens distributed over the places s_{5}, s_{6} and s_{7}; for example $s_{1} \oplus 3 \cdot s_{2} \sim^{\oplus} s_{4} \oplus 2 \cdot s_{5} \oplus s_{7}$ or $s_{1} \oplus 3 \cdot s_{2} \sim{ }^{\oplus} s_{4} \oplus s_{6} \oplus 2 \cdot s_{7}$.

9 Team bisimilarity over places as a fixed point

In this Section I describe Team bisimilarity over places as a fixed point. The description done in this Section is taken from Gor21b, Section 3.4].

The Team bisimulation equivalence over places can be characterized nicely as the greatest fixed point of a suitable monotone relation transformer, essentially by extending the characterization developed for ordinary bisimulation over LTSs done in Section 3 on page 5 .

Even if the discussion done in this Section is similar to the one done in Section 3 on page 5 for LTSs, for the sake of clarity I will report it anyway.

Definition 9.1. Given a BPP net $N=(S, A, T)$, the functional $F: \mathcal{P}(S \times S) \rightarrow$ $\mathcal{P}(S \times S)$ (i.e., a transformer of binary relations over S) is defined as follows. If $R \subseteq S \times S$, then $\left(s_{1}, s_{2}\right) \in F(R)$ if and only if for all $l \in A$

- $\forall m_{1}$ such that $s_{1} \xrightarrow{l} m_{1}, \exists m_{2}$ such that $s_{2} \xrightarrow{l} m_{2}$ and $\left(m_{1}, m_{2}\right) \in R^{\oplus}$
- $\forall m_{2}$ such that $s_{2} \xrightarrow{l} m_{2}, \exists m_{1}$ such that $s_{1} \xrightarrow{l} m_{1}$ and $\left(m_{1}, m_{2}\right) \in R^{\oplus}$

As we can see the Definition 9.1 is similar to the one described in Definition 3.1 on page 7. The only difference is that in the case of BPP net the two markings m_{1} and m_{2} must belong to R^{\oplus}.

As in the case of LTSs we have that
Proposition 9.1. For each $B P P$ net $N=(S, A, T)$, we have that:

1. The functional F is monotone, that is, if $R_{1} \subseteq R_{2}$ then $F\left(R_{1}\right) \subseteq F\left(R_{2}\right)$.
2. A relation $R \subseteq S \times S$ is a team bisimulation if and only if $R \subseteq F(R)$.

As stated in Section 3.5 on page 6 a fixed point for F is a relation R such that $R=F(R)$. Knaster-Tarski's fixed point theorem, outlined in Theorem 3.1 on page 7 and described in [Ace+07, p. 80], ensures that the greatest fixed point of the monotone functional F is

$$
\bigcup\{R \subseteq S \times S \mid R \subseteq F(R)\}
$$

It is possible to show that this greatest fixed point is $\sim . \sim$ is defined in Equation 2 on page 45 As stated in Section 3.5 on page 6, a post-fixed point of F is a relation R such that $R \subseteq F(R)$. By Proposition 9.1, point 2 , we know that the team bisimulations are the post-fixed points of F. As we can see in Equation 2 on page 45 team bisimilarity \sim is the union of all the team bisimulations. Hence, we conclude that \sim is the greatest fixed point of F, that is

$$
\sim=\bigcup\{R \subseteq S \times S \mid R \subseteq F(R)\}
$$

The following theorem provides a direct proof of this fact.
Theorem 9.1. Team bisimilarity \sim is the greatest fixed point of F.
Proof. We first prove that \sim is a fixed point, that is, $\sim=F(\sim)$, by proving that $\sim \subseteq F(\sim)$ and that $F(\sim) \subseteq \sim$. Since \sim is a team bisimulation, $\sim \subseteq F(\sim)$ by Proposition 9.1, point 2. As F is monotonic, by Proposition 9.1, point 1, we have that $F(\sim) \subseteq F(F(\sim))$, that is, also $F(\sim)$ is a post-fixed point of F i.e., a team bisimulation. Since we know that \sim is the union of all team bisimulation relations (as well as the greatest post-fixed point of F), it follows that $F(\sim) \subseteq \sim$.

Now we want to show that \sim is the greatest fixed point. Assume T is another fixed point of F, i.e. $T=F(T)$. Then, in particular, we have that $T \subseteq F(T)$, i.e., T is a team bisimulation by Proposition 9.1, point 2, hence $T \subseteq \sim$

There is a natural iterative way of approximating \sim by means of a descending (actually, initially descending, and then constant from a certain point onwards) chain of relations indexed on the natural numbers. We will see that there is a strict relation between this chain of relations and the functional F above.

Definition 9.2. Given a BPP net $N=(S, A, T)$, for each natural $i \in \mathbb{N}$, we define the binary relation \sim_{i} over S as follows:

- $\sim_{0}=S \times S$.
- $s_{1} \sim_{i+1} s_{2}$ if and only if for all $l \in A$
$-\forall m_{1}$ such that $s_{1} \xrightarrow{l} m_{1}, \exists m_{2}$ such that $s_{2} \xrightarrow{l} m_{2}$ and $m_{1} \sim_{i}^{\oplus} m_{2}$
$-\forall m_{2}$ such that $s_{2} \xrightarrow{l} m_{2}, \exists m_{1}$ such that $s_{1} \xrightarrow{l} m_{1}$ and $m_{1} \sim_{i}^{\oplus} m_{2}$
We denote by \sim_{ω} the relation $\bigcup_{i \in \mathbb{N}} \sim_{i}$.
Intuitively, $s_{1} \sim_{i} s_{2}$ if and only if the two places are team bisimilar up to paths of length at most i. Hence, all the places are in the relation \sim_{0}.

Proposition 9.2. For each $i \in \mathbb{N}$ we have that:

- relation \sim_{i} is an equivalence relation,
- $\sim_{i}=F^{i}(S \times S)$
- $\sim_{i+1} \subseteq \sim_{i}$

Moreover, $\sim_{\omega}=\bigcap_{i \in \mathbb{N}} \sim_{i}$ is an equivalence relation.
Hence, we have a non-increasing chain of equivalence relations,

$$
\sim_{0}=F^{0}(S \times S) \supseteq \sim_{1}=F^{1}(S \times S) \supseteq \cdots \supseteq \sim_{i}=F^{i}(S \times S) \supseteq \cdots \supseteq \sim_{\omega}
$$

with relation \sim_{ω} as its limit. Interestingly, this limit coincides with team bisimilarity \sim, as proved below. Some auxiliary lemmata are needed.

Lemma 9.1. For each BPP net $N=(S, A, T)$, it holds that there exists an index k such that $\sim_{k}=\sim_{k+1}=\cdots=\sim_{\omega}$, i.e., the chain is initially decreasing, but becomes constant from index k onwards.

Proof. Since the BPP net is finite, the initial relation $\sim_{0}=S \times S$ is finite as well. Therefore, it is not possible that $\sim_{i}=F^{i}(S \times S) \supset \sim_{i+1}$ for all $i \in \mathbb{N}$. This means that there exists an index k such that $\sim_{k}=F^{k}(S \times S)=F\left(F^{k}(S \times S)\right)=\sim_{k+1}$. Hence $\sim_{k}=\sim_{j}$ for each $j>k$, and so $\sim_{k}=\sim_{\omega}$.

Theorem 9.2. For each BPP net $N=(S, A, T)$, it holds that $\sim=\sim_{\omega}$.
Proof. We prove first that $\sim \subseteq \sim_{i}$ for all i by induction on i. Indeed, $\sim \subseteq \sim_{0}$ (the universal relation); moreover, assuming $\sim \subseteq_{i}$, by monotonicity of F and the fact that \sim is a fixed point for F, we get $\sim=F(\sim) \subseteq F\left(\sim_{i}\right)=\sim_{i+1}$. Hence $\sim \subseteq \sim_{\omega}$.

Now we prove that $\sim_{\omega} \subseteq \sim$, by showing that relation \sim_{ω} is a team bisimulation. Indeed by Lemma 9.1, we know that $\sim_{\omega}=\sim_{k}$ for some $k \in \mathbb{N}$. As $\sim_{k+1}=F\left(\sim_{k}\right.$ $)=\sim_{k}$, we have that \sim_{k}, thanks to Definition 9.2, satisfies Definition 9.1 on the preceding page, so that, by Preposition 9.1 on the previous page point $2, \sim_{k}$ is a team bisimulation.

The characterization of \sim as the limit of the non-increasing chain of relations \sim_{i} offers an easy algorithm to compute team bisimilarity \sim over BPP nets; just start from the universal relation $R_{0}=S \times S$ and then iteratively apply functional F; when $R_{i+1}=F\left(R_{i}\right)=R_{i}$, then stop and take R_{i} as the team bisimilarity
relation. The aforementioned approach is the same followed for computing the bisimulation equivalence on finite labeled transition system, outlined in Listing 1 on page 8 . Of course, this algorithm always terminates by the argument in Lemma 9.1 on the previous page since S is finite, we are sure that an index k exists such that $R_{k+1}=F\left(R_{k}\right)=R_{k}$. As I said before the algorithm is the same as the one in Listing 1 on page 8 .

9.1 Implementation

For computing the team bisimulation equivalence through the fixed point approach on BPP nets, I have followed the same procedure for computing the bisimulation equivalence on labeled transition systems, through the fixed point approach, outlined in Section 6.1 on page 25 . The only change that I have done is to take into account the additive closure R^{\oplus}. In the following, I will describe the algorithm outlined in Section 6.1 on page 25 with the changes done for taking into account the additive closure R^{\oplus}.

Given a BPP net $N=(S, A, T)$, the implementation simply, starts with the relation $R=S \times S$, where R is the Cartesian product of the state S with itself. Then iterates until -under certain conditions- no other couples $\left(s_{1}, s_{2}\right) \in R$ can be removed. The conditions that the couples $\left(s_{1}, s_{2}\right) \in R$ must satisfy are the ones defined in Definition 8.5 on page 44 .

I have implemented the relation $R=S \times S$-and the subsets of R - as a List of couples $\left(s_{1}, s_{2}\right) \in R$ where $s_{1} \in S$ and $s_{2} \in S$. The BPP net in this algorithm is implemented as a class that has one, fundamental, field: a vector v that takes in input a place $s \in S$ and an action $a \in A$ and returns the list of multisets that are reachable from the place s, when s does the action a. The vector v takes in input a place s and an action a as numbers so the class used for implementing the BPP nets, has two additional fields that are two maps. The first map takes in input a place $s \in S$ and gives in output a number associated to the state s, the second map takes in input an action $a \in A$, and gives in output a number associated to the action a.

9.1.1 Detailed steps

For computing the team bisimulation equivalence the algorithm initially sets R to $S \times S . R$ is, at the beginning, the list of couples (s_{1}, s_{2}) -with $s_{1} \in S$ and $s_{2} \in S$ - of length n^{2} where $n=|S|$.

For each couple $\left(s_{1}, s_{2}\right) \in R$ the algorithm does the following: for each label $a \in A$:

1. Builds a list $l 1$ of multisets. The list $l 1$ contains all the multisets that the place s_{1} reaches by doing an action a. The list 11 is built by means of vector v described above. The vector v takes in input the place s_{1} and the action a and returns 11
2. Builds a list 12 of multisets. The list 12 contains all the multisets that the place s_{2} reaches by doing an action a. The list 12 is built by means of vector v described above. The vector v takes in input the place s_{2} and the action a and returns 12
3. For each multiset $m_{1} \in 11$, the algorithm checks if exists a multiset $m_{2} \in 12$, such that $\left(m_{1}, m_{2}\right) \in R^{\oplus}$. If $\left(m_{1}, m_{2}\right) \in R^{\oplus}$ return true else false.
4. Similarly to the previous point, for each multiset $m_{2} \in 12$, the algorithm checks if exists a multiset $m_{1} \in 11$, such that $\left(m_{1}, m_{2}\right) \in R^{\oplus}$. If $\left(m_{1}, m_{2}\right) \in$ R^{\oplus} return true else false.

Then if for all $a \in A$ both the checks in point 3 and 4 of the list above returns true, the the couple $\left(s_{1}, s_{2}\right)$ can stay in the relation R, otherwise it will be removed.

When there is no more couples to be removed from R the algorithm ends and returns the relation R, that contains the team bisimulation equivalence \sim.

Given two multisets m_{1} and m_{2}, for checking if $\left(m_{1}, m_{2}\right) \in R^{\oplus}$, I have implemented the Algorithm described in Section 8.3.1 on page 41

For checking if a couple $\left(s_{1}, s_{2}\right)$ belongs to R or not in $O(1)$ time, as required by the Algorithm described in Section 8.3.1 on page 41, I have implemented a matrix m. The matrix m takes in input a couple of places $\left(s_{1}, s_{2}\right)$, with $s_{1} \in S$ and $s_{2} \in S$, and returns true if $\left(s_{1}, s_{2}\right) \in R$, false otherwise. The matrix m corresponds to the matrix A in the pseudo-code available in Listing 11 on page 42 .

When the algorithm finishes to scan the relation R, divides the relation R in two relations: R_{1} and $R_{2} . R_{1}$ is the set of couples that satisfies the point 3 and 4 of the list above, R_{2} is the set of couples that does not satisfies the point 3 and 4 of the list above. The couples $\left(s_{1}, s_{2}\right) \in R_{2}$ will be marked as false in the matrix m described in the previous paragraph.

I have implemented the steps described above through the Scala programming language. The code is available at Bar21.

9.1.2 Time complexity

The discussion about the time complexity of computing the team bisimulation equivalence through the fixed point approach on BPP nets, is similar the discussion done for computing the bisimulation equivalence on LTSs through the fixed point approach, done in Section 6.1.2 on page 26. The only difference is that we have to take into account the cost for checking if $\left(m_{1}, m_{2}\right) \in R^{\oplus}$, where m_{1} and m_{2} are two multisets and R is an equivalence relation.

The steps are the following:

1. Initially the length of the relation $R=S \times S$ is equal to n^{2} because $n=|S|$. In the worst case, the algorithm, at every step removes one couple $\left(s_{1}, s_{2}\right) \in R$ at a time so this loop -that we call loop1- costs in the worst case $O\left(n^{2}\right)$.
2. At every step of loop1 we we have to iterate over all the couples $\left(s_{1}, s_{2}\right)$ of the relation R, for deciding if $\left(s_{1}, s_{2}\right)$ can stay in R or not. This loop -that we call loop2- also costs in the worst case $O\left(n^{2}\right)$.
3. For deciding if a couple $\left(s_{1}, s_{2}\right)$ can stay in R, we have to build the lists 11 and 12 described in Section 9.1.1 on the preceding page, for every $a \in A$. Next, for every multiset $m_{1} \in l 1$, we have to search if exists in 12 a multiset $m_{2} \in 12$ such that $\left(m_{1}, m_{2}\right) \in R^{\oplus}$. That is, given an
action $a \in A$, for every multiset m_{1}^{\prime} such that $s_{1} \xrightarrow{a} m_{1}^{\prime}$ exists a multiset m_{2}^{\prime} such that $s_{2} \xrightarrow{a} m_{2}^{\prime}$ and $\left(m_{1}, m_{2}\right) \in R^{\oplus}$. The cost of checking if $\left(m_{1}, m_{2}\right) \in R^{\oplus}$ is $O\left(k^{2}\right)$ where k is the size of m_{1} and m_{2} because we have employed the Algorithm outlined in Section 8.3.1 on page 41 for checking if $\left(m_{1}, m_{2}\right) \in R^{\oplus}$. If we say that the length of the list 11 of multisets is i and i can be at most m, where m is the number of transitions, for every multiset $m_{1} \in 11$ we have to iterate over all the multiset $m_{2} \in 12$. This costs $O\left(i \cdot j \cdot p^{2}\right)$ where j is the length of the list of multiset 12 and p is the least number such that $\left|t^{\bullet}\right| \leq p$ for all the transition $t \in T$.
So if $i \leq m$ and $j \leq m$ where i and j are respectively the length of 11 and 12 , and p is the least number such that $\left|t^{\bullet}\right| \leq p$ for all the transition $t \in T$, deciding if a couple of places $\left(s_{1}, s_{2}\right)$ can stay in R costs $O\left(m^{2} \cdot p^{2}\right)$, because for every multiset m_{1} that belongs to 11 we have to iterate over all the multiset m_{2} that belongs to 12 and then check if $\left(m_{1}, m_{2}\right) \in R^{\oplus}$. I have omitted the case when s_{2} moves first, that is the case when for every multisets m_{2} that belongs to 12 we have to search if exists a suitable multisets m_{1} that belongs to 11 and then cheking if $\left(m_{1}, m_{2}\right) \in R^{\oplus}$, but it is symmetric to the case when s_{1} moves first, hence costs $O\left(m^{2} \cdot p^{2}\right)$.
Considering that the length of 11 can be at most m where m is the number of transitions f the BPP net is a pessimistic reasoning because 11 represents the transitions that -given a place $s_{1} \in S$ and an action $a \in A$ - starts from s_{1} and by doing an action a end in a multiset $m^{\prime} \in \mathscr{M}(S)$. The length of $l 1$ is certainly less than m. Same for the list 12.
In a random BPP net we may consider that the length of 11 and 12 be at most $\frac{m}{n}$, where n is the number of places of the BPP net, because the transitions that start from a random state q-given an action a - if the transitions are set randomly are seldom m. If the transitions that start from a state q are m it means that all the transitions in the BPP net start from q. So if $i \leq \frac{m}{n}$ and $j \leq \frac{m}{n}$, where i and j are the length of 11 and 12 respectively we have that the cost of deciding if a couple (s_{1}, s_{2}) can stay in R is $O\left(\left(\frac{m}{n}\right)^{2} \cdot p^{2}\right)$, where p is the least number such that $\left|t^{\bullet}\right| \leq p$ for all the transition $t \in T$. The factor p^{2} is the cost of checking if $\left(m_{1}, m_{2}\right) \in R^{\oplus}$, through the algorithm described in Section 8.3.1 on page 41.

For what we have said above the time complexity of the implementation that I have done for computing the time bisimulation equivalence through the fixed point approach is:

1. $O\left(n^{2} \cdot n^{2} \cdot 2\left(\frac{m}{n}\right)^{2} \cdot p^{2}\right)=O\left(n^{2} \cdot m^{2} \cdot p^{2}\right)$ if we consider, the length of 11 and 12 be at most $\frac{m}{n}$.
2. Otherwise if we consider the length of 11 and 12 be at most $O(m)$ the time complexity is $O\left(n^{2} \cdot n^{2} \cdot m^{2} \cdot p^{2}\right)$.

10 K\&S's algorithm for team bisimilarity

In this section, I explain the steps followed in order to implement the Kannellakis and Smolka's algorithm for computing team bisimilarity over places through the Scala programming language.

For the purpose of this Section we can think of a partition as a list of blocks, and of a block as a list of places.

I have implemented a BPP net by means of a vector v, that takes in input a place s and an action a and gives in output the list of multisets reachable from s, when s does an action a. That is, when v takes in input a place s and an action a gives in output all the multiset $m \in \mathscr{M}(S)$ such that $(s, a, m) \in T$, where T is the set of transition of the BPP net on which we have to compute the team bisimulation equivalence. The algorithm also uses a vector indexes of length n, where n is the number of places of the BPP net. The vector indexes takes in input a place p and return the index of the block B , that contains p in the partition. That is, given a partition $\pi=\left\{B_{1}, \ldots, B_{i}, \ldots, B_{n}\right\}$ and a place $p \in B_{i}$, indexes (p) returns i. The program also uses a variable numBlocks that records the number of Blocks in the partition. In addition the BPP net has two fields that i call map_{1} and $\mathrm{map}_{2} ; \operatorname{map}_{1}$ maps each place $s \in S$ to an ID, map_{2} maps each label $a \in A$ to an ID. The IDs are represented as natural numbers. These map are necessary because the vectors v and numBlocks takes their input as a natural number.

10.1 Implementation

Given a BPP net (S, A, T), the algorithm starts with a partition π that contains a unique block B. B contains all places of the BPP net, that is B is equal to S. Next the algorithm scans one at a time each block B in the partition π and does the following: for each $a \in A$:

1. Create two empty set B_{1} and B_{2}
2. Select a place $s \in B$ and by means of the vector v get the list of all multisets reachable from s when s does an action a, this list is called 11 . The vector v takes in input s and a and gives in output 11 .
3. For each multiset m_{i} that belongs to 11 create a vector $\mathrm{vec}_{\mathrm{i}}$ of length numBlocks +1 with all elements of $\mathrm{vec}_{\mathrm{i}}$ set to 0 , that is

$$
\forall k \text { such that } 0 \leq k \leq \text { numBlocks }+1 \text { we have that } \operatorname{vec}_{\mathbf{i}}(\mathrm{k})=0
$$

The vector vec $_{i}$ has length numBlocks +1 because the vectors in Scala starts at index 0 . The element $\operatorname{vec}_{\mathrm{i}}(j)$ contains the number of places/tokens of m_{i} that belong to the block j. In my implementation the blocks are numbered starting from 1 , this is the reason why vec_{i} has length numBlocks +1 . After the vector $\mathrm{vec}_{\mathrm{i}}$ has been created, update $\mathrm{vec}_{\mathrm{i}}$ in the following way:

```
for each p }\in\operatorname{dom}(\mp@subsup{m}{i}{}):\mp@subsup{\operatorname{vec}}{i}{}(\operatorname{indexes}(p))=\mp@subsup{vec}{i}{(indexes}(p))+m, m(p
```

Given a place $p \in S$, index(p) returns the number i of the block such that $p \in B_{i}$.
When all the $\mathrm{vec}_{\mathrm{i}}$ has been built from all the multisets $m_{i} \in 11$, put all the $\mathrm{vec}_{\mathrm{i}}$ in a list called markBlock . The list markBlock ${ }_{\mathbf{s}}$ is a list of vector of the same length, that is for all i and j such that $\mathrm{vec}_{\mathrm{i}}, \mathrm{vec}_{\mathrm{j}} \in$ markBlock $_{\mathrm{s}}$, we have that $\left|\mathrm{vec}_{\mathrm{i}}\right|=\left|\mathrm{vec}_{j}\right|=$ numBlocks +1 . After markBlock s_{s} has been
created, sort markBlock m_{s} by lexicographic order. That is, given two vector $\operatorname{vec}_{\mathrm{i}}=e_{i_{1}}, \ldots, e_{i_{k}}$ and $\mathrm{vec}_{\mathrm{j}}=e_{j_{1}}, \ldots, e_{j_{k}}$, let l the first position where $\mathrm{vec}_{\mathrm{i}}$ and $\mathrm{vec}_{\mathrm{j}}$ differ, we say that $\mathrm{vec}_{\mathrm{i}}<\mathrm{vec}_{\mathrm{j}}$ if ond only if: $e_{i_{l}}<e_{j_{l}}$. After the list markBlock ${ }_{s}$ has been sorted, remove the duplicates from it.
4. For each place $p \in B$ create markBlock p_{p} in the same way as markBlock ${ }_{\mathrm{s}}$ has been created in the two previous points.
5. For all $p \in B$, if markBlock ${ }_{\mathbf{s}}$ is equal to markBlock ${ }_{\mathrm{p}}$, add p to the set B_{1}, otherwise add p to the set B_{2}.
6. If B_{2} is not empty replace B with B_{1} and B_{2} in the partition P, and update numBlocks with numBlocks +1 and for all the places that belong to B_{2}, update the vector indexes in this way:

$$
\forall \text { place } s \in B_{2} \text { indexes }(\mathrm{s})=\text { numBlocks }
$$

If B_{2} is empty go ahead with the next label -indexed with a-. If there is no more label to check go ahead with the next block and repeat the procedure in this list starting over to scan all the labels. If there is no more block to check stop and give in output the partition π that now contains the team bisimulation equivalence \sim.

The code is available at Bar21.

10.2 Time complexity

For defining the time complexity of computing the team bisimulation equivalence on a BPP net (S, A, T) through the implementation of Kannellakis and Smolka's algorithm defined in Section 10.1 on the previous page, we have to do the following considerations:

1. The number of blocks that can be created is at most n, where n is the number of places, because a block composed of one place cannot be further split.
2. When we look for a block to be split, in the worst case we have to look for all the blocks in the partition, so we have to build the list of vectors markBlock $_{\mathrm{s}}$, defined in point 3 of the previous list, for each place $s \in S$. In order to build the vectors markBlock ${ }_{\mathbf{s}}$ for each place $s \in S$ we have to scan all transitions, and this takes $O(m)$ and then for each multiset $m 1$, we have to build a vector, like the vectors $\mathrm{vec}_{\mathrm{i}}$ in point 3 of the previous list, that records the number of places/tokens of $m 1$ that belongs to each block of the partition and this takes $O(n)$, because the number of places/tokens in a multiset can be at most n. Next, we have to sort the vectors markBlock ${ }_{s}$ and deletes the duplicates, this depends on the number of the vectors markBlock ${ }_{s}$ and on the length of each vector markBlock . Moreover, in order to decide if $v e c_{i}<v e c_{j}$, where $v e c_{i}$ and $v e c_{j}$ are two vectors that belongs to markBlock ${ }_{s}$ we have to scan $v e c_{i}$ and $v e c_{j}$ and this takes $O(n)$, because the number of blocks can be at most n, where n is the number of places. Let α the number of vectors markBlock $\mathbf{s}_{\mathbf{s}}$ and β the maximum length among the vectors markBlocks. We have that the time complexity of computing the team bisimulation equivalence through the implementation in this section is $O(n \cdot((m \cdot n)+\alpha \cdot \beta \log \beta \cdot n))$.

11 Conclusions and future work

In this thesis, I have implemented three algorithms for computing bisimulation equivalence on labeled transition system and two algorithms for computing team bisimulation equivalence on BPP nets. The language that I have used is Scala OSV16.

As future work, there is the possibility to lower the time complexity of computing the team bisimulation, by adapting the algorithm described in Section 5 on page 14

References

[PT87] Robert Paige and Robert E. Tarjan. "Three Partition Refinement Algorithms". In: SIAM Journal on Computing 16.6 (1987), pp. 973989. DOI: 10.1137/0216062, eprint: https://doi.org/10.1137/ 0216062. URL: https://doi.org/10.1137/0216062.
[KS90] Paris C. Kanellakis and Scott A. Smolka. "CCS expressions, finite state processes, and three problems of equivalence". In: Information and Computation 86.1 (1990), pp. 43-68. ISSN: 0890-5401. DOI: 10/dn276s. URL: https://www. sciencedirect. com/science/ article/pii/089054019090025D
[Ace +07$]$ Luca Aceto et al. Reactive Systems: Modelling, Specification and Verification. Cambridge University Press, 2007. DOI: $10 / \mathrm{bf} 3 \mathrm{c} 4 \mathrm{z}$. URL: https://doi.org/10.1017/cbo9780511814105.
[Val09] Antti Valmari. "Bisimilarity Minimization in O(m logn) Time". In: June 2009, pp. 123-142. ISBN: 978-3-642-02423-8. DOI: 10.1007/978-3-642-02424-5_9.
[AIS11] Luca Aceto, Anna Ingolfsdottir, and Jiri Srba. "The Algorithmics of Bisimilarity". English. In: Advanced Topics in Bisimulation and Coinduction. Vol. 52. Cambridge Tracts in Theoretical Computer Science 52. United Kingdom: Cambridge University Press, 2011, pp. 100-172. ISBN: 9781107004979. URL: https://www.ru.is/ faculty/luca/PAPERS/algobisimchapter.pdf.
[GV15] Roberto Gorrieri and Cristian Versari. Introduction to Concurrency Theory - Transition Systems and CCS. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2015. ISBN: 978-3-319-21490-0. DOI: $10.1007 / 978-3-319-21491-7$. URL: https: //doi. org/10. 1007/978-3-319-21491-7.
[OSV16] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala, Third Edition. A comprehensive step-by-step guide. artima, 2016. URL: https://www.artima.com/shop/programming_in_scala_3ed
[Gor17] Roberto Gorrieri. Process Algebras for Petri Nets - The Alphabetization of Distributed Systems. Monographs in Theoretical Computer Science. An EATCS Series. Springer, 2017. ISBN: 978-3-319-55558-4. DOI: $10.1007 / 978-3-319-55559-1$. URL: https://doi. org/10. 1007/978-3-319-55559-1.
[Lib19] Alessandro Liberato. "A Study on Bisimulation Equivalence and Team Equivalence". MA thesis. University of Bologna, Computer Science [LM-DM270], 2019. URL: http://amslaurea. unibo.it/ 19128/.
[Bar21] Andrea Baroni. Internship repository. 2021. URL: https://github com/AndreaBaroni92/Tirocinio.
[Gor21a] Roberto Gorrieri. "Causal Semantics for BPP Nets with Silent Moves". In: Fundam. Informaticae 180.3 (2021), pp. 179-249. DoI: 10.3233/ FI-2021-2039, URL: https://doi.org/10.3233/FI-2021-2039,
[Gor21b] Roberto Gorrieri. "Team bisimilarity, and its associated modal logic, for BPP nets". In: Acta Informatica 58.5 (2021), pp. 529-569. DOI: 10.1007/s00236-020-00377-4. URL: https://doi.org/10.1007/ s00236-020-00377-4.

