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Abstract

In this work it is studied a type of quantum phase transitions beyond the Landau-

Ginzburg-Wilson (LGW) paradigm. In particular it is described a second order

transition between the Nèel and the Valence Bond Solid (VBS) states for a two

dimensional quantum square lattice with antiferromagnetic interactions. The natural

description of this critical theory is not given in terms of the order parameter, but in

terms of an emergent gauge field which mediates interactions between ”fractional”

particles. These particles are confined on either sides of the transition, while they

emerge at the critical point, that is thus called ”deconfined”. This critical theory

corresponds to that of a 3D classical O(3) model with monopoles suppressed. In the

second part of this work, this model is numerically simulated by using Monte Carlo

methods, and its critical exponents are obtained.



Abstract

In questo lavoro è mostrato un tipo di transizione di fase quantistica che non può

essere descritto dalla teoria di Landau-Ginzburg-Wilson (LGW). Nello specifico viene

descritta una transizione quantisica del secondo ordine tra uno stato di Néel e uno

stato Valence Bond Solid (VBS) per un sistema antiferromagnetico bidimensionale

su un reticolo quadrato. Tale teoria non viene descritta in termini di un parametro

d’ordine, bens̀ı in termini di un nuovo campo di gauge che è caratteristico solo del

punto critico e media l’interazione tra particelle frazionarie. Queste particelle sono

assenti in entrambe le fasi ed emergono solamente nel punto critico. Questa teoria

critica corrisponde a quella di un modello di Heisenberg classico tridimensionale

con la soppressione di monopoli. Nella seconda parte del lavoro, tramite il metodo

Monte Carlo, questo modello è stato studiato numericamente e se ne sono calcolati

gli esponenti critici.
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Introduction

The theory of phase transitions is crucial in the study of modern statistical mechan-

ics and condensed matter theory. An important element in this context is the order

parameter, that expresses the different symmetries of the phases on either parts of

critical point. If the transition is continuous i.e. of the second order, the theory

shows many physical quantities with universal singular behaviour. Ginzburg and

Landau [14] showed how these universal singularities are associated with the long

wavelength low energy fluctuations of the order parameter. Together with to the

sophisticated renormalization group theory of Wilson [35], it forms the so called

Landau-Ginzburg-Wilson (LGW) paradigm. This is very important for understand-

ing critical singularity in different contexts. According to it effective theories in which

all modes but the order parameters are eliminated can be used in order to determine

critical properties.

At T = 0, thermal fluctuations are suppressed, but quantum fluctuations can still

play a fundamental role. As the coupling parameters in a Hamiltonian vary, they

can become dominant and drive a quantum phase transitions. It is believed that

many properties of correlated materials are due to the competition between different

ground states. Examples are the cuprate high Tc superconductors and the heavy

fermion materials [30]. The LGW paradigm was adapted to these quantum critical

phenomena too.

Evidences of the failure of the LGW paradigm appear already for the classical two

dimensional XY model with the BKT transition between bound vortex-antivortex

pairs to unpaired vortex and antivortex [4]. Moreover in the last few years the number

of models that break the LGW paradigm has increased. In general they correspond to

situations in which the topological structure of the model plays a crucial role, as in the

case of the quantum spin chains studied by Haldane [8]. Numerical calculations [30]

showed a second order transition between two states with different broken symmetry.
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LGW paradigm predict either a first order transition or an intermediate region of

coexistence of the two states. There are also many experiments that prove the onset

of such phase transitions, such as magnetic long range order in a class of rare-earth

intermetallics (heavy fermion metals) [6].

In the first part of this work it is reported a specific transition for a two dimen-

sional S = 1/2 quantum square lattice with antiferromagnetic interactions, between

two ordered phases: the Néel and the Valence bond solid phase that break respec-

tively rotational and translational symmetry. Despite the LGW paradigm predicts

a first order transition, it was find out a second order one. A LGW analysis would

suggest a formulation of a critical theory in terms of the Néel field n̂ and VBS order

parameter ψV BS. The natural description of this theory instead is in terms of a new

degree of freedom specific to the critical point. In our case it corresponds to a gauge

field that mediates interactions between fractional particles i.e. particles that carry

fractions of the quantum number of the field. These particles are confined on both

side of the transition but they appear naturally at the quantum critical point (QCP).

For this reason this is called deconfined QCP.

In this framework it is important to look at the topology of the model: smooth

configurations of the Néel field n̂ admit skyrmions. Changes in skyrmions number

corresponds to monopole events. A crucial role is played by the Berry phase which

makes irrelevant the monopole events (creation of skyrmions) at the QCP. The ab-

sence of monopoles leads to a new conserved quantity, the flux of the gauge field,

that is related with a symmetry that is not present in the microscopical Hamilto-

nian. While monopoles are not present at the QCP, they are relevant in paramagnetic

phase and leads to a VBS ground state.

This particular behaviour of monopoles, that are thus said dangerous irrelevant,

ensures the existence of two different correlation lengths ξ and ξV BS, both diverging

at criticality. The first is the ”standard” spin-spin correlation length, while the

second measures the thickness of the domain wall between two valence bond states

and it diverges faster then ξ. The emergence of spinons at the criticality leads to

large anomalous dimension of the Néel order.

Due to the irrelevance of monopole at QCP, the critical theory is the same of a

O(3) classical Heisenberg model with monopoles suppressed in a cubic lattice. In the

second part of this work we use Monte Carlo methods in order to numerically sim-

ulate this model. Actually we first simulate a ”standard” classical O(3) Heisenberg
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system and find out the critical exponents of transition between the ordered and the

paramagnetic phase. It is seen that neglecting configurations of spin that contain

monopoles, there is no transition at all. On the other hand, the transition is restored

by allowing configurations with pairs of monopoles to exist. The critical exponents

are very different from that of the ”standard” O(3) Heisenberg model.
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Chapter 1

Quantum antiferromagnets

In this chapter we are going to talk about quantum antiferromagnets. In particular

we will focus on second order quantum transitions of two dimensional systems defined

on square lattice. Traditional second order quantum phase transitions are described

by the Landau-Ginzburg-Wilson paradigm [14, 35]. Their idea was to describe the

critical singularities with long wavelength fluctuations of an order parameter which

is able to encode the difference in the order of the two phases on either sides of the

critical point.

1.1 LGW transitions

In a LGW framework the antiferromagnetic transition is described by the Néel order

parameter ϕα (α = x, y, z) that is < ϕα >6= 0 in the Néel state, while < ϕα >= 0 in

the paramagnetic phase.

A simple model that exhibits such transition is given by the O(n) quantum rotors.

In this model we have a second order phase transition between an ordered phase which

breaks the O(n) symmetry, and a disordered phase which preserves the symmetry of

the microscopical Hamiltonian. Another example of transition belonging to the same

universality class, is the spin 1/2 quantum Heisenberg spins on a bipartite lattice

that we will consider in the next section.

We specialize to the case of n = 3. The Hamiltonian of the model is [27, 31]

H = g
∑
r

~L2
r

2
− 1

g

∑
<rr′>

n̂r · n̂r′ (1.1.1)
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1.1. LGW transitions

Here n̂r is a three dimensional vector such that n̂2
r = 1. As usual r labels the

position of the square lattice sites. Each rotor has an associated momentum p̂r that

is orthogonal to the S2 sphere on which n̂r lies, that appears in the Hamiltonian via

the rotor angular momentum:

Lα =
1

2
εαβγ(nβpγ − nγpβ) (1.1.2)

where the index α, β and γ label the three components of the vector and εαβγ is the

totally antisymmetric tensor. The Hamiltonian is manifestly invariant under any

rotation, admitting an O(3) symmetry.

It is clear that for small values of the coupling constant g, the second term

dominates and we obtain an ordered ground state with

< n̂ >6= 0 (1.1.3)

The O(3) symmetry is spontaneously broken down to O(2), with a ground state

corresponding to a uniform vector n̂ while the low energy excitations are two spin

waves [31] with linear dispersion. On the other hand, for large g, it is the first term

that is relevant and we have a paramagnetic ground state with < n̂ >= 0, which

preserves the symmetry of the microscopical Hamiltonian. In this case the low energy

excitations are gapped and correspond to a massive triplet of spin-1 bosons [31].

As it is described in Appendix A, a suitable continuum theory for this kind of

model in (2 + 1) dimensions, is given by the action of the Non Linear Sigma Model

(NLσM) which, in the Euclidean version, reads as:

SNLσM =

∫
d2xdτ

1

2g

[
(∂xn̂)2 + (∂yn̂)2 +

1

c2
(∂τ n̂)2

]
(1.1.4)

This model gives linear equations of motion, the non-linearity being encoded in the

condition |n̂| = 1. Like in the discrete case one finds that for g < gc there is an

ordered Nèel phase with spin waves excitations and for g > gc a disordered phase

with a non-zero energy gap and a triplet of excitations, that are called triplon.

It is very useful to consider a soft-spin version of this theory is in the same

universality class and whose action is given by:

Sϕ =

∫
d2rdτ

[1

2
(∂τϕα)2 + c2(∂xϕα)2 + c2(∂yϕα)2 + sϕ2

α +
u

24
(ϕ2

α)2
]

(1.1.5)
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1.1. LGW transitions

where one has to vary the value of s in order to get the quantum critical point.

Here ϕα are the component of the vector ~ϕ ∼ n̂. The importance of looking at

this soft-spin version is the fact that this theory corresponds to the well known

classical O(3) invariant Heisenberg ferromagnet and the Curie transition maps onto

the quantum critical point. Because of this mapping we can deduce some useful

things of the underlined quantum transition. The first thing to notice is that there

is a single diverging length [31], so it is natural to associate it in the paramagnetic

phase with the spin correlation length. There is also a vanishing energy scale that

on the paramagnetic side is taken as the gap of the triplon excitations. The spin

gap of the paramagnet goes as ∆ ∼ (g − gc)zν , where z = 1, due to the relativistic

invariance of the Sϕ theory. In the next chapter we will study numerically this kind

of transition showing that the exponent ν is about 0.705.

Another important aspect can be deduced by looking at the spin correlation

the Curie transition at g = gc: it is known [17] that it decays as ∼ 1/p2−η, where

modulus of p is the three momentum and η is the anomalous dimension. At the

quantum critical point g = gc we can probe this relation by looking at the dynamic

susceptibility, which is related to the Fourier transform of the correlations:

χϕ(k, ω) ∼ 1

(c2k2 − ω2)1−η/2 (1.1.6)

where we have analytically continued the expression for p from its pz dependence in

the third classical dimension to the real frequency ω. Its imaginary part is given by:

Imχϕ(k, ω) ∼ sgn(ω)sin(
πη

2
)

θ(|ω| − c|k|)
(ω2 − c2k2)1−η/2 (1.1.7)

which, as it should be, contains no quasiparticle delta function at the quantum

critical point.

If we move in the paramagnetic phase a gap ∆ opens and the imaginary part of

χϕ takes the form

Imχϕ(k, ω) ∼ Z

∆
δ(ω −∆−O(k2)) (1.1.8)

where Z is the quasiparticle residue.
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1.2. Coupled dimer antiferromagnet

Figure 1.1: The coupled dimer antiferromagnet. The full lines correspond to the A
links while the dashed lines to the B ones. From [31].

1.2 Coupled dimer antiferromagnet

The kind of transition described in the above section can be seen also in a two

dimensional spin-1/2 quantum antiferromagnet, by looking at this Hamiltonian [31]:

Hd = J
∑

<ij>∈A

~Si · ~Sj +
1

g
J
∑

<ij>∈B

~Si · ~Sj (1.2.1)

where J > 0 and g ≥ 1, which is defined on a bipartite lattice, i.e. a lattice whose

links can be separated into two disjoint sets A and B. Fig. 1.1 shows the case of the

square lattice, where the full (dashed) links represent the set A (B). For g = 1 one

recovers the usual square lattice.

Senthil [29] shows that this model displays a phase transition that fits with the

LGW paradigm. Let as consider this model with a value of g near 1. Exactly at

g = 1 it is well known [30, 17] that the system has a long range Néel order ground

state with < ϕα(xj) >6= 0 where

ϕα(xj) = ηjSjα (α = x, y, z) (1.2.2)

xj is the position on the lattice and ηj = ei
~K·~xj = ±1, with ~K = (π, π). We expect

that this long-range order remains also for sufficiently small value of g < gc. In this

phase there are two spin waves excitations [31, 27], that are spacial deformations in

the orientation of < ϕα >[27]. The energy of these excitations is given by

εk = (c2
xk

2
x + c2

yk
2
y)

1/2 (1.2.3)

where ~k = (kx, ky) is the wave vector of the spin waves and cx and cy denote the spin

waves velocities in the two spacial directions.
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1.2. Coupled dimer antiferromagnet

Figure 1.2: Ground state of the Hamiltonian (1.2.1) with g →∞. The ovals represent

singlet valence bond pairs. From [31].

Figure 1.3: Fission of S = 1 excitation into two S = 1/2 spinons. The dashed circles

are valence bonds. From [31]

Consider now big values of g > gc. If we take the extreme case of g = ∞ what

we have is a Hamiltonian with a set of completely decoupled dimers. The spins in

each dimer form a valence bond singlet [8]

|(ij)〉 =
1√
2

(|↑i↓j〉 − |↓i↑j〉) (1.2.4)

that preserves each symmetry of Hd. This ground state is depicted in Fig. 1.2. In

this case the excitations [27] correspond to the breaking of one valence bond singlet

that becomes a three-fold degenerate state with total spin S = 1. When g =∞ the

excitation is localized, instead with g > gc but still a finite value, it can move from

site to site[31]. In this case we can consider it as a triplet quasiparticle excitation

usually called triplon. In the LGW language this is a quantum of oscillation of ϕα

around ϕα = 0. Its energy is given by [31]

εk = ∆ +
c2
xk

2
x + c2

yk
2
y

2∆
(1.2.5)

This S = 1 triplon cannot fission into a couple of S = 1/2 spinons. Indeed if a

situation as described in Fig. 1.3 appears, i.e. in which two spinons are connected
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1.2. Coupled dimer antiferromagnet

by a ”string” of valence bonds, the confinement length remains finite also at quantum

critical point. This means that the existence of these spinons are a non-universal

lattice scale effect and it is not related to the fluctuations that govern the universal

critical properties. We will see that the situation is very different for the deconfined

critical point, where spinons play a very important role.

For this dimerized system it is found [30, 31] a transition between the states

described above at g = gc, with 1/gc = 0.52337 [31]. This transition can be studied

using the LGW procedure. We can consider the order parameter ϕα and write the

most general effective action that preserves all the symmetries of the Hamiltonian

Hd. This ϕ4 field theory of Eq. (1.1.5) and all the consideration done in the above

section still apply.
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Chapter 2

The deconfined transitions

In this chapter we are going to talk about an unusual continuum quantum transition

of a two dimensional quantum antiferromagnet [13, 34] giving a piece of evidence of

the failure of the LGW paradigm [29]. In fact it was shown that there are transitions

that do not fit into this theory. These kinds of processes are not described in terms

of the usual order parameter, but in terms of new degrees of freedom that appear

only at the critical point, that takes the name of ”deconfined quantum critical point”.

2.1 Néel-VBS

In contrast with the ”traditional” transition described in the previous chapter, we

now focus on that critical points that does not fit with the LGW approach. An

example of this new critical points is the transition between the Néel and the Valence

Bond Solid (VBS) states.

Consider for example a quantum system of spin=1/2 on two dimensional square

lattice:

H = J
∑
<rr′>

~Sr · ~Sr′ + . . . (2.1.1)

where the ellipses represent others short range interactions (controlled by the term

g, such as the term appearing in the (2.1.6)) that preserve the symmetry. As before,

the interactions are assumed to be antiferromagnetic i.e. J > 0.

It is useful to define the Néel vector ~Nr that describes the staggered magnetization

12



2.1. Néel-VBS

~Sr = (−1)x+y ~Nr (2.1.2)

The Néel state has < ~Nr >6= 0, where ~Nr is assumed to be slowly varying on the

lattice scale. This ground state clearly breaks spin rotational symmetry.

Figure 2.1: Ground states of S=1/2 square lattice. The coupling g is the strength

of quantum spin fluctuation and controls the short-range exchange interactions that

are contained in the ellipses of (2.1.1). It appears in Eq. (2.1.6). For g > gc there

is a VBS state with either columnar (left) or plaquette (right) order. The VBS

configurations are similar to that in Fig. 1.1 of the previous section. However here,

because of the absence of the dimerization in the starting Hamiltonian (in (2.1.1) all

bonds are equivalent) there is spontaneous VBS order with a four-fold degenerate

ground state. From [31]

However, it is well known that paramagnetic ground states with < ~Sr >= 0 are

possible. As it is discussed in the Appendix B, a particular state of this kind is the

”Valence Bond Solid” (VBS) state that can have ”columnar” or ”plaquette” order.

The VBS state is described by the order parameter ψV BS [30], which is defined as

< ~Sr · ~Sr+x >∼ Re[ψV BS](−1)x (2.1.3)

13



2.1. Néel-VBS

< ~Sr · ~Sr+y >∼ Im[ψV BS](−1)y (2.1.4)

This VBS state clearly breaks lattice translational symmetry. Consider now a tran-

sition between this two ordered phases (Néel and VBS): LGW paradigm predicts

either a first order transition or passage through an intermediate disordered state.

However it will be shown in next sections that a generic second order phase transition

between Néel and VBS state is possible which it is natural described in terms of spin

1/2 spinons or CP 1 fields zα(α = 1, 2).

The Néel order parameter is related to the zα field through:

~N ∼ z†~σz (2.1.5)

2.1.1 Topology

As discussed in Appendix A, in the Néel phase or close to it, the long distance

fluctuations of the Néel order parameter are captured by the quantum O(3) Non-

Linear Sigma Model (NLσM) with the euclidian action:

Sn =
1

2g

∫
dτ

∫
d2r

[
1

c2

(
∂n̂

∂τ

)
+ (∇rn̂)2

]
+ iS

∑
r

(−1)rAr (2.1.6)

where r = (x, y), τ is the imaginary time, and n̂r =
~Nr
| ~N |

. The second term is the

Berry phase of all the spins and Ar is the area enclosed by the path mapped out by

the time evolution of the vector n̂r on the surface of a unit sphere. This term is not

important in the Nèel phase [5] but it plays a crucial role in the paramagnetic one

[26].

At low but finite energy, smooth configurations of the Néel vector admit topolog-

ical texture known as skyrmions(see also Appendix B). An example of skyrmion is

illustrated in Fig. 2.2. The total skyrmion number is a topological number Q defined

as

Q =
1

4π

∫
d2r n̂ · ∂xn̂× ∂yn̂ (2.1.7)

For smooth configurations, the sum over Berry phases vanishes even if it contains

skyrmions [29]. In this case the skyrmion number Q is conserved in time. However

in principle this model is defined on the lattice and processes in which Q changes are

allowed [9]. These events are characterized by the presence of monopole singularities

14



2.1. Néel-VBS

Figure 2.2: A skyrmion configuration of three dimensional vector n̂(r) = (nx, ny, nz).

Panel (a) shows the vector (nx, ny) on the XY plane while (b) shows the vector

(nx, nz) along a section of (a) on the X axis. From [29]

in the Néel field n̂(r, τ) in space-time. An example is showed in Fig. 2.3. In presence

of such monopole events, the sum of Berry phases gives a non-vanishing result and the

total Berry phase associated with each monopole event oscillates on four sublattices

of the dual lattice interfering in a destructive way[9]. This implies that all monopole

events can be neglected unless they are quadrupled and then the lowest skyrmion

number changing event allowed is when ∆Q = ±4. All of these considerations are

explored in more details in Appendix B.

Notice that the NLσM part of Eq. (2.1.6) is the continuum limit of the action:

Sn =

∫
dτ

(∑
r

1

2g

(dn̂r
dτ

)2

− j
∑
<rr′>

n̂r · n̂r′
)

+ iS
∑
r

(−1)r
∫
dτ ~A[n̂] · dn̂

dτ
(2.1.8)

where ~A is the vector potential of a magnetic monopole at the center of n̂ space at

each lattice site.

It is now crucial to note that the monopole creation operator v†, i.e. the skyrmion

number changing operator, does not transform trivially under square lattice trans-

lations and rotations. Under a π/2 rotation Rπ/2 in the counter-clockwise direction

about a lattice site, the Berry phase associated with the skyrmion creation event

15



2.1. Néel-VBS

Figure 2.3: An equal time slice of space-time when a monopole event occurs at the

origin. In (a) the vector (nx, ny) on the XY plane is represented, while in (b) (nx, nz)

on the X axis is shown. From [29]

changes by eiπS [30]. Now if S = 1/2, it is clear that [30]

Rπ/2 : v† → iv† (2.1.9)

Then consider the lattice translation operator Tx,y that performs a translation by a

unit along the x, y axis:

Tx : n̂r → −n̂r+x (2.1.10)

Ty : n̂r → −n̂r+y (2.1.11)

Now it is clear that the skyrmion number Q is odd under this transformation. Then

Tx,y transforms a skyrmion creation operator in an antiskyrmion creation operator

at the translated plaquette. There is also a change due to difference in the Berry

phase factor for monopoles on the adjacent plaquettes[30].

Tx : v†r → −iv
†
r+x (2.1.12)

Ty : v†r → +iv†r+y (2.1.13)

As a consequence, in the paramagnetic phase with < v† >=< v > 6= 0, Rπ/2, Tx, Ty

are broken.
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2.2. CP 1 representation

We can note [30] that the lattice transformation properties of v are the same of the

VBS order parameters ψV BS. More precisely we have [30],

v ∼ e−iπ/4ψV BS (2.1.14)

Summing over the monopoles event, it can be shown [30] that in paramagnetic phase

the Berry phase leads to a condensation of v and v† and so to VBS order.

Then in principle, the action Sn of Eq. (2.1.6) can describe both Néel and VBS

order.

2.2 CP 1 representation

As we said in the previous section, in order to analyse this model, it is useful to use

CP 1 parametrization of the Néel field n̂ [1, 8]

n̂ = z†~σz (2.2.1)

where ~σ is the vector of Pauli matrices and z(r, τ) = z(z1, z2) is a two component

spinor. The zα field are fractionalized spinon field and they satisfy the relation

|z1|2 + |z2|2 = 1. It is easy to see that the transformation

z → eiγ(r,τ)z (2.2.2)

leaves the n̂ field invariant. This means that the fields zα have a U(1) gauge redun-

dancy. It is convenient to introduce a U(1) compact gauge field aµ (µ = r, τ). It can

be shown [29, 20] that the flux of aµ is exactly the skyrmion number density of n̂:

Q =
1

2π

∫
d2x (∂xay − ∂yax) (2.2.3)

Thus a monopole event that changes the flux of aµ of ±2π is equivalent to a change of

±1 of skyrmion number. Because of the compactness of aµ, the gauge flux is allowed

to change by ±2π and this means a change of skyrmion number i.e. it corresponds

to a monopole event.

A crucial point of the critical theory between Néel and VBS phases is that the

quadrupling of monopole events induced by the Berry phase makes the monopoles

irrelevant (in renormalization group sense) at the critical point g = gc.

17



2.3. Easy-plane anisotropy

This means that we do not have monopole events at the critical point and thus the

skyrmion number does not change: there is emergent global topological conservation

law that can be explained as an extra global dual U(1) symmetry that it is absent in

the microscopic hamiltonian. The fact that the flux of aµ does not change allows us to

neglect its compactness. Indeed the critical field theory for the Néel-VBS transition

is given by writing down the simplest continuum theory of spinons coupled with a

non-compact U(1) gauge field aµ:

Lz =
2∑

a=1

| (∂µ − iaµ)za|2 + s|z|2 + u
(
|z|2
)2

+ k(εµνk∂νak)
2 (2.2.4)

where the spinon field zα are coupled with a non-compact gauge field aµ.

As we can see, there is no monopole terms like

Lmp =
∞∑
n=1

λn(r)([vrτ ]
n + [v†rτ ]

n) (2.2.5)

just because the monopole fugacity λ4 (that is the only that survives [9, 30]), is

irrelevant at the critical point. This does not hold away from the critical point in the

VBS phase. Indeed, it is known from studies of compact U(1) gauge theory [30], that

in paramagnetic phase the fugacity is always relevant and this lead to a proliferation

of monopole events and thus to a condensation of < vrτ >=< ψV BS >6= 0 i.e.

VBS state. As we said before, the conservation of the gauge flux (or the skyrmion

number Q), can be understood as a consequence of a global U(1) symmetry in a

dual description. Now we realize such construction for easy-plane anisotropy, hence

in the case in which spins prefer to lie in the XY plane.

2.3 Easy-plane anisotropy

In the easy-plane the anisotropy tends to orient the spins in a direction orthogonal

to the ẑ axis. This means the SU(2) spin rotation symmetry reduces to a U(1)

symmetry. There is also the time reversal discrete symmetry that transform

~Sr → −~Sr (2.3.1)

Combining this with a U(1) rotation of π in the XY plane that restores the x and

y component of the spin, this symmetry reduce to a change of the sign of Sz. Thus
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2.3. Easy-plane anisotropy

this theory can be described by the action (2.1.6) with the addition of a term

Sep =

∫
dτ d2rω(nz)2 (2.3.2)

that favors planar spin configurations.

The classical ground state is clearly a configuration of n̂ independent of position and

that lies in the XY plane. Topological defects in this case are vortices in the field

n+ = nx + iny. At the core of this vortices the x and y component of n̂ become zero

and then, because |n|2 = 1, the field n̂ points to the ẑ axis. At classical level there

are two kind of vortices (merons), each one that points in the opposite direction

±ẑ. This in principle breaks Z2 symmetry of the model. At quantum level it is

possible [29] to have tunnelling events between the two kind of classical vortex and

this restores the Ising-like symmetry.

Let’s define the creation operator of each kind of meron as ψ†1 and ψ†2. As we see

from Fig. 2.4, each meron can be seen as half a skyrmion: in fact if we take ψ2 at

τ → −∞ and ψ1 at τ → +∞ this two configurations cannot smoothly deformed

one into each other and we have to put a singularity at the origin of the space-time.

Pictorially it is easy to see that this tunnelling event correspond to a monopole event

in the space-time i.e. to a creation of a full skyrmion.

Taking into account the Berry phase effect, as we said in the previous section, Q

can change only by ±4. Then the only allowed terms in the action are proportional

to
(
ψ1ψ

†
2

)4
or
(
ψ2ψ

†
1

)4
.

Consider now the CP 1 representation. We have that

n+ = nx + iny = z∗1z2 (2.3.3)

nz = |z1|2 − |z2|2 (2.3.4)

In this case a 2π vortex in n+ corresponds to

• 2π vortex in z1 and no vortex in z2

or

• 2π antivortex in z2 and no vortex in z1

In the first case we have that at the core z1 goes to zero and then nz = −|z2|2 is

negative. Thus it corresponds to a ψ2 meron. Similarly it is easy to see that the
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2.3. Easy-plane anisotropy

Figure 2.4: Merons vortices in easy plane case. In (a) the vector (nx, ny) is repre-

sented, that is the same for both ψ1 and ψ2 vortices. Instead in (b) and (c) the

component (nx, nz) respectively of ψ1 and ψ2 are shown. From [29]
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2.3. Easy-plane anisotropy

second case corresponds to a ψ1 meron.

It is interesting to look at the dual form of this model. First notice that in the easy

plane limit we have

|zi1|2 − |zi2|2 ' 0 (2.3.5)

|zi1|2 + |zi2|2 = 1 (2.3.6)

These relations allow us to write the ziα in this way:

ziα ∼
1√
2
eiφiα (2.3.7)

with φiα ∈ [0, 2π) and α = 1, 2. The index ”i” labels the position on the cubic lattice

in D = 2 + 1 dimensions. A model related to (2.1.8) in terms of the spinon field ziα

is the Sachedev-Jalabert (SJ) one [30]:

SSJ = Sz + Sa + SB (2.3.8)

Sz = −t
∑
i

z∗iαe
iaµzi+µ̂,α + c.c. (2.3.9)

Sa =
K

2

∑
i,n

(εµνλ∆νaλ − 2πqµ)2 (2.3.10)

SB = i
π

2

∑
n

ζn∆µqµ (2.3.11)

Here ∆µ is the discrete derivative, aµ is the compact U(1) gauge field and qµ is an

integer gauge flux defined on the link of the dual lattice. ζn can be 0, 1, 2, 3 with ”n”

that labels the site of the dual lattice. The continuum limit of this action neglecting

both Berry phase and compactness, i.e. setting qµ = 0, leads to (2.2.4).

Now putting the relation for ziα of Eq. (2.3.7), inside Eq. (2.3.9), we obtain

Sz = −t
∑
l,α

cos(∆φα − a) (2.3.12)

where ∆ and a are vectors with components respectively ∆µ and aµ, and ”l” label

the links of the cubic lattice.

From the usual boson-vortex duality [30, 28, 11] the dual action in terms of the

merons field can be written as

Ldual =
∑
a=1,2

|(∂µ − iAµ)ψa|2 + sd|ψ|2 + ud
(
|ψ|2

)2
+ ωd|ψ1|2|ψ2|2+

+ kd(εµνk∂νAk)
2 − λ[(ψ∗1ψ2)4 + (ψ∗2ψ1)4] (2.3.13)
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2.3. Easy-plane anisotropy

where |ψ|2 = |ψ1|2 + |ψ2|2. The fields ψ1,2 destroy meron vortices. As usual for

the dual theories [30] these fields are coupled with a non-compact gauge field Aµ.

Physically this is related to the conservation of jµ = εµνλ∂νAλ/π, which is the current

of Sz. Thus the spin density and the spin current are related with the dual magnetic

and electric fields.The Z2 symmetry nz → −nz corresponds to the exchange of the

two vortices ψ1 → ψ2.

Clearly the ωd term is due to the easy-plane anisotropy of the model, while λ term

can be interpreted as the vortex fugacity. Notice that if we neglect the monopole

events, we know that there is another conserved quantity: the total skyrmion number

Q or equivalently the difference of the total number of either kind of vortices. Thus

we expect an other conservation law appearing in this dual theory. Indeed if we

ignore the last term in the lagrangian (2.3.13), a U(1) symmetry appears

ψ1 → ψ1e
iq (2.3.14)

ψ2 → ψ2e
−iq (2.3.15)

where q is a constant.

However if we restore the monopole term in Eq. (2.3.13), this symmetry is broken

but there is still a discrete Z4 symmetry. This is perfectly consistent with the fact

that skyrmion number is still conserved modulo 4 (∆Q = ±4), as shown by Haldane

[9, 30].

It’s important to note that XY ordered phase, in the dual theory corresponds to

a dual paramagnetic phase where < ψ1,2 >= 0 and ψ1,2 fields are gapped [29, 30].

Instead the spin paramagnetic phase corresponds to a situation in which there is a

condensation of the fields ψ1,2. In particular if < ψ1 >=< ψ2 >6= 0 there is a global

Ising symmetry. It is evident the strong similarity between the dual theory and the

theory in term of the spinon fields in Eq. (2.2.4) if we interchange the z1,2 � ψ1,2

and the role of XY order and paramagnetic phase. With λ = 0, Lz and Ldual have

the same form with the interchange z1,2 � ψ1,2 and aµ � Aµ. This means the model

has a self-dual critical point.

It is important to notice that in both direct and dual representation the theory is

not described in terms of the ”physical” boson (n+ or the skyrmion creation opera-

tor). In fact these are written down in function of the ”fractionalized” fields (spinons

or meron vortices). The dual representation plays an important role also when we
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2.4. Isotropic case

include again the monopole term. Indeed the non-trivial physics of instantons, is

described simply by a local perturbation in the dual theory i.e. considering λ 6= 0.

We now look at the scaling dimension ∆ of the (ψ∗1ψ2)4, that is the fourth power

of the creation operator of the physical boson. This quantity is very useful because

it determines the relevance or irrelevance of the monopoles at the self dual λ = 0

fixed point: if ∆ > D = 3 they are irrelevant.

It is possible to just do an estimate of this value by first pointing out that both in

the direct and dual representation, the physical bosonic field is actually a composite

of fundamental fields of the theory. For this reason we expect the bosonic scaling

dimension to be larger then the one the ”standard” XY theory. It is well known [7]

that for the ordinary XY fixed point, the four-fold symmetry breaking perturbation

are irrelevant. Thus it has to be the same for our theory.

We remark the importance of the Berry phase in this framework: it is responsible

of the quadrupling of the monopoles and thus of their irrelevance at the quantum

critical point. Although λ term is irrelevant at the fixed point, it is instead relevant

in the paramagnetic phase, where it plays a central role in the choice of the pattern of

translation symmetry breaking. For this reason it is said to be dangerous irrelevant

term. It also play a determinant role in the confinement of the spinons. This is the

reason why it is called a deconfined quantum critical point: at this point spinons

emerge as natural degrees of freedom whereas in both the ordered phase they are

confined within a length scale that diverges at criticality.

2.4 Isotropic case

In order to generalize these results to the isotropic case, i.e. SU(2) invariant, it is

useful to work in the CPN representation. If we find that for N = 1 and N → ∞
there is such a transition, it will be reasonable that it would be also for the N = 2

scenario, i.e. for the isotropic case.

Let’s start with N = 1. In this case z is simply a complex number z = eiφ.

In this case it is found a transition between a Higgs phase (that corresponds to

antiferromagnetic Néel phase for the N = 2 case [29]) and a VBS phase [29] and

it falls in the 3D XY universality class [29]. Doing the same consideration of the

previous section for the duality maps for the N = 1 case, we can say that the four-

fold anisotropy in the VBS phase is the quadrupled instanton event that is irrelevant
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2.5. Physical properties

at the D = 3 XY fixed point.

For large N , there is the same situation. Let’s start with the model all monopoles

excluded that is the CPN−1 non-compact model. Also here there is an ordering

transition [29] associated with the condensation of z. Once again we look at the

relevance or irrelevance of the quadrupled monopole events. It is known [22] that the

scaling dimension of this operator in the CPN−1 model goes as N . Thus for D = 3

they are irrelevant.

The fact that a second order transition is possible for N = 1 and N → ∞, is a

strong evidence that it works also for the N = 2 case. In the isotropic case we do not

have the self-duality, that remains a special case of the XY model. However here it

is still true that the Berry phase plays a central role: it simplifies the critical theory

cancelling the compactness of the gauge field and leading us to neglect monopoles

events. Indeed this critical theory corresponds to the classical O(3) model with

monopoles suppressed.

2.5 Physical properties

One of the most important result that was shown is the presence of the so called

dangerous irrelevance of monopole. The λ ≡ λ4 term is indeed irrelevant at the

quantum critical point but it is relevant for the paramagnetic fixed point. This

paramagnetic phase of Lz of Eq. (2.2.4) is actually described as a U(1) spin liquid

with a gapless deconfined photon field aµ. This is known to be unstable to inclusion

of monopoles. This means that for λ perturbation the U(1) spin liquid leads to a

VBS phase with Z4 discrete symmetry and confinement of spinons. In Fig. 2.5 the

behaviour of the renormalization group is illustrated. The theory given by Lz of Eq.

(2.2.4) describes only the line λ = 0. Clearly this is the theory for the transition

between a Néel and a U(1) spin liquid phase. However our model never has an exactly

zero value of λ: monopole events are actually quadruplicated as we have shown in

the previous chapter. At the critical point this is irrelevant while it becomes relevant

in the paramagnetic phase leading to VBS state.

In order to better understand this behaviour, it is useful to talk about the cor-

relation lengths. The presence of this dangerous irrelevant coupling at the critical

point leads to the existence of two different length scales: first there is the spin-spin

correlation length ξ which diverges at the transition; then there is an other length
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2.5. Physical properties

Figure 2.5: Renormalization group flow for S = 1/2 square lattice quantum antifer-

romagnet. From [31]

scale ξV BS that is associated to the thickness of the domain walls of the VBS order.

On scaling grounds, the two different length are related by [30]:

ξV BS ∼ ξF (λξ3−∆) (2.5.1)

where F is a scaling function, ∆ is the scaling dimension of the four monopole

operator and thus 3−∆ is the RG eigenvalue of λ. For r > ξ we have the VBS phase

that can be seen as an XY order in ψV BS with weak four-fold anisotropy [30]. Thus

variation of the angle θ of the order parameter (ψV BS ∼ |ψV BS|eiθ) can be considered

as pseudo-Goldstone modes [30], whose energy is

E(θ) =

∫
d2x
[K̃

2
|∇θ|2 − λ̃cos(4θ)

]
(2.5.2)

where K̃ and λ̃ ∝ λ are parameters renormalized on the scale ξ. From a dimensional

analysis we can deduce that [30] ξV BS ∼
√

K̃
λ̃

and thus ξV BS ∼ λ−1/2. Substituting

F (x) ∼ x−1/2 in Eq. (2.5.1), we obtain

ξV BS ∼ ξ(∆−1)/2 (2.5.3)

As we have already said, the scaling dimension of the fourth power of the monopole

creation operator ∆ is greater then 3. This imply that (∆ − 1)/2 > 1 and thus the

ξV BS diverges faster then ξ at criticality.

Considering a point near the transition from the paramagnetic side. At the ξ

scale there is a crossover between the critical fixed point of Lz to the unstable U(1)
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2.5. Physical properties

spin liquid fixed point. The confinement of spinons and the appearance of VBS order

occurs at length ξV BS > ξ. We remark that instead in the ”traditional” O(n) model

described by Eq. (1.1.1) the renormalization flow goes from a fixed critical point to

a stable paramagnetic critical point.

A consequence of the deconfined critical points is the appearance of the conserved

charge i.e. the skyrmions number

Q = 1/(2π)

∫
d2x(∂xay − ∂yax) ∼

∫
d2xf (2.5.4)

where f is the flux density. The conservation of this quantity fixes its scaling dimen-

sion, < f(R)f(0) >∼ 1
R4 . Going away from the criticality this remains true at scale

of R << ξ. Then there is an intermediate scale ξ << R << ξV BS where the flux

correlation decays as 1
R3 [29]. This is characteristic of theory with presence of free

photons. For scale R >> ξV BS there is VBS order.

As we have already said this new phase transition does not fall in the standard

O(3) universality class. This leads to the possibility to have large value of the

anomalous dimension η of Eq. (1.1.6). In fact the spinon zα propagator is 1/p2,

where p is the 3 space-time momentum. However the Néel order parameter is a

composite of spinons (n̂ = z†~σz) and thus the dynamical susceptibility involves the

convolution of two of such propagators with momenta p1 and p+ p1:

χ(p) ∼
∫

d3p1

p2
1(p+ p1)2

∼ 1

|p|
(2.5.5)

Comparing this relation with Eq. (1.1.6), it is easy to see that we expect a value of

η near 1. Precise calculations [30] show that η ' 0.6.
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Chapter 3

Monte Carlo Simulations

In the previous chapter we have seen that the theory of the ”traditional” LGW

quantum transition of a O(3) rotor model between a Néel and a paramagnetic phase

in two dimensions, is the same of the classical 3D O(3) Heisenberg model. Moreover

a second order Néel-VBS transition, is described by a classical 3D O(3) model with

hedgehog suppression.

Close to a critical point the mean value of observables, such as the order param-

eter, has anomalous behaviours that are usually expressed in terms of power laws.

Their exponents are called critical exponents [23]. The critical exponents are a very

powerful tool because they assume the same value for all the system that belong to

the same universality class [23].

In this work we will consider three particular critical exponents β, ν and the

anomalous dimension η, defined as

M ∼ (Tc − T )

ξ ∼ |T − Tc|−ν (3.0.1)

G(r) ∼ 1

r−(d−2+η)
(T = Tc)

where M is the order parameter i.e. the magnetization, ξ is the spin-spin correlation

length and G(r) is the correlation function for two spin separated by a distance r.

In order to study the universality classes of these models, we have simulated them

with Monte Carlo methods (see Appendix C).

27



3.1. Classical Heisenberg model

3.1 Classical Heisenberg model

Let’s start by considering the Heisenberg Hamiltonian with ferromagnetic interac-

tions:

H = −J
∑
<ij>

~Si · ~Sj (3.1.1)

Here J = 1/T is the positive coupling constant, T is the temperature and the sum

is between the nearest neighbour sites.

In order to realize some numerical simulations we consider a finite cubic system

of size L with periodic boundary conditions in which each spin is represented as a

three dimensional unitary vector. For this reason is convenient to control each spin

with to parameters: the two polar angles θ and φ. A configuration of the system

is uniquely defined by assigning to each spin a specific value for those angles with

φ ∈ [0, 2π[ and θ ∈ [0, π[.

To bring the system to equilibrium and extract the value of some useful observable

(like magnetization) we use the single-flip Metropolis algorithm, described in the

Appendix C. A random configuration for a single spin is given by randomly choosing

the two parameters θ and φ from

• φ = 2πu

• cos−1(2ν − 1)

where u and ν are random variables distributed uniformly in the interval (0, 1). In

this way we have a unit vector with uniform probability distribution on the S2 sphere

[33].

Once we have chosen a starting configuration, the single-flip Metropolis algorithm

allows us to evolve our system by accepting or rejecting new configurations (obtained

by simply changing the direction of a spin at random) with a probability

e−
∆E
T (3.1.2)

where ∆E is the difference between the energy of the new and the old configurations

(see Appendix C).

The repetition of this procedure L × L × L times forms a Monte Carlo sweep

(MCS). For each of MCS we calculate the value of some observable that we are
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3.1. Classical Heisenberg model

(a) T = 0.8 (b) T = 1.45

(c) T = 2.0

Figure 3.1: The evolution of the three components Mx, My, Mz and the modulus M

of the magnetization in 3000 MCSs at (a) T = 0.8, (b) T = 1.45 and (c) T = 2.0.

The dashed red line represents the mean value < M >.

looking for and then we take the mean value over all sweeps. Here, we are interested

in the magnetization per spin M which is simply the sum of all the single spin

magnetizations divided by L3:

M =
1

L3

∣∣∣∣∣∑
i

~Si

∣∣∣∣∣ (3.1.3)

The typical behaviour of M as a function of the number of sweeps for three different

temperature is shown in Fig. 3.1. As we can see the starting configurations are

chosen to have all vectors directed along the z axis, giving a magnetization M = 1,

but this choice is not relevant for our purpose because of the O(3) symmetry of the

system. In fact it is easy to see that the three components exchange with each other.

At T = 0.8 it is evident that there is a non zero magnetization and thus we are

clearly in the ordered phase; on the other hand at T = 2.0 the value of M seems to

be near the zero suggesting that the system is in the paramagnetic phase.
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3.1. Classical Heisenberg model

Figure 3.2: Mean value of magnetization as a function of temperature for L=8,10,12.

We can see that in the disordered phase magnetization goes to values near the zero

as fast as L grows.

The mean value of magnetization is simply the arithmetic mean on the MCSs

< M >=
1

NMCS

NMCS∑
t=1

Mt (3.1.4)

where NMCS is the total number of MCS. For each value of < M >, 3000 MCSs have

been performed, of which 1000 was used to reach thermodynamic equilibrium. This

means that the mean value of magnetization is calculated by using only the last 2000

of MCSs.

It’s interesting to study the behaviour of the magnetization as a function of the

temperature as we see in Fig. 3.2. It’s easy to notice that the magnetization has the

form of an order parameter. In the paramagnetic phase the magnetization goes to

values near to zero as L becomes bigger.

Another interesting quantity to study is the specific heat [3]:

CV =
< E2 > − < E >2

T 2
(3.1.5)

where E is the energy per site. As we can notice in Fig. 3.3 the specific heat peaks

around T = 1.4.

One possible methods to find out the critical temperature is to use the fourth-

order Binder parameter UL defined as [3, 24, 10]:

UL(T ) = 1− 1

3

< M4 >

< M2 >2
(3.1.6)

For O(n) model it is known [10] that in the high temperature limit UL → 2(n−1)/3n.

Thus n = 3 it tends to 4/9. On the other hand for low temperatures <M4>
<M2>2 ' 1 and
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3.1. Classical Heisenberg model

Figure 3.3: Specific heat for system with L = 8 and L = 10. The peak is for T ' 1.4

Figure 3.4: Binder parameter for L = 6, 8, 12. It’s clear that the intersection point

is around T ' 1.455.

Binder parameter goes to 2/3 [10]. Considering the behaviour of UL as a function

of the temperature, finite-size scaling implies [3] that the curves UL(T ) for different

values of size L should intersect at a point. This point corresponds to the critical

temperature Tc.

For this reason we compute the value of UL in the range between T = 1.40 and

T = 1.5 for L = 6, 8, 12. In Fig. 3.4 it is reported the behaviour of UL. The critical

temperature is evaluated by looking at the intersection point of these three curves

and its value is Tc = 1.455. In order to take a specific value for Tc we have considered

the ratio UL′/UL (L′ = 12 and L = 8) in the range 1.44 < T < 1.46 and we have

seen where it intersect the straight line UL′/UL = 1. It gives us

Tc = 1.45± 0.05 (3.1.7)

compatible with the results of [16].

Now we look for the critical exponents ν and β. First of all we derived the value

of ν using the relations given by the finite-size scaling analysis. It is known that the
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3.1. Classical Heisenberg model

Figure 3.5: At left a log-log plot of the derivative of Binder parameter respect J ,
dUL
dJ

(Jc). The inverse slop of the straight line is ν = 0.704. At right a log-log plot

of the derivative of magnetization < M(Jc) >. The absolute value of the slope is

β/ν ' 0.51

.

derivative dUL
dJ

(where J = 1/T ), goes as L1/ν near Tc. The derivative can be written

in this way [10]:

dUL
dJ

= (1− UL)

{
< E > −2

< Em2 >

< m2 >
+
< Em4 >

< m4 >

}
(3.1.8)

In Fig. 3.5 we plot the value of dUL
dJ

(Jc) versus L in a log-log scale. Clearly the

inverse slope of the line in the left panel of Fig. 3.5 is the value of ν. A best fit

yields:

ν = 0.70± 0.05 (3.1.9)

The same procedure is performed to obtain the value of β/ν, knowing that

< M >∼ Lβ/ν (3.1.10)

which is shown in the right panel of Fig. 3.5 in a log-log scale plotting. The value of

critical exponent is

β/ν = 0.51± 0.04 (3.1.11)

The value of the critical exponents is consistent with [16].

To check the correct value of the critical temperature Tc and the critical expo-

nents, we can perform a finite-size scale analysis as reported in Fig. 3.6. Near Tc the

magnetization has to satisfy the following law [3]:

< M(L, T ) >= L−β/νg1(tL1/ν) (3.1.12)
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3.2. Topological charge

Figure 3.6: Finite-size scaling for L = 10, 12, 14 at Tc = 1.45. All the three curves

overlap.

where t = (T − Tc)/Tc and g1 is the universal scaling function.

If we use the values obtained above, Eq. (3.1.7), (3.1.9) and (3.1.11), we see

from Fig. 3.6 that indeed the three curves overlap for different values of L. This is

evidence of the validity of our analysis.

3.2 Topological charge

It is now interesting to look at the role of the topological charge Q in this kind

of model. In the continuum limit Q represents the number of times that the spins

on a closed surface surrounding the defect cover the surface of a unit sphere and

corresponds to (2.1.7).

Since our model is originally described on the lattice we have to discretize this

quantity. In order to do this we use the method introduced by Berg and Luscher

[2] and generalized by Lau and Dasgupta [16] for cubic lattice: decompose the finite

lattice in L × L × L cubes with the lattice sites at the vertices; divide each of the

six faces of each cube in two equal part by drawing the diagonal. In this way we

obtain 12 triangles for each cube. Consider S1(i), S2(i), S3(i) the three spins at the

vertices of the i− th triangle ordered going around the circuit 1 → 2 → 3 → 1 in a

counterclockwise rotation, as it is illustrated in Fig. 3.7. It is important to underline

that the areas have an orientation given by S1(i) · (S2(i)∧ S3(i)), represented as the

red vector in Fig. 3.7. Let be ∆i the oriented area of the spherical triangle formed

by three spins on the surface of a unite sphere. The topological charge in j− th cube
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3.2. Topological charge

Figure 3.7: A single cube with spins at vertices. The front face of the cube is divided

in two equal parts by the diagonal. We calculate the areas of the spherical triangles

with vertices spin ~S1, ~S2, ~S3 and ~S1, ~S3, ~S4. The orientations of the areas are reported

in figure with the red vectors. We do the same for all the six faces of the cube.

Figure 3.8: Topological defect pair density for different lattice sizes. We can notice

that the value of < n > is almost the same for all the sizes considered.

will be [16]:

Qj =
12∑
i=1

∆i (3.2.1)

Because of the fact that we are working with period boundary conditions, the

total Qtot =
∑

j Qj of the whole lattice is zero (we remark that we usually start

with a configuration with all spin directed along the same direction). In Fig. 3.8

we plot the defect pair density < n > as a function of temperature. As we can see,

at temperatures smaller than Tc the pair density is near to the zero as one might

expect. On the other hand in the paramagnetic phase, i.e. at temperature above Tc,
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3.2. Topological charge

Figure 3.9: Magnetization as a function of temperature with no defects allowed. As

we can see the magnetization tends to stay on non-zero values.

< n > starts to rapidly increase [16].

We can ask ourself what would happen if we neglect this topological defects in

the paramagnetic phase and what is their role in the 3D Heisenberg transition.

Formally we have to consider a new Hamiltonian of the form [16],

H = −J
∑
<ij>

Si · Sj + λ
∑
cubes

|Q| (3.2.2)

where now the new parameter λ > 0 has the rule of a sort of chemical potential for

defects

Clearly the case of λ → ∞ corresponds to a situation in which the defects are

totally forbidden. To numerically simulate the limit with Monte Carlo method, we

initialize our system in a fully polarized configuration and then check, after the

update of a spin, if a defect pair has appeared in two of the eight cubes that contain

the spin. If it did, we reject the new configuration and start over, if not we accept it

with a probability e−
∆E
T .

Fig. 3.9 shows how the magnetization per spin as a function of the temperature

if the defects are not allowed i.e. with λ → ∞. It is important to notice that

the magnetization is different from zero also at temperature bigger than 1.45 and it

seems that there is no transition at all.

To support this thesis, we just compute the magnetization at T →∞ by simply

considering J = 1/T = 0. In this case the probability to accept a new configuration

in Metropolis algorithm becomes simply 1 or 0. For L = 8 the value of < M > at

infinite temperature is < M >' 0.22, as it is shown in Fig. 3.10. However a precise

demonstration of the absence of this transition is reported in [16].
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3.3. Hedgehog Suppression

Figure 3.10: Magnetization at infinite temperature with no defect allows. For L = 8

the magnetization is about 0.22.

Figure 3.11: Magnetization at infinite temperature as a function of λ. For small

values of λ, magnetization has a value near to zero, while it reaches the value of

about 0.22 as λ increases.

It is also interesting to understand how the magnetization behaves at infinite

temperature varying the parameter λ. From Fig. 3.11, < M > is almost zero for

small values of λ and then starts to increase. For λ > 3, < M > reaches the value

of about 0.22, in agreement with [16].

3.3 Hedgehog Suppression

3.3.1 Close pairs

In the previous section we have found that, neglecting all the configurations which

contain hedgehog, there is no transition at all. Magnetization per spin remains

different from zero also for infinite temperature. Now we look for configuration in

which only single hedgehogs are neglected, allowing pairs (+1,−1) of defects to exist,
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3.3. Hedgehog Suppression

Figure 3.12: Example of an acceptable configuration of hedgehogs. For simplicity it

is represented just a section of the cubic lattice. Here the label + (−) stay for a +1

(−1) hedgehog. It’s easy to see that each +1 has a −1 close to it. Clearly one has

to check for the same conditions also for hedgehogs above and below the section.

as proposed in [13]. This model is called O(3) NLσ model with hedgehog suppression

[13, 19].

We will see that in this case there is a transition and we conclude that single

hedgehogs are not fundamental in this contest. The universal class will be different

from the one of the classical O(3) Heisenberg model. In particular a higher value for

the anomalous dimension is found, with η ' 0.6.

As in the previous simulations, we have considered a three dimensional cubic

lattice of size L = 6, 8, 10. We use the same methods described above [2, 16] to

discretize topological defects i.e. hedgehogs. In this case we allow near pairs (+1,−1)

of hedgehog to exist and we mark each pair that appears with a specific label, which

allows to keep track of it as we perform the Monte Carlo update. In this way we

are able to reject any configuration in which two hedgehogs (+1,−1) belonging to

two different pairs, annihilate forming in this way two single hedgehogs. A pair can

have many other pairs near it as long as each +1 has ”its own” −1 close to it. An

example of an acceptable configuration is shown in Fig. 3.12.

In Fig. 3.13 the magnetization per spin is shown for systems with size L = 6, 8, 10

as a function of J = 1/T . Also in this case, for each value of < M >, 3000 MCSs

have been generated, of which only the last 2000 were used to calculate the mean
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3.3. Hedgehog Suppression

Figure 3.13: Magnetization as a function of J = 1/T . We can see that for J < 0.40

the magnetization is near to zero as long as L become bigger.

Figure 3.14: Left: the log-log plot between the magnetization and N = L3 at J = 0.2.

The slope give us the exponent α ' 0.52. Right: plot of the magnetization multiplied

by Nα. It’s easy to see that the curves start to overlap for J < 0.40

value of observables. We point out that we could not use large values of lattice size

because the algorithm used to reject single hedgehog configurations takes much more

time then the first used in the previous section. We can notice that for J smaller

than 0.3 the value of magnetization goes to values around zero as long as the size

increases suggesting that we are in a paramagnetic phase.

In the disordered phase it is expected [19] that < M >∼ c 1
Nα , where N = L3 and

c is a constant. Then:

log(M) = −αlog(N) + log(c) (3.3.1)

It is easy to see in Fig. 3.14 by a log-log plotting done at J = 0.20, that α ∼ 1/2.

In Fig. 3.14, the magnetization multiplied by N1/2 is shown as a function of J .

We can easily notice that the values of < M > ·N1/2 for different sizes overlap for

J < 0.40, and it is reasonable to consider this a paramagnetic phase. On the other
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3.3. Hedgehog Suppression

(a) J = 0.35 (b) J = 0.45

(c) J = 0.55

Figure 3.15: Three plots of finite-size scaling at (a) J = 0.35, (b) J = 0.45, (c)

J = 0.55 with β = 0.80 and ν = 1.0. It’s clear that the curves overlap for Jc near

0.45.

hand for J > 0.5 the magnetization increases as the size becomes bigger. Thus we

expect that the critical temperature is in the range 0.40 ≤ Jc ≤ 0.50.

In this contest the binder parameter UL defined above, gives not very precise

results: its value oscillates in a uncontrolled way and this does not allow us to

estimate the critical temperate Tc (or equivalent Jc) using that method.

Thus as reported in Fig. 3.15 we perform a finite size scaling, for three different

value of Jc, using ν = 1.0 and β = 0.80. These are the values of critical expo-

nents of the classical O(3) Heisenberg model with hedgehog suppression derived by

Montrunich and Vishwanath [19].

It is clear that the reasonable value for Jc is Jc ' 0.45 i.e. Tc ' 2.22. Computing

the magnetization at this value of J and remarking that

< M >∼ Lβ/ν (3.3.2)
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3.3. Hedgehog Suppression

Figure 3.16: Log-log plot of the magnetization vs the size L. The absolute value of

the slope gives us β/ν = 0.84

Figure 3.17: Pair defect density < n > as a function of J . It tends to go to zero in

the ordered phase.

we can simply use the log-log plot as shown in Fig. 3.16 to estimate β/ν. The value

is

β/ν = 0.84± 0.05 (3.3.3)

compatible with [19].

We also report in Fig. 3.17 the behaviour of the pair defect density, defined as in

the previous section. It is easy to notice that < n > decreases as J becomes bigger.

Moreover it tends to zero when J > 0.5. It is consistent with the fact that we do not

expect the defect to be in the ordered phase.

This transition belongs to a universality class different from that of the standard

O(3) Heisenberg model. In particular these values of the critical exponents leads

to a big anomalous dimension η. In fact from the scaling laws that relate all the

critical exponents [23], it is easy to find that η = (2−D) + 2β
ν
' 0.6. This value is

compatible with that expected for the Néel-VBS transition described in the previous
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3.3. Hedgehog Suppression

Figure 3.18: Magnetization as a function of J . It tends to go to zero for small J .

Figure 3.19: Left: the log-log plot of the magnetization and N = L3 at J = 0.2. The

slope gives us the exponent α ' 0.20. Right: plot of the magnetization multiplied

by Nα. The curves tend to overlap for J < 0.15.

chapter.

3.3.2 Isolated pairs

Another way to neglect single hedgehog configurations, is to consider isolated pairs

(+1,−1) as proposed by Montrunich and Vishwanath [19]: this differs from the

previous algorithm because a +1 hedgehog can have only one −1 near to it. The

procedure is the same as before: we have found the magnetization in function of J ,

as shown in Fig. 3.18. 3000 MCSs have been performed for each value of < J >.

Also in this case only the last 2000 steps are used to calculate < M >. Also in this

case we use the relation (3.3.1) to find the exponent α such that < M >∼ c 1
Nα .

In the left panel of Fig. 3.19 it is shown that α = 0.2. In the right panel of 3.19

instead we plot the magnetization per spin < M > multiplied by Nα, and it is clear

that the magnetization for different sizes tends to overlaps. Considering the critical
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3.3. Hedgehog Suppression

Figure 3.20: Finite-size scaling at Jc = 0.15. The curves tend to overlap.

exponents of [19], β = 0.8 and ν = 1.0, a finite-size scaling is done for Jc = 0.15, and

it is reported in Fig. 3.20.

We can conclude that, also in this case, there is phase transition, of the same uni-

versality class. Clearly the critical value Jc is not equal to the previous one simply

because the allowed configurations are different: here we just look for isolated pairs,

and then a large number of configurations are rejected. Qualitatively we can justify

this two different values of Jc by thinking that at the same J in this case we have

a smaller pair density and thus a bigger magnetization. This means that we need a

smaller value of J to reach magnetization near to zero i.e. paramagnetic phase.
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Chapter 4

Conclusions

The main goal of this work was to study the second order quantum transition between

the Néel and the VBS phase. As already emphasized this is found to be naturally

described in terms of a new degree of freedom, the gauge field aµ. This field mediates

the interaction between the fractional particles (spinons) zα that carry fraction of

quantum number of aµ.

In order to understand this theory, it is important to highlight the role played by

the Berry phases of (2.1.6) in this framework. This is not vanishing when the number

of skyrmions Q changes. Precise calculations lead to a quadrupling of monopoles

events i.e. the Q is allowed to change only by 4. This phenomenon increases the

scaling dimension of the monopoles. In fact the forth-power of the monopoles creation

operator (ψ∗1ψ2)4, with scaling dimension ∆, is the only allowed. ∆ is found to be

greater then D = 3, and thus monopoles become irrelevant at criticality.

This kind of critical point is characterized by another quantity: a conserved

charge that emerges only at the transition. The absence of monopole events at

criticality means that in this context the conserved quantity is the skyrmions number

Q. Because it corresponds also to the flux of the gauge field aµ, it is reasonable to

neglect the compactness of this field. The theory describes the transition between

a Néel and a U(1) spin liquid state, that is unstable under perturbations of λ, the

monopole fugacity. Actually monopoles are said to be dangerous irrelevant, because,

while they are irrelevant at QCP, they are relevant in the paramagnetic phase and

their proliferation leads to the VBS state.

In this framework we have two kinds of correlation lengths: ξ that is the ”stan-
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dard” spin-spin correlation length and ξV BS that represents the thickness of the

domain walls of the VBS order. Both these two lengths diverge at criticality and

in particular ξV BS diverges faster then ξ. In the VBS phase spinons are confined at

lengths of the order of ξV BS, while they naturally appear at QCP.

In order to find critical exponents of this theory we numerically simulated with

Monte Carlo methods, the 3D classical O(3) Heisenberg model with monopole sup-

pression. We started from studying a ”standard” Heisenberg model and its ferromagnetic-

paramagnetic transition. Then we have seen that neglecting all the configurations

that contain monopoles there is no transition. On the other hand allowing pairs

of monopoles to exist, neglecting in this way only single monopoles, a transition

appears. We have found out the critical exponents: in particular there is a big

anomalous dimension η ' 0.6, very different from that of the ”standard” Heisenberg

transition.

A purpose for future works may be to study the model in which the condition of

having configurations with only pairs of monopoles enters in the Heisenberg Hamil-

tonian with single monopoles suppressed by means of a chemical potential λ. In this

framework the model studied in this work is simply the λ = 0 version of the new

one. In the limit λ → ∞, pairs of monopoles are completely neglected, as single

monopoles. In this case we have seen that there is no transition. Thus, it would

be interesting to study what happens for finite values of the chemical potential and

check when the phase transition disappears.
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Appendix A

Non linear sigma model

Here we will discuss quantum antiferromagnet systems focussing on the two dimen-

sional ones. In order to do this, we start with the study the spin coherent states and

the path integral construction for this kind of models.

A.1 Spin coherent states

We begin discussing a very simple system: a spin-S degree of freedom coupled to an

external field through a Zeeman term. In this case it is known that the (2S+ 1)-fold

degeneracy is lifted by the interaction and we get 2S + 1 non degenerate levels [8].

For the construction of the path-integral we are going to use the method of coherent

states, reviewed by A. Perelomov in the 1986 [25].

Let us start from the description of the Hilbert space. We have 2S+1 states that

transform like the spin-S representation of SU(2). We can denote the highest-weight

state in the representation as

|0〉 = |S, S〉 (A.1.1)

This is an eigenstate of S3 and ~S2 [8]:

S3 |0〉 = S |0〉 (A.1.2)

~S2 |0〉 = S(S + 1) |0〉 (A.1.3)

We can define our coherent state by a rotation of the |0〉 state [8]:

|~n〉 = eiθ(~n0×~n)·~S |S, S〉 (A.1.4)
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A.1. Spin coherent states

Figure A.1: Unit S2 sphere. From [8].

This coherent state is labelled by a unit vector ~n that is related with θ and ~n0 in

the following way:

~n · ~n0 = cosθ (A.1.5)

where ~n0 is along the quantization axis. The vector ~S has as components the three

generators of SU(2). Consider now the complete basis |S,M〉, where M labels the

eigenvalue of S3:

S3 |S,M〉 = m |S,M〉 (A.1.6)

~S2 = S(S + 1) |S,M〉 (A.1.7)

We can now write the coherent state |~n〉 in terms of that basis [8],

|~n〉 =
S∑

M=−S

D(S)(~n)MS |S,M〉 (A.1.8)

The coefficients D(S)(~n)MS do not form a group but they satisfy the algebra [8]

D(S)(~n1)MSD
(S)(~n2)MS = D(S)(~n3)MSe

iΦ(~n1,~n2,~n3)S3 (A.1.9)

The three unit vector ~n1, ~n2, ~n3 lie on the unit sphere S2 and Φ(~n1, ~n2, ~n3) is the area

of the spherical triangle with vertices at the three vectors.

This area is not uniquely defined because one can choose the ”inner” or the

”outer” as we can see from the Fig. A.2. The choice of the area is totally arbitrary
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A.2. Path-integral

Figure A.2: Inner and outer area of spherical triangle with vertices ~n1, ~n2 and ~n3.

From [8].

because the difference of the two oriented areas is 4π. Then in the path-integral

representation this gives a contribute of

ei4πM = 1 (A.1.10)

because M can be just an integer or an half-integer. The area appears in the inner

product of two coherent states [8]

〈~n1|~n2〉 = 〈0|D(S)†(~n1)D(S)(~n2) |0〉 = eiΦ(~n1,~n2,~n0)S
(1 + ~n1 · ~n2

2

)2
(A.1.11)

There are other two important relations to point out [8]:

〈~n| ~S |~n〉 = S~n (A.1.12)

and

I =

∫
dµ(~n) |~n〉 〈~n|~n〉 (A.1.13)

where dµ is the invariant measure

dµ(~n) =
(2s+ 1

4π

)
d3nδ(~n2 − 1) (A.1.14)

A.2 Path-integral

In this section we want to construct the path-integral for a one particle system using

the notion of coherent states defined before.

The partition function is defined as

Z = treiHT = tre−βH (A.2.1)
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A.2. Path-integral

with β the imaginary time. Using the Trotter formula and the identity (A.1.13) we

got [8]

Z = lim
Nt→∞

(
Nt∏
j=1

∫
dµ( ~nj)

)(
Nt∏
j=1

〈~n(tj)| e−δtH |~n(tj+1)〉

)
(A.2.2)

where Ntδt = β. We are considering a closed trajectory of the unit vector ~nj, with

tj the set of times between [0, β]. Approximating the exponential with 1− δtH and

using (A.1.11), we arrive to [8]

Z = lim
Nt→∞

∫
D~ne−SE [~n] (A.2.3)

where

D~n =
Nt∏
j=1

dµ(~ntj) (A.2.4)

and

−SE[~n] = iS
Nt∑
j=1

Φ(~ntj , ~ntj+1
, ~n0) + S

Nt∑
j=1

ln
(1 + ~ntj · ~ntj+1

2

)
−

Nt∑
j=1

〈
~ntj
∣∣H |~n(tj)〉

(A.2.5)

The first term leads to a sum of trajectories weighted by phases that represent

the areas of spherical triangles with vertices ~ntj , ~ntj+1
and ~n0. The sum of all this

areas is the total area A(Σ+) of the part of S2 in which the closed trajectory of ~nt

divides the unit sphere. It is not important which of the two part we choose because

A(Σ+) +A(Σ−) = 4π (A.2.6)

and then there is no physical manifestation of this choice.

In the continuum limit (Nt →∞, δt→ 0) [1]

A(Σ+) =

∫ 1

0

dτ

∫ β

0

dt~n(t, τ) · (∂t~n(t, τ)× ∂τ~n(t, τ)) (A.2.7)

where

~n(t, 0) = ~n(t), ~n(t, 1) = ~n0, ~n(0, τ) = ~n(β, τ) (A.2.8)

The total Euclidean action for an single particle system with a Hamiltonian of

the form H(~S) = ~B · ~S becomes [8]

SE[~n] = −iSA[~n] + S

∫ β

0

dt ~B · ~n(t) (A.2.9)
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A.3. Haldane’s Mapping

with ~B the external magnetic field.

Generalizing the above procedure we can write the Euclidean action for a many-

particle problem with a generic Hamiltonian H(t) in this way[1, 8]:

SE[~n] = −iSA[~n] + S

∫ β

0

dtH[~n(t)] (A.2.10)

where

H[~n(t)] = 〈~n(t)|H(t) |~n(t)〉 (A.2.11)

In particular for a antiferromagnetic Heisenberg spin-S system in d dimensions

with an Hamiltonian given by

H = J
∑
<~r,~r′>

~S(~r) · ~S(~r
′
) (A.2.12)

we can write the Euclidean action [1]

SE[~n] = −iS
∑
~r

A[~n(~r)] +

∫ β

0

dt
∑
<~r,~r′>

JS2~n(~r, t) · ~n(~r′, t) (A.2.13)

Here we consider a simple cubic lattice of dimension d and the sum is over the nearest

neighbor sites. The interaction J gives rise to a Néel ground state for the classical

Hamiltonian H[~n]. J is also assumed to be short ranged [1]:

1

2d

∑
j

|J ||~r − ~r′| <∞ (A.2.14)

A.3 Haldane’s Mapping

Haldane has showed [8, 1] that the effective action of quantum Heisenberg antiferro-

magnet in d dimensional cubic lattice can be mapped into a nonlinear sigma model

in d + 1 dimensions. This can be done using the Haldane’s Mapping, that is the

separation between the short and the long length scale fluctuation[1]:

~n(i) = η(i)~m(i)

√√√√1−

∣∣∣∣∣~L(i)

S

∣∣∣∣∣
2

+
~L(i)

S
(A.3.1)

where η(i) = ei~x(i)· ~K has opposite sign on the two sublattice, with ~x(i) the position

on the lattice and ~K = (π, π) . Near the Nèel phase, the slowly varying part ~m can be
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A.3. Haldane’s Mapping

seen as the staggered magnetization unit vector, while the canting field ~L represents

fluctuations that are always orthogonal to ~m:

|~m(i)| = 1 (A.3.2)

~L(i) · ~m(i) = 0 (A.3.3)

By performing the continuum limit and expanding the interaction to the quadratic

order in
∣∣∣ ~LS ∣∣∣2, we get [1]

SE[~m] = −iγ[~m] +
1

2

∫ β

0

dτ

∫
Λ

ddx
ρs
c

(
1

c
|∂τ ~m|2 + c

d∑
l=1

|∂l ~m|2
)

(A.3.4)

where ρs is the spin stiffness constant and cs is the spin wave velocity. The first term

is the topological Berry phase in terms of the Néel field ~m [1],

γ[~m] = S
∑
i

η(i)A[~m(i)] (A.3.5)

It is easy to see that the second term is an action of a non linear sigma-model in

d+ 1 dimensions. In fact we just make the transformation

(x1, ..., xd, cτ)→ (x1, ..., xd+1) (A.3.6)

and we have [1, 8]

SE[~m] = −iγ[~m] +

∫
dd+1Ld+1

NLSM (A.3.7)

with

LDNLSM =
ΛD−2

2fD

D∑
µ=1

∂µ ~m · ∂µ ~m (A.3.8)

The term f is the dimensionless coupling constant

fD =
c

ρs
ΛD−2 (A.3.9)

For the nearest neighbor Heisenberg antiferromagnet we have [1]:

Λ = a−1 (A.3.10)

ρs = JS2a2−d (A.3.11)
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A.3. Haldane’s Mapping

cs = 2JSa d−1/2 (A.3.12)

f = 2
√
dS−1 (A.3.13)

It is easy to notice that the semiclassical limit (large S) corresponds to the weak

coupling limit in the NLSM. In the absence of the topological term γ[~m] the ground

state of the quantum system is described by the classical energy of the NLSM in

d+ 1 dimensions.

Now we will investigate the role of the topological term in this kind of systems.
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Appendix B

Topological term

It is known [8] that in one dimension the Berry phase is not vanishing and plays an

important role in the physics of the system. The first term of the (A.3.7) i.e. the

topological Berry phase is exactly 2πSQxt, where Qxt is the topological charge

Qxt =
1

8π

∫
dxdtεij ~m · (∂i ~m× ∂j ~m) (B.0.1)

Clearly when the spin S is an integer the contribution of this term in the action

is irrelevant since e2πSQxt = +1. If we assume compactified or periodic boundary

conditions, the field ~m(x, t) is a map from the two dimensional sphere or torus to

the sphere fixed by |~m| = 1. Thus Qxt is an integer. On the other hand, when S is

half-integer e2πSQxt can be both +1 or −1, playing an important role in the quantum

physics of the system. Haldane showed [8, 1] that because of this term, the integer

spin chains are massive, while the half-integer chains are massless and then they fall

in different universality classes. This is known as Haldane’s conjecture.

In two space dimensions, consider the Néel vector ~m(x, y, t) with periodic bound-

ary condition. We can in principle define a topological current Jµ

Jµ =
1

8π
εµνλεa,b,cma∂

νmb∂
λmc (B.0.2)

If we consider the unit vector field ~m(x, y, t) well defined everywhere, the current

does not change in time and we have a conserved charge

Qxy =

∫
d2xJ0(x, y, t) =

∫
d2x

1

8π
ε0νλεa,b,cma∂

νmb∂
λmc (B.0.3)
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B.1. Without Berry phase

This is equal to the Pontryagin index [8] that one finds in (1+1)D, but now the time

coordinate is substituted by the spacial coordinate y.

Wilczek and Zee [34] have defined a skyrmion of the associated σ model as a

localized textural defect of the Néel field. Topologically distinct path of continuous

vector field ~m(x, y, t) can be classified by the integer Hopf index H. In order to see

if there is or not this Hopf term in the effective action of a (2 + 1)D antiferromag-

netic system we look at the Berry phase, under the assumption that the vector field

~m(x, y, t) is well-defined everywhere. Clearly, for a square lattice, this term is the

sum along the y direction of all the Berry phases of the n chains of the square lattice

that are 2πSQxt. So the total Berry phase is [9]

SB = i2πS
∑
n

(−1)nQxt(yn) (B.0.4)

Because of our assumptions, ~m(x, y, t) is continuous and the charges Qxt(yn)

are constant. For this reason the total sum vanishes and we conclude that there

is no Hopf term for smooth configuration of the Néel field ~m(x, y, t) [9]. Moreover

if ~m(x, y, t) is well defined everywhere, the Pontryagin index Qxy is a constant of

motion[9].

However is very important to notice that if this condition is relaxed, and than it

is allowed to have tunnelling processes in which the charge Qxy can change, the total

Berry phase can assume value different from zero [9]. In that case there would be an

intrinsic dependence of the system on the value of the spin S.

B.1 Without Berry phase

Ignoring the topological term in the action, the lattice model is simply a O(3) quan-

tum rotor, which fluctuations are well described by the NLσ model. This means

that exists a quantum phase transition at a critical point g = gc between an ordered

ground state and a quantum paramagnetic ground state [27].

The ordered phase of the rotor model corresponds to a Néel ground state. This

state clearly breaks the rotational symmetry because of the non vanishing value of

the staggered magnetization [27]

< Ŝi >∼ ηiS < ~n(xi) >= SNẑ (B.1.1)
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B.2. With Berry phase

From numerical studies [27] we know that 2D quantum antiferromagnetic system

with only nearest neighbour interaction J1 has Néel order ground state for all value

of spin S. Actually all of this system can be mapped into a rotor model with a value

of g smaller than the critical value [27]. For spin equal S = 1/2 this g is find to be

close to gc.

It is also interesting to notice that it is possible to find system that are mapped

onto a model with g > gc, i.e. system that do not have Nèel state as ground

state. This is possible with frustration that is considering also the second neighbour

interaction J2. For spin S = 1/2, several numerical studies have shown that for

J2/J1 = Jc ' 0.4, the system loose his Néel order [27, 8]. It seems reasonable to

identify this point with the critical one gc. For J2/J1 > Jc the rotational symmetry

is restored and all the excitations are gapped [27, 8].

B.2 With Berry phase

As we have said before, Berry phase does not vanish for singular configuration.

Considering a three component vector order parameter, the only admitted topological

singularity is the hedgehog. This corresponds to a tunnelling event in which the

Skyrmion number (B.0.3) changes. This is an integer for periodic boundary condition

in space. Haldane in [9] describes pictorially this event: consider the configuration of

~m(x, y, t) with Q = 1 as an elastic sheet wrapped on a sphere. In principle the model

is on a lattice, so the this can be visualized as a fine elastic mesh dividing the sphere

into plaquettes. The mesh size is very small when there is a strong local Néel order.

In this terms, a situation in which the area of one plaquette of the mesh becomes

large enough to allow the sphere to pass through. Then, the mesh returns to be of a

normal size. This corresponds to a tunnelling event in which Qxy has changed from

1 to 0. In space-time this process are called monopole or hedgehog singularities of

the vector field ~m(x, y, t).

Because of the periodic condition we cannot consider a single monopole event.

We actually assume many of these processes such that
∑

a ∆Q = 0, where the a

label the plaquettes.

These events are the saddle points of the path integral of the lattice antiferromag-

net [27]. They minimize the action and have a fourfold rotational symmetry about

the plaquette a.

54



B.2. With Berry phase

If there is a hedgehog centered in a point i of the space, the term A(i) ≡ A[~m(i)]

in Eq. (A.3.5) should support a ±4π vortex singularity. For example one can take

the configuration [27]:

A(i) = 2
∑
a

Qaarctan
(xi1 −Xa1

xi2 −Xa2

)
(B.2.1)

where xi1,2 are the coordinate of the lattice site and Xa is the position of the center of

the plaquette a. We have to evaluate the sum
∑

iA(i). In order to do this Haldane

proposed to convert it in a sum over the plaquettes [9]. They are defined on the dual

lattice and we can associate each plaquette with the site at its top right corner. One

plaquette contributes to the Berry phase as 1/4 times the sum of A(i) on the four

corner sites.

Haldane shows [9] that the Berry phase factor can be written as∏
a

(ζa)
2SQa (B.2.2)

where the product is only on the singularities and Qa can be ±1. The parameter ζa

is +1, i,−1 or −i and its value depends on the coordinate of the plaquette: it can be

respectively (even,even) , (even,odd) , (odd, odd), (odd,even). Because of the fact

that single hedgehogs are not allowed (
∑

aQa = 0), eq. (B.2.2) is invariant under

translation of all the singularities and multiplication of ζ by a constant. From this

formula we can see how the system behaves depending on the value of S. First notice

that for even-integer spin the Berry phase factor is always equal to 1. This means

that this kind of system can be seen exactly as a 3D classical Heisenberg model.

The eq. (B.2.2) shows us that configurations that differ only by a translation of

a single hedgehog by one lattice spacing in the (10) or (01) direction, have the same

amplitude but with different sign. This leads to a destructive interference for single

hedgehogs [9].

Following the same procedure for half-integer spin, that are the most important

for us, it is not difficult to see that there is a destructive interference between paths

that differ by a shifting of the singularity in the directions (10) , (01) and (11).

We can conclude that hedgehods are quadrupled and the disordered ground state,

associated to a proliferation of this singularity, is fourfold degenerate [9].

In the first chapter it is shown how the proliferation of these topological singular-

ities leads to a state call spin-Peierls or more commonly valence-bond solid (VBS).
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B.2. With Berry phase

Figure B.1: The two possible configurations of the VBS state. From [27].

This state is characterized by the quantity [27]

Pij =< Ŝi · Ŝj > (B.2.3)

This is in general invariant respect the group of the lattice symmetries. A VBS state

is a state in which the value of Pij breaks a lattice symmetry. In the S = 1/2 case

for a square lattice, there are two possible patterns of the VBS order [30, 27]: Pij

line up in columns or plaquettes. These states, shown in Fig. B.1, clearly breaks

the rotational symmetry and as we said before the ground state appears fourfold

degenerate.
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Appendix C

Monte Carlo tools

Monte Carlo methods are a class of computational algorithms based on random

sampling. In fact the main idea of Monte Carlo simulation is to simulate the random

thermal fluctuation of the system from state to state. In this simulations we follow

the time dependence of a model that changes in a stochastic way depending on

random numbers generated during the simulations [24].

Usually the main purpose of Monte Carlo simulations is to calculate the expec-

tation value of some observable, for example the magnetization < M >. In principle

this correspond to the standard thermodynamic mean value [3, 24]

< M >=

∑
µMµe

−βEµ∑
µ e
−βEµ

(C.0.1)

where µ labels all the states of the system, β is 1/(KBT ) and Eµ is the energy of the

state µ.

Clearly in numerical simulations a subset of these states µ is considered. Monte

Carlo chooses this subset at random from a probability distribution pµ [24]. Suppose

to choose states µ1, ...µN . Thus Eq. (C.0.1) become [24]

MN =

∑N
i=1 e

−βEµiMµi/pµi∑N
j=1 e

−βEµi/pµi
(C.0.2)

This value of MN is called estimator of M and clearly it corresponds to < M >

when N →∞ [24].

A simple choice for pµ can be a uniform probability distribution: this is the so
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called simple sampling [3] and (C.0.2) is simply

MN =

∑N
i=1 e

−βEµiMµi∑N
j=1 e

−βEµi
(C.0.3)

Clearly a more natural choice can be to take the probability distribution as pµ ∝
e−βEµ [24]. In this case (C.0.1) simply becomes

MN =
1

N

N∑
i=1

Mµi (C.0.4)

This is called importance sampling. In order to realise this kind of sampling Metropo-

lis et al. in 1953 [18], proposed to construct a Markov process [3] where each

state µi+1 is constructed from the previous one µi with a transition probability

W (µi → µi+1). It was found [18] that it is possible to choose the transition proba-

bility W in such a way that, for N → ∞, the function pµi tends to the equilibrium

distribution

peqµi =
1

Z
e−βEµi (C.0.5)

where Z is the partition function. For these reasons, the transition probability has

to be chosen in order to satisfy the relation [3]

peqµiW (µi → µi′ ) = peqµ
i
′W (µi′ → µi) (C.0.6)

Thus the ratio of transition probabilities depends only on the difference of the energies

of the two states.
W (µi → µi′ )

W (µi′ → µi)
= e

−β(Eµ
i
′ −Eµi ) (C.0.7)

A suitable choice of W is the so called Metropolis form

W (µi → µi′ ) = τ−1
0 exp(−β∆E) ∆E > 0 (C.0.8)

= τ−1
0 ∆E < 0 (C.0.9)

where ∆E = Eµ
i
′ −Eµi and τ0 is an arbitrary factor, that is usually chosen as a unit

of ”Monte carlo time”, well described below.

In our specific simulations we have a three dimensional lattice of finite size L. At

each site we consider a unit three dimensional vector i.e. the spin. A configuration is

uniquely defined once we know the direction of each vector. A new configuration is
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C.1. Statistical error

constructed by the previous one by changing a direction of a single spin. The choice

of the spin and of its new direction is totally random. In particular the direction is

selected by choosing at random the two polar angles θ and φ. A uniform distribution

of these angles on the S2 sphere is obtained by taking [33]

• φ = 2πu

• cos−1(2ν − 1)

where u and ν are random variates on the interval (0, 1).

The single-flip Metropolis algorithm for our models is characterized by

• choose a random spin of the system

• choose a random new direction for that spin

• compute the difference of energy ∆E between the two configurations

• accept the new configuration with a probability given by e−
∆E
T

It’s easy to see that if the new configuration has an energy lower than the old, the

exponential is greater than one and this means that we always have to accept it.

The repetition of this procedure L × L × L times forms a Monte Carlo sweep

(MCS), that represents our ”Monte Carlo time” t. For each of MCS we take a value

of some observable that we are looking for and then we take the mean value

< M >=
1

NMCS

NMCS∑
t=1

Mt (C.0.10)

C.1 Statistical error

Here we will briefly talk about the statistical error associated to Monte Carlo sam-

pling. Suppose to have N observations of Mµ, µ = 1, ..., N . Thus the square of

statistical error is [24, 3]

< (δM)2 >= 〈
[ 1

N

N∑
µ=1

(Mµ− < M >)
]2

〉 = (C.1.1)
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C.1. Statistical error

< (δM)2 > = 〈
[ 1

N

N∑
µ=1

(Mµ− < M >)
]2

〉 (C.1.2)

=
1

N2

N∑
µ=1

〈(Mµ− < M >)2〉+
2

N

N∑
µ1=1

N∑
µ2=µ1+1

(
< Mµ1Mµ2 > − < M >2

)
(C.1.3)

Now defining a time tµ = δtµ, where δt is the time interval between two observa-

tions Mµ and Mµ+1. Then changing µ2 to µ2 + µ and transforming the summation

into a time integration, we have [3, 21]

< (δM)2 >=
1

N

(
< M2 > − < M >2

)[
1+

2

δt

∫ t0

0

(
1− t

tn

)< M(0)M(t) > − < M >2

< M2 > − < M >2
dt

]
(C.1.4)

Defining the autocorrelation function [24, 3, 15]

φM(t) =
< M(0)M(t) > − < M >2

< M2 > − < M >2
(C.1.5)

and the autocorrelation time

τM =

∫ ∞
0

φM(t)dt (C.1.6)

we are able to write [3]

< (δM)2 >=
1

N

[
< M2 > − < M >2

](
1 + 2

τM
δt

)
(C.1.7)

where it was considered t << tn. If we take δt << τM we find

σ =
√
< (δM)2 > '

√
2τM
Nδt

[
< M2 > − < M >2

]
(C.1.8)

The autocorrelation function for the Classical O(3) Heisenberg system of size

L = 8 is shown in Fig. C.1 at T = 1.2. As we can see the function zero after a

Monte Carlo time about 20 MCSs. This is the time that we have to wait in order

to have a measure independent of the previous one. We expect an autocorrelation

time 2τ ' 20. Knowing that [24, 15] φM ∼ e−t/τM we have that τM is the slop of the

straight line in the Fig. C.2 . We actually found τ0 = 9 as expected.
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C.1. Statistical error

Figure C.1: Autocorrelation function φM . It’s easy to see that the function reach

the zero after about 20 MCSs.

Figure C.2: Semi-log plot of the logarithm of φM as a function of the MCSs.

61



Bibliography

[1] A. Auerbach, Interacting electrons and quantum magnetism (Springer-Verlag)

(1994);

[2] B. Berg, M.Luscher, Nucl. Phys. B190, [FS3] 412 (1981);

[3] K. Binder, D. W. Heermann, Monte Carlo Simulation in Statistical Physics:

an introduction (Springer) (2019);

[4] P. M. Chaikin, T. C. Lubensky, Principles of condensed matter physics (Cam-

bridge University Press) (1995);

[5] S. Chakravarty, B. I. Halperin, D.R. Nelson, Phys. Rev. B 39, 2344

(1989);
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