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Abstract

Luminosity is the key figure of merit of a collider, its integrated value being

proportional to the data collected by the physics detectors. The goal of a collider run

is to collect the largest possible integrated luminosity over the fixed time allocated for

physics in order to maximise the probability of physics discovery. This study aims

at devising a strategy to maximise the integrated luminosity of a circular collider.

The research is carried out in two steps: the first one is devoted to optimisation

a posteriori of what was done at the CERN Large Hadron Collider during Run 2,

whereas the second step consists in the performance analysis of strategies to optimise

the integrated luminosity applied in conditions that simulate the control room situation

and the evolution of the collider’s run.





Introduction

Luminosity is the key figure of merit of a collider, its integrated value being

proportional to the data collected by the physics detectors. The goal of a collider

run is to collect the largest possible integrated luminosity over the fixed time

allocated for physics to maximise the probability of physics discovery.

So far, several ways have been considered to maximise the luminosity delivered

into a collider, like keeping small the amplitude function in the interaction point (as

planned for High Luminosity LHC) or increasing the bunches overlap regions (e.g.

thanks to Crab Cavities). This work examines what can be done in the control

room, choosing the appropriate timing in operations by referring specifically to

the CERN Large Hadron Collider, and proposes an algorithm that could help the

operators make the optimal choices.

The luminosity is not constant over time. Indeed, since the beams degrade over

various collisions, also the instantaneous luminosity decays. However, discarding

the current beams and refilling a large collider with new beams takes several hours

under normal working conditions. To optimise the integrated luminosity yield, it is

hence important to model the luminosity evolution and to predict the optimum fill

time.

In this work, after a theoretical introduction (see Chap. 1 and Chap. 2), the

evolution of luminosity is studied, and it is proposed a way to model it (see

Chap. 3). Subsequently, a preliminary a posteriori study is exposed in Chapter 4.

Here, the idea was to understand if, with complete knowledge of the luminosity

evolution of the realised fills, there was room for improvement in terms of integrated

luminosity. Based on this study, Chapter 5 devises an on-line optimisation strategy.
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Finally, Chapter 6 shows the results obtained applying the proposed strategy and

Chapter 6.4 sets out the next steps of this study.
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Chapter 1

Introduction to Accelerator

Physics

1.1 Beam Dynamics

In a circular particle accelerator, a charged particle is guided along the circular

closed orbit thanks to electromagnetic fields that exert the driving force as a Lorentz

Force

F⃗ = e(E⃗+ v⃗ × B⃗) . (1.1)

In high-energy accelerators, like the CERN Large Hadron Collider (LHC),

electric fields, E⃗, are used to accelerate particles along the longitudinal direction

of the motion, while magnetic fields, B⃗, are dedicated to focus and bend particles

along the transverse plane.

1.1.1 Transverse Dynamics

In Fig. 1.1 is represented the ideal orbit (i.e. the reference orbit), along which

a charged particle should be guided by the field generated by the synchrotron

magnets.

Considering a particle in a local co-ordinate system (x, z, s), moving with a

velocity v⃗ = (ẋ, ż, ṡ), subjected to a constant magnetic field along the ẑ direction,

1
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ẑ

x̂ŝ

r⃗
r⃗o

Reference Orbit

Particle

Figure 1.1: The curvilinear co-ordinate system for particle motion in a circular

particle accelerator [1].

Bz, the condition that allows the particle to remain on the reference orbit is that

the centripetal force, acting on it, should be equal to the Lorentz force, namely

mv⃗2

r⃗0
= ev⃗Bz. (1.2)

From this derives the definition of beam rigidity, i.e. the stiffness of the

circulating beam under the effect of the magnetic guiding forces

Bzρ =
p

e
, (1.3)

where p is the particle momentum and ρ is the bending radius of the orbit. Eq. (1.3)

involves that, for maintaining the radius of the reference orbit constant, Bz must

change as the momentum of the charged particle increases.

At this point, it is important to find the equation of motion of a charge particle

in a circular accelerator. Given the fact that the transverse dimensions of the beam

are small, it is possible to expand the magnetic field around the nominal closed

orbit using a multipolar expansion [2]

Bz + iBx =
p

e

∑

n

(ian + bn)(x+ iz)n−1, (1.4)

where an and bn represent the skew and normal magnetic components, respectively.

As a result of this, the magnetic field around the beam is described by a superposition

of multipoles, each with a specific effect on the particle’s dynamics: b0 represents the

dipolar field that bends the beam, b1 the quadrupolar field that focuses the beam,
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b2 and b3 the sextupolar and octupolar fields, respectively, that are generating

higher-order effects in the dynamics.

Considering only the dipole and quadrupole contributions to the magnetic field,

beam dynamics is linear, and thus it is possible to find the two decoupled equations

of transverse motion, an inhomogeneous differential equation and a homogeneous

one [3]

x′′(s) +

(
1

ρ2(s)
− k(s)

)
x(s) =

1

ρ(s)

δp

p0
(1.5)

z′′(s) + k(s)z(s) = 0, (1.6)

where k (i.e. the quadrupole strength) and ρ (i.e. the radius of curvature) are

naturally periodic with a periodicity equal to the circumference of the accelerator,

and δp/p0 represents the deviation of the particle’s momentum from the nominal

one. The two Eqs. (1.5) and (1.6), are called Hill Equations1.

In a generic homogeneous case, i.e.

x′′(s) + k(s)x(s) = 0, (1.7)

the general solution of the Hill equation can be expressed as

x(s) = C(s)x0 + S(s)x′0

(1.8)

x′(s) = C ′(s)x0 + S ′(s)x′0 ,

and they can also be expressed in function of the so-called transfer matrix M
[
x

x′

]
=

[
C(s) S(s)

C ′(s) S ′(s)

]

︸ ︷︷ ︸
M

[
x0

x′0

]
, (1.9)

where C(s) is the solution of the homogeneous equation with C(s) = 1 and S(s) = 0

while S ′(s) is the solution with C ′(s) = 0 and S ′(s) = 1. For this choice, C(s)

1These equations were introduced in 1886 by George W. Hill in his studies on periodic

differential equations.
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and S(s) are called cosine-like and sine-like functions, respectively, or principal

trajectories.

To find the solution of the inhomogeneous Hill Eq. (1.5) it is necessary to

introduce a dispersion term D(s)

x(s) = C(s)x0 + S(s)x′0 +D(s)
δp

p0

(1.10)

x′(s) = C ′(s)x0 + S ′(s)x′0 +D′(s)
δp

p0
.

The solution of D(s) with D0 = 0 and D′
0 = 0 is

D(s) = S(s)

∫ s

0

dσ
1

ρ(σ)
C(σ)− C(s)

∫ s

0

dσ
1

ρ(σ)
S(σ) , (1.11)

and in the inhomogeneous case, the form of the transfer matrix is



x

x′

δp/p0


 =



C(s) S(s) D(s)

C ′(s) S ′(s) D′(s)

0 0 1







x0

x′0

δp/p0


 . (1.12)

The solution of the homogeneous Hill Eq. (1.5) can be found also by using

Floquet’s theorem, which provides the following form

u(s) =
√

2Jβ(s) cos(ψ(s) + ψ0) with u = {x, z}. (1.13)

The trajectory function u(s) describes a transverse oscillation about the closed

orbit, the so-called betatron oscillation [3]. The quantities J and ψ0 in Eq. (1.13)

are constants determined by the initial conditions,
√
2Jβ(s) is the amplitude of

the oscillation, and (ψ(s) + ψ0) its phase. β is one of the three Twiss parameter 2

called beta function or amplitude function.

Remembering that the quadrupole focusing strength k(s) is periodic with the

same period of β(s), it is possible to define the betatron tune:

Qu =
Nr. Oscillation Periods

Accelerator Circumference
=

1

2π

∫ L

0

ds

βu(s)
where u = x, z . (1.14)

2β is the Twiss parameter that defines the other two: α = −β′(s)/2 and γ = (1 + α)2/β.
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The betatron tune is defined by the quadrupole arrangement in the machine.

The horizontal Qx and vertical Qz tunes define the so-called working point of an

accelerator and they values should be chosen to avoid resonances 3.

Emittance

The general solutions of the Hill equations, written as a function of β(s), describe

the fact that a particle with stable motion in an accelerator follows an ellipse in

the phase space (u, u′):




u(s) =

√
2Jβ(s) cos(ψ(s) + ψ0)

u′(s) =
√

2J
β(s)

(sin(ψ(s) + ψ0))
(1.15)

By squaring the two previous equations we obtain:

2J = γ(s)u2(s) + 2α(s)u(s)u′(s) + β(s)u′2(s) = ε (1.16)

where α = −β′(s)/2, γ = (1 + α)2/β and 2J is the Courant-Snyder invariant, J

being the action, which is equal to the emittance ε. The Eq. (1.16) represents an

ellipse in the phase space (u, u′), whose area is A = 2πJ = πε (see Fig. 1.2).

u′

u

√
2J

γ

√
2Jβ

√
2J

/β

√
2J/γ

−α
√

2J/γ −
α √

2J
/β

Figure 1.2: The Phase-space ellipse described by the particle motion in (u, u′).

3For an nth order resonance the particle’s trajectory will be closed after n turns, amplifying

the effect of the magnetic imperfections.
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Thus, the emittance can be defined as the area of the phase-space ellipse divided

by π. Considering an ensemble of particles in the beam, the beam emittances is

obtained by averaging the emittance of the individual particles. Given that the

particles are generically Gaussian distributed, it is customary to consider values

of the beam emittance obtained by considering a representative particle with an

amplitude corresponding to one rms of the beam distribution.

1.1.2 Longitudinal Dynamics

The first particle accelerators arose by exploiting the ability of the electric field

to accelerate or decelerate charged particles. The initial idea was to insert the

particle in an area subject to a electric potential difference that would allow the

particle to increase its speed [4].

g

s

r

E⃗

Figure 1.3: Schematic representation of a Radio Frequency cavity.

Figure 1.3 shows a typical acceleration cavity called Radio Frequency cavity in

which a variable electric field is present. Across the gap, g, the amplitude of the

RF voltage is VRF and the particle crosses the gap at a distance r. In this system,

the energy gain is

∆E = e

∫ g/2

−g/2

E⃗(s, r, t) · ds⃗ , (1.17)

where E(s, r, t) = E1(s, r) ·E2(t) is the electric field in the cavity gap. If we consider
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a simplified model in which

E1(s, r) =
VRF

g
= constant (1.18)

E2(t) = sin(ωRFt+ ϕ0), (1.19)

for t = 0, s = 0 and v ̸= 0 parallel to the electric field, the energy gain becomes

∆E = eVRFTa sinϕ0, (1.20)

where Ta is called the transit time factor. The latter is related to the time required

to fill the cavity with the electric field, and it is defined as

Ta =
sin (ωRFg/2v)

ωRFg/2v
. (1.21)

Thus, the transit-time factor conveys the effective acceleration voltage available,

and for g → 0, Ta → 1, highlighting the importance of sufficiently narrow RF

cavities. Now, it is evident how the longitudinal motion is strongly correlated to

the synchronisation between the particles and the acceleration system. Thus, for

the latter to be synchronised, the following synchronism condition must occur

frev = fRF/h. (1.22)

The ratio between the RF frequency and the revolution frequency must be

equivalent to the harmonic number, which indicates the maximum number of beam

bunches it is possible to load into the accelerator.

At this point, we consider that a particle beam is never mono-energetic, but

rather distributed around the nominal value of the momentum. Thus, we define a

factor that binds the momentum variation, ∆p, to the trajectory variation of the

particles, ∆C, the momentum compaction factor αp

∆p

p
αp =

∆C

C
. (1.23)

Hence, for momenta greater than the nominal one also the particle trajectory

will be longer. The revolution frequency is defined as frev = v/C. Keeping in mind

that for lower energy the velocity will increase faster than the trajectory, while at
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higher energy the velocity will be almost constant (v ≃ c), we can affirm that there

is an energy for which the variation of speed is balanced by the variation of the

trajectory called transition energy and defined as

γtr =
√
1/αp . (1.24)

Figure 1.4 represents the longitudinal periodic motion of particles in an acceler-

ating bucket around the nominal phase, for a beam energy below the transition

energy. This kind of motion is called synchrotron oscillation and is caused by the

distribution of particles’ momentum around the nominal value ∆p/p = 0.
2.4. SYMPLECTIC INTEGRATION 15

Cavity

� < 0

� > 0
V

 

� < 0

V
� = 0

V0 � > 0

 

 0

Figure 2.4: The principle of synchrotron oscillations for relativistic particles (v = c) [22]. The e↵ect of a
momentum deviation di↵erent from zero is illustrated.

a shorter path-length and will arrive at the cavity ahead of the ideal particle. Now the particle
sees a higher voltage and is accelerated more than the ideal particle. This particle will gain in
on the ideal particle during the next turn. In this way the RF-cavity focuses the beam in the
longitudinal direction. The bunch structure of the particle beam can thus be kept.

2.4 Symplectic integration

Numerical integration of di↵erential equations is a vast topic. Common integration schemes include
the Euler- and Runge-Kutta schemes. In what follows, an integration scheme will be referred to
as an integrator.

Symplectic integrators belong to a larger class of integrators called geometric integrators. An
integration step can be thought of as a mapping or a transformation from an initial set of co-
ordinates to a new set of coordinates. A property of all geometric integrators is that they are
canonical transformations. This is why the concept of a symplectic integrator is important in the
Hamiltonian approach in accelerator physics.

2.4.1 The symplectic condition

It is possible to check weather a given transformation, or integration step, is symplectic. The
symplectic condition is an equation which must be satisfied for a given transformation to be
symplectic. The symplectic condition can be stated as [19]

MT SM = S, (2.25)

where M is the Jacobian matrix of the transformation and S is the symplectic matrix. For a
transformation from a set of coordinates (x1, p1, x2, p2, . . . , xN , pN ) to a new set of coordinates
(X1, P1, X2, P2, . . . , XN , PN ) the Jacobian matrix is defined as

M =

2
66664
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@pN
@X2

@x1

@X2
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@pN

...
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. . .
...
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3
77775

.

!!
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Figure 1.4: The principle of synchrotron oscillations for relativistic particles

(v ≈ c), where δ = ∆p/p. The effect of a momentum deviation different from zero

is illustrated [3].

An ideal on-momentum particle follows the orbit fixed by the construction of

the machine, and has a nominal phase ϕs, called synchronous phase. A particle

with a lower momentum ∆p/p < 0 will travel a smaller path, arriving earlier in the

cavity and thus seeing a larger voltage in the RF cavity. This will then compensate

for the lack of energy, and step by step it will approach the ideal particle. Lastly,

a particle with a higher momentum ∆p/p > 0 will travel a longer path seeing a

smaller voltage in the cavity and again step by step will approach the ideal particle.

In conclusion, the effect of an oscillating longitudinal electric field is twofold: on
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the one hand, it provides the energy needed to accelerate the beam, and on the

other hand, it is also generating a longitudinal focusing of the beam particles.

Figure 1.5 shows a stationary (left) and an accelerating (right) bucket. The

separatrix is shown in red and separate the phase space in two regions: a stable

one (inside the separatrix and around the origin) and an unstable one (outside the

separatrix), The number of buckets along the ring circumference corresponds to

the harmonic number h.

Phase space for stationary or accelerating bucket

9/23/21 M. Giovannozzi | Presentation Title 56
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Figure 1.5: Phase-space portrait for stationary (left) or accelerating (right) bucket

[5].





Chapter 2

Particle colliders and Luminosity

Since the beginning of the XXth century, particle accelerators have been an

indispensable tool for research in high-energy physics. In this field, circular accelera-

tors outperform linear accelerators thanks to their higher acceleration performance,

thanks to the multi-pass feature.

Figure 2.1: A Livingston plot showing the evolution of effective accelerator energy

from 1930 to 1990 [6].

11
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Figure 2.1 shows a Livingstone plot reporting the time evolution of accelerators’

performance [6].

Today, nuclear and subnuclear physics experiments are performed mainly using

large particle accelerators and can be divided into fixed-target experiment and

colliding-beam experiment. The former is mainly used for nuclear physics, while

the latter for subnuclear physics, where the energy available for the new processes

production plays a fundamental role. The higher centre-of-mass energy will enable

the discovery of heavier particles, still unknown, or the determination with high

accuracy of the properties of known heavy particles. The highest centre-of-mass

energy can be achieved only thanks to particle collider (e.g. the CERN LHC), as

can be highlighted thanks to some kinematic calculations [7].

If we consider a collision between two particles of masses m1 and m2 the total

centre-of-mass energy, Ecm, can be expressed as

(p1 + p2)
2 = E2

cm = (E1 + E2)
2 − (p⃗1 + p⃗2)

2, (2.1)

where pi is the two ith particle four-momentum, Ei is its energy, and p⃗i its linear

momentum. In case of a fixed-target experiment, p⃗2 = 0, and thus

Ecm =
√
m2

1 +m2
2 + 2m2E1,lab, (2.2)

where E1,lab is the total energy of the first particle in the laboratory reference frame.

For a colliding beam experiment, p⃗1 = −p⃗2, and thus

Ecm = E1 + E2. (2.3)

Hence, if we consider for instance two protons accelerated up to 7 TeV, in a colliding

beam experiment the centre-of-mass energy will be 14 TeV, while in a fixed target

one it will be about 115 GeV.

While the centre-of-mass energy determines the mass of the products of a

collision, the luminosity determines the number of events after a given period of

time. The luminosity is defined as

L =
dR/dt

σp
[cm−2 s−1], (2.4)
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where σp is the cross section of the physical process under consideration and dR/dt

represents the interaction rate. From that it is possible to define the total number

of events collected during a data-taking run as

Ne = σp

∫ T

0

dt L(t) = σp Lint, (2.5)

where T is the total time for physics and Lint is the integrated luminosity, usually

measured in fb−1 (i.e. 1039 cm−2) [3].

The processes studied in present experiments have smaller and smaller cross-

sections, i.e. lower than the nanobarn. For this reason, it is necessary to increase

the luminosity to maximise the number of events collected, Ne, to achieve an

appropriate statistics in a reasonable time.

2.1 The CERN LHC

The CERN LHC is located in the accelerator complex of CERN (Conseil Europé

en pour la Recherche Nucléaire) on the Swiss-French border near Geneva. It is the

largest and most powerful particle accelerator currently in operation, and it works

mainly with proton-proton collisions, but it is also used as ion collider.

The LHC was designed to reach a centre of mass energy of 14 TeV, and for this

reason, proton beams must pass through an injector chain (shown in Fig. 2.2) that

allows them to gain more and more energy [8].

During Run 2 operations (from 2015 to 2018), the proton source was obtained

by subjecting hydrogen to a very intense electric field that ionises the gas, leaving

only protons at 50 MeV of total energy at the inlet of the linear accelerator LINAC2

[9]. Here the protons were accelerated up to 160 MeV and subsequently entered

the first circular accelerator of the injector chain, the Proton Synchrotron Booster

(PSB), which accelerated them up to 1.4 GeV. The PSB and the following Proton

Synchrotron (PS) ring determined the bunch train structure of the beams so that

it was compatible with the LHC RF system. The PS accelerated protons up to

26 GeV, and then the Super Proton Synchrotron (SPS) accelerated them further up

to 450 GeV. In the end, LHC accelerated each beam up to 7 TeV. During the Long
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4 The Large Hadron Collider (LHC)

4.1 Injector Chain

CERN, the European Organization for Nuclear Research, hosts the world’s largest accel-
erator complex (figure 4.1). Apart from some machines used for dedicated experiments, a
series of smaller accelerators serve as injector chain to produce and pre-accelerate beams
for the LHC.
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Figure 4.1: The CERN accelerator complex [16].

Protons are produced by ionization of hydrogen gas at the entry of LINAC2, a linear
accelerator which pre-accelerates them to 50MeV. In the PS Booster and PS rings, a

19

Figure 2.2: The CERN accelerator complex in use during Run 2, showing the

path of protons and ions at the injection (the accelerators are not drawn to scale)

[2].

Shutdown 2 (LS2), from 2019 to 2020, a massive improvement program called LHC

Injectors Upgrade (LIU) was put in place [10]. Hence, the injection chain described

above has been modified by replacing LINAC 2 with LINAC 4 and updating PSB,

PS and SPS considering the new working conditions expected for high-luminosity

LHC.

LHC is built in an underground tunnel of about 27 km in circumference at

about 100 meters depth, and, as shown in Fig. 2.3, it consists of 8 arcs interspersed

with rectilinear insertion regions (IRs). The insertion regions contain both the



2.1 The CERN LHC 15

 

Se
pt

um
 h

ol
e 

2nd
 b

ea
m

 h
ol

e 

    
 
 
 

Beam 1 Beam 2

B
&

 
top to bottom 

F
&

F
&

B
&

 
bottom to top

CMS

Atlas

LHC-B Alice

Dump RF 

Momentum 
Cleaning 

Betatron 
Cleaning 

Figure 2 : Schematic LHC layout Figure 1: Coil connections of MSI Figure 2.3: Schematic of the LHC rings [11].

interaction points (IPs), where the two LHC beams collide and some accelerator

systems [12]. In the interaction points IP1, IP5, IP2 and IP8, we find respectively:

ATLAS and CMS, the two LHC detectors that work in conditions of high luminosity,

LPeak = 2 · 1034 cm−2 s−1 [13] (obtained by colliding the beams completely head-on

and keeping β∗ as small as possible); ALICE and LHCb, which instead work with

a much lower luminosity than their colleagues, LALICE
Peak = 1 · 1031 cm−2 s−1 and

LLHCb
Peak = 2 · 1033 cm−2 s−1 [13].

Each LHC arc consists of 23 cells 106.9 m long, schematically represented in

Fig. 2.4. Each cell is composed of six dipoles and two quadrupole magnets, plus a

number of ancillary magnets that are supposed to correct the closed orbit, the tune,

the linear coupling, the chromaticity and the non-linear field quality of the dipoles.
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106.9 m

MQ MQMBA MBA MBAMBB MBB MBB

Figure 2.4: Schematic layout of an LHC arc cell. MBA/B are the bending dipoles,

MQ are the focusing quadrupoles (both superconducting). The smaller magnets in

between are dipolar (orbit), quadrupolar (tune) and higher order correctors [14].

2.2 Luminosity Computation

It is possible to derive the expression of the luminosity in terms of the collider

parameters. Colliders typically use bunched beams, thus, Fig. 2.5 sketches the case

of two colliding bunches moving through each other [7].

Orbi
t

n1ρ1
(x, y

, s,−s0
)

n2ρ2
(x, y

, s, s0
)

IP

v1

v2

s0

Figure 2.5: Schematic view of the interaction of two colliding beams.

In the considered case, the overlap integral of the two distributions is propor-

tional to the luminosity as follows

L = n1n2K

∫ ∫ ∫ ∫ +∞

−∞
dxdydsds0 ρ1(x, y, s,−s0)ρ2(x, y, s, s0), (2.6)

where s0 = ct, K =
√

(v1 − v2)2 − (v1 × v2)2/c2 is the kinematic factor, which is

equal to 2c for symmetric colliders, i.e. v1 = −v2 and v1 × v2 = 0 [15], and ρ1

and ρ2 are the time-dependent, normalised beam density distribution functions, ni
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being the number of particles in the ith bunch.

At this point, considering only head-on collisions, i.e. v1 = −v2, of equal beams,

with uncorrelated Gaussian density distributions, we obtain

L =
2n1n2frevkb

(
√
2π)6σ2

sσ
∗2
x σ

∗2
y

∫ ∫ ∫ ∫
dxdydsds0 e

− x2

σ∗2
x e

− y2

σ∗2
y e

− s2

σ2
s e

− s20
σ2
s , (2.7)

where frev is the revolution frequency, kb is the number of colliding-bunch pairs, σs

is the rms bunch length, and σ∗
x,y represent the transverse rms beam size at the

interaction point.

Integrating the previous equation, considering that

∫ +∞

−∞
e−at2dt =

√
π/a (2.8)

we obtain the following expression for the luminosity

L =
n1n2frevkb
4πσ∗

xσ
∗
y

, (2.9)

that can be rewritten in the following form, considering that σ∗
x = σ∗

y =
√
β∗ε/γr

L =
n1n2frevkbγr

4πβ∗ε
. (2.10)

where γr is the relativistic factor, β∗ is the amplitude function in the interaction

point and ε is the emittance. Thus, to increase luminosity, there are several

possibilities: the amplitude function (or β function) could be kept small, the

number of particles per bunch or the number of bunches in the machine could be

intensified, and finally, the total energy could be increased [16].

2.3 Reduction Factors

Equation (2.10) represents the maximum luminosity value that can provide an

ideal collider. This value, however, might be lowered by some effects, which occur

in real machines. There are principally three additional effects that we need to

consider: the crossing angle, the collision offset, and the hourglass effect.
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2.3.1 Crossing Angle

The crossing angle is a voluntarily-inserted effect needed to avoid unwanted

collisions outside of the designated interaction point [16].
x

x1 x2

s

s1

s2

ϕ/2

ϕ/2

ρ1(
x, y

, s,
−s0

) ρ
2 (x, y, s,−s0 )

Figure 2.6: Rotated reference system for collision at a finite crossing angle with a

schematic view of two beams colliding.

Assuming that the crossing angle is in the horizontal plane (as displayed

in Fig. 2.6), we can evaluate the overlap integrals performing a co-ordinates

transformation [7]. From x− s, we go to x1 − s1 for Beam 1 and x2 − s2 for Beam

2, where

x1 = x cos(ϕ/2)− s sin(ϕ/2) s1 = s cos(ϕ/2) + x sin(ϕ/2)

x2 = x cos(ϕ/2) + s sin(ϕ/2) s2 = s cos(ϕ/2)− x sin(ϕ/2).

In this situation, the overlap integral becomes

L = A

∫ ∫ ∫ ∫ +∞

−∞
dxdydsds0 ρ1x(x1)ρ1y(y1)ρ1s(s1−s0)ρ2x(x2)ρ2y(y2)ρ2s(s2+s0),

(2.11)

where A = 2 cos2(ϕ/2)n1n2frevkb and 2 cos2(ϕ/2) is the kinematic factor for bunch

velocities which are not collinear. Computing the previous integral, considering
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that

∫ −∞

−∞
e−(at2+bt+c)dt =

√
π/ae

b2−ac
a , leads to

L =
n1n2frevkb
4πσ∗

xσ
∗
y

Fc (2.12)

where Fc is the reduction factor for the crossing angle, which for small crossing

angles and σs >> σ∗
x,y assumes the form

Fc =
1√

1 + ( σs

σ∗
x

ϕ
2
)2
, (2.13)

where σs

σx

ϕ
2
is called the Piwinski angle.

2.3.2 Collision Offset

The collision offset can be voluntarily introduced in the machine to perform

some measurements or to adjust the trajectory of the beams, but it can also arise

spontaneously as a result, e.g. of ground motion or beam-beam effects [7].

ρ2(x, y, s, s0)

ρ2(x, y, s, s0)

∆x

Figure 2.7: Schematic view of two bunches colliding with a transverse offset ∆x

in the horizontal plane.

In Fig. 2.7 is presented the simplest case of transverse offset of colliding beams,

where the reduction factor Fo is

Fo = exp

(
−∆x2

4σ∗2
x

)
. (2.14)

It could also happen to have both crossing angle and transverse offset. In this case,

in addition to the two reduction factors, Fc and Fo, it is necessary to add to the

luminosity expression a relative factor,

Fc−o = exp


 (∆x sin(ϕ/2)

2σ∗2
x

)2

sin2(ϕ/2)
σ∗2
x

+ cos2(ϕ/2)
σ∗2
s


. (2.15)
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2.3.3 Hourglass effect

Equation (2.10) assumes that the beta function is constant and equal to β∗

along the longitudinal direction, s. However, this assumption is correct only if

β∗ >> σs, otherwise, for β
∗ ∼ σs, the variation of the beta function along the

longitudinal direction cannot be neglected anymore and it is

β(s) = β∗
[
1 +

(
s

β∗

)2
]
, (2.16)

should be taken into account, as it implies a luminosity reduction described by the

reduction factor Fh. In this case, the luminosity can be expressed as

L =
n1n2frevkb
4πσ∗

xσ
∗
y

cos(ϕ/2)√
πσs

∫ +∞

−∞
ds

e−s2A(s)

1 + (s/β∗)2
,

︸ ︷︷ ︸
Fh

(2.17)

where

A(s) =
sin2(ϕ/2)

(σ∗
x)

2[1 + (s/β∗)2]
. (2.18)

The hourglass reduction factor cannot be computed analytically, and it has to be

computed numerically, and some examples are given in Table 2.1. Considering the

relation between the beam size and the beta function,

σx,y(s) = σ∗
x,y

√
1 +

(
s

β∗
x,y

)2

,

also the beam size is not constant but increases approximately linearly with the

distance from the interaction point.

In Fig. 2.8 the beta-function variation with respect to the distance from the

interaction point is shown for two values of β∗. From the plot, it is also possible to

understand why this effect is called the hourglass effect.
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Figure 2.8: Schematic illustration of the hourglass effect. The beta function is

plotted for two values of β∗.

Table 2.1 shows how the previously described effects impact the LHC luminosity

production using the nominal beam parameters [16].

Table 2.1: Typical values of LHC parameters and the corresponding reduction

factors [14].

Effect Reduction Factor F

Crossing Angle Fc = 0.84 ϕ = 285µrad σs = 7.5 cm

Collision Offset Fo = 1 ∆x = 0

Fo = 0.779 ∆x = 1σ

Fo = 0.368 ∆x = 2σ

Fo = 0.105 ∆x = 3σ

Fo = 0.018 ∆x = 4σ

Fo = 0.002 ∆x = 5σ

Hourglass Fh = 1 β∗/σs > 7 LHC

Fh = 0.9 β∗/σs ∼ 2 HL-LHC

For typical LHC parameters, the crossing angle effect consists of a reduction
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in luminosity of about 16%. However, as planned for High Luminosity LHC, crab

cavities can reduce the impact of crossing angle on integrated luminosity, and

Fig. 2.9 shows their working scheme.

CRAB CROSSING FOR LHC UPGRADE ∗

Rama Calaga
Brookhaven National Lab, Upton, NY

Abstract

The LHC luminosity upgrade aims at reducing the col-
lision point betas by a factor of 2-3 of the design value.
Consequently the Piwinski angle is increased well beyond
1 to keep a normalized beam separation in the common fo-
cusing channels, thus diminishing the benefit of the beta*
reduction. Crab cavities will not only recover this lumi-
nosity loss but also enable luminosity leveling, a vital in-
gredient for the upgrade. The baseline scenario for a crab
crossing implementation in the LHC, primarily focusing on
the RF cavity development is presented. Constraints from
aperture, impedance and machine protection are also high-
lighted.

INTRODUCTION

The LHC interaction region (IR) employs a common fo-
cusing channel for both beams. Due to the 25ns bunch
spacing, the two beams encounter each other in 36 places
on the left and the right of the collision point. Therefore, a
crossing angle is induced to physically separate the beams
to about 10σ to avoid the parasitic encounters. The lumi-
nosity upgrade of the LHC aims to squeeze the collision
point β∗ by factor of 2-3 below the design value. Table 1
shows some relevant parameters for the nominal and sub-
sequent upgrade of the LHC.

Table 1: Relevant LHC nominal and upgrade parameters.
Unit Nominal Upgrade

Energy [TeV] 3.5-7 7
Protons/Bunch [1011] 1.15 1.7
Average current [Amps] 0.58 0.86
Bunch Spacing [ns] 50-25 25
εn (x,y) [µm] 2-3.75
σz (rms) [cm] 7.55 7.55
IP1,5 β

∗ [cm] 55-150 15-25
Betatron Tunes {Qx, Qy} {64.31, 59.32}
Rev. Freq kHz 11.245
Piwinski Angle Φ 0.64 1.1-1.4
Peak luminosity [x1034cm−2s−1] 0.1-1 5

This requires an increase in the crossing angle to main-
tain the normalized beam to beam separation near the IR.
Consequently the effective luminosity gain is reduced due

∗ This work partially supported by the US Department of Energy
through the LARP program.

to the larger crossing angle given by

L ≈ L◦.
(
1 + Φ2

)−1/2
(1)

where Φ = σzθc/σ
∗
x is the Piwinski angle. For Φ suffi-

ciently large (see Tab. 1), the luminosity reduction becomes
large.

Crab Cavity

Crab Cavity Crab Cavity

Crab Cavity

Figure 1: Concept of crab crossing scheme using RF cavi-
ties to maximize the bunch overlap at the collision points.

To fully exploit the beam size reduction a compensation
of the crossing angle and in addition leveling of luminos-
ity with crab cavities (see Fig. 1) is required [1, 2, 3]. In
addition, the crab cavities offer a natural luminosity lev-
eling knob to maximize the integrated luminosity and the
lifetime of the IR magnets due to radiation damage. This
paper will describe the present status of the crab project and
forthcoming R&D focusing on superconducting deflecting
cavities.

LAYOUT & SPECIFICATIONS

A local crab scheme (see Figure 2) where the cavities are
placed in the interaction region offers the most flexibility in
optics and satisfy the alternating crossing schemes as in IP1

& IP5.
A draft optics (Ref. [4]) to reach the desired low beta

(15cm) for the upgrade with approximately 10m of physi-
cal space to accommodate the crab cavities within the inter-
action region is depicted in Fig. 3. The cavities are placed
between the D2 separation dipole and insertion quadrupole
Q4 which is presently the closest location to the collision
point while the beams being completely separated.

The cavity voltage required for each scenario can be cal-
culated using

Vcrab =
2cE0 tan (θc/2) sin (µx/2)

ωRF

√
βcrabβ∗ cos (ψx

cc→ip − µx/2)
(2)

FRIOB05 Proceedings of SRF2011, Chicago, IL USA

988 08 Future projects

Figure 2.9: Concept of crab crossing scheme using RF cavities to maximise the

bunch overlap at the collision points [17].

Moreover, looking at the table, it is evident that the collision offset effect

becomes more and more intense as the distance between the beams increases.

Lastly, the hourglass effect comes into play only when working in high luminosity

conditions, i.e. with a very small β∗.

2.4 Beam-Beam Effects

Another phenomenon that impacts on the luminosity is the beam-beam interac-

tion, as already mentioned in section 2.3.2.

A beam consists of a large number of charged particles and therefore each bunch

exerts a force on the charges of the other beam, and the particles in each bunch are

also interacting between them [18], although this effect is supposed to be negligible

at the collision energy of modern colliders. To study the beam-beam force, we

consider a bunch with Gaussian charge distribution of the type

ρ(x, y, z) =
nq

4πϵ0
e
−( x2

2σ2
x
+ y2

2σ2
y
+ z2

2σ2
z
)
, (2.19)
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and the electric potential in the beam’s rest frame is given by

ϕ(x, y, z) =
nq√
π

∫ ∞

0

dt
e
−( x2

2σ2
x+t

+ y2

2σ2
y+t

+ z2

2σ2
z+t

)

√
(2σ2

x + t)(2σ2
y + t)(2σ2

z + t)
. (2.20)

From the last equation, we can derive the transverse electric field considering that

E(x, y, z) = −∇ϕ(x, y, z). (2.21)

To simplify the calculations, from this moment on we will consider round beams,

i.e. with σx = σy = σ. In this approximation, the charge distribution becomes

ρ(x, y) =
nq

2πσ2
e−(x

2+y2

2σ2 ), (2.22)

where n is the charge line density in the lab frame, and the radial electric field is

given by the Gauss theorem

2πrEr =
1

ϵ0

∫ r

0

dr′
2πnqr′

2πσ2
e−(r′2/2σ2) =

nq

ϵ0
[1− e−(r2/2σ2)]. (2.23)

Similarly, for the magnetic field

2πBϕ = µ0

∫ r

0

dr′2πr′βcρ(r′). (2.24)

At this point, the force of the bunch on a single test particle in the other bunch is

given by

F = q(E+ v ×B) = q(Er + βcBϕ)r̂, (2.25)

which, using ϵ0µ0 = c−2, corresponds to

Fr =
nq2(1 + β2)

4πϵ0σ2r
[1− e−r2/2σ2

]. (2.26)

The graph in Fig. 2.10 represents the trend of the radial force as a function of

the ratio r/σ. In the orange shaded area we have the situation of particles nearby

the beam centre, i.e. r << σ. In this case, the particle will experience a linear

defocusing effect with a gradient

kx = ky =
nq2(1 + β2)

4πϵ0σ2
, (2.27)
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Figure 2.10: The blue line in the graph represents the trend of the beam-beam

force, y(r/σ) = (1− e−r2/2σ2
)/r. The force is represented in arbitrary units. The

orange shaded area indicates the linear behaviour of the force, while the green ones

the deviation from the linear behaviour.

that generates a linear tune shift. Otherwise, the green shaded areas represent

particles far from the centre, i.e. r >> σ. In this case, the effect is non-linear and

it manifests as an amplitude-dependent tune shift, and for a bunch with many

particles as a tune spread. This might bring to a poor beam lifetime and a growth

of the emittance that leads to poor luminosity lifetime.

Particles that experience the linear effect are subjected to a quadrupole-like kick.

This kick can be evaluated considering the two-dimensional force and multiplying

it with the longitudinal distribution

Fr(r, s, t) =
nq2(1 + β2)

4πϵ0σsr
[1− e−r2/2σ2

][e−(s+vt)2/2σ2

]. (2.28)

Now, integrating Fr(r, s, t), we find the radial deflection

∆r′ =
1

mcβγ

∫ +∞

−∞
dt Fr(r, s, t) =

2nr0
γr

[1− e−r2/2σ2

] (2.29)
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where r0 = e2/4πϵ0mc
2 is the classical particle radius. For small amplitudes, the

asymptotic limit is

∆r′|r→0 =
nr0
γσ2

r = kr, (2.30)

where k is the gradient induced by the beam-beam force, which is equivalent to

the action of a thin lens element of gradient k, which has the effect of changing the

tune of a quantity

∆Q =
1

4π

β∗nr0
γσ2

=
1

4π

nr0
γε

, (2.31)

that corresponds to the so-called beam-beam parameter ξ.

In conclusion, we can write the luminosity in terms of the beam-beam parameter

so to make it explicit the impact of this interaction on the luminosity

L =
kfrevn

roβ∗ ξγ, (2.32)

where, for beam-stability reasons, the beam-beam parameter ξ should be much

smaller than 0.5.

What we have seen so far is related to a single-particle in a bunch, i.e. we have

considered the incoherent effect of the beam-beam force, but beam-beam interaction

acts also coherently on the entire bunch. In this case, if opposite bunches interact

at a certain distance, each of them experiences a dipolar kick generated by the

other bunch.

In the LHC, the configuration of the collisions (see Fig. 2.6) provide both

head-on and long-range beam-beam interactions. In the latter case, the beams are

affected by a dipolar kick and by the non-linear effects of the beam-beam force

previously described.

2.5 Luminosity Measurements

The knowledge of luminosity is fundamental to provide a means of calibrating a

physics detector and to optimise the machine operations. To reach this knowledge,

different measurement methods exist. We can start by considering that

L =
Rref

σref
(2.33)
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where Rref is the interaction rate of a reference collision process and σref is the

reference process’ cross-section [19].

Therefore, if we consider a known process, whose cross-section is known with

a good precision (as can be any QED process for lepton colliders or inelastic pp

collision for hadron ones), we can derive the luminosity indirectly by measuring

the event rate Rref .

The simplest method to measure the event rate is the Event Counting method,

which implies the determination of the fraction of bunch crossings during which a

determined detector records a reference process. This type of measurement refers

to the relative luminosity, i.e. the relative variation of the instantaneous luminosity

over a certain time interval.

It is also useful to measure the absolute luminosity, which is the luminosity

expressed on an absolute scale at a certain point in time. The absolute luminosity

is linked to the relative luminosity by means of a calibration constant, which in

the case of Eq. (2.33) is the cross-section σref . However, the absolute luminosity

calibration may also depend on other parameters, such as beam profiles. The

latter can be evaluated using the wire scan technique, in which a thin wire is

moved through the beam and its interactions with the beam are detected by some

calorimeters and give the needed signal [12].

Another possibility to measure both the luminosity L, and the total cross-section

σtot is to consider an elastic scattering of protons and apply the Optical Theorem

[7]. The optical theorem states that

lim
t→0

dσel
dt

= (1 + ρ2)
σ2
tot

16π
=

1

L

dNel

dt

∣∣
t=0
, (2.34)

where σel is the elastic cross-section, ρ is the ratio of the real to imaginary parts of the

scattering amplitude evaluated at the vanishing momentum transfer, (dNel/dt)t=0

is the differential elastic counting rate at small momentum transfer and σtot =

σel+σinel = 4πImf(t = 0) is the total cross section with f the scattering amplitude.

From the previous equation, we have that the luminosity is equivalent to

L =
(1 + ρ2)

16π

(Ninel +Nel)
2

(dNel/dt)t=0

, (2.35)
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where Ninel +Nel is the total number of events, and the total cross section assumes

the form

σtot =
Ninel +Nel

L
. (2.36)

2.6 Luminosity Evolution

During a fill, i.e. the time when the beams are made to collide, the luminosity

does not remain constant. The collisions cause the decay of the beam intensity,

which results in luminosity decay. To derive the expression of the evolution of

luminosity as a function of the machine parameters, we can consider round Gaussian

beams, i.e. with equal horizontal and vertical r.m.s. emittances, ε = εx = εy, and

equal beta functions at the collision point, β∗ = β∗
x = β∗

y , neglecting reduction

factors such as hourglass effect [20]. In this case, the luminosity is defined as

L =
n2
bfrevkbγr
4πβ∗ε

(2.37)

where we can define the total beam intensities as Nb = nbkb.

Considering the burn-off as the only source of beam loss, it is possible to define

the rate of change of the beam intensity as

dNb

dt
= −σtotnIPL = −κN2

b(t), (2.38)

where σtot represents the total cross-section of the process, nIP the number of

collision points and κ = σtotfrevnIPγr/(4πβ
∗ε). Assuming a constant emittance, the

solution of Eq. (2.38) is

Nb(t) =
N0

1 + t/τb
, (2.39)

where N0 = Nb(t = 0) is the initial intensity and

τb =
1

κN0

=
4πβ∗ε

σtotfrevnIPγrN0

=
N0

L(0)σtotnIP

(2.40)

is the beam lifetime. Thus, it is possible to describe the behaviour of the luminosity

decay as

L(t) =
L(0)

(1 + t/τb)2
, (2.41)
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and the integrated luminosity after a certain time t can be obtained as

Lint =

∫ t

0

dt′L(t′) = τbL(0)
t/τb

1 + t/τb
. (2.42)

In practice, the situation is much more complex, and effective models can be

devised. Several options are available: one is a generalised form of the solution of

Eq. (2.38) [21]

L =
L(0)

(1 + t/τ)µ
, (2.43)

where L(0), τ and µ are the fit parameters, and a second one is a double-exponential

model [22] of the type

L(t) = a exp(−t/b) + c exp(−t/d), (2.44)

where a, b, c, d are the fit parameters. In the following, only the second model will

be used.

2.7 Luminosity Optimisation

As previously highlighted, luminosity is a key quantity to define the experi-

mental potential of a collider. In particular, to reach the required accuracy in

the determination of the new particles’ parameters, it is essential to increase the

number of collected events, Eq. (2.5), which is equivalent to maximising the inte-

grated luminosity. To this end, several non-excluding approaches are possible. For

instance, the machine parameters such as β∗ and the crossing angle, can be varied

during the fill. Additionally, the length of the fill can be judiciously chosen taking

into account several parameters, such as the turn-around time, the probability

of a fill failure etc. The first approach was implemented during the LHC Run 2

operations, and it was one among several improvements that led to the considerable

progress, as shown in Fig. 2.11 [23].

The following is a brief review of the current method used at LHC to pick up

an optimal fill time. In Fig. 2.12, a typical LHC operational cycle is represented,

and, here, it is possible to distinguish two different time intervals: one in which



2.7 Luminosity Optimisation 29

]
-1 s

-2
 c

m
34

Pe
ak

 L
um

in
os

ity
 [1

0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2011 2012 2013 2014 2015 2016 2017 2018

Run 1 Run 2
 = 7-8 TeVs  = 13 TeVs

Long
Shutdown 1

]
-1

In
te

gr
at

ed
 L

um
in

os
ity

 [f
b

0

20

40

60

80

100

120

140

160

180

2011 2012 2013 2014 2015 2016 2017 2018

Run 1 Run 2
 = 7-8 TeVs  = 13 TeVs

LongShutdown 1
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during Run 1 and Run 2.

14

Figure 2.11: Integrated luminosity between 2011 and 2018 for proton operation

during Run 1 and Run 2 [23].

there is luminosity production, called fill time (tf), and one in which the luminosity

is absent, called turnaround time (tta).

Dump Energy

Time

Beam 1 Intensity
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Ramp
Down
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L
um

in
os

ity

Stable Beamsadj.

Figure 2.12: Example of the LHC operational cycle from the dumping of the

previous fill to the declaration of “Stable Beams” for the subsequent one [2].

The turnaround time includes the ramp-down phase, injection setup, injection
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phase, acceleration, collimation setup and β∗ squeeze, until the declaration of

“Stable Beams”[20]. Moreover, the turnaround time comprises also the time needed

to solve technical difficulties and the waiting periods due to nonavailability of

the injectors or of the LHC. With the goal of optimising the overall integrated

luminosity, it is necessary to maximise the average luminosity ⟨L⟩ of a complete

operational cycle of the collider [7]. Considering the luminosity evolution described

by (2.41) we have that

⟨L⟩ =
∫ Nf tf
0

dtL(t)

tf + tta
= L(0)

tf
(1 + tf/τb)(tf + tta)

, (2.45)

where Nf is the number of fills in the run. The fill time can be chosen by the

operators in the control room, so we can consider it as a free parameter. At this

point, the optimisation of (2.45) give us the optimum fill time,

toptf =
√
τbtta. (2.46)

For the LHC case, tta ∼ 10 h, τb ∼ 15 h and so toptf ∼ 15 h [7]. Typically,

the operators in the control room choose the fill length, taking into account the

estimated optimal fill time (2.46).

This thesis work focuses on enhancing the strategies used to determine the opti-

mal fill length taking into account realistic models for the luminosity evolution, the

turn around time, and other statistical factors that affect the simple considerations

used to derive Eq. (2.46).



Chapter 3

Luminosity Evolution Data

Our analysis of possible optimisation strategies for the integrated luminosity

produced by the LHC is based on the data obtained by the ATLAS experiment

[24], as explained in this chapter.

3.1 The Dataset

From the ATLAS data directory [25] we extracted the luminosity data files,

each containing multiple entries of luminosity integrated over a short time interval

defined by the experiment. In Fig. 3.1 is presented a segment of one of these files

for clarity.

1461365329 1 4.93401241302 0. 4.32383963915e-22 0.
1461365390 1 4.92993354797 0. 4.32501542323e-22 0.
1461365450 1 4.92800760269 0. 4.32793945664e-22 0.
1461365510 1 4.92684078217 0. 4.33191696087e-22 0.
1461365570 1 4.91852092743 0. 4.32738936732e-22 0.
1461365619 1 4.91928911209 0. 4.33022990553e-22 0.
1461365668 1 4.91526603699 0. 4.33076866742e-22 0.
1461365728 1 4.90638399124 0. 4.32616542505e-22 0.
1461365788 1 4.90047359467 0. 4.3252130049e-22 0.
1461365823 1 4.88737773895 0. 4.31714424346e-22 0.
1461365858 1 4.89495754242 0. 4.32455593945e-22 0.
1461365918 1 4.88498020172 0. 4.31823875151e-22 0.
1461365967 1 4.8821554184 0. 4.32065019182e-22 0.
1461366016 1 4.87716388702 0. 4.31897224195e-22 0.
1461366076 1 4.87247753143 0. 4.31678544633e-22 0.
1461366136 1 4.8641462326 0. 4.31319910771e-22 0.
1461366196 1 4.86001014709 0. 4.31407294445e-22 0.
1461366256 1 4.85437583923 0. 4.31288757271e-22 0.
1461366316 1 4.85116481781 0. 4.31437013036e-22 0.
1461366376 1 4.84710502625 0. 4.31349982104e-22 0.
1461366436 1 4.84292554855 0. 4.3137321637e-22 0.
1461366497 1 4.84222507477 0. 4.31586296114e-22 0.
1461366557 1 4.83514976501 0. 4.3114506451e-22 0.
1461366617 1 4.82778644562 0. 4.30954533488e-22 0.
1461366677 1 4.82404518127 0. 4.30856371808e-22 0.
1461366737 1 4.81843805313 0. 4.30705707589e-22 0.
1461366792 1 4.81990432739 0. 4.31111323896e-22 0.
1461366847 1 4.80960178375 0. 4.30434581495e-22 0.
1461366907 1 4.80699777603 0. 4.30472468827e-22 0.
1461366967 1 4.80532932281 0. 4.30650829897e-22 0.
1461367014 1 4.79916000366 0. 4.3033640212e-22 0.
1461367060 1 4.79853439331 0. 4.30537153803e-22 0.
1461367120 1 4.79240703583 0. 4.30390166141e-22 0.
1461367180 1 4.78328609467 0. 4.29732579179e-22 0.
1461367240 1 4.77854156494 0. 4.29695984595e-22 0.
1461367300 1 4.77774953842 0. 4.29992168085e-22 0.
1461367360 1 4.77348804474 0. 4.29783028334e-22 0.
1461367421 1 4.77389621735 0. 4.30236137165e-22 0.
1461367481 1 4.76416540146 0. 4.29475079804e-22 0.
1461367516 1 4.76426792145 0. 4.29768766172e-22 0.
1461367551 1 4.75640010834 0. 4.2921990469e-22 0.
1461367611 1 4.75617551804 0. 4.29568946313e-22 0.
1461367671 1 4.75321912766 0. 4.29524779161e-22 0.
1461367731 1 4.74598693848 0. 4.29090494332e-22 0.
1461367791 1 4.73969268799 0. 4.28950025844e-22 0.
1461367851 1 4.73993301392 0. 4.2920039478e-22 0.
1461367911 1 4.73573970795 0. 4.29165070354e-22 0.
1461367971 1 4.72435474396 0. 4.28373557484e-22 0.
1461368011 1 4.72482013702 0. 4.28743758494e-22 0.
1461368051 1 4.71884155273 0. 4.28374256861e-22 0.
1461368112 1 4.71950006485 0. 4.28614444462e-22 0.
1461368172 1 4.71505832672 0. 4.28572849444e-22 0.
1461368232 1 4.71418094635 0. 4.30470407059e-22 0.
1461368292 1 4.7040886879 0. 4.28246962047e-22 0.

Figure 3.1: Example of a part of a luminosity data file produced by the ATLAS

experiment.
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Each file contains in order the UNIX time1 in which the luminosity measurement

took place, a stable-beam flag (i.e. a float value between 0 and 1 which corresponds

to the fraction of time spent in stable beams for this time bin), the luminosity

measured in Hz µb−1, a point-to-point error on luminosity in Hz µb−1, specific

luminosity in Hz µb−1 and point-to-point error on specific luminosity.

By extracting from these files the UNIX times and luminosities, we obtain a

plot for each fill like the one shown in Fig. 3.2.
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Figure 3.2: Example of luminosity evolution plot.

3.1.1 Fills selection

In [26] it is presented a report about LHC Run 2 fills divided per year (2016, 2017,

2018). Each fill is defined with particular types, e.g. physics, ions, special, rump-up,

and so on. For our study, we were just interested in physics fills, which, as the

name suggests, are the fills dedicated to the standard proton-physics experiments.

1UNIX time, i.e. in seconds since UTC Jan 1, 1970, 00:00:00, not counting leap seconds.
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In the following, only those fills that are defined as physics, and whose preceding

turnaround time is not affected by special events, such as faults or other issues are

retained.

3.2 Discriminating Data

Observing the various plots produced (as described in the previous section),

irregularities show up. For clarity, some significant examples are given in Fig. 3.3.

These irregularities can be caused by several reasons, but the principal one is the
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Figure 3.3: Example of three fills (5173, 5872, 7036) luminosity evolution.

re-positioning of beams so to re-optimise the luminosity.

The goal of our preliminary analysis is to obtain a realistic and accurate model of

the evolution of luminosity that can be used to generate synthetic fills or extrapolate

existing fills beyond the actual fill time. The first step was to remove some of the

data from the measured luminosity curves to ensure that the final model was not

affected by artefacts in the luminosity measurement.

We performed the data selection by eliminating the null-luminosity values

(caused by the re-positioning of the beams or measurement issues) and the points

with a too high derivative (in absolute value). The results of this selection are

visible in Fig. 3.4.
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Figure 3.4: Example of three fills (5173, 5872, 7036) luminosity evolution after

the data discrimination.

3.3 Fitting Data

Initially, the model selected to fit the data was the following:

f(t) = a exp(−bt) + c exp(−dt). (3.1)

This model allows a good empirical description of the luminosity evolution. a+ c

represents the peak luminosity, while b and d are the time constants of the luminosity

decay [22]. At this point, it was necessary to normalise the time intervals due to

the considerable orders of magnitude included in the UNIX times, which are not

easy to manage for an exponential fit. Considering for each fill an interval of time

that goes from the minimum UNIX time, tUmin
, to the maximum one, tUmax , we

first re-scaled the UNIX times as follows:

ts = tU − tUmin
, (3.2)

where ts is the rescaled time that goes form 0 to tUmax − tUmin
, and tU is the UNIX

time. Thus, the fitting model is

f(ts) = as exp(−bsts) + cs exp(−dsts) . (3.3)

We can define the normalisation of this rescaled quantity as tn = ts/tsmax obtaining

f(tn) =as exp(−bstntsmax) + cs exp(−dstntsmax) (3.4)

=as exp(−bntn) + cs exp(−dntn), (3.5)
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where bn = bstsmax and dn = dstsmax .

In Fig. 3.5 three examples (one for each year) of the double exponential fits are

shown.
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Figure 3.5: Example of double exponential fit of three fills (5173, 5872, 7036)

luminosity evolution.

To understand if it was possible to uniquely describe each year thanks to an

annual model, the distributions of the fit parameters for each year were studied, as

shown in Figs. 3.6, 3.7 and 3.8.

It is therefore evident that it is not possible to describe the set of fills studied

with a single model due to so different realisations of the same.

3.4 Other Fitting Models

During the analysis we considered also a three-parameter model and a two-

parameter model. The former has the following shape

f(t) = a(exp(−bt) + exp(−dt)). (3.6)

The two-parameter model has the following shape

f(t) = a exp(−bt). (3.7)
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Figure 3.6: Distributions of the fit parameters for the year 2016. On the x-

axis there are the parameter values while on the y-axis there are the normalised

frequencies.

The four-parameter model choice was taken observing the distributions of the

reduced chi square of the different models, as shown in Fig. 3.9.

Figure 3.10 shows a further comparison of the three fit models chosen. On the

x-axis is shown the integrated luminosity measured at LHC, and on the y-axis is

shown the one obtained using the three fit models. In this case, if we look at points

perfectly aligned along the bisector of the graphs we can conclude that the models

interpolate the data very well and no bias is visible for most of the fit models (the

only exception is the two-parameter case in 2016).
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Figure 3.7: Distributions of the fit parameters for the year 2017. On the x-

axis there are the parmeter values while on the y-axis there are the normalised

frequencies.
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Figure 3.8: Distributions of the fit parameters for the year 2018. On the x-

axis there are the parmeter values while on the y-axis there are the normalised

frequencies.
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Figure 3.9: χ̃2 distributions of 2016 (green plots), 2017 (blue plots) and 2018

(pink plots) for the three different fitting models: (left) four-parameter model;

(centre) three-parameter model; (right) two-parameter model.
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Figure 3.10: Qualitative analysis of the fitting models for the three years of LHC

Run 2. On the x-axis there is the integrated luminosity measured by ATLAS at

LHC operation, while on the y-axis there is the integrated luminosity evaluated

with the three different fitting models. On the secondary y-axis (on the right) there

is a chromatic scale that represents the different fill numbers.



Chapter 4

Numerical Optimisation of the

Integrated Luminosity

Taking into account what we did in the previous chapter, we implemented

a numerical optimiser to probe what is the possible gain in terms of integrated

luminosity with respect to the collected integrated luminosity for each of the three

years of Run 2.

To this aim, we selected a number of fills for 2016, 2017, and 2018, describeing

how many and how they have been selected and tried to determine fill lengths that

maximise the total integrated luminosity for the year under consideration. The

optimisation is performed with the constraint that the sum of the optimised fill

lengths equals that of the actual fill lengths.

4.1 Optimiser Implementation

The algorithm is implemented using Python’s minimize routine. Since there

is no unique model able to describe all fills, to obtain the total luminosity Ltot

it is necessary to sum all single integrated luminosity. The latter is given by the

41

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
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integral of the fit function of each fill. The function to be optimised1 is therefore

Ltot =

Nf∑

i

∫ ti

0

dx

[
ani

exp

(
−bni

ki
x

)
+ cni

exp

(
−dni

ki
x

)]
, (4.1)

where Nf is the number of fills considered in our study, ki = (tUmax − tUmin
)i,

ti ∈ [0, ki] is the optimum re-scaled time, determined by the optimiser, and the

coefficients of the fits are the ones described in the previous chapter. The following

constraint
Nf∑

i

ti −
Nf∑

i

tri = 0, (4.2)

has been imposed to the optimiser, where tri are the times that actually took place

at LHC.

4.2 Optimisation Algorithm

In general, with optimisation, we mean the choice of the optimal element

(depending on the purpose of the optimisation) belonging to a set of possible

candidates. Mathematically, this corresponds to determining the extreme value of

the function that we want to optimise, i.e. the objective function f(x), in a given

domain [27]:

∇f(x) = 0. (4.3)

The solutions of this system are defined stationary points of the function, and can

be local minima, local maxima, or saddle points. In a case, like ours, of multivariate

optimisation, to check the nature of stationary points we need to analyse the

Hessian Matrix,
[
Hf (x)

]
ij
=
∂2f(x)

∂xi∂xj
. (4.4)

If the Hessian is positive definite the stationary point will be a local minimum, if it

is negative definite a local maximum and if it is indefinite a saddle point.

In a multivariate case, the analytical approach of finding the roots of the gradient is

1As explained in section 4.2 maximising Ltot is equivalent to minimise −Ltot. This actually is

what we have done considering that minimise is a minimising routine.
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hardly achievable. Instead, techniques, that start at some point of the co-ordinate

space and use different methods to move toward the function searching for minima,

must be considered.

For our study, we are interested in maximising the objective function. Note that

maximising f(x) is equivalent to minimising −f(x), this is why from this moment

on we will talk about minimisation.

Many multivariate optimisation algorithms have their roots in the steepest

descent method. If we consider the gradient of the objective function ∇f(x) in a

given point x, the negative gradient −∇f(x) always points in the direction where

the function decreases the most. Thus, the steepest descent method provides a

strategy to move along the direction of the negative gradient by a certain distance

lk, and iterate this strategy until reaching the local minimum:

xk+1 = xk − lk∇f(xk), (4.5)

where lk is called line search parameter.

In this case, the multivariate optimisation algorithm chosen is the Sequential

Least Squares Programming (SLSQP) Algorithm, which deals with constrained

optimisation problems of the form

minx f(x)

subject to : cj(x) = 0, j ∈ E
cj(x) ≥ 0, j ∈ I
lbi ≤ xi ≤ ubi, i = 1, . . . , N.

where E and I are sets of indices containing equality and inequality constraints2,

and lbi and ubi are the lower and upper boundaries for each optimal element.

Quadratic constrained optimisation problems with equality constraints are

defined as

min f(x) =
1

2
xTHx+ xTd

subject to : Jx = b,
(4.6)

2For the studied case, we considered equality constraints.
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where H is the hessian matrix of the function and J is the Jacobian matrix of the

constraints [28] . The Lagrangian of the optimisation problem is

L(x, λ) =
1

2
xTHx+ xTd+ λT (Jx− b), (4.7)

where λ is the Lagrange multiplier.

The necessary condition, i.e. the Karush-Kuhn-Tucker condition or KKT, such

that x∗ is the solution of the optimisation problem, implies the existence of a vector

λ∗ capable of satisfying the following system
[
H −JT

J 0

][
x∗

λ∗

]
=

[
−d
b

]
. (4.8)

If the Hessian matrix H is a positive definite matrix, then the unique solution of

Eq. (4.7) is (x∗, λ∗).

In the sequential quadratic programming model, an optimisation sub-problem

is set to find the ideal step to move toward the function

xk+1 = xk + aklk (4.9)

where ak ∈ (0, 1] and lk is the solution of the optimal sub-problem [29]. The latter

can be defined as follows

minx ∇fT (xk)(x− xk) +
1

2
(x− xk)

TH(xk)(x− xk)

subject to : s(xk) +∇sT (xk)(x− xk) = 0,

where s(x) = Jx− b, ∇f(xk) = (∂f/∂x1, . . . , ∂f/∂xn)
T |x=xk

,

∇s(xk) = (∂s/∂x1, . . . , ∂s/∂xn)
T |x=xk

and H(xk) is the Hessian matrix of f(x).

In this kind of algorithms, penalty functions have the goal of simplifying the

optimisation problem. In fact, these functions introduce an artificial penalty for

violating the constraint. In our particular case (i.e. Eq. (4.6)) the penalty function

is

P (x, π) =
1

2
xTHx+ xTd+ π(Jx+ b) (4.10)

where π is the penalty coefficient.
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4.3 Optimisation Results

The Fig. 4.1 shows the results of the optimisation in which we had considered

the same number of fills and only let the optimiser change the times according to

the optimal ones.

In Table 4.1 are shown the results of the optimisation for the total luminosity

of each year.

Table 4.1: Total Luminosity Results of Numerical Optimisation.

2016 2017 2018

LHC actual total luminosity [fb−1] 18.48 28.67 35.72

LHC optimised total luminosity [fb−1] 19.07 29.23 37.11

Relative increase 3.2% 2.0% 3.9%

We remark, that although the gain in integrated luminosity is not extremely

large, still it could be achieved at zero cost, simply developing the appropriate

strategy to determine on-line the optimal fill length (see next chapters).

The analysis presented so far assumed that the actual value of Nf was indeed

optimal. This assumption has been scrutinised by eliminating in succession one,

two or three fills (considering all possible combinations) and adding the times of

the deleted fills and the respective delivery times to the physical time. Thus, we

modified the Eq. (4.2) as follows:

Nf−j∑

i

ti −
Nf−j∑

i

tri −
j∑

k

tta,k = 0, where j = 1, 2, 3 (4.11)

where tri are the actual fill times and tta,k is the turnaround time of the removed

fills. In Figs. 4.2 and 4.3 are shown the results of this second optimisation.

From this analysis, it is possible to conclude that the initial number of fills was

the optimal one and what we have to change is the length of each fill according to

the optimal one.
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Figure 4.1: (left) Comparisons between the fill times that took place at LHC

during Run 2 (green plots for 2016, blue plots for 2017 and pink plots for 2018)

and the optimal fill times chosen by our algorithm; (right) Comparison between

the integrated luminosities/ of LHC Run 2 (green plots for 2016, blue plots for

2017 and pink plots for 2018) and the optimal ones obtained by our algorithm.
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Figure 4.2: Comparison between the fill times that took place at LHC during

2016, 2017 and 2018, the optimal fill times chosen by our algorithm and the optimal

times where one, two and three fills have been removed.
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Figure 4.3: Violin plots in which we can observe the distributions of total

luminosity in all the studied cases, form right to left: the optimisation of time

lengths, the removal of one fill, the removal of two fills and the removal of three

fills. On the secondary y-axis the ratio between the optimised luminosity and the

measured one is shown.



Chapter 5

On-line Optimisation Strategies

This chapter presents the optimisation strategies that could be realised at the

LHC to increase the integrated luminosity.

The process of luminosity production is sketched in Fig. 5.1 where the magnetic

cycle is shown and the main quantities are introduced.

t

E

Injection InjectionStart fill End fill

tf

Start fill

tta

Figure 5.1: Sketch of the luminosity production process in a circular collider,

where E is the beam energy.

In this study, L(t) represents the evolution of the luminosity during a fill. Any

model can be considered, as the goal is to provide an optimised strategy to collect

luminosity in a circular collider once a model for describing the function L is given.

49
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The goal is to maximise the integrated luminosity, and, in a purely deterministic

case, this corresponds to maximising

Ltot(tf) = Nf

∫ tf

0

dt L(t)

=
T

tta + tf

∫ tf

0

dt L(t) ,

(5.1)

where T is the total time for physics, tta is the so-called turn around, i.e. the time

elapsed from the end a fill for physics and the start of the next one, tf is the length

of the physics fill. We remark that the second step in Eq. (5.1) deserves some care.

In principle, one should write

Ltot(tf) =

⌊
T

tta + tf

⌉∫ tf

0

dt L(t) , (5.2)

where ⌊·⌉ stands for the nearest integer. However, under the assumption that

T ≫ tta + tf , which is always the case in reality, one can simply consider the

form (5.1) that will be correct with a high degree of accuracy.

Under these assumptions, the optimisation is performed by noting that Ltot =

Ltot(tf) and the maximum can be found by solving the equation

dLtot

dtf
= 0 . (5.3)

5.1 The L(t) model

We now define a model of the evolution of the luminosity to replace it in the

following calculations to derive an optimal fill time scale-law with respect to the

turnaround time. As presented in [30], the luminosity can be derived form the only

time-dependent beam parameter: the intensity N1. Considering the burn off as the

only relevant mechanism for a time-variation, in case of round beams (ϵ∗x = ϵ∗y = ϵ∗)

and round optics (β∗
x = β∗

y = β∗), it is possible to find

L(t) =
ΞN2

i

(1 + σintncΞNit)2
, (5.4)

1Ni = kbni, where ni represents the bunch population and kb is the number of colliding

bunches.
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where σint is the cross section for interaction of charged particles, nc stands for the

number of collision points and the two colliding beams have been assumed to be of

equal intensity (which is the best scenario as far as the luminosity is concerned).

The term Ξ stands for

Ξ =
γrfrev

4πϵ∗β∗kb
F (θc, σz, σ

∗),

where γr is the relativistic γ-factor, frev is the revolution frequency, kb the number

of colliding bunches, ϵ∗ is the RMS normalised transverse emittance, β∗ is the

value of the beta-function at the collision point and the factor F accounts for the

reduction in volume overlap between the colliding bunches due to the presence of a

crossing angle

F (θc, σz, σ
∗) = 1/

√
1 + (

θc
2

σz
σ∗

), with σ∗ =
√
β∗ϵ∗/(βrγr),

where σz is the longitudinal RMS dimension, βr is the relativistic β and θc/2 is the

half crossing angle. At this point, assuming the simple case of equal intensities for

both beams, it is possible to obtain for the burn off part

Lint(t) =

∫ t

0

dtL(t) =
N2

i tfΞ

(NitfΞncσint + 1)
=

NiΞ

εfrev

εNifrevt

1 + εNifrevt
, (5.5)

where ε = σintncΞ/frev. The next table 5.1 shows the values of the above-mentioned

parameters for Run 2.
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Table 5.1: LHC Run 2 Parameters for the Luminosity Model [14] [23].

Parameters 2016 2017 2018

LPeak [1034 cm−2 s−1] 1.4 2.1 2.1

Ebeam [TeV] 6.5 6.5 6.5

frev [kHz] 11.2 11.2 11.2

N [1011] 1.0− 1.25 1.0− 1.25 1.0− 1.25

β∗ [cm] 0.4 0.4− 0.3 0.3− 0.25

ϵ∗ [µm] ∼ 2.2 ∼ 2.2 ∼ 1.9

nc 2 2 2

σz [m] 0.102 0.102 0.102

σint [10−30 m2] 7.95 7.95 7.95

kb 2220 2556/1868 2556

θc/2 [µrad] 185− 140 150− 120 160− 130

γr 6929.64 6929.64 6929.64

βr ∼ 1 ∼ 1 ∼ 1

No. days of
physics operations 146 140 145

5.2 Optimisation with a fixed tta

A very first attempt of integrated luminosity optimisation can then be carried

out by solving the Eq. (5.3) or going through the Lagrange Multipliers method,

which is based on the Lagrange Multipliers Theorem.

If f, g ∈ C1(R2) and (x̂, ŷ) is a constrained critical point of f , with g(x̂, ŷ) = c

and ∇g(x̂, ŷ) ̸= (0, 0), then it exists λ ∈ R (called Lagrange Multiplier) such that

[31]:

∇f(x̂, ŷ) = λ∇g(x̂, ŷ)

In first approximation, it is possible to consider tta as given, and so the function
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to be optimised is

f(tf , Nf) = Nf

∫ tf

0

dtL(t), (5.6)

and the constraint function is

g(tf , Nf) = Nftf +Nftta. (5.7)

Thus, the system to be solved will be:





(∂f(tf ,Nf)
∂tf

)
= λ

(∂g(tf ,Nf)
∂tf

)

(∂f(tf ,Nf)
∂Nf

)
= λ

(∂g(tf ,Nf)
∂Nf

)

Nftf +Nftta = T

⇒





NfL(tf) = λNf

∫ tf

0

dtL(t) = λ(tf + tta)

Nftf +Nftta = T

(5.8)

where L(tf) is the integrable function of (5.6) evaluated in tf . At this point, solving

the system, it is possible to find that:





λ = L(tf) (considering that Nf ̸= 0)

∫ tf

0

dtL(t) = L(tf)(tf + tta)

Nf =
T

tf+tta

(5.9)

Substituting equations (5.4) and (5.5) in the system (5.9):




λ =
ΞN2

i

(1+σintncΞNitf)2

N2
i tfΞ

(NitfΞncσint+1)
=

ΞN2
i

(1+σintncΞNitf)2
(tf + tta)

Nf =
T

tf+tta

(5.10)
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Solving the previous system is equivalent to solve the following equation:

N2
i Ξtf

NincΞσinttf + 1
=

N2
i Ξ(tf + tta)

(NincΞσinttf + 1)2
, (5.11)

whose real solutions for the optimal fill time tf are:

topt = ±
√
tta√

NincΞσint
. (5.12)

where only the positive result has a physical meaning, and it is the one that

maximises our initial function (5.6). It is possible to conclude that, for relatively

consistent variations in the turn-around time, there will be rather small variations

in the optimal fill time.

5.3 Optimisation with a distribution of tta

At this point, it is possible to consider n values ti, distributing according to

a certain probability density function (p.d.f.), representing n realisations of the

turn-around time. In this case the function to be maximised is:

Ltot(t̂) = n

∫ t̂

0

dt L(t) = n
N2

i t̂Ξ

(Nit̂Ξncσint + 1)
, (5.13)

which assumes that the fills should be of equal length although the turn-around

times are not, with the constraint

n∑

i=1

ti + n t̂ = T . (5.14)

One can assume to replace the sum of the numbers by a term n τ so that

n =
T

τ + t̂
(5.15)

and the optimisation of Eq. (5.13) becomes of the same type as the problem (5.1).

In this case, indeed, the equation to be optimised is

f(n, t̂) = n

∫ t̂

0

dtL(t), (5.16)
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and the constraint function is

g(n, t̂) = nτ + nt̂. (5.17)

Thus, the system to be solved will be:





(∂f(n,t̂)
∂t̂

)
= λ

(
∂g(n,t̂)

∂t̂

)

(∂f(n,t̂)
∂n

)
= λ

(∂g(n,t̂)
∂n

)

nτ + nt̂ = T

⇒





λ = L(t̂) (considering that n ̸= 0)

∫ t̂

0

dtL(t) = λ(t̂+ τ)

n = T/(τ + t̂)

(5.18)

which leads to a solution similar to the previous case (see Eq. (5.12)):

topt = ±
√
τ√

NincΞσint
, (5.19)

.

It can be checked a posteriori that the assumption of optimising the integrated

luminosity by using equal fills lengths is the correct one. In fact, in this case

Ltot(t̂1, t̂2) = (n− 1)

∫ t̂1

0

dt L(t) +

∫ t̂2

0

dt L(t)

=
T − t̂2 − τ

τ + t̂1

∫ t̂1

0

dt L(t) +

∫ t̂2

0

dt L(t) ,

(5.20)

where the constraint (5.14) has been adapted to this new case. The maximisation

of Ltot(t̂1, t̂2) is obtained by considering as the function to be optimised

f(n, t̂1, t̂2) = (n− 1)

∫ t̂1

0

dtL(t) +

∫ t̂2

0

dtL(t), (5.21)

and as the constraint function

g(n, t̂1, t̂2) = nτ + nt̂1 − t̂1 + t̂2. (5.22)
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Thus, the system to be solved will be:





(∂f(n,t̂1,t̂2)
∂n

)
= λ

(∂g(n,t̂1,t̂2)
∂n

)

(∂f(n,t̂1,t̂2)
∂t̂1

)
= λ

(∂g(n,t̂1,t̂2)
∂t̂1

)

(
∂f(n,t̂1,t̂2)

∂t̂2

)
= λ

(
∂g(n,t̂1,t̂2)

∂t̂2

)

nτ + (n− 1)t̂1 = T

⇒





∫ t̂1

0

dtL(t) = λ(τ − t̂1)

nL(t̂1)− L(t̂1) = λ(n− 1)

L(t̂2) = λ




t̂1 = t̂2 ≡ t̂

n = T/(τ + t̂)

(5.23)

where is possible to verify that t̂1 = t̂2.

Obviously, in the realistic case, the n values of the turn-around are not known

a priori, and the luminosity evolution model is not the same for all fills (as shown

in Chap. 3), which modifies the scheme previously described. Let us assume that

tj, 1 ≤ j ≤ i and t̂j, 1 ≤ j ≤ i− 1 are the turn-around times and the optimal fill

times, respectively for all the fills from 1 to i. The problem is to determine t̂i so to

maximise

Ltot(t̂i, t̂) =
i−1∑

j=1

Lint(t̂j) +

∫ t̂i

0

dt L(t) +
T −∑i

j=1

(
tj + t̂j

)

1
i

∑i
j=1 tj + t̂

∫ t̂

0

dt Lmp(t) , (5.24)

where and additional optimisation parameter has been introduced, namely t̂, which

represents the optimum fill time of future fills. Here, Lint stands for the integrated

luminosity in a single fill. The third term in Eq. (5.24) introduces a relationship

between t̂i and t̂. We remark that Lmp(t) stands for the most probable value of

the function representing the luminosity evolution. It is clear that in case the

luminosity function is Gaussian distributed, the most probable value corresponds to

the average value. Such a value should be determined on the basis of the collection

of fills already occurred. Moreover the term

1

i

i∑

j=1

tj (5.25)
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is intended to provide the average turn-around time. The optimisation is performed

as follows:




∂Ltot

∂t̂i
= L(t̂i)−

1
1
i

∑i
j=1 tj + t̂

∫ t̂

0

dt Lmp(t) = 0

∂Ltot

∂t̂
=

T−∑i
j=1(tj+t̂j)

1
i

∑i
j=1 tj+t̂

(
Lmp(t̂)−

1
1
i

∑i
j=1 tj + t̂

∫ t̂

0

dt Lmp(t)

)
= 0 .

(5.26)





Chapter 6

Application of On-line

Optimisation Strategies

6.1 Preliminary Studies

Before applying the strategy proposed in Chap. 5, we carried out some prelimi-

nary studies. The first one is about the quality of the description of the luminosity

evolution reached by our fitting models. We did this by comparing the integrated

luminosity, as obtained from the models, with the actual value (present in the

summary files of the ATLAS data directory). We considered, from that moment

on, only those fills that satisfy the following condition:

|LFit − LLHC|
LLHC

≤ 0.02 , (6.1)

where LFit is the fill integrated luminosity evaluated by the fitting models, while

LLHC is the actual LHC integrated luminosity. To determine the value for the

selection criterion reported in Eq. (6.1), we performed the study shown in Fig. 6.1.

It is clearly seen that for a selection threshold larger than 0.02 the amount of

discarded or retained fills varies only slightly, which explains the threshold selected.

Fig. 6.2 shows how the models of the retained fills provide a good description of

luminosity evolution.

We also carried out a study on the stability of the fit parameters. The test is

59
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Figure 6.1: Plots of the convergence study for the selection criterion for the three

years of Run 2 (upper left 2016, upper right 2017 and at the bottom 2018).

carried out by performing the fit of the fill luminosity with the selected model by

changing the amount of measured data used in the fit procedure. The results are

shown in Figs. 6.3.

The on-line optimisation strategy, based on the solutions of Eq. (5.26), requires

the current-fill model, L(t̂i), and thus, the decision on its length should be taken

using the available set of data representing the luminosity evolution. The purpose

of this study is to assess whether there is a strong of the fit parameters on time
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Figure 6.2: Plots showing the distributions of the relative differences between

LFit and LLHC, for the years 2016 (top-left), 2017 (top-right) and 2018 (bottom).

A good agreement is clearly visible.

elapsed since the beginning of the fill. The results of this analysis are shown in

Fig. 6.3 where the dependence of the fit parameters b and d as a function of time

during the fill is shown for the three years. The different length of the various

curves is due to the difference in tfill. The observed behaviour is qualitatively the

same for the three years. The clear dependence on time of b and d is a sign that

the double-exponential model does not capture the full physics of the luminosity

evolution. This aspect will be investigated in the future by attempting different

models, e.g. the one discussed in Ref. [30].

We remark that the fit parameters a and c do not feature any dependence on

time, as is expected, representing the initial value of the luminosity.
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6.2 Optimiser Implementation

The optimisation algorithm is implemented by solving Eq. 5.24, which corre-

sponds to solve the system shown in Eq. (5.26). The first step is the derivation

of an analytical model for the most probable luminosity, Lmp. To this aim, the

code performs a scan over time on all the preceding-year fills and evaluates the

mode, i.e. the most probable value, of the luminosity distribution at each time

value defined in the scan. For each new fill realised during the current year, the

algorithm updates the most probable luminosity, and performs a fit of it using

the double-exponential model, producing the analytical expression sought. Before

starting a new fill, the algorithm checks that the constraint is respected, which is

carried out by verifying that the sum of all turn-around times and fill times that

have been realised up to that moment is less than the total time set for physics.

It is worth stressing that the total time for physics in our simulations is not the

actual total time of the LHC physics run for a given year, but rather the sum of all

retained fills and the corresponding turn-around time.

The final step consists in finding the solution t̂ of the following equation:

Lmp(t̂)−
1

1
i

∑i
j=1 tj + t̂

∫ t̂

0

dt Lmp(t) = 0 , (6.2)

which is then used to solve

L(t̂i)−
1

1
i

∑i
j=1 tj + t̂

∫ t̂

0

dt Lmp(t) = 0 , (6.3)

finding in the end the optimal fill time, t̂i.

6.3 Optimisation Results

We performed the simulation of the on-line optimisation on 2018 data, for

different knowledge levels of the luminosity fit models. We started considering a

case in which the fit parameters are determined using the full length of the fill, and

the results are shown in Fig. 6.4 (top) and Table 6.1.
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Table 6.1: Comparison between the actual LHC data and the two optimisations

performed.

Complete One hour Five hours

Knowledge

TLHC [days] 57.3

TOnline [days] 53.6 57.2 55.0

TNum [days] 57.3

LLHC
Tot /day [fb−1] 0.61

LOnline
Tot /day [fb−1] 0.63 0.59 0.62

LNum
Tot /day [fb−1] 0.63

Relative increase in LOnline
Tot /day 3.8% −3.0% 2.3%

Relative increase in LNum
Tot /day 3.6% - -

The optimisation acts on the fill length and given that the trend is to reduce

it with respect to the actual length, the total time for physics is shorter than the

actual one. The top-left plot of Fig. 6.4 shows that the distribution of the fill length

for the on-line optimisation is much more similar to that provided by the numerical

optimisation, compared to what occurred at LHC. Furthermore, the spread of the

distribution is also narrower for the on-line and numerically-optimised cases than

for the actual LHC case. Given the difference in effective length of the physics

run, the results in terms of integrated luminosity will be normalised providing the

collected luminosity per day. The overall gain of integrated luminosity per day is

about 3.8% for the on-line optimised case.

The results concerning the case in which the on-line optimisation is carried

out using the fill luminosity model derived from the data of the first hour are

shown in Fig. 6.4 (centre) and Table 6.1). In contrast to the previous case, the

distribution of the fill times has an average value that is larger than that of the

actual LHC case and is considerably broader. This feature is introduced by the

values of the luminosity models that, being evaluated over one hour, only, are not

accurate enough. This induces a net loss of integrated luminosity of 3%.
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Finally, we considered the case corresponding to the on-line optimisation per-

formed using the luminosity models obtained with five hours of data, and the results

are shown in Fig. 6.4 (bottom) and Table 6.1). As expected, the results of this last

optimisation are rather similar to those of the case of complete knowledge, although

the gain in integrated luminosity/day is 2.3%. In conclusion, we can say that the

on-line optimisation proposed provides a possible daily integrated luminosity gain

up to 3.8%, similarly to what happens in the numerical optimisation case (see

Chap. 4). The key to this encouraging result is the accuracy of the luminosity

model.

The actual implementation of the proposed on-line optimisation would consist

of an ad hoc software that continues to interpolate online the evolution of the

luminosity of the current fill. Combined with this, the on-line estimate of the

optimal fill time should be available for the decision on whether or not use it to

end the fill. This should allow us to achieve optimisation results compatible with

those of the case called complete knowledge.

6.4 Future Developments

The conclusions reached in this thesis are certainly encouraging, although

further investigations are needed before robust conclusions about the efficiency of

the proposed method can be drawn.

Future investigations have been planned, such as:

1. As mentioned in section 6.1, for years in which the machine parameters

change drastically (e.g. 2016 and 2017), we need to find a more complete way

to compute the most probable luminosity. Similarly, a strategy should be

devised for the case in which a bootstrap is needed, as there are no previous

fills to be used to predict the behaviour of future fills. This case corresponds

to the situation of a collider after the start up phase.

2. Using the preliminary studies on turn-around time statistics presented in

Appendix A, generate runs with Monte Carlo algorithms for cases in which
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the optimised physics time is shorter than the expected (as in the case of

on-line optimisation presented in the previous chapter).

3. Devising more complex optimisation strategies like the one presented in

Appendix B, which take into account the failure probability of a fill in the

optimisation of its duration.

4. Improve the modelling of luminosity evolution by using more refined physics

models. After that, machine learning techniques might be considered, too.
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Figure 6.3: Variation of the fit parameters (see Eq. (3.3)) as a function of the

amount of data used in the fit, which corresponds to the time elapsed during the fill.

The parameters b (left) and d (right) are shown for the 2016 (top), 2017 (centre),

and 2018 (bottom), respectively. The curves cover the actual fill length. The

observed behaviour is qualitatively the same for the three years.



6.4 Future Developments 67

LHC Online Numerical
DataSet

0

5

10

15

20

25

F
il

l
T

im
es

[h
]

2018 Comparison between Optimisations

LHC Online Numerical
DataSet

0.0

0.2

0.4

0.6

0.8

1.0

In
te

gr
at

ed
L

u
m

in
os

it
ie

s
[f

b
−

1
]

2018 Comparison between Optimisations

LHC Online Numerical
DataSet

0

5

10

15

20

25

F
il

l
T

im
es

[h
]

2018 Comparison between Optimizations

LHC Online Numerical
DataSet

0.0

0.2

0.4

0.6

0.8

1.0

In
te

gr
at

ed
L

u
m

in
os

it
ie

s
[f

b
−

1
]

2018 Comparison between Optimisations

LHC Online Numerical
DataSet

0

5

10

15

20

25

F
il

l
T

im
es

[h
]

2018 Comparison between Optimisations

LHC Online Numerical
DataSet

0.0

0.2

0.4

0.6

0.8

1.0

In
te

gr
at

ed
L

u
m

in
os

it
ie

s
[f

b
−

1
]

2018 Comparison between Optimisations

Figure 6.4: The graphs show the on-line optimisation results in the case of

complete knowledge of the fitting models (top), partial knowledge, i.e. with the

model determined with one hour of luminosity data (centre), and with five hours of

luminosity data (bottom). The left plots show the distribution of the actual LHC fill

times, of the on-line-optimised fill times, and of the numerically-optimised fill times.

The right plots show the distribution of the integrated luminosity in each fill for

the LHC run, for the on-line-optimised fill times, and of the numerically-optimised

fill times.





Chapter 7

Conclusions

In this thesis, we have shown the it is potentially possible to optimise the

collection of the LHC integrated luminosity only by implementing an appropriate

algorithm aimed at determining the optimal fill length (see Chapter 4 and 6).

The results reported in this thesis are not final, and a number investigations have

been outlined and will be part of future activities (see Section 6.4). These new

aspects should make the proposed approach more realistic and hence, the possible

improvements in the collection of integrated luminosity more reliable.

All in all, we believe that this line of research might bring some useful and

interesting outcomes with respect to the efficiency of the luminosity collection by

the CERN LHC.
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Appendix A

Statistics of the Turn-around Time

In this appendix, we analysed the data of LHC Run 2 concerning the turn-

around times of the years 2016, 2017 and 2018, excluding those that represent

exceptional conditions, and therefore negligible for statistical studies. [23] presents

an overview of Run 2 data.

A.1 Kolmogorov-Smirnov Test

The first step of data analysis was the execution of a statistical test of Kolmogorov-

Smirnov on pairs of samples [32]. These test statistics are used to determine whether

two distributions (e.g. F(x), G(x)) differ or whether an underlying probability

distribution differs from a hypothesised distribution.

Considering two independent samples, there will be two possible hypothesis:



H0 : F (x) = G(x)

H1 : F (x) ̸= G(x)
(A.1)

In this case, there are three datasets to compare: the 2016 sample, the 2017 sample,

and the 2018 sample. The results of the test are shown in Table A.1.

For this test, a significance level, 1− α, of 95% was imposed, which entails α=

0.05.
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Table A.1: Results of the Kolmogorov-Smirnov test.

Samples 2016 - 2017 2016 - 2018 2017 - 2018

KS Statistics (D#,n) 0.11 0.16 0.06

p-value 0.21 0.02 0.75

To interpret the results, first we observe the p-value: if the p-value is bigger than

α it is not possible to reject H0, while if it is smaller the rejection is possible.

Looking at the obtained p-values, we have that:

1. p-value(2016-2017)> α: The distribution of the 2016 sample is the same as

that of the 2017 one;

2. p-value(2016-2018)< α: The distribution of the 2016 sample is not the same

as that of the 2018 one;

3. p-value(2017-2018)> α: The distribution of the 2017 sample is the same as

that of the 2018 one.

Secondly, we look at the statistics. A 95% confidence level critical value is

defined as follows:

Dcrit,0.05 = 1.36

√
1

n1

+
1

n2

, (A.2)

where n1 and n2 are the number of elements of the two studied samples. In this

case, if the critical value Dcrit is bigger than the obtained statistics Dn it is possible

to accept H0, while if it is smaller H0 has to be rejected. Considering that n1 = 156,

n2 = 194 and n3 = 218, we have that:





D1,crit,0.05 = 0.15

D2,crit,0.05 = 0.14

D3,crit,0.05 = 0.13

(A.3)
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This means that:

1. D1,crit,0.05 > D1,n: The distribution of the 2016 sample is the same of the 2017

one;

2. D2,crit,0.05 < D2,n: The distribution of the 2016 sample is not the same of the

2018 one;

3. D3,crit,0.05 > D3,n: The distribution of the 2017 sample is the same of the 2018

one.

In conclusion, it is possible to state that 2016 data seem to be distributed

similarly to the 2017 and similarly to the 2017 and 2018 data. However, for

the 2016 and 2018 samples, it is not possible to accept the hypothesis of equal

distributions. The latter conclusion can be linked to the consistent difference in

the number of objects in the two samples, and to the changes that are made to the

machine (i.e. LHC) from year to year.

A.2 Evaluation of the tta distribution

Knowledge of the statistical distribution of the turn-around time is essential for

building an optimisation strategy for the integrated luminosity, as pointed out in

section 5.3. For this reason, we analysed the data of the LHC Run 2 by producing

histograms that describe the distribution of the turn-around time, and by looking

for a model that would better fit them (see Fig. A.1). The first model chosen for

the fit of the experimental data is the exponential one with an offset, which is able

to represent rather well the tail of the data but not the peak:

f(x) = λ exp
(
− λ(x−B)

)
, (A.4)

The expectation value for this model is E[x] = eλb/λ. For the bad representation

of the peak, we have also considered a power law, which acts contrary to the

exponential, representing quite well the peak of the data and badly the tail:

f(x) =
A

(x−B)n
. (A.5)
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Finally, combining the two previous models, we have come to the following truncated

power-law model:

f(x) =
A

(x−B)n
exp(−λx), (A.6)

whose first momentum (i.e. the expectation value) is E[t] =

∫ tmax

tmin

dt′f(t′)t′.

In Fig. A.1, it is possible to view all fits performed with the respective reduced

chi-square values, which are now also shown in the next table for greater clarity.

Table A.2: Results of the Reduced Chi-Square χ̃2 test.

Samples 2016 2017 2018

Power Law [×10−4] 1.4 5 7

Exponential Law [×10−4] 7 9 6

Truncated Power Law [×10−4] 2 5 6

Observing the Table A.2, it is possible to state that the best fit is the one

obtained with the truncated power-law model. In Fig. A.2, we have reported the

model chosen fit with the parameters (presented also in Table A.3) obtained for

the various years analysed.

Table A.3: Parameters from the fits of data.

Parameters 2016 2017 2018

A [h1+n] 0.4± 0.1 0.30± 0.08 0.3± 0.2

B [h] 2.000± 0.005 2.0± 1.9 1.5± 0.1

n 0.7± 0.7 0.5± 0.6 0.3± 0.9

λ [h−1] 0.10± 0.04 0.1± 0.1 0.2± 0.2

Once the truncated power-law fitting model was established, we evaluated the

averages as shown in Table A.4.
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Figure A.1: The fits for the 2016, 2017 and 2018 with the previously described

functions. All the plots present in the figure have been obtained with the lmfit

python function.

Table A.4: Averages turn-around time for the years 2016, 2017, 2018.

2016 2017 2018

Average Turn-around Time [h] 8.9 8.9 7.2

https://lmfit.github.io/lmfit-py/
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Figure A.2: Plots of the data with the truncated power-law model for the turn-

around times distributions. All the plots present in the figure have been obtained

with the lmfit python function.

https://lmfit.github.io/lmfit-py/


Appendix B

Failure Probability of a Fill

Optimisation Strategy

In this appendix we present the case in which we take into account the failure

probability of a fill. There are two options to proceed: assuming a constant failure

probability p, or assume a probability that depends on the fill duration p(tf), and

of course it is assumed that each fill is statistically independent.

In the first case, we can consider

Ltot(t̂i, t̂) =
i−1∑

j=1

Ltot(t̂j) + (1− p)

∫ t̂i

0

dt L(t) + κ (1− p)κ
∫ t̂

0

dt Lmp(t) , (B.1)

where

κ(t̂i, t̂) =
T −∑i−1

j=1

(
tj + t̂j

)
− ti − (1− p)t̂i

1
i

∑i
j=1 tj + t̂

(B.2)

for simplifying the notation. Note in the estimate of the luminosity contribution

from future fills, we neglect the fact that in case of failure of the current fill, some

integrated luminosity might have been collected, and t̂j should be intended as the

actual fill length even if it might be shorter than the optimal value due to a failure.
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The optimal values ti and t̂i are the solutions of





∂Ltot

∂t̂i
= (1− p)L(t̂i) +

∂ [κ (1− p)κ]

∂t̂i

∫ t̂

0

dt Lmp(t) = 0

∂Ltot

∂t̂
= κ (1− p)κ Lmp(t̂) +

∂ [κ (1− p)κ]

∂t̂

∫ t̂

0

dt Lmp(t) = 0 ,

(B.3)

which gives





(1− p)L(t̂i)− (1− p)κ
(1− p)

1
i

∑i
j=1 tj + t̂

[ln(1− p) + 1] = 0

Lmp(t̂)−
[ln(1− p) + 1]
1
i

∑i
j=1 tj + t̂

∫ t̂

0

dt Lmp(t) = 0 .

(B.4)

In the second case, we should consider

Ltot(t̂i, t̂) =
i−1∑

j=1

Lint(t̂j)+(1−p(t̂i))
∫ t̂i

0

dt L(t)+κ
(
1− p(t̂)

)κ ∫ t̂

0

dt Lmp(t) , (B.5)

where

κ(t̂i, t̂) =
T −∑i−1

j=1

(
tj + t̂j

)
− ti − (1− p(t̂i))t̂i

1
i

∑i
j=1 tj + t̂

, (B.6)

and the solution can be found by taking the derivatives of Eq. (B.5).



Appendix C

Developed Software

All codes implemented during the thesis work are available in the following

GitHub repositories:

1. Numerical Optimisation:

github repository clone GiuliaFaletti/NumericalOptimization

https://github.com/GiuliaFaletti/NumericalOptimization.git;

2. Optimisation Strategies:

github repository clone GiuliaFaletti/OptimizationStrategies

https://github.com/GiuliaFaletti/OptimizationStrategies.git;

3. Turn-Around Statistics:

github repository clone GiuliaFaletti/LuminosityOptimization

https://github.com/GiuliaFaletti/LuminosityOptimization.git.
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