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Abstract

The occurrence of higher-derivative terms both in classical and in quantum
theories can be problematic. In case of impossibility of eliminating them by
performing an integration by parts they give rise, in fact, to multiple prob-
lems, like extra unphysical degrees of freedom, negative unbounded energies
and pathological negative norm states called ghosts. The possibility of curing
them comes from a procedure developed by Jaén, Llosa and Molina in a clas-
sical Hamiltonian framework. It is applied when these terms are introduced
as perturbative corrections to a healthy leading order theory multiplied by
a perturbative expansion parameter. We �rst review this method from the
classical point of view, then generalize it for Field Theories and �nally apply
it to SUSY. It's indeed in the latter context that one has always had dif-
�culties in treating certain operators, those whose explicit �eld expansions
contained unusual terms, like second (or higher) derivatives of a dynamical
�eld or derivatives of an auxiliary one.

As we'll show, the approach developed is able to cure these unmanageable
and unjusti�able extra degrees of freedom, paving the way for the construc-
tion of a new range of supersymmetric theories.
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Chapter 1

Introduction

The descriptions of physical systems often involves Lagrangians or equa-
tions of motion of a given order in time derivatives. In particular for each
particle we usually have a Lagrangian containing just the coordinate and its
�rst time-derivative1 and/or second order di�erential equations of motion.
Models with Lagrangian containing derivatives higher than one or, equiva-
lently, with third or higher order equations of motion describe the so called
higher-derivative theories.

These theories are often avoided since they all share very peculiar fea-
tures. In particular, they do not describe � at least as they stand � any
known physical system, either in a classical or in a quantum setup. Nev-
ertheless, it's also true that higher-derivative terms in the Lagrangian or
in equations of motion can arise spontaneously or be necessary because of
physical considerations.

Such theories can be classi�ed in three families ([1]):

1) Theories where higher derivatives are added to describe particular phys-
ical features, because it's the only way to describe them or because it's
the cleanest or the smartest path. Doing this always generates di�er-
ent problems which require the imposition of constraints to be �xed.
An example can be the Abraham-Lorentz model for radiating charged
particles, where their EOM's takes the form2

1This is true in classical physics, in Field Theory the Lagrangian density will be com-
posed by the �eld and its �rst spacetime derivative.

2Such an EOM is clearly di�erent in form from the usual Newton law

ẍ = m−1F (x, ẋ) , (1.1)

where the second derivative is a function of only the zero-th and the �rst one. This change,
as small as it may seem, would lead to big problems if left unconstrained.
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ẍ = m−1F (x, ẋ) + ε
...
x (1.2)

(with ε = 2e2/(3mc3)). While this new modi�ed equation describes
correctly the energy loss of an accelerating charge (Larmor formula), it
also gives rise to two common problems, extra degrees of freedom and
runaway solutions. The former can be seen analysing (1.2), the motion
is in fact speci�ed when initial position, velocity and acceleration are
given. The latter are found for example when one sets an initial null
force (F = 0) on a non-moving body at the origin (x0 = 0, v0 = 0): in
this situation any non-zero initial acceleration (no matter how small)
would generate an exponentially growing solution. It's clear then how,
in this class of theories, not every solution is physical.

2) Theories where higher derivatives arise spontaneously in the process
of constructing a perturbative approximation to a more fundamental
theory. From this assumption follows the need for the new solution to
be a perturbative expansion of the old one as well, but since this is not
assured, the use of constraints becomes necessary even for this class.
An example can be found looking at non-local theories, where non-local
expressions become series of local higher-derivative terms through a
Taylor expansion

x(t+ εT ) =
∞∑
n=0

(εT )n

n!

dn

dtn
x(t) . (1.3)

Here every higher derivative term should in principle correct the theory,
approximating better and better the real solution at every order. Notice
that this is not what happens: if left unconstrained higher-derivative
corrections, although multiplied by a small coe�cient (like the ε above
could be), give rise to undesired and unphysical behaviours, as we'll see
later. This is the class which we will mainly focus on.

3) Theories that are "genuinely higher order", where every solution of
the higher order equations of motion have to be taken into account
and considered physical. These theories present strange behaviours
absent in second order models (like negative kinetic energies) but are
mathematically consistent: there are no theoretical reasons they should
not exist either. Anyway, no physical examples are known for this class.

As we anticipated, we will focus on the second type of models described
here. In particular, we will add higher derivatives as a correction � through
small coe�cients � to a standard lower-derivative theory. The problem is
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that this does not only perturb the original theory, like a lower-derivative
correction would have done, but changes it drastically. For this reason every
higher-derivative correction has to be treated properly in order not to cause
a dramatic change in the fundamental behaviour of the system. In other
words, they have to be treated from the very beginning as corrections to the
leading order theory.

This brief introduction overlooks two important aspects: the fact that all
the unconstrained theories with higher-derivative terms share same common
features, and that the treatment that introduces the necessary constraints
will be based on the assumption that higher derivatives are just perturbative
corrections to a lower order theory.

Let's analyze the �rst point, the peculiar features shared by higher-
derivative models. These are mainly two: the presence of extra degrees
of freedom and the lack of a lower energy bound.

The arisal of extra degrees of freedom might also be physically more ac-
curate � although in general just signals that the previous lower-order theory
was defective � but becomes very disturbing when higher and higher deriva-
tive terms arise as a progression of corrections (like in non-local theories):
here, increasing the order of the approximation leads to an increase of the
initial data necessary to completely specify the motion.

Notice that switching to quantum mechanics opens to something equally
distrurbing. Quantising systems with extra d.o.f.'s leads indeed to a deep
change in the usual well-known uncertainty principle: now position and ve-
locity commute, becoming then freely speci�able and so � from an experi-
mental point of view � simultaneously measurable.

As regards the lack of a lower energy bound, it appears in every higher-
derivative theory (whatever small the coe�cients multiplying higher-derivative
terms are) and it assumes di�erent forms depending on the framework we are
working with. In classical physics it is encoded in an unde�nite unbounded
energy, quantum mechanically it appears as an in�nite tower spectrum of
energy eigenvalues from −∞ to +∞, and in Quantum Field Theory it is re-
lated to the problem of ghosts, �eld excitations (that is particles) of negative
energy. The problem about ghosts concerns their production: since their
creation is energetically favourable (it produces an excess of energy), they
would be bound to be generated in in�nite number.

These features are very particular and, in general, problematic. They
prompt us to �nd a method able to correctly treat higher-derivative terms in
order to make such problems disappear.

The procedure in question is known as the method of perturbative con-
straints, and is based on the imposition of several constraints in order to keep
only solutions that are perturbatively expandible in the small perturbative
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parameter. Taking as example the approximation of a non-local theory into
a truncated series of local higher-derivative terms, such constraints will have
the role of allowing us to consider the expansion as a proper perturbative
expansion. The presence of the small coe�cients alone (appropriately ele-
vated to the corresponding power) is indeed not su�cient to guarantee that
terms belonging to higher approximation orders contribute proportionally
less. Without constraints each higher-derivative term would play the same
role in the physics of the model.

In this way, the perturbative solutions � selected by the constraints � will
be the physical ones, whereas all the other � discarded by the constraints �
will be seen as spurious pseudosolutions.

The most powerful feature of this method is its range of applicability. It in
fact does not require the knowledge of the full theory we are approximating,
but instead just needs the terms of the truncated series to be multiplied by
a small coe�cient, appropriately elevated to some power. Higher-derivative
terms can thus be added by hand and assumed to be part of a truncated
expansion.

It's important to stress that, as clearly stated in [1], this method is not
just an ad hoc procedure, but rather completely natural and necessary when
a higher-derivative theory is, or is assumed to be, the approximation of a
more fundamental one.

The aim of this thesis is to systematically apply the method of perturba-
tive constraints to supersymmetric theories, thereby clarifying and extend-
ing the discussion of higher-derivative theories including chiral super�elds.
In practice what we'll do is to add new higher-derivative operators to a 0-
th order Kähler potential and to assume that they belong to some sort of
perturbative expansion. Since such operators have to be accompanied by
a coe�cient which restores the correrct mass dimension, this quantity can
become the necessary small coe�cient for the applicability of the procedure
(for example taking the inverse of the cuto� scale). One of the missing points
in previous treatment was indeed the avoidance of mass dimension problems:
the introduction of higher-derivative operators must always be accompanied
by dimensionful constants. Once considered, this immediately suggests a
di�erence between the 0-th order and the other higher-derivative operators
added by hand, and right here the method �nds its foundations.

This work is structured as follows: �rst, in Chapter 2, we'll review (and
generalize) the classical method to �nd the perturbative constraints for an
higher-derivative theory and then, in Chapter 3, we'll focus on the application
of this procedure to Global Supersymmetric Theories. Conclusions follow in
Chapter 4.

5



Chapter 2

The JLM Procedure

We are going to review and (slightly) generalize the method developed by
Jaén, Llosa and Molina, exposed in [2], that allows to analyze higher deriva-
tive Lagrangians without introducing new degrees of freedom or instabilities.
They implement this procedure in a classical Hamiltonian framework, so �rst
we review the original version and then we move on to a �eld theory update.
We would point out that the method we are going to present, at a cer-
tain point di�ers from the [2]'s one: since we are mostly interested in the
Lagrangian formulation (rather than the Hamiltonian) for Field Theory ap-
plications, we will only use Lagrangians in those contexts.

2.1 Classical version

We start by reviewing how to deal with Lagrangians that contains coor-
dinates and their derivatives up to their n-th order1, like

L = L(t; q, q(1), . . . , q(n)) . (2.1)

Here q(s), with s ≥ 1, represent the s-th time derivative of q. Sometimes q(0)

can be used to indicate q and q̇, q̈ to indicate q(1), q(2).
We will keep this notation for L (and for every quantity that depends on
coordinates and their derivatives) even if the system is composed by multiple

particles: in that case q(s) ≡ {q(s)
α } with α = 1, . . . , N and s ≥ 0.

In this section to label di�erent particles � or, more generally, components
of the system � greek letters will always be used.

1See [1, 2, 3]
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2.1.1 Lagrangian systems of any order

As for standard Lagrangians the variational principle

δ

∫ t2,Q

t1,P

L(t; q, q(1), . . . , q(n))dt = 0 (2.2)

is assumed to hold. The fundamental di�erence is that here the points P
and Q, belonging to the con�guration space, are identi�ed not only by their
coordinates q, but by the n-tuple {q, q(1), . . . , q(n−1)}.

The Euler-Lagrange equations which solve the variational problem are

n∑
k=0

(−1)kDk ∂L

∂q
(k)
α

= 0 (2.3)

with

D ≡ d

dt
. (2.4)

For the Hamiltonian formulation (that we just brie�y present) also the
conjugate momenta are necessary.
There is, as always, a momentum for every con�guration space variable q

(j)
α

(j = 0, 1, . . . , n− 1)

Π
q
(j)
α
≡

n−j−1∑
k=0

(−1)kDk ∂L

∂q
(k+j+1)
α

, (2.5)

and all together are used to construct the Hamiltonian in the usual way2

H =
∑
λ

n−1∑
k=0

Π
q
(k)
λ
q

(k+1)
λ − L . (2.6)

Here L = L(t; q, q(1), . . . , q(n−1),Πq(n−1)), indeed

q(n)
α = q(n)

α (t; q, q(1), . . . , q(n−1),Πq(n−1)) (2.7)

whereas all the remaining q(j)'s are independent generalized coordinates and
so are not inverted.
The �rst order Hamilton-Jacobi equation of motion are

∂H

∂Π
q
(j)
α

= q̇(j)
α

∂H

∂q
(j)
α

= −Π̇
q
(j)
α

j = 0, 1, . . . , n− 1 (2.8)

2If our Lagrangian is time-independent, the Hamiltonian is conserved and equal to the
energy of the system.
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where the dots have been used to denote a total time derivative (q̇
(j)
α ≡

Dq
(j)
α = q

(j+1)
α , Π̇

q
(j)
α
≡ DΠ

q
(j)
α
) with the aim of recovering a more familiar

form for these equations.
Let us stress the similarities with the usual two-derivative case: in going

from a Lagrangian to a Hamiltonian description we move from a problem
where the evolution of the system was ruled by a 2n-th order di�erential
equation for n variables (con�guration space) to one where it is governed by
2n �rst order di�erential equations for 2n variables (phase space).

2.1.2 Approximated Lagrangian systems

We are going to deal with Lagrangians that assume the form

L =
1

2

N∑
α=1

mα(q(1)
α )2 +

n∑
k=0

εkVk(q, q
(1), . . . , q(k)) +O(εn+1) (2.9)

where mα are constants3 and ε is the real parameter used to truncate at the
desired perturbative order.

This Lagrangian, in fact, can be thought as an in�nite-order one, ap-
proximated to εn+1. Speci�cally, an in�nite-order Lagrangian will have the
general form4

L =
∞∑
k=0

Γk(q, q
(1), . . . , q(k)) = lim

n→∞

n∑
k=0

Γk(q, q
(1), . . . , q(k)) ≡ lim

n→∞
Ln ,

(2.10)
but now we want to restrict our attention to a particular form of Ln: we only
consider polynomials of degree n in the variable ε.

In this sense approximated to order εn+1 means equal modulo εn+1, that
is, equal if every term multiplied by εs, with s ≥ n+ 1, is neglected.
Then, every equation � or quantity � deriving from such a system will have
to contain terms approximated to order εn+1, and so an O(εn+1) will always
appear on its right-hand side.
Formally, our quantities will belong to the quotient ring R[ε]/(εn+1): the
polynomials in ε (with real coe�cients) modulo εn+1.

3These would be the masses in the usual n = 0 case.
4This sort of series are obtained for example when one has to expand a non-local

Lagrangian, as the one describing the Wheeler-Feynman Electrodynamics (see [1, 2]), or
when one has to integrate out a degree of freedom, as we'll see later.
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This fact automatically excludes the ill-behaved solutions of equations of mo-
tion in the limit ε→ 0 but since an algebraic de�nition has been stated, the
future results will hold regardless of the size of ε.

Euler-Lagrange equations (2.3), applied to the Lagrangian (2.9), read as

−mαq
(2)
α +

n∑
k=0

εkWα,k(q, . . . , q
(2k)) = O(εn+1) ∀α (2.11)

with

Wα,k ≡
k∑
r=0

(−1)rDr ∂Vk

∂q
(r)
α

. (2.12)

From these equations we can easily derive the so called primary con-

straints of the system:

ε

[
−mαq

(2)
α +

n−1∑
k=0

εkWα,k(q, . . . , q
(2k))

]
= O(εn+1) ∀α (2.13)

where a primary constraint is de�ned as a relation between coordinates and
their derivatives5 that holds without using the equations of motion.
For such a system will also exist secondary constraints, that hold when
equations of motion are satis�ed but need not hold if they are not satis�ed,
although the procedure to �nd them is a little bit more involved.

Before outlining this procedure and deriving the secondary constraints of
this generic system we would point out that the de�nitions of primary and
secondary constraints could be given in a clearer and more useful way: the
primary constraints will be those "restrictions" to the system that emerges
spontaneously, whereas the secondary will be the ones obtained by an itera-
tive method that uses also the equations of motion (and then requires that
these hold!).

So, starting from primary constraints, we multiply them by εn−1, getting

εnq(2)
α =

1

mα

Wα,0(q)εn +O(εn+1) , (2.14)

to then begin di�erentiating with respect to time:

5In origin, Dirac de�ned a primary constraint as a relation between coordinates and
momenta because he referred to the Hamiltonian formalism (as Jaén, Llosa and Molina
do in [2]). Here we treat the problem under a Lagrangian point of view and then also the
de�nition of primary constraint has to change.
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� the �rst derivative will lead to

εnq(3)
α =

1

mα

DWα,0(q)εn +O(εn+1) =
1

mα

Ẇα,0(q, q(1))εn +O(εn+1) ;

(2.15)

� the second derivative will lead to

εnq(4)
α =

1

mα

D2Wα,0(q)εn+O(εn+1) =
1

mα

Ẅα,0(q, q(1), q(2))εn+O(εn+1)

(2.16)

and then will permit us to use (2.14) to substitute the εnq
(2)
α dependence

in Ẅα0ε
n. The result will be

εnq(4)
α =

1

mα

Ẅα,0(q, q(1), 1
mα

Wα,0(q))εn +O(εn+1)

≡ 1

mα

Zα,4,0(q, q(1))εn +O(εn+1) ; (2.17)

� the third derivative will lead to

εnq(5)
α =

1

mα

D3Wα,0(q)εn+O(εn+1) =
1

mα

Żα,4,0(q, q(1), q(2))εn+O(εn+1)

(2.18)
and so the use of (2.14) will again be necessary to eliminate all the

εnq
(2)
α terms. The result will be

εnq(5)
α ≡

1

mα

Zα,5,0(q, q(1))εn +O(εn+1) (2.19)

and so on.

Thus, in general, we obtain the relations

εnq(r+2)
α ≡ 1

mα

Zα,r+2,0(q, q(1))εn +O(εn+1) , (2.20)

for r ≥ 1 6, that can be plugged back � with r = 2n − 4 and r = 2n − 5 �
into primary constraints (2.13) to eliminate the εnq(2n−2) and εnq(2n−3) terms
that appears only in the last summation's addend, Wα,n−1.

Now the highest derivatives are q2n−4 and q2n−5, in Wα,n−1 and Wα,n−2 ,
and to eliminate them we restart from primary constraints, this time multi-
plying by εn−2:

εn−1q(2)
α =

1

mα

[
Wα,0(q) + Wα,1(q, q(1), q(2))ε

]
εn−1 +O(εn+1) . (2.21)

6Here Ẇα,0(q, q(1)) has been implicitly rede�ned as Zα,3,0(q, q(1)).
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Again, (2.14) can be used to throw away the q(2) dependence on the r.h.s. of
this equation, �nding

εn−1q(2)
α =

1

mα

[
Wα,0(q) + W̃α,1(q, q(1))ε

]
εn−1 +O(εn+1) . (2.22)

From here we can start di�erentiating as before, substituing at every step
εn−1q

(2)
α with (2.22). The general result will be

εn−1q(r+2)
α ≡ 1

mα

[
Zα,r+2,0(q) + Zα,r+2,1(q, q(1))ε

]
εn−1 +O(εn+1) (2.23)

with r ≥ 1. Notice that this relation implies the (2.20) one, obtained by just
multiplying by ε both sides.

We can continue iteratively restarting from the primary constraint and
lowering progressively the power of ε, always eliminating the undesired q
derivatives: at the end this algorithm leads to

ε

[
q(r)
α −

1

mα

n−1∑
k=0

εkZα,r,k(q, q
(1))

]
= O(εn+1) (2.24)

for r = 2, . . . , 2n− 1. Taking the derivative of this equation when r = 2n− 1
(and of course substituing q(2) terms as it's been done so far), will give us

ε

[
q(2n)
α − 1

mα

n−1∑
k=0

εkZα,2n,k(q, q
(1))

]
= O(εn+1) , (2.25)

thanks to which � with the help of all the other relations found along the
way of this painstaking procedure � we can drastically simplify the equations
of motion to obtain the new constraints

q(2)
α =

1

mα

n∑
k=0

εkZα,2,k(q, q
(1)) +O(εn+1) (2.26)

where Zα,2,k is just Wα,k with all the q's derivatives higher than one elimi-
nated.

Finally, di�erentiating and substituing (using this last equation found

for q
(2)
α ) one the last time, we can write explicitely our full minimal set of

secondary constraints:

q(r)
α =

1

mα

n∑
k=0

εkZα,r,k(q, q
(1)) +O(εn+1) r = 2, . . . , 2n− 1 . (2.27)
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These constraints not only contain the primary ones, but they are also more
restrictive than them and stable under time di�erentiation.

Even if this algorithm or its �nal formula could seem obscure or pretty
di�cult to apply, as we'll see the analysis of the e�ective constraints for a
system can be very clearer, faster and � after all � much easier.

2.1.3 Application: the Double Harmonic Oscillator in a
Gravitational Field

Let us analyze closely an example in classical physics, in order to compare
a normal lower-derivative theory with a higher-derivative one.

Consider a system composed by two masses m andM such that m�M ,
and by two springs with the same harmonic constant k and the same rest
length `.
The system will be assembled as in Fig. 2.1: the coordinate x will label the
mass m whereas the coordinate y will label the mass M .

Figure 2.1: The system considered.
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The Lagrangian of the system is

L =
1

2
mẋ2 +

1

2
Mẏ2 −mgx−Mgy − 1

2
k(y − `)2 − 1

2
k(x− y − `)2

=
1

2
mẋ2 +

1

2
Mẏ2 + (k`−mg)x− 1

2
kx2 −Mgy − ky2 + kxy + const .

(2.28)

Now we rescale this Lagrangian dividing by M and we de�ne

Ω2 ≡ k

M

ε2 ≡ m

M
η ≡ Ω2`− ε2g

to get

L′ =
1

2
ε2ẋ2 +

1

2
ẏ2 + ηx− 1

2
Ω2x2 − gy − Ω2y2 + Ω2xy (2.29)

where constants have been omitted.
Notice that, whereas [L] = E, [L′] = L2T−2 = EM−1. From now on we will
remove the prime in every function, implying that quantities in exam now
becomes per unit mass (Lagrangian per unit mass, Energy per unit mass,
and so on).

Firstly we solve exactly the system as it stands, later we will make some
assumptions that will drastically change the resulting physics.

So, we start from the equations of motion. For x we have

η − Ω2x+ Ω2y − ε2ẍ = 0 , (2.30)

whereas for y
− g − 2Ω2y + Ω2x− ÿ = 0 . (2.31)

From this last equation we can isolate Ω2x, di�erentiate twice, and plug
back into x's EOM. Notice that we are always free to do this: it is always
allowed to substitute equations of motion inside other equations of motion
(problems arises when we want to plug them into the Lagrangian, as we'll se
later).

The result is the fourth order di�erential equation describing the motion
of the heaviest mass:

ε2Ω−2y(4) +
(
1 + 2ε2

)
ÿ + Ω2y + ḡ = 0 , (2.32)

where
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ḡ = g − η .

The general solution of this di�erential equation is

y(t) = A+e
iλ+t +B+e

−iλ+t + A−e
iλ−t +B−e

−iλ−t − ḡΩ−2 (2.33)

with

λ2
± =

1 + 2ε2 ∓
√

1 + 4ε4

2ε2
Ω2 . (2.34)

For later convenience we also write down these two frequencies truncated at
their �rst magnitude order

λ+ = Ω +O(ε2) (2.35)

λ− =
1

ε
Ω +O(1) . (2.36)

Following the same steps we can also �nd the di�erential equation de-
scribing the motion of the lightest mass m

ε2Ω−2x(4) +
(
1 + 2ε2

)
ẍ+ Ω2x+ ¯̄g = 0 , (2.37)

which as the same form of the one for y, with

¯̄g = ḡ − η = g − 2η

replacing ḡ.
The solution will be, thus, completely analogous to the y's one

x(t) = Ā+e
iλ+t + B̄+e

−iλ+t + Ā−e
iλ−t + B̄−e

−iλ−t − ¯̄gΩ−2 (2.38)

and using (2.30) (or (2.31)) one is able to relate the four free coe�cients A+,
B+, A−, B− in y(t) with their barred versions in x(t):

A+ =
(
1− ε2λ2

+Ω−2
)
Ā+ ≡ Z−1

+ Ā+ (2.39)

B+ =
(
1− ε2λ2

+Ω−2
)
B̄+ = Z−1

+ B̄+ (2.40)

A− =
(
1− ε2λ2

−Ω−2
)
Ā− ≡ Z−1

− Ā− (2.41)

B− =
(
1− ε2λ2

−Ω−2
)
B̄− = Z−1

− B̄− . (2.42)

To �x the four constants left we impose initial conditions on position and
velocity for both x and y, as always.
Considering both at rest at t = 0 � that is, ẋ(0) = 0, ẏ(0) = 0, x(0) ≡ x0,
y(0) ≡ y0 � we �nd

A+ = B+ = − 1

2 (K+ −K−)

(
K−y0 − x0 + Ω−2 (K−ḡ − ¯̄g)

)
A− = B− =

1

2 (K+ −K−)

(
K+y0 − x0 + Ω−2 (K+ḡ − ¯̄g)

)
14



and so the �nal time laws will assume the form

y(t) = 2A+ cos (λ+t) + 2A− cos (λ−t)− ḡΩ−2 (2.43)

x(t) = 2K+A+ cos (λ+t) + 2K−A− cos (λ−t)− ¯̄gΩ−2 . (2.44)

In order to better understand the behaviour of the system, we replace λ+

and λ− with their �rst order expansion (2.35)-(2.36)7. We get

y(t) = 2A+ cos (Ωt) + 2A− cos

(
1

ε
Ωt

)
− ḡΩ−2 (2.45)

x(t) = 2A+ cos (Ωt)− 2
A−
ε2

cos

(
1

ε
Ωt

)
− ¯̄gΩ−2 (2.46)

with

A+ '
1

2

(
y0 + ḡΩ−2

)
= O(1)

A− '
1

2
ε2
(
y0 − x0 + (ḡ − ¯̄g) Ω−2

)
= O(ε2) .

In Fig. 2.2 we plot these approximate solutions8. We clearly see how �
as we could expect � whereas the lightest mass is strongly in�uenced by the
motion ofM , the latter is just slightly perturbed around a common harmonic
behaviour: it is lightly interested by the motion of m.

7In fact, λ− needs its second order term in ε when plugged into K−.
8The Fig. 2.1 lead us to believe that x > y ∀ t, even if the starting Lagrangian never

impose that. In this sense m and M have to be thought as non-impenetrable as well as
the springs. On contrary, because of the form given to the gravity potential, the �oor has
to be impenetrable: the energy would be, otherwise, unde�nite.
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Figure 2.2: Plot of f(t) = x(t) + ¯̄gΩ−2 (orange) and g(t) = y(t) + ḡΩ−2

(red) compared to cos(Ωt) (black). The values assumed are: Ω = 1 (Hz),
ε = 0.2 (M = 5m), A+ = 1

2
(50 cm), A− = 1

2
ε2 (2 cm). Remember that

x(t), y(t) > 0, since the �oor must be impenetrable. With the values assumed
here (and g = 9.81 m/s2) this implies ` ≥ 6.3 m.

Now imagine that the lightest mass was inaccessible, in the sense that
we are not able to measure its position (or velocity) throughout the time
evolution of the system. We left with just y or, better, with its equations
of motion (2.32). One can think that the situation is still the same, but the
system is deeply changed. Let's see in details.

Since the EOM for y is unchanged after this simple assumption, the so-
lution (2.33) is still valid. The big di�erence is that now to �x the four free
constants A+, B+, A−, B− we need not only the initial position and the
initial velocity of M , but also its initial acceleration and its initial jolt (

...
y ).

This means that the body of mass M , whose position is labelled by y, has
now four degrees of freedom: in a certain sense the two d.o.f.'s of x move to y
changing drastically the physical features of the system. The inaccessibility
to x leads to a classical system determined by its initial position, velocity,
acceleration and jolt, something that we never meet in physics and something
completely di�erent � under a conceptual point of view � from the previous
case.
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In order to solve the system under this "inaccessibility assumption", we
can impose for simplicity a non-jolting (

...
y (0) ≡ j0 = 0), non-accelerating

(ÿ(0) ≡ a0 = 0), non-moving (ẏ(0) ≡ v0 = 0) body at t = 0. We �nd that

y(t) = 2C
[
cos(λ+t)− r2 cos(λ−t)

]
− ḡΩ−2 (2.47)

with

r =
λ+

λ−
(2.48)

and

C = A+ = B+ = − 1

r2
A− = − 1

r2
B− =

1

2(1− r2)

(
y0 + ḡΩ−2

)
. (2.49)

In order to evaluate qualitatively the situation we consider again the
approximation (2.35)-(2.36), for which

y(t) = 2C

[
cos(Ωt)− ε2 cos

(
1

ε
Ωt

)]
− ḡΩ−2 (2.50)

with

C ' 1

2(1− ε2)

(
y0 + ḡΩ−2

)
(2.51)

� since
r ' ε . (2.52)

In Fig. 2.3 is plotted this latter solution together with the previous one.
As expected, except for its initial position, the motion of M is exactly the
same as before (its equation of motion are indeed unchanged).

17



Figure 2.3: Plot of h(t) = y(t) + ḡΩ−2 (blue) overlapped to the previous Fig.
2.2. The values assumed are: Ω = 1 (Hz), ε = 0.2, C = 1

2
(50 cm).

We could stop here stating that, however unpleasant and singular it could
be, this was a particular system which needed initial data on position, ve-
locity, acceleration and jolt to just describe one body of mass M . But what
does this statement really mean?

To answer this question we have to wonder about which Lagrangian �
containing just y and its derivatives � would generate the equation of motion
(2.33). The easiest Lagrangian we can think of is

L =
1

2
ẏ2 − ḡy − 1

2
Ω2y2 + ε2ẏ2 − 1

2
ε2Ω−2ÿ2 . (2.53)

From it, we can compute (with (2.5) and (2.6)) the conjugate momenta

Πy =
∂L

∂ẏ
−D∂L

∂ÿ
= (1 + 2ε2)ẏ + ε2Ω−2...y (2.54)

Πẏ =
∂L

∂ÿ
= −ε2Ω−2ÿ (2.55)

and, then, the Hamiltonian

H = Πyẏ −
1

2
ε−2Ω2Π2

ẏ −
1

2
(1 + 2ε2)ẏ2 + ḡy +

1

2
Ω2y2 . (2.56)
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Several observations can be done now. First notice that we can cure the
extra degrees of freedom in L or, better, in y's equations of motion by taking
the limit ε → 0: every higher-derivative term is indeed multiplied by this
parameter. For this limit, η → Ω2` and so the system becomes the one of
Fig. 2.4. To prove it is su�cient to write down the Lagrangian for such a
system

L0 =
1

2
ẏ2 − gy − 1

2
Ω2(y − `)2

=
1

2
ẏ2 −

(
g − Ω2`

)
y − 1

2
Ω2y2 + const

=
1

2
ẏ2 − ḡy − 1

2
Ω2y2 + const ,

where in the last line has been considered η = Ω2`.

Figure 2.4: The e�ective system at zero-th order.

The three terms −ε2gy, ε2ẏ2 and −1
2
ε2Ω−2ÿ2 could be then thought, in-

correctly, as some sort of corrections to a common harmonic motion. This
is false because not only the addition of such terms leads to extra degrees of
freedom � as we just saw � but it also gives a big problem with energy. An
anticipation can be found by inspecting H. Here in fact we are not allowed
to take the limit ε → 0 anymore: the second term would blow up leading
to −∞ values. In the present case of vanishing v0, a0 and j0 the problem is
disguised, indeed the energy of the system is

E = ḡy0 +
1

2
Ω2y2

0 , (2.57)

the same of the system in Fig. 2.4 when the body of mass M has zero initial
velocity. Since y(t) ≥ 0 this energy is always positive for every allowed value
of y0.
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The higher-derivative case described by the Lagrangian (2.53) shows its
energy problems when we consider an initial non-vanishing acceleration a0 6=
0. In this case we'll have

y(t) = 2C

[
cos(λ+t)−

(
r2 +

a0

2Cλ2
−

)
cos(λ−t)

]
− ḡΩ−2 (2.58)

and, more importantly,

E = ḡy0 +
1

2
Ω2y2

0 −
1

2
ε2Ω−2a2

0 . (2.59)

Indeed, as we can see in eqs. (2.54)-(2.56),9

E = H(y0, v0,Πy(v0, j0),Πẏ(a0)) (2.60)

but while we still have v0 = 0 and j0 = 0, now a0 6= 0 and so Πẏ 6= 0 at t = 0.
Speci�cally we get Πẏ(ÿ(0)) = −ε2Ω−2a0.

Eq. (2.59) clearly shows how the energy now is unde�ned and so how it
can assume arbitrarily negative values for su�ciently high values of a0. In
particular we start getting negative values for the energy when

a2
0 > ε−2

(
2ḡ + Ω2y0

)
Ω2y0 (2.61)

and in our case (see Fig. 2.3 for the values chosen) for a "rest length"10

` = 10 m � su�cient to assure y(t) ≥ 0 ∀ t � we'd get such negative energies
for every initial acceleration a0 & 5 m/s2. The problem here is not so much
the negative values for E but rather the lack of a ground state.

This problem persists when the system is quantized. In order to see this
we �rst de�ne

z = y + ḡΩ−2 (2.62)

so that the Lagrangian (2.53) assumes the form

L =
1

2
(1 + 2ε2)ż2 − 1

2
Ω2z2 − 1

2
ε2Ω−2z̈2 . (2.63)

The Hamiltonian for such a higher-derivative Lagrangian will be

H = Πz ż −
1

2
ε−2Ω2Π2

ż −
1

2
(1 + 2ε2)ż2 +

1

2
Ω2z2 (2.64)

9Thanks to the Noether's Theorem: the Hamiltonian does not depend explicitly on t
and so we know it's a constant of motion.

10In this description the system cannot be considered anymore as composed by springs
with bodies attached. A physical system described by the Lagrangian (2.53) as it stands
is unknown.
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and introducing the variables q+, p+, q− and p− as
q+ = − i√

2Ω
((1 + ε2)ż − Πz)

p+ = Ω√
2ε

(√
2εz − Πż

)
q− = i√

2εΩ
(ε2ż − Πz)

p− = −Ω
ε

(
ε√
2
z − Πż

) (2.65)

� or, equivalently, 
z =

√
2

Ω

(√
2p+ + p−

)
Πż =

√
2ε

Ω

(
p+ +

√
2p−
)

ż = i
√

2Ω
ε

(εq+ + q−)

Πz = i
√

2εΩ
(
εq+ + 1+ε2

ε2
q−

) (2.66)

� it becomes

H = p2
+ + Ω2q2

+ −
(
p2
− +

Ω2

ε2
q2
−

)
, (2.67)

di�erence of two harmonic oscillators' Hamiltonians.
From here the quantization is straightforward and leads to energy eigen-

values determined by two non-negative integers n,m = 0, 1, 2, . . . :

E =

(
n+

1

2

)
Ω−

(
m+

1

2

)
Ω

ε
. (2.68)

This energy is again clearly inde�nite: �xing ε, we have an in�nite tower
of energy levels from −∞ to +∞. Notice that now if we take ε → 0, then
E → −∞ and we do not approach the purely simple harmonic oscillator
ground state.
More in general the limit ε→ 0 does not recover the system in Fig. 2.4 as we
at �rst imagined studying the Lagrangian. That system has nothing to do
with our case: once ε is non-vanishing the two systems describe very di�erent
situations with deeply di�erent physics.

This lack of a ground state is unacceptable and signals � more than all the
other problems (such as never-seen extra degrees of freedom or the impossi-
bility of recovering the lower-derivative theory taking ε→ 0) � an unhealthy
treatment of this problem.

The correct approach is the one of perturbative constraints : eq. (2.32)
does not describe the system by itself, it must be accompanied by the con-
straints provided by the JLM procedure. Under this approach the terms ∝ ε2

are considered from the very beginning as perturbative correction (up to ε2
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order) of the 0-th order system of Fig. 2.4 and the constraints imposed are
necessary to keep only the solutions that are perturbative corrections (up to
ε2 order) of the 0-th order solution.

For these reasons the Lagrangian (2.53) can be rewritten as

L =
1

2
ẏ2 −

(
g − Ω2`

)
y − 1

2
Ω2y2 − ε2gy + ε2ẏ2 − 1

2
ε2Ω−2ÿ2 +O(ε3) . (2.69)

This Lagrangian is now in the form (2.9) (n = 2) and the JLM method can
thus be applied. We identify

� m = 1 11;

� V0 = − (g − Ω2`) y − 1
2
Ω2y2;

� V1 = 0;

� V2 = −gy + ẏ2 − 1
2
Ω−2ÿ2.

Because of the very simple form of this theory and of the fact that we already
know the EOM � to be fair they are our starting point, the Lagrangian has
just been derived from them � there's no need for computing the Wk's. The
primary constraints are indeed obtained by the equation of motion

ε2Ω−2y(4) +
(
1 + 2ε2

)
ÿ + Ω2y + ḡ = O(ε3) (2.70)

by multiplying by ε:

ε
[
ÿ +

(
g − Ω2`

)
+ Ω2y

]
= O(ε3) . (2.71)

Now all we need is a constraint for ∝ ε2ÿ and a constraint for ∝ ε2y(4).
To �nd them we just multiply (2.71) by ε and di�erentiate this result twice
substituing properly to get rid of the ÿ dependence. The result is

ε2ÿ = −
(
g − Ω2`+ Ω2y

)
ε2 +O(ε3) (2.72)

ε2y(4) = Ω2
(
g − Ω2`+ Ω2y

)
ε2 +O(ε3) . (2.73)

Notice that these steps are exactly the �rst two steps of the JLM procedure
illustrated above: (2.72) substitutes (2.14) and (2.73) substitutes (2.16).

The few relations found so far allow us to skip to the end of the JLM algo-
rithm, where the equation of motion is used to �nd what generates the most

11Here we deal with just one particle, then the α label is useless and, so, suppressed.
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general set of secondary constraints: eq. (2.26). Such equation represents
also the healthy EOM and in this case it is

ÿ =− g + (1− ε2)Ω2`− Ω2(1− ε2)y +O(ε3)

=− Ω2(1− ε2)
(
y + ḡΩ−2

)
+O(ε3) . (2.74)

The solution to this equation is

y(t) = Aeiλt +Be−iλt − ḡΩ−2 (2.75)

with

λ =

(
1− 1

2
ε2
)

Ω . (2.76)

Considering as before ẏ(0) = 0 we get A = B and then

y(t) = 2A cos(λt)− ḡΩ−2 , (2.77)

an usual oscillatory behaviour. This solution can be visualized in Fig. 2.5.
We realize that the perturbative correction is applied to the oscillation fre-
quency: whereas the 0-th order system (Fig. 2.4) oscillates with the frequency
Ω, this "corrected system" oscillates with the (lower) frequency

(
1− 1

2
ε2
)

Ω.

Figure 2.5: Plot of k(t) = y(t) + ḡΩ−2 (pink) overlapped to cos(Ωt) (black).
The values assumed are: Ω = 1 (Hz), ε = 0.2, A = 1

2
(50 cm).

Comparing (2.75) with (2.33) we immediately realize how now two initial
conditions are su�cient to determine the motion: we now have only two free
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constants, A and B, instead of four.
However, the imposition of the correct constraints not only eliminated the
extra d.o.f.'s, it also cured the lack of a ground state. Indeed taking the
constraints in their Hamiltonian form, that is12

Πy =(1 + ε2)ẏ +O(ε3) (2.78)

Πẏ =ε2Ω−2
(
g − Ω2`+ Ω2y

)
+O(ε3) , (2.79)

and substituing them into the higher-derivative Hamiltonian (2.56), we ob-
tain the reduced Hamiltonian

HR =
1

2
(1− 2ε2)Π2

y + (1− ε2)ḡy +
1

2
(1− ε2)Ω2y2 − E0 +O(ε3) (2.80)

with

E0 =
1

2
ε2Ω−2

(
g − Ω2`

)2
. (2.81)

We can observe that now this has a lower bound (remember that y > 0),
that is −E0, and that it gives the correct Hamiltonian for the ε → 0 limit,
the one we obtain from L0 for the 0-th order system.

We could stop here: we cured the equations of motions (obtaining eq.
(2.74)) and we got a well-behaved energy (obtainable from (2.80)). In par-
ticular, considering as always ẏ(0) = 0 the latter is

ER = (1− ε2)ḡy0 +
1

2
(1− ε2)Ω2y2

0 − E0 +O(ε3) . (2.82)

Nevertheless, we could also ask ourselves about how to recover the EOM
(2.74) from the Hamiltonian (2.80). The path is not as straightforward as it
could seem. The correct equations of motion for a constrained Hamiltonian
system are indeed

df

dt
=
{
f,HR

}
DB

+
∂f

∂t
(2.83)

where f = f(y,Πy, t) is the quantity we want to time-evolve and
{
· , ·
}
DB

are the Dirac Brackets, a generalization of the Poisson Brackets that involve
the constraints in their de�nition. Using the same notation of [2], if we write
the constraints as

χ =Πẏ − ε2Ω−2
(
g − Ω2`+ Ω2y

)
= O(ε3) (2.84)

ω =
(
1 + ε2

)
− Πy = O(ε3) (2.85)

12To obtain these relations we used the constraint (2.73) and the time-derivative of
(2.72).
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we can de�ne the Dirac Brackets through{
f, g
}
DB

=
{
f, g
}
PB

+
{
f, χ

}
PB

{
g, ω

}
PB
−
{
g, χ
}
PB

{
f, ω

}
PB

, (2.86)

where
{
· , ·
}
PB

are the Poisson Brackets. Notice that, in such a higher-
derivative framework, these latter read as

{
f, g
}
PB

=
n−1∑
k=0

(
∂f

∂y(k)

∂g

∂Πy(k)
− ∂f

∂Πy(k)

∂g

∂y(k)

)
. (2.87)

Finally we can compute

dΠy

dt
=
{

Πy, HR

}
DB

= −(1 + ε2)
∂HR

∂y
(2.88)

that is equivalent to (2.74) once is taken into account (2.78).

An easier way to check the consistency of the EOM with the Hamiltonian
(2.80) consists in getting �rst a reduced Lagrangian, and then to use the
usual Euler-Lagrange equations to obtain eq. (2.74).

This method is illustrated in [1] and is based on �nding a new conjugate
momentum to y so that usual Hamilton-Jacobi equations (or equivalently
Euler-Lagrange equations) hold true. In general, in order to �nd this new
momentum p is necessary to express the energy of our constrained system
as a function of y and ẏ. What we do is then to plug eq. (2.78) into (2.80),
getting

ER(y, ẏ) =
1

2
ẏ2 + (1− ε2)ḡy +

1

2
(1− ε2)Ω2y2 − E0 +O(ε3) , (2.89)

to then apply the formula for p(y, ẏ)

p(y, ẏ) =

∫ ẏ

0

dv

v

∂ER(y, v)

∂ẏ
+ p(y, 0) = ẏ . (2.90)

In the last step p(y, 0) has been set to zero. The freedom of choosing p(y, 0)
is linked to the freedom of adding total derivatives to L without changing
the physics of the system.

We are �nally ready to compute the reduced Lagrangian:

LR =p(y, ẏ)ẏ − ER(y, ẏ)

=
1

2
ẏ2 − (1− ε2)ḡy − 1

2
(1− ε2)Ω2y2 +O(ε3) (2.91)
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from which the equation of motion (2.74) is easily obtainable.

It is interesting to see what would happen if we took another way: once
found all the constraints we decide, instead of building the Hamiltonian, to
plug them directly in our higher-derivative Lagrangian (2.69). What we'd
obtain is

L̃R =
1

2
(1 + 2ε2)ẏ2 − (1 + ε2)ḡy − 1

2
(1 + ε2)Ω2y2 +O(ε3) . (2.92)

This Lagrangian gives the same equations of motion � once treated correctly
the ε-polynomials (see Appendix A) � since it's basically the same Lagrangian
as LR rescaled

(1 + 2ε2)LR = L̃R +O(ε3) . (2.93)

At �rst sight this L̃R seems to generate a completely di�erent Hamiltonian,
however one has to keep in mind that the conjugate momentum is not the
previous one:

Π̃y =
∂L̃R
∂ẏ

= (1 + 2ε2)ẏ (2.94)

so that

H̃R =
1

2
(1− 2ε2)Π̃2

y + (1 + ε2)ḡy +
1

2
(1 + ε2)Ω2y2 +O(ε3) . (2.95)

To correctly compare this Hamiltonian with (2.80) we have to express H̃R

in terms of Πy. To do this we use the relation (2.78), which tells us that

Π̃y = (1 + ε2)Πy (2.96)

and, �nally, that13

(1 + 2ε2)HR = H̃R +O(ε3) . (2.97)

The Hamiltonian, and so the energy of the system, is just the previous one
rescaled. This fact is not particularly disturbing since in classical physics E
(or equivalently H in this case) is just an integral of motion, a �xed constant
independent on time that, even if rescaled, does not a�ects the dynamics of
the system: its most important feature is its constant nature. To prove it we
can once again compute EOM's, this time using H̃R. In this case the system
is healthy from the very beginning, thus we have to apply the usual Poisson
Brackets. We can proceed in two equivalent ways: we can compute

dΠ̃y

dt
=
{

Π̃y, H̃R

}
PB

= −∂H̃R

∂y
(2.98)

13Here HR has been shifted to HR + E0.
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and then use (2.78) and (2.96) to get the desired result; or directly calculate

dΠy

dt
=
{

Πy, H̃R

}
PB

= −∂Πy

∂Π̃y

∂H̃R

∂y
= −(1− ε2)

∂H̃R

∂y
(2.99)

that, again using (2.78), gives the correct equation of motion.

There's then an ambiguity in the choice between these two ways of act-
ing: we could state that since these two paths lead to the same EOM and
to the same energy (except for a rescaling constant), they are equivalent.
This statement, in classical physics, could at least sound dangerous. The
problem lies in the substitution of equations of motion inside the functional
generating them. Indeed we are, in principle, not allowed to perform such a
substitution � it in general modi�es the very nature of the variational prin-
ciple underlying the formalism � but while for the Hamiltonian treatment it
is part of the correct procedure to treat constrained systems (one computes
HR and then uses Poisson brackets to �nd the correct EOM's14), it seems
just an illegal shortcut as regards the Lagrangian (a correct treatment here
would require the introduction of constraints through Lagrangian multipli-
ers). Maybe here the result is equivalent because we are eliminating, through
substitution of EOM's, unphysical degrees of freedom as higher derivatives.

We will see that in Classical Field Theory this operation is safely permit-
ted and, so, that working with only Lagrangians is possible.

2.2 Classical Field Theory version

The treatment in case of Field Theory has been generalized naturally
thinking on the comparison between the usual Euler-Lagrange equations of
motion:

∂L
∂q
− d

dt

∂L
∂q̇

= 0 ←→ ∂L
∂ϕ
− ∂µ

∂L
∂(∂µϕ)

= 0 . (2.100)

It is then straightforward to apply the same method � with the substitu-
tions

q −→ ϕ

D −→ ∂µ

q(n) −→ ∂α∂β . . . ∂νϕ ≡ ∂(n)ϕ

Dn −→ ∂α∂β . . . ∂ν (2.101)

14See [2].
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� to an higher-derivative classical Field Theory Lagrangian

L = −1

2

N∑
a=1

(∂ϕa)
2 +

n∑
k=0

εkVk(ϕ, ∂ϕ, . . . , ∂
(k)ϕ) +O(εn+1) , (2.102)

with (∂ϕ)2 ≡ ∂ϕ · ∂ϕ ≡ ∂µϕ∂
µϕ and a = 1, . . . , N labeling N di�erent real

�elds.
To maintain the notation of [4], the �at metric used to contract space-time
indices is taken to be the mostly plus one: ηµν = diag{−1,+1,+1,+1} (ori-
gin of the minus sign in front of the kinetic term in L).

The Euler-Lagrange equations will assume the form15

n∑
k=0

(−1)k ∂α∂β . . . ∂κ︸ ︷︷ ︸
k derivatives

∂L
∂(∂α∂β . . . ∂κϕa)

= 0 (2.103)

that, applied to the Lagrangian (2.102), read as16

∂2ϕa +
n∑
k=0

εkWa,k(ϕ, . . . , ∂
(2k)ϕ) = O(εn+1) ∀α (2.104)

with ∂2ϕ ≡ ∂µ∂
µϕ and

Wa,k ≡
k∑
r=0

(−1)r∂α∂β . . . ∂ρ
∂Vk

∂(∂α∂β . . . ∂ρϕa)
. (2.105)

From these equations we can easily derive the primary constraints of
the system

ε

[
∂2ϕa +

n−1∑
k=0

εkWa,k(ϕ, . . . , ∂
(2k)ϕ)

]
= O(εn+1) ∀α . (2.106)

Notice that one big di�erence with the classical case is about the mass
of the particle: here it is never encoded in the kinetic term, neither in the

15From now on we won't write "k derivatives", implying that every time there's a match
between greek and latin letters the number of derivatives is considered the same. E.g. the
derivative with the Lorentz (greek) index "kappa" will be the k-th derivative whereas a
derivative with the index "nu" will be the n-th derivative. Exceptions will be "alpha" and
"beta", nearly always considered the �rst and the second derivatives.

16One could argue that the �rst term of this equation, as well as the Lagrangian's �rst
one, has opposite sign with respect to its classical version (2.11). Actually, expanding the
contracted indices with the mostly-plus metric, one would realize that time derivatives of
the �eld have the same sign.
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easiest n = 0 (usual) case where it would lie in Wa,0 ⊃ −1
2
maϕ

2
a.

To get the secondary constraints the algorithm will be exactly the same:
one starts from primary constraints, multiplies by εn−1 and takes derivatives
substituing εn∂2ϕa when it appears; then one restarts from primary con-
straints, multiplies by εn−2 and takes derivatives substituing εn−1∂2ϕa; the
iteration of these steps will lead to an expression for ε ∂2ϕa that doesn't con-
tain derivatives of the �eld higher than one.
Notice that in this case we have to pay close attention to the contractions
of indices when di�erentiating. In particular, while we can decide whether
to contract or not a new derivative in the midst of the algorithm to �nd
secondary constraints, we have no choice on the very �rst move: the primary
constraint. Indeed such a restriction will always concern ∂2ϕa and never the
more general ∂µ∂νϕa, since primary constraints � descending directly from
equations of motion � have their form �xed.

Then it follows that, because of the variety of possible contractions, the
JLM method in the case of Classical Field Theory will be an ad hoc proce-
dure, in the sense that it won't be much interested in �nding every kind of
constraint but more in searching those of our interest, relating to the treated
Lagrangian. In turns the Lagrangian will be adapted to be constrained: this
means that we will use the freedom of integrating by parts to make our La-
grangian suitable or more suitable for the applicability of the algorithm.
For example a term like

ε2∂µϕ∂νϕ∂
µ∂νϕ

in L will be written as

1
2
ε2∂µϕ∂

µ ((∂ϕ)2)

and then integrated by parts to get

−1
2
ε2∂2ϕ(∂ϕ)2,

on which the constraint

ε2

[
∂2ϕa +

n−2∑
k=0

εkZa,2,k(ϕ, ∂ϕ)

]
= O(εn+1) , (2.107)

Classical Field Theory version of (2.24), can be used.
Without delay we are already going to analyse a practical application in

case of Classical Field Theory.
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2.2.1 Application: Light-Heavy Scalar Fields Interac-
tion

This example is modeled on the case considered in [5] and is a typical
E�ective Field Theory application. As the previous one it shows how higher-
derivative terms arise naturally when a light and a heavy degree of freedom
are coupled.

The Lagrangian considered is 17

L = −1

2
(∂φ)2 − 1

2
(∂χ)2 − 1

2
m2φ2 − 1

2
M2χ2 − gMφ2χ (2.108)

with φ and χ real �elds and m�M .
Notice that this Lagrangian is the same as (2.1) in [5] except for the

√
g

factor (which has been removed) and the substitution

λ −→ gM , (2.109)

performed to simplify the comparison with the JLM method.
There is something to specify about this substitution. One could think that,
since [λ] = 1, this replacement was little more than a renaming where, from
a dimensional coupling constant, we extracted its explicit mass dependence
(M) leaving a generic dimensionless free coupling g. Actually, the substitu-
tion considered is implying something stronger: we are asking for a λ of the
same order of M and for a g = O(1). Indeed if we considered λ = O(m)
this renaming would lead to a g = O(m/M) that, since the method requires
m � M , would compete with our dimensional expansion parameter 1/M ,
going to belong to the same in�nitesimal order.
So, to avoid every problem, we ask for a large coupling between the two �elds
in the 3-vertex interaction.

As we are interested in physics on energy scales E � M , it is su�cient
to study the system through a low-energy e�ective Lagrangian obtained in-
tegrating out the heaviest �eld χ, since its mass scale is above the energy
scale of interest.
Thus we start by writing the equation of motion for χ

(∂2 −M2)χ = gMφ2 (2.110)

17~ = 1, c = 1.
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that, inverted, becomes

χ = gM(∂2 −M2)−1φ2

= − g

M

(
1 +

∂2

M2
+

(∂2)2

M4
+

(∂2)3

M6
+ . . .

)
φ2

= − g

M

[
∞∑
k=0

(
∂2

M2

)k]
φ2 . (2.111)

As anticipated, we choose as expansion parameter

ε ≡ 1

M2
(2.112)

which in this case is dimensionful.
Once computed some useful terms

∂φ2 = 2φ∂φ

∂2φ2 = 2(∂φ)2 + 2φ∂2φ

∂∂2φ2 = 6∂φ∂2φ+ 2φ∂∂2φ

∂2∂2φ2 = 6(∂2φ)2 + 8∂φ · ∂∂2φ+ 2φ∂2∂2φ

(where · has been used to denote the contraction between two omitted Lorentz
indices), we can deal with

∂2χ = − g

M

(
∂2 +

(∂2)2

M2
+

(∂2)3

M4
+

(∂2)4

M6
+ . . .

)
φ2 (2.113)

and, �nally, integrate out χ from our Lagrangian

L = L |χ=0 +
1

2
χ∂2χ− 1

2
M2χ2 − gMφ2χ (2.114)

� where an integration by parts has been performed.
The result, up to total derivatives and approximated to order ε4, will be

L =L |χ=0 +
1

2
g2φ4

+
1

2
εg2φ2∂2φ2 +

1

2
ε2g2(∂2φ2)2

+
1

2
ε3g2∂2φ2∂2∂2φ2 +O(ε4)

=− 1

2
(∂φ)2 − 1

2
m2φ2 +

1

2
g2φ4

− 2εg2φ2(∂φ)2 + 2ε2g2
[
(∂φ)4 + φ2(∂2φ)2 + 2φ(∂φ)2∂2φ

]
− 2ε3g2

[
φ(∂φ)2∂2∂2φ− φ2(∂∂2φ)2

+ 4(∂φ)2∂φ · ∂∂2φ− 4φ∂2φ∂φ · ∂∂2φ
]

+O(ε4) . (2.115)
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This Lagrangian is in the form (2.102)18, with n = 3. In particular

� V0 = −1
2
m2φ2 + 1

2
g2φ4;

� V1 = −2g2φ2(∂φ)2;

� V2 = 2g2
[
(∂φ)4 + φ2(∂2φ)2 + 2φ(∂φ)2∂2φ

]
;

� V3 = −2g2
[
φ(∂φ)2∂ − φ2∂∂2φ+ 4(∂φ)2∂φ− 4φ∂2φ∂φ

]
· ∂∂2φ.

Notice that V3 contains a term ∝ ∂2∂2φ that shouln't exist, since from
(2.102) we deduce that V3 is supposed to depend only on φ, ∂αφ, ∂α∂βφ and
∂α∂β∂γφ. It is possible to remove this dependence integrating by parts the
Lagrangian to obtain just �rst, second and third derivatives of the �eld, but
such an operation would lead to a problematic uncontracted second deriva-
tive ∂µ∂νφ that does not appear in any kind of constraint � as we already
said � since the equations of motion restrict the form of the second derivative
ones19.
Fortunately, keeping this ε3-four-derivative term does not a�ect the proce-
dure, as we will see in a moment.

From these Vk's we can compute the Wk's through (2.105)

� W0 = ∂V0

∂φ
= −m2φ+ 2g2φ3 ;

� W1 = ∂V1

∂φ
− ∂α ∂V1

∂(∂αφ)
= −4g2φ(∂φ)2 + 4g2φ2∂2φ ;

� W2 = ∂V2

∂φ
− ∂α ∂V2

∂(∂αφ)
+ ∂α∂β

∂V2

∂(∂α∂βφ)
;

� W3 = ∂V3

∂φ
− ∂α ∂V3

∂(∂αφ)
+ ∂α∂β

∂V3

∂(∂α∂βφ)
− ∂α∂β∂γ ∂V3

∂(∂α∂β∂γφ)
.

Since in this case we just care about �nding those relations necessary to cure
the higher derivatives in L and we are not interested in computing the most
general secondary constraint, we did not write W2 and W3 explicitely.

Indeed, although the primary constraint

ε
[
∂2φ+ W0 + εW1 + ε2W2

]
= O(ε4) (2.116)

18Here we deal with just one particle, then the a label is useless and, so, suppressed.
19We can move from a ∂µ∂νφ constraint to a ∂2φ one but we cannot do the inverse: if

we are handling a scalar equation we are not allowed to generalise to a tensorial equation
(in this case multiplying by the inverse of the metric).
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depends on the explicit form of W2, there are no terms ∝ ε ∂2φ in our La-
grangian (2.115) (its ε term is healthy, it does not contain higher derivatives),
and then this constraint result useless.

On the contrary, we have � and need to constraint � higher-derivative
terms like

∝ ε2∂2φ

∝ ε3∂2φ

∝ ε3∂∂2φ

∝ ε3∂2∂2φ .

So, as always, we start multiplying the primary constraint by ε2

ε3∂2φ =
(
m2φ− 2g2φ3

)
ε3 +O(ε4) (2.117)

to then di�erentiate once and twice

ε3∂∂2φ =
(
m2∂φ− 6g2φ2∂φ

)
ε3 +O(ε4) (2.118)

ε3∂2∂2φ =
(
m2∂2φ− 12g2φ(∂φ)2 − 6g2φ2∂2φ

)
ε3 +O(ε4) . (2.119)

We eliminate the ε3∂2φ dependence in (2.119) with (2.117) and get

ε3∂2∂2φ =
(
m4φ− 8g2m2φ3 − 12g2φ(∂φ)2 + 12g4φ5

)
ε3 +O(ε4) (2.120)

that, together with (2.118) and (2.117), identi�es Z4,0, Z3,0 and Z2,0 respec-
tively.

The only terms left in L that have to be constrained are those ∝ ε2∂2φ,
thus we have to restart from the primary constraint and multiply it by ε.
The result is

ε2∂2φ =
[
m2φ− 2g2φ3 +

(
4g2φ(∂φ)2 − 4g2φ2∂2φ

)
ε
]
ε2 +O(ε4) (2.121)

which, once used (2.117), become

ε2∂2φ =
[
m2φ− 2g2φ3 +

(
4g2φ(∂φ)2 − 4g2m2φ3 + 8g4φ5

)
ε
]
ε2 +O(ε4) .

(2.122)
The four constraints (2.117), (2.118), (2.120) and (2.122) are all what

we need to eliminate the unphysical degrees of freedom in L : once plugged
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them we obtain the reduced e�ective Lagrangian

LR =− 1

2
(∂φ)2 − 1

2
m2φ2 +

1

2
g2φ4 − 2εg2φ2(∂φ)2

+ 2ε2g2
[
(∂φ)4 +m4φ4 + 2m2φ2(∂φ)2

− 4g2φ4(∂φ)2 − 4g2m2φ6 + 4g4φ8
]

− 2ε3g2
[
4m2(∂φ)4 − 4m4φ2(∂φ)2 + 8g2m4φ6

+ 12g2m2φ4(∂φ)2 − 44g2φ2(∂φ)4 − 32g4m2φ8

− 72g4φ6(∂φ)2 + 32g6φ10
]

+O(ε4) , (2.123)

that only depends on φ and ∂φ.
To introduce the next application to Supersymmetry we want to group

terms in this Lagrangian in a more convenient form. We can indeed observe
that here the JLM procedure led simply to:

� a non-standard kinetic term

− 1

2
f(φ)(∂φ)2 (2.124)

with

f(φ) =1 + 4εg2φ2 − 8ε2
(
m2g2φ2 − 2g4φ4

)
− 16ε3

(
g2m4φ2 − 3g4m2φ4 + 18g6φ6

)
(2.125)

� a squared-kinetic term20

h(φ)(∂φ)4 (2.126)

with
h(φ) = 2ε2g2 − 8ε3

(
g2m2 − 11g4φ2

)
(2.127)

� a modi�ed potential

Vnew(φ) =

Vold(φ)︷ ︸︸ ︷
−1

2
m2φ2 +

1

2
g2φ4 +2ε2

(
g2m4φ4 − 4g4m2φ6 + 4g6φ8

)
− 16ε3

(
g4m4φ6 − 4g6m2φ8 + 4g8φ10

)
. (2.128)

Of course the explicit expression for these terms depends on the original 2-
real-�eld model but this structure is similar to the one we will �nd in the
SUSY case.

20We have to remember that this kind of terms are usually generated by an e�ective
�eld theory treatment, when a more general theory is approximated to a lowest order.
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It is worth noticing that we are substituing repeatedly equations of mo-
tion into the Lagrangian in this Classical Field Theory framework: even if
this method is not uncommon in Field Theory � it is often used to integrate
out undesired �elds � its application is not without subtelties. Jaén, Llosa
and Molina themselves describe a method that is di�erent, also condemning
the substitution into the Lagrangian we performed so far.
One could argue that the fact that this habit is of common use does not
justify it, and we agree: in general the EOM must not be used to convert the
Lagrangian. By the way, in Field Theory, one could perform a �eld rede�ni-
tion that result equivalent to substitute the equations of motion for the �eld
in question.
Following the path of [6], we brie�y review such a trick that allow us to close
this chapter peacefully.

Let us consider the Lagrangian (2.102) for just one �eld:

L =− 1

2
(∂ϕ)2 +

n∑
k=0

εkVk(ϕ, ∂ϕ, . . . , ∂
(k)ϕ) +O(εn+1)

=

L1︷ ︸︸ ︷
−1

2
(∂ϕ)2 + V0(ϕ)︸ ︷︷ ︸

L0

+εV1(ϕ, ∂ϕ) +ε2V2(ϕ, ∂ϕ, ∂(2)ϕ)

︸ ︷︷ ︸
L2

+ . . .

+ εnVn(ϕ, ∂ϕ, . . . , ∂(n)ϕ) +O(εn+1) . (2.129)

We write21

L = Ln−1 + εnTn∂
2ϕ+ εnṼn +O(εn+1) (2.130)

with Ṽn ≡ Vn − Tn∂2ϕ and Tn arbitrary function of ϕ and its derivatives.
It is now possible to perform the set of transformations on the �eld con�gu-
ration space

ϕ 7−→ ϕ− εnTn
∂ϕ 7−→ ∂ϕ− εn∂Tn

...

∂(n−1)ϕ 7−→ ∂(n−1)ϕ− εn∂(n−1)Tn (2.131)

21Notice that from a term like f(ϕ, ∂ϕ, . . . )∂(j)ϕ can be always extracted a term ∝ ∂2ϕ
integrating repeatedly by parts. The only case in which it is impossible is when f = const,
but in that case we'd just have an eliminable total derivative.
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for which the Lagrangian transforms as

L 7−→ Ln−1 + εnTn∂
2ϕ+ εnṼn − εnTn

(
∂L0

∂ϕ
− ∂α

∂L0

∂(∂αϕ)

)
+O(εn+1)

= Ln−1 + εnTn∂
2ϕ+ εnṼn − εnTn

(
∂V0

∂ϕ
+ ∂2ϕ

)
+O(εn+1)

= Ln−1 + εnṼn − εnTn
∂V0

∂ϕ
+O(εn+1) . (2.132)

We removed an undesired εn∂2ϕ piece but a lot of more unwanted terms still
remain in Ṽn and Tn. To get rid of them, we integrate by parts to make
other εn∂2ϕ terms emerge and again we rede�ne the �eld � in the same way
� to remove them. This �rst step leads to

L = Ln−1 + εnZ̃n(ϕ, ∂ϕ) : (2.133)

we only have removed the higher derivatives from the last term.
Notice that, even if better motivated, this step did the same operation per-
formed by the JLM algorithm when removing pieces ∝ εn. In fact, removing
just the second derivative (moreover one by one, since a term like (∂2ϕ)2

must be treated twice with this method, including in T a ∂2ϕ in the �rst
move) and then integrating by parts to �nd other ∂2ϕ terms, is equivalent
to taking derivatives of the 0-th order EOM and substituing all at once.
Moreover, as we emphasised, this was the �rst � and easier � step.

Now we have to look at the n−2 order, so we take (2.133) and we expand
it as

L = Ln−2 + εn−1Vn−1 + εnZ̃n . (2.134)

As before, we write it as

L = Ln−2 + εn−1Tn−1∂
2ϕ+ εn−1Ṽn−1 + εnZ̃n (2.135)

and perform the set of transformations

∂(j)ϕ 7−→ ∂(j)ϕ− εn−1∂(j)Tn−1 j = 0, 1, . . . , n− 2 (2.136)

36



that transform the Lagrangian as

L 7−→ Ln−2 + εn−1Tn−1∂
2ϕ+ εn−1Ṽn−1 + εnZ̃n

− εn−1Tn−1

(
∂L1

∂ϕ
− ∂α

∂L1

∂(∂αϕ)

)
=Ln−2 + εn−1Tn−1∂

2ϕ+ εn−1Ṽn−1 + εnZ̃n

− εn−1Tn−1

(
∂V0

∂ϕ
+
∂V1

∂ϕ
+ ∂2ϕ− ε∂α

∂V1

∂(∂αϕ)

)
=Ln−2 + εn−1Ṽn−1 + εnZ̃n − εn−1Tn−1

∂V0

∂ϕ
− εn−1Tn−1

∂V1

∂ϕ

+ εnTn−1∂α
∂V1

∂(∂αϕ)
. (2.137)

Like in the �rst step, here we still potentially have a lot of undesired εn−1-
higher-derivatives terms that will be cured iterating the integration by parts
and the �eld transformation, but this is no longer our only problem: another
εn term arose and one cannot be sure of its health, indeed terms

∝ εn∂2ϕ ⊂ εnTn−1∂α
∂V1

∂(∂αϕ)

in general.
Thus we already have to stop to re-treat the εn∂2ϕ before taking care

of εn−1 pieces, extending even more the process that will last until the �nal
higher derivative has been removed.
In addition, notice how in these �rst two steps the equations of motions that
appear multiplied by the ε power and the T function are very simple: as the
power of ε lowers throughout the procedure those become more and more
complex. In general we'll have

εn−jTn−j

(
j∑

k=0

(−1)k∂α∂β · · · ∂κ
∂Lj

∂(∂α∂β · · · ∂κϕ)

)
(2.138)

for j ≥ 1.

The equivalence of these methods is crystal clear for the n = 1 case, which
is the one of interest for the next application and the one exposed in [6] (to
which one can refer for greater clarity).
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Chapter 3

Higher-Derivatives in SUSY

This chapter is going to apply the JLM procedure to a (quite) general
Higher-Derivative Supersymmetric Chiral Lagrangian with the aim of cur-
ing every extra degree of freedom. The latter will come both from higher-
derivative terms of the scalar component and derivatives of the auxiliary
�eld.
This chapter is structured as follows: �rstly we'll present the notation and
the conventions we are going to use in a preliminary section, then we'll ded-
icate a section to a class of higher-derivative operators in SUSY, and �nally
we'll see an application of the method aimed at recovering the DBI action in
a supersymmetric theory.

3.1 Notation and Conventions

For both, notation and conventions, we will follow [4].

We label with latin beginning-alphabet letters the Lorentz indices.
The metric is the mostly-plus one, as already anticipated,

ηab =


−1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1

 = ηab (3.1)

and it is always the one used to raise, lower or contract two Lorentz indices.
Spinorial indices are instead labelled by greek beginning-alphabet letters,

dotted or undotted for the conjugate or the fundamental representation.
To raise, lower or contract two spinorial indices the antisymmetric tensors

εαβ = εα̇β̇ =

(
0 −1

+1 0

)
= −εαβ = −εα̇β̇ (3.2)
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are used.
For the undotted and dotted indices there are the opposite contraction's
conventions

α
↘

α

α̇
↗

α̇
(3.3)

and an inversion in this order implies the appearence of a minus sign.

Grassmann variables have to be introduced, as usual, in a SUSY context.
Here we report some relations that involve these variables and the generalized
Pauli matrices1, which are often used in computations with super�elds

θαθβ = −1

2
εαβθθ , θ̄α̇θ̄β̇ =

1

2
εα̇β̇ θ̄θ̄ (3.4)

θσaθ̄θσbθ̄ = −1

2
θθθ̄θ̄ηab (3.5)

Tr{σaσ̄b} ≡ (σa)αα̇(σ̄b)α̇α = −2ηab . (3.6)

Last but not least we write down the superspace derivatives2

DA ≡ (∂a, Dα, D̄
α̇) , (3.7)

where

Dα = +
∂

∂θα
+ i(σaθ̄)α

∂

∂xa

D̄α̇ =− ∂

∂θ̄α̇
− i(θσa)α̇

∂

∂xa
(3.8)

are the SUSY covariant derivatives, and

{Dα, D̄α̇} = −2i(σa)αα̇∂a (3.9)

{Dα, Dβ} = {D̄α̇, D̄β̇} = [Dα, ∂b] =
[
D̄α̇, ∂b

]
= 0 (3.10)

their graded algebra.
We stress that, even with this compact notation, D2 is always meant to be
appropriately contracted only in its spinorial indices � that is D2 ≡ DαDα

� and of course the same is true for D̄2 for which, however, there is no
ambiguity.

1They are (σa)αα̇ = (1, ~σ) and (σ̄a)α̇α = (−1, ~σ) = εαβεα̇β̇(σa)ββ̇ .
2This compact notation is still identical to the [4]'s one.
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We will only use chiral and antichiral super�elds � that is, super�elds
satisfying the relations

D̄α̇Φ = 0 , DαΦ̄ = 0 (3.11)

� but we also want to treat just bosonic degrees of freedom, mainly to fa-
cilitate calculations but also because only these seem interesting from the
in�ationary point of view we will see in the application.
For this reason, as of common use, we simply neglect the fermionic �eld that
naturally would appear in these super�elds, practically setting it to zero from
the very beginning.

As result, once expanded considering the conventions just written, chiral
and antichiral super�elds assume the simpli�ed form

Φ = A+ iθσaθ̄∂aA+
1

4
θθθ̄θ̄∂2A+ θθF (3.12)

Φ̄ = A∗ − iθσaθ̄∂aA∗ +
1

4
θθθ̄θ̄∂2A∗ + θ̄θ̄F ∗ (3.13)

with both A(x) and F (x) complex �elds.

Having said that, we are ready to study the possible higher-derivative
operators (for a certain mass dimension) in such a supersymmetric theory.

3.2 Higher-Derivatives Treatment in SUSY

We start from the most general Supersymmetric Chiral Lagrangian

L =

∫
d4θK(Φ, Φ̄;DAΦ, DBΦ̄;DADBΦ, DADBΦ̄; . . . )

+

[∫
d2θW (Φ; ∂aΦ; D̄2Φ̄; ∂a∂bΦ; . . . ) + h.c.

]
(3.14)

where the Kähler potential K is a real function that includes an arbitrary
number of (properly contracted) superspace derivatives of the chiral super-
�eld and of its antichiral partner, whereas the superpotentialW is a holomor-
phic function that contains just chiral super�elds, like Φ and its spacetime
derivatives but also D̄2Φ̄ and its spacetime derivatives.

In order to obtain3 [L] = 4, we must have [K] = 2 and [W ] = 3 and
then every operator with a di�erent mass dimension must be multiplied by a

3} = 1, c = 1.
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dimensioful constant. In the case of relevant operators such a constant will
be multiplied to raise the mass-dimension, whereas in the case of irrelevant
operators it will be divided and will assume the role of our perturbative ex-
pansion parameter ε.
To have a clearer dicussion we are going to classify the components of K and
W in terms of their mass dimension, often choosing particular cases to adapt
to our next application. A more general treatment is left for a future work.

Before we choose a particular form for our Kähler potential and for our
superpotential, we want to better study the way they depend on their (very
general) arguments (see (3.14)). The path is similar to the one followed in
[7], the only di�erence is that we do not discard spacetime derivatives of su-
per�elds imposing the condition ∂aΦ = ∂aΦ̄ = 0: this was aimed at rejecting
every purely kinetic higher-derivative operator4. The details on the process
of simpli�cation can be found in Appendix B.

The Kähler potential turns out to depend on

K = K(Φ, Φ̄;DαΦ, D̄α̇Φ̄;D2Φ, D̄2Φ̄;

∂aΦ, ∂aΦ̄;Dα∂aΦ, D̄α̇∂aΦ̄;D2∂aΦ, D̄
2∂aΦ̄; . . .

∂(n)Φ, ∂(n)Φ̄;Dα∂
(n)Φ, D̄α̇∂

(n)Φ̄;D2∂(n)Φ, D̄2∂(n)Φ̄; . . . )

≡ K(X(i), X̄(j);Y (k), Ȳ (l);Z(p), Z̄(q)) ∀i, j, k, l, p, q ∈ N0 (3.15)

with

� X(i) ≡ ∂(i)Φ, that increases the mass dimension of the operator it
multiplies by a factor of (i+ 1);

� Y (k) ≡ Dα∂
(k)Φ, that increases the mass dimension of the operator it

multiplies by a factor of (k + 3
2
);

� Z(p) ≡ D2∂(p)Φ, that increases the mass dimension of the operator it
multiplies by a factor of (p+ 2).

and ∂(0)Φ ≡ Φ.
Obviously in the last notation hidden Lorentz indices have to be prop-

erly contracted � as well as the spinorial ones � in the explicit expression ofK.

4Such operators bring indeed unavoidable (and undesirable in [7]'s treatment) deriva-
tives of the auxiliary �eld.
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The superpotential's dependence instead results to be of a much easier
form5:

W = W (X(i)) ∀i ∈ N0 . (3.16)

We point out that, even if it is completely equivalent, we prefer to use SUSY
covariant derivatives rather than spacetime derivatives and then the latter
will always be substituted using (3.9) repeatedly.

Before we proceed, let us make some assumptions on the form of the Käh-
ler potential. We choose to not consider relevant operators in K but only
marginal or irrelevant ones.
In particular, as marginal part we take the Kähler potential of the most
general supersymmetric renormalizable Lagrangian involving just chiral su-
per�elds,

ΦΦ̄ , (3.17)

while for the irrelevant part we decide to restrict the treatment to operators
that could reproduce terms like (∂A)2(∂A∗)2, as these are interesting for
the study of higher-derivative scalar �eld theories of the form P (X, φ) (with
X ≡ −(∂φ)2/2 linked to our chiral super�eld through A ≡ 1√

2
(φ+ iξ))6.

In the case of superpotential, our choice is of keeping a quite general form,
just requiring that the dependence stops at Φ (∂(i)Φ with only i = 0).

With these assumptions we are able to apply the JLM method and to see
its e�ects in a supersymmetric situation that will also �nd application in the
next section.
Of course one can in principle apply the method to any kind of Lagrangian

L =

∫
d4θK(X(i), X̄(j);Y (k), Ȳ (l);Z(p), Z̄(q)) +

[∫
d2θW (X(i)) + h.c.

]
(3.18)

once explicit forms for K and W are assumed. We decided to treat this
particular class of operators because, about this, two schools of thought were
dominant: one (cf. [7, 8, 9, 10, 11, 12]) says that only the operators whose
component expansion do not contain derivatives of the auxiliary �eld F or
undesired higher-derivatives in A have to be considered in building super-
symmetric P (X, φ) theories; whereas the other (cf. [13, 14]) states that one
can consider every such operator provided that each F -derivative or too-high
derivative of A is neglected in an EFT treatment.
Both paths have cons: the �rst leads, in practice, to consider just a particular

5Once considered a particular form for W . For details see Appendix B.
6See [8].
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operator in the set, discarding the rest and signi�cantly restricting the free-
dom we would otherwise have in constructing new theories7; while the second
gives not a satisfactory explanation for rejecting the (clearly) unphysical and
unwanted terms.
In a certain way our method hybridizes the two approaches since it starts by
considering all the operators � as the second one does � to then obtain an
expression with only physical terms � as the �rst one has � by consistently
treating every undesired term in an EFT approach.

So, to recover a term like (∂A)2(∂A∗)2 we have to introduce two more
�elds and two more spacetime derivatives with respect to the ones we count
in the component expansion8

ΦΦ̄ |θθθ̄θ̄= −|∂A|2 + |F |2 . (3.19)

From the anticommutation relation (3.9) we deduce that we have to consider
two chiral super�elds Φ, their two antichiral correspectives Φ̄, and four SUSY
covariant derivatives, two D's and two D̄'s9.

As stated in [8], there are only 8 operators that can be assembled with
these elements, they are

O1 = |Φ|2D2ΦD̄2Φ̄ (3.20)

O2 = ΦD2Φ
(
D̄Φ̄
)2

(3.21)

Ō2 = Φ̄D̄2Φ̄ (DΦ)2 (3.22)

O3 = |Φ|2DD̄Φ̄D̄DΦ (3.23)

O4 = Φ2DD̄Φ̄DD̄Φ̄ (3.24)

Ō4 = Φ̄2D̄DΦD̄DΦ (3.25)

O5 = ΦDΦD̄Φ̄DD̄Φ̄ (3.26)

Ō5 = Φ̄D̄Φ̄DΦD̄DΦ (3.27)

although not all are "independent": the last four can be related to the �rst
four using integration by parts10.

7A proof of this fact is the unavoidable correction to the potential one obtains, reason
that pushes to consider also the operators containing unphysical degrees of freedom in
[13].

8We use the notation |∂A|2 ≡ ∂mA∂mA∗.
9Indeed in (∂A)2(∂A∗)2 we have two A's that must come from two Φ's, two A∗'s that

must come from two Φ̄'s, and two extra derivatives that can come from two D's and two
D̄'s through the anticommutation relations (3.9).

10Using this linear dependence (that we are also going to analyse better) we will ignore
O5 and Ō5 from now on.
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Another operator deserves mentioning, even if also this can be expressed
as a linear combination of the previous ones. It is

O0 = DΦDΦD̄Φ̄D̄Φ̄ (3.28)

and is of great importance for its explicit expression. It is indeed quite special
since it has no ∂F terms and, considering only bosonic �elds, has just the
θθθ̄θ̄ component.

These operators have to be added to the Kähler potential, that now is
only composed by ΦΦ̄, of mass dimension 2. They all have mass dimension
6, and then a dimensionful parameter of mass dimension -4 is required: let us
call it M−4

s . It is straightforward, for the �eld component expansion we are
going to write, to choose ε = M−2

s , similarly to what we did in the previous
E�ective Field Theory application.

As we are adding these terms to K, just the θθθ̄θ̄ component of these
operators survives in the Lagrangian.
They are (up to total derivatives)

O0

∣∣
θθθ̄θ̄

=16(∂A)2(∂A∗)2 − 32|F |2|∂A|2 + 16|F |4 (3.29)

O1

∣∣
θθθ̄θ̄

=16|F |4 + 16|A|2|∂2A|2 + 8
(
|A|2F∂2F ∗ + |A|2F ∗∂2F

)
+ 24

(
|F |2A∂2A∗ + |F |2A∗∂2A

)
+ 16 (AF ∗∂A∗ · ∂F + A∗F∂A · ∂F ∗) (3.30)

O2

∣∣
θθθ̄θ̄

=− 16|F |4 − 32|F |2A∂2A∗ − 32AF ∗∂A∗ · ∂F
+ 16A∂2A(∂A∗)2 (3.31)

Ō2

∣∣
θθθ̄θ̄

=− 16|F |4 − 32|F |2A∗∂2A− 32A∗F∂A · ∂F ∗

+ 16A∗∂2A∗(∂A)2 (3.32)

O3

∣∣
θθθ̄θ̄

=8(∂A)2(∂A∗)2 − 16|F |2|∂A|2 + 8|A|2|∂2A|2

+ 4
(
|A|2F∂2F ∗ + |A|2F ∗∂2F

)
− 4

(
|F |2A∂2A∗ + |F |2A∗∂2A

)
− 8 (AF ∗∂A∗ · ∂F + A∗F∂A · ∂F ∗)
+ 8

(
A∂2A(∂A∗)2 + A∗∂2A∗(∂A)2

)
(3.33)

O4

∣∣
θθθ̄θ̄

=− 16(∂A)2(∂A∗)2 + 32|F |2|∂A|2 + 32|F |2A∂2A∗

+ 32AF ∗∂A∗ · ∂F − 16A∂2A(∂A∗)2 (3.34)

Ō4

∣∣
θθθ̄θ̄

=− 16(∂A)2(∂A∗)2 + 32|F |2|∂A|2 + 32|F |2A∗∂2A

+ 32A∗F∂A · ∂F ∗ − 16A∗∂2A∗(∂A)2 (3.35)

where these particular components have been chosen for convenience, but
integrating by parts also other terms can be obtained and, of course, used
throughout the procedure.
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To work better with these operators it is useful to de�ne

A ≡(∂A)2(∂A∗)2 (3.36)

B ≡|F |2|∂A|2 (3.37)

C ≡|F |4 (3.38)

D ≡|A|2|∂2A|2 (3.39)

E ≡|A|2F∂2F ∗ + |A|2F ∗∂2F (3.40)

F ≡|F |2A∂2A∗ + |F |2A∗∂2A (3.41)

G ≡AF ∗∂A∗ · ∂F + A∗F∂A · ∂F ∗ (3.42)

H ≡A∂2A(∂A∗)2 + A∗∂2A∗(∂A)2 (3.43)

which can be used to write

Õ0 ≡
O0

16

∣∣∣∣
θθθ̄θ̄

=A− 2B + C (3.44)

Õ1 ≡
O1

8

∣∣∣∣
θθθ̄θ̄

=2C + 2D + E + 3F + 2G (3.45)

Õ3 ≡
O3

4

∣∣∣∣
θθθ̄θ̄

=2A− 4B + 2D + E− F− 2G + 2H (3.46)

Õ2 ≡
O2 + Ō2

16

∣∣∣∣
θθθ̄θ̄

=− 2C− 2F− 2G + H (3.47)

Õ4 ≡
O4 + Ō4

16

∣∣∣∣
θθθ̄θ̄

=− 2A + 4B + 2F + 2G− H (3.48)

and thus to check easily the linear dependence with the Gauss algorithm.
In order to use it, we consider each term (3.36)-(3.43) as an independent
direction with the aim of writing the operators (3.44)-(3.48) as vectors:

A B C D E F G H

Õ0 = ( 1 -2 1 0 0 0 0 0 )

Õ1 = ( 0 0 2 2 1 3 2 0 )

Õ2 = ( 0 0 -2 0 0 -2 -2 1 )

Õ3 = ( 2 -4 0 2 1 -1 -2 2 )

Õ4 = ( -2 4 0 0 0 2 2 -1 )

From here we can notice that some components appear just in �xed com-
binations. For this reason we de�ne

Λ ≡ A− 2B , ∆ ≡ 2D + E (3.49)

to simplify the preceding scheme to
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Λ C ∆ F G H

Õ0 = ( 1 1 0 0 0 0 )

Õ1 = ( 0 2 1 3 2 0 )

Õ2 = ( 0 -2 0 -2 -2 1 )

Õ3 = ( 2 0 1 -1 -2 2 )

Õ4 = ( -2 0 0 2 2 -1 )

Now we can apply the Gauss algorithm to these �ve "vectors"11
1 1 0 0 0 0
0 2 1 3 2 0
0 -2 0 -2 -2 1
2 0 1 -1 -2 2
-2 0 0 2 2 -1

 −→


1 1 0 0 0 0
0 2 0 2 2 -1
0 0 1 1 0 1
0 0 0 0 0 0
0 0 0 0 0 0


�nding that only three of them are linearly independent12. In particular, the
operators chosen � corresponding to the three non-null rows above � are

Õ0, −Õ2, Õ1 + Õ2.

The most general Lagrangian will thus assume the form

L =|Φ|2 |θθθ̄θ̄ + (W (Φ) |θθ +h.c.) + ε2
{
αÕ0 + β(−Õ2) + γ(Õ1 + Õ2)

}
=− |∂A|2 + |F |2 +

∂W

∂A
F +

∂W̄

∂A∗
F ∗

+ ε2 {αΛ + (α + 2β) C + γ∆ + (2β + γ) F + 2βG− (β − γ) H}

=− |∂A|2 + |F |2 +
∂W

∂A
F +

∂W̄

∂A∗
F ∗ + ε2

{
α(∂A)2(∂A∗)2 − 2α|F |2|∂A|2

+ (α + 2β) |F |4 + 2γ|A|2|∂2A|2 + γ
(
|A|2F∂2F ∗ + |A|2F ∗∂2F

)
+ (2β + γ)

(
|F |2A∂2A∗ + |F |2A∗∂2A

)
+ 2β (AF ∗∂A∗ · ∂F + A∗F∂A · ∂F ∗)
− (β − γ)

(
A∂2A(∂A∗)2 + A∗∂2A∗(∂A)2

) }
(3.50)

with α, β, γ linear combination constants.

We almost have the desired Lagrangian we want to work with. The last
term we have to consider to apply the JLM procedure comes from the as-
sumption that such a Lagrangian contains the higher-order corrections to the

11The moves are: (4)-2(1), (5)+2(1); (3)+(2), (4)+(2), (5)+(3); (4)-2(3); (2)-(3).
12E.g. Õ0 = − 1

2 Õ1 − Õ2 + 1
2 Õ3.
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minimal chiral (3.19) one. It may seem trivial but it's not: we are demanding
that (3.50) is not built by simply adding operators � as, instead, we just did
� but rather that such a Lagrangian describes the same system with a better
accuracy, considering perturbative corrections of order ε2. In this regard,
(3.50) is viewed as an approximation to order ε3 of a putative UV theory.
This assumption leads in practice to add the necessary O(ε3) in L and allow
us to treat this Lagrangian with the methods just reviewed.

Having said that, we have to pay close attention to F . In fact whereas in
the 0-th order case it was clearly an auxiliary �eld, in this ε3 approximation
doubts about its nature may arises.

Terms ∝ ∂F or ∝ ∂2F make us indeed question the nature of F (and
F ∗), and wonder if it is still the auxiliary �eld.

A hint comes from thinking to the dynamical �eld, which has two physical
degrees of freedom (four in this case since it is complex13) at the lowest order.
Indeed if for A we have to constrain every derivative higher than one in L,
since they are all �ctitious d.o.f.'s, for an auxiliary �eld as F , that has just
one degree of freedom (two in this case since it is complex) at the 0-th order,
we should constrain any kind of derivative, including a �rst derivative. Proof
of this is the possibility of performing �eld rede�nitions � as we showed at
the end of Chapter 2 � to eliminate the undesired F -derivative terms. Again,
these �eld rede�nitions are equivalent to applying the JLM procedure but
since they do not have exactly the same form of the ones previously seen we
write them down explicitly.

Taking into account the general Lagrangian (3.50), we can notice that it
is in the form

L ⊃

L0︷ ︸︸ ︷
|F |2 +

∂W

∂A
F +

∂W̄

∂A∗
F ∗+ε2Υ∗ ·∂F + ε2Υ ·∂F ∗+ ε2T ∗ ·∂2F + ε2T ·∂2F ∗ .

(3.51)
T and Υ are functions of the �elds and the latter hides a Lorentz index: they
explicitly read as

T = γ|A|2F
T ∗ = γ|A|2F ∗

Υa = 2βA∗F∂aA

Υ∗a = 2βAF ∗∂aA
∗ .

13The four d.o.f.'s for a complex dynamical �eld are the two real �elds that compose it
and by its �rst derivative.
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With the �elds rede�nitions14

F −→ F + ε2∂Υ ; F ∗ −→ F ∗ + ε2∂Υ∗ (3.52)

L transforms as

L −→L+ ε2∂Υ
∂L0

∂F
+ ε2∂Υ∗

∂L0

∂F ∗
+O(ε3)

=L+ ε2∂Υ

[
F ∗ +

∂W

∂A

]
+ ε2∂Υ∗

[
F +

∂W̄

∂A∗

]
+O(ε3)

=L0 − ε2Υ∗ · ∂ ∂W̄
∂A∗

− ε2Υ · ∂∂W
∂A

+ ε2T ∗ · ∂2F + ε2T · ∂2F ∗ + . . .

(3.53)

where in the last line integration by parts has been used. We see that this �eld
rede�nition has been equivalent to substituing ∂F (extra degree of freedom)
with F 's 0th-order EOM di�erentiated.

Before showing the equivalence between this method and the JLM pro-
cedure let's �nish this treatment by performing the second �eld rede�nition:

F −→ F − ε2∂2T ; F ∗ −→ F ∗ − ε2∂2T ∗ . (3.54)

This transformation leads to the new Lagrangian

L −→L− ε2∂2T
∂L0

∂F
− ε2∂2T ∗

∂L0

∂F ∗

=L − ε2∂2T

[
F ∗ +

∂W

∂A

]
− ε2∂2T ∗

[
F +

∂W̄

∂A∗

]
=L0 − ε2Υ∗ · ∂ ∂W̄

∂A∗
− ε2Υ · ∂∂W

∂A
− ε2T ∗∂2 ∂W̄

∂A∗
− ε2T · ∂2∂W

∂A
+ . . . ,

(3.55)

again equivalent to substitute ∂2F with F 's 0th-order EOM di�erentiated
(twice).

The application of the JLM procedure to F and F ∗ requires the usual
comparison with the Lagrangian in (2.102), so we identify:

� No 0-th order kinetic terms;

� V0 = |F |2 + ∂W
∂A
F + ∂W̄

∂A∗F
∗;

14∂Υ ≡ ∂aΥa.
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� V1 = 0;

� V2 = −2α|F |2|∂A|2 + (α + 2β) |F |4 + γ (|A|2F∂2F ∗ + |A|2F ∗∂2F ) +
(2β + γ) (|F |2A∂2A∗ + |F |2A∗∂2A)+2β (AF ∗∂A∗ · ∂F + A∗F∂A · ∂F ∗).

We point out that, in principle, one has to treat F and F ∗ separately since
they are di�erent degrees of freedom. The symmetry between the two in
(3.36)-(3.43) � and, more in general, in every Lagrangian term � lead us to
treat them together with a sort of compact notation for the Vk's

15. Fortu-
nately, treating them in parallel does not cause any trouble.

So �rst we have to �nd the primary constraints for F and F ∗. We then
write their equations of motion

∂L
∂F
− ∂a

∂L
∂(∂aF )

+ ∂a∂b
∂L

∂(∂a∂bF )
= 0 (3.56)

∂L
∂F ∗

− ∂a
∂L

∂(∂aF ∗)
+ ∂a∂b

∂L
∂(∂a∂bF ∗)

= 0 (3.57)

that read as16

WF,0+ε2WF,2 = O(ε3) (3.58)

WF ∗,0+ε2WF ∗,2 = O(ε3) (3.59)

or, explicitely,

F ∗ +
∂W

∂A
+ ε2

{
(−2α− 2β + 2γ)F ∗|∂A|2 + 2 (α + 2β)F ∗|F |2

+ 2γ|A|2∂2F ∗ + 2γAF ∗∂2A∗ + (2β + 2γ)A∗F ∗∂2A

+ (2β + 2γ)A∗∂A · ∂F ∗ − (2β − 2γ)A∂A∗ · ∂F ∗
}

= O(ε3)
(3.60)

F +
∂W̄

∂A∗
+ ε2

{
(−2α− 2β + 2γ)F |∂A|2 + 2(α + 2β)F |F |2

+ 2γ|A|2∂2F + 2γA∗F∂2A+ (2β + 2γ)AF∂2A∗

+ (2β + 2γ)A∂A∗ · ∂F − (2β − 2γ)A∗∂A · ∂F
}

= O(ε3) .
(3.61)

15A further observation can be made. Keeping the auxiliary �eld complex is impossible
to separate VF,0 and VF∗,0: they are linked together by the term |F |2. To obtain exactly
the form (2.102) we have to write F in terms of two real �elds (as we will do for A) and
not doing that should force us to take care of F and, once �nished, of F ∗ (or viceversa).
As said above, fortunately, treating them in parallel does not cause any trouble.

16Contrary to VF,0 and VF∗,0 that were impossible to write separately (see the previous
note), WF,0/2 and WF∗,0/2 have sense and can be written, since the subscript speci�es the
�eld derivative that automatically decouple the term |F |2.
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At this point we should clarify a subtlety about the notation. We started
using ∂W

∂A
as a short notation for

dW

dΦ

∣∣∣∣
Φ=A

, (3.62)

in fact it is equivalent to di�erentiate W with respect to A once substi-
tuted the latter every time Φ appears into the superpotential: ∂W (A)/∂A =
dW (A)/dA. The same considerations can be done for its hermitian conju-
gate: we'll have

dW̄

dΦ̄

∣∣∣∣
Φ̄=A∗

=
dW (Φ̄)

dΦ̄

∣∣∣∣
Φ̄=A∗

(3.63)

written as ∂W̄/∂A∗ ≡ ∂W (A∗)/∂A∗ = dW (A∗)/dA∗. Having said that it is
clear how17

∂W (A∗)

∂A∗
=

(
∂W (A)

∂A

)∗
(3.64)

simply because W depends only on Φ and thus its hermitian conjugate will
be the same function but with Φ̄ replacing Φ. This still holds when one
performs the substitutions Φ→ A, Φ̄→ A∗.

The primary constraints for F and F ∗ are obtained by multiplying
(3.60) and (3.61) by ε as always. They are

ε

[
F ∗ +

(
∂W

∂A

)]
= O(ε3) (3.65)

ε

[
F +

(
∂W

∂A

)∗]
= O(ε3) . (3.66)

From these, we can �nd the full set of secondary constraints. They indeed
are just the equations of motion (3.60) and (3.61) (and their derivatives) with
terms depending on the undesired d.o.f.'s, ∂F and ∂2F , removed.

So �rst of all we need constraints for

ε2∂aF , ε2∂aF
∗

ε2∂2F , ε2∂2F ∗ ,

thus

17From now on the explicit dependence of the superpotential will be omitted: it can be
understood from the derivative.
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(i) We multiply (3.65) and (3.66) by ε

ε2
[
F ∗ +

(
∂W

∂A

)]
= O(ε3) (3.67)

ε2
[
F +

(
∂W

∂A

)∗]
= O(ε3) ; (3.68)

(ii) We di�erentiate (3.67) and (3.68)

ε2
[
∂aF

∗ +

(
∂2W

∂A2

)
∂aA

]
= O(ε3) (3.69)

ε2
[
∂aF +

(
∂2W

∂A2

)∗
∂aA

∗
]

= O(ε3) ; (3.70)

(iii) We di�erentiate (3.69) and (3.70)

ε2
[
∂2F ∗ +

(
∂3W

∂A3

)
(∂A)2 +

(
∂2W

∂A2

)
∂2A

]
= O(ε3) (3.71)

ε2
[
∂2F +

(
∂3W

∂A3

)∗
(∂A∗)2 +

(
∂2W

∂A2

)∗
∂2A∗

]
= O(ε3) . (3.72)

Plugging these last four equations in (3.60) and (3.61) gives us the two
healthy equations of motion for F and F ∗

F ∗ +
∂W

∂A
+ ε2

{
(−2α− 2β + 2γ)F ∗|∂A|2 + 2 (α+ 2β)F ∗|F |2

− 2γ|A|2
[
∂3W

∂A3
(∂A)2 +

∂2W

∂A2
∂2A

]
+ 2γAF ∗∂2A∗ + (2β + 2γ)A∗F ∗∂2A

− (2β + 2γ)A∗
∂2W

∂A2
(∂A)2

+ (2β − 2γ)A
∂2W

∂A2
|∂A|2

}
= O(ε3) (3.73)

F +

(
∂W

∂A

)∗
+ ε2

{
(−2α− 2β + 2γ)F |∂A|2 + 2(α+ 2β)F |F |2

− 2γ|A|2
[(

∂3W

∂A3

)∗
(∂A∗)2 +

(
∂2W

∂A2

)∗
∂2A∗

]
+ 2γA∗F∂2A+ (2β + 2γ)AF∂2A∗

− (2β + 2γ)A

(
∂2W

∂A2

)∗
(∂A∗)2

+ (2β − 2γ)A∗
(
∂2W

∂A2

)∗
|∂A|2

}
= O(ε3) . (3.74)
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Now we can complete the task: we impose the secondary constraints
(3.69)-(3.72) on our system plugging them in L. The result will be exactly
the Lagrangian (3.55), that in turn has as equations of motion (for F and
F ∗) (3.73) and (3.74).

The equivalence between the two methods is then crystal clear. The main
advantage of the JLM procedure is that it is easier to apply sistematically.
The �rst procedure can be seen as a justi�cation for the second one.

Notice that we left with a Lagrangian containing just F , F ∗ but not
their derivatives: this means that now they are undoubtedly non-propagating
auxiliary �elds. We now wonder if we can integrate them out by using their
EOM's as we were doing in the 0th-order case. We converted every term
containing some sort of space-time derivative of the �eld F into a certain
function of the �eld A and its derivatives, obtaining a Lagrangian density in
the form

L ⊃ f |F |2 + gF + ḡF ∗ + k|F |4 , (3.75)

with k = α + 2β constant and f and g functions of A, A∗, ∂A, ∂A∗, ∂2A,
∂2A∗.

We can safely integrate out a �eld by substituing its equations of motion
when the part of the action where it appears is in a Gaussian form. Here we
see that this condition is assured when k = 018 and that otherwise there is
some ambiguity as to what the correct quantum theory should be (see [9]).
Remaining in a context of Classical Field Theory we won't impose k = 0 and
we will substitute the auxiliary �eld's equations of motion, as one always
does. We will analyze the e�ect of this choice in our last application to the
DBI Action in the next section.

Whereas the replacement of ∂F and ∂2F (and their complex conjugates)
has been straightforward, the substitution of F and F ∗ deserves a little obser-
vation. Regarding the part of the Lagrangian multiplied by ε2 it is obvious
that the e�ect of inserting (3.73) and (3.74) is the same of using the 0-th
order EOM

F ∗ = −
(
∂W

∂A

)
, F = −

(
∂W

∂A

)∗
, (3.76)

18It can be seen more easily by performing multiple integrations by parts in order to
get f = 1. Indeed every term multiplied by ε2 in the explicit expression of f contains
always some sort of A's derivative that we can then move to |F |2 to get terms which can
be integrated in g or ḡ.
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but when we have to plug them in the original part

|F |2 +

(
∂W

∂A

)
F +

(
∂W

∂A

)∗
F ∗ (3.77)

one could think that new ε2 terms arise. Actually, a satisfying cancellation
takes place. In order to see it clearly we momentarily de�ne the term between
brackets in (3.73) as X, so that the corresponding term in (3.74) will be X∗.
The equations of motion for F and F ∗ then read as

F ∗ = −
(
∂W

∂A

)
− ε2X +O(ε3) (3.78)

F = −
(
∂W

∂A

)∗
− ε2X∗ +O(ε3) (3.79)

and once plugged in (3.77) lead to∣∣∣∣∂W∂A
∣∣∣∣2 + ε2

(
∂W

∂A

)
X∗ + ε2

(
∂W

∂A

)∗
X +O(ε3)︸ ︷︷ ︸

from |F |2

−
∣∣∣∣∂W∂A

∣∣∣∣2 − ε2(∂W∂A
)
X∗ +O(ε3)︸ ︷︷ ︸

from (∂W/∂A)F

−
∣∣∣∣∂W∂A

∣∣∣∣2 − ε2(∂W∂A
)∗

X +O(ε3)︸ ︷︷ ︸
from (∂W/∂A)∗F ∗

= −
∣∣∣∣∂W∂A

∣∣∣∣2 +O(ε3)

that is the usual term remaining.
As for the minimal chiral model, we de�ne

V (A,A∗) ≡
∣∣∣∣∂W∂A

∣∣∣∣2 (3.80)

which is the scalar potential of the 0-th order theory.

Even if we could �nally be ready to move on and treat the complex scalar
�eld A, one last observation is worthy of interest. Indeed comparing the
application of the JLM method to a dynamical �eld with its version for an
auxiliary �eld, we notice that the most general secondary constraints in the
�rst case are always built to constrain the unphysical degrees of freedom:
they are always associated to the second (or higher) derivative of the �eld
by its equation of motion. An auxiliary �eld, instead, does not have such a
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term in its EOM and thus can be eliminated exploiting the approximation
to the desired order. In a certain sense the procedure is telling us that the
auxiliary �eld, as any of its derivatives, is unphysical. In fact if we blindly
apply it to F we could say that (3.67) and (3.68) are constraints as much
as (3.69)-(3.72), with the di�erence that these last seem to constrain extra
degrees of freedom � not expected in a theory described by just one chiral
super�eld Φ � whereas the former contain only F and F ∗. Furthermore, still
following the method to the letter, the healthy equations of motion (3.73)
and (3.74) (with terms ∝ ε2F and ∝ ε2F ∗ eliminated by (3.67) and (3.68))
should be themselves constraints, in particular the generators of the most
complete set of secondary constraints. Their substitution in L should then
result straightforward and not require further justi�cations.

So, in summary,

1) As in the usual "0-th order" case, we want to eliminiate F ;

2) In order to do that, we can follow two main paths: one involves the
removal of the extra degrees of freedom via �eld rede�nitions together
with a use of the healthy equations of motion, whereas the other sees
the systematic application of the JLM procedure;

3) Both have the same core, that is substituing EOM's in L taking ad-
vantage of the O(ε3) (key of the method developed by Jaén, Llosa and
Molina)19;

4) Both give the same result, equivalent to the usual procedure one always
performs in order to integrate out a �eld, that is substituing repeatedly
its equations of motion and their derivatives in the Lagrangian until it
completely disappears because of the approximation order considered.

Now it is the turn of A. The Lagrangian after having integrated out F
becomes

L =− |∂A|2 − V + ε2
{
α(∂A)2(∂A∗)2 − 2αV |∂A|2

+ (α + 2β)V 2 + 2γ|A|2|∂2A|2

+ γ|A|2
(
VA∂

2A+ VAA(∂A)2 + VA∗∂2A∗ + VA∗A∗(∂A∗)2
)

+ (2β + γ)V
(
A∂2A∗ + A∗∂2A

)
+ 2β

(
AVA∗(∂A∗)2 + A∗VA(∂A)2

)
− (β − γ)

(
A∂2A(∂A∗)2 + A∗∂2A∗(∂A)2

) }
+O(ε3) (3.81)

19The �rst path seems to be, nevertheless, better justi�ed, not involving the direct
substitution of EOM's into a Lagrangian.
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where the notation

VA ≡
∂V

∂A
(3.82)

VA∗ ≡ ∂V

∂A∗
=

(
∂V

∂A

)∗
(3.83)

VAA ≡
∂2V

∂A2
(3.84)

VA∗A∗ ≡ ∂2V

∂A∗2
=

(
∂2V

∂A2

)∗
(3.85)

have been used once noticed that

WAAWA∗ = VA (3.86)

WAWA∗A∗ = VA∗ (3.87)

WAAAWA∗ = VAA (3.88)

WAWA∗A∗A∗ = VA∗A∗ . (3.89)

We can make the usual comparison with the Lagrangian in (2.102). We
identify:

� The standard kinetic term for a complex scalar �eld, −|∂A|2 (com-

pletely equivalent to the one in (2.102) if one expands A =
1√
2

(φ+ iξ)

with φ and ξ real �elds);

� V0 = −V (A,A∗);

� V1 = 0;

� V2 = V2(A,A∗; ∂A, ∂A∗; ∂2A, ∂2A∗), including all the terms between
brackets.

Following the same steps, we start from the equations of motion for A
and A∗20

∂2A∗ − VA + ε2{. . . } = O(ε3) (3.90)

∂2A− VA∗ + ε2{. . . } = O(ε3) (3.91)

thanks to which one can derive the primary constraints

ε
[
∂2A∗ − VA

]
= O(ε3) (3.92)

ε
[
∂2A− VA∗

]
= O(ε3) . (3.93)

20The content of {. . . } comes from (3.81), in particular from the piece multiplied by ε2.
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Now the only secondary constraint we need is the one necessary for the
cancellation of the undesired ε2∂2A , ε2∂2A∗ terms in (3.81), obtained by just
multiplying (3.92) and (3.93) by ε. Notice that the absence of V1 enables us
to apply a very simpli�ed form of the JLM method that, in practice, consists
in just substituting the 0-th order EOM for A and A∗ into L.

The �nal result is the reduced Lagrangian

L =− |∂A|2 − V + ε2
{
α(∂A)2(∂A∗)2 − 2αV |∂A|2

+
(
γ|A|2VAA + (β + γ)A∗VA

)
(∂A)2

+
(
γ|A|2VA∗A∗ + (β + γ)AVA∗

)
(∂A∗)2

+ (α + 2β)V 2 + 4γ|A|2|VA|2 + (2β + γ)V (AVA + A∗VA∗)
}

+O(ε3)
(3.94)

that is a Lagrangian depending just on A, A∗ and their �rst derivatives.
It contains:

� A non-standard kinetic term

−f(A,A∗)|∂A|2 +ε2
{ (
γ|A|2VAA + (β + γ)A∗VA

)
(∂A)2 + c.c.

}
(3.95)

with
f(A,A∗) = 1 + 2αε2V (A,A∗) (3.96)

� The desired higher-derivative term

αε2(∂A)2(∂A∗)2 (3.97)

� A modi�ed potential

V (A,A∗)+ε2
{

(α + 2β)V 2 +4γ|A|2|VA|2 +(2β + γ)V (AVA + A∗VA∗)
}

(3.98)

Each higher-derivative term has been eliminated through the constraints
arose naturally from the system, leaving a Lagrangian with no unphysical
degrees of freedom. We have recovered the squared-kinetic term demanded
and varying the three free coe�cients one can obtain di�erent theories.

Of course not every kind of model is reachable tuning α, β and γ, in
the next section for example we will have to impose some conditions for the
scalar potential in order to obtain the desired theory.
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3.3 Application: the DBI Action

In this section our aim is to recover the Dirac-Born-Infeld Action for a
D7-brane in a 10-dimensional space. We focus on a compacti�cation where
the internal (compact) manifold is a toroidal orbifold. For such a situation
we have ([12, 13, 15, 16, 17, 18, 19, 20])

SDBI =

∫
dVM1,3 M

4
s×

×

[
−
(

1 +
1

M4
s

V (φ, ξ)

)√
det

(
gmn +

1

M4
s

(∂mφ∂nφ+ ∂mξ∂nξ)

)
+ 1

]
(3.99)

with φ and ξ the two real bosonic �elds (brane's transverse coordinates) and
Ms the string mass.

De�ning

ε ≡ 1

M4
s

(3.100)

and expanding21, one �nds

LDBI = − (1 + εV ) |∂A|2 − V (A,A∗) +
1

2
ε(∂A)2(∂A∗)2 +O(ε2) , (3.101)

where the two real �elds have been assembled in the complex scalar �eld

A ≡ 1

2
(φ+ iξ) . (3.102)

In what follows we will try to provide a supersymmetric description of the
DBI action by adjusting the three free coe�cients in (3.94). In other words
we will try to identify the linear combination of higher-derivative operators
that leads to the DBI action.

First of all we have to impose

ε , ε2 (3.103)

so that we can immediately recognize the similarities between (3.101) and
the �rst line of (3.94). Comparing we see that

α =
1

2
. (3.104)

21See Appendix C.

57



Furthermore we would like for every other term (in (3.94)) to disappear just
by �xing the other two constants β and γ. Unfortunately, this does not
happen and a correction to the scalar potential always arises, in general.

The only way to match the DBI action is to constrain the potential.
Requiring every unwanted term of (3.101) to vanish, indeed, leaves us with
the system of partial di�erential equations for the scalar potential

(
1
2

+ 2β
)
V 2 + 4γ|A|2|VA|2 + (2β + γ)V (AVA + A∗VA∗) = 0

γ|A|2VAA + (β + γ)A∗VA = 0

γ|A|2VA∗A∗ + (β + γ)AVA∗ = 0

(3.105)

where the �rst row follows from demanding a vanishing correction to the
scalar potential whereas the other two removes the undesired corrections to
the kinetic term. We must have a potential satisfying these three equations
if we want to obtain the DBI Lagrangian at the desired approximation order.

For a more convenient treatment we now use (3.102) to work with real
scalar �elds. The system becomes

(
1
2

+ 2β
)
V 2 + γ (φ2 + ξ2)

(
V 2
φ + V 2

ξ

)
+ (2β + γ)V (φVφ + ξVξ) = 0

γ (φ2 + ξ2) (Vφφ − Vξξ) + (β + γ) (φVφ − ξVξ) = 0

2γ (φ2 + ξ2)Vφξ + (β + γ) (ξVφ + φVξ) = 0

(3.106)
with V = V (φ, ξ).

As in [20], we simplify further assuming that

ξ = 0 , Vξ = 0 (3.107)

� that is, suppressing a degree of freedom. The system reduces to{ (
1
2

+ 2β
)
V 2 + γφ2V 2

φ + (2β + γ)V φVφ = 0

γφ2Vφφ + (β + γ)φVφ = 0
(3.108)

with V = V (φ).
The second row can now be solved exactly. The result is the monomial22

V = v0φ
−β
γ (3.109)

that, once plugged in the �rst equation, gives the relation between β and γ

2β2 − 2γβ − γ = 0 . (3.110)

22To be fair an integration constant should be added to V here but, once plugged back
in the other equation of the system, it turns out to be zero.
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So we found that if the point (β, γ) belongs to the hyperbole (3.110),
depicted in Fig. 3.1, and the potential has the form (3.109), then the La-
grangian (3.94) assumes the form (3.101) as desired.

Figure 3.1: The hyperbole 2β2 − 2γβ − γ = 0.

A more interesting point of view can also be considered. Indeed, since
a monomial potential for the in�aton �eld is often taken into account (cf.
[5, 20]), we can change perspective and look at the parametric solution of
the system (3.108): we can say that we are interested in a scalar potential of
the form

V = v0φ
n , (3.111)

with n ∈ R+, and therefore that we want to �nd β and γ in terms of n.
Computing, it turns out that

β = − 1

2(n+ 1)
(3.112)

γ =
1

2n(n+ 1)
. (3.113)

We can observe that

(i) n = −β
γ
, as it must be from the comparison between (3.109) and

(3.111);
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(ii) A potential of interest for in�ation models � as the monomial one is �
solves exactly the system (this is absolutely non-trivial);

(iii) Since we have suppressed ξ, we now have that

A = A∗ = 1√
2
φ ⇒ φ = 2

1
2A = 2

1
2A∗

and thus we are able to derive a superpotential that can reproduce the
desired scalar potential. We �rst consider that

V = v0φ
n =

(
v

1
2

0 φ
n
2

)(
v

1
2

0 φ
n
2

)
=
(

2
n
4 v

1
2

0 A
n
2

)(
2
n
4 v

1
2

0 A
∗ n2
)

(3.114)

and then that

V =
dW

dA

dW

dA∗
(3.115)

to �nally get
dW

dA
= 2

n
4 v

1
2

0 A
n
2 . (3.116)

This simple di�erential equation has the solution

W (A) =
2
n
4

+1v
1
2

0

n+ 2
A

n
2

+1 (3.117)

which allow us to recover the superpotential

W (Φ) =
2
n
4

+1v
1
2

0

n+ 2
Φ
n
2

+1 (3.118)

that, once suppressed the second degree of freedom of A23, gives in fact
the right potential in φ.

To conclude, the combination of operators

1

2
Õ0 +

1

2n(n+ 1)
Õ1 +

1

2n
Õ2 (3.119)

in the Kähler potential and the superpotential (3.118) (with ξ = 0) is what we
were looking for in order to write the DBI Lagrangian24 in a Supersymmetric
setup.

23The scalar potential generated by such a superpotential would be

V (φ, ξ) = v0
(
φ2 + ξ2

)n
2 .

24To be precise, it is the �rst order approximation of the DBI Lagrangian.
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To �nd a better form for such Lagrangian we decide to use Õ3 istead of
Õ2 in the linear combination, choosing the highest number of operators with
the factor |Φ|2 (it is just an aestethic choice).

Then, the explicit form for the supersymmetric Lagrangian that allow us
to recover the DBI Lagrangian at its �rst-order expansion is given by

K =|Φ|2

+ ε

[
n− 1

32n
DΦDΦD̄Φ̄D̄Φ̄− n− 1

32n(n+ 1)
|Φ|2D2ΦD̄2Φ̄ +

1

16n
|Φ|2DD̄Φ̄D̄DΦ

]
+O(ε3/2) (3.120)

and

W =
2
n
4

+1v
1
2

0

n+ 2
Φ
n
2

+1 , (3.121)

with ξ = ψ = 0.

Notice that, as announced at the very beginning of the previous section,

K = K(Φ, Φ̄;DαΦDαΦ, D̄α̇Φ̄D̄α̇Φ̄;D2Φ, D̄2Φ̄; ∂aΦ, ∂aΦ̄) (3.122)

and
W = W (Φ) , (3.123)

where the ∂Φ, ∂Φ̄ dependence in K can be seen by using (3.9) in O3:

O3 = |Φ|2DD̄Φ̄D̄DΦ = −8|Φ|2∂Φ · ∂Φ̄ . (3.124)

We observe that the Kähler potential contains both O0, used in [7, 8, 9,
10, 11, 12], and O3, used in [13, 14], another proof that this method takes
into account the two ways of approaching the problem.

As anticipated we see what happens if we want to exclude the term∝ |F |4.
Such a term, as we said, modi�es the Gaussian form of the F 's path integral
and therefore one would like to �nd an alternative description of the DBI
Action that does not include this expression. A simple and non-invasive way
to remove it is to set β = −1

2
α = −1

4
. Doing this excludes such a term from

the very beginning of the discussion without interfering with the procedure.
Imposing this new relation �xes n and thus all the three linear combina-

tion constants. The values will be

α =
1

2
, β = −1

4
, γ =

1

4
(3.125)

n = 1 (3.126)
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The scalar potential can then only be

V = v0φ (3.127)

if we choose a linear combination of operators such that terms ∝ |F |4 disap-
pear. The problem is thus still solvable with the monomial potential ansatz,
even if we lost the freedom for the exponent n.
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Chapter 4

Conclusions

In this thesis we have studied systems with higher-derivative terms both
in mechanics and in �eld theory. We have reviewed how those terms may
lead to new and problematic degrees of freedom often called Ostrogradski's
ghosts. These degrees of freedom in a quantum theory lead to negative norm
states and/or an absence of a lower energy state and therefore to instability.

We have illustrated how to treat these higher-derivative terms in e�ective
(�eld) theories via the application of the method of perturbative constraints,
providing two illustrative examples in mechanics and (scalar) �eld theory.
These examples have showed clearly how the core of the JLM procedure has
not been changed in the generalization from mechanics to �eld theory: in
both cases it concerns the insertion of the leading order EOM into higher-
derivative terms.

Finally we have seen how the procedure can be used also in SUSY as a
systematic method to cure unphysical degrees of freedom generated by higher
derivatives. In previous works several of supersymmetric operators have been
discarded because of their undesired terms like higher-than-one derivatives
of dynamical �elds or derivatives of the auxiliary �eld: thanks to this way
of approaching such systems these terms are no longer a problem. We point
out that a similar treatment of auxiliary �elds was performed by Weinberg
in a context of gravity corrections in in�aton models (see [21]).

For a particular class of operators we showed how the Lagrangian had
to be constrained and we obtained its generic expression with only desirable
zero-th and �rst derivatives of the dynamical �eld:

L = −1

2
f(φ)(∂φ)2 + h(φ)(∂φ)4 − Vnew(φ) (4.1)

(with the �eld ξ suppressed to facilitate the comparison with the application
of the JLM method to Classical Field Theory).
In the expression above we have
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f(φ) = 1 + ε2
{

2αV − (β + γ)φVφ − γφ2Vφφ
}

h(φ) =
1

4
αε2

Vnew(φ) = V (φ)− ε2
{

(α + 2β)V 2 + (2β + γ)φV Vφ + γφ2V 2
φ

}
where the free constants α, β and γ clearly show the general nature of the
discussion.

Once achieved this remarkable result of curing a generic supersymmetric
Lagrangian � that can be used as a path�nder to handle every kind of SUSY
Higher-Derivative Operator � we sought a way to recover the DBI Action
in this �at superspace framework. What we found is that a tuning of the
three free parameters is not enough and that we also have to constrain the
potential. Surprisingly a monomial potential satis�es the requirements and
its power �xes the constants. This means that if we plugged such a mono-
mial potential � as we would have done � in L, we would have obtained a
Lagrangian traceable to the DBI one just by �xing α, β and γ.

It is important here to notice how exactly three parameters are necessary
to obtain the desired result: the previous treatments of the problem couldn't
reach the hoped outcome since the latter is reachable only considering the
widest range of operators and not only one of them1.

In future it would be interesting to apply this procedure to a more gen-
eral Lagrangian, considering wider classes of operators. In particular being
able to identify every operator up to a certain desired mass dimension and
applying the method as it's been done in this paper would be the best. Other
possible extensions could be of considering also spinorial �elds when treating
chiral multiplets (and not setting them to zero from the very beginning) or
of taking into account vector multiplets, whose higher-derivative operators
contain ∂D terms.
Another important goal would be the one of bringing this procedure from
�at superspace (SUSY) to curved superspace (SUGRA), since a lot applica-
tions can be found in in�ationary contexts and these obviously require the
presence of gravity.

In conclusion, the generalized JLM method derived above can pave the
way for the construction of new supersymmetric in�ation theories and, hope-
fully, can try to �ll the gap between Supergravity and String Theory via
higher and higher order corrections.

1In [7, 8, 9, 10, 11, 12] the only operator used was O0 whereas in [13, 14] it was O3.
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Appendix A

Treatment of ε-polynomials

We notice that from (2.92) descends the EOM(
1 + 2ε2

)
ÿ = −

(
1 + ε2

) (
ḡ + Ω2y

)
+O(ε3) (A.1)

that apparently disagrees with (2.74)

ÿ = −
(
1− ε2

) (
ḡ + Ω2y

)
+O(ε3) . (A.2)

To make them coincide we have to think to the algebraic nature of the system,
indeed we are dealing with the commutative ring of polynomials in ε with
real coe�cients1, R[ε], where the role of the zero element is played by O(εn+1)
(in this case O(ε3)).

Since we are handling a ring, the division is forbidden: once set the
perturbative order the multiplicative inverse does not exist and so we cannot
divide (A.1) by 1+2ε2 to get rid of the undesired term in front of ÿ. What we
can do is �nding a polynomial in ε that, multiplied to 1+2ε2, gives 1+O(ε3).
It turns out that such polynomial is simply

1− 2ε2 (A.3)

which also gives the correct 1− ε2 +O(ε3) when multiplied to 1 + ε2.

Another way of recovering (A.2) from (A.1) consists in digging out that
constraint for ε2ÿ we discovered thoughout the procedure and plugging it in
the l.h.s. of (A.1).
That constraint is (2.72). To facilitate the check we rewrite it here

ε2ÿ = −
(
g − Ω2`+ Ω2y

)
ε2 +O(ε3) . (A.4)

1In the present case of equations of motion, the real coe�cients are those ∝ ḡ+ Ω2y or
∝ ÿ.
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As expected, inserting this expression in (A.1) and moving properly to
the r.h.s. gives the correct result.

This treatment must be applied everytime we are tempted to divide by
an ε-polynomial.
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Appendix B

Details on Kähler potential and

Superpotential dependence

Kähler potential

We started by considering the general form

K = K(Φ, Φ̄;DAΦ, DBΦ̄;DADBΦ, DADBΦ̄; . . . ) (B.1)

for our Kähler potential. We are going to analyse every term in this depen-
dence focusing only on Φ, Φ̄ will be its "barred-mirror". D's graded algebra
and chiral �elds' de�nition are constantly used.

The �rst term is the trivial DAΦ, it contains

∂aΦ

DαΦ

Then we have DADBΦ, that contains

∂a∂bΦ

∂aDβΦ = Dβ∂aΦ

DαDβΦ =
1

2
εαβD

2Φ

D̄α̇DβΦ = −2i(σa)βα̇∂aΦ ⊂ DAΦ

The boxed term does not bring a new dependence since it belongs to the
previous case. From now on every boxed expression signals a repetition and,
so, a super�uous term.
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The next one is DADBDCΦ, with

∂a∂b∂cΦ

∂a∂bDγΦ = ∂aDγ∂bΦ = Dγ∂a∂bΦ = . . .

∂aDβDγΦ =
1

2
εβγ∂aD

2Φ =
1

2
εβγD

2∂aΦ

∂aD̄β̇DγΦ = −2i(σb)γβ̇∂a∂bΦ ⊂ DADBΦ

D̄α̇DβDγΦ = −2i(σa)βα̇∂aDγΦ + 2i(σa)γα̇∂aDβΦ ⊂ DADBΦ

DαD̄β̇DγΦ = −2i(σb)γβ̇Dα∂bΦ ⊂ DADBΦ

Even if we can already see the underlying scheme we perform the last com-
putation for more clarity.

Considering DADBDCDDΦ, we obtain

∂a∂b∂c∂dΦ

∂a∂b∂cDδΦ = ∂a∂bDδ∂cΦ = ∂aDδ∂b∂cΦ = . . .

∂a∂bDγDδΦ =
1

2
εγδ∂a∂bD

2Φ =
1

2
εγδD

2∂a∂bΦ

∂a∂bD̄γ̇DδΦ = −2i(σc)δγ̇∂a∂b∂cΦ ⊂ DADBDCΦ

∂aD̄β̇DγDδΦ = −2i(σb)γβ̇∂a∂bDδΦ + 2i(σb)δβ̇∂a∂bDγΦ ⊂ DADBDCΦ

∂aDβD̄γ̇DδΦ = −2i(σc)δγ̇∂aDβ∂cΦ ⊂ DADBDCΦ

D̄α̇D̄β̇DγDδΦ = 4(σa)δα̇(σb)γβ̇∂a∂bΦ− 4(σa)γα̇(σb)δβ̇∂a∂bΦ ⊂ DADBΦ

D̄α̇DβD̄γ̇DδΦ = 4(σa)βα̇(σb)δγ̇∂a∂bΦ ⊂ DADBΦ

It is clear how increasing by one the number of superspace derivatives acting
on Φ leads exactly to 3 new terms, moreover always of the same form. In
fact, we can group terms in the six groups (once considered also the Φ̄ case)

∂(i)Φ Dα∂
(k)Φ D2∂(p)Φ ∂(j)Φ̄ D̄α̇∂

(l)Φ̄ D̄2∂(q)Φ̄

Φ DαΦ D2Φ Φ̄ D̄α̇Φ̄ D̄2Φ̄
∂aΦ Dα∂aΦ D2∂aΦ ∂aΦ̄ D̄α̇∂aΦ̄ D̄2∂aΦ̄
∂a∂bΦ Dα∂a∂bΦ D2∂a∂bΦ ∂a∂bΦ̄ D̄α̇∂a∂bΦ̄ D̄2∂a∂bΦ̄
∂a∂b∂cΦ Dα∂a∂b∂cΦ D2∂a∂b∂cΦ ∂a∂b∂cΦ̄ D̄α̇∂a∂b∂cΦ̄ D̄2∂a∂b∂cΦ̄

...
...

...
...

...
...
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where colors indicate the original membership to the class characterized by
a certain number of superspace derivatives.

Thus the equation (3.15) has been proven.

Superpotential

As regards the Superpotential, we make an assumption similar to the one
considered in [7], that is a W which is a power series of Φ, D̄2Φ̄ and their
derivatives. An arbitrary term in this series is of the form (i, k, l, q ∈ N0)(

∂(i)Φ
)k (

D̄2∂(q)Φ̄
)l

= D̄2
((
∂(i)Φ

)k (
D̄2∂(q)Φ̄

)l−1
∂(q)Φ̄

)
(B.2)

since derivatives of a chiral (antichiral) super�eld are still chiral (antichiral)
super�elds.

Using the identity∫
d4xd2θD̄2f(x, θ, θ̄) = −4

∫
d4xd4θf(x, θ, θ̄) , (B.3)

with f and arbitrary super�eld, we notice that the dependence of W on
D̄2∂(q)Φ̄ can be entirely absorbed into K.

Thus we obtained that a Superpotential, sum of terms like (B.2), depends
just on Φ and on its derivatives, proving the equation (3.16).
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Appendix C

Details on DBI Lagrangian

expansion

In order to �nd (3.101) we have to expand the determinant under the
square root in (3.99). First we take the case for matrices to then generalize
to tensors.
We start by considering a square N ×N matrix A and computing (cf. [22])1

det (1 + A) = exp
{

Tr [log (1 + A)]
}

= exp

{
Tr

[
∞∑
p=1

(−1)p−1

p
Ap

]}

= exp

{ ∞∑
p=1

(−1)p−1

p
Tr [Ap]

}

=
∞∑
q=0

1

q!

(
∞∑
p=1

(−1)p−1

p
Tr [Ap]

)q

≡
∞∑
q=0

1

q!
Xq (C.1)

with

X =
∞∑
p=1

(−1)p−1

p
Tr [Ap] . (C.2)

Since we want to have 1 + A close to the identity 1, we should �nd a
consistent way to truncate these series above.

11+A has to be nonsingular.
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A great help comes from the properties of the trace of a matrix, indeed
we know that if λi (i = 1, . . . , N) are the eigenvalues of A, then

Tr [Ap] =
N∑
i=1

λpi (C.3)

and so, once de�ned
ε ≡ max

1≤i≤N
|λi| (C.4)

and considered (realistically) a dimension N = O(1)2, we'll have

Tr [Ap] = O(εp) . (C.5)

Now we notice that having 1 + A close to the identity 1 implies a small A,
thus

λi � 1 ∀ i (C.6)

and, more importantly,
ε� 1 . (C.7)

Thanks to this last relation we can consider ε as our expansion parameter
and in terms of it we will apply the truncations.

So, approximating to ε4, we get

X = Tr
[
A
]
− 1

2
Tr
[
A2
]

+
1

3
Tr
[
A3
]

+O(ε4)

X2 = Tr2
[
A
]
− Tr

[
A
]

Tr
[
A2
]

+O(ε4)

X3 = Tr3
[
A
]

+O(ε4) (C.8)

that can be used in (C.1) to obtain

det (1 + A) = 1 + Tr
[
A
]

+
1

2

{
Tr2
[
A
]
− Tr

[
A2
]}

+
1

6

{
Tr3
[
A
]
− 3 Tr

[
A
]

Tr
[
A2
]

+ 2 Tr
[
A3
]}

+O(ε4)

(C.9)

We can �nally switch to our case. The generalization from matrices to
(0, 2)-tensors can be done by thinking on how we multiply3 two tensors of this

2In our case N = 4.
3The multiplication is not part of the permitted operations between two tensors. With

this term we denote the contraction (2-3,4-5) of the tensorial product Ag−1B, both allowed
operations.
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kind (i.e., in our situation, what is intended when we write A2 or a generic
power An) and on the properties of the identity matrix.
Two (0, 2)-tensors A and B � of components Amn and Bmn � are multiplied
(see note) through the inverse of the metric, the (2, 0)-tensor of components
gmn:

(A ·B)mn = Amkg
klBln . (C.10)

The pursuit of an identity 1 for these kind of tensors passes through the
properties of the former, indeed from

� 1 ·A = A · 1 = A,

� 1 = 1−1,

we derive the relations that this "identity tensor" must have

� (1)mkg
klAln = Amkg

kl(1)ln = Amn;

� (1)mkg
kl(1)ln = (1)mn,

that is
(1)mkg

kn = δnm (C.11)

with δnm Kronecker delta.
The latter equation identi�es the metric tensor g as the desired identity

tensor 1
(1)mn = gmn (C.12)

and allow us to use (C.9) in the present case of 4

gmn + ε(∂mφ∂nφ+ ∂mξ∂nξ) (C.13)

with
Amn ≡ ε(∂mφ∂nφ+ ∂mξ∂nξ) . (C.14)

4One can take (C.1) as the de�nition of the determinant of a tensor near its associated
metric, as often happens for the generalizations of known functions to unusual domains.
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What we need to perform the computation can be summarized in

Tr
[
A
]

=glkAkl

=ε((∂φ)2 + (∂ξ)2)

=2ε|∂A|2 (C.15)

Tr
[
A2
]

=glkAkrg
rsAsl

=ε2((∂φ)4 + (∂ξ)4 + 2(∂φ · ∂ξ)2))

=2ε2(|∂A|4 + (∂A)2(∂A∗)2) (C.16)

Tr
[
A3
]

=glkAkrg
rsAstg

thAhl

=ε3((∂φ)6 + (∂ξ)6 + 3(∂φ · ∂ξ)2)((∂φ)2 + (∂ξ)2))

=2ε3|∂A|2(|∂A|4 + 3(∂A)2(∂A∗)2) (C.17)

(where (3.102) has repeatedly been used).
Computing now (C.9) gives us a surprising result: the ε3-term disappear

in the determinant expression

det (1 + A) = 1 + 2ε|∂A|2 + ε2(|∂A|4 − (∂A)2(∂A∗)2) +O(ε4) (C.18)

leaving a hole in the expansion.
As last step we have to take the square root. As it's been done so far, we

truncate the expansion to the ε3-order
√

1 + x =1 +
1

2
x− 1

8
x2 +

1

16
x3 + . . .

=1 + ε|∂A|2 − 1

2
ε2(∂A)2(∂A∗)2 +

1

2
ε3|∂A|2(∂A)2(∂A∗)2 +O(ε4)

(C.19)

� where x has been de�ned as

x ≡ 2ε|∂A|2 + ε2(|∂A|4 − (∂A)2(∂A∗)2) . (C.20)

We can �nally expand the DBI Lagrangian in (3.99)

LDBI =ε−1

[
− (1 + εV (φ, ξ))

√
det (gmn + ε(∂mφ∂nφ+ ∂mξ∂nξ)) + 1

]
=ε−1

[
− (1 + εV (A,A∗))×

×
(

1 + ε|∂A|2 − 1

2
ε2(∂A)2(∂A∗)2 +

1

2
ε3|∂A|2(∂A)2(∂A∗)2

)
+ 1

]
+O(ε3)

=− (1 + εV )|∂A|2 − V +
1

2
ε (1 + εV ) (∂A)2(∂A∗)2

− 1

2
ε2|∂A|2(∂A)2(∂A∗)2 +O(ε3) . (C.21)
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This equation agrees with (3.101) if we consider its approximation to order
ε2 instead of ε3.

Thus we succesfully showed the method to expand the DBI action, also
pushing it further to derive the next unused ε2-order. About this latter we
can notice how it brings a correction to the (∂φ)4 term � moreover of the
same form of the one brought from ε to the kinetic term � and introduces a
new (∂φ)6 term.
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