
Alma Mater Studiorum Università di Bologna

MASTER’S DEGREE COURSE IN ADVANCED
AUTOMOTIVE ELECTRONIC ENGINEERING

Master’s Thesis in Compliance Design of Automotive Systems

Virtual ADAS/AD ECU Validation &

Design Scenario Tool in MIL and HIL

environment

Author:

Gianvincenzo Daddabbo

University Supervisor:

Prof. Carlo Concari

Company Supervisor:

Ing. Roberto Rabbeni, PhD

A.Y. 2020/2021

II

Foreword

The thesis that will now be presented will focus on Advanced Driver Assistance Systems

hereinafter referred to as ADAS.

This paper is the result of a curricular internship carried out at the Maserati Innovation

Lab in Modena.

The activity started with supporting the virtual validation team, a multi-ethnic team

operating on a global scale. In particular, the contribution of colleagues from Pomigliano

d’Arco, Detroit and Chennai was fundamental.

Subsequently, the testing and validation phase was carried out on the electronic test

benches with the help of the Maserati validation engineers.

For reasons of industrial confidentiality, it was not possible to insert in this thesis work

several contents and results obtained during the tests. The topics that will be discussed,

therefore, do not provide an exhaustive explanation of what the activity carried out was,

but contain all the essential details for understanding it.

III

IV

Abstract

Autonomous Driving is the main trend that automotive industry is following.

Starting from the first driver assistance systems, nowadays car are growing and growing

in complexity, becoming a four-wheeled supercomputer that is able to perform a lot of

driving actions totally autonomously. This thesis aims to describe what are the func-

tionalities and methodologies that contributes to this amazing progress.

The entire activity is based on a tool for automatic scenario generation. In the first two

chapters the context in which the tool is placed is introduced, highlighting the method

by which is possible to design its input. Subsequently, the most important aspects of

the tool are described, focusing on the graphical interface and the standard it must be

compliant with.

Two entire chapters are devoted to the analysis of fundamental testing methodologies

applied to the tool, while in the last part of the thesis, the final results are presented

and discussed.

V

VI

Summary

Foreword III

Abstract V

List of Figures X

List of Tables XI

Acronyms XIII

Glossary XVII

1 Introduction 1

1.1 Level 2+ of Autonomous Driving . 3

2 Design of Experiment 7

2.1 Orthogonal Array optimization method 10

3 L2+ Automation Tool 13

3.1 Tool Workflow . 13

3.1.1 GUI . 15

3.2 ASAM OpenSCENARIO 1.0 . 16

3.2.1 Contribution to Virtual Validation 19

4 Model in the Loop 21

4.1 Validation with ModelDesk – MotionDesk 21

4.1.1 ASM Model . 24

4.2 Validation with VEOS – ControlDesk . 25

VII

5 Hardware in the Loop 29

5.1 SCALEXIO Real-time system . 29

5.2 VST framework for automatic testing . 31

6 Results and Discussion 35

6.1 Cruise Control Scenario . 37

6.2 Adaptive Cruise Control Scenario . 43

6.3 Highway Assist Scenario . 51

6.4 Highway Assist with fellow Scenario . 55

7 Conclusive Remarks 63

7.1 Further Improvements . 64

Bibliography 65

Acknowledgments 67

VIII

List of Figures

1.1 360° vision achieved thanks to ADAS sensors 2

1.2 The six levels of Autonomous Driving . 3

1.3 L2+ Lane-keeping assist (left) compared with L2 (right) 4

1.4 Higher sensitivity in forward-looking radar gives enhanced performance

and improves Autonomous Emergency Braking (AEB) with Forward Col-

lision Warning (FCW) . 5

1.5 Enhanced SAE Level 2 automated driving systems avoid the cost, com-

plexity and redundancy of Level 3 . 6

3.1 High Level overall tool development process 14

3.2 L2+ Automation Tool GUI . 15

3.3 Scenario example: Double lane changer 17

3.4 XOSC file example. Note the hierarchical structure and the main classes

of objects: Road Networks, Entities, Storyboard 18

3.5 Support of XIL API in the dSPACE toolchain 19

3.6 Virtual validation of networked driver assistance functions on a PC . . . 20

4.1 Example of a maneuver in dSPACE ModelDesk 22

4.2 Example of animation in dSPACE MotionDesk 24

4.3 ASM Models interface in ModelDesk . 25

4.4 VEOS Simulation Platform . 26

4.5 An example of ControlDesk layout . 27

5.1 Scalable SCALEXIO solutions . 31

5.2 Test Platform Studio IDE . 33

5.3 Example plots of a post-processed signal accessible through PortalHIL . . 34

IX

6.1 Top view of the Chelsea Proving Ground 36

6.2 Calibration of the machine learning algorithm 36

6.3 Ego-vehicle trajectory in CC scenario . 37

6.4 Lane detection algorithm stimulated by the CC scenario 39

6.5 Overall lateral deviation profile (CC Scenario) 40

6.6 Overall velocity profiles (CC Scenario) 41

6.7 Lateral deviation signal with its tolerance band (CC Scenario) 42

6.8 Velocity signals with their tolerance band (CC Scenario) 42

6.9 Ego-vehicle trajectory in ACC scenario 43

6.10 The machine learning algorithm detects the fellow ahead and encloses it

in a bounding box . 45

6.11 Overall lateral deviation profile (ACC Scenario) 46

6.12 Fellow distance signals (ACC Scenario) 47

6.13 Velocity and acceleration profiles (ACC Scenario) 48

6.14 Longitudinal acceleration response to an intervention request (ACC Sce-

nario) . 49

6.15 Lateral deviation signal with its tolerance band (ACC Scenario) 50

6.16 Fellow distance profiles with their tolerance band (ACC Scenario) 50

6.17 Ego-vehicle trajectory in HAS scenario 51

6.18 Overall lateral deviation profile (HAS Scenario) 53

6.19 Lateral deviation profiles comparison (HAS Scenario) 54

6.20 Ego-vehicle trajectory in HAS with fellow scenario 55

6.21 The machine learning algorithm detects the truck ahead and encloses it

in a bounding box . 56

6.22 Overall lateral deviation profile (HAS with fellow Scenario) 57

6.23 Overall fellow distance signals (HAS with fellow Scenario) 59

6.24 Zoom on the fellow distance signals . 59

6.25 Lateral deviation profiles comparison (HAS with fellow Scenario) 60

6.26 Fellow distance profiles with their tolerance band (HAS with fellow Scenario) 61

X

List of Tables

2.1 Design Matrix built with 2 factors and 2 levels (-1/+1) 8

2.2 Simple Design Matrix for ACC . 8

2.3 Orthogonal Array with 4 rows (left) and 8 rows (right) 10

6.1 Cruise Control functional targets . 38

6.2 Adaptive Cruise Control functional targets 44

6.3 Highway Assist functional target . 52

6.4 Highway Assist with fellow functional targets 56

7.1 Functional targets compliance . 64

XI

XII

Acronyms

ACC Adaptive Cruise Control.

AD Autonomous Driving.

ADAS Advanced Driver Assistance Systems.

AEB Autonomous Emergency Braking.

API Application Programming Interface.

ASAM Association for Standardization of Automation and Measuring Systems.

ASM Automotive Simulation Models.

BSCM Brake System Control Module.

CADM Central ADAS Decision Module.

CAN Controller Area Network.

CC Cruise Control.

CoG Center of Gravity.

CPG Chelsea Proving Ground.

DIL Driver-in-the-Loop.

DOE Design of Experiment.

ECU Electronic Control Unit.

EPS Electric Power Steering.

XIII

FCW Forward Collision Warning.

FPGA Field Programmable Gate Array.

GUI Graphical User Interface.

HAS Highway Assist System.

HIL Hardware-in-the-Loop.

HMI Human-Machine Interface.

I/O Input/Output.

IC Integrated Circuit.

IDE Integrated Development Environment.

IPC Instrument Panel Cluster.

ISO International Organization for Standardization.

L1 Level 1.

L2 Level 2.

L2+ Level 2 plus.

L3 Level 3.

LED Light Emitting Diode.

LKA Lane Keeping Assistance.

MIL Model-in-the-Loop.

OEM Original Equipment Manufacturer.

OpenDRIVE Open Dynamic Road Information for Vehicle Environment.

PIL Processor-in-the-Loop.

XIV

PWB Plywood Car Buck.

RANSAC RANdom SAmple Consensus.

SAE Society of Automotive Engineers.

SIL Software-in-the-Loop.

SoC System on a chip.

SW Software.

V-ECU Virtual ECU.

VI-CRT VI-CarRealTime.

VST Virtual System for Testing.

XIL Everyhting-in-the-Loop.

XLS Excel Spreadsheet.

XML eXtensible Markup Language.

XODR ASAM OpenDRIVE.

XOSC ASAM OpenSCENARIO.

XV

XVI

Glossary

actuator Component of a machine that is responsible for moving and controlling a

mechanism or system.

algorithm Finite sequence of well-defined instructions.

bounding box Coordinates of the rectangular border that fully encloses an object.

calibration Comparison of measurement values delivered by a device under test with

those of a calibration standard of known accuracy.

chip Small flat piece of semiconductor material, usually silicon, containing electronic

circuits.

controller System supervisor that drives the plant to a desired state.

database Organized collection of data stored and accessed electronically.

ego-vehicle Subject connected and/or automated vehicle, the behaviour of which is of

primary interest in testing, trialling or operational scenarios.

end-to-end Technique that tests the entire software product from beginning to end to

ensure the application flow behaves as expected.

ethernet Family of wired computer networking technologies.

euclidean distance Length of a line segment between two points.

fellow vehicle Vehicles that are part of the traffic that affect the behavior of the ego -

vehicle.

functional target Reference value with which to compare the signals under test.

XVII

hands-OFF Functionality that does not require the driver to hold the steering wheel.

hands-ON Functionality that requires the driver to hold the steering wheel.

host PC Computer or other device connected to a computer network.

interface Shared boundary across which two or more separate components of a com-

puter system exchange information.

machine learning Study of computer algorithms that can improve automatically through

experience and by the use of data.

matlab Abbreviation of ”MATrix LABoratory” is a proprietary multi-paradigm pro-

gramming language and numeric computing environment developed by MathWorks.

offline Not in real-time.

plant Dynamic model of the system to be controlled.

protocol System of rules that allows two or more entities of a communications system

to transmit information via any kind of variation of a physical quantity.

radar Short for Radio Detection and Ranging is a detection system that uses radio

waves to determine the distance, angle, or velocity of objects.

real-time Process that must guarantee response times within a specified time (dead-

line), usually a relatively short time.

redundancy Duplication of critical components or functions of a system with the in-

tention of increasing reliability of the system.

sensor Device that produces an output signal for the purpose of sensing of a physical

phenomenon.

settling time Time elapsed from the application of an ideal instantaneous step input to

the time at which the dynamical system output has entered and remained within

a specified error band.

XVIII

simulink MATLAB-based graphical programming environment for modeling, simulat-

ing and analyzing multidomain dynamical systems.

standard An established norm or requirement for a repeatable technical task which

is applied to a common and repeated use of rules, conditions, guidelines or char-

acteristics for products or related processes and production methods, and related

management systems practices.

stellantis Multinational automotive manufacturing corporation formed in 2021 on the

basis of a 50-50 cross-border merger between the Italian-American conglomerate

Fiat Chrysler Automobiles and the French PSA Group.

time-to-market The length of time it takes from a product being conceived until its

being available for sale.

tolerance Permissible limit or limits of variation in a measured value.

toolchain Set of programming tools.

virtual validation Process of using a virtual model to test, simulate and verify a prod-

uct’s operability before creating a physical prototype.

wiring harness Assembly of electrical cables or wires which transmit signals or elec-

trical power.

workflow Sequence of operations.

XIX

Chapter 1

Introduction

The majority of the vehicle accidents are caused by human error, which can be avoided

with Advanced Driver Assistance Systems (ADAS). The primary role of ADAS is to

prevent deaths and injuries by reducing the number of car accidents and the serious

impact of those that cannot be avoided [1].

Essential safety-critical ADAS applications include:

• Pedestrian detection/avoidance

• Lane departure warning/correction

• Traffic sign recognition

• Automatic emergency braking

• Blind spot detection

Moreover, there are plenty of ADAS applications that just help driver monitoring and

controlling the driving maneuvers and surroundings. The most common are:

• Adaptive Cruise Control

• Adaptive Light Control

• Automatic Parking

• Autonomous Valet Parking

• Driver Drowsiness Detection

1

ADAS solutions are partitioned into various chips, called System on a chip (SoC). These

chips connect sensors to actuators through interfaces and high-performance Electronic

Control Unit (ECU). That means an increasing complexity in the design of hardware

architecture of the vehicles. Self-driving cars use a variety of these applications and

technologies to gain 360-degree vision (bird’s eye view).

Figure 1.1: 360° vision achieved thanks to ADAS sensors

In 2016, as car manufacturers were moving from ADAS toward autonomy, the Society

of Automotive Engineers (SAE) published its “Levels of Driving Automation”. The

goal was to establish common benchmarks as technology progressed toward autonomous

vehicles. These levels go from 0 (no autonomy), to 5 (fully autonomous). Recently a

new concept, Level 2 plus (L2+), has been introduced into these levels [2].

2

Figure 1.2: The six levels of Autonomous Driving

1.1 Level 2+ of Autonomous Driving

Autonomous Driving is the keyword for every automotive engineer today. Examining

the established six Levels of Driving Automation reveals that the biggest gap in those

levels is between Level 2 and Level 3. This is essentially the crossover from driver assist

to some level of autonomy. In the jump between these two levels, liability shifts from the

driver to the system. The enhanced functionality of L2+ can be seen in the Lane Keeping

Assistance (LKA) feature, for example. In L2+ vehicles, map data enables lane-centering

to remain effective even in areas where sensing-only lane centering systems may have a

hard time; for example, in areas without visible lane marks or low-quality lane markings,

such as ramps with sharp turns, junctions, roundabouts. L2+ also supports automatic

lane changes by providing information such as lane-marking types and adjusting the

3

drive speed according to road speed/curvature. This capability is available day or night,

during challenging weather conditions such as fog, low sun, heavy rain, snow or reflecting

roads, despite their impact on the front camera’s visibility.

Figure 1.3: L2+ Lane-keeping assist (left) compared with L2 (right)

In lane-keeping assist and beyond, L2+ does more than simply enhance ADAS capa-

bilities, it delivers some new capabilities altogether. The semi-autonomous features via

ADAS technology, such as hands-off driving, are considered safe under certain driving

conditions, namely highways. While drivers of vehicles equipped with L2+ technology

must always remain alert so they have to be in a position to take over the controls at all

times, the enhanced features allow the convenience of advanced semi-autonomous driving

capabilities to extend to urban areas and more [3].

Another enhanced functionality of the L2+ domain is the Autonomous Emergency

Braking (AEB), a radar-based feature that automatically applies braking torque if there

is a standstill vehicle in front.

4

Figure 1.4: Higher sensitivity in forward-looking radar gives enhanced

performance and improves Autonomous Emergency Braking (AEB) with

Forward Collision Warning (FCW)

In conclusion, developing an L3 solution requires substantially more computing power.

It requires multiple (in some cases triple) redundancies in the vehicle’s sensor suite and

related actuators, along with fusing huge amounts of data from multiple sensors. There

are also limitations related to the Human-Machine Interface (HMI) with L3, as the driver

must come back into the control loop in a very short timeframe. As shown in Figure

1.5, due to the intense competitiveness in the vehicle market, the future trend of the

middle/premium OEMs will consist in progressively introducing ADAS functionalities

by offering ”hands-OFF” driving capabilities in their L2 + vehicles at costs still close to

L1/L2, instead of adding complexity and raise the cost.

5

Figure 1.5: Enhanced SAE Level 2 automated driving systems avoid the

cost, complexity and redundancy of Level 3

6

Chapter 2

Design of Experiment

The second chapter of this thesis aims to provide the basic knowledge necessary to un-

derstand how it was possible to generate the inputs required by the tool. Therefore the

following contents constitute a premise to the next chapter.

A designed experiment is a controlled set of tests designed to model and explore the

relationship between factors and one or more responses. Design of Experiment (DOE)

is defined as a branch of applied statistics that deals with planning, conducting, analyz-

ing, and interpreting controlled tests to evaluate the factors that control the value of a

parameter or group of parameters. DOE is a powerful data collection and analysis tool

that can be used in a variety of experimental situations.

It allows for multiple input factors to be manipulated, determining their effect on

a desired output (response). By manipulating multiple inputs at the same time, DOE

can identify important interactions that may be missed when experimenting with one

factor at a time. All possible combinations can be investigated (full factorial) or only

a portion of the possible combinations (fractional factorial). A strategically planned

and executed experiment may provide a great deal of information about the effect on a

response variable due to one or more factors [4].

A well-performed experiment may provide answers to questions such as:

• What are the key factors in a process?

• At what settings would the process deliver acceptable performance?

• What are the key, main, and interaction effects in the process?

• What settings would bring about less variation in the output?

7

An extremely simple example is the one shown in Table 2.1, called Design Matrix,

where all the possible combinations of levels for each input factors are represented.

Factor A Factor B

Experiment 1 -1 -1

Experiment 2 -1 +1

Experiment 3 +1 -1

Experiment 4 +1 +1

Table 2.1: Design Matrix built with 2 factors and 2 levels (-1/+1)

Table 2.1 can be populated with any variables that might affect the result of exper-

iment. For example, in the case we want to analyze the performance of the Adaptive

Cruise Control according to the cruise speed of the ego vehicle and the road profile, the

Design Matrix becomes the following.

Ego Vehicle Speed Upcoming Road Profile

Experiment 1 50 km/h Straight

Experiment 2 50 km/h Curve Left

Experiment 3 100 km/h Straight

Experiment 4 100 km/h Curve Left

Table 2.2: Simple Design Matrix for ACC

It is straightforward that adding more factors and levels, increases the number of

possible combination i.e the number of experiments.

DOE has 6 steps that guide the designer through the process of choosing the goal all

the way to predicting the best response [5].

8

1. Describe

The Describe step of the experimental design framework is composed by the

following substeps:

– Identification of the responses (results of interest) and factors (constant

parameters that will affect the response).

– Identification of the goals for the experiment i.e maximize the response,

hit a target or simply find which factors have an effect on the response.

2. Specify

Model specification: a good model adequately describes the physical situation

subject to one or more constraints.

3. Design

Design generation using inputs, check if the required informations are pro-

vided.

4. Collect

Data collection from the first run and record of the response values in the

design matrix.

5. Fit

Fitting of the assumed model to the experimental run data. Augmented design

could be useful to solve possible model ambiguity.

6. Predict (Optimize)

Use of a refined model to address the experimental goals. Computation of the

factor levels that optimize response.

9

2.1 Orthogonal Array optimization method

An orthogonal array (more specifically a fixed-element orthogonal array) of s elements,

denoted by OAN(s
m) is an N ∗m matrix whose columns have the property that in every

pair of columns each of the possible ordered pairs of elements appears the same number

of times [6].

Table 2.3: Orthogonal Array with 4 rows (left) and 8 rows (right)

Orthogonal arrays can be viewed as plans of multifactor experiments where the

columns correspond to the factors, the entries in the columns correspond to the lev-

els of the factors and the rows correspond to the experimental runs. More specifically,

the N rows of an OAN(s
m) can be viewed as a subset of all the possible sm experiments

of a full factorial plan in m factors each having s test levels. Thus, an OAN(s
m) can be

seen as a N/sm fraction of a complete sm factorial plan. For example, the four rows of

the OA4(2
3) that are displayed in Table 2.3, can be viewed as a 4/23 = 1/2 fraction of

a complete 23 factorial plan.

A sub-matrix formed by deleting some columns of an orthogonal array is also an

orthogonal array. Thus, by deleting certain columns of a given orthogonal array, it is

10

possible to generate many different plans of multifactor experiments.

It follows from the definition that an orthogonal array remains an orthogonal array

when its (1) rows are permuted or (2) columns are permuted or (3) the elements within

a column are permuted. When orthogonal arrays are viewed as plans of multifactor

experiments, the row permutation corresponds to reordering of experimental runs, the

column permutation corresponds to relabeling of factors, and the permutation of elements

within a column corresponds to relabeling of factor levels. Most experimenters realize

that the labels of factors, the labels of factor levels and the order of experimental runs

are arbitrary, indeed, it is usually randomized. Therefore, two orthogonal arrays are

defined to be equivalent if one can be obtained from the other via permutations. This

experimental design allows to organize the parameters affecting the process and the levels

at which they should be varies. Instead of having to test all possible combinations like the

full factorial design, this optimization method tests pairs of combinations. This enables

for the collection of the necessary data to determine which factors most affect the result

with a minimum amount of experimentation, thus saving time and resources [7].

11

12

Chapter 3

L2+ Automation Tool

The core of this thesis is the description of the L2+ Automation Tool. In particular the

following points will be discussed:

• Tool workflow and development process

• ASAM OpenSCENARIO and its contribution to Virtual validation

3.1 Tool Workflow

The main purpose of the tool is the automatic conversion of test cases in excel format

into scenarios in ASAM standard with predefined road files (XODR) for L2+ ADAS

validation. As shown in Figure 3.1, the tool:

1. Imports traffic conditions from the ADAS design validation test cases in XLS for-

mat

2. Creates a dSPACE ASM scenario in XOSC format for each test case based on its

factors and levels and safety and performance parameters according to the ASAM

Standard 1.0 (see Section 3.1.2)

3. Simulates the scenario through dSPACE Toolchain (ASM, ModelDesk, Motion-

Desk) and outputs simulation results which can be safely executed in the testing

environment.

13

Figure 3.1: High Level overall tool development process

After each of the mentioned steps, a proper Matlab script produces the intermediate

output needed for the next phase. In particular it’s possible to recognize 3 main phases:

1. Pre-processing

In this phase the input excel file, that was developed using the Orthogonal

Arrays Method described in Section 2.1, is parsed by means of a pre-processing

Matlab script that extracts the necessary factors and levels from the table

and converts them into an XML based format called XOSC (ASAM Open

Scenario).

2. Simulation

The second phase deals with the run of the scenario in the simulation plat-

form. An intermediate script collects the information coded into the XOSC

file and use them to populate a ModelDesk scenario, then the scenario can be

downloaded and simulated into MotionDesk.

3. Post-processing

After the simulation, the recording of the signal of interest is post-processed

via another script. This phase helps to verify the behaviour of the vehicles

involved in the scenario.

14

3.1.1 GUI

One of the main shortcomings of the tool in its early stages was the lack of a Graphical

User Interface. There wasn’t a high level interface that made the tool more user-friendly.

To face this drawback, the GUI displayed in Figure 3.2 has been developed.

The GUI has been developed using Matlab App Designer: an agile and easy Integrated

Development Environment that allows to insert various items and canvases inside the

interface and associate to each of them a callback, a function that executes when some

action is performed.

Figure 3.2: L2+ Automation Tool GUI

In Figure 3.2 it is possible to recognize:

1. Input panels: They are used to feed the tool with the proper inputs i.e. the excel

requirement sheet, the index of the test case to be processed and the simulation

platform used (Simulink, VEOS , SCALEXIO);

2. Tables: The top table allows to modify the global parameters that define the

scenario and the maneuvers, instead the bottom one shows a list of the test case

with their respective index to be used to feed the test case index panel;

3. Parameter table field: This field is used to pre-process the requirement sheet;

15

4. Conversion into XOSC: This button trigger a callback that performs the con-

version from XLS to XOSC format;

5. End-to-end Automation: In this field it is possible to execute a part or the

entire workflow of the tool;

6. Post-processing field: This field contains 4 subfields, each of them allows to

execute a different post-processing function;

7. Message box: Message box is used to display the status, errors and warnings that

occur while automation scripts are running.

3.2 ASAM OpenSCENARIO 1.0

During the entire development process of the tool, the main reference has been the

OpenSCENARIO Standard 1.0, released by ASAM (Association for Standardization of

Automation and Measuring Systems) at the beginning of 2020 [8].

OpenSCENARIO comprises the specification and file schema for the description of the

dynamic content in driving simulation applications. The primary use of OpenSCE-

NARIO is the description of complex maneuvers that involve multiple vehicles; it is used

in virtual development, test and validation of driver assistance functions, automated and

autonomous driving.

According to the standard, a scenario is a description of how the view of the world

changes with time, usually from a specific perspective. In the context of vehicles and

driving, this encompasses the developing view of both world-fixed (static) elements such

as the road layout, and world-changing (dynamic) elements such as weather and lighting,

vehicles, objects, people or traffic light states.

16

Figure 3.3: Scenario example: Double lane changer

OpenSCENARIO defines a data model and a derived file format for the description

of scenarios used in driving and traffic simulators, as well as in automotive virtual devel-

opment, testing and validation. The primary use-case of OpenSCENARIO is to describe

complex, synchronized Maneuvers that involve multiple instances of Entity, like Vehicles,

Pedestrians and other traffic participants. The description of a scenario may be based

on driver Actions (e.g. performing a lane change) or on instances of Trajectory (e.g.

derived from a recorded driving Maneuver).

The standard is used to derive XML based schema files i.e. the XOSC format file used

in the tool, moreover it can be used together with road network descriptions defined

according to the standard ASAM OpenDRIVE (XODR) in a way that they define the

entire content required to describe the virtual world for driving simulation, virtual test,

development and validation.

In a simulation context a complete scenario is comprised of the following parts:

• Static environment description, including:

– Logical road network

– Optionally physical and geometric road and environment descriptions

• Dynamic content description, including:

– Overall description and coordination of behavior of dynamic entities

– Optional behavior models of dynamic entities

17

Figure 3.4: XOSC file example. Note the hierarchical structure and the

main classes of objects: Road Networks, Entities, Storyboard

At last ASAM defines a standard for the communication between test automation

tools and test benches called XIL API [9]. This API have been used a lot during the

validation phases of the tool beacuse they allow to decouple the test software from real

and virtual test systems. This makes it easy to reuse test cases for different test systems.

The standard also supports test benches at all stages of the development and testing

process: Model-in-the-Loop (MIL), Software-in-the-Loop (SIL), Processor-in-the-Loop

(PIL), Hardware-in-the-Loop (HIL).

18

Figure 3.5: Support of XIL API in the dSPACE toolchain

3.2.1 Contribution to Virtual Validation

The high innovation potential of modern driver assistance systems is leading to growing

volumes of functionality, which are increasingly being assigned to ECU networks. To

meet the necessary quality goals and deadlines, the networked functions have to be

validated on a PC in interaction with plant models and virtual ECUs at an early phase

during software creation [10].

Scenario descriptions are essential for testing, validating and certifying the safety of driver

assistance systems and autonomous driving cars. With the help of OpenSCENARIO,

large numbers of critical situations can be run across various simulators. Thus, compared

to road testing in real traffic, virtual validation presents remarkable benefits:

• Reduced amount of driven test kilometers in field tests

• Reduced time-to-market

• Reduced costs

• Better product or machine performance

• Saving resources: drivers, fuel, materials

19

Shorter and shorter development times require to make an extensive and methodological

use of virtual validation in order to save time, money and in particular to face the

current shortage of IC (Automotive-rated) [11]. Through virtual validation, companies

can simulate batteries and electronic design systems, test billions of kilometers of driving

and millions of lines of code without ever manually building a prototype.

As functional safety standards like ISO 26262 increase in complexity and more proof is

required for product certification, virtual validation is expected to grow in need and use

over the next decade.

Figure 3.6: Virtual validation of networked driver assistance functions

on a PC

20

Chapter 4

Model in the Loop

This chapter will be entirely dedicated to the description of the first testing methodology

performed with the L2+ Automation Tool i.e. MIL testing.

4.1 Validation with ModelDesk – MotionDesk

Generally Model-in-the-Loop (MIL) simulation requires the following steps:

• Development of a model of the actual plant in a simulation environment such as

Simulink, which captures most of the important features of the hardware system

• After the plant model is created, develop the controller model and verify if the

controller can control the plant as per the requirement

In this way it’s possible to test the controller logic on the simulated model of the plant

and check if it works as desired.

As discussed in section 3.1, the tool automatically populates ModelDesk environment.

Figure 4.1 shows how to implement the Double Lane Change maneuver displayed in

Figure 3.3.

21

Figure 4.1: Example of a maneuver in dSPACE ModelDesk

Notice that ModelDesk classifies the entities of the scenario in 2 categories:

• Maneuver: Behaviour of the ego-vehicle

• Traffic: Behaviour of the fellow vehicles

Each entity is described by a set of sequences that compose a segment, thus a chain

of segments define the entire maneuver of a vehicle. Looking back at the GUI in Figure

3.2, the Global Parameter Table at the rightmost side of the interface, allows to modify

the parameters directly in ModelDesk. In order to run and simulate a virtual scenario

ModelDesk requires:

1. Road: The XODR file that describe the road or the road network topology (num-

ber of lanes, lane width, length)

2. Parameter Set: The set of parameters that affect the dynamics of the vehicle

and the environmental condition

22

3. Scenario: Set of maneuvers performed by each vehicle

Once all the elements have been gathered the simulation is ready to be run on Mo-

tionDesk. In this phase the actual MIL validation takes place, as a matter of fact in

MotionDesk is possible to download all the elements listed before from ModelDesk in

order to visualize the animation of the virtual scenario.

Thanks to MotionDesk is possible to monitor real-time the evolution of the simulation

and check the correctness of the maneuver offline on a PC-based simulation.

As an example, if the simulation aims to validate the ACC performance, the ani-

mation shows moment by moment the maneuver performed by the vehicles; in this way

results very easy to recognize when the ACC is engaged and what impact it has on the

vehicle dynamic.

Figure 4.2 shows a typical MotionDesk animation, it is worth noting the following

elements:

• Ego-Vehicle: Displayed in blue, along with 2 arrows that indicate the amount of

lateral acceleration the vehicle is subject to

• Fellows: Displayed in white, these are the vehicles of the traffic

• Road: The road profile is exactly the one described in the XODR file: number

of lanes, lane width, upcoming road and lines topology (dashed, continuous) are

precisely represented

• Gadget: Numerous gadget helps the tester to access important information about

the dynamic of the vehicle such as: tachometer, driven distance, maneuver time

• Perspective: Point of view by which the scenario is observed: frontal, lateral,

bird’s eye view, rear

23

Figure 4.2: Example of animation in dSPACE MotionDesk

4.1.1 ASM Model

Automotive Simulation Models (ASM) are Real-time models for vehicle development [12].

This open Simulink model has been the core of the model-based function development of

the L2+ Automation Tool. ModelDesk is substantially a graphical interface that allows

to parameterize all the variables present in such model and before running the animation

in MotionDesk the ASM model is compiled and executed.

In general ASMs are a tool suite which consists of simulation models for automotive

applications that can be combined as needed. The models support a wide spectrum of

simulation areas and is a flexible solutions to match any needs:

• Combustion engines (gasoline, diesel)

• Vehicle dynamics (passenger car, truck, trailer)

• Electric components (motors, batteries, loads)

• Vehicle environment (road traffic, objects, traffic signs)

24

Figure 4.3: ASM Models interface in ModelDesk

One of the main benefits of ASM is that the implementation of each model is open

and traceable right down to the Simulink basic block level, so it is easy to supplement,

replace or customize components with customer-specific models. This means that the

properties of each model can be optimally adapted to individual projects. The standard-

ized interfaces of the ASMs make it easy to extend models and even create entire virtual

vehicles.

4.2 Validation with VEOS – ControlDesk

dSPACE VEOS is a PC-based simulation platform for ECU software validation in many

development stages. It lets the user simulate a multitude of different models: from

function models to networks of virtual ECUs, bus systems and vehicle models, even in

early phases of development. The VEOS simulation platform provides reliable results

independently of the simulation hardware, and it can be used on different PC operating

systems as well as in cloud infrastructures.

VEOS has been used as second proof of the validity of the model and the scenarios

generated by the tool.

Building the Simulink ASM model automatically generate code that could be ex-

ploited to perform SIL testing through VEOS. In this case talk about Software-in-the-

25

loop testing is inappropriate since it suppose to have all the code available: both em-

bedded ECUs code and model code. For this reason VEOS simulation has been used

as counter-proof to check deeply the validity of the maneuver and the scenario still

remaining in MIL environment.

Figure 4.4: VEOS Simulation Platform

Another fundamental SW deployed is dSPACE ControlDesk. Thanks to ControlDesk

is possible to load the compiled version of the ASM model and directly access to all the

signal/buses. ControlDesk is a very effective tool for monitoring more signals at the

same time using different layouts. The key benefit is that one or more gadgets (gauges,

sliders, LEDs, indicators) can be associated to each signal and according to the type of

signal: input or output, they can be set or get respectively.

26

Figure 4.5: An example of ControlDesk layout

Summarizing, the main benefit deriving from using VEOS platform together with

ControlDesk is that this solution allows to save a lot of time coming from the compilation

of the model, in fact being fed with a pre-compiled file, all the signals and variables are

just a click away.

27

28

Chapter 5

Hardware in the Loop

In the previous chapter the first testing methodology has been discussed. The fifth

chapter of this thesis is dedicated to the description of a more challenging methodology

i.e. HIL testing.

In general, testing control algorithms can be time-consuming, expensive, and potentially

unsafe if it’s testing against the real system. To remain competitive and deliver high-

quality controller software, test engineers have replaced traditional testing methods with

Hardware-in-the-Loop (HIL) testing [13].

Hardware-in-the-Loop testing allows the user to verify the plant/controller design

without the complete system hardware. Relying on a real-time plant simulator that acts

as a digital twin of the whole system or parts of the system gives several benefits from

practicality to lower costs.

5.1 SCALEXIO Real-time system

The modular dSPACE SCALEXIO Real-time system has been used for the HIL testing

phase of the scenarios generated by the Automation Tool [14].

The choice of this particular machine was influenced by its many benefits:

• Scalable to any computation and I/O requirements

• Suitable for laboratory as well as in-vehicle applications

• High-performance processor technology for real-time calculation of large and com-

plex simulation models

29

• Comprehensive, precise, and fast I/O capabilities based on FPGA technology

SCALEXIO was directly connected with the ADAS Plywood Car Buck (PWB) and

allowed to perform an online simulation with physical hardware. Unfortunately the

physical ECUs present on the PWB belong to an L2 architecture instead of an L2 +, for

this reason a couple of scenarios were discarded due to lack of adequate hardware. In

particular the physical ECUs are:

1. Central ADAS Decision Module (CADM)

2. Brake System Control Module (BSCM)

3. Instrument Panel Cluster (IPC)

4. Electric Power Steering (EPS)

All the ECUs enumerated are connected to each other and to SCALEXIO by a wiring

harness and communicate via CAN protocol.

The SCALEXIO system, connected via Ethernet to the Host PC was able to perform

the following tasks:

• Generate the sensor signals which are required by the ECUs

• Measure the signals which are generated by the ECUs for actuator control

• Connect the output signals of the ECUs to loads (internally in the rack or exter-

nally) to simulate the actuators

• Receive bus signals which are sent by the ECUs and send bus signals to the ECUs

• Simulate virtual ECUs (V-ECU) not present in the PWB

• Provide the battery voltage to the ECUs

• Simulate electrical errors in the wiring of the ECUs

The behavior of the controlled system is specified by a real-time application which

runs on the SCALEXIO processing hardware. The real-time application is created on

the host PC and downloaded to the SCALEXIO system via Ethernet and, similarly to

what happened with VEOS, its execution can be managed with ControlDesk.

30

Figure 5.1: Scalable SCALEXIO solutions

5.2 VST framework for automatic testing

During the execution of the tests, the VST platform was of fundamental support.

Virtual System for Testing (VST) is a test automation framework developed by Stellantis

that exploits the ASAM XIL API discussed in section 3.2.

VST stands upon the following tools:

• Portal HIL: A web portal that schedules and manages the queue of execution of

each test

• Test Platform Studio: A desktop IDE for writing test maneuver step-by-step

• PanDESK: A GUI that shows test execution progress

• Database: A physical centralized database that stores Test Automation core Plat-

form

VST framework is based on several operating principles:

• A centralized system accessible at anytime from anywhere 24/7

• A role and data segregation based system

31

• Standard metrics for test quality and coverage

• A remote test execution, scheduling and result analysis system

• A keyword based test design methodology (high-level abstraction layer)

• Flexible to any kind of test: Diagnostic, functional, stress test

In particular VST allows to load all the variables contained into real-time application

in the centralized database. Then Test Platform Studio extracts the variables saving

them in a data dictionary and links each of them to a specific application as keywords.

This resulted very helpful during test case creation: it’s been very easy to choose which

I/O signal to record and manipulate and create trigger for a specific step. Figure 5.2

shows an example of test maneuver performed in HIL environment.

Every test must contains three sections:

• Init: The initialization section is used to bring the simulation environment to the

initial conditions necessary to start the actual test (e.g. turn ON the Battery)

• TP: The TP section is where the actual test is executed, each step of the test

maneuver is executed sequentially. In this section, after turning ON the engine and

downloading the scenario, the ModelDesk maneuver is executed and visualized in

MotionDesk

• Reset: The reset section brings the simulation environment back to the original

state, thus switches OFF the engine and disconnects the battery.

32

Figure 5.2: Test Platform Studio IDE

The core functionality of Test Platform Studio is the possibility to insert post-

processing functional targets on one or more variables.

The checks are carried out after the test execution by analyzing the data acquisition

recorded during the execution. Every step must meet specific timing constraints, pre-

computed and verified during the execution in order to ensure the effective duration of

the steps in the face of, for example, a PC load due to stall or slowdown.

The post-processing routines extract from the entire signal acquisition only the seg-

ment in which the user has requested a certain check, and on that segment it checks all

the samples with respect to the target specified by the user.

With this approach, that will be described in details in the next chapter, has been

possible to validate numerous ADAS functionalities. As a matter of fact VST automati-

cally generates a report accessible via PortalHIL in which every post-processed signal is

plotted with its respective tolerance range.

33

Figure 5.3: Example plots of a post-processed signal accessible through

PortalHIL

34

Chapter 6

Results and Discussion

The second-last chapter is entirely focused on the discussion of the results obtained

during the two testing methodologies presented in previous chapters.

From the whole set of scenarios that L2+ Automation Tool automatically generates,

only 4 of major relevance have been tested both in MIL and HIL environment. These

scenarios have been properly chosen in order to stimulate as much as possible the critical

ADAS L2 ECU present on the PWB and the machine learning algorithm of the CADM.

The scenarios are:

1. Cruise Control

2. Adaptive Cruise Control

3. Highway Assist

4. Highway Assist with fellow

Each of the scenarios run on the same racetrack i.e. Chelsea Proving Ground located

60 miles away from Detroit. As mentioned in Section 3.2 the road file has been imported

in ModelDesk thanks to an XODR file. Figure 6.1 shows the shape of the proving ground,

in particular all tests were performed in the innermost oval (see the blue landmark).

35

Figure 6.1: Top view of the Chelsea Proving Ground

As a preliminary step, before the HIL test, a demo scenario has been run: a straight

highway with 3 lanes allowed to calibrate the camera connected to the CADM and let

the algorithm to ”learn” how to detect the lanes inside a roadway. After ten minutes of

calibration, everything was fine and the actual tests could begin.

Figure 6.2: Calibration of the machine learning algorithm

36

Focusing on Figure 6.2 it is possible to distinguish the following entities:

• Solid blue lines: Lane centerline and its right/left edges

• Solid yellow line: Right lane edge

• Solid red line: Left lane edge

• Solid green line: Eventual guardrails or roadway borders

• Dashed pink line: Camera angle of view

• Red rectangle: Ego-vehicle position

It is worth noting that the horizontal and vertical scale allows to evaluate the lane

width and length respectively.

6.1 Cruise Control Scenario

The first scenario deals with a single vehicle: the ego-vehicle.

Figure 6.3: Ego-vehicle trajectory in CC scenario

The goal of this test was to validate the Cruise Control (CC) functionality and for

this purpose 2 functional targets were checked in post-processing phase:

37

Functional target Low level description Validation method

Lane Centering: Upper

bound on the lateral

deviation from lane

centerline

Inequality constraint:

elat = sqrt[(Xroad −

Xego)
2 + (Yroad − Yego)

2]

<= 0.2 m

Check in each point that

the euclidean distance

between the ego-vehicle

position and the lane

centerline is not greater

than 0.2 m

CC Set Speed: Relative

tolerance on the cruise

control set speed signal

Inequality constraint:

|vego − vCC | <= 3 km/h

where: vCC = 40 km/h

When the Cruise Control

is engaged the ego-vehicle

shall maintain a

longitudinal speed of 40

+/- 3 km/h.

Table 6.1: Cruise Control functional targets

Figure 6.4 shows how the CADM algorithm have detected the lanes and perceived

road curvatures during the execution of CC scenario.

The algorithm is based on an iterative procedure that, in real-time, processes every single

frame. Usually the lane detection algorithm is based on the following steps [15]:

1. Camera calibration: Remove possible distortion

2. Perspective transformation: Method to see the same scene from different view-

point and angles

3. Grayscaling: For this application, grayscale images are enough to perform ma-

chine learning tasks

4. Gaussian smoothing: Used to reduce image noise

5. Canny Edge Detection: Used to identify the edges of an object in an image

6. Mask region of interest: Select only the area that may contain the lanes

7. RANdom SAmple Consensus (RANSAC): Algorithm used to fit lane lines

and curvature radius calculation

38

Figure 6.4: Lane detection algorithm stimulated by the CC scenario

The results obtained after the run of this first scenario are presented in the 2 figures

below.

39

Figure 6.5: Overall lateral deviation profile (CC Scenario)

Figure 6.5 represent the time behaviour of the LANE CENTERLINE DISTANCE

signal when the CC functionality is engaged. Is it possible to observe that the signal

never exceed 0.05 m, therefore the target successfully passed. This is probably due to the

smoothness of the scenario: in fact the portion of road on which the ego-vehicle drives is

a circle with a high curvature radius that after 800 m turns into a straight way. Moreover

the ego speed is relatively low and, for this considerations, the vehicle manages to follow

almost perfectly the profile of the road keeping the center of the lane at any time.

40

Figure 6.6: Overall velocity profiles (CC Scenario)

In Figure 6.6 is possible to distinguish 3 signals:

• VEHICLE COG VELOCITY X: Signal coming from the ASM model that represent

the longitudinal velocity of the ego-vehicle

• VEHICLESPEEDVSOSIG: Signal coming from the BSCM present on the PWB

that represent the velocity published by the brake sensor

• SET SPEED KPH: Signal coming from the CADM that inform other ECUs on the

cruise speed set in km/h

Also in this case the functional target passed.

To further confirm this the following 2 figures shows a zoom of the signal with their

respective tolerance band.

41

Figure 6.7: Lateral deviation signal with its tolerance band (CC Sce-

nario)

Figure 6.8: Velocity signals with their tolerance band (CC Scenario)

It is worth noting that the functional target on the CC set speed is applied only when

the CC is engaged thus, looking at Figure 6.8, in the range [177÷ 229] seconds.

42

6.2 Adaptive Cruise Control Scenario

The second scenario deals with 4 vehicles: the ego-vehicle and 3 fellows.

Figure 6.9: Ego-vehicle trajectory in ACC scenario

The goal of this test was to validate the Adaptive Cruise Control (ACC) functionality

and for this purpose 3 functional targets were checked in post-processing phase:

43

Functional target Low level description Validation method

Lane Centering: Upper

bound on the lateral

deviation from lane

centerline

Inequality constraint:

elat = sqrt[(Xroad −

Xego)
2 + (Yroad − Yego)

2]

<= 0.2 m

Check in each point that

the euclidean distance

between the ego-vehicle

position and the lane

centerline is not greater

than 0.2 m

ACC Following

Distance: Upper and

lower bound on the safety

distance between

ego-vehicle and fellow

ahead

Tolerance band:

elong = sqrt[(Xego −

Xfellow)
2 + (Yego −

Yfellow)
2] ∈ [17.5÷ 20.5] m

When the Adaptive

Cruise Control is engaged

the following distance

between ego-vehicle and

fellow ahead must be

always contained in the

range 19 +/- 1.5 m.

Deceleration Request:

Upper bound on the

longitudinal acceleration

settling time

Inequality constraint:

Ts <= 0.5 s

The ego longitudinal

acceleration shall follow

the CADM’s requested

deceleration rate based on

the ego-vehicle speed and

the distance between ego

and fellow ahead within a

settling time of half a

second.

Table 6.2: Adaptive Cruise Control functional targets

44

Figure 6.10 shows how the CADM algorithm have detected the presence of another

vehicle ahead.

(a) Fellow in the left lane (b) Fellow in the center lane

Figure 6.10: The machine learning algorithm detects the fellow ahead

and encloses it in a bounding box

45

The results obtained after the run of this second scenario are presented in the following

figures.

Figure 6.11: Overall lateral deviation profile (ACC Scenario)

Similarly to what happened for the CC scenario the LANE CENTERLINE DIS-

TANCE signal passed the target once again.

The only consideration regards the peaks at 0.11 m and 0.066 m: this is due to a change

in the road curvature. In that moment the ego, that was initially driving on a circular

road, enters a straight.

46

Figure 6.12: Fellow distance signals (ACC Scenario)

In Figure 6.12 is possible to distinguish 3 signals:

• OBJECT DIST: Signal coming from the CADM that represents the longitudinal

distance of the object detected by the Forward Facing Camera

• LONG DISTANCE OBJECT: Signal coming from the CADM equivalent to OB-

JECT DIST

• EUCLIDEAN DISTANCE: Signal coming from the ASM model that represents

the longitudinal distance between ego and the selected fellow

In this case only 2 signals out of 3 passed the functional target. Indeed, although

EUCLIDEAN DISTANCE has quite the same profile of the other two, it presents an

offset of 4 m, thus exceeding the tolerance band. This can be attributed to the function

used to compute the distance in ASM model: it evaluates the distance between the ego

CoG and fellow CoG, instead the other 2 signals compute the distance between ego front

47

bumper and fellow rear bumper.

Therefore, in order to be correctly compared, EUCLIDEAN DISTANCE signal should

be translated downwards by a factor of (lego
2

+
lfellow

2
).

Figure 6.13: Velocity and acceleration profiles (ACC Scenario)

Figure 6.13 displays 2 acceleration signals along with VEHICLE COG VELOCITY

X :

• INTERVENTION: CADM’s signal to request a deceleration intervention by the

brake

• VEHICLE COG ACCELERATION X: Signal coming from the ASM model that

represents the longitudinal acceleration of the ego-vehicle

Looking at time instants t1 = 186 s and t2 = 210 s, is it possible to observe that

the velocity rapidly decreases. At the same time the INTERVENTION signal present a

negative peak.

48

This happens because a fellow with a lower velocity has been detected in the range of

the camera, hence the ego shall decelerate to avoid collision and keep the safety distance.

The 2 figures below show a zoom of the 2 intervention requests. In both cases the vehicle

acceleration respond to CADM’s request with an oscillatory transient which settles in

about half a second.

Even the third and last functional target passed.

(a) First intervention request

(b) Second intervention request

Figure 6.14: Longitudinal acceleration response to an intervention re-

quest (ACC Scenario)

49

At last figures 6.15 and 6.16 confirms the considerations previously made for the

lateral deviation and fellow distance, highlighting also their tolerance.

Figure 6.15: Lateral deviation signal with its tolerance band (ACC

Scenario)

Figure 6.16: Fellow distance profiles with their tolerance band (ACC

Scenario)

In particular Figure 6.16 shows the offset of the EUCLIDEAN DISTANCE signal

that is the only one not contained in the tolerance band. In this Figure is plotted also

the signal coming from the front radar, called RADAR LRR DISTANCE.

50

6.3 Highway Assist Scenario

The third scenario deals only with the ego-vehicle.

Figure 6.17: Ego-vehicle trajectory in HAS scenario

The Highway Assist System is a partially automated driving system, thus an L2

ADAS specific feature.

Picking up information from both a front radar sensor and a forward-facing camera

behind the rear-view mirror, HAS performs three crucial functions at the same time [16]:

• Maintains the desired speed (CC)

• Maintains the chosen distance from the vehicle in front (ACC)

• Keeps the vehicle in the center of the lane by actively controlling the steering wheel

(LKA)

The goal of this test was to validate the Highway Assist functionality in absence of

traffic. For this purpose only one functional target was enough.

51

Functional target Low level description Validation method

Lane Centering: Upper

bound on the lateral

deviation from lane

centerline

Inequality constraint:

elat = sqrt[(Xroad −

Xego)
2 + (Yroad − Yego)

2]

<= 0.2 m

Check that the euclidean

distance between the

ego-vehicle position and

the lane centerline is not

greater than 0.2 m when

the HAS is engaged.

Table 6.3: Highway Assist functional target

HAS is designed to only function on highways or limited access freeways. For this

reason the scenario was composed by 2 phases.

1. ACC engaged: In this phase, the scenario was not suitable to let HAS work

properly, therefore only ACC was engaged

2. HAS engaged: In the second phase, the scenario turns into a large straight highway

and the HAS could be finally engaged

During the first phase, ego was just left drive and the command was totally in charge

of the ASM model; whereas in the second phase the command switched from the model

to the CADM.

When HAS is engaged CADM actively controls the steering wheel by sending the in-

formation acquired by the camera to the EPS and BSCM. In this way the appropriate

steering torque can be applied in order to keep the vehicle centered on its lane.

52

Figure 6.18: Overall lateral deviation profile (HAS Scenario)

Observing Figure 6.18 is possible to differentiate 2 regions delimited by a blue vertical

line.

The left area represent the first phase i.e. ACC engaged; during this phase the model

perform all the longitudinal/lateral actions and controls the entire vehicle dynamics, so

the lateral deviation is strictly close to zero.

Instead, looking at the right area of the plot, a series of sharp oscillation affect the vehicle

dynamics. In this case HAS is engaged and the control of lateral dynamics is in charge

of the physical ECUs.

This finds an answer in the fact that HAS is an L2 feature, therefore it requires ”Hands-

ON” (see Figure 1.2) i.e. by means of an haptic sensors placed along the steering wheel,

the system detects if the driver is holding the steering wheel with at least one hand. In

order to engage the HAS in HIL environment, the behaviour of the sensors is simulated

and this lead to the following considerations:

• No driver is holding the steering wheel, thus there’s no resistance torque

53

• There are no inertias due to the weight of the car, therefore the system expects to

control a much heavier load

Hence, the oscillation obtained when HAS is engaged are bigger w.r.t the ones that could

be observed in MIL environment or in a real car.

A last remark regards the 2 peaks at t ≈ 325 s: these are due to the narrowing of the

roadway from 3 to 2 lanes.

Figure 6.19: Lateral deviation profiles comparison (HAS Scenario)

Figure 6.19 shows that in both cases the functional target passed.

54

6.4 Highway Assist with fellow Scenario

The forth and last scenario deals with 2 vehicles: ego and fellow.

Figure 6.20: Ego-vehicle trajectory in HAS with fellow scenario

The goal of this test was to validate the Highway Assist functionality in presence of

traffic.

For this purpose 2 functional targets were checked:

55

Functional target Low level description Validation method

Lane Centering: Upper

bound on the lateral

deviation from lane

centerline

Inequality constraint:

elat = sqrt[(Xroad −

Xego)
2 + (Yroad − Yego)

2]

<= 0.2 m

Check that the euclidean

distance between the

ego-vehicle position and

the lane centerline is not

greater than 0.2 m when

the HAS is engaged.

HAS Following

Distance: Lower bound

on the safety distance

between ego-vehicle and

fellow ahead

Inequality constraint:

elong = sqrt[(Xego −

Xfellow)
2+(Yego−Yfellow)

2]

>= 5 m

When the Highway Assist

System is engaged the

following distance

between ego-vehicle and

fellow ahead must be

always greater than 5 m.

Table 6.4: Highway Assist with fellow functional targets

Figure 6.21 shows how the CADM algorithm have detected the presence of another

vehicle ahead, in this case a truck.

(a) Fellow in the left lane (b) Fellow in the center lane

Figure 6.21: The machine learning algorithm detects the truck ahead

and encloses it in a bounding box

56

(a) Lateral deviation profile

(b) Regions of the lateral deviation profile

Figure 6.22: Overall lateral deviation profile (HAS with fellow Scenario)

57

Referring to Figure 6.22b is it possible to notice four different regions:

1. The first region delimits the time interval in which only the ACC is engaged, thus

similarly to HAS scenario, there are no appreciable oscillations and the lateral

deviation profile is flat and very close to 0

2. In the second region, the ego-vehicle has reached a portion of the road where HAS

could be engaged and has detected the truck in front, thus oscillation begins

3. The third region starts with a quick increasing in the slope and magnitude of the

curve that exceeds 0.7 m. In this region, as can be observed in Figure 6.20, the

road profile switches from straight to circular with a quite small curvature radius.

In order to keep the vehicle centered and at the same time maintain the safety

distance from the truck ahead, the system was stressed a lot, causing very big

oscillations. Approaching the right edge of region 3 the curve decreases because

the ego-vehicle is slowing down to face a deceleration of the truck.

4. Lastly in region 4 the curve performs two sharp oscillations and reaches its global

maximum at about 0.8 m. The truck in front braked to a complete stop and the

highway assist system applied a very high braking torque to avoid frontal collision

and respect the minimum safety distance. This huge braking action caused a partial

loss of stability of the vehicle

58

Figure 6.23: Overall fellow distance signals (HAS with fellow Scenario)

(a) Fellow is accelerating (b) Fellow is braking

Figure 6.24: Zoom on the fellow distance signals

59

The three figures in the previous page show the distance between ego and truck by

means of 3 signals, the same explained in Figure 6.12. Looking at the overall profile

(Figure 6.23), is it possible to recognize three areas:

1. Fellow is detected and is accelerating

2. Fellow accelerates too much and is out of the range of the camera. Only the

EUCLIDEAN DISTANCE signal is still able to calculate the distance, albeit with

some oscillations. While the other two signals return to their default values

3. Fellow brakes firmly until it comes to a complete stop

It is worth noting that the HAS responds well to a change in the truck’s acceleration,

adjusting the speed of the ego-vehicle accordingly. In particular, looking at Figure 6.24b,

is it possible to notice that the distance between the two vehicle never drops below 5 m,

thus respecting the functional target.

The two plots below confirm that the functional target on the lateral deviation passed

only when ACC was engaged, indeed the bottom plot highlights how the signal exceed

the tolerance upper bound.

Figure 6.25: Lateral deviation profiles comparison (HAS with fellow

Scenario)

60

Figure 6.26: Fellow distance profiles with their tolerance band (HAS

with fellow Scenario)

At last Figure 6.26 shows that each signal stays always above the tolerance lower

bound of 5 m.

61

62

Chapter 7

Conclusive Remarks

The last chapter of this thesis is devoted to some conclusive considerations. The L2+

Automation Tool has been the heart of this work, it allows to convert the XLS based test

cases with predefined road files into open scenario according to the ASAM 1.0 standard.

The most relevant aspects are described in the following bullet list:

• Pros

1. The output scenario is flexible to run in any XIL environment potentially

2. It offers the possibility to perform any kind of test (functional, performance,

stress test)

3. The tool allows to generate a scenario according to any car model (dSPACE-

ASM, VI-CarRealTime)

• Cons

1. The automatically generated scenarios are not immediately suitable for the

HIL environment but need some manual modifications

2. Accessing a specific signal in the ASM model is not straightforward and re-

quires a deep understanding of it

3. The tool doesn’t allow to create a new scenario from scratch, it always requires

a conversion from an XLS format test case

63

Scenario

CC ACC HAS HAS with fellow

Lane Centering ✓ ✓ ✓ ✗

Deceleration Request - ✓ - -

Following Distance - ▲ - ✓

Functional

target

Set Speed ✓ - - -

Table 7.1: Functional targets compliance

Table 7.1 recaps the outcome of the execution of the four scenarios discussed in

Chapter 6.

The overall result is very good; 6 out of 8 functional target passed, while there was one

partial failure (indicated as ▲) and a total failure. Overall the tool fits well different

scenario configurations and could give a great support to any user who wants to exploit

it for virtual or real validation.

The scenarios selected revealed to be an excellent approximation of the reality thus

allowing to save a lot of time and resources and helped to greatly speed-up the L2 ADAS

software development process.

7.1 Further Improvements

As a continuation of the work carried out, the following items could be taken into account:

• DIL Integration: Several automotive OEMs own a driving simulator, the tool’s

generated scenarios could be integrated with simulators from different vendors. In

this way the driver is directly involved in a safe simulation environment with the

highest level of realism

• Upgrade to oncoming ASAM 2.0: ASAM 2.0 Standard is going to be released

in March 2022 [17]. It will include the definition of more complex scenarios and

for this reason the tool needs to be updated to remain standard compliant Open

Dynamic Road Information for Vehicle Environment (OpenDRIVE)

64

Bibliography

[1] Inc. Synopsys. What is ADAS? https://www.synopsys.com/automotive/what-

is-adas.html.

[2] Mobileye. Understanding L2+ in Five Questions. https://www.mobileye.com/

blog/understanding-l2-in-five-questions/.

[3] Intel’s Public Relations Team. “Defining the ‘Plus’ in L2+”. In: (2019). url:

https://newsroom.intel.com/articles/defining-plus-l2/#gs.ngcwbe.

[4] Keith M. Bower. What Is Design Of Experiments (DOE)? https://asq.org/

quality-resources/design-of-experiments.

[5] JMP Software. Design of Experiments DOE Process. https://www.youtube.com/

watch?v=_Rgue-7KDww&ab_channel=JMPSoftware.

[6] Eric S. Lagergren Raghu N. Kacker and James J. Filliben. “Taguchi’s Orthog-

onal Arrays Are Classical Designs of Experiments”. In: Journal of Research of

the National Institute of Standards and Technology 96 (1991), pp. 577–591. url:

https://nvlpubs.nist.gov/nistpubs/jres/096/jresv96n5p577_A1b.pdf.

[7] Peter Woolf et al. “Chapter 14.1 - Design of Experiments via Taguchi Methods - Or-

thogonal Arrays”. In: Chemical Process Dynamics and Controls. Ed. by Stephanie

Fraley et al. LibreTexts, 2021, pp. 774–784.

[8] ASAM. ASAM OpenSCENARIO: User Guide Version: 1.0.0. https://releases.

asam.net/OpenSCENARIO/1.0.0/ASAM_OpenSCENARIO_BS-1-2_User-Guide_V1-

0-0.html#_foreword.

[9] dSPACE. Information on ASAM XIL API. https://www.dspace.com/en/inc/

home/applicationfields/our_solutions_for/xil_api/xil_api_standard.

cfm.

65

https://www.synopsys.com/automotive/what-is-adas.html
https://www.synopsys.com/automotive/what-is-adas.html
https://www.mobileye.com/blog/understanding-l2-in-five-questions/
https://www.mobileye.com/blog/understanding-l2-in-five-questions/
https://newsroom.intel.com/articles/defining-plus-l2/#gs.ngcwbe
https://asq.org/quality-resources/design-of-experiments
https://asq.org/quality-resources/design-of-experiments
https://www.youtube.com/watch?v=_Rgue-7KDww&ab_channel=JMPSoftware
https://www.youtube.com/watch?v=_Rgue-7KDww&ab_channel=JMPSoftware
https://nvlpubs.nist.gov/nistpubs/jres/096/jresv96n5p577_A1b.pdf
https://releases.asam.net/OpenSCENARIO/1.0.0/ASAM_OpenSCENARIO_BS-1-2_User-Guide_V1-0-0.html##_foreword
https://releases.asam.net/OpenSCENARIO/1.0.0/ASAM_OpenSCENARIO_BS-1-2_User-Guide_V1-0-0.html##_foreword
https://releases.asam.net/OpenSCENARIO/1.0.0/ASAM_OpenSCENARIO_BS-1-2_User-Guide_V1-0-0.html##_foreword
https://www.dspace.com/en/inc/home/applicationfields/our_solutions_for/xil_api/xil_api_standard.cfm
https://www.dspace.com/en/inc/home/applicationfields/our_solutions_for/xil_api/xil_api_standard.cfm
https://www.dspace.com/en/inc/home/applicationfields/our_solutions_for/xil_api/xil_api_standard.cfm

[10] André Rolfsmeier. “Virtual validation of advanced driver assistance functions”. In:

HANSER automotive (2013). url: https://www.dspace.com/shared/data/pdf/

2013/2013_Article_Hanser_automotive_7-8_Rolfsmeier_E.pdf.

[11] SIEMENS.What Is Virtual Validation? https://www.plm.automation.siemens.

com/global/it/our-story/glossary/virtual-validation/57459.

[12] dSPACE. Automotive Simulation Models (ASM). https://www.dspace.com/en/

pub/home/products/sw/automotive_simulation_models.cfm#176_28360.

[13] Speedgoat. What is Hardware-in-the-Loop Simulation? https://www.speedgoat.

com/applications-industries/applications/hardware-in-the-loop.

[14] dSPACE. SCALEXIO Modular real-time system. https://www.dspace.com/en/

pub/home/products/hw/simulator_hardware/scalexio.cfm.

[15] Jingwei Cao et al. “Lane Detection Algorithm for Intelligent Vehicles in Complex

Road Conditions and Dynamic Environments”. In: (2019). url: https://www.

ncbi.nlm.nih.gov/pmc/articles/PMC6679325/.

[16] Maserati. Highway Assist System. https://www.maserati.com/international/

en/ownership/guides-and-documentation/safety/highway-assist.

[17] ASAM. ASAM OpenSCENARIO V2.0. https : / / www . asam . net / project -

detail/asam-openscenario-v20-1/.

66

https://www.dspace.com/shared/data/pdf/2013/2013_Article_Hanser_automotive_7-8_Rolfsmeier_E.pdf
https://www.dspace.com/shared/data/pdf/2013/2013_Article_Hanser_automotive_7-8_Rolfsmeier_E.pdf
https://www.plm.automation.siemens.com/global/it/our-story/glossary/virtual-validation/57459
https://www.plm.automation.siemens.com/global/it/our-story/glossary/virtual-validation/57459
https://www.dspace.com/en/pub/home/products/sw/automotive_simulation_models.cfm##176_28360
https://www.dspace.com/en/pub/home/products/sw/automotive_simulation_models.cfm##176_28360
https://www.speedgoat.com/applications-industries/applications/hardware-in-the-loop
https://www.speedgoat.com/applications-industries/applications/hardware-in-the-loop
https://www.dspace.com/en/pub/home/products/hw/simulator_hardware/scalexio.cfm
https://www.dspace.com/en/pub/home/products/hw/simulator_hardware/scalexio.cfm
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679325/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679325/
https://www.maserati.com/international/en/ownership/guides-and-documentation/safety/highway-assist
https://www.maserati.com/international/en/ownership/guides-and-documentation/safety/highway-assist
https://www.asam.net/project-detail/asam-openscenario-v20-1/
https://www.asam.net/project-detail/asam-openscenario-v20-1/

Acknowledgments

A special thanks goes, first of all, to my family who gave me constant support in my

first off-site experience during 2 troubled years due to the Covid pandemic.

I say thank you from the bottom of my heart, to my girlfriend Cristina, who in front of

so many difficulties and hard months away has always found a way not to make me feel

alone. You have been my vital strength and the best soulmate I could wish for. You

filled my heart even in the darkest moments and made even the most frustrating days

happier and more bearable.

I find it only right to thank Ing. Roberto Rabbeni for believing in me by giving me the

opportunity to become part of the Maserati family. In the same way, I thank Gianfranco

for the invaluable knowledge he has passed on to me, an exemplary proof of Who an

Automotive Engineer is and What he does. In addition, I also thank all the other col-

leagues in the Virtual Validation team: Arianna, Davide, Matteo, Chiara and Francesco

for teaching me to team up and collaborate with each other.

I express my sincere thanks to prof. Carlo Concari who gave me support during my

thesis work.

Impossible to forget my coursemates: Ivan, Giuseppe, Lucia who made me feel less alone

in a city that was totally new to me.

Finally, there are no words to thank my lifelong friends, those who have never abandoned

me and who will always be there: Antonio, Bubu, Davide, Pasquale, Peppinaccio.

I love you deeply guys.

67

	Foreword
	Abstract
	List of Figures
	List of Tables
	Acronyms
	Glossary
	Introduction
	Level 2+ of Autonomous Driving

	Design of Experiment
	Orthogonal Array optimization method

	L2+ Automation Tool
	Tool Workflow
	GUI

	ASAM OpenSCENARIO 1.0
	Contribution to Virtual Validation

	Model in the Loop
	Validation with ModelDesk – MotionDesk
	ASM Model

	Validation with VEOS – ControlDesk

	Hardware in the Loop
	SCALEXIO Real-time system
	VST framework for automatic testing

	Results and Discussion
	Cruise Control Scenario
	Adaptive Cruise Control Scenario
	Highway Assist Scenario
	Highway Assist with fellow Scenario

	Conclusive Remarks
	Further Improvements

	Bibliography
	Acknowledgments

