
ALMAMATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Recommender Systems

GRAPH NEURAL NETWORKS FOR
RECOMMENDER SYSTEMS

CANDIDATE SUPERVISOR

Oleksandr Olmucci Poddubnyy Prof. Paolo Torroni

CO­SUPERVISOR

PhD. Piotr Bigaj

Academic year 2020/21

Session 3rd

To everyone who has supported me.

ii

Contents

1 Introduction 1

2 Recommender Systems 7

2.1 Introduction . 7

2.1.1 User Feedback . 8

2.1.2 Recommendation Tasks 9

2.1.3 Common datasets . 10

2.1.4 Loss functions . 13

2.1.5 Evaluation metrics 14

2.2 Families of Recommenders 18

2.2.1 Content Based Filtering 18

2.2.2 Collaborative Filtering 19

2.2.3 Hybrid Approaches 25

2.2.4 Sequential . 28

2.3 Problems . 32

2.3.1 Cold start . 32

2.3.2 Data sparsity . 32

2.3.3 Embedding table sizes 32

2.3.4 Overspecialization 33

3 Graph Neural Networks 34

3.1 Main concepts . 35

3.1.1 Non­Euclidean space data 35

iii

3.1.2 Permutation equivariance and invariance 36

3.1.3 Graph neighborhood 37

3.1.4 Neural message passing 38

3.2 Types of GNNs . 40

3.2.1 Simple Neighborhood Aggregation 41

3.2.2 Graph Convolutional Networks 41

3.2.3 Graph Attention Networks 42

3.2.4 GraphSage . 43

3.3 Problems on graphs . 44

3.3.1 Node­level tasks . 44

3.3.2 Edge classification 45

3.3.3 Graph­level tasks . 45

3.4 Scaling to larger graphs . 46

3.4.1 Subgraph message passing 47

3.4.2 Model simplification 51

4 Graph Recommender Systems 53

4.1 Data Representation . 53

4.2 General recommendation . 55

4.2.1 Structure . 56

4.2.2 Architectures . 56

4.3 Sequential recommendation 77

4.3.1 Structure . 78

4.3.2 Architectures . 79

4.4 Models comparison . 86

4.5 Model categorization . 88

5 Experiments 93

5.1 Model definition . 94

5.2 Effects of batch size and sampling 96

5.3 GPU scaling and math mode speedups 98

iv

6 Conclusions 104

Bibliography 107

Acknowledgements 118

v

List of Figures

2.1 Architecture of Neural Collaborative Filtering model. 23

2.2 Architecture of VAE­CF model. 24

2.3 Combination of wide models (left), expressed as generalized

linear models, that work as a memorization module for nu­

merical features, to capture interactions between them, and

deep models (right) that process categorical features in a sim­

ilar fashion as NCF does. Wide & Deep (center) merges the

two types of models into a single one. 25

2.4 Architecture ofDeep LearningRecommendationModel (DLRM). 27

2.5 Deep Interest Network architecture first embeds all the given

user, item sequence, target item and context features via ap­

propriate embedding tables. It then uses an attention mech­

anism to produce scores between target item and historical

items, and uses those scores as coefficients for a sum of histor­

ical items, producing a single representation from the full se­

quence. All the embeddings are then concatenated and passed

to a classification head to predict likelihood of consumption. . 29

vi

2.6 DIEN architecture is an extension of DIN, where a stack of

recurrent cells is added to handle historical sequences of vari­

able lengths. As in DIN, an attention mechanism between tar­

get embeddings and intermediate representations of individ­

ual items in the sequence is used to better model the whole

sequence embedding. Intermediate sequential item represen­

tations are further refined via an auxiliary loss with negative

sampling at each time step, to learn sequentiality patterns be­

tween items at consequent time­steps in a self­supervised way. 30

2.7 SIM architecture. Here the first stage is depicted with Hard

and Soft search. 31

3.1 An image (a) can be represented by a graph (b) with a con­

nected neighborhood of at most 8 nodes, where each node has

RGB features associated to it. 35

3.2 Different types of commonly used data. Graph data can be

seen as a generalization over both grid and sequence data,

where the prior structure can be arbitrarily defined. 35

3.3 (a) 1­hop and 2­hop neighborhoods of a given target node A.

(b) Tree structure corresponding to the 2­hop neighborhood of

node A. Tree structures of neighborhoods implicitly represent

computational graphs that can be exploited when designing

different types of GNN layers. 37

vii

3.4 For a given input graph and a target node A, the new fea­

ture representations can be computed by taking representa­

tions from A’s neighbors’ {B, C, D} aggregated representa­

tions, whose features in their turn are computed by taking their

neighbors’ representations. This visualization represents two

layers of a message passing model and can be represented us­

ing a tree structure by unfolding neighborhoods around target

the node. 38

3.5 Various common levels of tasks solvable on graph structures

by machine learning approaches that work on node embed­

dings. Node­level tasks consist in predicting the property of

an individual node (e.g. age of an user in a social network

graph). Edge­level tasks consist in predicting property or an

existence of an edge (e.g. rating that someone gave to a prod­

uct, whether a transaction happened or not). Graph­level tasks

consist in predicting a property of an entire graph (e.g. type

of a molecule given a molecule graph). 44

3.6 Induced partitions G1, ...,G3 of a given graph. Note that the

gray edges indicate edges that are excluded from the sam­

pling of vanilla Cluster­GCN, as those are edges that con­

nect different clusters. “Stochastic Multiple Partitions” on the

other handmight include themwhen forming bigger partitions

across multiple induced graphs. 49

4.1 Commonly used recommender systems data types can be nat­

urally represented via graph structures. 54

viii

4.2 General structure of graph­based general recommenders. (A)

Initial embeddings are produced from user and item ids. (B)

A Graph Neural Network is used to refine the initial embed­

dings by aggregating information over node neighbors. (C)

Embeddings produced via the graph model are passed to the

task head which uses them as dense vectors. 56

4.3 Rating matrix M of user­items interactions is represented as

a bipartite­graph with edges indicating user­preferences. A

graph auto­encoder module is used to learn node embeddings

from which new, unobserved, edges are reconstructed. This

way, the problem is reduced to a link prediction task via an

end­to­end trainable graph­autoencoder. 57

4.4 Summary of the STAR­GCN model architecture. 59

4.5 Summary of the NGCF model architecture. Initial represen­

tations e0
u1 and e0

i4 are refined with multiple embedding prop­

agation layers, this corresponds to a propagation over a 3­hop

neighborhood. Produced embeddings are then concatenated

together and finally passed to the task head. 60

4.6 Illustration of a third order embedding propagation for a user

u1. 61

4.7 Summary of the LightGCN model architecture. 62

4.8 Summary of the LR­GCCF model architecture. 63

4.9 Summary of Multi­Component Graph Convolutional Collab­

orative Filtering (MCCF) architecture. The example shows

how final rating prediction for user U1 consuming item I4 is

calculated via decomposer and combiner modules. 64

4.10 Left: Propagation of information propagation to node u4 be­

tween NGCF and DGCF architectures. Right: DGCF archi­

tecture summary. 67

ix

4.11 DisentangledGraphCF architecture summary. Interaction graph

is decomposed into multiple intent­aware graphs, whose adja­

cency matrices Aki
are learned during training with their rel­

ative intent­aware embedding chunks. Final representations

for intent­aware embeddings are further decorrelated via a dis­

tance correlation loss used in alternation with BPR loss during

training. 69

4.12 Summary of DiffNet architecture. Side information for both

user and item initial representations is produced by a Fusion

stage, that takes user/item side features together with their ini­

tial embeddings. Afterwards, user’s social representation is

refined via a Social Diffusion process, while item representa­

tions are refined via interaction graph. 71

4.13 Summary of DiffNet++ model architecture. Node­level atten­

tion is used to assign weights in the aggregation phase in each

graph. Graph­level attention is used to fuse interest graph and

social graph representations together. 72

4.14 Summary of GraphRec architecture, composed by item mod­

eling, user modeling and rating prediction. Both modeling

components use attention mechanism to better learn embed­

dings. User modeling includes a refinement of user embed­

dings via a social aggregation of features based on social graph. 74

4.15 Summary of DANSER architecture. 75

4.16 Two types of social effects, homophily effect and influence

effect that affect user’s decision on one item. 76

4.17 General structure of graph­based sequential recommenders. . . 78

4.18 Summary of SR­GNN architecture. 79

x

4.19 Summary of DGRec architecture. A shared recurrent neural

network is used to initially compute dynamic user’s interests

(i.e. what are the user’s interests based on their sessions),

short­term and long­term friend’s interests. Computed fea­

tures are then used as node features for a social user graph and

using a graph attention neural network, final representations

are produced for the current user. This final representation, to­

gether with learned item embeddings can be used to perform

the next item prediction task. 81

4.20 Summary ofMGNN­SPred architecture. First, aMulti­Relational

ItemGraph (MRIG) gets constructed from all user’s target and

auxiliary behavior sequences. Propagation procedure overMRIG

by a GNN yields final item representations to be used when

building sequence representations. Sequence representations

are computed bymean­pooling over item representations, given

from last GNN’s propagation step, of items appearing in input

target and auxiliary behavior sequences. 83

4.21 (a) Distribution of total parameters count, in millions, by the

number of models. (b) Distribution of embedding parameters

count as a percentage of total parameters count 92

5.1 Simplified GNN architecture that we will be using. The archi­

tecture consists of three stacked graph attention layers used to

produce user and item latent features from user and item em­

beddings. An MLP is then placed on top of user and item

latent features to predict feedback from them. 95

5.2 GPU memory usage at training time for different batch sizes. . 97

xi

5.3 (a) Training throughput w.r.t. batch size when setting a limit

onmaximumneighbors a nodewill aggregate information from.

(b) Training throughput w.r.t batch size when all neighbors of

a node are used to aggregate information. 98

5.4 Training throughput distributions on DGX­1 (Volta) machine. . 100

5.5 Training throughput distributions onDGX­A100 (Ampere)ma­

chine. 102

xii

List of Tables

2.1 Category information for the Amazon­review dataset. 11

4.1 Accuracy metrics RMSE (↓), recall@20 (↑), ndcg@20 (↑) for

different general recommendation models on different ver­

sions of MovieLens datasets. 88

4.2 Accuracy metrics recall@20 (↑), ndcg@20 (↑) for different

general recommendationmodels on different versions ofAma­

zon datasets. 88

4.3 Accuracy metrics recall@20 (↑), ndcg@20 (↑) for different

general recommendation models on Gowalla and Yelp2018

datasets. 89

4.4 Accuracy metrics recall@K (↑), mrr@K (↑), precision@K ↑

for sequential recommendation datasets. 89

4.5 Categorization of models based on the type of initial node fea­

tures and type of neighbor sampling they perform. 90

4.6 Parameter counts per model, considered by taking the biggest

value available when running authors’ code, number of pa­

rameters related to embedding layers, and their percentage

w.r.t. total parameters. 90

5.1 Number of parameters as a function of embedding dimension. 95

5.2 Training throughput in terms of samples per second, w.r.t.

batch sizewhen using full neighbors set, limiting it to 50 neigh­

bors and limiting to 25 neighbors during aggregation phase. . . 97

xiii

5.3 Training throughput statistics for configurations on DGX­1

(Volta) machine. 100

5.4 Training throughput statistics for configurations onDGX­A100

(Ampere) machine. 101

5.5 Multi­GPU scaling values for the tested configurations. 102

5.6 Math mode speedup values for the tested configurations. . . . 103

5.7 Hardware platform speedup values for the tested configurations.103

xiv

Abstract

In recent years, a new type of deep learning models, Graph Neural Networks

(GNNs), have demonstrated to be a powerful learning paradigm when applied

to problems that can be described via graph data, due to their natural ability to

integrate representations across nodes that are connected via some topological

structure. One of such domains is Recommendation Systems, the majority of

whose data can be naturally represented via graphs. For example, typical item

recommendation datasets can be represented via user­item bipartite graphs,

social recommendation datasets by social networks, and so on. The success­

ful application of GNNs to the field of recommendation, is demonstrated by

the state of the art results achieved on various datasets, making GNNs ex­

tremely appealing in this domain, also from a commercial perspective. How­

ever, the introduction of graph layers and their associated sampling techniques

significantly affects the nature of the calculations that need to be performed

on GPUs, the main computational accelerator used nowadays: something that

hasn’t been investigated so far by any of the architectures in the recommen­

dation literature. This thesis aims to fill this gap by conducting the first sys­

tematic empirical investigation of GNN­based architectures for recommender

systems, focusing on their multi­GPU scalability and precision speed­up prop­

erties, when using different types of hardware.

Chapter 1

Introduction

Recommendation Systems, also known as Recommender Systems is a large

subfield of information technology that deals with software systems that filter

or propose content to users, based on various properties, such as their histori­

cal preferences, items similar to what they are currently viewing or listening,

items that other similar users have liked and many more.

We are exposed to recommendations in almost every major service we use

in our daily life. For example, when watching a video on a video hosting

platform, we are promptly presented with a collection of new videos, similar

to what we either like or have watched recently. When navigating e­commerce

websites, we are presented with suggestions about what could be the item we

are interested in purchasing next or what are the items that go well together

with the currently viewed item. On social media we are recommended which

people might be our potential friends, or suggested influencers to follow, that

promote the topics which we might be interested in, and so on.

In recent years, Deep Learning, a subfield of Artificial Intelligence has de­

veloped methods that have greatly benefitted a variety of fields, among which

Computer Vision and Natural Language Processing. Many tasks of Computer

Vision did see a significant accuracy improvement when using more sophis­

ticated convolutional architectures that greatly exploited the grid nature of

images and videos [51][44][41]. A similar phenomenon has also occurred

Introduction 2

in Natural Language Processing, where architectures based on transformers,

trained on massive corpora of textual data have shown to be more accurate on

majority of the tasks addressed by the field, such as sentence classification,

named entity recognition, questions answering and many more [56][12][32].

The field of Recommendion Systems has also benefited from the advances

in Deep Learning. In fact, traditional recommendation methods have evolved

from being simple matrix­based methods, able to only capture simple linear

interactions between users and items, to include complex, deep interaction

models, aimed to capture higher order and more sophisticated interactions.

Despite the progress, both academic and many commercial deep recommen­

dationmethods continued to rely on the same, simplistic type of datasets, com­

posed of <user, item, feedback> triples, due to their simpler availability. It is

however worth noting that deep architectures generally support the inclusion

of other modalities of information, such as content information, that could be

used to boost recommendation accuracy when such data is available.

Further advancement in Deep Learning, led to a new type of neural net­

works, called Graph Neural Networks (GNNs) to emerge. The main motiva­

tion behind GNNs is that they allow to perform learning over arbitrary input

data topology. This can be viewed as a generalization over more known ap­

proaches that are used to process grid­like data, such Convolutional Neural

Networks in case of image data, and sequential models, used to process se­

quential data, such as text. The introduction of learning approaches that can

work on arbitrary data topology has helped to achieve progress in multiple

fields such as automatic drug discovery [52], molecule analysis [53], road

traffic prediction [11], point clouds [15] and many more. It turns out that

graph structures can be also used to naturally represent the data for the major­

ity of recommendation tasks. In fact, GNNs have recently been successfully

applied to the field of recommendation [54][60][70], beating state of the art

deep learning approaches [20][33].

Despite their success, graph based approaches in recommendation have

Introduction 3

seldom been studied from the performance point of view, which is one of key

points of success of the modern Deep Learning methods. Being able to effi­

ciently train large models on big datasets, requires both specialized hardware

accelerators and optimized software to exploit their capabilities. One of the

most popular and used accelerators are NVIDIA GPUs, which were originally

used as specialized accelerators for computer graphics, supporting, via hard­

ware, mathematical calculations related to graphics, as well as offering anAPI,

called CUDA, to customize the existing functionalities. Thanks to CUDA, it

became possible in the earlier days of modern Deep Learning to take advan­

tage of GPUs, by exploiting the optimized linear algebra routines, that in their

turn allowed to perform parallel computation on large blocks of data, enabling

us to train Deep Learning models on this type of hardware [28].

Motivations behind the work

This work can be viewed as a commercially motivated, exploratory work. The

commercial motivation behind the work, is given by the fact that NVIDIA, in

particular the engineering team of which the thesis author is a part of, is inter­

ested in implementing highly­optimized, state of the art deep learning models

in the recommendation domain, for their Github examples repository1. The

importance of this repository comes from containing and maintaining open

source, reference implementations of models that are both state of the art in

their domains and commercially attractive for industrial clients. The latter is

achieved thanks to the models being highly optimized, “plug­and­play” ex­

amples as well as them being implemented to better use all of the features of

newest NVIDIA GPUs such as multi­node training, Automatic Mixed Preci­

sion (AMP), TensorFloat­32 math mode, XLA and others.
1https://github.com/NVIDIA/DeepLearningExamples

Introduction 4

Implementing a model in a scenario with such a high degree of optimiza­

tion, requires a certain level of cooperation between various teams (e.g. na­

tively implementing certain operators into frameworks or solving critical lower­

level bugs that have negative impact on the model’s performance) and months

of full­time work devoted to testing, profiling and polishing of the model,

to better exploit the available computational resources, on various industrial

hardware setups (e.g. DGX­V100 or DGX­A100). The previous statement

suggests that in order to achieve commercial success, when implementing a

model, the model itself needs, among many other properties, to offer good

performance properties in terms of:

1. GPU utilization: the model needs to utilize a single GPU as efficiently

as possible to justify the customer’s investment into better hardware.

2. Multi­GPU scaling: the model needs to scale well when increasing the

amount of computational resources. This scaling can be both used to

perform training of larger models, or to train the model faster on a fixed

amount of data.

3. Mathmodes speed­up: themodel needs to provide performance speed­

ups when a less precise, but more compact mathmode is being used (e.g.

Automatic Mixed Precision or TensorFloat­32 modes).

which requires a thoughtful literature review, analysis and planning ahead

of time, on which model could potentially satisfy the above criteria, before

even starting its costly implementation. When working with traditional Deep

Learning models, such procedure can be simplified, as generally, those types

of models have been studied and implemented for a longer period of time,

yielding both efficient reference implementations and primitives to build them

in existing frameworks. On the other hand, when working with GNNs, the

novelty of the graph based layers themselves requires new tooling to be used,

in terms of libraries and frameworks, which implies that some of the features

Introduction 5

described in state of the art literature might be either inefficiently, wrongly

or not implemented at all. The latter, plus the fact that graph models in rec­

ommendation tend to be shallow, suggests that when studying performance

properties, we are to prefer simpler models, even toy ones, since they can be

used as a proxy to study the performance of more complex models, without

the actual implementation burden, such as custom layers, mixed code quality

and usage of wrong technologies.

Goals

Considering the previous motivations, the goals this work tries to achieve are:

1. To identify and describe a pool of state of the art graph recommender

models, that have an existing code implementation, provided by their

authors.

2. To characterize the models based on model properties such as model

size, sampling and type of data used, that could possibly affect their

performance.

3. To empirically study the performance properties on a simplified GNN

model, that offers similar model properties to the analyzed state of the

art models.

In the light of these goals, we will additionally perform a critical analysis

on the existing literature of the state of the art graph based models for recom­

mendation systems.

Structure of the work

This work is organized in six chapters:

• Chapter 1: introduction of motivations and goals behind this work.

• Chapter 2: introduction of the recommendation systems field with its

main tasks, datasets, evaluation metrics, models and open problems.

Introduction 6

• Chapter 3: introduction of graph neural networks as an extension of

deep learning over arbitrary structured inputs, description ofmain build­

ing blocks and graph based layers and how to make themwork on larger

graphs.

• Chapter 4: overview on how graph neural networks can be used to

improve recommendation, describing state of the art models and char­

acterizing them from the performance point of view.

• Chapter 5: description of the experimental setup.

• Chapter 6: concluding remarks.

Chapter 2

Recommender Systems

Recommender Systems, also known as Recommendation Systems is a subfield

of information technology that deals with software systems that can filter or

propose content to users based on their preferences.

Historically, the field of recommendation was based on simple matrix

methods (e.g. matrix factorization) to solve the majority of its tasks. With

the recent advancements in Deep Learning, recommendation models have

evolved from being simple matrix­based methods used to capture simple in­

teractions between users and items, to becoming more complex models that

can capture higher order and more sophisticated interactions.

This chapter will be dedicated to describing the problem of recommenda­

tion in terms of possible recommendation task formulations, including com­

mon datasets, metrics and loss functions. We will then briefly cover different

families of classical and early Deep Learning based recommenders. Finally

we will see some open problems that are relevant in this field, namely: cold

start, data sparsity and large embedding tables.

2.1 Introduction

A recommender system could be viewed as a function that given a user, a set of

items and other contextual information in input, would output a ranked list of

2.1 Introduction 8

items that the user would most likely consume. The task of recommendation

itself consists in finding relevant items in an existing collection (e.g. database

of items) and ranking them based on a certain user’s objective (e.g. click,

purchase).

In this section we will first introduce the concept of user feedback and

some recommendation tasks, focusing on those that we will encounter in this

work. We’ll then have an overview of commonly used recommendation datasets,

loss functions that are used in personalized recommendation and finally the

evaluation metrics that are typically used to assess the quality of a recommen­

dation system.

2.1.1 User Feedback

Before describing the common recommendation tasks, it is important to de­

fine the concept of user feedback, which is a key concept of recommendation.

When users perform actions over items on a platform (e.g. an e­commerce site,

a movie review system or a video blogging platform and so on) they provide

implicit or explicit feedback:

• Implicit feedback: implicitly represents user’s preference over items

by taking into consideration their behaviour on the platform, it does not

require any proactive thinking by the user (e.g. user clicks an ad or visits

a page). This type of feedback is generally of a binary nature.

• Explicit feedback: requires the user to proactively think before ex­

pressing their preference over an item (e.g. a user ranks a movie on a

scale from 1 to 5 stars). This type of feedback is of a non­binary nature.

Many recommender systems are centered over implicit feedback as its eas­

ily obtainable, since it indirectly reflects user’s opinion through their observed

behaviour (e.g. by analyzing their browsing history, mouse movements, etc.).

The problem with implicit feedback is however that it’s inherently noisy. For

2.1 Introduction 9

example if a user has watched a movie, we can’t necessarily indicate whether

they have liked it or not. The explicit feedback on the other hand might be

more informative over user’s preferences, however it is not always readily

available as many users might be reluctant to rate the items they consume.

2.1.2 Recommendation Tasks

Based on the available type of feedback we can define different types of rec­

ommendation tasks that can be approached by a recommendation system:

• Click­through rate (CTR) prediction: predicting the probability that

a user will consume an item, characterized by a set of features (e.g. im­

age, text, day of week, position, user features, etc.), namely predicting

P(click|item, user, features) of an implicit feedback occurring.

• Rating prediction: predicting the probability that a user would assign

a certain rating to an item, characterized by a set of features, namely

predicting the P(Rating=r|item, user, features) of assigning, an explicit

feedback, rating r to a given item.

• Sequential prediction: predicting the probability distribution of the

next target item consumed by an user, based on a sequence of previ­

ously consumed items, namely P(Target|sequence, features). Both user

and item sequence could be characterized by an additional set of fea­

tures, besides their ids. If user features are not included, the problem

becomes a generalized (rather than personalized) recommendation.

Side features

As seen from the tasks formulation, the probability of consumption or of rank­

ing is characterized by both the information about user and item in terms of

their ids as well as the features that represent their properties such as age, gen­

der, income and so on for users, and price, color, type, picture, description

2.1 Introduction 10

and so on for items. This last type of user and item features is called side

features (or side information), and as we will see in Section 2.2, families of

models differ by the type of information they use. Content based models rely

on side­information to make the predictions. Collaborative filtering models

make use only of user and item ids in order to make predictions. Hybrid mod­

els on the other hand, combine both ids and side features when estimating the

user’s feedback.

2.1.3 Common datasets

MovieLens

The MovieLens 1 dataset is probably one of the most popular datasets that is

available for recommendation research. The dataset itself was gathered by

the homonymous non­commercial web­based platform used for movie rec­

ommendation, created in 1997. MovieLens data is composed of user, movies

and the ratings users gave to movies, and is available in several versions, that

vary based on the amount of available ratings on a scale from 1 to 5, namely:

• MovieLens 100K: 943 users, 1682 movies and 100000 ratings.

• MovieLens 1M: 6040 users, 3706 movies and 1000209 ratings.

• MovieLens 10M: 69878 users, 10677 movies and 10 million ratings.

• MovieLens 25M: 162000 users, 62000 movies and 25 million ratings.

• MovieLens latest­full: the most recent version (at the time of writing)

that includes 280000 users, 58000 movies and 27 million ratings.

• MovieLens 1B: synthetically generated version of MovieLens that in­

cludes 1 billion ratings.

2.1 Introduction 11

Category Users Items Ratings
Books 8,201,127 1,606,219 25,875,237
Cell Phones & Accessories 2,296,534 223,680 5,929,668
Clothing, Shoes & Jewelry 3,260,278 773,465 25,361,968
Digital Music 490,058 91,236 950,621
Electronics 4,248,431 305,029 11,355,142
Grocery & Gourmet Food 774,095 120,774 1,997,599
Home & Kitchen 2,541,693 282,779 6,543,736
Movies & TV 2,114,748 150,334 6,174,098
Musical Instruments 353,983 65,588 596,095
Office Products 919,512 94,820 1,514,235
Toys & Games 1,352,110 259,290 2,386,102
Total 20,980,320 5,933,184 143,663,229

Table 2.1: Category information for the Amazon­review dataset.

Amazon­review

Amazon­review dataset [35] [19] is another dataset that includes 11 years worth

of user reviews and ratings for different categories of goods that was released

by Amazon in 2016. The dataset consists of both information about user rat­

ings, the reviews and the information about the products in question (e.g. de­

scription, picture). Product categories are unevenly balanced, resulting in a

total of 20,980,320 users, 5,933,184 items and around 143 million ratings. A

more detailed overview of the product categories present in the training set

can be seen in Table 2.1.

Flixster

Flixster, first introduced in [22], is a dataset that was obtained by crawling a

large­scale social network during a period from November 2005 to November

2009, from the homonymous website that allowed users to rate movies and

add friends. Flixster has ratings that can take 10 discrete values in the interval

from 0.5 to 5, with a step of 0.5. The statistics for the dataset are: 147,612

users, 48,794 items, 8,196,077 and 2,538,746 social connections. A common

preprocessing of this dataset was given byMonti in [36], that uses 3,000 users,
1https://grouplens.org/datasets/movielens/

2.1 Introduction 12

3,000 items and has 26,173 ratings.

Douban

Douban dataset, introduced in [34] was collected from the homonymous Chi­

nese platform that allows users to provide ratings and reviews for movies,

books and music on a discrete scale from 1 to 5 and to have friend connec­

tions. The dataset itself contains 129,490 unique users, 58,541 unique movies,

16,830,839 movie ratings and 1,692,952 friendship links between users. A

common preprocessing of this dataset was given by Monti in [36], that uses

3,000 users, 3,000 items and 136,891 ratings.

YahooMusic

YahooMusic dataset, was first introduced in [13] and used as a challenge

dataset for KDD­Cup 2011. The data itself was collected from the Yahoo!

Music platform, over the span of 11 years, from 1999 till 2010. The challenge

introduced two datasets:

1. Track 1: composed of 1,000,990 users, 624,961music items and 262,810,175

ratings.

2. Track 2: composed of 249,012 users, 296,111music items and 61,944,406

ratings.

where ratings were given on a scale from 0 to 100. The musical items include

tracks, albums, artists and genres distributed in a non­uniformway (e.g. tracks

are 81.15% of all musical items). Ratings are also not distributed in an uniform

way (e.g. tracks are 46.85% of reviews).

A common preprocessing of this dataset was given by Monti in [36], that

uses 3,000 users, 3,000 items and 5,335 ratings.

2.1 Introduction 13

2.1.4 Loss functions

Binary loss

Binary Loss is a reformulation of a classification loss that can be used in case

of problems which have implicit feedback. Given a set of positive items D+

and a set of negative items D−, the equation for binary loss is given by:

Binary(D+, D−) = − 1
|D+|

∑
(u,i)∈D+

log(σ(ŷui))−
1

|D−|
∑

(u,j)∈D−

log(1−σ(ŷuj))

where σ is a sigmoid function, defined as:

σ(x) = 1
1 + exp(−x)

Such formulation of the loss, pushes the scores of positive interactions

higher than those of negative ones. This is equivalent to training recall met­

ric, as we’re rewarding the model for recalling the positive interactions. The

problem with such a formulation however is that all the positive interactions

scores are pushed higher than those of all the negative scores, causing unnec­

essary loss penalization on the model’s predictions even if the training recall

metric is perfect. Another problem is also that this loss does not take into

consideration the personalization factor. In fact, the positive and negative

interactions are considered across multiple users at once, as it computes the

sum for positive interactions separately from the negative interactions. The

Bayesian Personalized Ranking Loss that we’ll see next shows how to solve

the before­mentioned problems.

Bayesian Personalized Ranking Loss

Bayesian Personalized Ranking (BPR) Loss [43] is a pairwise personalized

ranking loss used by many recommendation models as an improvement over

the binary loss. Data used by this loss consists of positive and negative pairs

2.1 Introduction 14

(items that user did not consume) of items, where the assumption is that user

consumes positive items and does not consume negative ones, thus expresses

lower to no preference for them. Formally, a training sample is a triple of

form (u, i, j) which indicates that an user u likes an item i over an item j. The

Bayesian formulation of BPR loss aims to maximize the posterior probability:

P (Θ| >u) ∝ P (>u |Θ)P (Θ)

where Θ represents parameters of an arbitrary model class and >u represents

the desired personalized total ranking of all items for user u.

From this posterior probability formulation we can derive an optimization

criterion using maximum posterior estimator:

BPR­OPT(D) = ln P (Θ| >u)

= ln P (>u |Θ)P (Θ)

= ln
∏

(u,i,j)∈D

σ(ŷui − ŷuj)P (Θ)

=
∑

(u,i,j)∈D

ln σ(ŷui − ŷuj) + ln P (Θ)

=
∑

(u,i,j)∈D

ln σ(ŷui − ŷuj) − λΘ∥Θ∥2

whereD = {(u, i, j)|i ∈ I+
u ∧j ∈ I \I+

u } represents the training set where I+
u

denotes the set of items that user u consumed and I \I+
u the set of all the items

that user u did not consume. Additionally, ŷui and ŷuj indicate the predicted

scores of the user u towards items i and j respectively.

2.1.5 Evaluation metrics

RMSE

Root Mean Squared Error (RMSE) is a simple and widely used metric to eval­

uate the accuracy of a model that predicts the value of a continuous variable,

2.1 Introduction 15

such as an explicit feedback (e.g. a rating an user would give to a movie), for

known user­item pairs:

RMSE(r, r̂) =

√√√√ 1
N

N∑
i=1

(ri − r̂i)2

Precision @ K and Recall @ K

We can evaluate a model that outputs continuous values using Root Mean

Squared Error, however in case we would like to evaluate a model that pro­

duces binary output (e.g. relevant/non­relevant or clicked/not clicked), we

need a change of metric to be more effective. Also, as we are dealing with a

recommendation task, we are mostly interested in recommending top­N items

to a user, instead of the entire items list in the system. Thus, the metric we

want to employ should be parameterized by an integer K, which tells us how

many items to take into consideration when computing the metric.

Given a set of top­K recommended items, Precision@K is the proportion

of the recommended items that are relevant:

Pu@K = TPu

TPu + FPu

=
∑K

i=1 relui

K

Precision@K =
∑U

u=1 Pu@K

K

we say that an item is relevant if the itemwas actually consumed in the ground­

truth dataset.

On the other hand, Recall @ K is the proportion of relevant items found

in the top­K recommendations:

Ru@K = TPu

TPu + TNu

=
∑K

i=1 relui

|relu|

Recall@K =
∑U

u=1 Ru@K

K

where |relu| is the total number of consumed items by user u.

2.1 Introduction 16

MAP @ K

Mean Average Precision (MAP) is another metric that’s used to evaluate rec­

ommender systems that work on implicit feedback/binary output that takes

the order of the results list into consideration. In order to compute it, we first

define the concept of average precision.

Given a value K, average precision @ K (AP@K) metric represents the

average of precision values for relevant items from 1 to K:

APu@K =
∑K

i=1 reluiPu@i∑K
i=1 relui

the value of the metric is higher if the recommended items are both relevant

and presented in higher positions of the results list.

Themean average precision at K (MAP@K) is given as themean ofAPu@K

across all the users in the dataset:

MAP@K =
∑U

u=1 APu@K
U

NDCG@K

Normalized Discounted Cumulative Gain (NDCG) is a metric used to evaluate

recommender systems with explicit feedback that allows to quantify the qual­

ity of current ordering of top­K relevant items vs a perfect ordering of top­K

most relevant items.

In order to compute NDCG we first need to define the concept of cumula­

tive gain, which corresponds to the sum of all the relevance scores (i.e. ratings

given to items) up to K, of a top­K recommendations list:

CG@K =
K∑

i=1
reli

Cumulative gain on its own does not take into consideration the ordering of

the resulting items. An ordering discount term could be introduced as items at

2.1 Introduction 17

distant positions in a ranking are generally less influential than at earlier ones.

This results in the discounted cumulative gain metric:

DCG@K =
K∑

i=1

reli
log2(i + 1)

Finally, in order to compare recommenders that potentially return a differ­

ent amount of results, we introduce a normalization term which equals to the

discounted cumulative gain of a perfect order of top­K items, by relevance:

IDCG@K =
K∑

i=1

relideal
i

log2(i + 1)

Taking into consideration all of the previously defined terms, we can com­

pute the normalized discounted cumulative gain using the following formula:

NDCG@K = DCG@K
IDCG@K

MRR@ K

Mean Reciprocal Rank (MRR) is a measure used to evaluate the quality of se­

quential recommenders, or generally the quality of a ranking system, based on

the position of the correctly recommended items in a ranked list. A largeMRR

value indicates that correct recommendations are at the top of the ranking list.

The reciprocal rank (RR) of a list of recommendations provided to a user

u, is defined as the inverse position (called rank) of the first relevant/consumed

item among the first K items in the list:

RRu@K = 1
ranku,1

For example, if we are considering a list of K=5 recommendations, as­

suming that there’s a consumed item within the K recommendations, then

depending on its position, the reciprocal rank can take the following values:

1/1, 1/2, 1/3, 1/4, 1/5.

2.2 Families of Recommenders 18

MRR@K is the average of reciprocal ranks of the correctly­recommended

items across all the users in the dataset:

MRR@K =
∑U

u=1 RRu@K
U

2.2 Families of Recommenders

The literature of recommender systems [2] is vast and is characterized by dif­

ferent academic and industrial approaches that can yield to complex catego­

rizations and taxonomies. In this section wewill give a bird­eye categorization

over main families of recommenders. It is also worth noting that different au­

thors might interpret different families in slightly different ways, in the sub­

sequent categorizations we will try to provide just one single interpretation

focusing on main differences.

2.2.1 Content Based Filtering

Content based filtering methods, as their name suggests, are methods that use

similarities between items’ or users’ “contents”, expressed by the means of

their characteristics (e.g. side information or other features that are not a pure

numerical identifier) to perform recommendation. They operate under the as­

sumption that an user would more likely consume items similar to the items

they have previously consumed. These methods generally try to model the

function:

f(user_features, item_features)

where user features can be for example age, gender, income and item features

can be for example price and color.

Modern content based recommenders typically work by embedding items

to a low­dimensional embedding space. Inside this low­dimensional space,

we can use distance, comparison or similarity functions such as dot­product or

2.2 Families of Recommenders 19

Euclidean distance to find closest items. Those approaches have been partic­

ularly successful in multimedia recommendations, in fact we’ll mention some

of those that can be viewed as content based recommenders.

Deep content based music recommendation [55] paper introduces an au­

tomatic music recommendation system that uses a convolutional neural net­

work (CNN) to produce compact latent representations of mel spectrograms

of user’s liked songs, and suggests to the user songs that are similar to what

the user has listened to.

General image retrieval models, such as the model in “DeepMetric Learn­

ing via Lifted Structured Feature Embedding” [48], DeepID [50] face recog­

nizer, Facebook’s e­commerce product recognizer Groknet [3], can be also

viewed as a content based recommendation models, as they learn to embed

images into a latent space on top of which multiple tasks can be solved, in­

cluding item recommendation.

2.2.2 Collaborative Filtering

Collaborative filtering methods are a family of methods based on similarities

between users. The concept of collaborative filtering was first described in

[16], as an alternative to the existing content based filtering paradigm, where

the authors proposed an effective approach to filter documents in a platform by

the means of user collaboration. The system would record the user’s reactions

to the documents they read and use this information to help other users to filter

particularly interesting or uninteresting documents.

Those methods generally describe both users and items via their ids and

operate under the assumption that users who are similar in their behaviors

would also exhibit similar preferences over items. For example, in a movie

recommendation scenario, whenmaking a prediction about how a useruwould

rate a movie m (rating unknown at the time of query), a collaborative recom­

mender system would first try to find users with similar tastes in movies to

2.2 Families of Recommenders 20

user u (i.e. they rated movies in a similar way), and then try to estimate the

rating based on ratings of its peers. More generally, when trying to predict the

consumption of an item s by a given user u, the likelihood of consuming it is

estimated based on consumption likelihood for uj , users similar to u.

Collaborative filtering models based on learning, model the function:

f(user_id, item_id)

and are composed of two main parts:

1. Embedding: users and items are first embedded, via a learnable em­

bedding transformation, to latent representations, where they could be

better compared.

2. Interaction modeling: historical interactions are reconstructed from

latent representations of users and items, via some interaction function,

which in its turn could be learnable (e.g. a multi layer perceptron) or

not (e.g. an inner product).

We will start our discussion about collaborative filtering models with clas­

sical approaches, such as Matrix Factorization (MF), Factorization Machines

(FM) and Sparse Linear Methods (SLIM) that directly embed user and item

ID into a latent space and model user­item interaction via inner product.

Matrix Factorization

Matrix Factorization (MF) [27] is a classical method to perform collaborative

filtering, that leverages the mathematical concept of matrix factorization to

discover latent features for both users and items, and use those features to

reconstruct the interaction matrix.

GivenU , a set of users and I a set of items, with their respective interaction

matrix R ∈ R|U |×|I|, where some entries can be unknown (e.g. a user didn’t

interact with an item, so the rating is not known) and a hyperparameter k,

2.2 Families of Recommenders 21

indicating the dimensionality of latent features, the goal ofmatrix factorization

is to reconstruct:

R̂ = P × Q⊤

where P ∈ R|U |×k and Q ∈ R|I|×k are latent representations for users and

items respectively. The formula can be also written in a non­vectorized way

to highlight the contributions by P and Q:

R̂ui = Q⊤i Pu

The training objective becomes a minimization of reconstruction mean

squared error between R̂ and R:

min
∑

(u,i)|Rui ̸=0
(Rui − R̂ui)2

where different variations of the model can include different regularization

terms to be applied to the factorized matrices.

The matrix factorization approach can be also described as a deep learning

problem in modern frameworks by simply embedding user and item ids to a

latent space via embedding layers, and applying an inner product to obtain the

reconstructed interaction matrix.

Factorization Machines

Factorization Machines (FM) [42] is a model that combines Support Vector

Machines (SVM) with factorization techniques. They were proposed during

the days when SVM were a wide­spread technique to be applied on Machine

Learning problems. The main limitation of SVM was that they were too ex­

pensive to be applied on data with huge sparsity, such as recommender systems

datasets.

Given x ∈ Rn, an input vector composed of 4 subvectors: one­hot user id,

one­hot item id, historical ratings and last rated item one­hot, the equation for

2.2 Families of Recommenders 22

factorization machine model is defined as:

ŷ(x) = w0 +
n∑

i=1
wixi +

n∑
i=1

n∑
j=i+1

(v⊤i vj)xixj

where learnable model parameters are w ∈ Rn+1 and V ∈ Rn×k. The de­

scribed formula for the model is said to be a 2­way factorization machine (or

FM of degree 2), because it captures all single and pairwise interactions be­

tween variables. Weights wi are used to model the strength of i­th variable.

Dot product v⊤i vj is used to model interaction between i­th and j­th variable by

means of factorization. Factorization allows the number of parameters to be n

instead of n2 when modeling variable interactions weights (i.e. we don’t need

to define a grid of weights w ∈ Rn×n). The formula for d­way factorization

machines can be found in the original work under section III.D .

It is also worth noticing that thanks to the interaction factorization, the

factorization machines are linear in complexity, allowing them to easily scale

on very large datasets.

Sparse Linear Models

Sparse Linear Methods (SLIM) [39] is another work that proposed a modifi­

cation of linear models to work on sparse learnable coefficients. The simplest

model of such type can be defined as a sparse aggregation of items purchased

by a user ui:

âij = a⊤i wj

which allows us to estimate the recommendation score aij of an user ui and

an unconsumed item tj . The equation itself uses wj , a sparse column vector

of aggregation coefficients, which is a part of W ∈ Rn×n a sparse matrix of

aggregation coefficients. It is worth noting that given a ∈ Rn, a binary con­

sumption vector for the user ui, the term âi = a⊤i W of the previous equation

represents the recommendation scores over all items consumed by ui. Sorting

2.2 Families of Recommenders 23

Source: “Neural Collaborative Filtering”

Figure 2.1: Architecture of Neural Collaborative Filtering model.

âi in decreasing order, allows us to perform a top­N items recommendation.

For details on how to train the model, please refer to IV.B of [39] .

—

Due to their simplicity, classical approaches have the limitation of only

being able to capture simple and linear interactions. Recent, deep learning

based approaches use more powerful interaction functions that can learn more

complex and nonlinear relationships between users and items to overcome this

problem. We will see two representatives of such models: Neural Collabora­

tive Filtering and VAE­CF.

Neural Collaborative Filtering

Neural Collaborative Filtering (NCF or NeuroCF) [21] can be seen as a deep

generalization of the Matrix Factorization approach illustrated before. The

main concept that NCF extends is the interaction function, which the authors

replace with an arbitrarily deep MLP. Using the same notation as in Matrix

Factorization, we can define the equation of NCF as:

R̂ui = MLP(Qi, Pu)

2.2 Families of Recommenders 24

Figure 2.2: Architecture of VAE­CF model.

where Qi and Pu are embeddings of items and users respectively, that can be

obtained by the means of a learnable look­up table (i.e. embedding layers in

modern deep learning frameworks).

Such extension is trained using reconstruction error and can yield to more

powerful interactions being learned by the deep network. A visualization of

the architecture can be seen at Figure 2.1.

VAE­CF

Variational Autoencoder for Collaborative Filtering (VAE­CF) [31] uses a

Variational Autoencoder to reconstruct interaction vectors (items they have

consumed) for users. Following VAE [25], the model receives in input a ma­

trix of user­item interactions (submatrix in case of mini­batching). Encoder

module is used to encode the interactions matrix into mean and variance vec­

tors for each user, from which their latent representation will be sampled. De­

coder module is used to decode the latent representation into a distribution

over items that the user has interacted with. As in previous approaches, this

distribution can be used to train with known ground truth entries of the user’s

interaction history. A visualization of the architecture can be seen in Figure

2.2.

2.2 Families of Recommenders 25

Source: “Wide & Deep Learning for Recommender Systems”

Figure 2.3: Combination of wide models (left), expressed as generalized
linear models, that work as a memorization module for numerical features, to
capture interactions between them, and deep models (right) that process

categorical features in a similar fashion as NCF does. Wide & Deep (center)
merges the two types of models into a single one.

2.2.3 Hybrid Approaches

Hybrid Approaches aim at solving the drawbacks of both content­based and

collaborative filtering models (e.g. the cold­start problem which will be de­

scribed later in this chapter) by combining the two types of approaches to­

gether. Namely, any model that mixes both ids and content features can be

viewed as hybrid. As those models use both user/item ids and user/item fea­

tures the function they are trying to model becomes:

f(user_id, user_features, item_id, item_features)

In this section we will describe some modern, deep learning based hybrid

models: Wide­n­Deep, DeepFM and DLRM.

Wide­n­Deep

Wide­n­Deep [9] can be viewed as a neural generalization of the factorization

machine. It is composed of two types of networks: wide and deep.

The wide component of the model is a generalized linear model that mod­

els the function:

y = w⊤x + b

2.2 Families of Recommenders 26

where x = [x1, ..., xd] is a vector of d numerical features that can be both

raw and transformed features. A possible transformation of features can be

defined for categorical features (e.g. language, gender), called cross­product

transformation:

ϕk(x) =
d∏

i=1
xcki

i

where cki ∈ {0, 1} is a boolean variable that indicates whether i­th feature is

a part of k­th transoformation ϕk. Such transformation captures interaction

between categorical features and adds non­linearity to the linear model.

The deep component of the model can be seen as an extension of NCF

architecture that supports any kind of categorical variables, not only ids, as in

NCF case. It is used tomodel the interaction between categorical variables that

would otherwise be too expensive to perform on the wide part. The training is

performed jointly on wide and deep parts by using two different optimization

algorithms (FTRL on wide part, AdaGrad on deep part) and formulating it as

a logistic regression problem (predicting a click event). A visual summary of

the architecture, as well as the models it’s composed of can be seen in Figure

2.3.

DeepFM

DeepFM [17], similarly to Wide and Deep, combines factorization machines

and deep neural networks. Similarly to Wide­n­Deep, it uses a deep neural

network to model high­order feature interactions and a factorization machine

for lower order ones (as opposed to generalized linear model from Wide­n­

Deep). The key difference between the two however is that DeepFM does

not use any manual feature engineering such as the cross­product transforma­

tions. It instead purely relies on the learning procedure to learn the appropriate

features.

The factorization machine component, which as previously explained in

Section 2.2.2, is used to capture pairwise (2nd order) feature interactions as

2.2 Families of Recommenders 27

Source: “https://developer.nvidia.com/blog/optimizing­dlrm­on­nvidia­gpus/”

Figure 2.4: Architecture of Deep Learning Recommendation Model
(DLRM).

inner product of feature vectors. Additionally, w⊤x is used to capture the first

order feature interactions (importance of features themselves).

The deep part on the other hand is used to learn generic, higher­order

feature interactions in a deep learning fashion, without complicating or hard­

coding the interaction order dimensionality in the original, factorization ma­

chine formula.

DLRM

Deep Learning Recommendation Model (DLRM) [38] is a giant, production­

scale ready recommender by Facebook, that combines principles from both

collaborative filtering and predictive analytics. Similarly to previously de­

scribed models, DLRM processes its inputs by using two different compo­

nents: embedding tables and MLPs.

Embedding tables are used in DLRM to encode all the categorical features

to dense representations. Multi­layer perceptrons on the other hand are used to

transform numerical features by means of a learnable component. A pairwise

interaction operation (e.g. outer product) is used to compute second order in­

teractions between both categorical features and processed numerical features.

Jointly, the computed interactions are concatenated with processed numerical

2.2 Families of Recommenders 28

features and passed to another MLP whose goal is to predict a probability of

consumption. A summary of the architecture can be seen in Figure 2.4.

Despite the simplicity of the architecture, it can contain up to tens of tril­

lions of parameters [37], magnutude of orders more than the famous GPT­3

175 billion parameter model for deep language generation. This required au­

thors to introduce a hybrid­parallelism schema, that would allow the model to

run in a model­parallel fashion (running parts of the same model over multiple

workers) for the embedding tables, and in a data­parallel fashion for the MLPs

(running the same version of the model on different data).

2.2.4 Sequential

The previously defined approaches generally ignore temporal dynamics and

sequences of interactions when modeling user behavior. Sequential recom­

menders formulate the recommendation problem as a task of predicting con­

sumption of an item, given a history of previously consumed items. For ex­

ample, given a sequence of played songs, what song the user might like to play

next, or given a sequence of purchases, which item will the user be interested

in purchasing. Generally, they model the function:

P(target|sequence, features)

Former, classical approaches, based on Markov Decision Process (MDP)

would treat recommendation generation based on previous items as a sequen­

tial optimization problem [45]. Recent methods based on deep learning were

initially using recurrent neural networks. The key idea in deep learning based

methods is to embed the whole user behaviour sequence into a fixed size rep­

resentation, which combined with other features such as user profile features,

target item features would help predicting the probability of consumption. We

will go over three sequential models: DIN, DIEN and SIM.

2.2 Families of Recommenders 29

Source: “Deep Interest Network for Click­Through Rate Prediction”

Figure 2.5: Deep Interest Network architecture first embeds all the given
user, item sequence, target item and context features via appropriate

embedding tables. It then uses an attention mechanism to produce scores
between target item and historical items, and uses those scores as coefficients
for a sum of historical items, producing a single representation from the full

sequence. All the embeddings are then concatenated and passed to a
classification head to predict likelihood of consumption.

DIN

Deep Interest Network (DIN) [74] is a simple deep learning based sequential

recommender that works by performing a weighted sum pooling on a given,

fixed length, sequence of user’s consumption history. The weight coefficients

for the sum are estimated by using an attention mechanism between each item

in the sequence and a given target item. Lastly the pooled representation,

together with user’s features and target’s features are passed to a classifica­

tion head that outputs a probability of consumption. A schematic overview of

DIN’s architecture is provided in Figure 2.5.

DIEN

Deep Interest Evolution Network (DIEN) [73] is an extension of the DIN

model that instead of a simple weighted sum pooling, uses a recurrent neu­

ral network to produce a summary representation of the historical sequence.

The recurrent network is based on GRU and AUGRU layers, where the latter

2.2 Families of Recommenders 30

Source: “Deep Interest Evolution Network for Click­Through Rate Prediction”

Figure 2.6: DIEN architecture is an extension of DIN, where a stack of
recurrent cells is added to handle historical sequences of variable lengths. As
in DIN, an attention mechanism between target embeddings and intermediate
representations of individual items in the sequence is used to better model

the whole sequence embedding. Intermediate sequential item representations
are further refined via an auxiliary loss with negative sampling at each time
step, to learn sequentiality patterns between items at consequent time­steps

in a self­supervised way.

are a modification of GRU that includes an attention mechanism. Addition­

ally, the training uses an auxiliary loss applied to the intermediate recurrent

network’s representations at each time step of the sequence. This auxiliary

loss acts as a self­supervised schema to learn the sequentiality between the

items in the sequence, as it is applied to consequent steps. A more detailed,

visual description of the architecture is provided in Figure 2.6.

SIM

Search­based user Interest Modeling (SIM) [40] is a further extension over

DIEN model that uses a two stage architecture to overcome memory related

problems that arise when feeding large sequences to the recurrent layers. In­

deed, DIN used a simple sum pooling to encode the sequence, which didn’t re­

quire any particular calculation aside from attention to be performed. DIEN’s

recurrent network on the other hand, requires keeping the internals of all the

2.2 Families of Recommenders 31

Source: “Search­based User Interest Modeling with Lifelong Sequential Behavior Data for Click­Through Rate

Prediction”

Figure 2.7: SIM architecture. Here the first stage is depicted with Hard and
Soft search.

recurrent layers to both perform the backward pass, drastically increasing the

memory usage. Thus, to make an efficient usage of the two previous models,

SIM splits the user’s historical sequence into “long” and “short” subsequences

and processes them separately in two stages. More specifically, a first stage

called General Search Unit (GSU) uses a DIN model to select a set of top­K

items similar to target item, from a long historical sequence of items. The

top­K most similar items are then passed to a second, more computationally

expensive stage, called Exact Search Unit (ESU). The Exact Search Unit first

builds a single representation out of the top­K items by using a multi­head at­

tention mechanism between target item’s representation and the top­K items.

Then, the relatively expensive DIEN block is used to build a representation

for short­term historical behaviors. Finally, all the produced representations

(pooled top­K, pooled short, target and user’s features) are concatenated and

passed to a classification head as in previous models. A visual summary of

the architecture is provided in Figure 2.7.

2.3 Problems 32

2.3 Problems

There are open problems in the recommendation field that might apply to the

previously described architectures.

2.3.1 Cold start

Cold start is a problem that occurs when the system needs to provide infer­

ences about users, items or communities for which insufficient information

has been gathered (e.g. users who have rated only a few items, items that were

not bought by anyone yet), making it hard for the system to output meaning­

ful recommendations. One way of mitigating this problem is to use hybrid

recommendation, which would use collaborative filtering for “warm” predic­

tions (the ones that have enough interactions) and content­based filtering for

“cold” ones (that do not have enough of them yet). This is possible because

content­based filtering does not require any prior interaction information to

recommend items.

2.3.2 Data sparsity

Data sparsity problem arises from the fact that users generally interact with

a smaller fraction of all the available items, meaning that the system would

have insufficient interaction data to cluster, compromising the overall quality

of the recommendations [46].

2.3.3 Embedding table sizes

Collaborative filtering recommender systems are characterized by having huge

embedding tables, used to encode categorical variables’ values (e.g. user ids,

item ids) to the latent space. For example, DLRM model implementation by

NVIDIA2 has checkpoints that can occupy around 140GB most of which are
2https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/

Recommendation/DLRM

2.3 Problems 33

due to embedding tables.

2.3.4 Overspecialization

Overspecialization is a problem that occurs when users are prevented from

discovering new items due to the recommendations resembling those already

known to the user or even to those defined in their profiles (e.g. a user has

brought a smartphone and gets recommended the same smartphone, or an­

other one which the user was already familiar with). Approaches that deal

with this problem might be considered a bit risky, as they try to sacrifice the

recommendation relevance in favor of fresh discoveries [1].

Chapter 3

Graph Neural Networks

Graph Neural Networks (GNNs) are a family of neural networks that work

on inputs organized in a graph structure (e.g. social networks, road traffic

maps, molecule graphs). Their goal is to learn a suitable representation of

the input graph data, in terms of node features, while having access to the

connectivity structure of the graph (i.e. neighbors information). The learned

node representations are then usually passed to an appropriate task head for

the problem we’re trying to solve.

The need of a new family on neural networks arises from the primary chal­

lenge we might encounter when trying to apply deep learning methods on

graph­structured data, that is, typical approaches are defined for precise input

structures. For example, recurrent neural networks (RNNs) assume working

with data organized in sequences (e.g. text, temporal phenomenon) and con­

volutional neural networks (CNNs) assume working with grid­structured data

(e.g. images, videos). Both mentioned data types could be seen as a particular

case of graph structure. However, in order for deep neural networks to work

on generalized graph structures we need to use different types of deep learning

architectures.

In the following sections we are going to see the main concepts that drive

the properties and architectures of graph neural networks, the commonly used

types of graph neural network modules, solving different problems on graphs,

3.1 Main concepts 35

Figure 3.1: An image (a) can be represented by a graph (b) with a connected
neighborhood of at most 8 nodes, where each node has RGB features

associated to it.

Figure 3.2: Different types of commonly used data. Graph data can be seen
as a generalization over both grid and sequence data, where the prior

structure can be arbitrarily defined.

ways to improve the scalability on bigger sized datasets.

3.1 Main concepts

In the following section we are going to describe the main concepts that en­

able graph neural networks: the nature of non­Euclidean data, permutation

equivariance and invariance, graph neighborhoods, concepts of neural mes­

sage passing.

3.1.1 Non­Euclidean space data

Majority of the existing deep learning approaches are built to be used with

Euclidean or grid­like structures, such as images, videos or textual data. Im­

ages for example can be seen as a function on the Euclidean space (plane),

3.1 Main concepts 36

sampled on a grid, allowing us to exploit their local connectivity and to use

Convolutional Neural Networks that exploit this prior about the data. Textual

data can be also represented as a sequence on a Euclidean plane, on which we

also have structural notions of “before” and “after” when representing the text

that NLP models exploit.

On the other hand, data like social networks in computational social sci­

ences, sensor networks in communications, molecule structure in computa­

tional chemistry, meshed surfaces in computer graphics and many more, can

be all seen as examples of non­Euclidean space data. The non­Euclidean na­

ture here generally means that there are no common systems of coordinates,

data priors or common structures that represent such data [6]. Therefore, ba­

sic approaches that work on Euclidean data, fail to work on its generalization,

non­Euclidean case, where prior structure can be arbitrarily represented (see

Figure 3.2).

It is also worth noting how the Euclidean data can be seen as a particular

case of non­Euclidean data. For example, an image grid of N × N pixels can

be viewed as a graph with N2 nodes and at most 8 edges per node (connect­

ing to the nearest grid of pixels) with each node associated a feature vector

representing the image’s pixel intensity, as seen in Figure 3.1.

3.1.2 Permutation equivariance and invariance

When applying deep learning methods to graph data, a common and reason­

able idea that we can think of would be that of applying a neural network,

such as a multi­layer perceptron (MLP) to the adjacency matrix of the graph

as input. With such approach, we could attempt to generate graph embeddings

eG from a concatenation of rows of a flattened adjacency matrix A:

eG = MLP([A[1] ⊕ A[2]A ⊕ ... ⊕ A[|V |]])

3.1 Main concepts 37

Figure 3.3: (a) 1­hop and 2­hop neighborhoods of a given target node A. (b)
Tree structure corresponding to the 2­hop neighborhood of node A. Tree
structures of neighborhoods implicitly represent computational graphs that

can be exploited when designing different types of GNN layers.

This approach would be dependent on the order of nodes that was used in the

adjacency matrix. In other words, if we had to feed the same graph structure

but with nodes passed in a different order, then the embedding of the graph

would be different. In fact, such an approach is said to be not permutation

invariant.

The key property to design neural networks that work over graphs is that

they should be permutation invariant or equivariant. More formally, a func­

tion f that operates on an adjacency matrix A as input, should satisfy one of

two following properties:

f(PAP⊤) = f(A) (Permutation Invariance)

f(PAP⊤) = Pf(A) (Permutation Equivariance)

where P is a permutation matrix. Intuitively, permutation invariance means

that the function f does not depend on the ordering of rows/columns of the

adjacency matrix. Permutation equivariance, similarly, means that the output

of f is permuted in a consistent way when the adjacency matrix is permuted.

3.1.3 Graph neighborhood

Given a graph G, the neighborhood of a given node u is the set containing all

the nodes of the graph that are adjacent to u, denoted in this work as N (u)

3.1 Main concepts 38

Source: “Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu”

Figure 3.4: For a given input graph and a target node A, the new feature
representations can be computed by taking representations from A’s

neighbors’ {B, C, D} aggregated representations, whose features in their turn
are computed by taking their neighbors’ representations. This visualization
represents two layers of a message passing model and can be represented
using a tree structure by unfolding neighborhoods around target the node.

or Nu. Despite N (u) being a set of direct neighbors of u, some authors also

include u itself into the neighborhood set. An extension of this concept is the

k­hop neighborhood, which denotes a set that contains all the nodes distant at

most k connections from a given node u, as visible in Figure 3.3 (a).

Another property of neighborhoods is that they implicitly define tree struc­

tures with root being the given node, as can be seen in Figure 3.3 (b). This

fact will be exploited in further sections when defining message passing, as

well as different types of GNN layers.

3.1.4 Neural message passing

When working with graphs, we are more specifically dealing with information

that is associated to their nodes, in terms of node features, and to the graph

connectivity, in terms of edges, as defined in Section 3.1.1. In order for graph

neural networks models to learn effective node features/representations, we

need to introduce the concept of neural message passing.

At its core, neural message passing assumes that each node u ∈ V in

a given graph G = (V , E), is associated a feature vector xu ∈ Rd, where

d is some feature dimension. In order to update a node u’s feature vector,

3.1 Main concepts 39

producing a new feature vector h(k)
u , we need to be able to collect feature

information coming from the node’s neighbors, as well as to integrate this

information, to produce a new representation for the node. In terms ofmessage

passing, we need two functions AGGREGATE and UPDATE that can be used

in the following way to produce a new representation:

h(k+1)
u = UPDATE(k)

(
h(k)

u ,AGGREGATE(k)({h(k)
v , ∀v ∈ N (u)})

)
h(k+1)

u = UPDATE(k)
(
h(k)

u , m(k)
N (u)

)
where AGGREGATE and UPDATE are both arbitrary differentiable functions

(e.g. neural networks) and m(k)
N (u) is said to be a “message” that is aggregated

from u’s neighborhood N (u).

Note: since the AGGREGATE operation operates on sets as inputs, GNNs

defined in this way are permutation equivariant by design.

The superscript (k) is used to indicate embeddings and the functions at

different layers/iterations of message passing. In fact, at each layer/iteration

k of this procedure, the AGGREGATE function takes in input a set of em­

beddings of node u’s neighbors N (u), {h(k)
v , ∀v ∈ N (u)}, and constructs a

messagem(k)
N (u) based on the aggregated neighbor information. The UPDATE

function then combines this message m(k)
N (u) with the previous node u’s em­

bedding h(k−1)
u to generate an updated embedding h(k)

u .

After performing K iterations of message passing, we can use the final

representation at step K to define embeddings for each node as:

zu = h(K)
u , ∀u ∈ V

Final representation of the nodes computed in the previously described

way allows the model to encode both feature­based and structural information.

Structural information is the information that implicitly comes from graph

connectivity, such as degrees of all the nodes in a k­hop neighborhood, which

3.2 Types of GNNs 40

finds usages in fields like molecular property prediction or recommender sys­

tems, to use implicit graph structure that other, non­graph models would ig­

nore or have to explicitly make use of.

Feature­based information is the information captured from the actual

node embeddings. Thanks to thewaymessage passing is defined, nodes aggre­

gate features incoming from their neighbors, allowing them to encode features

from the entire k­hop neighborhood, similar to what Convolutional Neural

Networks do with local spatial information.

As stated before, since GNNs perform local feature aggregation over the

graph structure, the number of layers in a GNN is a hyperparameter that has

effect on howmany neighborhood hops the network will perform from a single

central node. Setting this hyperparameter to a high value (i.e. more than 6)

can actually result in over smoothing of features, due to too many layers being

stacked.

3.2 Types of GNNs

Having described some of the theoretical motivations behind graph neural net­

works in the previous section, including an abstract definition of neural mes­

sage passing, in this section we will describe how different types of concrete

GNN layers can be defined in terms of both neighborhood aggregation and

update functions.

When talking about different types of GNN layers, what mostly changes

between the variants is the way UPDATE and AGGREGATE functions are

defined. Sometimes also the choice of neighbor sampling type or the choice

of non­linearity operations affect the layer. Typical examples for update func­

tions include mean, max, neural network and recurrent neural network, to be

applied to the incoming message and to previous node’s state. For aggrega­

tion functions there is typically mean pooling, max pooling, normalized sum

pooling and neural network, applied to all the incoming information from the

3.2 Types of GNNs 41

neighbor nodes.

An early work, for example, Graph Convolutional Networks [26] (de­

scribed later) uses a normalized sum of neighbor embeddings as aggregation

function and incorporates update function inside aggregation by adding a self­

loop. Graph Attention Networks [57] work uses attention weights inside the

aggregation function to weight the sum based on an attention score associated

to each pair of nodes.

3.2.1 Simple Neighborhood Aggregation

Given a graph G = (V , E) with N nodes (|V | = N) and its adjacency ma­

trix A ∈ BN×N , the simplest kind of a GNN layer that uses neighborhood

aggregation to aggregate features associated with a node i could be defined

as:

h(l+1)
i = σ

 ∑
j∈N (i)

Wh
(l)
j

 (3.1)

Here we assume that hi ∈ RK is a feature vector associated with i­th graph

node and W ∈ RK×D is a learnable transformation matrix that maps feature

dimensions from K to D, producing a new node representation h∗i ∈ RD.

Noting that an adjacency matrix A of a graph represents neighborhood

situation for each node, we could define Ã = A + IN to extend the adjacency

matrix with self­loops and rewrite (3.1) to a more compact and efficiently

computable vector form:

H(l+1) = σ(ÃWH(l)) (3.2)

3.2.2 Graph Convolutional Networks

Graph Convolution (GCN) [26] extends the neighborhood aggregation con­

cept described in the previous section by incorporating a normalization factor,

which is computed based on nodes’ degrees. In particular it uses a normal­

ization matrix S = D̃−
1
2 ÃD̃−

1
2 , where D̃ is the degree matrix with diagonal

3.2 Types of GNNs 42

D̃ii = ∑
j Ãij . The role of this new degree matrix is to weight the incom­

ing embeddings of neighbors vj by the factor 1√
deg(vi)deg(vj)

, when performing

the aggregation process for node vi. We can write the formula for computing

aggregation of a GCN, based on 3.1:

h
(l+1)
i = σ

 ∑
j∈Ni

1
Sij

W(l)h
(l)
j


The normalization induced by S is called symmetric normalization in the

GNN literature. There exists also “left” normalization, that corresponds to

normalization of messages by each node’s in­degrees, which is equivalent to

averaging the received messages: 1
deg(vi) .

3.2.3 Graph Attention Networks

Graph Attention Networks (GAT) [57] are another generalization over the

graph convolutional networks, where the influence of different neighboring

nodes is weighted by a dynamically calculated attention score, rather than

with a constant factor during the aggregation operation. The feature update

formula can be described by the following equation:

z(l)
i = W(l)h(l)

i

e
(l)
ij = LReLU(a(l)(z(l)

i ||z(l)
j))

α
(l)
ij =

exp(e(l)
ij)∑

k∈Ni
exp(e(l)

ik)

h(l+1)
i = σ

 ∑
j∈Ni

α
(l)
ij z(l)

j



where initially the feature vector h(l)
i ∈ RD is mapped to a D′ dimensional

vector via the transformation W(l). Then, a function a(l) : RD′ × RD′ →

R, called “attention module”, is applied pairwise on the central node and its

neighbors to estimate an attention coefficient. This function a(l) can be an

3.2 Types of GNNs 43

arbitrarily complex function such as a neural network. Finally, a distribution

of attention coefficients over all the neighbors of the node is computed and

used as a normalization score in the aggregation.

3.2.4 GraphSage

In case of graph neural networks the existing approaches can be classified into

inductive and transductive approaches:

• Transductive: all the nodes evaluated at the testing time were observed

also at the training time.

• Inductive: nodes present at testing time were not necessarily present in

the training data.

GraphSAGE [18] work can be seen as an inductive extension over the

Graph Convolutional Networks and Graph Attention Networks. The idea of

their approach is to consider only a fixed size neighborhood by sampling the

full neighborhood of a given node when performing aggregation step for it,

which allows to both make the aggregation step more efficient as well as to

work on nodes unseen in the training set as the full graph Laplacian matrix is

no longer required to perform aggregation.

Additionally to this inductive extension, the work also introduces amethod

to learn node representations in an unsupervised setting by defining the fol­

lowing loss function:

JG(zu) = −log(σ(z⊤u zv)) − Q · Evn∼Pn(v)log(σ(−z⊤u zvn))

where v is a node that co­occurs near u on a fixed­length random walk and

Pn a negative sampling distribution with Q negative samples. Such loss func­

tion encourages nearby nodes to have similar representations while enforcing

highly distinct representations for more distant nodes.

3.3 Problems on graphs 44

Figure 3.5: Various common levels of tasks solvable on graph structures by
machine learning approaches that work on node embeddings. Node­level
tasks consist in predicting the property of an individual node (e.g. age of an

user in a social network graph). Edge­level tasks consist in predicting
property or an existence of an edge (e.g. rating that someone gave to a

product, whether a transaction happened or not). Graph­level tasks consist in
predicting a property of an entire graph (e.g. type of a molecule given a

molecule graph).

3.3 Problems on graphs

Having described how basic types of layers allow to compute new represen­

tations of node embeddings when exploiting the graph structure, this section

will briefly describe general techniques that can be applied to the node em­

beddings to solve different tasks at node, edge and graph level, as shown in

Figure 3.5.

3.3.1 Node­level tasks

A standard way to tackle a node­level problem when using a graph neural

network is to simply apply a task head (e.g. classification head) on top of

the learned node features, for each node we’re interested in. The motivation

behind this is that after applying graph layers, the representations generated

by them generally do not need to keep the information about graph structure

anymore, and can be treated as simple vector data processable by any classical

machine­learning or deep learning model that works on vectors. Below is an

example of a linear classifier applied to the embeddings of nodes, {ei|i ∈

3.3 Problems on graphs 45

Vtrain} learned by a GNN:

si = W(clf)ei + b(clf)

L =
∑

i∈Vtrain
−log(softmax(si))

3.3.2 Edge classification

Edge­level tasks on the other hand require to first compute a pairwise interac­

tion function between node embeddings, involved in the edges, to generate an

edge embedding:

euv = interaction(hu, hv)

Interaction functions generally used in the literature are dot product (es­

pecially in recommendation tasks), concatenation and MLP:

euv = h⊤u hv (Dot product)

euv = hu ∥ hv (Concatenation)

euv = MLP(hu ∥ hv) (MLP)

The embedding euv can then be used to perform tasks at edge­level, such

as edge classification, by applying the appropriate task head to it.

In Chapter 4, we will see more examples of how edge classification is

performed when dealing with recommender systems based on graph neural

networks.

3.3.3 Graph­level tasks

Finally, graph­level tasks generally require embeddings to from all the nodes

of the graph to make a prediction [69][7][4]. In order to combine node features

across the whole graph, a readout operation is used:

ŷ = READOUT({hv|v ∈ V})

3.4 Scaling to larger graphs 46

where each hv is assumed to be the representation of node v at last graph

layer and READOUT can be an arbitrarily complex function, such as a neural

network or as simple as a mean, defined below:

ŷ = 1
|V |

∑
v∈V

h(K)
v

As for previous tasks, the final embedding ŷ can be used further by a spe­

cialized task head, trained appropriately.

3.4 Scaling to larger graphs

Real world graphs are typically large in size, both in terms of nodes and edges.

For example, typical recommendation systems are composed by 100M to 1B

users and 10M to 1B products; social networks too can include from 300M to

3B users; Microsoft academic graph [47] consists of 120M nodes representing

authors and papers. Graphs of such sizes are too large to fit on a GPU due to

memory limitations, even on higher end GPUs1. General techniques such as

mini­batching that work on typical deep learning models, cannot be naively

applied to GNNs due to the inherent structure of both graphs and GNN layers.

Graph layers work by aggregating features over their neighbors to produce

better representations, thus when sampling naively nodes from a graph, there

is no guarantee that the sampled subgraphs will be connected at all, preventing

us from effectively training the model.

This section will describe some techniques that can be used to increase

model performance and to allow training them on larger graphs. The described

techniques can be divided into two families for which we will report only a

couple of works:

• Subgraphmessage passing: performing message passing over smaller

subgraphs of the original graph.
1At the time of writing, NVIDIA’s A100 80GB GPU is considered to be the largest GPU

available on the market

3.4 Scaling to larger graphs 47

• Model simplification: simplifying the feature preprocessing operation

performed by the graph model.

3.4.1 Subgraph message passing

Subgraph message passing techniques are based on performing message pass­

ing over smaller subgraphs of the original large graph. These techniques

mainly differ by the way they construct the subgraph.

GraphSAGE

GraphSAGE, explained previously in 3.2.4, was a work that changed the way

we train GNNs and how we create mini batches of a graph.

The main observation behind GraphSAGE is that in order to generate the

representation for a central node, a K­layer GNN needs to consider only a

K­hop neighborhood structure and its features, ignoring the rest of the graph.

This observation can be used in generating mini­batches by considering them

as sets of M different nodes. We can generate the embeddings for M nodes

in the mini­batch by using M computational graphs (see tree structure in 3.3),

which are more likely to fit on a GPU. In other words, using this paradigm,

we can build mini­batches by first sampling M nodes and then placing their

K­hop neighborhood computation graphs on a GPU, averaging the loss over

M nodes in the training phase.

However, there’s still a problem due to neighborhoods introducing an ex­

ponential amount of nodes by each new hop on the computational graph (i.e.

number of nodes in computational graphs is exponential in its depth). This

problem can be alleviated by rendering the computational graph more com­

pact, using neighborhood sampling techniques.

We can construct the computational graph by sampling at most Hk neigh­

bors at each hop k, where k ∈ {1..K}. This way, the K­th layer of the GNN

will involve at most
∏K

k=1 Hk leaf nodes in the computational graph. Indeed,

3.4 Scaling to larger graphs 48

while this would still result in an exponential computational graph, the growth

can now be bounded by a set of hyperparameters H = {H1, ..., HK}, which

in practice are set to have smaller fan­outs.

The introduction ofH fan­outs hyperparameters introduces a trade­off be­

tween the amount of nodes to sample at each layer and the training stability,

as using smallerHks would result in an unstable training due to high variance.

Lastly, the choice of sampling technique for sampling neighbor nodes is

also important as not all the neighbors might have the same importance to­

wards the central node’s embeddings. Some of the typically used sampling

techniques in the literature are:

• Random sampling: randomly sample neighbors of a node, by assign­

ing a uniform probability to every neighbor to be sampled. This results

in a fast but not very effective approach, as it might sample too many

unimportant nodes.

• Weighted random sampling: randomly sample neighbors of a node,

while assigning a weight to each neighbor when performing the sam­

pling.

• Random walk with restart: sample neighbors of a node with highest

“random walk with restart” score Ri, that indicates the probability of

ending up in node i when starting from a central node. A random walk

with restart is a normal random walk on a graph, that also includes a

probability to restart the walk from the central node.

Clustering

As mentioned previously for GraphSAGE, the size of a computational graph

becomes exponentially large with respect to the number of GNN layers we use.

Additionally to the computational graph size, most of the computation is re­

dundant in case nodes within the mini­batch have many neighbors in common.

There are two ways of dealing with this situation: Hierarchical Aggregation

3.4 Scaling to larger graphs 49

Source: “Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu”

Figure 3.6: Induced partitions G1, ...,G3 of a given graph. Note that the gray
edges indicate edges that are excluded from the sampling of vanilla

Cluster­GCN, as those are edges that connect different clusters. “Stochastic
Multiple Partitions” on the other hand might include them when forming

bigger partitions across multiple induced graphs.

Graphs [23] and Cluster­GCN [10]. We will only focus on the Cluster­GCN

approach.

Themotivation behind Cluster­GCN is that in full batch setting, layer­wise

node embedding update allows to reuse embeddings from the previous layer,

significantly reducing the computational redundancy introduced by neighbor

sampling (i.e. aggregation is linear in the number of graph edges). Of course,

layer­wise update on the full graph is still unfeasible on the larger graph due

to limited amount of GPU memory as already described. However, we could

sample a smaller subgraph of the former, large graph and perform efficient

layer­wise node embeddings update over this smaller subgraph.

In order to be effective, the smaller subgraph should reflect the edge con­

nectivity structure of the large graph as close as possible, allowing to generate

embeddings similar to the ones in the original graph. As a matter of fact, real

world graphs exhibit a community/clustering structure, allowing us to decom­

pose a large graph into many smaller subgraphs. Those community structures

can be sampled as subgraphs that would ideally retain essential local connec­

tivity patterns of the original graph.

The vanilla Cluster­GCN approach consists of two steps:

1. Preprocessing: given a large graph G = (V , E), partition V into C

3.4 Scaling to larger graphs 50

groups V1, ...,VC , with any community detection algorithms present in

literature, such as Louvain Method [5] or METIS [24]. The partitioned

node groups V1, ...,VC induce C subgraphs G1 = (V1, E1), ...,GC =

(VC , EC) where Ec = {(u, v)|u, v ∈ VC} (i.e. induced subgraphs are

disconnected between each other, as seen in Figure 3.6).

2. Mini­batch training: for each mini­batch, randomly sample a node

group VC , construct the induced graph GC = (VC , EC) and apply the

GNN, layer­wise, on the whole graph GC as usual.

There are however a couple of issues with the vanilla Cluster­GCN. First,

the induced subgraph removes the between­groups links, which can affect the

model’s accuracy. Second, the sampled node group tends to only cover a

small, concentrated portion of the entire data, making them not diverse enough

to represent the entire graph structure, leading to unreliable gradients (high

variance in gradients) and thus slower SGD convergence.

A solution to the vanilla Cluster­GCN problems is called by the authors as

“Stochastic Multiple Partitions”, which consists in aggregating multiple node

groups into the individual induced subgraph (i.e. connect multiple induced

subgraphs between themselves).

Summarizing the computational efficiency, GraphSAGE samples H nodes

per layer, which for M nodes would result in O(MHK) cost in terms of both

memory and compute time for the message passing. Cluster­GCN on the other

hand requires O(KMDavg) memory and compute time for the message pass­

ing, where Davg is the average node degree. Cluster­GCN thus results to be

linear with respect to K, unlike GraphSAGE which is exponential. In prac­

tice, however, as K tends to be small for real world graphs, GraphSAGE is

preferred due to its flexibility.

3.4 Scaling to larger graphs 51

3.4.2 Model simplification

Instead of focusing on the graph dimension, we can try to focus on model

dimension and attempt to improve graph neural networks’ performance by

simplifying the model in terms of operations it uses. In this section we will

describe the way Simple Graph Convolution [63] simplifies the graph convo­

lution operation.

Recall that the original GCN formulation as described in 3.2.2 can be writ­

ten as:

h
(l+1)
i = ReLU

 1
|Ni|

∑
j∈Ni

W (k)h
(k)
j


or more compactly in vector form as:

H(k=1) = ReLU(ÃH(k)W⊤
k)

where Ã = D−1/2AD−1/2 is a reformulation of the Ã = D−1A that works

better empirically, and D−1 the inverse of degree matrix, such that:

D−1
v,v = 1/|Nv|

Now, if we remove the non­linearity from the above formula, then we end up

with the following formulation:

H(k+1) = ÃH(k)W⊤
k

that we can unroll to obtain:

H(k+1) = ÃH(k)W⊤
k = ... = ÃKXW⊤

where W = Wk−1...W0 is a single linear weight matrix. ÃK = Ã × ... × Ã is

a K times exponentiation of the adjacency matrix which represents a K­hop

neighborhood connectivity with a given central node and X the initial node

3.4 Scaling to larger graphs 52

feature matrix. The key benefit here is that we can precompute X̃ = ÃKX

offline on a CPU and only use X̃ at the training time, transforming the graph

layer into a simple linear projector: H(K) = X̃W⊤.

As for the advantages of this approach, the computational cost of linearly

transforming an individual node embedding, h(k)
v = WX̃v, for M nodes is

linear inM . When compared to neighborhood sampling, this formulation does

not require us to construct giant computational graphs. The advantage is also

over ClusterGCN, as this way nodes can be sampled at random in the mini­

batches, due to the aggregation step being done offline, before performing the

actual training computation on GPU.

The main disadvantage, on the other hand, comes from the fact that a

simpler model is less expressive, and thus would result in a worse accuracy

when compared to more complex deep learning models. However, in real

world, simplified GCNs tend to work well compared to original GCNs in

semi­supervised classification benchmarks due to a phenomenon called graph

homophily: nodes that are connected by edges end to share same target labels

(e.g. two papers more likely share the same category if they city each other,

two users tend to like same movie types if they are connected on a social net­

work).

Chapter 4

Graph Recommender Systems

In previous chapters we have seen an overview of Recommender Systems as

a field and Graph Neural Networks as an approach to work on data structured

via graphs. In this chapter we are first going to see how recommendation tasks

can be formulated as problems on graphs and how different, graph based, ar­

chitectures can be then leveraged to solve the problems in question. Lastly,

we will characterize the models based on some structural properties, such as

model size or the type of sampling, that can affect their performance proper­

ties. We will focus only on architectures that offer an official, working code

implementation to both narrow down the scope of models, and to make sure

we can extract some information relevant to the characterization.

4.1 Data Representation

When working with recommendation datasets, we generally can observe four

main types of structures:

• User­item interactions: usually amatrix, describing implicit (e.g. click­

ing) or explicit (e.g. rating) interactions between users and items.

• Consumption sequence: describing a sequence of consequent con­

sumption events.

4.1 Data Representation 54

Source: “Graph Neural Networks in Recommender Systems: A Survey”

Figure 4.1: Commonly used recommender systems data types can be
naturally represented via graph structures.

• Social relationship graph: describing an interaction relationship be­

tween users.

• Knowledge graph of an item: describing properties of items.

From the Figure 4.1 we can indeed see that recommendation data naturally fits

graph structures. In fact, user­item interactions can be represented as a user­

item bipartite graph, where on one side we have users and on the other we

have items, while edges represent consumption/ranking event of an item by

an user. Sequences of consumption can be represented as a sequence graph,

where nodes represent items and edges represent ordering between the relative

consumption events. Social relationships are represented as a social interac­

tion graph, where nodes represent users and edges represent an interaction

between them. Finally, the knowledge graph already represents properties of

items via a graph.

Graph­based recommendation field provides a vast literature with a rich

choice of models for the before­mentioned data types [54][65][68][49]. Au­

thors of [67] survey summarize the main families of models and provide a

4.2 General recommendation 55

taxonomy for majority of them. Adopting their taxonomy, subsequent sec­

tions of this chapter will be dedicated to describing the applicability of graph

neural networks to solve general and sequential recommendation tasks.

4.2 General recommendation

General recommendation makes the assumption that user preferences are in­

variant over time. This family can be split into subfamilies based on different

types of data used. When no side information is used, the models operate on

a simple bipartite user­item graph. When social network information is used,

the GNN techniques can leverage on social graph’s user­to­user data in or­

der to build better user representations. Lastly, item­to­item information of a

knowledge graph can be also used by some approaches in order to enhance

item representations.

Within this recommendation setting, the rating prediction task could be

divided into two subtasks:

• Transductive Rating Prediction: users and items appearing in the test­

ing graph are also observed in the training graph. Prior collaborative

filtering models would primarily concentrate on this task.

• Inductive Rating Prediction: users and items appearing at test time

were not necessarily present in the training graph, however, when ap­

pearing in test graph, we have access to their ratings, and can use them

to make predictions, without retraining the model, as was the case of

traditional collaborative filtering models.

GCN based models mainly address the above tasks by learning both trans­

ductive and inductive node representations.

4.2 General recommendation 56

Figure 4.2: General structure of graph­based general recommenders. (A)
Initial embeddings are produced from user and item ids. (B) A Graph Neural
Network is used to refine the initial embeddings by aggregating information
over node neighbors. (C) Embeddings produced via the graph model are

passed to the task head which uses them as dense vectors.

4.2.1 Structure

Graph based general recommendation architectures are typically composed of

the following parts:

1. Embeddings: ids associated to items and users present in the graph are

first embedded by an embedding layer to produce initial, dense node

representations.

2. Graph model: a graph neural network is applied on top of the initial

node representations to produce new node representations taking advan­

tage of information being structured as a graph.

3. Task head: is applied on top of learned user and item node embeddings

together with an appropriate loss (e.g. BPR ranking loss).

General recommendation literature focuses on second part, graph model, of

the described components.

4.2.2 Architectures

Further in this section will be a list of selected architectures used for general

recommendation. Initially, a pool of 27 models, as found in [67], was consid­

ered. To narrow down the amount of architectures, a selection procedure was

4.2 General recommendation 57

Source: “Graph Convolutional Matrix Completion”

Figure 4.3: Rating matrix M of user­items interactions is represented as a
bipartite­graph with edges indicating user­preferences. A graph auto­encoder
module is used to learn node embeddings from which new, unobserved,
edges are reconstructed. This way, the problem is reduced to a link
prediction task via an end­to­end trainable graph­autoencoder.

used to consider only the models whose code was publicly available for repro­

ducibility. Additionally, on top of the publicly available code, code that did

not run or had no clear usage instructions would lead the model to be ignored

in our report.

The reported models will be divided into two categories, based on the type

of input graph data: bipartite graph only and social network graph plus bipar­

tite graph, meaning that social network is to be used to augment user repre­

sentations.

Models for bipartite graph only include: GC­MC, SpectralCF, STAR­

GCN, NGCF, LightGCN, LR­GCCF, MCCF, DGCF and DGCF.

While themodels that also include social network data are: DiffNet, GraphRec,

DANSER and DiffNet++.

GC­MC

Graph Convolutional Matrix Completion (GC­MC) [54] was one of the ear­

liest models for the recommendation task that used graph neural networks.

The idea of this work was to solve the matrix completion task from features

extracted via a graph auto­encoder module based on differentiable message

4.2 General recommendation 58

passing over bipartite user­item interaction graph. As mentioned before, the

interactionmatrix gets transformed into a bipartite graph, on top of which node

embeddings get learned via graph auto­encoder. Those node embeddings, for

both items and users, are then used to solve a link prediction task, trainable in

an end­to­end fashion.

Practically, initial node embeddings are used by GC­MC via a bilinear

decoder, where Qr is a trainable matrix for each ranking value (i.e. 1 to 5)

of shape E × E and E is dimensionality of user and items node embeddings,

to reconstruct the interaction matrix M̂ij , in which probabilities of a certain

ranking are given by

P (M̂ij = r) = exp(u⊤i Qrvj)∑
s∈R exp(u⊤i Qsvj)

Negative log likelihood of predicted ratings M̂ij is minimized at the posi­

tions of real ratings:

L = −
∑

i,j;Ωi,j=1

R∑
r=1

I[Mij = r] log P (M̂ij = r)

where Ω is a binary matrix that serves as a mask for observed ratings, such

that ones occur at indices i, j of observed ratings and zeros of unobserved.

A summary schema for GC­MC architecture is shown in Figure 4.3.

SpectralCF

SpectralCF [72] was another early work that would leverage the spectral con­

volution operation to directly learn latent users and items factors from spectral

domain.

Given Xu and Xi user and item representations respectively, a spectral

4.2 General recommendation 59

Source: “STAR­GCN: Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems”

Figure 4.4: Summary of the STAR­GCN model architecture.

convolution operation to produce new representations could be defined as:

XK
u

XK
i

 = σ

(UU⊤ + UΛU⊤)

XK−1
u

XK−1
i

 ΘK−1


where Θ is a parameter matrix of the operation, U a matrix of eigenvectors

and Λ a vector of eigenvalues of graph laplacian matrix respectively. A block

of such spectral convolutions would be stacked together to form a deeper net­

work.

STAR­GCN

STAR­GCN [71] is a multi­block architecture that uses a stack of L GCN

encoder­decoder modules, as shown in Figure 4.4. Encoder component is used

to generate new latent node representations by encoding neighborhood infor­

mation together with input node features. Decoder component on the other

hand is used to recover input node embeddings given the latent representations

produced by encoder. Representations obtained via the encoder are trained on

a task­specific loss, while the reconstructions obtained via decoder are trained

via a reconstruction loss.

In order to tackle the cold start problem and to learn embeddings that are

generalizable to new nodes beyond the train set, the authors propose to use

an initial embedding table where a percentage (e.g. 20%) of whole input em­

beddings is masked at random, by having their values set to zero. Training

the network would learn to reconstruct those masked embeddings based on

4.2 General recommendation 60

Source: “Neural Graph Collaborative Filtering”

Figure 4.5: Summary of the NGCF model architecture. Initial
representations e0

u1 and e0
i4 are refined with multiple embedding propagation

layers, this corresponds to a propagation over a 3­hop neighborhood.
Produced embeddings are then concatenated together and finally passed to

the task head.

neighborhood information. In a testing scenario instead, those embeddings

for unknown nodes would be initialized with zeros and iteratively refined by

L modules of the network.

In their paper, the authors had also discovered that GCN­based models

would leak labels during training. This would occur because the neighbor­

hood aggregation operator is applied on a bipartite graph where ground­truth

(known from train data) user­item ratings are used to build the edges, leaking

the labels into the graph structure andmaking themodel behave as r = fθ(x, r)

instead of r = fθ(x).

To avoid this leakage issue, authors provide a sample­and­remove training

strategy, according to which a fixed portion of edges would be removed from

training graph at batch sampling time, before using it for training the model.

4.2 General recommendation 61

Source: “Neural Graph Collaborative Filtering”

Figure 4.6: Illustration of a third order embedding propagation for a user u1.

NGCF

Neural Graph Collaborative Filtering (NGCF) [60] can be seen as a gener­

alization of typical collaborative filtering algorithms that are based on em­

bedding layer plus interaction modeling, for example SVD++. It employs a

similar architecture to GC­MC where the graph model however, has a depth

of 3, allowing it aggregate information over a 3­hop neighborhood, also called

third­order propagation (a better illustration can be seen in Figure 4.6).

User and item embeddings are refined between the hop blocks by an element­

wise product between item and user embeddings inside the messages:

mu←i = 1√
|Nu|

√
|Ni|

(W1ei + W2(ei ⊙ eu))

this makes the message dependent on affinity between ei and eu, increasing

the message passing ability from similar items.

A stack of three such blocks is used and the final embeddings per block

are concatenated into a single embedding before being passed to the task head,

as seen in summary Figure 4.5.

LightGCN

LightGCN [20] architecture is based on simplifying the design of GCN, which

is an essential component for collaborative filtering. Authors simplify the

4.2 General recommendation 62

Source: “LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation”

Figure 4.7: Summary of the LightGCN model architecture.

graph convolution operation by removing the non­linearity activation func­

tion, reducing the whole model to a single set of parameters to apply, while

leaving the neighborhood aggregation component, ending up with the follow­

ing embedding update formula:

eK
u =

∑
i∈Nu

1√
|Nu|

√
|Ni|

eK−1
i

eK
i =

∑
u∈Ni

1√
|Nu|

√
|Ni|

eK−1
u

where the only trainable parameters of the model are initial embeddings e0
u for

all users and e0
i for all items.

It is worth noting that LightGCN only aggregates neighborhood nodes,

without integrating information from the node itself. This choice is made be­

cause the self­connections generally need to be treated as a special case of

aggregation operation. Additionally, authors show that their proposed feature

concatenation strategy used before the task head, already has the same effect

as adding self­connections.

Before being passed to task head, features from different layers, function­

ing as a simple neighborhood aggregator, are combined together as a linear

4.2 General recommendation 63

Source: “Revisiting Graph based Collaborative Filtering: A Linear Residual Graph Convolutional Network

Approach”

Figure 4.8: Summary of the LR­GCCF model architecture.

combination:

eu =
K∑

k=0
αkek

u

ei =
K∑

k=0
αkek

i

where αk is a layer specific parameter that authors set to 1/(K + 1) for sim­

plicity. A summary of the architecture can be found at Figure 4.7.

LR­GCCF

LR­GCCF [8] works similarly to LightGCN, by removing non­linearity, and

by using a residual network. The difference with LightGCN however is the

aggregation step, which uses self­loops in the embedding update and keeps a

weight matrix for each layer:

eK
u = (1

|Nu|
eK−1

u +
∑

i∈Nu

1
NuNi

eK−1
i)W K−1

eK
i = (1

|Ni|
eK−1

i +
∑

u∈Ni

1
NuNi

eK−1
u)W K−1

Additionally, residual connections are applied after every layer via:

r̂K
ui = r̂K−1

ui + < eK
u , eK

i >

Finally, the representation at last layer, r̂ui gets used as final embedding to be

passed to the task head, as seen in summary of the architecture in Figure 4.8.

4.2 General recommendation 64

Source: “Multi­Component Graph Convolutional Collaborative Filtering”

Figure 4.9: Summary of Multi­Component Graph Convolutional
Collaborative Filtering (MCCF) architecture. The example shows how final
rating prediction for user U1 consuming item I4 is calculated via decomposer

and combiner modules.

MCCF

Multi­Component Graph Convolutional Collaborative Filtering (MCCF) [62]

was a work that aimed at decomposing user intent when consuming a certain

item: different users might consume items based on different motivations (e.g.

low price items will most likely be purchased by group of people who look

for low price rather than by someone who cares more about appearance).

The proposed architecture introduces two blocks to achieve its goals:

1. Decomposer: whose role is to decompose graph edges between users

and items to identify latent components hiddenwithin the edge/consumption

event.

2. Combiner: whose role is to recombine latent components to obtain em­

beddings to be used for predictions.

The main assumption of the architecture is that the user­item interaction

graph is driven by M latent components, each responsible for different inter­

action motivations.

Decomposer block is used to model M different consumption intents of

user­item interactions bymeans ofM transformationmatricesW = {W1, ..., WM}

and Q = {Q1, ..., QM}, for users and items respectively. Given an item i, its

4.2 General recommendation 65

m­th latent component can be computed via:

hi
m = Qmei

similarly for an user u:

su
m = Wmeu

Using those two transformations, we can obtain for each item i a set {hi
m}M

m=1

and for each user u a set {su
m}M

m=1 of embeddings produced by different latent

motivations. A key insight here is that a user u does not need to aggregate

information about all their consumed items in order to describe the m­th com­

ponent. This comes from the assumption that each component m is a latent

motivation that is responsible only for a subset of total consumptions. The

possibility of user u purchasing item i based on the m­th latent component

can be formulated via a node­level attention mechanism as:

eui
m = attnode(su

m, hi
m; m) = σ(a⊤m · [su

m||hi
m])

where attnode is used to perform node­level attention and can be any deep

neural network. This possibility eui
m is normalized over items via a softmax to

produce weights coefficients

αui
m = softmax(eui

m) = exp (eui
m)∑

j∈Nu
exp (euj

m)

Finally, m­th item­specific components can be aggregated over all items to

learn m­th item­aggregated component zu
m for user u:

zu
m = σ

 ∑
i∈Nu

αui
m · hi

m


So each user uwill haveM item­aggregated components {zu

m}M
m=1 associated

with them, that will be used to learn final user embeddings.

4.2 General recommendation 66

The motivation behind the combiner block is that different latent compo­

nents, produced by decomposer, can have different contributions towards the

learned user embeddings, as the user can have multiple (one or more) different

motivations when making a consumption. To tackle the fact that motivation

contributions can be different, a component­level attention mechanism is used

to learn the importance of different item­aggregated components (component­

level attention). Component­level attention takes M item­aggregated user

u’s components {zu
m}M

m=1 as input and learns to weight each item­aggregated

component zu
m via:

(βu
1 , ..., βu

M) = attcom(zu
1 , ..., zu

M)

where attcom is a deep neural network which is used to perform attention at

latent component level.

Finally, composer block uses the component­level attention scores to pro­

duce final user representation via:

zu =
M∑

m=1
βu

m · zu
m

Item­representation process is performed in a similar way and the sum­

mary of the whole architecture can be seen in Figure 4.9.

DGCF

Deoscillated Graph Collaborative Filtering (DGCF) [33] work observes and

provides solutions to different problems present in existing graph­based rec­

ommenders that use more than one layer:

1. Oscillation: problem that occurs when multiple layers are stacked and

applied on a bipartite graph. What happens practically is that, for exam­

ple, 1­hop neighbors of users are all items, while 2­hop neighbors are all

users, which implies that aggregating direct neighbors. Consequently,

4.2 General recommendation 67

Source: “Deoscillated Adaptive Graph Collaborative Filtering”

Figure 4.10: Left: Propagation of information propagation to node u4
between NGCF and DGCF architectures. Right: DGCF architecture

summary.

users only receive information from items and vice­versa.

2. Varying locality: is a property of density of local structures in a bi­

partite graph. It intuitively can be viewed as the total number of nodes

that are covered at K­th hop from a given central node, when applying

a K­layer network on top of it.

3. Fixed propagation pattern: happens when propagation layers induce

redundant information to be propagated across multiple layers, multi­

ple times. Due to oscillation, information will eventually get back to

the original node and redundantly propagated from it, duplicating the

amount of information.

Authors propose to solve the oscillation problem by means of a cross­hop

propagation (CHP) layer, that changes the bipartite structure to a regular graph.

Node embedding equation becomes:

e(l)
u =

∑
j∈Ñu

α
(l)
j pje(l−1)

j

where Ñu is an extended neighbors set that includes a cross­hop neighbor­

hood, pj is a normalization factor and α
(l)
j is an adaptive locality weight coef­

ficient of node j, learned at training time.

4.2 General recommendation 68

Before the CHP layer, DGCF authors place locality­adaptive (LA) layers

that adaptively control propagation process for each node via α
(l)
j coefficient

from the previous equation. Intuitively this layer assigns an influencing factor

between 0 and 1 to each node before performing the propagation and which is

computed as:

α
(l)
j = σ(w(l)

LA)

where w(l)
LA ∈ R|U |+|I| is a trainable parameter vector for l­th LA layer. An­

other effect of the locality­adaptive layer is the introduction of layer­wise

adaptivity, that allows to propagate information in amore efficient, non­redundant

way, by acting like a gate.

After theL­th layer propagation, embeddings are averaged together across

layers to construct final embeddings used for prediction:

E∗ = 1
L + 1

L∑
l=0

E(l)

Final summary of the architecture for Deoscillated Graph Collaborative Fil­

tering can be seen in Figure 4.10.

DGCF

DisentangledGraphCollaborative Filtering (DGCF) [61], similarly toMCCF,

focuses on disentangling user­item relationships in order to find different fac­

tors in user intents. Similarly to MCCF, DGCF uses two key components to

achieve such disentanglement:

1. Graph disentanglingmodule: whose role is to slice each user and item

embedding into chunks, each of which is coupled with an intent, and

then provide a routing mechanism into the graph neural network to dis­

entangle the interaction graph.

2. Independence modeling module: which acts as a distance correlation

regularizer to encourage independence of individual intents.

4.2 General recommendation 69

Source: “Disentangled Graph Collaborative Filtering”

Figure 4.11: Disentangled Graph CF architecture summary. Interaction
graph is decomposed into multiple intent­aware graphs, whose adjacency
matrices Aki

are learned during training with their relative intent­aware
embedding chunks. Final representations for intent­aware embeddings are
further decorrelated via a distance correlation loss used in alternation with

BPR loss during training.

As a part of graph disentangling module, the embeddings for user/item

IDs are separated into M chunks, randomly initialized, each associated with

a different intent:

u = (u1, ..., uM)

Authors note that using a single transformation matrix is not sufficient to

capture a variety of intents and defineS = {S1, ..., SM}, a set of scorematrices

for M latent intents, where Sm(u, i) denotes interaction between user u and

item i due to intent m. Such a set of matrices yields a score vector:

S(u, i) = S1(u, i), ..., SM(u, i)

over M latent intents, initialized as:

S(u, i) = (1, ..., 1)

assuming an equal intent contribution at the start of training.

As mentioned before, Sm matrices can be seen as adjacency matrices of

an intent­aware graph, with {uk, ik|u ∈ U , i ∈ I} being its initial features.

4.2 General recommendation 70

On such a graph, embeddings can be aggregated by only considering the k­

th feature portion related to the appropriate intent, which authors call intent­

aware embeddings:

e(l)
ku = g(e(l−1)

ku , {e(l−1)
ki |i ∈ Nu})

Intent­aware graph’s adjacency matrix on the other hand is obtained by a

more complicated procedure described in section 3.1.3 of [61] and omitted for

simplicity in this work.

Finally, Independence Modeling Module is used to enforce difference be­

tween different chunked representations associated with intents, as well as to

avoid redundancy between different intents (i.e. to avoid uk′ being recon­

structable from other ks different from k′). This can be formulated as a loss

term:

lossind =
K∑

k=1

K∑
k′=k+1

dCor(Ek, Ek′)

where dCor(Ek, Ek′) is a distance correlation between chunks k and k′ of

all embeddings present in the graph. During the model optimization phase,

pairwise BPR loss used for the task is alternated with lossind to provide un­

correlated user and item representations. A more detailed summary on the

architecture is available at Figure 4.11.

DiffNet

DiffNet [65] was one of the first approaches that combined traditional user­

item bipartite graph with social network data to enhance user representations.

Social network data is used to build a model of deep influence propagation,

that simulates how users are influenced by recursive social diffusion process

(i.e. how users are influenced by other users when consuming items).

The main difference between this and previously explained interaction­

graph onlymodels is that here item representations obtained via bipartite graph

need to somehow be merged together with user representations present in both

4.2 General recommendation 71

Source: “A Neural Influence Diffusion Model for Social Recommendation”

Figure 4.12: Summary of DiffNet architecture. Side information for both
user and item initial representations is produced by a Fusion stage, that takes
user/item side features together with their initial embeddings. Afterwards,
user’s social representation is refined via a Social Diffusion process, while

item representations are refined via interaction graph.

bipartite and social graphs.

DiffNet solves the merging problem by means of a Social Diffusion op­

eration, which performs aggregations over social graph to iteratively refine

feature representations for user nodes, in a process called social diffusionmod­

eling. Finally, the user embedding to be passed to the task head together with

item embeddings, is given by user representations from social diffusion mod­

eling procedure hK
u and the sum of normalized item representations consumed

by the user:

eu = hK
u +

∑
i∈Nu

vi

|Nu|

where Nu are the neighbors, representing items consumed by user u in the

bipartite graph.

As in former models, final rating, is estimated by taking a product between

user and item embeddings:

r̂ui = v⊤i eu

Additionally Fusion layers are used to merge side information (e.g. age,

gender, income, etc.), together with initial embeddings produced by embed­

ding layers for both users and items. A Fusion layer can be implemented by

a simple MLP whose input is a concatenation of side and initial embeddings

4.2 General recommendation 72

Source: “DiffNet++: A Neural Influence and Interest Diffusion Network for Social Recommendation”

Figure 4.13: Summary of DiffNet++ model architecture. Node­level
attention is used to assign weights in the aggregation phase in each graph.

Graph­level attention is used to fuse interest graph and social graph
representations together.

over the feature axis. A visual summary of the model’s architecture is pro­

vided at Figure 4.12.

DiffNet++

DiffNet++[64] improves the original DiffNet model by introducing attention

mechanism and an interest diffusion model to the already existing social diffu­

sion model. Interest diffusion’s goal is to exploit propagation on the bipartite

interaction graph to learn better item representations, as opposed to only ex­

ploiting social graph propagation in the original DiffNet architecture.

As in DiffNet, initial user and item representations, u0
a andv0

i are produced

by combining the relative initial embeddings and their side information via a

Fusion procedure.

Interest diffusion procedure is used to learn item representations vk
i by

performing an aggregation with a depth K on bipartite user­item interaction

graph:
ṽk+1

i =
∑

a∈Ni

ηk+1
ia uk

a

vk+1
i = ṽk+1

i + vk
i

4.2 General recommendation 73

where ηk+1
ia are attention coefficients between users and items.

User representations on the other hand, are influenced by both social influ­

ence diffusion and item interest diffusion procedures. Social diffusion, like in

DiffNet, takes initial user representation u0
a and performsK aggregation steps

over the social graph, computing p̃k+1
a with the aid of an user­user attention

mechanism:

p̃k+1
a =

∑
b∈Sa

αk+1
ab uk

b

Item contribution to user a’s embedding, is computed in a similar fashion by:

q̃k+1
a =

∑
i∈Nu

βk+1
ai vk

i

Finally, user’s embedding uses both contributions to update current user

representation ũk
a via the following formula:

uk+1
a = uk

a + (γk+1
a1 p̃k+1

a + γk+1
a2 q̃k+1

a)

where γk+1
a1 and γk+1

a2 are graph­level attention coefficients that are learned

at training time to weight contributions from influence and interest diffusion

procedures for individual users.

Prediction of final rating is ultimately performed by concatenating repre­

sentations of users and items at each step of diffusion procedures:

u∗a = [u0
a||u1

a||...||uK
a]

v∗i = [v0
i ||v1

i ||...||vK
i]

r̂ai = u∗Ta v∗i

Final summary of the architecture can be seen at Figure 4.13.

4.2 General recommendation 74

Source: “Graph Neural Networks for Social Recommendation”

Figure 4.14: Summary of GraphRec architecture, composed by item
modeling, user modeling and rating prediction. Both modeling components
use attention mechanism to better learn embeddings. User modeling includes
a refinement of user embeddings via a social aggregation of features based

on social graph.

GraphRec

GraphRec [14] was another work that attempted to add a simple social graph

extension to the already existing bipartite graph approaches. Compared to

DiffNet and DiffNet++ approaches, GraphRec is a more straight­forward ex­

tension, as it only adds an additional social aggregation head to the user mod­

eling stage, combining user features generated from both bipartite and social

graphs.

Item aggregation is performed as already described in other graph­based

recommendation models, with an addition of attention mechanism to better

weight item contributions (i.e. the (va, ui) item­user pair):

hI
i = σ

W ·
∑

a∈Nu

αiaxia + b


where αai is an attention weight computed by a deep neural network and xia

is an opinion­aware representation for ui user that takes into consideration va

4.2 General recommendation 75

Source: “Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in

Recommender Systems”

Figure 4.15: Summary of DANSER architecture.

item embeddings and opinion rating dense vector er, computed as:

xia = MLP(qa ⊕ er)

Social aggregation is performed in an analogous way but taking into con­

sideration embeddings of neighbors of users in the social graph, producing a

vector for each user ui denoted by hS
i .

Lastly, user latent factors (final user embeddings) are computed by passing

a concatenation of item aggregation and social aggregation user features to an

l­layer MLP:
c1 = hS

i ⊕ hI
i

hi = σ (Wl · cl−1 + bl)

As for the item modeling, item’s features are learned via aggregation of

user neighbors in an analogous way as item aggregation is done for users,

producing final item representations zj for item j. A final summary schema

of the architecture can be seen in Figure 4.14.

4.2 General recommendation 76

Source: “Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in

Recommender Systems”

Figure 4.16: Two types of social effects, homophily effect and influence
effect that affect user’s decision on one item.

DANSER

Dual Graph Attention Networks for Deep Latent Representation of Multi­

faceted Social Effects in Recommender Systems (DANSER) [66] was yet an­

other early work that attempted to include user social graph information to the

already existing bipartite user­item graph schema by including an attention

mechanism and a policy­based fusion strategy based on contextual multi­head

bandit to weight interactions over social effects.

DANSERworks by first introducing an item­item relationship graph, con­

structed from the bipartite graph by selecting items that are similar in terms

of number of users who have clicked both of them, thresholded by a factor.

Then it computes user­based item embedding via xu user latent factor, item­

based user embedding via yi item latent factor, user­specific embedding pu

and item­specific embedding qi. Next, Dual Graph Attention (GAT) layers

are used to capture:

1. Social homophily: a static user preference factor p∗u.

2. Social influence: a dynamic, context aware, user preference factorm∗u.

3. Item to item homophily: a static item preference factor q∗i .

4.3 Sequential recommendation 77

4. Item to item influence: a dynamic, context aware, item preference fac­

tor n∗i .

which can be intuitively visualized at Figure 4.16. The four outputs of four

GAT layers are then passed to four interaction MLPs, called Pairwise Neural

Interaction layers, that compute an interaction score based on different pair­

wise attributes (denoted as s1, s2, s3, s4), as seen in Figure 4.15.

A Policy­based fusion layer then fuses s1, s2, s3, s4 into a single represen­

tation s, where the sum coefficients are calculated by the means of a stochastic

policy gradient algorithm (for further information consult Policy­Based Fu­

sion Layer section of [66]).

Finally, the probability estimation of an user u clicking an item i can be

estimated as usually by:

r̂ui = MLP(s)

where MLP can be an arbitrarily complex neural network trained using cross­

entropy loss for implicit feedback, or mean squared loss for explicit feedback.

A complete summary over the model’s architecture can be seen in Figure 4.15.

4.3 Sequential recommendation

Sequential recommendation has the core idea to capture transition patterns

in items in order to perform the next item recommendation task. Many of

the approaches of this family work on behavior sequences produced by users,

thus this family of models generally functions by first constructing sequence

graphs with the associated item features and then applying a GNN technique

on it to produce representations for the prediction task.

Constructing session graphs can be done in different ways, however a com­

mon way is to model a session s as a directed graph Gs = (Vs, Es) such

that each node represents an item vs,i ∈ V , where V = {v1, ..., vm} is a

set of all unique items across all sessions, and s = [vs,1, ..., vs,n] is a list of

4.3 Sequential recommendation 78

Source: “Graph Neural Networks in Recommender Systems: A Survey”

Figure 4.17: General structure of graph­based sequential recommenders.

all the items consumed during the session. Edges are constructed such that

(vs,i−1, vs,i) ∈ Es iff user clicks item vs,i after item vs,i−1 in the session s.

4.3.1 Structure

As for theGeneral recommendation case, sequential recommendation approach

can be described by a general high­level schema:

1. Sequence graph generation: before applying any graph based meth­

ods, the sequence data needs to be transformed into an appropriate se­

quence graph. Different architectures can perform this step differently,

for example adding edges between several consecutive items rather than

only two consecutive items (i.e. skip connections).

2. Embeddings: as sequence data is generally composed of items, their

attributes (e.g. id) needs to first be embedded into dense representations

to yield better features for the initial layer of the graph model. At this

stage, each sequence can be represented by an embedding vector that

contains all the embeddings for individual items.

3. Graph model: a graph model, generally recurrent, is applied on top of

the sequence graph to produce new embeddings for each node in the

sequence.

4. Sequencemodel: a model that given all the node embeddings produced

4.3 Sequential recommendation 79

Source: “Session­based Recommendation with Graph Neural Networks”

Figure 4.18: Summary of SR­GNN architecture.

by the graph network, integrates them into a single sequence embed­

ding.

5. Task head: a next­item classification head that outputs next item con­

sumption probability, given the whole sequence embedding.

In Figure 4.17 we can see a visualization of the general high­level schema.

4.3.2 Architectures

Similarly to General Recommendation section, an initial pool of 16 models

was analyzed, from which only 4 models which had a runnable code were

selected: SR­GNN, DGRec, MGNN­Spred and TAGNN.

SR­GNN

Session­based Recommendation with Graph Neural Networks (SR­GNN) [68]

was one of the earlier works that attempted to apply graph neural networks to

the problem of sequential recommendation.

To produce embeddings vt
i for node vs,i of a given graph Gs, SR­GNN

4.3 Sequential recommendation 80

performs the following gated GNN [29] update computation:

at
s,i = As,i:[vt−1

1 , ..., vt−1
n]⊤H + b,

zt
s,i = σ(Wzat

s,i + Uzvt−1
i),

rt
s,i = σ(Wrat

s,i + Urvt−1
i),

ṽt
i = tanh(Woat

s,i + Uo(rt
s,i ⊙ vt−1

i)),

vt
i = (1 − zt

s,i) ⊙ vt−1
i + zt

s,i ⊙ ṽt
i

where A is a connection (a variant of adjacency) matrix, H ∈ Rd×2d a weight

matrix, zt
s,i and rt

s,i are reset and update gates respectively. Intuitively, this

update procedure first extracts latent vectors for item neighborhoods and feeds

them to update and reset gates, which decide which information should be

preserved and which should be discarded. Using previous state, current state

and reset state, a candidate state is constructed. Finally, the final state is a

combination of previous hidden state and candidate state, controlled by the

update gate.

After feeding all the session graphs to the graph model, we obtain feature

vectors of all the nodes. To represent each session as a single embedding

vector sh ∈ Rd we first compute local and global session embeddings and

combine them together via a simple transformation sh = MLP([sl; sg]). Local

embedding sl can be simply defined as the embedding vector vn of the last­

clicked item vs,n. Global embedding on the other hand aggregates all the node

vectors of the session graph with the aid of an attention mechanism:

sg =
n∑

i=1
αivi

where αi are attention coefficients between i­th and n­th node embeddings in

the sequence.

Finally, the probability distribution over the next item can be computed

4.3 Sequential recommendation 81

Source: “Session­based Social Recommendation via Dynamic Graph Attention Networks”

Figure 4.19: Summary of DGRec architecture. A shared recurrent neural
network is used to initially compute dynamic user’s interests (i.e. what are
the user’s interests based on their sessions), short­term and long­term friend’s
interests. Computed features are then used as node features for a social user
graph and using a graph attention neural network, final representations are
produced for the current user. This final representation, together with learned

item embeddings can be used to perform the next item prediction task.

via:
ẑi = s⊤h vi

ŷ = softmax(ẑ)

where ẑ ∈ Rm denotes the recommendation logits over all the candidate items.

A summary of SR­GNN approach can be seen in Figure 4.18.

DGRec

Session­based Social Recommendation viaDynamicGraphAttentionNetworks

(DGRec) [49] was one of the earlier works that had introduced the usage of

social graphs inside session based graph recommendation. The architecture

itself has different components it needs to model: friends’ long and short term

interests, user’s dynamic interests.

Dynamic user behaviour ismodeled using anRNN that captures the rapidly

changing interests by inferring the representation of user’s session, Su
T +1 =

4.3 Sequential recommendation 82

{iu
T +1,1, ..., iu

T +1,n} token by token, in a recursive manner via:

hn = f(iu
T +1,n, hn−1)

where T is the index of current user’s session, hn a representation of user’s

interests and f a nonlinear function, such as LSTM, that combines item and

interest information.

Friends’ short­term interests are modeled by taking a subsequence of their

recently consumed items (e.g. friend’s last session), Sk
T = {ik

T,1, ik
T,2, ..., ik

T,k}

and applying an RNN on top of it with weights shared from dynamic user’s

behavior recurrent model:

ss
k = rNk,T

= f(ik
T,Nk,T

, rNk,T −1)

Friends’ long­term preferences reflect their average interests and are not

time­sensitive, hence why they can be represented by a single vector taken

from k­th row of user embedding matrix Wu:

sl
k = Wu[k, :]

Friend’s k short and long­term preferences are finally combined by apply­

ing a non­linear transformation:

sk = ReLU(W[ss
k; sl

k])

Previous modeling part included only recurrent neural networks, social

connectivity data on the other hand, is processed by using a graph­attention

neural network to dynamically infer the influencers based on users’ current in­

terests. Initial features assigned to graph nodes are given from interests mod­

eling phase, formally h(0)
u = hn and {h

(0)
k = sk, k ∈ Nu}. After applying a

stack of L graph­attention layers, the social­influenced user’s representation

4.3 Sequential recommendation 83

Source: “Beyond Clicks: Modeling Multi­Relational Item Graph for Session­Based Target Behavior Prediction”

Figure 4.20: Summary of MGNN­SPred architecture. First, a
Multi­Relational Item Graph (MRIG) gets constructed from all user’s target
and auxiliary behavior sequences. Propagation procedure over MRIG by a
GNN yields final item representations to be used when building sequence
representations. Sequence representations are computed by mean­pooling
over item representations, given from last GNN’s propagation step, of items

appearing in input target and auxiliary behavior sequences.

is denoted by h(L)
u .

Finally, user’s final representation is computed by taking into account both

recent behaviors hn and social influences h(L)
u , processed by a fully­connected

layer:

ĥn = W[hn; h(L)
u]

The probability over next item is given by taking the softmax function of a

dot product between ĥn and the items’ embeddings. A summary of the whole

architecture can be seen in Figure 4.19.

MGNN­Spred

Multirelational Graph Neural Network model for Session­based target behav­

ior Prediction (MGNN­Spred) [59] paper has introduced a way to include

auxiliary behavior information on top of commonly used target behavior. To

accomplish their goal, authors build a Multi­Relational Item Graph (MRIG),

4.3 Sequential recommendation 84

based on all behavior sequences from all sessions, including target and aux­

iliary behaviors. On top of MRIG, a graph neural network is used to learn

global item­to­item relations and obtain user preferences w.r.t. current target

and auxiliary sequences.

Multi­Relational Item Graph is constructed from a given set of sessions

S, which contains both target and auxiliary behavior sequences for the current

user. The construction algorithm proceeds to browse all behavior sequences,

collect all their items as nodes of the graph and add directional edges between

two consequent items if their are present in target or auxiliary behaviors, dis­

tinguishing between the edge type (for more details, consult Algorithm 1 of

[59]).

The model starts by computing initial item embeddings via learnable em­

bedding tables, and using those embeddings as initial node features for the

MRIG. For each node v insideMRIG, there are four sets of neighbors based on

type and direction: “target­forward”, “target­backward”, “auxiliary­forward”,

“auxiliary­backward”. The previously mentioned sets are defined as:

Nt+(v) = {v′|(v′, v, target) ∈ E},Nt−(v) = {v′|(v, v′, target) ∈ E}

Na+(v) = {v′|(v′, v, auxiliary) ∈ E},Na−(v) = {v′|(v, v′, auxiliary) ∈ E}

At each step of representation propagation, GNN aggregates each group of

neighbors by performing mean­pooling, obtaining item representations from

the relative neighbor groups: hk
t+,v, hk

t−,v, hk
a+,v, hk

a−,v. The four representa­

tions then get combined together by sum­pooling:

h̃k
v = hk

t+,v + hk
t−,v + hk

a+,v + hk
a−,v

and used to update the representation of center node v:

hk
v = hk−1

v + h̃k
v

4.3 Sequential recommendation 85

After performing K iterations of such propagation procedure, final item

representations are given by the last step’s representations: gv = hK
v .

Having computed item representations from the MRIG, the model takes

the behavior sequence representation as a mean­pooling of representations of

items from both target behavior sequence P and auxiliary behavior sequence

Q:

p =
∑|P |

i=1 gpi

|P |
, q =

∑|Q|
i=1 gqi

|Q|

Authors notice that the contributions of p and q towards next item predic­

tion might be different (e.g. some users might browse item pages frequently

and click all the items, while others might only click on items they want to

buy), thus introduce a gating mechanism to compute a relative importance

weight α:

α = σ(Wg[p; q])

Finally, user preference representation o of the current session is computed

as a weighted summation of p and q:

o = α · p + (1 − α) · q

Recommendation scores for each item v ∈ V are calculated by a bi­linear

matching schema between item embeddings ev and user representation o:

sv = o⊤Wev

and passed to a softmax, to compute the final probability distribution over the

next item, as already mentioned for previous sequential models. A summary

of the whole architecture can be seen in Figure 4.20.

4.4 Models comparison 86

TAGNN

Target Attentive Graph Neural Networks (TAGNN) [70] can be seen as an ex­

tension of SR­GNN model, where an additional representation, called “target

embedding” is included into the final session embedding.

Final session embedding is computed as:

st = MLP([st
target; sl; sg])

where sl and sg are computed exactly as in SR­GNN. Target embedding st
target

on the other hand uses an attentionmechanism to calculate soft attention scores

over all items in the session with respect to the target item:

βi,t = softmax(ei,t) = exp(v⊤t Wvi)∑m
j=1 exp(v⊤t Wvj)

and the embedding itself represents user’s interests towards a target item:

st
target =

sn∑
i=1

= βi,tvi

which varies with different target items.

4.4 Models comparison

In the previous section we’ve listed various approaches used for general and

sequential graph recommendation tasks. In this section we will summarize

their results in terms of accuracy metrics across different academic datasets

in their domain, as reported in the relative model papers. For the general rec­

ommendation task, the reported academic datasets are MovieLens, Amazon­

review, Gowalla and Yelp. For the sequential recommendation task, the re­

ported academic datasets are Yoochoose and Diginetica.

MovieLens dataset is composed of users, rated items and the relative rating

from 1 to 5. It is distributed in different versions based on number of ratings:

4.4 Models comparison 87

• MovieLens 100K: 943 users, 1682 items and 100000 ratings.

• MovieLens 1M: 6040 users, 3706 items and 1000209 ratings.

• MovieLens 10M: 69878 users, 10677 items and 10000054 ratings.

Table 4.1 illustrates the results of different models on MovieLens datasets. As

we can see, Deoscillated Graph Collaborative Filtering approach is the best

model for this dataset in terms of recall@20 and ndcg@20 metrics, among the

ones described in previous sections.

Amazon­review dataset [35] includes different categories of goods that

users have rated throughout 11 years of interactions. In the subsequent results

reporting we will consider the following categories:

• Amazon Book: 52643 users, 91599 items and 2984108 interactions.

• Amazon Movies and TV: 2114748 users, 150334 items and 6174098

interactions.

Table 4.2 illustrates the results of different models on Amazon datasets. As we

can see, Deoscillated Graph Collaborative Filtering is still the best model for

Amazon Movies and TV dataset in terms of recall@20 and ndcg@20 metrics,

while LightGCN is the best model for Amazon Book dataset in terms of same

metrics.

Gowalla [30] and Yelp2018 are two datasets composed of user check­ins

in different locations (e.g. user has visited a restaurant). Those datasets are

composed of:

• Gowalla: 29858 users, 40981 items and 1027370 interactions.

• Yelp2018: 31668 users, 38048 items and 1561406 interactions.

Table 4.3 illustrates the results of differentmodels onGowalla andYelp2018

datasets. LightGCN results to be the best model across the two datasets in

terms of recall@20 and ndcg@20 metrics.

4.5 Model categorization 88

Yoochoose and Diginetica are the two datasets on which sequential graph

recommendation results are illustrated. The original Yoochoose dataset con­

tains click stream data from an e­commenrce site is composed of 7981580

sessions and 43097 unique items. Yoochoose 1/64 dataset is a version of Yoo­

choose that uses 1/64 fraction of most recent training sessions for training.

Diginetica is another dataset that contains 204771 sessions and 43097 items.

The results of sequential graph recommendation models is reported on Table

4.4, fromwhich we can see that TAGNN performs the best on Yoochoose 1/64

and Diginetica datasets, while MGNN­Spred performs the best on the whole

Yoochoose dataset.

MovieLens 100K MovieLens 1M MovieLens 10M
Model RMSE recall@20 ndcg@20 RMSE recall@20 ndcg@20 RMSE recall@20 ndcg@20
GC­MC 0.910 0.2966 0.1883 0.832 0.2611 0.2069 0.777 ­ ­
STAR­GCN 0.895 ­ ­ 0.832 ­ ­ 0.770 ­ ­
NGCF ­ 0.3146 0.1978 ­ 0.2693 0.2164 ­ ­ ­
LightGCN ­ 0.3399 0.2137 ­ 0.2888 0.2334 ­ ­ ­
MCCF 0.907 ­ ­ ­ ­ ­ ­ ­ ­
DGCF (Deosc.) ­ 0.3536 0.229 ­ 0.3075 0.2501 ­ ­ ­

Table 4.1: Accuracy metrics RMSE (↓), recall@20 (↑), ndcg@20 (↑) for
different general recommendation models on different versions of

MovieLens datasets.

Amazon Book Amazon TV
Model recall@20 ndcg@20 recall@20 ndcg@20
GC­MC 0.0288 0.0224 0.0578 0.0475
NGCF 0.0337 0.0261 0.1117 0.0886
LR­GCCF 0.0341 0.0258 ­ ­
LightGCN 0.0411 0.0315 0.113 0.0893
DGCF (Disen.) 0.0399 0.0308 ­ ­
DGCF (Deosc.) ­ ­ 01351 0.1083

Table 4.2: Accuracy metrics recall@20 (↑), ndcg@20 (↑) for different
general recommendation models on different versions of Amazon datasets.

4.5 Model categorization

Models described in previous sections were divided in general and sequen­

tial families, and characterized by the type of data they used: bipartite graph,

4.5 Model categorization 89

Gowalla Yelp 2018
Model recall@20 ndcg@20 recall@20 ndcg@20

GC­MC 0.1395 0.1204 0.0464 0.0379
NGCF 0.1569 0.1327 0.0579 0.0477
LR­GCCF 0.1518 0.1259 ­ ­
LightGCN 0.183 0.1554 0.0649 0.053
DGCF (Disen.) 0.1794 0.1521 0.064 0.0522
DGCF (Deosc.) 0.1707 0.1384 ­ ­

Table 4.3: Accuracy metrics recall@20 (↑), ndcg@20 (↑) for different
general recommendation models on Gowalla and Yelp2018 datasets.

Yoochoose Yoochoose 1/64 Diginetica
Model recall@100 mrr@100 precision@20 mrr@20 precision@20 mrr@20

SR­GNN 21.262 2.6892 70.57 30.94 50.73 17.59
TAGNN ­ ­ 71.02 31.12 51.31 18.03
MGNN­Spred 28.632 3.6564 ­ ­ ­ ­

Table 4.4: Accuracy metrics recall@K (↑), mrr@K (↑), precision@K ↑ for
sequential recommendation datasets.

bipartite graph + social network, or sequence graph. Now instead, we are in­

terested in categorizing those models, based on criteria that might possibly

have an influence on their performance: initial features, neighbor sampling

type and model size.

Initial features are the type of initial features the model works with. We

have seen in Chapter 2 that Collaborative Filtering recommenders are models

that make use of user and item ids only, without dealing with features related to

their content, which in practice yields to huge embedding tables that might be

related to majority of model’s parameters count; sequential recommenders, in

their simplest form, also make use of item id only. Additional types of features

can be side and multi­modal, which despite both being item or user content

based features, are data of a different nature. Side information is just infor­

mation that can be included from already existing data when possible, without

requiring complex processing. Multi­modal features on the other hand, are

audio, textual or image data, that requires specialized processing by using an­

other type of neural network, e.g. BERT for text data, ResNet for image data

and so on. The latter suggests that we can either generate embeddings for

4.5 Model categorization 90

Model Initial Features Neighbor Sampling
DGCF (deosc) User id + Item id All neighbors
GC­MC User id + Item id + Side Drop non­batch nodes
NGCF User id + Item id All neighbors
GraphRec User id + Item id All neighbors
SR­GNN Item id All neighbors
LightGCN User id + Item id All neighbors
DGRec User id + Item id K neighbors
DiffNet User id + Item id All neighbors
SpectralCF User id + Item id All neighbors
DANSER User id + Item id K neighbors
LR­GCCF User id + Item id All neighbors
TAGNN Item id All neighbors
DGCF (disen) User id + Item id All neighbors
LESSR User id + Item id + Side All neighbors
DiffNet++ User id + Item id + Multimodal All neighbors
MGNN­Spred Item id All neighbors
MCCF User id + Item id K neighbors

Table 4.5: Categorization of models based on the type of initial node features
and type of neighbor sampling they perform.

Model Total Params (M) Embedding Params (M) % Embedding
DGCF (deosc) 4.8 4.5 94.1
GC­MC 40.3 40.3 99.9
NGCF 9.3 9.2 99.6
GraphRec 12.2 12.1 99.1
SR­GNN 3.9 3.7 95.9
LightGCN 4.5 4.5 100.0
DGRec 4.0 3.9 96.8
DiffNet 1.8 1.8 99.7
SpectralCF 0.2 0.2 100.0
DANSER 2.0 1.9 93.0
LR­GCCF 9.2 9.2 100.0
TAGNN 3.9 3.7 95.6
DGCF (disen) 9.2 9.2 100.0
LESSR 0.2 0.1 52.7
DiffNet++ 5.5 3.6 65.2
MGNN­Spred 3.4 3.4 99.9
MCCF 8.4 6.7 80.1

Table 4.6: Parameter counts per model, considered by taking the biggest
value available when running authors’ code, number of parameters related to

embedding layers, and their percentage w.r.t. total parameters.

4.5 Model categorization 91

multi­modal features offline, before training, and use some adaptation layer,

or to include a whole new finetuneable model to our existing graph model;

both of the previous options affect the final model size. We can see in Table

4.5 that majority of the analyzed models uses only user and item ids, despite

being trained on datasets that offer additional features.

Neighbor Sampling is the type of sampling that is performed to gener­

ate the set of neighbors that a node will aggregate information from, during

the aggregation stage of graph layers, which has both influence over mem­

ory and time of the layer. In the analyzed models, three types of strategies

were found: all neighbors, thresholding and removing nodes. The all neigh­

bor strategy consists in taking all neighbors of a node when performing the

aggregation. In order to do so, all the nodes need to be first extracted from

the graph, to build a message passing tree (Chapter 3, Figure 3.4), before even

starting the calculation of graph layer. Thresholding on the other hand consists

in sampling only a subset of K neighbors that will be used in the aggregation

phase. There are various strategies of sampling this subset of K neighbors that

can affect both accuracy and performance of the model. Omitting the accu­

racy aspect, the performance gain is motivated by the fact that the model will

need to aggregate less information, thus reducing both spatial and temporal

cost of the operation. However, the latter statement fails to omit the practical

consideration that sampling itself has a runtime cost that could affect the over­

all performance of the training (the complexity is moved to data­loading part).

Finally, one of the analyzed models, GC­MC, in its vectorized implementa­

tion, proposed to drop all the nodes that weren’t connected to the extremities

of sampled edges. Table 4.5 shows the usage of neighbor sampling in various

models, from which we can see that majority of models consider all neighbors

when performing the aggregation, which could possibly have an impact on

their scalability.

Model sizes is the count of total parameters that the model uses. For the

analyzed models, we have considered the biggest possible parameters count

4.5 Model categorization 92

(a) (b)

Figure 4.21: (a) Distribution of total parameters count, in millions, by the
number of models. (b) Distribution of embedding parameters count as a

percentage of total parameters count

the model would yield, when running with a default configuration provided by

the authors. This is due to the fact that collaborative filtering recommendation

models have their parameter count highly dependent on the used dataset. In

fact, we can see in Figure 4.21b that majority of analyzed models’ parameters

are composed of mostly embedding parameters, whichmeans that graph based

models are not very different in terms of parameters behavior from their deep

learning counter­parts. For comparison, NCF, a deep learning based recom­

mender as taken from NVIDIA’s examples repository has 20 million param­

eters, of which 19.8 million are due to embeddings. It is also worth noting

from Figure 4.21a and more specifically from Table 4.6 that majority of an­

alyzed models have their parameters count between 1 and 10 millions, with

only GC­MC being an exception.

Chapter 5

Experiments

In the previous chapter we have seen that most of the studied graph based rec­

ommendation models are of collaborative filtering nature (e.g. they use only

user and item ids), have a parameters count in orders from 1 to 10 millions,

majority of which is given by embedding layers’ parameters. In this chap­

ter, we will discuss the experiments we conducted to study a set of important

performance properties of a graph based recommender, implemented in DGL

[58], an open source library1 for graph neural networks. For our experiments

we considered a simple graph model, not based on those of Chapter 4. The

choice of a simple model can be motivated by:

1. The similarity in the analyzed model’s performance­affecting parame­

ters as seen in Chapter 4.

2. DGL library still being in development and not supporting, or inef­

ficiently supporting features that might be used in more complicated

models. Implementing those features might not always be an efficient

solution in both engineering effort and final runtime.

3. When discovering possible performance inefficiencies, a complexmodel

can be always ablated down to a simpler one (e.g. if majority of the
1https://www.dgl.ai/

5.1 Model definition 94

model’s time is spent on sampling of graph batches, it does not matter

how efficient the model is).

4. It is easier to implement desired features such as multi­GPU data par­

allelism or support of different datasets when working with a simpler

codebase.

which could serve as a proxy to understand the performance of more com­

plicated models. When studying performance we considered the following

aspects:

1. Different embedding dimensions.

2. Different batch sizes.

3. Full neighbor sampling vs K neighbor sampling.

4. Single­GPU vs Multi­GPU setup (i.e. 1 vs 8).

5. Different type of precision (i.e. AMP vs FP32/TF32).

from which we have selected a subset of parameters to reduce the overall di­

mensionality of the studied problem.

5.1 Model definition

For our experiments we chose the MovieLens latest­full dataset, which at the

time of writing this work is composed of 280000 users, 58000 movies and

27 million ratings. The choice of this dataset allowed us to experiment with

relatively big batch sizes, without risking to run out of data.

Themodel’s architecture is shown at Figure 5.1. It mimics the already seen

graph based architectures for collaborative filtering recommendation, with the

simplification in graph processing module. In our case, in fact, the graph pro­

cessing module is composed of three standard graph attention layers, included

5.1 Model definition 95

Figure 5.1: Simplified GNN architecture that we will be using. The
architecture consists of three stacked graph attention layers used to produce
user and item latent features from user and item embeddings. An MLP is then
placed on top of user and item latent features to predict feedback from them.

Embedding Dim. #Parameters (M)
16 5.4
32 10.8
64 21.6
128 43.1

Table 5.1: Number of parameters as a function of embedding dimension.

by default in the DGL library. Besides this change, the overall model schema

remains the same.

In Table 5.1 we can see how the parameters count varies as a function of

embedding dimension used by the model’s embedding layers and first GAT

layer. To make our study coherent with architectures described in Chapter 4,

we have used the embedding dimension of 32, which has yielded us a model

with around 10.8 million parameters.

5.2 Effects of batch size and sampling 96

Throughput measure

Throughput can be defined as the amount of data a model can process over a

given unit of time (e.g. number of samples per second):

Throughput = #Samples
Time(Samples)

Generally, when taking the measure, we should let the model “warmup” first,

as initial steps of a model can require the framework to initialize its internal

structures, significantly alternating the total time taken to process the initial

samples. In our study, we considered the throughput for the training phase,

which includes batch loading, forward, backward and optimization phases.

5.2 Effects of batch size and sampling

We started our study by finding the appropriate parameters for batch size and

neighborhood sampling limit factor. Doing so helped us to greatly limit the

dimensionality of the parameter space in the subsequent experiments, letting

us skip unwanted parameter combinations.

We had considered the following parameter space:

• Batch size: 16384, 32768, 65536, 131072, 262144, 524288, 1048576,

2097152, 4194304.

• Neighbor sampling limit: all neighbors, 50 neighbors, 25 neighbors.

and performed a training of the model for each of the parameter combinations,

measuring the throughput at the end of first epoch in a single V100 32GBGPU

and FP32 precision setup.

In Figure 5.2 we can see the GPU memory occupation in GiB when per­

forming the training with various batch sizes. It is measured considering full

neighborhood sampling and thus can give us an estimation of the upper­bound

of memory usage for a particular batch size (i.e. when using limited neighbors

5.2 Effects of batch size and sampling 97

Figure 5.2: GPU memory usage at training time for different batch sizes.

Batch size Throughput (full) Throughput (Limit 50) Throughput (Limit 25)
16384 1427 44867 67482
32768 4107 87384 133141
65536 7105 162641 252807
131072 13493 318144 513199
262144 19146 724127 1250266
524288 119194 1540816 2821891
1048576 308128 3004951 3426738
2097152 838936 3204392 2655642
4194304 1243438 8031806 5459939

Table 5.2: Training throughput in terms of samples per second, w.r.t. batch
size when using full neighbors set, limiting it to 50 neighbors and limiting to

25 neighbors during aggregation phase.

sampling, we expect the usage to be lower). It is worth noting that the memory

usage increases after 524288 batch size, but oscillates for lower batch sizes.

One possible hypothesis over the reason of the oscillation could be related

to different allocation patterns used when allocating the data on GPU mem­

ory, however this requires further verification. Additionally, we can observe

that even with the highest experimented batch size, the memory utilization has

never exceeded the limits of our GPU memory, which could possibly allow

us to train the model even on the entire graph at once.

As for our main performance measure, training throughput, we can see in

Table 5.2 and visually in Figures 5.3a and 5.3b that it grows nearly linearly

5.3 GPU scaling and math mode speedups 98

(a) (b)

Figure 5.3: (a) Training throughput w.r.t. batch size when setting a limit on
maximum neighbors a node will aggregate information from. (b) Training

throughput w.r.t batch size when all neighbors of a node are used to
aggregate information.

with respect to the smallest batch size, in limited neighbor sampling scenar­

ios. One interesting observation can regard the difference between through­

puts for batch size of 524288 and 262144 when using full sampling. The

former outperforms the latter by a factor of almost 6 times. No similar ef­

fect was observed for batch sizes bigger than 524288 for both full and lim­

ited sampling. Additionally, we can notice a throughout drop for batch size

of 2097152, which could supposedly be fixed by better finetuning the dat­

aloader’s parameters.

Generally, internal observations have shown us that considering a batch

size bigger than 524288 doesn’t give the model enough training steps to con­

verge to a desired accuracy value, without performing extensive parameter

fine­tuning. In the subsequent experiments we thus fixed the batch size to

524288 and sampling limit to 25 and 50.

5.3 GPU scaling and math mode speedups

Having fixed the batch size to 524288 and sampling limits to 25 and 50, we

have designed and executed our experiments to verify the following perfor­

mance properties:

5.3 GPU scaling and math mode speedups 99

• Math mode speedup: speedup that can be obtained by using half­

precision math mode (e.g. FP16, AMP) instead of single­precision (e.g.

FP32) to perform the training.

• Multi­GPU scaling: how well does the model scale in a data parallel

scenario where more than one GPU is used.

• Hardware architecture speedup: speedup that can be obtained by us­

ing a more powerful GPU architecture.

To verify these properties, we have performed 10 runs with a fixed seed

on each configuration of the following parameter space:

1. Sampling limit: 25, 50.

2. Math mode: AMP, FP32/TF32.

3. Number of GPUs: 1, 8.

4. Hardware architecture: Volta, Ampere.

where for Volta runs we have used a DGX­1 machine which has 8 Volta V100

32GBGPUs. Ampere runs were done using a DGX­A100machine, composed

of 8 Ampere A100 80GB GPUs. It is worth mentioning that for Ampere,

we have used TensorFloat32 format2 for the single precision setups, which

provides a speedup over the original FP32 format.

In Figure 5.4 we can see the throughput distributions for each configura­

tion when using a Volta machine. We see from both the figure and Table 5.3

that for the sampling limit 25 configurations, AMP math mode brings a slow­

down rather than a speedup. This could be attributed to the fact that AMP

functionality is still in development in DGL3, which might affect both mes­

sage passing and kernels computation performance when working on float16

data type. Multi­GPU scaling on the other hand does occur for both AMP and
2https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
3https://docs.dgl.ai/en/0.7.x/guide/mixed_precision.html

5.3 GPU scaling and math mode speedups 100

Figure 5.4: Training throughput distributions on DGX­1 (Volta) machine.

Sampling Limit Precision N. GPU Throughput (mean) Throughput (std)
25 AMP 1 2375711 359598
25 AMP 8 3591807 118668
25 FP32 1 2640575 406408
25 FP32 8 3676679 164569
50 AMP 1 1424820 172033
50 AMP 8 845969 510883
50 FP32 1 1562211 139461
50 FP32 8 1428676 313727

Table 5.3: Training throughput statistics for configurations on DGX­1
(Volta) machine.

5.3 GPU scaling and math mode speedups 101

Sampling Limit Precision N. GPU Throughput (mean) Throughput (std)
25 AMP 1 6440930 60346
25 AMP 8 5874435 223926
25 TF32 1 6883845 118461
25 TF32 8 6011209 592515
50 AMP 1 3449566 110830
50 AMP 8 2802328 142915
50 TF32 1 3694847 101338
50 TF32 8 3053406 242606

Table 5.4: Training throughput statistics for configurations on DGX­A100
(Ampere) machine.

FP32 scenarios when using sampling limit 25. In fact, we get a 1.51 scaling

when using 8 GPUs AMP and 1.39 scaling when using 8 GPUs FP32, both of

those scalings, however are poor scaling values. Using a sampling limit of 50

yields worse results in terms of scaling. For both AMP and FP32 precisions,

the scaling is negative, meaning that usingmore GPUs for training actually de­

teriorates the training throughput. A possible root­cause of such low or even

negative scaling can be reconducted to the throughputs when using a smaller

batch­size. In fact, in our multi­GPU scenario, each GPU actually works with

a smaller batch size (i.e. each GPU works on 65536 batch size, when the

global batch size is 524288), on subgraphs with potentially different connec­

tivity patterns, which as seen previously in Table 5.2, yields a significantly

lower throughput, as well as introducing a synchronization overhead during

the training.

As for a different hardware platform, in Figure 5.5 we can see training

throughput distributions obtained on an Ampere machine. We see from the

figure and the Table 5.4 that similarly to Volta, Ampere does not provide a

speedup when using automatic mixed precision for both 25 and 50 sampling

limits. Additionally, all the multi­GPU configurations bring a slowdown with

respect to single GPU throughput. Both the previous performance concerns

could be due to Ampere platform’s operations not being properly optimized at

lower level of DGL, given its novelty. One thing worth noting is however the

5.3 GPU scaling and math mode speedups 102

Figure 5.5: Training throughput distributions on DGX­A100 (Ampere)
machine.

speedup given by Ampere with respect to Volta on every tested configuration.

In fact, we can observe from Table 5.7 that Ampere beats Volta on every con­

figuration, which is to be expected due to its introductions of TensorFloat32

precision format, as well as improved sparsity acceleration.

Lastly, we summarize the previous performance results in Tables 5.6, 5.5

and 5.7. Table 5.6 shows us results for the previously mentioned math mode

speedups, which as already seen, do not occur, possibly due to both float16

Architecture Sampling Limit Precision Multi­GPU Scaling
Volta 25 AMP 1.51
Volta 25 FP32 1.39
Volta 50 AMP 0.59
Volta 50 FP32 0.91
Ampere 25 AMP 0.91
Ampere 25 TF32 0.87
Ampere 50 AMP 0.81
Ampere 50 TF32 0.83

Table 5.5: Multi­GPU scaling values for the tested configurations.

5.3 GPU scaling and math mode speedups 103

Architecture Sampling Limit N. GPU Precision Speedup
Volta 25 1 0.90
Volta 25 8 0.98
Volta 50 1 0.91
Volta 50 8 0.59
Ampere 25 1 0.94
Ampere 25 8 0.98
Ampere 50 1 0.93
Ampere 50 8 0.92

Table 5.6: Math mode speedup values for the tested configurations.

Sampling Limit N. GPU Precision Platform Speedup
25 1 AMP 2.71
25 8 AMP 1.64
50 1 AMP 2.42
50 8 AMP 3.31
25 1 TF32/FP32 2.61
25 8 TF32/FP32 1.63
50 1 TF32/FP32 2.37
50 8 TF32/FP32 2.14

Table 5.7: Hardware platform speedup values for the tested configurations.

message passing and kernel calculation being still in development on DGL.

Table 5.5 shows us the results for multi­GPU scaling, which are modest, pre­

sumably due to the fact that in our scenario, the local batch size on individual

GPUs becomes too small to be possibly effective on the used hardware. Fi­

nally, Table 5.7 shows us speedups given by using a more powerful hardware

platform, Ampere, which we observed always gave a speedup with respect to

Volta, possibly due to its improved hardware capabilities such as better single

precision math mode and improved sparsity acceleration.

Chapter 6

Conclusions

We have introduced recommendation systems and graph neural networks as

two separate fields and later described how the two can be combined. We

have seen that graph based recommendation approaches can naturally exploit

the graph nature of recommendation data, and illustrated a pool of graph based

models for recommendation that are available in the literature. Next, we have

categorized the set of described models by characteristics that can have ef­

fect on their performance, namely: type of initial features they use, type of

sampling they perform and their size in terms of parameters count. Finally,

we have defined a simple model that mimicked the described models from a

performance point of view, and used it to empirically study a set of relevant

performance properties: mathmode speedup, multi­GPU scaling and platform

speedup.

In our study of the models available in the literature, we have observed

some important points:

1. Most of the analyzed graph based recommendation models use the

whole neighbors set instead of sampling a subset of K neighbors, which are

later used to perform aggregation. Neighbor subset sampling is a common

technique used to scale graph models, as it has a direct effect on both model

and data loading performance. The latter was also empirically verified by us

in Chapter 5.

Conclusions 105

2. Most of the analyzed models try to solve the recommendation task by

using collaborative filtering approaches, which consists in using only user and

item ids, despite having architectures that could easily include other types of

data (e.g. by concatenation to node features), and training on datasets that

actually provide that type of data. Using additional features other than ids

can have an effect on model’s performance, for example by including a fine­

tuneable model branch that can encode image or textual data.

3. A huge portion of graph based recommendation model parameters are

related to embedding layers, the parameter count from graph based layers is

negligible in comparison. In fact, we have seen in Figure 4.21b that majority

of parameters are composed of mainly embedding parameters, which means

that on recommendation tasks, graph based models are not very different in

terms of parameters behavior from their deep learning counter­parts, such as

NCF.

From our performance experiments, using DGL, we have observed that:

1. Model training when using the automatic mixed precision math mode,

does not give any performance benefits. It instead gives a slowdown, which

could possibly be due to the fact that float16 message passing and kernel cal­

culations, are still a feature in development in DGL, as stated in their docu­

mentation.

2. Model training on multi­GPUs, does not always scale well. When the

scaling was positive, it was at most by a factor of 1.51 with respect to a single

GPU. However, the majority of time, the scaling turned out to be negative,

leading to a slowdown of the training. This could be possibly due to a too

small batch size being used, resulting in a poor workload on individual GPUs,

as well as the communication overhead induced by this batch size.

3. Changing hardware architecture to Ampere, which is a newer type of

GPUs with better support for sparsity and tensor arithmetics, resulted in a per­

formance boost over Volta on all the tested configurations, without requiring

any code adaptations.

Conclusions 106

Next steps

We conclude this dissertation with suggestions on the possible future direc­

tions. First, it would be important to verify that the root cause of multi­GPU

scaling problem is related to what we have described, namely, every GPU

working on a small and inefficient batch size, introducing potential overheads

rather than benefits. To do so, we suggest to try using a bigger batch size

for every GPU and see how it affects the throughput. Next, we expect that

once edge sampling on GPU becomes available as a feature of DGL, it will

affect the performance, possibly the multi­GPU scaling, as each GPU would

be able to sample its own portion of the graph, without requiring synchroniza­

tion with the CPU. At the moment, edge sampling in DGL is only possible on

CPU. Finally, it would be important to repeat the same set of experiments on

a real model, once an implementation with all the before­mentioned features

becomes available. This will allow us to verify how effectively our simple

model can be used as a proxy to study the performance of more complicated

models: given the same experimental settings, we do not expect the results to

be very different across the two.

Bibliography

[1] Z. Abbassi, S. Amer­Yahia, L. V. Lakshmanan, S. Vassilvitskii, and

C. Yu. Getting recommender systems to think outside the box. In Pro­

ceedings of the Third ACMConference on Recommender Systems, Rec­

Sys ’09, pages 285–288, New York, New York, USA. Association for

Computing Machinery, 2009. ISBN: 9781605584355. DOI: 10.1145/

1639714.1639769. URL: https://doi.org/10.1145/1639714.

1639769.

[2] G. Adomavicius and A. Tuzhilin. Toward the next generation of rec­

ommender systems: a survey of the state­of­the­art and possible exten­

sions. IEEETransactions onKnowledge andData Engineering, 17(6):734–

749, 2005. DOI: 10.1109/TKDE.2005.99.

[3] S. Bell, Y. Liu, S. Alsheikh, Y. Tang, E. Pizzi, M. Henning, K. Singh,

O. Parkhi, and F. Borisyuk. Groknet: unified computer vision model

trunk and embeddings for commerce. In Proceedings of the 26th ACM

SIGKDD International Conference on Knowledge Discovery & Data

Mining. Association for Computing Machinery, New York, NY, USA,

2020, pages 2608–2616. ISBN: 9781450379984. URL: https://doi.

org/10.1145/3394486.3403311.

[4] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi. Graph neural net­

works with convolutional arma filters. IEEE Transactions on Pattern

Analysis and Machine Intelligence:1–1, 2021. ISSN: 1939­3539. DOI:

BIBLIOGRAPHY 108

10.1109/tpami.2021.3054830. URL: http://dx.doi.org/10.

1109/TPAMI.2021.3054830.

[5] V. D. Blondel, J.­L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast

unfolding of communities in large networks. Journal of Statistical Me­

chanics: Theory and Experiment, 2008(10):P10008, October 2008. ISSN:

1742­5468. DOI: 10.1088/1742- 5468/2008/10/p10008. URL:

http://dx.doi.org/10.1088/1742-5468/2008/10/P10008.

[6] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst.

Geometric deep learning: going beyond euclidean data. IEEE Signal

Processing Magazine, 34(4):18–42, July 2017. ISSN: 1558­0792. DOI:

10.1109/msp.2017.2693418. URL: http://dx.doi.org/10.

1109/MSP.2017.2693418.

[7] C. Cangea, P. Veličković, N. Jovanović, T. Kipf, and P. Liò. Towards

sparse hierarchical graph classifiers, 2018. arXiv: 1811.01287 [stat.ML].

[8] L. Chen, L. Wu, R. Hong, K. Zhang, and M. Wang. Revisiting graph

based collaborative filtering: a linear residual graph convolutional net­

work approach, 2020. arXiv: 2001.10167 [cs.IR].

[9] H.­T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Arad­

hye, G. Anderson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L.

Hong, V. Jain, X. Liu, and H. Shah. Wide & Deep Learning for Recom­

mender Systems. arXiv e­prints:arXiv:1606.07792, arXiv:1606.07792,

June 2016. arXiv: 1606.07792 [cs.LG].

[10] W.­L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.­J. Hsieh. Cluster­

gcn. Proceedings of the 25th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, July 2019. DOI: 10.1145/

3292500.3330925. URL: http://dx.doi.org/10.1145/3292500.

3330925.

BIBLIOGRAPHY 109

[11] A. Derrow­Pinion, J. She, D. Wong, O. Lange, T. Hester, L. Perez, M.

Nunkesser, S. Lee, X. Guo, B. Wiltshire, and et al. Eta prediction with

graph neural networks in google maps. Proceedings of the 30th ACM

International Conference on Information & Knowledge Management,

October 2021. DOI: 10.1145/3459637.3481916. URL: http://dx.

doi.org/10.1145/3459637.3481916.

[12] J. Devlin, M.­W. Chang, K. Lee, and K. Toutanova. Bert: pre­training

of deep bidirectional transformers for language understanding, 2019.

arXiv: 1810.04805 [cs.CL].

[13] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer. The yahoo! mu­

sic dataset and kdd­cup’11. In Proceedings of the 2011 International

Conference on KDD Cup 2011 ­ Volume 18, KDDCUP’11, pages 3–18.

JMLR.org, 2011.

[14] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin. Graph

neural networks for social recommendation, 2019. arXiv: 1902.07243

[cs.IR].

[15] F. B. Fuchs, D. E.Worrall, V. Fischer, andM.Welling. Se(3)­transformers:

3d roto­translation equivariant attention networks, 2020. arXiv: 2006.

10503 [cs.LG].

[16] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative

filtering to weave an information tapestry. Commun. ACM, 35(12):61–

70, December 1992. ISSN: 0001­0782. DOI: 10.1145/138859.138867.

URL: https://doi.org/10.1145/138859.138867.

[17] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He. Deepfm: a factorization­

machine based neural network for ctr prediction, 2017. arXiv: 1703.

04247 [cs.IR].

[18] W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation

learning on large graphs, 2018. arXiv: 1706.02216 [cs.SI].

BIBLIOGRAPHY 110

[19] R. He and J.McAuley. Ups and downs: modeling the visual evolution of

fashion trends with one­class collaborative filtering. Proceedings of the

25th International Conference on World Wide Web, April 2016. DOI:

10.1145/2872427.2883037. URL: http://dx.doi.org/10.1145/

2872427.2883037.

[20] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang. Lightgcn:

simplifying and powering graph convolution network for recommen­

dation, 2020. arXiv: 2002.02126 [cs.IR].

[21] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.­S. Chua. Neural col­

laborative filtering, 2017. arXiv: 1708.05031 [cs.IR].

[22] M. Jamali and M. Ester. A matrix factorization technique with trust

propagation for recommendation in social networks. In RecSys ’10,

2010.

[23] Z. Jia, S. Lin, R. Ying, J. You, J. Leskovec, and A. Aiken. Redundancy­

free computation for graph neural networks. In Proceedings of the 26th

ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining, KDD ’20, pages 997–1005, Virtual Event, CA, USA.

Association for Computing Machinery, 2020. ISBN: 9781450379984.

DOI: 10.1145/3394486.3403142. URL: https://doi.org/10.

1145/3394486.3403142.

[24] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for

partitioning irregular graphs. SIAM Journal on Scientific Computing,

20(1):359–392, 1998. DOI: 10.1137/S1064827595287997. eprint:

https://doi.org/10.1137/S1064827595287997. URL: https:

//doi.org/10.1137/S1064827595287997.

[25] D. P. Kingma and M. Welling. Auto­encoding variational bayes, 2014.

arXiv: 1312.6114 [stat.ML].

[26] T. N. Kipf and M. Welling. Semi­supervised classification with graph

convolutional networks, 2017. arXiv: 1609.02907 [cs.LG].

BIBLIOGRAPHY 111

[27] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for

recommender systems. Computer, 42(8):30–37, 2009. DOI: 10.1109/

MC.2009.263.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification

with deep convolutional neural networks. In F. Pereira, C. J. C. Burges,

L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Infor­

mation Processing Systems, volume 25. Curran Associates, Inc., 2012.

URL: https://proceedings.neurips.cc/paper/2012/file/

c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[29] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph se­

quence neural networks, 2017. arXiv: 1511.05493 [cs.LG].

[30] D. Liang, L. Charlin, J. McInerney, and D. M. Blei. Modeling user ex­

posure in recommendation, 2016. arXiv: 1510.07025 [stat.ML].

[31] D. Liang, R. G. Krishnan,M. D. Hoffman, and T. Jebara. Variational au­

toencoders for collaborative filtering, 2018. arXiv: 1802.05814 [stat.ML].

[32] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,

L. Zettlemoyer, and V. Stoyanov. Roberta: a robustly optimized bert

pretraining approach, 2019. arXiv: 1907.11692 [cs.CL].

[33] Z. Liu, L. Meng, F. Jiang, J. Zhang, and P. S. Yu. Deoscillated graph

collaborative filtering, 2021. arXiv: 2011.02100 [cs.IR].

[34] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender sys­

tems with social regularization. In Proceedings of the Fourth ACM In­

ternational Conference on Web Search and Data Mining, WSDM ’11,

pages 287–296, Hong Kong, China. Association for Computing Ma­

chinery, 2011. ISBN: 9781450304931. DOI: 10.1145/1935826.1935877.

URL: https://doi.org/10.1145/1935826.1935877.

BIBLIOGRAPHY 112

[35] J. McAuley, C. Targett, Q. Shi, and A. van den Hengel. Image­based

recommendations on styles and substitutes, 2015. arXiv: 1506.04757

[cs.CV].

[36] F. Monti, M. M. Bronstein, and X. Bresson. Geometric matrix comple­

tion with recurrent multi­graph neural networks, 2017. arXiv: 1704.

06803 [cs.LG].

[37] D. Mudigere, Y. Hao, J. Huang, Z. Jia, A. Tulloch, S. Sridharan, X.

Liu, M. Ozdal, J. Nie, J. Park, L. Luo, J. A. Yang, L. Gao, D. Ivchenko,

A. Basant, Y. Hu, J. Yang, E. K. Ardestani, X. Wang, R. Komuravelli,

C.­H. Chu, S. Yilmaz, H. Li, J. Qian, Z. Feng, Y. Ma, J. Yang, E. Wen,

H. Li, L. Yang, C. Sun, W. Zhao, D. Melts, K. Dhulipala, K. Kishore,

T. Graf, A. Eisenman, K. K. Matam, A. Gangidi, G. J. Chen, M. Krish­

nan, A. Nayak, K. Nair, B. Muthiah, M. khorashadi, P. Bhattacharya, P.

Lapukhov, M. Naumov, A. Mathews, L. Qiao, M. Smelyanskiy, B. Jia,

and V. Rao. Software­hardware co­design for fast and scalable training

of deep learning recommendation models, 2021. arXiv: 2104.05158

[cs.DC].

[38] M. Naumov, D. Mudigere, H.­J. M. Shi, J. Huang, N. Sundaraman, J.

Park, X. Wang, U. Gupta, C.­J. Wu, A. G. Azzolini, D. Dzhulgakov,

A. Mallevich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu, V.

Kondratenko, S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia, L. Xiong,

and M. Smelyanskiy. Deep learning recommendation model for per­

sonalization and recommendation systems, 2019. arXiv: 1906.00091

[cs.IR].

[39] X. Ning and G. Karypis. Slim: sparse linear methods for top­n rec­

ommender systems. 2011 IEEE 11th International Conference on Data

Mining:497–506, 2011.

BIBLIOGRAPHY 113

[40] P. Qi, X. Zhu, G. Zhou, Y. Zhang, Z. Wang, L. Ren, Y. Fan, and K.

Gai. Search­based user interest modeling with lifelong sequential be­

havior data for click­through rate prediction, 2020. arXiv: 2006.05639

[cs.IR].

[41] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look

once: unified, real­time object detection, 2016. arXiv: 1506 . 02640

[cs.CV].

[42] S. Rendle. Factorization machines. In 2010 IEEE International Confer­

ence on Data Mining, pages 995–1000, 2010. DOI: 10.1109/ICDM.

2010.127.

[43] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt­Thieme. Bpr:

bayesian personalized ranking from implicit feedback. In Proceedings

of the Twenty­Fifth Conference onUncertainty in Artificial Intelligence,

UAI ’09, pages 452–461,Montreal, Quebec, Canada. AUAI Press, 2009.

ISBN: 9780974903958.

[44] O. Ronneberger, P. Fischer, and T. Brox. U­net: convolutional net­

works for biomedical image segmentation, 2015. arXiv: 1505.04597

[cs.CV].

[45] G. Shani, R. I. Brafman, and D. Heckerman. An mdp­based recom­

mender system. In Proceedings of the Eighteenth Conference on Un­

certainty in Artificial Intelligence, UAI’02, pages 453–460, Alberta,

Canada. Morgan Kaufmann Publishers Inc., 2002. ISBN: 1558608974.

[46] J. F. Silva, N. Moura Junior, and L. Caloba. Effects of data sparsity on

recommender systems based on collaborative filtering. In pages 1–8,

July 2018. DOI: 10.1109/IJCNN.2018.8489095.

[47] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.­J. (Hsu, and K. Wang.

An overview of microsoft academic service (mas) and applications. In

Proceedings of the 24th International Conference on World Wide Web,

WWW’15Companion, pages 243–246, Florence, Italy. Association for

BIBLIOGRAPHY 114

Computing Machinery, 2015. ISBN: 9781450334730. DOI: 10.1145/

2740908.2742839. URL: https://doi.org/10.1145/2740908.

2742839.

[48] H. O. Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep metric learn­

ing via lifted structured feature embedding, 2015. arXiv: 1511.06452

[cs.CV].

[49] W. Song, Z. Xiao, Y.Wang, L. Charlin, M. Zhang, and J. Tang. Session­

based social recommendation via dynamic graph attention networks.

Proceedings of the Twelfth ACM International Conference onWeb Search

and Data Mining, January 2019. DOI: 10.1145/3289600.3290989.

URL: http://dx.doi.org/10.1145/3289600.3290989.

[50] Y. Sun, D. Liang, X. Wang, and X. Tang. Deepid3: face recognition

with very deep neural networks, 2015. arXiv: 1502.00873 [cs.CV].

[51] M. Tan and Q. V. Le. Efficientnet: rethinking model scaling for convo­

lutional neural networks, 2020. arXiv: 1905.11946 [cs.LG].

[52] W. Torng and R. B. Altman. Graph convolutional neural networks for

predicting drug­target interactions. Journal of Chemical Information

and Modeling, 59(10):4131–4149, 2019. DOI: 10.1021/acs.jcim.

9b00628. eprint: https://doi.org/10.1021/acs.jcim.9b00628.

URL: https://doi.org/10.1021/acs.jcim.9b00628. PMID:

31580672.

[53] K. Tunyasuvunakool, J. Adler, Z. Wu, T. Green, M. Zielinski, A. Žídek,

A. Bridgland, A. Cowie, C. Meyer, A. Laydon, S. Velankar, G. Kley­

wegt, A. Bateman, R. Evans, A. Pritzel, M. Figurnov, O. Ronneberger,

R. Bates, S. Kohl, and D. Hassabis. Highly accurate protein structure

prediction for the human proteome.Nature, 596:1–9, August 2021. DOI:

10.1038/s41586-021-03828-1.

[54] R. van den Berg, T. N. Kipf, and M. Welling. Graph convolutional ma­

trix completion, 2017. arXiv: 1706.02263 [stat.ML].

BIBLIOGRAPHY 115

[55] A. van den Oord, S. Dieleman, and B. Schrauwen. Deep content­based

music recommendation. In C. J. C. Burges, L. Bottou, M. Welling, Z.

Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Infor­

mation Processing Systems, volume 26. Curran Associates, Inc., 2013.

URL: https://proceedings.neurips.cc/paper/2013/file/

b3ba8f1bee1238a2f37603d90b58898d-Paper.pdf.

[56] A.Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.Gomez,

L. Kaiser, and I. Polosukhin. Attention is all you need, 2017. arXiv:

1706.03762 [cs.CL].

[57] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y.

Bengio. Graph attention networks, 2018. arXiv: 1710.10903 [stat.ML].

[58] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma, L.

Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang. Deep graph

library: a graph­centric, highly­performant package for graph neural

networks, 2020. arXiv: 1909.01315 [cs.LG].

[59] W. Wang, W. Zhang, S. Liu, Q. Liu, B. Zhang, L. Lin, and H. Zha.

Beyond clicks: modeling multi­relational item graph for session­based

target behavior prediction, 2021. arXiv: 2002.07993 [cs.IR].

[60] X. Wang, X. He, M. Wang, F. Feng, and T.­S. Chua. Neural graph col­

laborative filtering. Proceedings of the 42nd International ACM SIGIR

Conference on Research and Development in Information Retrieval,

July 2019. DOI: 10.1145/3331184.3331267. URL: http://dx.

doi.org/10.1145/3331184.3331267.

[61] X. Wang, H. Jin, A. Zhang, X. He, T. Xu, and T.­S. Chua. Disentan­

gled graph collaborative filtering.Proceedings of the 43rd International

ACM SIGIR Conference on Research and Development in Information

Retrieval, July 2020. DOI: 10.1145/3397271.3401137. URL: http:

//dx.doi.org/10.1145/3397271.3401137.

BIBLIOGRAPHY 116

[62] X. Wang, R. Wang, C. Shi, G. Song, and Q. Li. Multi­component graph

convolutional collaborative filtering, 2019. arXiv: 1911.10699 [cs.LG].

[63] F. Wu, T. Zhang, A. H. de Souza Jr. au2, C. Fifty, T. Yu, and K. Q.

Weinberger. Simplifying graph convolutional networks, 2019. arXiv:

1902.07153 [cs.LG].

[64] L. Wu, J. Li, P. Sun, R. Hong, Y. Ge, and M. Wang. Diffnet++: a neu­

ral influence and interest diffusion network for social recommendation,

2021. arXiv: 2002.00844 [cs.SI].

[65] L. Wu, P. Sun, Y. Fu, R. Hong, X. Wang, and M. Wang. A neural influ­

ence diffusion model for social recommendation, 2019. arXiv: 1904.

10322 [cs.IR].

[66] Q. Wu, H. Zhang, X. Gao, P. He, P. Weng, H. Gao, and G. Chen. Dual

graph attention networks for deep latent representation of multifaceted

social effects in recommender systems. The World Wide Web Confer­

ence, May 2019. DOI: 10.1145/3308558.3313442. URL: http:

//dx.doi.org/10.1145/3308558.3313442.

[67] S. Wu, F. Sun, W. Zhang, and B. Cui. Graph neural networks in recom­

mender systems: a survey, 2021. arXiv: 2011.02260 [cs.IR].

[68] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan. Session­based

recommendation with graph neural networks. Proceedings of the AAAI

Conference on Artificial Intelligence, 33:346–353, July 2019. ISSN:

2159­5399. DOI: 10.1609/aaai.v33i01.3301346. URL: http:

//dx.doi.org/10.1609/aaai.v33i01.3301346.

[69] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec.

Hierarchical graph representation learning with differentiable pooling,

2019. arXiv: 1806.08804 [cs.LG].

BIBLIOGRAPHY 117

[70] F. Yu, Y. Zhu, Q. Liu, S. Wu, L. Wang, and T. Tan. Tagnn: target at­

tentive graph neural networks for session­based recommendation. Pro­

ceedings of the 43rd International ACM SIGIR Conference on Research

and Development in Information Retrieval, July 2020. DOI: 10.1145/

3397271.3401319. URL: http://dx.doi.org/10.1145/3397271.

3401319.

[71] J. Zhang, X. Shi, S. Zhao, and I. King. Star­gcn: stacked and recon­

structed graph convolutional networks for recommender systems, 2019.

arXiv: 1905.13129 [cs.IR].

[72] L. Zheng, C.­T. Lu, F. Jiang, J. Zhang, and P. S. Yu. Spectral collab­

orative filtering. Proceedings of the 12th ACM Conference on Recom­

mender Systems, September 2018. DOI: 10.1145/3240323.3240343.

URL: http://dx.doi.org/10.1145/3240323.3240343.

[73] G. Zhou, N. Mou, Y. Fan, Q. Pi, W. Bian, C. Zhou, X. Zhu, and K. Gai.

Deep interest evolution network for click­through rate prediction, 2018.

arXiv: 1809.03672 [stat.ML].

[74] G. Zhou, C. Song, X. Zhu, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H.

Li, and K. Gai. Deep interest network for click­through rate prediction,

2018. arXiv: 1706.06978 [stat.ML].

Acknowledgements

I would first like to thank everyonewho duringmy academic career has shaped

my views and motivated me to pursue a career in Artificial Intelligence. Since

my first day as a Computer Science Bachelor’s degree student I was dream­

ing to specialize in AI in the future. It was a joy for me when University of

Bologna has opened a specialized Master’s degree course in Artificial Intel­

ligence, allowing me to pursue my goals. I would like to collectively thank

all of the professors from my Master’s degree for providing me with enough

technical knowledge to approach any problem with confidence.

I would like to thank my thesis supervisor, prof. Paolo Torroni for his

organizational work and willingness to receive student feedback, which has

helped to greatly increase the quality of the Artificial Intelligence Master’s

degree course. Additionally, I would like to thank him in the role of my pro­

fessor of Natural Language Processing course, which provided mewith a solid

practical and theoretical knowledge of the field. Finally, I would like to thank

him in the role of my thesis supervisor, for supporting my work and helping

me to improve its overall quality and scope.

I would like to thank Piotr Bigaj, my manager and internship supervisor

at NVIDIA, for his support and understanding throughout the entire duration

of my internship. Additionally, I would like to thank him for introducing me

to the field of recommendation systems, as well as optimizing deep learning

methods on powerful industrial hardware. I would also like to collectively

thank my collegues from NVIDIA for their overall support and discussions,

helping me to improve my knownledge of deep learning framework internals,

nuances and problems, as well as helping me to develop methodologies on

how to deal with them.

I would like to thank my parents, Olga and Alessandro, for never stop­

ping to support me throughout the whole duration of my university studies

and for welcoming my choice of relocating to Warsaw, Poland to perform my

internship.

I would like to thankmy girlfriend Serafima, for being very close, support­

ive and empathetic with me at the time of writing this thesis. I still remember

the period where I would reply her “Thesis..Chapter 4” every time she would

ask me what was on my mind.

Finally, I would like to thank all the class mates from the university with

whom I’ve interacted or done team projects with, during the duration of the

Master’s degree.

