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Chapter 1

Introduction

Time series forecasting is an important task related to countless applications,

spacing from anomaly detection to healthcare problems. The ability to predict

future values of a given time series is a non­trivial operation, whose com­

plexity heavily depends on the number and the quality of data available. His­

torically, the problem has been addressed first by simple, statistical models,

and later by deep learning­based models such as convolutional and recurrent

neural networks. Since the 2018’s publication of the Transformer, various

transformer­based models managed to achieve state­of­the­art results in vari­

ous fields, including the forecasting of time series; in this context, manymodel

proposals can be found in the literature, each with its own uniqueness. Starting

from this, the work presented in this thesis aims to achieve two main objec­

tives:

• Apply two transformer­basedmodels, namely a TransformerT2V and an

Informer, to two different time series forecasting problems, and com­

pare the results with the ones obtained by two non­transformer archi­

tectures, represented by a CNN and a LSTM ;

• Investigate the internal mechanisms behind the Informer’s key compo­

nent, theProbsparse attention, and suggest some improvements in order

to further enhance the model’s performances.
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Regarding the first point, the models have been trained on two public

datasets, namely theETTm1 andCU­BEMS, and their performances have been

evaluated both in qualitative and quantitative terms; for the second goal, the

focus of the experiments has instead been on the hyperparameter responsible

for the degrees of the approximations carried out by the Probsparse mech­

anism, which have been quantified and evaluated by means of appropriate

metrics.

This thesis is structured as follows: Chapters 2 and 3 introduce the topic

background and related work present in the literature, while Chapters 4 and 5

describe in the detail the datasets and the architectures involved in the investi­

gations. Chapter 6 illustrates the performed experiments and the methodology

followed for their execution, while their results are provided in Chapter 7. Fi­

nally, Chapter 8 is reserved for some final remarks and possible future work

suggestions.



Chapter 2

Background

2.1 Forecasting and Time Series

The act of forecasting is vital for many scientific and non­scientific activities.

A scientist would like to predict the behaviour of a given system, in order

to understand its mechanisms and exploit its properties; likewise, a financial

economist is surely interested in anticipating the market trends, in order to

make a profit from it. A successful epidemiologist is able to predict the spread

of an infectious disease as a function of different courses of action, and so on.

The most common form of forecasting involves time series. A time series,

in short, is an ordered sequence of values of one or more variables at succes­

sive points in time. If the values are distributed at equally spaced time inter­

vals, the time series is regular, and, given the starting time and the timestep

between two consecutive values, the series X can be written, without loss of

information, with the notation:

X = x0, x1, x2, ..., xt−1, xt, xt+1, ... (2.1)

where xt is the value of the variable(s) of the series at timestep t. An example

of time series is depicted in Fig. 2.1.

A time series is univariate if it contains a single time­dependent variable,
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or multivariate if more than one. Almost everything that is measurable can be

collected into a time series. Some examples of time series:

• The ECG signal of a patient;

• The retail sales of a product;

• The temperature and relative humidity inside a building;

• The daily electrical consumption of an office;

• The weekly number of taxi calls in a city.

Figure 2.1: Example of time series for global temperature deviation.

The information content of a time series is usually the result of multiple

underlying patterns, and it is often useful to recognize and extract these pat­

terns in order to have a better understanding of the data. Overall, time series

can be seen as a sum of three major components: trend, corresponding to the

meaningful non­periodic information, seasonality, representing the periodic

information, and residual, enclosing the noise components (Fig.2.2).
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The trend reflects a long­term increase or decrease in the data, not nec­

essairly linear [16]; it reflects the overall direction of the series, net of local

oscillations. The latter are instead included in the seasonal component of the

series: recurrent behaviors dictated by periodic conditions or events such as a

certain time of the day or a month of the year. Seasonality is always of a fixed

and known frequency [16]; if multiple patterns occur at different frequencies

in the same series, the dominant one is taken into account. As for the residual

component, it collect the remainder of the series that is neither trend or sea­

sonal: mostly noise and irregular fluctuations, and sometimes minor recurring

behaviors with different frequencies with respect to the seasonal one.

Figure 2.2: A time series and its decomposition into its three main components

(Image from [4]).

The composition of these three components into the original series can

either be additive or multiplicative [16]. For each element yt of a series Y , the

additive composition takes the form:
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yt = Tt + St + Rt (2.2)

while the multiplicative compositions is of the form:

yt = Tt · St · Rt (2.3)

where Tt, St and Rt are the elements of trend, seasonality and residual

components of the series for each time step t. The main difference between

the two situations resides in the fact that in the latter the magnitude of the

periodic oscillations is proportional to the series level, while in the additive

case this does not hold and the magnitude is often constant.

Given the pervasive nature of time series, the act of time series forecasting

holds countless applications. In order to describe them, it is first necessary to

formalize the problem.

2.1.1 The Time Series Forecasting Problem

Time series forecasting, in short TSF, can be carried out in many ways, and

some classification can be made [16][26]. Forecasting problems differ by:

• The prediction object. In the point estimates case we predict the ex­

pected future values of a target variable, while in the probabilistic fore­

casting case we obtain the parameter values of a distribution of prob­

ability (e.g. Gaussian) associated to it (useful to take into account the

model’s uncertainty);

• The forecasting window. Depending on the model output, the fore­

casting can either be one­step ahead, or multi­horizon (in the latter, a

window of M timesteps in the future is predicted simultaneously);

• The input and output dimensionality. Input and output time series

can either be univariate or multivariate, thus enabling various combi­

nations. For example, in a multi­to­single forecasting, from past values
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of a multivariate time series we try to infer future values for an univari­

ate one.

Taking into account the point estimates case, the univariate one­step ahead

forecasting can be formalized as follows:

Definition 1. Let Y be an univariate time series for a target variable y. For

the current time step t, the last k values of T are:

yt−k+1, yt−k+2, ..., yt−1, yt (2.4)

We define the one­step ahead forecasting of the series T at time t over a

lookback window k as the prediction of the next yt+1 value of the series, as a

function of its last k values:

ŷt+1 = f(yt−k+1, yt−k+2, ..., yt−1, yt) (2.5)

where ŷt+1 is the predicted value of yt+1.

The function f(·) is model­dependent, and can vary from simple to very

complex depending on the input elaborations taken into account.

The provided definition can be easily extended to the multi­horizon case

by considering a certain forecasting window M . Furthermore, the multi­to­

single forecasting case is covered by introducing the concept of covariate time

series, additional series used to help explaining the target one. We have:

Definition 2. Let T be a multivariate time series, composed by an univari­

ate series Y for a target variable y and N univariate series X1, X2, ..., XN

associated to some auxiliary variables x1, x2, ..., xN . If Y is the target of fore­

casting, the series X1, X2, ..., XN are called covariate time series for Y in T .

Let xA:B be a short notation for xA, xA+1, ..., xB.

We define the M­horizon forecasting of the target series Y at time t over a

lookback window k as the prediction of the next M values of the series Y , as

a function of the last k values of Y and X1, X2, ..., XN :
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[ŷt+1, ..., ŷt+M ] = f(yt−k+1:t, x1
t−k+1:t, ..., xN

t−k+1:t) (2.6)

where ŷt+1, ..., ŷt+M are the predicted values of yt+1, ..., yt+M .

The simplest way to approach a multi­horizon forecasting is by iteratively

applying a ”one­step ahead” model, that for each j ∈ {1, 2, ..., M} takes as

input the past yt−k+j, ..., yt+j−1 and xi
t−k+j, ..., xi

t+j−1 values of the series (and

using past predictions for the timesteps t + 1, ..., t + j − 1) and predicts the

next yt+j element of the target series.

Other methods prefer instead to predict all the values in the horizon at the

same time, thus relying only on past values of the series, without taking into

account intermediate predictions which could be incorrect.

Definition 2 can be further extended in order to take into account the mul­

tivariate output case, and analogue definitions, although structurally different,

can be made for the probabilistic forecasting problem. These formalizations

will be here omitted, as this thesis work is focused onto the point estimates,

multi­to­single time series forecasting problem.

2.1.2 Applications

Due to its pervasivity, the TSF problem is related to countless applications

[16][26]. Well­performing TSFmethods and architectures would be beneficial

for:

• Anomaly detection. The predicted values of a time series related to a

given system can be interpreted as the expected future behaviour of the

system itself. By comparing the expected and the real behaviour, we

can spot and quantify the occurrence of anomalies, and send an alarm

signal if the anomaly falls over a given threshold.

• Epidemic scenarios forecasting. The forecasting of epidemic time se­

ries can be exploited not only to study the evolution of the disease, but
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also to simulate scenarios: if a given starting state and a disease re­

sponse strategy are correctly encoded in the input series, the predicted

output can be studied to evaluate the effectiveness of the strategy with

respect to the disease evolution.

• Economic domain problems. Many economic problems, such as stock

market prediction and portfolio management, can be directly reformu­

lated as TSF problems.

• Resource optimization and scheduling. By forecasting the need of

given resources over time, it is possible to allocate them efficiently.

This includes scheduling problems, on which the resource to optimize

is represented by time.

• System evolution forecasting. The forecasting can be used to predict

the evolution of certain systems of interests; a classical example is the

atmospheric system in the weather forecasting problem.

2.1.3 Challenges of the TSF problem

Predicting the future involves dealing with the uncertain and the unknown.

In the time series forecasting problem, the major complication is given by

the fact that predictions far into the future often resemble the behaviour of

chaotic systems: given a small perturbation of the initial state (in our case, the

input series), the output forecasts may differ very significantly. Extending the

forecasting window causes some degree of error accumulation; the farther we

try to graze into the future, the lower our accuracy will be (Fig.2.3).
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Figure 2.3: Visualization of how expanding the forecasting horizon entails a

progressive decrease in accuracy (Image from [13]).

Furthermore, not every forecasting problem is equally difficult: for in­

stance, in the same 24h timespan, the indoor temperature shift is much easier

to predict than the air pollution of the city. Depending on the application, the

problematic aspects of TSF can be traced back to some sort ofweakness, either

in the data or in the model used for the forecasting.

As for the data, the major issues are represented by data scarcity, missing

values and noise. The first occurs when the time series dataset used to train

the forecasting model is too small to achieve acceptable results; for many ap­

plications the historical data is not available or difficult to achieve, thus re­

sulting in poor training datasets. A similar problem holds for missing values,

namely timesteps of the series for which we don’t have a value: while they

can be handled by means of several methods (moving average interpolation,

last­observed propagation, etc.), the guess is never exact and their presence is

source of degradation in performances. As for the noise, typically the values

of a time series present some sort of white noise (a disturbance component
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which is uniformly distributed and zero­centered), plus some additional inter­

ferences, depending on the series. When these elements are not negligible, the

overall forecasting process is hindered.

For what regards the model side, two major critical issues reside in the

difficulty to extract long­term dependencies in the time series and to handle

long input and output timestep windows. Many forecasting models present

these weaknesses, due to the lack of mechanisms to elaborate in a meaningful

way long input sequences and their internal correlaton.

2.2 History of models used for the TSF problem

In the past, various mathematical models have been adopted to tackle the time

series forecasting problem. The works of Lim et al.[44] and Green et al.[26]

provide a summary of the historically most important ones, together with their

strengths and weaknesses. To define some taxonomy, it can be said that the

most recent models fall into one of these three categories: statistical, machine

learning/deep learning based and deep learning based with attention mech­

anism. For what concerns this work, we instead make a distinction between

Non­Transformer based and Transformer based models. The rationale behind

this choice is due to the fact that while architectures falling in the first cate­

gory (which includes both statistical andmachine learning/deep learning based

models) have historically been relevant and are still widely used for TSF appli­

cations, recent scientific works are focused on the Transformer model and its

variations [39][44], due to their ability to outperform previous models [27].

Many state of the art architectures used in TSF are also transformer­based

[25][28][47].

2.2.1 Non­Transformer based models

The most used non­machine learning approach to TSF is the Autoregressive

Integrated Moving Average (ARIMA) model. It is a statistical model that
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employs the idea of moving averages to learn the serial correlation of the series

(namely, the correlation between the series and a lagged version of itself).

ARIMA models are a result of three components:

• Autoregressive (AR), which contribution to the output is a linear com­

bination of past values of the series;

• Integrated (I), which is in charge of differencing consecutive values in

order to make the series stationary;

• MovingAverage (MA), which exploit past forecast errors in a regression­

like model as a contribution to the output.

A full ARIMA(p,d,q) model can be written as [16]:

y′
t = c + ϕ1y

′
t−1 + ... + ϕpy′

t−p + θ1ϵt−1 + ... + θqϵt−q + ϵt (2.7)

where y′
t is the series differenced d times, ϕ and θ are themodel parameters,

ϵ is the white noise, p is the order of the autoregressive part and q the order of

the moving average part.

While these models are easy to implement and computationally inexpen­

sive, representing a good tool for low­complexity forecasting applications,

they struggle to grasp input dependencies in more difficult problems: they

provide a ”black­box” approach, in which the output is computed purely from

the input data, without a meaningful elaboration of the underlying system’s

state [26].

Moving on to deep learning­based models, a major representative is the

class of Convolutional neural networks. This class of neural networks, orig­

inally created to analyze image inputs, can be adapted to the elaboration of
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time series [21][26]. The peculiarity of CNNs resides in the use of convolu­

tional layers, which are able to analyze not the single input values, but win­

dows of them, by means of sliding filters (bidimensional for images, monodi­

mensional for time series). With this mechanism, a CNN model is able to

learn short­term dependencies between a time step and its neighbours. In TSF

applications, in order to consider only past correlations (since we don’t know

future values in advance), the standard convolution is replaced by a causal

convolution, in which only the past neighbours are considered for each input

element (Fig.2.4, Fig.2.6a).

Figure 2.4: (a): Example of convolutional neural network architecture for time

series forecasting (Image from [23].) (b): 2D convolution with a 3x3 filter

(Image from [10]). (c): Difference between standard and causal convolution

(Image from [20]).

Convolutional neural networks come with two main weaknesses. First

of all, by using the same set of filter weights at each time step, they assume

that input dependencies are time­invariant: in this hypothesis, it is taken for

granted that the relation between two input elements only depends on their

relative distance and not on their absolute position in the sequence. Secondly,

the filter size K determines the network’s ability to handle these correlations.
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Distant correlations require very long filters, resulting in a cost on memory

and computational efficiency. This can be partially tackled by using dilated

convolutions, albeit at the cost of a lower output accuracy.

Another widely used group of deep learning architectures is the class of

Recurrent neural networks (RNNs): due to the sequential structure of time

series, the use of RNNs has been proven beneficial for TSF problems [7][26].

A recurrent layer is characterized by the ability to store into the memory of its

units some of the information related to the input passing through the network.

The memory state of each cell is recursively updated at each time step, thus

keeping track of the previous values of the time series while analyzing the

current one (Fig.2.6b). Each recurrent layer can be seen as an infinite multi­

layer dense network that keeps reusing the same weights; thus we can provide

an unfolded visualization for it (Fig.2.5a).

Due to this infinite lookback window, the original RNN units suffered

from the so­called vanishing/exploding gradient problem: by propagating through

multiple ”equivalent” layers, during the backpropagation step of the training

the gradients tend to shrink/grow exponentially, thus making the network un­

able to learn long­range dependencies in the data. While the use of optimized

units such as LSTM (Fig.2.5b) and GRU has greatly reduced this issue, the

inefficiency of RNNs to handle long inputs still represents one of their major

weaknesses.

Figure 2.5: (a): Recurrent layer in its folded (left) and unfolded (right) forms.

(b): Internal structure of a LSTM unit (Images from [30]).
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The unexpected effectiveness of Transformer architectures in almost all

machine learning problems [2][27][45] has given the push to upgrade non­

transformer architectures with transformer components. One of the hybrid ar­

chitectures thus generated is theRNN enhanced with an attention layer[26].

Adding the attention mechanism to the network has shown significant im­

provement in tasks involving long input sequences, such as in the TSF case.

Attention layers aggregate input timestep values by means of dynamically

generated weights (Fig.2.6c), allowing the network to keep track of distant

time steps and their correlation with near ones.

Figure 2.6: Input elaboration pipeline for the CNN, RNN and Attention­based

models (Image from [26]).

2.2.2 The SOTA: Transformer­based models

Transformer based models are complex models able to achieve State­of­The­

Art performances in various machine learning problems, and time series fore­

casting is one of them. All the architectures falling in this category are a

derivation of the original Vaswani et al. Transformermodel [42]. While some

of their components may be substantially different, they all share three key

elements, namely:

• A positional/temporal embedding;

• A multilayer encoder­decoder body;

• A multi­head attention mechanism.
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The following paragraph will describe the original Transformer architec­

ture and its main components. A summary of the current SOTA models for

the TSF problem will be included in Chapter 3.

The Transformer model

The Transformer is amulti­purposemodel, and can be adapted to handle inputs

and outputs corresponding to different interpretations. The overall scheme is

depicted in Fig.2.7a. One of its peculiarities is represented by the fact that both

the encoder and the decoder accept an input: the encoder one is processed and

subsequently combined with the decoder’s by means of the attention mecha­

nism. The encoder receives the proper input, while the decoder takes past

output values in order to keep a trace of past elements.
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Figure 2.7: (a): The original Transformer architecture. (b): Scaled Dot­

Product Attention representation. (c): Multi­Head Attention representation

(Images from [42]).

The input information flows through the following model components:

1. Positional encoding. The attention mechanism, as will be described

later, does not take into account the absolute and relative position of

input elements: a mechanism to keep into account the sequential in­

formation is thus needed. This is provided by the positional encoding

layers: they sum to each vector embedding of the input ordered val­

ues of a periodic function F . If dmodel is the embedding dimension, the
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contribution to each input elements is:

PE(pos,i) = F

(
pos

10000
2i

dmodel

)
(2.8)

where pos is the position and i is the dimension of the input elements.

Multiple choices are possible for the periodic function F ; in the original

implementation, a sine/cosine approach is presented:

F (i, x) =


sin(x), i = 2k

cos(x), i = 2k + 1
(2.9)

thus resulting in the following:

PE(pos,2k) = sin
(

pos

10000
2k

dmodel

)
(2.10)

PE(pos,2k+1) = cos
(

pos

10000
2k

dmodel

)
(2.11)

in this way, each input dimension is associated to a sinusoid; its fre­

quency varies with the element’s position. Why is this mechanism able

to encode relative positions? Consider the rate of change of bits in bi­

nary numbers, as depicted in Fig.2.8. The changing frequency, from

right to left, of the first bit is 1
2 , of the second is 1

4 , of the third is 1
8

and so on. To each bit position is associated a certain frequency; the

sine/cosine encoding represents the float continuous counterpart of this

mechanism [18]. Furthermore, by dividing two frequencies it is possible

to obtain the relative distance between their two associated positions.
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Figure 2.8: Representation of the sine/cosine encoding (Left image from [1]).

2. Encoder and decoder stacks.

The encoder and decoder blocks of the architecture are composed by a

stack of Nenc and Ndec identical blocks (6 and 6 in the original imple­

mentation). Each block contains two layers: a multi­head self­attention

layer, where the self­attention mechanism takes place, followed by a

feed­forward layer. Between each layer is also performed a residual

connection, in order to preserve a part of the pre­layer input, and a layer

normalization is then applied to the result.

With respect to the encoder, the decoder presents two differences. The

first is that the attention performed by the first decoder block ismasked,

in order to prevent input elements from attending to future outputs: the

predictions for each position t can depend only on the known outputs

at positions less than t. The second resides in the fact that the decoder

blocks provide a third multi­head self­attention sub­layer, in order to

collect the output of the encoder stack.

3. Linear layer with softmax function.

After the decoder, a final linear layer, followed by a softmax activation

function, is in charge of providing the final output. The layer size dl

depends on the application: for classification tasks, it corresponds to

the number of classes; for translation tasks, it is equal to the vocabulary

size. When the output is an array of floats (such as in the TSF case),
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multiple adaptions can be made: one of them involves removing the

softmax activation and taking dl equal to the forecasting window.

The self­attention mechanism

A visualization of the multi­head attention performed in the encoder and de­

coder stacks is depicted in Fig.2.7b and Fig.2.7c. In summary, the mecha­

nism consists in a linear layer taking as input a concatenation of h different

scaled dot­product attentions, each performed by a different attention head.

For each head, three linear layers are in charge of extracting from the input a

tercet (Q, K, V ) of queries, keys (both of dimension dk) and values (of dimen­

sion dv), upon which the attention is computed. The attention is computed as

follows:

Attention(Q, K, V ) = softmax

(
QKT

√
dk

)
V (2.12)

where the scaling constant 1√
dk
is added to prevent dot products from grow­

ing too large in magnitude and thus hindering the softmax activation.

Aim of the self­attention is to relate different positions of a single sequence

in order to compute a meaningful representation of it; in order to do so, the

self­attention stores into a matrix a compatibility score of each possible query­

key combination, and uses these scores to compute a weighted sum of the

values. The rationale behind it is that values associated to a higher query­

key score are considered as ”more meaningful” in terms of information, and

thus should contribute more to the final output representation. An example of

self­attention matrix is depicted in Fig.2.9.
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Figure 2.9: Example of query­key scores on their corresponding self­attention

matrix (Image from [12]).

Why using multiple attention heads? Each head comes with its own pa­

rameters, and thus during the training different heads can focus on different

parts and internal dependencies of the input. So, each head is associated to a

different semantic information, and the concatenation of their output allows

for a greater extraction and retain of useful information.



Chapter 3

Related Work

3.1 Transformer drawbacks and state of the re­

search

Despite the effectiveness of the Transformer model, some studies [11][24]

suggested some weaknesses in the original architecture, and depending on the

application many enhancement proposals have been made.

Regarding the TSF problem, the work of Li et al. [11] shows that the

vanilla Transformer is locally agnostic: the attentionmechanismmatches queries

and keys without taking in consideration their local context (namely, neigh­

bouring elements in the input sequence), thus being prone to anomalies and

mislead by outliers.

Another weakness resides in the positional encoding: since the attention

mechanism does not explicitly take into account sequentiality, this knowledge

must be injected to the input through the positional encoding, at the risk of a

loss in meaningful information. Furthermore, while the sine/cosine encoding

is able to capture the information about both the absolute and the relative po­

sition, no notion of time is involved: the order in which two elements occur is

taken into account, but their temporal distance is not.
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A third, critical aspect of the Transformer’s attention lies in its computa­

tional complexity: given a sequence length L, the time and memory burden is

O(L2), making it difficult to learn patterns in long series [24].

These three represent the major points of weakness of the original model,

starting from which various transformer­based architectures have been pro­

posed in the literature andmany improvements have beenmade. Other models

focus instead on the problem of interpretability [25] and the use of Transform­

ers with an unsupervised approach [46].

It is worth noting that the majority of these proposals derive from the en­

hancement of one or both of the vanilla Transformer’s two main features: the

positional encoding and the attention mechanism. The following paragraphs

will present some of the most recent architectures providing an improvement

with respect to the aforementioned problems.

3.2 Models focusing on local context of input

It is common for time series to encounter at some time steps certain salient

events, that depending on the application can be seen as anomalies, impactful

enough to determine a shift in the pattern of subsequent values. To provide an

example, the advent of a blackout would cause a sheer drop in a series mon­

itoring the electrical consumption of the city it takes place in. Consequently,

the information is locally sensitive: series elements with equal values provide

different insight if one of them is temporally near an anomaly while the other

is not.

Since the vanilla Transformer does not take into account this kind of infor­

mation, the work of Li et al. [24] proposes the introduction of causal convolu­

tions into the attention mechanism: this method, depicted in Fig.3.1, involves

the use of convolution kernels to construct queries and keys, and is carried

out by considering only the past neighbours of each input element. In this

way, the local context of single entries is involved in the subsequent attention
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operation.

Figure 3.1: Comparison between the classical query­key construction (b) and

the causal convolution one (d), and the portion of input they involve (a, d).

The first method is locally­agnostic, while the second one is context­aware

(Image from [24]).

A second approach to the local context problem in TSF is provided by the

SpringNet architecture, by Koprinska et al. [28]. The authors, citing the Li

et al. work [24], underlined a limitation on the use of causal convolutions to

capture local information in time series, due to the fact that after each convo­

lution the input sequence is projected into a lower­dimensional latent space

and thus the local shape of the series is distorted. For this reason, they pro­

posed the use of the Spring algorithm (Sakurai et al. [35]), which is able to

find subsequences in data streams that are similar to a query one by means

of the Dynamic Time Warping (DTW) trajectory similarity measure. Given

two input sequences, the DTW is able to determine their affinity while being

robust with respect to temporal distortions such as shifts and scalings.

In the SpringNet model, the DTW is used as a distance measure on the

SpringDTW Attention Layers, on which the Spring algorithm identifies the

subsequences of keys that match query series. This mechanism allows the

architecture to be effective in TSF applications involving recurrent anomalies,

responsible for local fluctuations in the series.
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3.3 Models with focus on efficiency

Since the original Transformer release, a plethora of methods have been sug­

gested in the literature to improve the computational and memory efficiency

of the vanilla attention mechanism.

Li et al.[24] proposed, in theirLogSparse Transformer, the use of LogSparse

attention, reducing the complexity of attention computation from O(L2) to

O(L(logL)2) while maintaining high performances. The rationale behind the

LogSparse attention comes from the assumption that taking the full input se­

quence for the attention mechanism is redundant and comes with a computa­

tional cost that could be reduced. Thus, in each LogSparse layer a sampling of

input elements is made, by following an exponential step size: by considering

a base of 2, at each time step t only the elements {t, t−1, t−2, t−4, t−8, ...}

are taken. It is also worth to notice that by using an exponential sampling

step the majority of samples is near to the current time step, following the

idea of importance of the local context. A comparison between the Full and

LogSparse attention methods is depicted in Fig.3.2.

Figure 3.2: Comparison between the vanilla attention (a) and the LogSparse

attention (b). (Image from [24]).

The idea of considering a subset of the input on attention layers in order to

save computational power is taken up by many other models. But while most

of them approximate the attention matrix by applying some notion of sparsity

to it, the methods to do so may vary significantly. The work of Tay et al. [39]

proposes a survey of the main models of this category, which can be divided
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by the approximation technique:

• Pattern approximation. This simple method consists in taking a sub­

sample of the input by following determined fixed patterns, which can

be blockwise if consideringwindows of a fixed length (Blockwise Trans­

former [33], Local Transformer [31]), strided if attending at fixed in­

tervals (Sparse Transformer [5], Longformer [3]) or compressed if the

input sequence is down­sampled by means of a pooling operator (Com­

pressed Attention Transformer [29]). It is also possible to blend two or

more of these distinct patterns, resulting in a combination of patterns

approximation (Axial Transformer [14]), or connect multiple blocks by

means of recurrence (Transformer­XL [8]).

• Learnable patterns approximation. This technique extends the previ­

ous one by considering the pattern choice as part of the training process.

Models falling in this sub­category typically make use of a similarity

measure to sort input tokens (Sparse Sinkhorn Attention Transformer

[38]) or divide them into clusters (Reformer [19], Routing Transformer

[34]).

• Memory methods. This approach involves the training of a side mem­

ory to compress the input sequence and store temporary context infor­

mation that will be used as a shortcut for future processing (Set Trans­

former [22]).

• Low­rank and kernel methods. These methods are finalized to avoid

explicitly computing the full query­key attention matrix, either by a pro­

jection to a lower­dimensional representation (Linformer [43]) or an

approximation of the attention mechanism through the application of

kernels (Linearly Scalable Long­Context Transformer [6]).

It is important to underline that these techniques are not mutually exclu­

sive, and a single model can make use of a combination of them. The full list
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of efficient models surveyed by Tay et al., along with their classification and

the computational complexity of their attention layers, is provided in Tab.3.1.

Model Complexity Class

Memory Compressed (Liu et al., 2018) O(n2
c) P+M

Image Transformer (Parmar et al., 2018) O(n · m) P

Set Transformer (Lee et al., 2019) O(n · k) M

Transformer­XL (Dai et al., 2019) O(n2) RC

Sparse Transformer (Child et al., 2019) O(n
√

n) P

Reformer (Kitaev et al., 2020) O(nlog(n)) LP

Routing Transformer (Roy et al., 2020) O(nlog(n)) LP

Axial Transformer (Ho et al., 2019) O(n
√

n) P

Compressive Transformer (Rae et al., 2020) O(n2) RC

Sinkhorn Transformer (Tay et al., 2020) O(b2) LP

Longformer (Beltagy et al., 2020) O(n(k + m)) P+M

ETC (Ainslie et al., 2020) O(n2
m + n · nm) P+M

Synthesizer (Tay et al., 2020) O(n2) LR+LP

Performer (Choromanski et al., 2020) O(n) KR

Linformer (Wang et al., 2020) O(n) LR

Linear Transformers (Katharopoulos et al., 2020) O(n) KR

Big Bird (Zaheer et al., 2020) O(n) P+M

Table 3.1: Efficient transformer models surveyed by Tay et al., along with

their attention mechanism complexity and their classification. Complexity

abbreviations: n = sequence length, {b, k, m} = pattern window/block size,

nm =memory length, nc = convolutionally compressed sequence length. Class

abbreviations: P = Pattern, M = Memory, LP = Learnable Pattern, LR = Low

Rank, KR = Kernel, RC = Recurrence. (Original table from [39]).
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3.4 Models with focus on positional and temporal

information

The way the attention mechanism works restricts the transformer model from

fully exploiting the sequential nature of the input, and the positional encoding

only partially makes up for it. In order to tackle this problem, many alternative

approaches can be found in the literature.

The work of Shaw et al. [37] presents an efficient way of incorporating rel­

ative position representations in the self­attention computation. The proposed

Relation­aware Self­Attention treats the input as a labeled, directed, fully­

connected graph, which edges capture information about the relative position

differences between input elements. The edge information is extracted and

exploited both in the query­key compatibility computation and as a final con­

tribution to the attention sublayer output, allowing for a position­aware version

of self­attention. This idea is further enhanced and optimized by Huang et al.’s

Music Transformer [15], in which the relation­aware attention is implemented

in an efficient way by means of a ”skewing” algorithm while maintaining its

peculiar properties.

Another interesting approach is provided by Fan et al. in their proposed

Feedback Transformer [11]. The novelty of this model resides in the use of

a global memory, accessible by all layers, which takes part in the computa­

tion and whose content is updated at each time step with an embedding of the

layers hidden states. This mechanism feeds past elaborations into future time

steps, allowing the model to compute and transform inputs in a recursive way,

similarly to how a RNNworks. The working principle of the Feedback Trans­

former and a comparison with the vanilla transformer are depicted in Fig.3.3.
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Figure 3.3: (a): Working principle of the Feedback Transformer: past hidden

representations from all layers are merged into a single vector and stored in a

global memory. (b): Comparison between vanilla and Feedback transformer

architectures. (Image from [11]).

A different technique to augment the sequential information considered by

transformer­basedmodels consists in substituting the positional encoding with

different methods to capture the ordering of the data. This is the case of the

seq2tens encoding, proposed by Toth et al. [40]: the non­commutativity of the

input sequence is captured by first associating abstract features to each input

element by means of a static feature map, and by subsequently merge these

features together in a larger vector space. While the authors do not explicitly

consider transformer­based models in their dissertation (their focus is on en­

hancing CNNs and RNNs), seq2tens could be easily used as a replacement for

the vanilla positional encoding.

In a similar manner, the time2vec encoding, proposed by Kazemi et al.

[17], could be adopted. This method translates the notion of sequentiality

into the one of time, and can be seen as the extension of the positional en­

coding from a discrete synchronously­sampled time to the continuous. This

could prove invaluable when working with time series, and therefore in TSF

problems, since the input order is as important as the time distance between

elements.

For a given scalar notion of time t, the time2vec of t, in notation t2v(t), is
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a vector of size k + 1 defined as follows:

t2v(t)[i] =


wit + ϕi if i = 0

f(wit + ϕi) if 1 ≤ i ≤ k
(3.1)

where t2v(t)[i] is the ith element of t2v(t), f is a periodic activation func­

tion (such as sine/cosine), and wit, ϕi are learnable parameters, while the en­

coding size k + 1 is added as a model hyperparameter. With respect to the

positional encoding, Time2vec comes with some nice properties:

• It is model­agnostic. Due to its simplicity, Time2vec can be easily

imported into different architectures and improve their performances,

without compatibility issues.

• It is invariant to time rescaling. Given an arbitrary scale factor α, so

that each time step t is mapped into αt, it suffices to similarly scale each

parameter wi to αwi in order to be applied to the scaled data.

• It can capture both periodic and non­periodic patterns. Working

ith time series, the linear term (for i = 0) and the periodic one (for

1 ≤ i ≤ k) allow to address separately these two components.

Overall, time2vec encoding represents a strong tool to approach problems

in which time is an important feature; this is the case when dealing with time

series and therefore in TSF problems.

3.5 Other transformer­based models

Aside from the aforementioned problems, some proposed works in the litera­

ture aim at enhancing transformer­based models with respect to typical issues

shared by the majority of deep learning architectures.

A major research topic is about explainability: most of the state­of­the­art

models are still used as black boxes, on which it remains difficult to deter­

mine which aspects of the provided input drive the output decisions. This is
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surely true for simpler models, such as CNNs and RNNs; for transformers,

the attention mechanism represents a first step towards explainability, but in

most applications the underlying decision process still remains obscure. In

this context, Lim et al. proposed the Temporal Fusion Transformer (TFT)

[25], a multi­horizon forecasting architecture which also provides insight into

how and which parts of the input are considered in order to make predictions.

The TFT structure, depicted in Fig.3.4, is constituted by five key components:

• Variable selection networks, to select relevant input variables at each

time step;

• Gating mechanisms, to skip over any unused components of the archi­

tecture (which may vary depending on the application);

• Static covariate encoders, to integrate static features into the network;

• Sequence­to­sequence layers, to take into account local short­term tem­

poral relationships;

• interpretable multi­head attention blocks, to capture long­term depen­

dencies while enhancing their output explainability.

Furthermore, the output comes in the form of prediction intervals, to de­

termine the confidence range of target values at each prediction horizon.
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Figure 3.4: Temporal Fusion Transformer model architecture. (Image from

[25]).

Another interesting proposal is the Transformer­based framework for mul­

tivariate time series representation learning, by Zerveas et al. [46]. The nov­

elty of this proposal resides in the fact that the framework includes an unsu­

pervised pre­training scheme which is able to work with unlabeled time series

data. The authors show how this pre­training proves beneficial for applica­

tions such as regression and classification of time series, even if the model

is trained with a limited number of training samples both in the unsupervised

and the supervised steps.



Chapter 4

The Datasets

In order to employ the models of this thesis, two datasets have been chosen:

ETT Dataset [47] and CU­BEMS [32]. While being substantially different,

they can be linked to two practical time series forecasting problems, each with

their own challenges. The following paragraphs will provide a description of

the data they enclose, along with the practical scenarios correlated to them.

4.1 The ETT dataset

The Electricity Transformer Temperature (ETT) dataset [47]

It contains a multivariate time series regarding electrical transformer oil

data coming from two different stations located in separate countries of China.

For each station, both the 15­minutes and 1­hour timestep versions are avail­

able, thus resulting in four sub­datasets: ETTh1, ETTh2, ETTm1 and ETTm2.

Each of their data point consists of 8 features: the time step, the predictive

value ”oil temperature”, and 6 different types of external power load features,

as depicted in Tab.4.1.
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Feature Meaning

date Date and time of the sample

HUFL High UseFul Load

HULL High UseLess Load

MUFL Medium UseFul Load

MULL Medium UseLess Load

LUFL Low UseFul Load

LULL Low UseLess Load

OT Oil Temperature

Table 4.1: Features of data points in the four ETT datasets.

As will be shown in subsequent chapters, the ETTm1 dataset has been

chosen between the four in order to train the models of this thesis work and

evaluate their performances. As shown in Fig.4.1, it is comprised of 69′679

elements, covering measurements between 01/07/2016 and 26/06/2018, al­

most two years of data. A plot of the target ”Oil Temperature” variable on the

entire dataset and some zoomed windows at monthly, weekly and daily size

are depicted in Fig.4.2.
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Figure 4.1: Head and tail of the ETTm1 dataset.

Figure 4.2: Plot of the full ETTm1 dataset (a) and zoomed windows of

monthly (b), weekly (c) and daily (d) sizes.
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By looking at the target variable shape, some considerations can be made.

First of all, it is possible to observe a yearly­long seasonal pattern: the oil

reaches its maximum temperature during the summer months (july­august)

and has its minimum in the winter ones (december­january). Still, the peaks

are different for each year, and aside from this no other significant pattern can

be seen. At monthly and weekly levels, the series shows irregular fluctuations,

while at daily level there is some short­term local continuity, slightly distorted

by noise.

As for the ”power load” auxiliary variables, the situation is different: by

looking at their autocorrelation plot depicted in Fig.4.3, strong daily patterns

can be observed.

Figure 4.3: Autocorrelation graph of the ”Oil Temperature” target variable

(upper blue line) and the six auxiliary ”Power Load” covariates (lower lines).

While the first shows some degree of local continuity, the latter shows short­

term daily pattern (every 24 hours) and long­term week pattern (every 7 days)

(Image from [47]).

Overall, predicting future oil values of the ETTm1 dataset represents a
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challenging TSF problem, due to the short­term irregularities of the target se­

ries. But a correct forecast could bring strong benefits: as described in [47],

anticipating the electric power demand of specific areas is problematic due

to its variation with respect to factors such as weekdays, holidays, seasons,

weather and temperatures. For this reason, reliable methods to perform long­

term predictions of the demand itself with an acceptable precision still do not

exist, and a wrong prediction could overheat the electrical transformer, dam­

aging it. Since the oil temperature can reflect the condition of the electrical

transformer, its prediction could be used in order to employ an anomaly de­

tection mechanism: by comparing the expected behaviour with the currently

measured one, if their difference falls over a certain threshold an alarm sig­

nal will be sent, and appropriate actions could be taken if deemed necessary.

Moreover, since the oil temperature is related to the actual power usage, an

indirect estimation of the latter could be obtained, preventing overestimations

and thus unnecessary wastes of electric energy and equipment degradation.

4.2 The CU­BEMS dataset

The Chulalongkorn University Building Energy Management System dataset,

or CU­BEMS [32], is an extensive collection of data comprising electric­

ity consumption and indoor environmental measurements of a seven­story

11, 700m2 office building located in Bangkok, Thailand (Fig.4.4).
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Figure 4.4: Visualization of the cubems­related seven­story office building (a)

and floor planimetry (b) (Image from [32]).

Each floor of the building is divided into four (for floors 1­2) or five (for

floors 3­7) zones, and each zone is subjected to six different measurements:

• Electrical consumption of air conditioning units (AC);

• Lighting load;

• Plug load;

• Indoor temperature;

• Relative humidity;

• Ambient light.

The data is available at one­minute granularity, and covers 1,5 years of

measurements, from 01/07/2018 to 01/01/2020. While some missing values
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are present, the majority of features have a data availability of at least 95%,

with some exceptions at middle floors. Being divided both by year and by

floor, CU­BEMS is composed by 14 sub­datasets; a summary of the overall

structure is depicted in Fig.4.5.

Figure 4.5: CU­BEMS dataset file names (a), types of available measurements

(b) and classification of features contained in the dataset of floor 7 (c) (Original

images from [32]).



4.2 The CU­BEMS dataset 40

For the purposes of this thesis, the original CU­BEMS data has undergone

some preliminary processing steps. First of all, it has been decided to work at

floor­level, only considering data from floor 7 as the context of predictions.

The seventh one in particular has been chosen for two main reasons: it is one

of the floors with the most number of sensors in it, leading to 29 correspond­

ing features (Fig.4.5c), while at the same time containing the least amount of

missing values.

Secondly, a 15­min downsampling of the data has been carried out: this

has been done not only to adopt the same sample frequency of ETTm1, but

also because in the considered forecasting problem a 1­minute granularity has

been deemed redundant and computationally inefficient (more input elements

to compute, without a real gain in meaningful information).

At last, the object of forecasting had to be defined; concerning this, the

total floor consumption has been computed and inserted in the dataset as the

target feature. Its values, at each time step, are given by the sum of all the AC,

light and plug electricity consumption in the floor, regardless of the zone; a

plot of this constructed series is depicted in Fig.4.6.
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Figure 4.6: Plot of the 15­minutes sampled ”Total Floor 7 Consumption” fea­

ture inserted in the CU­BEMS dataset (a) and zoomed windows of monthly

(b), weekly (c) and daily (d) sizes.

By looking at the graph, two predominant seasonality patterns can be rec­

ognized: a daily one (Fig.4.6d), in which the consumption peaks correspond

to the typical working hours (from 8am to 5pm, with a pause at noon), and a

weekly one (Fig.4.6c), where the highest activity is registered at working days,

while weak consumption values are registered on Saturdays and almost none

can be seen on Sundays. This strong regularity is broken only by holidays, on

which the energy consumption drops to zero (due to the office building pre­

sumably being closed) regardless of the day of the week. These occurrences

have been considered as outliers, and in order to help the models understand

them an additional boolean feature, namely ”Weekend/Holiday”, has been in­

serted in the dataset: for each time step, the associated value is 1 if belonging



4.2 The CU­BEMS dataset 42

to an holiday or a weekend (Saturday or Sunday), and 0 otherwise. An exam­

ple of holiday outlier is depicted in Fig.4.7.

Figure 4.7: Example of daily­level outlier in the CU­BEMS dataset. Despite

being a Tuesday, the 23 October date is Chulalongkorn Day, a popular holiday

in Thailand, and thus the energy consumption of the building drops to zero.

As visible in Fig4.6a, in the data there is also another anomalous region,

located around the period of February 2018; since this represents only the 5%

of the data and differs very significantly from the rest, it has been decided to

simply cut it and stitch the two remaining halves of the series by taking as the

merging point the end of a week and the start of another.

The rationale behind the choice of forecasting the total energy consump­

tion of the office building is due to the multiple possible applications it could

provide. Apart from the aforementioned use of predictions as anomaly detec­

tion tools, the floor­level load forecasting could be used to solve resource op­

timization problems: by estimating which floors will require the most amount

of electricity at a given time, it would be possible to optimally allocate the

energy resources and thus prevent unnecessary wastes. Another valid oppor­

tunity would be the possibility to deploy and test building simulation models,
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as suggested by [32].

For all of these situations, CU­BEMS data represents a valid starting point

to train and test complex forecasting models. Overall, the high number of fea­

tures and the strongly regular patterns of CU­BEMS makes it very different

from ETTm1, despite being both related to an energy consumption context

(addressed directly by the first, and indirectly by the latter). An architecture

able to perform well on both would prove its ability to adapt to different situ­

ations and thus its effectiveness on important TSF applications.



Chapter 5

The Models

The experiments carried out on this thesis work are mainly focused on the

study and the application in the TSF domain of two different transformer­

based architectures: a TransformerT2V model and an Informer [47] model.

The first one is a simple but effective adjustment of the vanilla Transformer

for the time series problem, while the second is a complex architecture able

to reach SOTA results. In order to compare their performances with the ones

of non­transformer models, two architectures of this latter category have also

been trained and evaluated on the proposed datasets: a CNN and a LSTM.

The following paragraph will provide a description of these architectures, with

particular attention to the Informer model and its main characteristics.

5.1 Convolutional and LSTM models

The proposed CNN and LSTM architectures follow a similar structure, de­

picted in Fig.5.1.
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Figure 5.1: LSTM (a) and CNN (b) architectures used as representatives of

non­transformer models.

Both of them are composed by two stacked CNN/LSTM layers respec­

tively, followed by two middle dense layers and a final output one. The layers

size are tunable and represent the model hyperparameters. Given the simplic­

ity of these models and the abundance of data available for training, it has been

deemed (and later confirmed by the experiments) unnecessary taking into ac­

count the problem of overfitting, and thus dropout mechanisms have not been

introduced. Both models perform a multi­to­single, point estimates forecast­

ing at a given distance in the future: given a lookback window L, and a target

foresight k, if F denotes the number of features, the models take as input a

tensor of size [1, L, F ], corresponding to the last L time steps t − L + 1, ..., t,

and output a tensor of size [1, 1], containing the predicted value of the target

series at future time step t + k (In the batch version, if B is the batch size,

the input dimension is [B, L, F ] and the output one is [B, 1]). The choice of
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letting the models focus on a single time step at a given distance in the future

instead of on a target window is driven by the willingness to help the mod­

els by assigning them an easier prediction. The hyperparameters of the two

models, along with their description, are listed in Tab.5.1.

Model Hyperparameter Description

LSTM, CNN seq_len (L) Length of the lookback window

LSTM, CNN foresight (k) Distance in the future of the predicted time step

LSTM units_dense_lstm Units number of the first Dense layer of the LSTM model

LSTM units_lstm Units number of the LSTM layers

CNN units_dense_conv Units number of the first Dense layer of the CNN model

CNN filters_conv Number of filters of convolutional layers

CNN conv_width Filters size of convolutional layers

Table 5.1: Hyperparameters table of the LSTM and CNN models.

5.2 The TransformerT2V model

The TransformerT2V, proposed as a baseline for transformer­based architec­

tures, is depicted in Fig.5.2.



5.2 The TransformerT2V model 47

Figure 5.2: TransformerT2V architecture (a) and internal structure of the en­

coder attention layers (b).

Overall, the model resembles a vanilla transformer’s encoder, with some

slight modifications. First of all, the positional encoding is substituted by

a Time2Vec encoding [17], in order to better take into account the temporal

information of the input series. Differently from the vanilla transformer, this

encoding is not added to the input, but is concatenated to it by means of an

apposite block: this allows the following layers to handle the value and time

components for the input separately. After the concatenation, three encoder

layers apply the canonical self­attention to the processed input. The structure
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of these blocks is identical to the one in the vanilla Transformer, depicted in

Fig.5.2b: a multi­head self­attention layer followed by a feed­forward one,

with residual connections after both of them.

The encoder stack is then followed by a global average pooling layer: this

part of the architecture is in charge of condensing the upcoming information,

reducing its dimensionality. The flattened result is then processed by two final

dense layers, the last of which provides the predicted output.

All the components of the model are provided with a dropout mechanism,

in order to cope with overfitting. As for the previous models, TransformerT2V

performs a point estimates forecasting: in the batch version, given a tensor of

size [1, L, F ], the model outputs one of size [1, 1], corresponding to the pre­

dicted value at future time step t + k with respect to the current time t. Also

in this case, F is the number of input features, while L and k are two prob­

lem hyperparameters and represent the lookback window and the forecasting

target, respectively. The complete list of TransformerT2V hyperparameters is

depicted in Tab.5.2.

Hyperparameter Description

seq_len (L) Length of the lookback window

foresight (k) Distance in the future of the predicted time step

dmodel Dimensionality of the representations in the Attention layers

N_heads Number of heads in the Attention layers

FF_dim Number of units of the Feed­Forward layers

N_dense Number of units of the Dense layer

Dropout Dropout rate of the model layers

Table 5.2: Hyperparameters table of the TransformerT2V model.
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5.3 The Informer model

The Informer, proposed in 2021 by Zhou et al. [47], is a complex transformer­

based architecture able to achieve state­of­the­art performances in time series

forecasting applications. The model takes as input a lookback window of past

timesteps in order to perform a multi­to­single forecasting, in line with the

previously described architectures. However, it differs from them since the

prediction is multi­horizon: a full window of future time steps is predicted at

once.

The Informer structure, at a bird’s eye view, is depicted in Fig.5.3 and

resembles that of the vanilla Transformer, being composed by an input em­

bedding mechanism, an encoder, a decoder and a final dense layer. However,

each of these components is inherently different from its original counterpart,

due to the distinct techniques they adopt to elaborate input information. In

particular, the main form of novelty resides in the ProbSparse attention, a

more efficient type of attention with respect to the canonical one. The fol­

lowing paragraphs will provide a description of the aforementioned Informer

components, as well as the ProbSparse attention working principle.
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Figure 5.3: Informer architecture.

5.3.1 Starting input representation

In order to understand the Informer’s embedding mechanism, it is first neces­

sary to define the target of embedding, namely the model input. The latter is

divided into four parts:

• The encoder and decoder value inputs, two tensors corresponding to

the informational content of the actual samples features. They are built,

starting from a starting lookback window of size w, by following the

scheme depicted in Fig.5.4. Given a sequence length Ls, a label length
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Ll and a prediction length Lp, if F denotes the feature space dimension

and the starting tensor has size [1, Ls+Lp, F ] (where the t−Ls, ..., t+Lp

time steps are covered), the resulting encoder input is of size [1, Ls, F ]

(covering the period t−Ls, ..., t) and the decoder one has size [1, Ll, F ]

(corresponding to the window t + Lp − Ll, ..., t + Lp). The latter is then

causally masked, namely the values corresponding to future time steps

(which represent the target of forecasting) are covered with zeros.

Figure 5.4: Time window split into the four components of the Informer input.

• The encoder and decoder time inputs, enclosing the temporal infor­

mation of the series. These two tensors are built with the same pro­

cedure followed for the previously mentioned value ones, but in this

case the feature space is substituted with a time encoding space of tun­

able granularity. For a 15 min­scale encoding, which is the one used

in the Informer model, five time features are created, corresponding to

month, day, weekday, hour and minute representations. In this way,

each [1, w, F ] tensor is mapped into one of shape [1, w, 5]. A visualiza­

tion of time encoding is provided in Fig.5.5.
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Figure 5.5: Visualization of time encoding corresponding to the time steps

between 01/07 and 02/07, at a 15 min granularity.

Once created, these four components are further processed by the encoder

and decoder embedding layers, described in the following paragraph.

5.3.2 Input embedding layers

The embedding process is equal for both the encoder and the decoder sides. It

is carried out by an apposite block, depicted in Fig.5.6, which maps the data

into tensors of shape [1, Lin, dmodel], where Lin is set to Ls for the encoder

and to Ll for the decoder, while dmodel is the dimension of the internal data

representation inside the attention layers.
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Figure 5.6: Informer architecture.

Taking as input both the value and time tensor elements described in the

previous paragraph, each embedding layer outputs the sum of three different

components:

• a value embeddingXvalue, computed on the value input and represented

by a scalar projection of the form:

Xvalue = Activation(Conv1D(X)) (5.1)

where the Leaky ReLU is adopted as the activation function;

• a positional embedding Xpos, also applied to the value input and repre­

sented by the classical sine/cosine encoding of the vanilla Transformer;

• a temporal embeddingXtime, acting over the time input and represented

by the sum of five different linear embeddings of dimension dmodel, one

for each time feature:
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Xtime =
∑
k∈A

LinearEmbedding(xk) (5.2)

with A = {month, day, weekday, hour, minute}

The final input embedding is then given by:

Xembed = Xvalue + Xpos + Xtime (5.3)

and is a [1, Lin, dmodel] tensor ready to be processed by the subsequent

attention layers.

5.3.3 Encoder layers and ProbSparse Attention

The encoder layers of the Informer, depicted in Fig.5.7, are structurally sim­

ilar to the vanilla Transformer ones, being composed by an attention block

followed by a feed­forward projection, with residual connections after each

of them.
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Figure 5.7: Structure of the Informer encoder blocks. With respect to the

original Transformer model, the standard attention mechanism is substituted

with the ProbSparse one.

The main difference with respect to the canonical model resides in the use

of ProbSparse attention layers, which are able to reduce the time and memory

complexity of the attention computation from O(Lk · Lq) to O(Lq · lnLk)

(where Lq and Lk are the number of queries and keys) without a loss in the

overall performances.

The idea behind this proposed mechanism is that computing each query­

key dot product pair is redundant, since the majority of meaningful informa­

tion is carried out by only a few elements [47]. For this reason, ProbSparse al­

lows each key to only attend to the top­u dominant queries, with u = c·ln(Lq)

(where c is an hyperparameter), ranked by means of a sparsity score function
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M . If Q and K represent the query and key matrices, and qi ∈ Q, kj ∈ K,,

the score of each query qi is given by:

M(qi, K) = max
j

(
qik

T
j√

dmodel

)
− 1

Lk

Lk∑
j=1

(
qik

T
j√

dmodel

)
(5.4)

in other words, for each query the maximum and the mean value of its

scaled dot product with all keys is computed, and the difference of these two

components is considered. This peculiar rankingmetric is an approximation of

howmuch the probability distribution of the query attention score with respect

to the keys is dissimilar to the uniform distribution: the underlying hypothesis

is that queries which are dominant in the attention computation show a peak

in their distribution (reflecting an ”activation” when coupled to certain keys),

while uninteresting ones are associated to a ”flat” plot (producing the same

response regardless of their pairing). A detailed formalization of this concept,

along with an explanation on how the score function M(qi, K) is constructed,

is provided in Appendix A.

Back to the ProbSparse attention computation, we can see that until now

the complexity is still O(Lq · Lk), since for each query qi its dot product qik
T
j

with all the keys kj must be computed. It is here that a second simplification

is made: instead of considering the full key matrix K, the authors propose to

randomly sample U = c · ln(Lk) keys in order to obtain a sparse matrix K̄

on which the rows corresponding to non­sampled keys are padded with zeros

and thus do not contribute to the score computation. The approximated score

function M̄ , which is the one used in the Informer, becomes:

M̄(qi, K̄) = max
kj∈K̄

(
qik

T
j√

dmodel

)
− 1

U

∑
kj∈K̄

(
qik

T
j√

dmodel

)
(5.5)

With this method, only Lq · lnLk dot­product pairs are computed, thus re­

sulting in a major efficiency gain with respect to the standard attention mech­

anism.
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5.3.4 Conv1D & Pooling layers

After each encoder attention block, except for the last one, a Conv1D & Pool­

ing layer is in charge of distilling the attention output. This component, whose

structure is depicted in Fig.5.8, performs a 1­D convolution (with kernel size

= 3) along the time dimension, followed by a layer normalization and an ELU

activation function. At the end, a Max Pooling operation, with stride = 2, is

applied: this reduces by half the size of data along the feature space. This

”distilling” operation, which is responsible for the funnel­shape structure of

the encoder, sharply reduces the overall space complexity and helps discarding

redundant information in traversing data.

Figure 5.8: Internal architecture of the Conv1D & Pooling layers of the In­

former.
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5.3.5 Decoder layers and final dense output

Just like the encoder, the decoder layers of the Informer are similar to the orig­

inal Transformer ones, except for the use of the ProbSparse attention. Their

structure is depicted in Fig.5.9.

Figure 5.9: Internal structure of the Informer’s decoder layers.

Each decoder layer is composed by three parts. The first sub­layer, con­

nected to the embedded decoder input, performs a standard self ProbSparse

attention; only in the first decoder layer, this attention is masked, preventing

the elaboration of future time steps data by the model. The second component

is another ProbSparse block, computing a cross­attention between the decoder

queries and the keys and values provided by the encoder output. At last, a fi­

nal feed­forward layer is used to project the data outside the block. As usual,
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each of these layers is provided with dropout and residual connections.

In the standard implementation, two of these decoder layers are stacked

together; at the end of the second one, a final Dense layer is in charge of elab­

orating the decoder output to produce the final Informer output, represented

by the target window of predictions. This output is generated by one forward

procedure, rather than the time consuming “dynamic decoding” used in the

conventional encoder­decoder architectures, on which the forecasting is done

in multiple steps and at each step the previous model output is fed as input

for the next prediction. This ”one­shot generative inference” allows to signif­

icantly reduce the time burden in long­window forecasting applications.

5.3.6 Informer model hyperparameters

The full list of the Informer hyperparameters is provided in Tab. 5.3.

Hyperparameter Description

seq_len Input sequence length of the encoder

label_len Portion of lookback window used as input for the decoder

pred_len Prediction sequence length

Factor c factor used in the ProbSparse attention

dmodel First encoder layer and all decoder layers dimension

N_heads Number of heads in the Attention layers

enc_layers Number of encoder layers

dec_layers Number of decoder layers

dff N° of units of the Feed­Forward layers

Dropout Dropout rate of the model layers

Table 5.3: Hyperparameters table of the Informer model.



Chapter 6

Experiments description and

Setup

This chapter will provide a description of the investigations carried out in this

thesis work, along with their associated setup and preliminary steps. The ex­

periments can be split in two main categories:

• Analysis and comparison of themodels performances. The four con­

sidered models, namely CNN, LSTM, TransformerT2V and Informer,

are trained and evaluated on the ETTm1 and CU­BEMS datasets, as­

sociated to two different TSF problems. The focus is on studying the

effectiveness of transformer­based models, and their comparison with

non­transformer ones.

• Study of the approximations carried out by the ProbSparse atten­

tion. The ProbSparse mechanism of the Informer is able to reduce the

complexity of the attention from O(Lq · Lk) to O(Lq · ln(Lk)), by in­

volving in the computation only a subset of queries and keys. The ex­

periments of this subgroup are aimed at evaluating the goodness of this

approximation, and its relation with the hyperparameter responsible for

the number of sampled keys and top queries considered.

The results of these experiments will then be provided in Chapter 7.
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6.1 Models training and evaluation on the pro­

posed datasets

This section will describe the preprocessing operations applied to the data, the

hyperparameters choice for the models and the training setup followed for the

experiments.

6.1.1 Data preprocessing and split

Before training the models, the following preprocessing steps, common to

both datasets, have been followed:

• Filling of missing values. Timesteps on which one or more feature

value is missing have been dealt with a mean interpolation, namely

the missing element has been approximated with the mean value of its

neighbours.

• Data normalization. Since the data features are heterogeneous, and

come with different scales and units of measure, it is important to map

them on a same range of values to assign them equal weight. For this

purpose, a min­max normalization has been applied:

x′ = x − min x

max x − min x
(6.1)

with this operation, all features are mapped into the [0, 1] interval.

• Train/validation/test split. The data have been split into train, val­

idation and test sets, by following a 80%/10%/10% ratio depicted in

Fig.6.1.
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Figure 6.1: Visualization of ETTm1 and CU­BEMS datasets split into train,

validation and test data.

• Input and label creation. Once set the lookback window and the fore­

casting target, the train, validation and test series elements have been

sorted to form the models input and the associated ground truth labels

(corresponding to the exact prediction values).

6.1.2 Hyperparameters setting

In order to obtain the best results, various hyperparameter choices have been

tested for each model, resulting in the final configurations described in Tab.

6.1, 6.2 and 6.3.

As for the forecasting target, for the Informer model a window of 24 steps

into the future has been considered, while for the other models two different

targets at 12 and 24 steps into the future have been chosen, in order to compare

their predictions with the Informer ones.
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Model Hyperparameter Value

LSTM, CNN seq_len 128

LSTM, CNN foresight 12, 24

LSTM units_lstm 128

LSTM units_dense_lstm 64

CNN filters_conv 128

CNN units_dense_conv 64

CNN conv_width 5

Table 6.1: Final hyperparameter configuration chosen for the LSTM and CNN

models.

TransformerT2V

Hyperparameter Value

seq_len 128

foresight 12, 24

dmodel 256

N_heads 12

FF_dim 256

N_dense 64

Dropout 0.1

Table 6.2: Final hyperparameter configuration chosen for the Trans­

formerT2V model.
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Informer

Hyperparameter Value

seq_len 96

label_len 48

pred_len 24

Factor 5

dmodel 512

N_heads 8

enc_layers 3

dec_layers 2

dff 512

Dropout 0.1

Table 6.3: Final hyperparameter configuration chosen for the Informer model.

6.1.3 Training configuration and schedule

For all the models the training has been carried out with a batch size of 32 and

a maximum number of epochs of 10. The Adam optimizer has been used, with

a starting learning rate of 10−4.

The loss function chosen is the mean squared error (MSE):

MSE(ytrue, ypred) = 1
N

N∑
i=1

(ytrue − ypred)2 (6.2)

while the evaluation metric is the mean average error (MAE):

MAE(ytrue, ypred) = 1
N

N∑
i=1

|ytrue − ypred| (6.3)

As for the training runtime, a custom schedule has been adopted, with two

callbacks:
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• An early stopping callback is in charge of interrupting the model train­

ing if, after a certain number of epochs, the validation loss doesn’t de­

crease;

• A learning rate reduction on plateau callback decreases the learning

rate by a percentage whenever the validation loss stops improving dur­

ing the training.

The full training configuration is provided in Tab.6.4.

Training configuration

Batch size 32

Epochs 10

Optimizer Adam

Starting learning rate 10−4

Early stopping patience 4 epochs

Learning rate plateau reduction patience 2 epochs

Learning rate reduction factor 0.1

Minimum learning rate 10−10

Table 6.4: Training configuration for the proposed models.

6.2 Analysis of the ProbSparse attention

This section will describe the proposed experiments related to a more in­depth

analysis of the ProbSparse attention mechanism, and the role of its associ­

ated hyperparameter in the resulting approximation. More precisely, it will

be reported the reference models on which the analysis takes place, and sub­

sequently the two typologies of investigations carried out: a study of the ap­

proximation in the query score matrix, and one about the error in the resulting

top­u subset of queries.
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6.2.1 Reference models and aims of the experiments

The models on which the following experiments have been carried out are

two Informer architectures, trained on the CU­BEMS dataset. The first is a

canonical, ”sampled” model: its probsparsefactor hyperparameter, or c in a

compact notation, determines both the number of top­u queries (u = c·ln(Lq))

and the number of sampled keys (S = c ·ln(Lk)) used to approximate the keys

set K with a subset K̄. The second model is instead a ”full” one: while the

number of top­u queries is still determined by c, all the keys are considered

and no sampling is made. Using these trained models as a tool, two questions

have been asked:

• How good is the sampling­based approximation of the query­key

dot product probability distribution? Taking into account the ”sam­

pled” model, the objective is to determine the difference between the

approximated query scores M̄ and the equivalent scores M computed

by using all the keys. It is also noteworthy to study the consequent

difference between the ”exact” and the ”approximated” ranking orders,

and the resulting top­u queries;

• How well the probsparse mechanism behaves if the distribution is

approximated only after the model training? Starting from the ”full”

model, we study how the aforementioned query scores and rankings

change if the sampling mechanism is applied only after the Informer

attention weights are already optimized for a full­keys probsparse at­

tention.

In order to try answering these questions, to both trained Informers is given

the same CU­BEMS input, corresponding to a timestep window centered into

a peak of electrical consumption: this choice is finalized to induce a strong

response into the model layers. Then, for each model, from the first head of

the last encoder layer the generated query Q and key K tensors have been
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extracted, just before the probsparse mechanism is carried out; obtaining Q

and K represents the starting point of the subsequent experiments described

in the next paragraphs.

6.2.2 Study of the approximation in the query score matrix

Given a queries set Q and a keys set K, the ”full” score of each query qi ∈ Q

is given by:

M(qi, K) = max
kj∈K

(
qik

T
j√

dmodel

)
− 1

U

∑
kj∈K

(
qik

T
j√

dmodel

)
(6.4)

while the approximated, ”sampled” score is provided by:

M̄(qi, K̄) = max
kj∈K̄

(
qik

T
j√

dmodel

)
− 1

U

∑
kj∈K̄

(
qik

T
j√

dmodel

)
(6.5)

where K̄ is a subset of S = ⌈c · ln(LK)⌉ keys randomly sampled from

K. Since for each model the probsparse layer of reference works with 23

queries and keys, c is in the range of integers [1, 7] (with S = 4 for c = 1 and

S = 22 for c = 7). For each possible value of c, the distance between the

real M(qi, K) and the approximated M̄(qi, K̄) scores has been computed, by

using the root mean square error as metric:

RMSE(M, M̄) =

√√√√√ Lq∑
i=1

(
M(qi, K) − M̄(qi, K̄)

)2

Lq

(6.6)

Since the subset K̄ is random (due to the random keys sampling), this

procedure has been repeated N times, with N sufficiently large (in these ex­

periments, N = 1000), and the mean RMSE value has been taken as the final

result.

Furthermore, the two main components of the score function have been

evaluated separately. Recalling Eq.6.4, M(qi, K) can be seen as:
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M(qi, K) = MAX(qi, K) − MEAN(qi, K) (6.7)

with

MAX(qi, K) = max
kj∈K

(
qik

T
j√

dmodel

)
(6.8)

and

MEAN(qi, K) = 1
LK

∑
kj∈K

(
qik

T
j√

dmodel

)
(6.9)

whereMAX(qi, K) represents the peak of the query­keys dot product dis­

tribution, while MEAN(qi, K) its average value. Given their approximated

counterparts ¯MAX(qi, K̄) and ¯MEAN(qi, K̄), the correspondingmeanRMSE

values have been computed for each possible value of c.

6.2.3 Study of the approximation in the query ranking

Since the probsparse attention output is not directly influenced by theM(qi, K)

scores, but only by the top­u queries choice, it has also been decided to di­

rectly measure the distance between the two query rankings R = [qR
1 , ..., qR

Lq
]

and R̄ = [qR̄
1 , ..., qR̄

Lq
] obtained from M and M̄ . The rationale behind this is

that two different sets of scores could determine two equal query orderings,

and consequently the same final result: therefore, regardless of the error be­

tween M and M̄ , if R and R̄ are similar enough the approximation obtained

by considering only the subset of keys K̄ ∈ K can be deemed valid.

The relation betweenR and R̄ has been observed bymeans of two different

points of view, each measured with a corresponding metric:

• Queries ordering. This case aims to measure how many queries are

placed at the same position in both rankings, considering both the full
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ranking and the top­u only. The proposedmetric is the normalizedHam­

ming distance, computed as follows:

H(R, R̄) =

N∑
i=1

f(R[i], R̄[i])

N
(6.10)

with

f(R[i], R̄[i]) =


1, R[i] = R̄[i]

0, R[i] ̸= R̄[i]
(6.11)

This metric can be applied also for the top­u only evaluation, since it

does not require the two top­u subsets to share the same queries (al­

though ordered differently).

• Queries presence in top­u. Since the probsparse attention output is

influenced only by the choice of which queries are involved in the com­

putation and not by their relative ranking, it has been decided to consider

the top­u positions of R and R̄ as two unordered sets, and measure their

similarity by means of their intersection and union only. The proposed

metric is the Jaccard distance, defined as:

D(Rtop−u, R̄top−u) = 1 − J(Rtop−u, R̄top−u) (6.12)

where J(Rtop−u, R̄top−u) is the Jaccard similarity index:
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J(Rtop−u, R̄top−u) = Rtop−u ∩ R̄top−u

Rtop−u ∪ R̄top−u

(6.13)

which represents the intersection­over­union between the two consid­

ered subsets.

As for the previous set of experiments, since the ”approximated” ranking

R̄ depends on the randomly sampled keys, the proposed metrics have been

computed overN = 1000 repeated trials, and their mean value has been taken

as the final result.

It is important to underline that the Jaccard distance between the two top­

u sets is bound to reach zero with c = 7: since in the original architecture

this hyperparameter is responsible for both sampled keys and top­u queries

numbers, for a maximum value of c all the queries are in top­u, and thus the

”full” and ”sampled” corresponding unordered sets are equal. For this reason,

it has been decided to also consider the case in which c is decoupled into two

different hyperparameters ck and cq, one for keys and one for queries: in this

way, it is possible to determine the approximation error also for high numbers

of sampled keys, with respect to few top­u positions considered. Furthermore,

it is possible to study if splitting c into two components could be beneficial for

the model performances.



Chapter 7

Results

This chapter will provide the results obtained by the CNN, LSTM, Trans­

formerT2V and Informer models on the ETTm1 and CU­BEMS datasets, and

the outcome of the studies on the probsparse mechanism of the Informer.

7.1 Models performances on ETTm1 Dataset

The models performances, in terms of MSE and MAEmetrics, on the normal­

ized ETTm1 test dataset are depicted in Tab.7.1.

Model MSE (t+12) MAE (t+12) MSE (t+24) MAE (t+24)

CNN 0.0015 0.0294 0.0022 0.0355

LSTM 0.0016 0.0291 0.0035 0.0442

TransformerT2V 0.0019 0.00327 0.045 0.0511

Informer 0.0007 0.0193 0.0011 0.0218

Table 7.1: Models results for the ETTm1 test data.

From the metrics values it can be observed that all models perform very

well on the ETTm1 dataset, with the Informer architecture performing best

while the TransformerT2V having performances comparable with the CNN

and LSTM ones. This could suggest that, for low­feature datasets, the vanilla
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Attention mechanism plus the introduction of a time encoding does not pro­

vide significant advantages over standard methods such as convolutions and

recurrence; another hypothesis is that discarding the decoder component of

the Transformer could have hindered the advantages provided by the vanilla

architecture.

The situation is different for the Informer model, outperforming other ar­

chitectures by a significant margin and obtaining results similar to the ones

achieved by the model authors on the same dataset [47].

A visualization of each model’s forecasting on the ETTm1 test set is de­

picted in Fig.7.1. Overall, all the predictions manage to follow the series trend,

with some oscillations especially in the TransformerT2V case. The Informer

forecasting is instead very precise and seems to capture very well the local

maxima and minima of the series.



7.1 Models performances on ETTm1 Dataset 73

Figure 7.1: ETTm1 test set predictions for the LSTM, CNN, TransformerT2V

and Informer architectures.
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7.2 Models performances on CU­BEMS Dataset

The models performances, in terms of MSE and MAEmetrics, on the normal­

ized CU­BEMS test dataset are depicted in Tab.7.2.

Model MSE (t+12) MAE (t+12) MSE (t+24) MAE (t+24)

CNN 0.0411 0.1466 0.0437 0.1498

LSTM 0.0317 0.1067 0.0368 0.1103

TransformerT2V 0.0241 0.0791 0.0315 0.1027

Informer 0.0104 0.0391 0.0197 0.0408

Table 7.2: Models results for the CU­BEMS test data.

In this case, the transformer­based models perform significantly better

with respect to non­transformer ones. This could be due to the involvement

of a much higher number of features, which simpler models struggle to keep

track of.

As for the previous dataset, a visualization of each model’s predictions on

the CU­BEMS test set is depicted in Fig.7.1.
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Figure 7.2: CU­BEMS test set prediction for the LSTM, CNN, Trans­

formerT2V and Informer architectures.

The Informer is still the best performing architecture, with low MSE and

MAE scores. Still, it struggles to correctly predict time steps related to festiv­

ities, especially in the case of predictions far in the future. An example of this

is depicted in Fig.7.3.
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Figure 7.3: Example of ”holiday outlier” and related Informer perdiction at 1,

12 and 24 time steps in the future.

In order to determine if the introduction of the ”weekend/holiday” feature

in the CU­BEMS dataset is really beneficial for the Informer’s performances,

the same model has been trained again it, and the MSE and MAE values have

been computed separatedly for working days and weekend/holidays. The re­

sults are provided in Tab.7.3.
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All predictions Working days Weekend/Holidays

Weekend/holiday used MSE = 0.0197 MSE = 0.0129 MSE = 0.0861

MAE = 0.0408 MAE = 0.0287 MAE = 0.0612

Weekend/holiday not used MSE = 0.0223 MSE = 0.0137 MSE = 0.1153

MAE = 0.0681 MAE = 0.0315 MAE = 0.1132

Table 7.3: MSE andMAE scores for predicted data at timesteps t+24, depend­

ing on whether the related feature column is used or not. The metrics are also

computed on timesteps corresponding toworking days andweekends/holidays

separately.

From the table, it can be seen that while global and working days met­

rics stay more or less the same, a small improvement is made on the week­

end/holidays error, suggesting the beneficial effects of this feature on the over­

all training.
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7.3 Results on the study of ProbSparse Attention

7.3.1 RMSE between query scores

The mean RMSE values between the exact query scores M(qi, K) and the

approximated ones M̄(qi, K̄), computed over 1000 iterations and as a function

of the probsparse factor c, are depicted in Fig.7.4 for the ”Full” model, and in

Fig.7.5 for the ”Sampled” one; the same figures also provide the results of the

investigation focused on the ”max” and ”mean” components of the ranking

function.

Figure 7.4: RMSE values related to the ranking function investigation on the

”Full” model.
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Figure 7.5: RMSE values related to the ranking function investigation on the

”Sampled” model.

From the RMSE tables and their associated bar charts some considerations

could be made. First of all, while the error starts higher for low values of c in

the ”sampled” model, in both cases tends to reach the same plateau for high

c values, with a similar descending curve; as expected, the two differently

trained models show the same behaviour for high values of the hyperparame­

ter, but even for lower values of the latter their difference is not so marked.

By looking at the MAX and MEAN components, it is possible to see that

in both cases the RMSE of the latter is relatively low, and almost constant

regardless of c, while the first starts high and decreases progressively: this

suggests that even by sampling a few number of keys the mean value of the

distribution is approximated well, while its maximum is not. The fact that c

only influences theMAX component approximation could lead to the sugges­

tion of modifying the original M(qi, K) score function in order to give it a

major weight in the final result, for example by discarding the mean compo­

nent from the computation.

Still, only looking at the error in the score values is not enough to draw

strong conclusions, since different query scores not necessarily lead to differ­

ent rankings.
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7.3.2 Hamming distance between query rankings

The following tables (Tab.7.4, Tab.7.5) show the normalized Hamming dis­

tances between query rankings built from the exact M and approximated M̄

scores, considering both the full Lq queries and the top­u only. Their associ­

ated bar charts are also depicted in Fig.7.6

”Full” Model

Factor Hamming distance, full ranking Hamming distance, top­u ranking

1 0.92 0.84

2 0.87 0.90

3 0.83 0.71

4 0.78 0.69

5 0.74 0.56

6 0.26 0.72

Table 7.4: Normalized Hamming distance between query rankings in the

”Full” model. ”Full ranking” refers to the full query ordering, while ”top­u

ranking” the one of top­u queries only

”Sampled” Model

Factor Hamming distance, full ranking Hamming distance, top­u ranking

1 0.90 0.84

2 0.76 0.64

3 0.62 0.66

4 0.51 0.59

5 0.46 0.37

6 0.44 0.44

Table 7.5: Normalized Hamming distance between query rankings in the

”Sampled” model. ”Full ranking” refers to the full query ordering, while ”top­

u ranking” the one of top­u queries only
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Figure 7.6: Bar charts of the Hamming distance value as a function of c for

the ”Full” (a) and the ”Sampled” (b) models.

Unlike in the previous experiment, here the ”full” and the ”sampled” mod­

els present different behaviours: the first shows an overall high error in using

sampled keys to approximate the queries ranking even for high values of c,

while the second performs much better in this sense. In fact, for the ”sam­

pled” model, the ranking approximation error decreases almost linearly with

increasing values of c, while for the ”full” one it does not decrease signifi­

cantly; this suggests that pruning the key distribution information only after

the training is not as effective as employing that strategy during it.

Still, for both models the approximation error is relatively high, with even

the ”prob” model’s best configuration staying over a 0.35 distance score. This

does not necessarily lead to errors in the final attention output, since the prob­

sparse mechanism treats the chosen queries as an unordered set; the following

experiment is focused on this aspect.

7.3.3 Jaccard distance between top­u query sets

The Jaccard distances between real and approximated top­u queries sets for

the two studied models are depicted in Fig.7.7.
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Figure 7.7: Jaccard distance between exact and approximated top­u queries

sets for both ”full” and ”sampled” Informer models.

It can be seen that for appropriate values of c the error drops considerably;

recalling Table 7.4, for certain values of c onwards, the choice of queries to in­

volve in the attention computation is similar in both the exact and the approx­

imated computations, even if the corresponding Hamming distance is high.

This holds for bothmodels, but is particularly true for the ”sampled” one, since

the initial Jaccard distance is around 0.5 for the minimum value of c (and so

for a small number of sampled keys). Again, this shows the importance of

enacting the sampling mechanism during the model training.

As previously underlined, with this setup the Jaccard distance is bound to

reach zero for the the maximum value of c, since in this limit case all queries
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are considered in top­positions; this is a consequence of the fact that the prob­

sparse factor c is associated to both queries and keys extraction. The effects

of decoupling c into two sub­hyperparameters cq and ck, of which the first

is responsible for the top­u queries and the second for the sampled keys, are

described by the last experiment’s results, reported below: they show the Jac­

card distance matrix between top­u sets, which contains the metric scores as­

sociated to all possible cq and ck configurations, for three different Informer

models trained with c = 1 (Fig.7.8), 3 (Fig.7.9) and 5 (Fig.7.10) respectively:

Figure 7.8: Jaccard distance matrix associated to all possible cq and ck config­

urations, along with the relative heatmap and rows bar charts, for an Informer

model trained with c = cq = ck = 1.
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Figure 7.9: Jaccard distance matrix associated to all possible cq and ck config­

urations, along with the relative heatmap and rows bar charts, for an Informer

model trained with c = cq = ck = 3.
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Figure 7.10: Jaccard distancematrix associated to all possible cq and ck config­

urations, along with the relative heatmap and rows bar charts, for an Informer

model trained with c = cq = ck = 5.

The results show that, regardless of the choice of c for the training, a com­

mon pattern can be observed: depending on the query factor cq, from a certain

key sampling parameter ck onwards a plateau is reached, namely the Jaccard

distance does not decrease significantly by increasing ck. This represents a

noteworthy observation, since for certain configurations it is possible to de­

crease the number of sampled keys, and thus the overall computational burden,

with negligible performance degradations.



Chapter 8

Conclusions

8.1 Final remarks

In this thesis work, two groups of investigations have been carried out: the

use of transformer­based architectures for time series forecasting, and the

analysis of the keys sampling mechanism behind the Informer’s probsparse

attention, along with the suggestion of some improvement ideas.

For the first group, two transformer­based architectures, namely the Trans­

formerT2V and the Informer, have been applied to two different time series

forecasting problems, and their performances have been compared with the

ones of two classical non­transformer models used in TSF, namely a CNN

and a LSTM. The obtained results show that, while all the proposed mod­

els performed very well on both ETTm1 and CU­BEMS datasets, the sim­

ple attention­based TransformerT2V performs slightly worse than the non­

transformer reference models on ETTm1, and slightly better on CU­BEMS.

This suggests that, in the TSF domain, the attention mechanism’s benefits

show up in the elaboration of high­dimensional data, namely when the dataset

contains an high number of features (this is the case of CU­BEMS), while for

small dimensions the performances are comparable to the ones obtained by
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classical methods. As expected, of all the models the Informer is the best per­

forming one, outclassing the prediction accuracy of the other considered archi­

tectures by a significant margin: this shows the potential benefits of adopting

SOTA transformer­based models for TSF­related applications.

The second group of experiments aimed instead at studying the mecha­

nisms behind the distinctive characteristic of the Informer, which is the Prob­

sparse attention, and the role of the probsparse hyperparameter c, responsible

for both the number of sampled keys and the queries involved in the attention

computation. The obtained results showed how variations in the choice of c

only affect a component of the query score function, suggesting a rework of

the latter in order to be more easily controlled by the hyperparameter. Further­

more, it has been shown how a decoupling of c into two distinct components

could prove beneficial, diminishing the computational burden without a loss

in the performances. At last, it has been shown how, from certain values of

c onwards, the accuracy of the probsparse’s internal representations reach a

plateau: this could be exploited by fixing a threshold Th in the approxima­

tion error, and tuning the value of c in order to have the smallest number of

sampled keys while staying under Th.

8.2 Future work

Regarding the models performances on the proposed TSF problems, the rea­

sons behind the uneffectiveness of the TransformerT2V architectures could

be explored further. In particular, its average­to­below­average performances

could be due to the lack of a Decoder, a key component of many transformer­

basedmodels, which has been cut off for the sake of efficiency and to study the

sole contributions of the vanilla attention mechanism and the T2V encoding

to the overall result. In this line, possible future works could be the introduc­

tion of T2V in the original Transformer model, or the substitution on the latter

of the canonical attention with different mechanisms, in order to evaluate the
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effective importance of an encoder­decoder structure.

As for the Informer model, the experiments on the probsparse attention

mechanism represent a preliminary analysis, carried out only on the first head

of a single encoder layer, and should be supported by more data. Further stud­

ies should extend the analysis to all the heads of all layers, in order to evaluate

the effectiveness of probsparse’s internal approximations on the various model

components, and their correlations. For instance, it could be noteworthy an­

alyzing the probsparse mechanism in the decoder’s cross­attention layers, on

which the input comes from both the encoder and the previous decoder layers.

Other next researches could reside in testing the effects of the proposed

modifications, namely the use of a different query score function and the de­

coupling of the probsparse factor c into two sub­parameters cq and ck, on the

overall Informer performances. Regarding this, a runtime­tuning of the keys

sampling factor ck could be enacted, for instance by means of a reinforcement­

learning mechanism which at each time step increases or decreases ck if the

corresponding error metric is over or under a fixed threshold Th. Furthermore,

with this mechanism each attention layer could tune its own parameter value,

with possible performance benefits; a future study could determine if this is

actually the case.



Appendix A

Foundations of the ProbSparse

Attention mechanism

Recalling the canonical Attention computation, represented by the equation

Attention(Q, K, V ) = softmax

(
QKT

√
dk

)
V (A.1)

we can see that it represents a weighted sum of input values, on which the

weights are computed starting from a softmax function applied to scaled dot­

products between pairs of queries and keys. From this consideration, the Prob­

Sparse mechanism of the Informer lays its foundations on the hypothesis that

the aforementioned softmax scores follow a long­tail distribution, depicted in

Fig.A.1: only a few dot­product pairs contribute to the major attention compu­

tation, while most of the others could be ignoredwithout a significant variation

of the final result.
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Figure A.1: Long­tail distribution of softmax scores in the canonical Trans­

former self­attention (Image from [47]).

In this context, the attention equation can be reformulated as follows:

Attention(Q, K, V ) =
∑

J

Ker(qi, kJ)∑
l∈Lk

Ker(qi, kl)
VJ (A.2)

where Ker(qi, kJ)) is an asymmetric exponential kernel:

Ker(qi, kJ) = e
qikT

j√
d (A.3)

In eq.A.2, the elements of the summation can be seen as the probability

distribution p(qi, kJ), for each query qi, of its attention score with respect to

all keys kj ∈ K (with |K| = LK):

p(qi, kJ) = Ker(qi, kJ)∑
l∈Lk

Ker(qi, kl)
(A.4)

For a given query, if its distribution p is similar to the uniform distribution:
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q(qi, kJ) = 1
LK

(A.5)

the query’s contribution is trivial and can be discarded. A visualization of

this idea is depicted in Fig.A.2.

Figure A.2: Probability distribution of dot­product values for an ”active”

query and a ”lazy” one. Active queries show an activation peak in corrispon­

dence to certain keys, while unimportant ones are associated to an uniform

response (Image from [47]).

In order to measure the similarity between p(qi, K) and q(qi, K), a candi­

date metric is represented by the Kullback–Leibler divergence:

KL (q||p) = ln

LK∑
l=1

e
qikT

l√
d

− 1
LK

LK∑
J=1

qik
T
l√
d

− ln(LK) (A.6)

where, for a given query qi, the first term is the log­sum­exp (LSE) function

computed on all keys, the second is the arithmetic mean, and the third is a

constant that can be discarded from the final result. If the value of KL (q||p)
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is high, the query is ”active”, and has an high chance to produce relevant dot­

product values in the attention computation.

The use of KL divergence as the similarity metric is however computa­

tionally expensive, and for this reason a simpler, more efficient query score

function M(qi, K) can be introduced:

M(qi, K) = max
J

(
qik

T
J√
d

)
− 1

LK

LK∑
J=1

qik
T
J√
d

(A.7)

This max­mean measurement computes the distance between the distribu­

tion peak and its mean value: recalling Fig.A.2, high peaks are associated to

strong query­key activations, and thus this metric can be effectively adopted

to rank queries in order of importance.
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