
ALMA MATER STUDIORUM · UNIVERSITÀ DI BOLOGNA
CAMPUS DI CESENA

Scuola di Ingegneria e Architettura

Corso di Laurea Magistrale in Ingegneria e Scienze

Informatiche

Design and implementation
of a chatbot for remote sensors reading

and home automation.

Tesi di laurea in
CRITTOGRAFIA

Relatore
Dott. Luciano Margara

Candidato
Alessia Cerami

Sessione Unica di Laurea

Anno Accademico 2020-2021

ii

This thesis is dedicated to my family and my companion of life and madness,
Andrea. A special feeling of gratitude to my loving parents, Dario and Mirella,

whose words of encouragement and push for tenacity ring in my ears. My
brother, Pierguido, who has always supported me.

iii

iv

Acknowledgements

I thank my colleague Andrea Giordano for the help offered to me in this thesis.

But, above all, for bearing with me and supporting me in this period.

I thank Professor Luciano Margara for the availability and understanding

shown as a thesis supervisor, the passion and professionalism communicated as

a teacher, but above all for always encouraging my choices in the professional

field.

I thank all the colleagues I met who shared with me the joys and sacrifices of

these years of study, filling them with laughter and making them unforgettable.

I thank all my friends for believing in me but above all for showing me contin-

uously, even from a distance, their enormous affection.

I thank all my family. But above all I thank my parents and my brother

because without them all this would not have been possible and also for having

always shown me their unconditional love by encouraging and supporting me in

all my choices.

v

vi

Contents

1 Introduction 1

2 Technologies and libraries 5

2.1 Chatbot: What are we talking about? 6

2.1.1 How do chatbots work? . 7

2.1.2 A brief history of chatbots 8

2.2 MQTT . 10

2.2.1 MQTT: Key aspects . 11

2.2.2 Advantages of MQTT and why we choose it 17

2.3 Ktor . 19

2.3.1 Key aspects . 19

2.3.2 How Ktor was used? . 21

2.4 Main libraries . 21

2.4.1 JetBrains Exposed . 21

2.4.2 Gson . 22

2.4.3 Node.js Telegram Bot API 22

2.4.4 jSerialComm library . 23

2.5 Utilities . 23

2.5.1 Security mechanisms . 23

2.5.2 Raspberry PI . 24

2.5.3 Arduino . 26

2.5.4 Coroutines and concurrency in Kotlin 26

3 Requirements 29

3.1 Ubiquitous Language . 29

vii

CONTENTS

3.2 Non-functional requirements . 30

3.3 Functional requirements . 31

4 Design 33

4.1 Architecture . 33

4.1.1 Description of the architecture inside the project 34

4.1.2 Application of the architecture in the project 36

4.1.3 Clean architecture . 38

4.2 Sub-domains of the system . 39

4.3 Core logic . 41

4.3.1 Bounded Context . 41

4.3.2 Core Finite State Machine 42

5 Implementation 45

5.1 JavaScript sub-project: Telegram Bot 46

5.2 Kotlin sub-project: CoreSystem . 47

5.2.1 Creation of the Server . 48

5.2.2 WhitePaper . 50

5.2.3 State . 50

5.2.4 UtilityHomeConnection . 51

5.3 PublisherClient sub-project . 52

5.3.1 InputAnalyzer . 52

5.3.2 Detector . 53

5.4 HomeAutomationController . 53

5.4.1 Store . 54

5.4.2 HomeComponentHandler . 54

6 Conclusions and Future works 55

A Technologies 63

A.1 MQTT . 63

A.1.1 MQTT Topic: # Wildcard 63

A.1.2 QoS . 64

A.1.3 Creation of a MQTT Client 64

viii

CONTENTS

B Library 67

B.1 Exposed . 67

B.2 Gson . 68

C Code representation 71

C.1 Telegram Bot: Node.js Telegram Bot API 71

C.2 CoreSystem . 72

C.3 PublisherClient . 73

ix

CONTENTS

x

List of Figures

2.1 MQTT basic aspects . 11

2.2 MQTT Topic . 12

2.3 MQTT HiveMQ Broker . 14

2.4 Ktor main entities . 20

3.1 UL of the system . 30

4.1 General schema of the chosen architecture 35

4.2 System architecture for sensors’ reading. 37

4.3 System architecture for home automation management. 38

4.4 Sub-domain identification . 39

4.5 Figure representing all identified bounded context inside Core . . . 41

4.6 Core Finite State Machine . 43

5.1 Authentication phase . 49

xi

LIST OF FIGURES

xii

Listings

A.1 Example of multi-level topic in the MQTT Client 63

A.2 Creation of an MQTT Client . 65

A.3 Connection to the MQTT Broker using credentials 65

B.1 Data Persistence through Exposed library 68

B.2 Use of Gson to implement (De)serialization 69

C.1 Implementation of the back-end of the Bot application 71

C.2 Creation of the Server using Ktor 72

C.3 Opening websocket . 72

C.4 Method to handle websocket . 73

C.5 Main function of the project with concurrent threads 74

xiii

LISTINGS

xiv

Chapter 1

Introduction

IT development, and in particular that linked to mobile devices, allows the creation

of more and more intelligent messaging applications aimed at making communica-

tion itself more convenient and practical.

In this sense, thanks to new technologies, it is possible to establish real com-

munication with these applications that from now on we call Chatbots.

An important feature in developing chatbots is the use of Natural Language

Processing and sentiment analysis that allows them to establish real communica-

tion with users. In fact, these technologies are able to communicate in human

language by text or oral speech with humans or other chatbots.

There are several definitions, in literature, about Chatbots [6]. An example

is that which is expressed in the Oxford Dictionary [7]: a Chatbot is a computer

program that can hold a conversation with a person, usually over the internet.

Thanks to their flexibility and ease of use in the real world, the application

areas of chatbots are various: they can be used as Customer Service services

(FAQs, assistance ...) or to make reservations and recruitments, etc.

A possible use of this new technology is the one reported in this thesis. Here,

the chatbot, SensorReadingBot, covers two important features:

1

CHAPTER 1. INTRODUCTION

Remote reading sensor information On the one hand, the chatbot under-

takes to provide the user with information, which in turn comes from different

sensors scattered around the city. When a request arrives from the user, the Bot

application provides a response which varies according to the city requested by the

user and the information that sensors send to the Bot application.

Governance of home automation On the other hand, the chatbot allows the

user to interact with his home automation system by sending specific commands.

These are suggested to the chatbot by each specific actuator and then communi-

cated to the user. For example a user will be able to turn on or off a light bulb

using commands that are comprehensible by the specific machine.

The purpose of this thesis is to create a complete distributed system in which

the advantages of chat and the world of chatbots are combined with those of

sensors, particularly adopted in the IoT field. To do so, two main activities will

be performed:

• Design and implementation of the whole system as a container for other

sub-systems.

• Design and implementation of a connection layer between sub-systems.

Thesis structure

Accordingly, the reminder of this thesis is structured as follows:

To give the reader a complete experience and to allow him to understand what

we are talking about, chapter 2 discusses what a chatbot is, the areas of use

and how they have changed up to today. Furthermore it discusses all the main

technologies involved in that project thesis.

Chapter 3 discusses the requirements of the system both functional and non-

functional.

2

Chapter 4 discusses the design we decide to adopt and thus explains the archi-

tecture we choose.

Chapter 5 discusses how the most important components of the whole system

were implemented.

Finally, Chapter 6 concludes this thesis by summarising its main contribution

and introducing future works and interesting topics to evaluate.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

Technologies and libraries

A fundamental part of this thesis is the realization, completely from scratch, of a

distributed system [1, 21, 32] consisting of multiple software components installed

on multiple computers but that runs as a single system.

The realization of the system includes two important steps: first of all we

design the whole system, then we develop it. During this former step, we perform

two relevant activities that are divided in research and understanding and study

of technologies.

Research and understanding These activities are, in turn, divided into two

main tasks. In fact we have to:

• Understand the target of users to whom the bot is intended;

• Understand the goal of the project;

Technologies That activity includes the:

• Analysis of different technologies and libraries;

• Selection of the ones that best suit in terms of reliability, modularity, scala-

bility and performance.

5

CHAPTER 2. TECHNOLOGIES AND LIBRARIES

During the latter step, the development one, given the analysis of the problem,

we proceed to develop the solution. Thus, we proceed to set up a suitable system

architecture and the components by which it is composed.

Architecture Analysis and, then, selection of the architecture of the system and

the architectural style to pursue. In this case, the one that best suites is the Clean

Architecture;

Components Identification and realization of the individual components be-

longing to the system.

In order to explain how this thesis has been developed, in the following sections

we explain all the main technologies and libraries involved.

2.1 Chatbot: What are we talking about?

A Chatbot is an artificial intelligence application that is able to simulate a real

conversation with a user in his natural language using a variety of input methods,

such as voice, text, gesture and touch on websites, messaging applications, mobile

apps, or telephone.

Thus, it is considered an automatic interface trained to give information to users

that request them and it is able to manage requests without any sort of human

support.

Using a chatbot has a lot of engagements and advantages, even in the work

area and thus has permitted its growth in popularity. In fact, this technology

offers: 24-hours availability, multitasking, multiple channels, improvement of user

engagement and data tracking. A brief explanation about its utilities:

• Promote 24-hours availability, allowing continuous communication between

6

2.1. CHATBOT: WHAT ARE WE TALKING ABOUT?

the seller and the customer 24/7. Thus, it permits cost saving because a

Business owner does not have to pay their employees to manage requests.

Thus, chatbots are able to cut down on staffing expenses.

• Manage multiple requests in multitasking. So, chatbots can answer thou-

sands of questions at the same time providing instant answers. In this way,

chatbots eliminate the need for employers during online interaction with

customers, allowing the reduction of workload and response time.

• Be accessible from multiple channels: For example, Telegram, Whatsapp,

site web, Skype etc. In this sense, users can freely choose the preferred

communication channel without any sort of external imposition.

• Improve user engagement: This means that chatbots only give data

based on the input provided by users at each time so they do not end up

annoying users with irrelevant information and keep the customers engaged

for longer by sharing interesting information.

• Track data: Chatbots collect feedback from customers, and this information

can help a company to improve their services.

2.1.1 How do chatbots work?

Chatbots use artificial intelligence to talk to people and give relevant content or

suggestions.

The interaction with a chatbot can take place using voice or text. If voice

is used, the chatbot first turns the voice data input into text (using Automatic

Speech Recognition (ASR) technology), then analyses the text input. Doing so, a

chatbot can identify the user intent and consider the best response to deliver back

to the user. They can be categorized in two categories:

• Rules-based

• AI-based

7

CHAPTER 2. TECHNOLOGIES AND LIBRARIES

Rules-based

They operate by means of specific commands generating a targeted conversation.

For example, the user can interact with rule-based chatbots by clicking on buttons

and using predefined options.

A chatbot that works based on rules is, usually, quite limited because it is

designed to respond to fixed commands. So, if a person makes a malformed request,

this type of chatbot will not understand what the question is, and therefore, will

not provide an appropriate response. In this case, the intelligence of the bot solely

depends on how it is programmed.

AI-based

An AI is trained in order to recognize what users need. This type of chatbot makes

use of advanced technologies such as machine learning, AI and Natural Language

Processing to increase its capacity of dialogue and interaction but also to under-

stand and remember the context of the conversation and the user’s preferences.

One important aspect of that chatbot is the engine, which is responsible for

the transformation of natural language into machine-understandable actions.

A chatbot that uses machine learning understands not only commands but also

human language. The user, therefore, does not have to use precise words to get

accurate or useful responses. Thus, chatbot learns from interactions that it has

with users and can deal with similar situations when they arise later.

2.1.2 A brief history of chatbots

Chatbots became more interesting after the introduction of the Internet as they

started to be used to support customer service functions.

The first machine capable of speech using natural language processing was [35]

8

2.1. CHATBOT: WHAT ARE WE TALKING ABOUT?

ELIZA, created in 1966, which simulates human conversation using basic natural

language processing techniques [38]. One example of technique used is passing

the words that users entered into a computer and then pairing them to a list of

possible scripted responses.

Despite being relatively simple, ELIZA is capable of give the illusion of under-

standing the user’s problems and successfully fooled a large number of people.

Then during several decades, other chatbots followed ELIZA’s approach such

as PARRY [18] which imitates a patient with schizophrenia; Jabberwacky [34]

which attempts to “simulate natural human chat in an interesting, entertaining

and humorous manner”; Dr. Sbaitso [20, 19] which is an artificial intelligence

speech synthesis development; A.L.I.C.E. [36, 37] (Artificial Linguistic Internet

Computer Entity), a natural language processing chatbot, which uses heuristic

pattern matching to carry conversations and which simulates a chat conversation

with a real person over the Internet.

In 2001, another chatbot appeared, Smarterchild [13] which is available on AoL

(America onLine) Instant Messenger MSN Messaging networks.

The chatbot offers personalized conversation and brings innovation as it is

connected to a knowledge base and holds useful information for its users.

Finally, in the early years, virtual assistants, such as Siri [2], Cortana [24],

Google Now [11], Google Assistant and Alexa arrived.

Siri is an intelligent personal assistant and learning navigator which uses a nat-

ural language UI and enables Apple users to command actions or queries from the

device. This chatbot uses voice queries to answer questions, performs actions and

makes recommendations according to the user’s needs. The software is adaptable

to users’ individual language usages, searches, and preferences.

Google Now, developed in 2012, uses a natural language user interface to answer

questions, makes recommendations, and performs actions by passing on requests

9

CHAPTER 2. TECHNOLOGIES AND LIBRARIES

to a set of web services. Google Assistant replaced this chatbot in 2017.

In 2015, Alexa appeared. It is an intelligent personal assistant developed by

Amazon working through voice communication. Thus, users can search the Web,

play music, get news or weather reports, control your smart-home products and

more.

In the same year, Cortana appeared. It is an intelligent personal assistant

which recognizes natural voice commands, can set reminders and answer questions

and perform tasks.

2.2 MQTT

MQTT [28] stands for Message Queuing Telemetry Transport. It is a TCP based

publish and subscribe messaging protocol designed for lightweight machine-to-

machine (M2M) communication or Internet of Things (IoT) types of connections.

The publish-subscribe model is an alternative to the traditional client-server

model in which a client communicates directly with a server to request information.

In that model, the publishers and subscribers never contact each other directly. In

fact, they are not even aware that the other exists.

That means that, instead of communicating with a server, every client devices

and applications, in an asynchronous manner, publish and subscribe messages.

Hence, when a node A wants to communicate with a node B, it does not

happen synchronously, as if it were a phone call where questions and answers are

immediately provided, but the message is published by the node A (publish) and

is received by the nodes B that subscribed to receive the message (subscribe).

The MQTT protocol was originally developed by IBM in 1999 as they needed

a protocol for minimal battery loss and minimal bandwidth to connect with oil

pipelines via satellite.

10

2.2. MQTT

Nowadays, the goal is no longer the original one but it is the world of the

Internet of Things (IoT), which involves every aspect of our society.

The reference model of the MQTT protocol is the hub-and-spoke, which ar-

ranges service delivery assets into a network. This consists of an anchor estab-

lishment (hub), which offers a full array of services, and secondary establishments

(spokes), which offer more limited service arrays. Furthermore, the latter route

requests of users needing more intensive services to the hub.

2.2.1 MQTT: Key aspects

Figure 2.1: MQTT basic aspects

11

CHAPTER 2. TECHNOLOGIES AND LIBRARIES

MQTT is a very light weight and binary protocol and, due to its minimal packet

overhead, it works well, in comparison to protocols like HTTP, when transferring

data over the wire.

As shown in fig. 2.1, the architecture of the MQTT protocol requires two funda-

mental entities: the client (section 2.2.1), which is both publishers and subscribers,

and the broker (section 2.2.1). These two systems communicate by exchanging

messages through a bidirectional channel called topic which allows to determine

which message goes to which client.

In order to ensure the reader a complete understanding of the selected communi-

cation protocol, we explain, in the following paragraphs, the MQTT protocol key

aspects and why it is involved in the thesis.

MQTT Topics

Figure 2.2: MQTT Topic

In MQTT, the word topic refers to hierarchical UTF-8 strings which are used by

the broker to route messages to specific connected clients. Every topic consists of

12

2.2. MQTT

one or more levels, separated by a forward slash, the topic level separator.

As shown in fig. 2.2, messages from publishers must include a topic. To receive

the published message, clients that want to consume it must subscribe to the same

topic channel.

Compared to the traditional exchange of messages through message queue,

MQTT topics are lightweight: clients do not need to create the topic before they

publish or subscribe to it. This is the broker’s job which is responsible for receiving

messages on a certain topic channel and transmitting them to the clients that are

subscribed to that specific topic. It accepts each valid topic without any sort of

initialization. In fact, when a broker receives data on a topic that does not exist,

that topic is created and, then, clients may subscribe to the new topic.

Clients can subscribe to one or multiple topics. When subscribing to multiple

topics, two wildcard characters can be used:

• #: It matches everything for arbitrary level depth from the current level. It

is used as a multi-level wildcard and can only be inserted at the end of the

topic.

• +: It matches everything at the current level. It is used as a single-level

wildcard.

An example of the use of a multi-level topic can be examined in the appendix A.1.1.

MQTT Broker

One of the main entities of the MQTT protocol is the MQ Broker, which represents

the core part of any publish/subscribe model and covers the role of a gateway, a

receiver or a server. It allows clients, which are both publisher and subscribers, to

communicate with each other by sending messages.

Basically, the MQ broker is responsible for receiving all messages, filtering

the messages, determining who is subscribed to each message, and sending the

13

CHAPTER 2. TECHNOLOGIES AND LIBRARIES

Figure 2.3: MQTT HiveMQ Broker

message to these subscribed clients. Furthermore, the MQ broker is responsible

for holding all session datas about all clients that have persistent sessions, including

subscriptions and missed messages.

Among the various broker implementations existing on the Net, for the real-

ization of the MQTT protocol, the one we use in this thesis project is HiveMQ. In

particular we decided to use HiveMQ Cloud [26, 12], a cloud implementation of

a broker deployed on Azure. Instead of a classic on-premises broker implementa-

tion, which could be a time-consuming and demanding solution, we have chosen a

cloud service, where for a minimal cost it is possible to quickly connect and start

using the MQTT protocol.

Furthermore, it simplifies the deployment and management of a scalable, re-

liable and secure MQTT broker cloud service, thanks to an already configured

security system on the server. HiveMQ’s MQTT Cloud broker is the first cloud-

native IoT messaging service which makes use of cloud resources. The use of

MQTT reduces network bandwidth required for moving data to and from con-

nected devices.

14

2.2. MQTT

It is possible to use HiveMQ Cloud to connect up to 100 MQTT client devices

at no cost.

It requires no installation and management. In fact, it is possible to create

a cluster with just a few clicks and connect the IoT devices. We just need to

configure the hostname and port to be able to receive connections from MQTT

clients.

It automatically scales up and scales down to meet the demands of your IoT

application. In order to ensure scalability and availability, we need to manage the

cluster nodes.

It is easy to connect and integrate with no vendor lock-in. HiveMQ Cloud is

100% compliant with the MQTT specification, including QoS 1 and QoS 2 (sec-

tion 2.2.1), retained messages, shared subscriptions, user properties and negative

acknowledgements.

MQTT clients

MQTT clients are any device that runs a MQTT library and connects to a Broker

over a network. Both publishers and subscribers are MQTT clients. In fact, when a

MQTT client is connected to the broker, it can publish on a specific topic messages

and other MQTT clients can subscribe to messages they want to receive.

The implementations of MQTT clients typically require a minimal footprint.

So, are usually used for deployment on small devices and are very efficient in their

bandwidth requirements.

Among the various MQTT Client libraries, for the realization of the MQTT

clients, the one we choose to use within the thesis is HiveMQ [27, 15].

HiveMQ MQTT Client is a library that provides a fast, low-overhead, high

throughput and modern MQTT library for Java. In doing so, it builds on modern

frameworks like Netty, the one used, within this thesis, for handling connections.

15

CHAPTER 2. TECHNOLOGIES AND LIBRARIES

Furthermore, the library provides three distinct flavours of API:

• Blocking, the one used in our project for quick start;

• Asynchronous ;

• Reactive.

So, it is possible to choose a programming style which best meets project

specifications. We report an example of the creation of a MQTT client in the

appendix A.1.3.

Quality Assurance

One important functionality of the MQTT protocol is the Quality of Service

(QoS). This refers to the degree of accuracy in the delivery of MQTT messages,

which occurs in two steps:

1. Firstly, it is sent from a publisher to a broker. In this step, the publisher

decides the QoS level associated with that message.

2. Secondly, the broker forwards this message to all clients that have a sub-

scription for that message using the same QoS level.

We can choose between three different QoS levels:

• QoS 0: This level offers the minimum amount of data transmission, that

means zero.

This level is designed for maximum performance with less effort: in this

scenario each message is delivered to a subscriber once with no confirmation.

So, there is no guarantee of delivery. In fact, there is no way to know if

subscribers received the message. This method is called fire and forget or at

most once delivery.

16

2.2. MQTT

• QoS 1: In this scenario, the broker attempts to deliver the message and,

then, waits for a confirmation response from the subscriber. If a confirmation

is not received within a specified time frame, the message is sent again.

Using this QoS, the subscriber may receive the message more than once if

the broker does not receive the subscriber’s acknowledgment in time. This

method is called at least once delivery.

• QoS 2: This is the most reliable method. The process involves a double

bounce between sender and receiver, a four-step handshake, in order to con-

firm that the sender has actually received the messages and that it is received

only once. This method is called exactly once delivery.

In the appendix A.1.1, you can see how we use this QoS level.

2.2.2 Advantages of MQTT and why we choose it

MQTT is an ISO standard protocol and it is used as a data connection IoT proto-

col. It is based on the publisher-subscriber messaging model and allows a simple

data flow between different devices. It has a lot of advantages. Some of them are

provided below.

Minimal resources This communication protocol requires minimal resources

since it is lightweight and efficient. In fact, it can support different application

scenarios for IoT devices and services. This characteristic increases the amount of

data that can be monitored or controlled.

Publish/subscribe protocol MQTT is a publish/subscribe protocol. So, it

allows IoT devices to publish messages to a Broker. Clients connect to this Broker.

Each device can subscribe or register to particular topics. When a client publishes

a message on a subscribed topic, the broker forwards the message to any client

that has subscribed. Furthermore, this model maximizes the available bandwidth.

17

CHAPTER 2. TECHNOLOGIES AND LIBRARIES

Bidirectional exchange This communication protocol supports bidirectional

messaging exchange between the connected devices and cloud. Furthermore, it

maintains stateful session awareness.

Scalability MQTT protocol supports scalability. In fact, it can scale to millions

of connected devices.

Delivery guarantee It guarantees delivery of messages through three different

QoS levels.

Last Will and Testament Thanks to that feature, if a device loses connection,

all subscribed clients will be notified with the Last Will and Testament feature of

the MQTT server, so that, any authorized client in the system can publish a new

value back to the device, maintaining a bidirectional connectivity.

Motivations

The reasons that led us to choose this protocol are various.The ones we considered

the most relevant are listed below.

• It is pretty much the only standard protocol that makes it easy to send

commands to the connected devices. It is possible even if the device needs

to be controlled remotely.

• Thanks to MQTT, a device connects to the MQTT broker and can subscribe

to a topic, and any other clients, which have the right credentials, can connect

to the MQTT broker and publish messages to that topic.

• It offers simple methods that adapt well to IoT tasks. For example, sub-

scriptions that recover connections after unexpected client disconnections.

Compared to HTTP/HTTPS it is simpler to extract data from the package

without any parser.

• It is a light protocol with a fast response time.

18

2.3. KTOR

• It allows us to build efficient connections between devices whatever the num-

ber of the latter is.

2.3 Ktor

Ktor [17] is a Kotlin native web framework that, basically, allows building web

applications, HTTP services, mobile and browser applications. Furthermore, it

allows the creation of asynchronous client and server applications.

That library was developed by JetBrains and it is lightweight and it offers support

for coroutines (section 2.5.4), thanks to which it is possible to express complex

asynchronous constructs as if they were simple sequential code.

Furthermore, it also offers support for Kotlin Multiplatform and it allows cross-

platform capabilities.

In order to ensure the reader a complete understanding of the selected framework,

we explain, in the following sections, Ktor key aspects and how it is involved within

this thesis.

2.3.1 Key aspects

As shown in fig. 2.4, the main entity in a Ktor project is the Application object.

It accepts requests from the servlet engine, a class which is used to extend the

capabilities of Servers that host applications, and returns responses.

When you build a Ktor web application, first of all you have to set up the engine.

In Ktor many engines are supported:

Netty: It is the one that we have chosen as the engine in this thesis. It is an

asynchronous event-driven network application framework for rapid development

of maintainable high performance protocol servers & clients.

19

CHAPTER 2. TECHNOLOGIES AND LIBRARIES

Jetty: It provides a web server and servlet container, additionally providing sup-

port for HTTP/2, WebSocket. It is easily embedded in devices, tools, frameworks,

application servers, and modern cloud services.

Tomcat: It provides a pure Java HTTP web server

CIO: Coroutine-based I/O is a fully asynchronous coroutine-based engine that

can be used for both JVM and Android platforms. It supports only HTTP/1.x

for now.

Furthermore, many applications require common functionality that is out of

scope of the application logic. This could be things like serialization and content

encoding, compression, headers, cookie support, etc. All of these are provided in

Ktor by means of what we call Plugins (also known as Features).

Figure 2.4: Ktor main entities

20

2.4. MAIN LIBRARIES

2.3.2 How Ktor was used?

In this thesis, we use Ktor both as a Server and as a Client.

The former one is meant to work with the application, the Telegram Bot.

Thus, it is used to read information coming from various sensors, installed into

various cities, and then to communicate that information to the SensorReadingBot

application which makes it visible to users.

The latter one, indeed, is meant to work with the various controllers. In doing

so, it instantiates the websokets which are used to communicate commands to

the various actuators, like light bulb, washing machine etc.. in short, our home

automation.

2.4 Main libraries

An important but also hard step is that relating to the selection of libraries that

best suited our needs.

Below, we report those which we choose in order to allow us to implement

different mechanisms, such as (de)serialization, data persistence etc. In addition,

we also report how these mechanisms are used within this thesis.

2.4.1 JetBrains Exposed

In order to acquire data persistence inside the application, we decided to use, as a

library for back-end application development, the Exposed Library [16].

It is a lightweight SQL library, provided by JetBrains, for the Kotlin language,

which relies on database access.

Every database access using Exposed is started by obtaining a connection and

creating a transaction.

21

CHAPTER 2. TECHNOLOGIES AND LIBRARIES

We reported a very simple example in the appendix B.1. The example explains

how to use that library in a real context.

2.4.2 Gson

Gson [14] is a Java library which enables the conversion of Java Objects to an

equivalent JSON representation and, conversely, enables the conversion of a JSON

string to an equivalent Java object. Thus, it is used to implement serialization

and deserialization mechanism.

In this thesis, we use this library both on the Server-side and Client-side.

In the former, we use it to answer requests coming from the Application Bot,

thus we use it to serialize messages. That response is a set of:

• Message to display to user;

• Various commands which are serialized as a JSON object and sent to the

Application Bot.

In the latter, we use Gson to deserialize messages received from the actuator

controller, which manages all user home automation. These messages arrive as

JSON strings, so they need to be converted into String format. We report an

example of serialization and deserialization using Gson in the appendix B.2.

2.4.3 Node.js Telegram Bot API

In order to ensure the communication between the Telegram Bot application and

its respective Server side it is, first of all, necessary to develop the application

component of the Bot. This is done thanks to BotFather, a bot provided by

Telegram to create and manage personal bots. At the time of the creation of the

Bot, a Token is provided. This will allow us identify it and to communicate with

it from the Server side.

22

2.5. UTILITIES

There are different ways and languages to develop the service but we choose

NodeJS because it is better suited to develop the connection between our Bot

and server in a short time. Furthermore, to ensure communication we adopted a

NodeJS module, [25], which allows interaction using the Telegram Bot API.

An example of use of that module is reported in an extract of the realization

of the bot backend in the section 5.1.

2.4.4 jSerialComm library

For simplicity of testing, not having available all the utilities necessary for the real

configuration of the network, the communication between Arduino (section 2.5.3)

and Raspberry PI (section 2.5.2) passes through the serial port.

The library that we decided to adopt is the jSerialComm [10] which provides

a way to access standard serial ports without requiring external libraries, native

code, or any other tools.

2.5 Utilities

Below are all the utilities that became necessary during the construction of the

whole system.

2.5.1 Security mechanisms

A relevant aspect of this thesis is that of security. In fact, since we are dealing

with confidential information it is necessary to adopt an encryption algorithm.

In particular, we adopt the AES symmetric block cipher algorithm [29, 30, 31]

which we decide to use to encrypt a plain text and decrypt a cipher text. In

particular, this algorithm is used to protect the credentials which we use to connect

to the HiveMQ Broker.

23

CHAPTER 2. TECHNOLOGIES AND LIBRARIES

Another security mechanism is the one that we realize through the token check

system.

This check is realized to prevent a malicious person from overlapping bots in

the conversation with the Core, so it is realized to make sure that Bot is really

Bot.

Assumptions At this moment, we assumed that the communication channel

between the Bot and the Core is secure as we use the HTTPS protocol. So, any

message sent cannot be read by an attacker.

2.5.2 Raspberry PI

Another component of the system is the Raspberry PI which hosts two projects:

publisherClient and HomeAutomationController.

publisherClient

The former project simulates an MQTT Client that connects to the MQTT Broker

and publishes, on the topic of interest, the results relating to the reading of the

sensors’ information, which are sent to it by Arduino. It is divided into three main

entities: Detector, Input Analyzer and Publisher Client.

• Detector class: When invoked, it opens the serial port /dev/ttyACM0

and, in loop, it reads all the messages, byte per byte, which are written on

the serial line by the Arduino microcontroller. The reading ends when it

encounters the $ terminator character of the message. Now, it sends the

message over the communication channel, which is shared with the Input

Analyzer.

• Input Analyzer: In a loop, it pulls out the message from the input channel

and, after verifying that this message respects a certain pattern (given by

24

2.5. UTILITIES

the specified regex), it sends IT to the MQTT Publisher Client.

• Publisher Client: It takes care of establishing the connection with the

MQ Broker and, then, it publishes the messages to the MQ Broker under a

certain topic.

HomeAutomationController

The latter project, instead, deals with managing the connection and, then, the

communication with the home automation components.

It is divided into three main entities, which are reported below.

HomeComponent It is the effective actuator on which the requested command

by the user is executed.

For simplicity, in this project, we implement only a SmartLight, a light bulb that

has other functionalities besides ON and OFF.Once the command is executed, the

actuator communicates which are the next possible commands and its status: On

or Off.

HomeComponentHandler It is the entity responsible for the management of

all the HomeComponent existing in the system. When invoked for the first time,

it creates a new component and assigns to it a set of:

• Initial commands,

• Name,

• Initial status.

HandleSerialMsg It is the entity responsible for the management of communi-

cation with home automation. In fact, it takes care of sending on the serial port

the command executed by the user on a particular actuator. This command is

received from the actuator that, once executed, it sends back a list of new possible

25

CHAPTER 2. TECHNOLOGIES AND LIBRARIES

commands on the serial port as response. The HandleSerialMsg entity is also re-

sponsible for reading that response and communicating it to the Component entity

and, then, to the user via the Application Bot.

2.5.3 Arduino

The part relating to the management of sensors and actuators was carried out using

the open-source electronics platform Arduino [3] on which we put some sensors.

In order to separate concepts well, two Arduinos were used.

On the former, the program relating to the reading of the sensors runs.

In that program, every sensor, at each delay (500), reads the information and sends

it to CoreSystem, which represents our Server and maintains the just received

information into a data structure.

On the latter, the program relating to the management of home automation of

an apartment runs.

In this case, the program, in a loop, checks if new messages arrived on the serial

port and, based on the type of message,

• It executes the received command and

• Updates the Server with the possible other actions which can be performed

on a particular home automation actuator.

If the message is not recognized, it is simply ignored.

2.5.4 Coroutines and concurrency in Kotlin

To explain how we exploit concurrency in this thesis, firstly we expose how Kotlin

can support it. Following, we introduce the main constructs available, how they

work and how they interact.

26

2.5. UTILITIES

Coroutines

Coroutines are computer program components which generalize subroutines for

non-preemptive multitasking, by allowing execution to be suspended and resumed.

Kotlin, as a language, provides only minimal low-level APIs in its standard library

to enable various other libraries to utilize coroutines. Kotlin’s concept of suspend-

ing function provides a safer and less error-prone abstraction for asynchronous

operations than futures and promises.

A coroutine is an instance of suspendable computation. It is conceptually

similar to a thread, in the sense that it takes a block of code to run that works

concurrently with the rest of the code. However, a coroutine is not bound to

any particular thread. It may suspend its execution in one thread and resume in

another one. These can be thought of as light-weight threads with a number of

important differences that make their real-life usage very different from threads.

These follow a principle of structured concurrency which means that new corou-

tines can be only launched in a specific CoroutineScope which delimits the lifetime

of the coroutine. Structured concurrency ensures that coroutines are not lost and

do not leak. An outer scope cannot complete until all its children’s coroutines

are complete. Structured concurrency also ensures that any errors in the code are

properly reported and are never lost.

Coroutines always execute in some context represented by a value of the

CoroutineContext type, defined in the Kotlin standard library. The coroutine

context is a set of various elements. The main elements are the Job of the coroutine

and its dispatcher. The coroutine dispatcher determines what thread or threads

the corresponding coroutine uses for its execution. The coroutine dispatcher can

confine coroutine execution to a specific thread, dispatch it to a thread pool, or

let it run unconfined.

When a coroutine is launched in the CoroutineScope of another coroutine,

27

CHAPTER 2. TECHNOLOGIES AND LIBRARIES

it inherits its context and the Job of the new coroutine becomes a child of the

parent coroutine’s job. When the parent coroutine is cancelled, all its children are

recursively cancelled, too.

Channels

Coroutines are the components that allow execution to be suspended and resumed

and, thus, let the programmer exploit concurrency. Often these components need

to communicate thus, a stream, Channels come into play.

A Channel is a non-blocking primitive for communication between a sender and

a receiver. It is conceptually very similar to a BlockingQueue. One key difference

is that instead of a blocking put operation it has a suspending send, and instead of

a blocking take operation it has a suspending receive. Unlike a queue, a channel

can be closed to indicate that no more elements are coming. Conceptually, a close

is like sending a special close token to the channel. The iteration stops as soon as

this close token is received, so there is a guarantee that all previously sent elements

before the close are received

28

Chapter 3

Requirements

In this chapter, we report the steps we pursue to tackle the domain analysis of

this thesis.

3.1 Ubiquitous Language

The fundamental step to be carried out during the problem analysis is to define

the Ubiquitous Language [33]. We model it within a Limited context, where the

terms and concepts of the business domain are identified and they are expressed

without ambiguity in order to eliminate inaccuracies and contradictions.

We then used the defined Ubiquitous Language, which we report in fig. 3.1,

to clearly express all system requirements. In the Ubiquitous Language terms are

associated with their own definition of the domain of interest. Looking at the

figure, we define:

• Sensors: They are the devices meant to detect or measure a physical prop-

erty and, then, record or indicate it.

• Core System: It is the system component which takes care of connecting

the Bot application and the Raspberry component and, thus, allows estab-

29

CHAPTER 3. REQUIREMENTS

Remote Sensors Control
Sensors

UI

Core System

Temperature

Humidity

Core Interface

Chatbot

Web site

Raspberry

IP

Arduino

Rest API

User

Chat Id

Username

FSM

Message

Commands

Telegram

Whatsapp

DB

Security

Core Logic

Port

Type

Sensor Reading

Home Automation

ID

CommunicationProtocol

Figure 3.1: UL of the system

lishing communication between them.

• FSM: It is a behaviour model which consists of a finite number of states.

Based on the current state and a given input, the machine performs state

transitions and produces outputs.

3.2 Non-functional requirements

Non-functional requirements capture operational characteristics, architecture, tech-

nical specifications and design. We distinguish two non-functional requirements:

product and external one.

Product requirements

• Usability: The system has to adopt a simple language in order to allow

everyone to understand it. Furthermore, the user interface has to be easy to

use and easy to understand too.

• Scalability: The system has to support a growing number of members and

30

3.3. FUNCTIONAL REQUIREMENTS

has to manage their simultaneous access.

• Reliability: The system has to be able to react to every type of error and,

if unable to handle it, it has to restart. In addition, it has to try to isolate,

as much as possible, the error into the specific sub-portion of the system in

which it occurred, trying to leave the other parts of the system operative.

• Portability: The system has to work regardless of the device members

decide to use.

External requirements

• Interoperability: The system consists of several subsystems, which are

defined during the design phase. These have to interact and inter-operate

with each other as if they were a single system.

• Security: The system provides access using credentials. Sensitive data need

to be protected, in fact these are encrypted, using symmetric encryption.

3.3 Functional requirements

Functional requirements are used to express the service that the software must

offer. some of them are expressed below:

The Bot application should be always available and usable from any device. No

need to install any application to use the Bot. The first implementation will pro-

vide an executable application that will be runnable via the Telegram application.

In the future, it will be possible to use the system via a web interface or other

applications.

Users should be able to interact with sensors. In particular,

31

CHAPTER 3. REQUIREMENTS

1. The Bot application should invoke the Server.

2. Server connects to the Broker.

3. Broker sends requests to Arduino that reads information.

4. User should be able to receive the information in real-time from sensors.

Users should be able to access his home automation. In particular,

1. The Bot application should invoke the Server.

2. Server connects to Websocket.

3. Raspberry receives messages on the channel and sends them to Arduino that

executes those messages as commands.

4. User should be able to receive the information in real-time from

actuators.

32

Chapter 4

Design

4.1 Architecture

In order to apply the previously identified requirements of the system, in particular

the functional ones, we decide to develop a distributed system. This expects

both data and transaction processing to be split between one or more computers

connected by a network, each of which plays a specific role in the system.

The motivations that bring us to the choice of developing a distributed sys-

tem are that this system offers: availability, durability, efficiency, scalability and

redundancy.

• Availability: This requirement determines how long your IT System can

be unavailable without impacting operations..

• Durability: The expected life of a system.

• Efficiency: The extent to which the software system handles capacity,

throughput, and response time.

• Scalability: The system can easily be expanded by adding more machines.

• Redundancy: Various machines can provide the same services, so if one is

unavailable, work does not stop.

33

CHAPTER 4. DESIGN

During the design phase, we consider various architectural choices but the decided

one, at the end, is the Client-Server architecture as it is the basis for distributed

systems.

The Client-Server architecture allows data and service integration and, fur-

thermore, allows Clients to be separated from system complexity, for example the

establishment of a communication protocol.

The simplicity of that architecture allows Clients to make requests. These,

made in the form of transactions, are routed to the appropriate Server. Customer

transactions are often SQL procedures and functions that access databases and

services.

4.1.1 Description of the architecture inside the project

As represented in fig. 4.1, the user of the Bot Application, the first accessible

component of the system, interacts with a User Interface, in this case Telegram

Bot, that only forwards commands to the Core, the main component of the system.

In fact, the entire logic of the system is managed by the Core System. It takes

care of opening the connections to the Raspberry pi, keeping the connection active,

managing the communication protocol, etc.

As far as communication between these two elements is concerned, this can

take place in two ways:

1. User wants to know about sensors’ information, which came from the vari-

ous Arduinos. That information is only accessible in a reading way, so the

user can not use it as commands. We achieve this type of communication

through the publish/subscribe MQTT protocol (section 2.2). We choose

it for its lightness and because we assume that much information passes

through the communication channel. In fact, we assume that, in a real use

34

4.1. ARCHITECTURE

of the application, we do not manage just two sensors but many more. So,

this protocol seems to us the most suitable solution.

2. User wants to interact with the sensors in a writing way. In fact, the appli-

cation allows the user to manage his home automation and, then, we want to

give the user the ability to interact with a particular actuator by activating

and deactivating it. For this type of communication we use, as a means of

communication, Websocket. We choose it in order to guarantee security and

to allow a steady bidirectional flow of data.

User

Bot (Interface)connect

RestFull
API

Core

Raspberry

Components

Protocol

Figure 4.1: General schema of the chosen architecture

35

CHAPTER 4. DESIGN

Looking at the fig. 4.1, we can notice another component, the Raspberry pi,

which has two responsibilities. It takes care of:

• Managing the results of the sensors that reside in its geographical area. This

component maintains the acquired datas in an appropriate data structure

and then, when the number of data is adequate, it makes an average of the

corresponding values and sends it to the Core System.

• Allowing the user to interact with his home automation. To do so, that com-

ponent has to address user commands to the following component, Arduino.

Finally, the last component in our system is the Arduino. It deals with, from one

side, various sensors that continuously read information and send these data to

Raspberry, from the other side, it deals with actuators that execute the received

message from the Raspberry pi component and send it back the corresponding

response.

4.1.2 Application of the architecture in the project

In this project, the chosen architecture has a different meaning according to the

observer’s point of view and changes according to the role that the system plays

in a specific moment.

Regarding the sensors’ reading, as we can see in fig. 4.2, the user considers

the Bot application as if it were the Server to which it sends commands. Instead,

the Bot application, from its point of view, is the Client of the Core to which it

forwards requests.

This latter, in the same way, becomes Client of the Broker as well as the

Raspberry pi component. Thus, in this portion of the system, the Hive MQ Broker

is considered a Server.

36

4.1. ARCHITECTURE

User

Bot (Interface)connect

RestFull
API

Core

Raspberry

Sensor Sensor

HiveMQ
Broker

Sensor

Figure 4.2: System architecture for sensors’ reading.

A change occurs when we want to manage our home automation. This is clearly

illustrated in fig. 4.3. First portion of the system is identical to the previous

one, what changes is the communication between Core and Raspberry pi which

directly communicate. In that case, Core is the Client that makes requests through

Websocket, while Raspberry pi is our Server that receives requests and sends them

to the actuators.

37

CHAPTER 4. DESIGN

User

Bot (Interface)connect

RestFull
API

Core

Raspberry

Actuator Actuator Actuator

W
eb

so
ck

et

Figure 4.3: System architecture for home automation management.

4.1.3 Clean architecture

In order to achieve clarity into the structure of the code and to improve separation

of duty of each part of this system, we adopt, as an architectural style, the Clean

Architecture [22, 23].

It expects that any layer can only reference a layer below it and know nothing

about what is going on above. This architectural style divides the system into four

layers:

38

4.2. SUB-DOMAINS OF THE SYSTEM

Entities - These are the business objects and should not be affected by any

change external to them.

Use Cases - These implement and encapsulate all of the business rules.

Interface Adapters - These convert and present data to the use case and entity

layers.

Frameworks and Drivers - These contain any frameworks or tools needed in

the application.

4.2 Sub-domains of the system

Core System
(Core)

Sensor Controller

Home Controller Home Automation

Hive MQ
Broker

Bot
Application

Sensors
downstream

upstream

upstream

upstream

downstream

downstream

Figure 4.4: Sub-domain identification

39

CHAPTER 4. DESIGN

The division of the domain into the various sub-domains is guided by the idea of

separating the behavior and functionalities that emerged during the analysis phase

as clearly as possible. The identified sub-domains and the relationships with each

other are clearly reported in fig. 4.4.

Bot Application: This context represents the application part that links the

user and the application itself. It provides a simple User Interface. It has a

relationship of both upstream and downstream towards the Core System context.

Hive MQ Broker: This is a third party context that is responsible for maintain-

ing a communication between publisher and subscriber clients. It has a relationship

of downstream towards both the Core System context and the Sensor Controller

one.

Core System: This is the core part of our system. It has a relationship of

downstream towards Hive MQ Broker and both upstream and downstream towards

Home Controller context.

Sensor Controller: It is the context responsible for pushing information on the

topic channel managed by the Broker. So, it has a relationship of downstream

towards the Broker context.

Furthermore, it has the responsibility of maintaining all information coming from

Sensor, so it has a relationship of downstream towards Sensors context.

Sensors: It is the part that takes care of sending information on the serial port.

It has a relationship of upstream with Sensor Controller context.

Home Controller: It is the context responsible for requesting information about

home automation status. So, it has a relationship of both upstream and down-

stream towards the Home Automation context.

Home Automation: It is the specific smart house component. It has a rela-

tionship of both upstream and downstream towards the Home Controller context.

40

4.3. CORE LOGIC

4.3 Core logic

Given the analysis of the problem of the domain, we proceed to develop the so-

lution following the philosophy of Domain Driven Design [8], especially in the

development of the main entity.

We deepen the Core System design due to its higher degree of complexity.

4.3.1 Bounded Context

First of all, we identify the Bounded Context [9] related to the Core sub-domain.

As we show in fig. 4.5, we identified three Bounded Context:

WhitePaper

CityInfo

1

*

Account

State

1

*

Figure 4.5: Figure representing all identified bounded context inside Core

WhitePaper: It is the Bounded Context meant to manage all information, in-

side the Core Context, about users and cities.

CityInfo: It is the Bounded Context which takes care of maintaining in memory

and then storing in a database all information related to a particular city. In the

design phase, we choose H2 as our DB.

41

CHAPTER 4. DESIGN

Account + State: It is the Bounded Context which takes care of managing the

states in which an application can be based on the user requests. It simulates a

Finite State Machine in which a new request from the user determines a change

of state.

4.3.2 Core Finite State Machine

In this section we explain how we use the FSM inside the Core logic, giving the

reader an overview of the identified states.

As shown in fig. 4.6, when the user starts the Bot application, the initial state

is StartState. From this one, there are two possibilities:

1. User can press “Sensors” changing the position of the FSM to SensorState.

There, the user can only request information about sensors. Even in this

state, the user has two choices:

• He can ask for temperature information changing the position of the

FSM to TemperatureState;

• Or, he can ask for humidity information changing the position of the

FSM to HumidityState;

In both states, the only accepted requests can be: “city”, the specific man-

ually inserted city of which the user wants to know about, and “cityList, by

pressing a specific button which returns, as response, the list of all cities.

2. Otherwise, the user can press Home Automation moving the position of the

FSM to HomeState. If the user has not yet registered the IP address of his

home automation, FSM moves its state to a temporary one, the Register-

State, in which the insertion of the address is requested. Once the user ends

the registration step, FSM moves its state to HomeState.

42

4.3. CORE LOGIC

Start
State

Sensors
State

Register
State

Home
State

/h
om

e_
au

to
m

at
io

n

/hom
e_autom

ation

IP CORRECT

/back

/b
ac

k

/re
ad

_s
en

so
r

/b
ac

k

/start

Temperature
State

Humidity
State

"t
em

pe
ra

tu
re

"

/b
ac

k

"humidity"

/back

"city List"

"city

"city List"
"city

Figure 4.6: Core Finite State Machine

43

CHAPTER 4. DESIGN

44

Chapter 5

Implementation

At the implementation level, our thesis is divided into six sub-projects: a JavaScript

sub-project, two Arduino sub-projects and three Kotlin sub-projects.

JavaScript sub-project - It represents our application Bot backend. This

sub-project exploits a NodeJs module, the node-telegram-bot-api, to enable com-

munication between Telegram Bot and our backend.

Arduino sub-projects

• The first sub-project is a very simple one and takes care of sensors’ reading.

This sub-project realizes a starting setup in which it sets the data rate in

bits per second (baud) for serial data transmission. Afterwards, in a loop it

reads the value from the specified analog pin and then it sends this data on

the Serial port.

• The other sub-project, instead, is specific for the component we want to

query. For example, if our home automation includes components with dif-

ferent functions, a washing machine, light bulbs, air conditioner and other

components we should have many other Arduino programs: one for each

component.

In our case, for simplicity of development, we provide a single light bulb but

45

CHAPTER 5. IMPLEMENTATION

with different functions.

What this second program does is, in a loop, to check for new messages on

the serial port. These messages have to respect a certain pattern, otherwise

they are ignored. When a message respects that pattern, the relative com-

mand is executed and the status of the respective component is updated.

Finally, the modified information is sent on the Serial line.

Kotlin sub-projects

• CoreSystem is the most complex sub-project. It has two main tasks: connect

Server to the Bot Application backend and, also, connect itself to the Hive

MQ Broker.

• PublisherClient is the sub-project meant to simulate a client’s behaviour

that, after connecting to the Broker, he publishes on the latter’s topic chan-

nel.

• HomeAutomationController is the sub-project which interfaces with the Ar-

duino sub-project related to the interaction with the actuators.

We declare all linked snapshots in the Appendix sections.

5.1 JavaScript sub-project: Telegram Bot

As explained before, one of the sub-project is the JavaScript one. It uses the

node-telegram-bot-api module, which is the NodeJs module that we use to

connect Telegram Bot with our Bot backend.

The creation of Telegram Bot UI is simplified by BotFather, a Telegram Bot used

to create other bot accounts and manage them. So, we:

1. Request to BotFather to initiate a new Bot providing the name to be as-

signed, SensorReadingBot, and an identifier.

46

5.2. KOTLIN SUB-PROJECT: CORESYSTEM

2. Save the token provided by BotFather. This token is the access key to the

Telegram API. In our case, that token is saved into the variable token, as

shown in listing C.1 at line 4.

3. Use the node-telegram-bot-api module.

The most interesting aspect is that the Bot will be identifiable by Telegram

anywhere as long as it initiates the dialogue via node-telegram-bot-api using the

token.

As can be seen in listing C.1, TelegramBot is initialized by passing the token

generated by the BotFather as the constructor argument.

This instance is an EventEmitter object which emits the message event when

a new incoming message of any kind is received from the bot. The event is caught

thanks to the on method. First of all, the message text is extracted via msg.text

and, depending on the text, it executes a specific action. In this case it sends a

request to the Server which processes it and replies back. Once the response is

received, line 15, it is sent to the TelegramBot via sendMessage Telegram API.

For sending requests to the Server we use the Axios client library [5], a client

HTTP JavaScript library used to make HTTP requests from NodeJs from the

browser. Furthermore, that library supports the Promise API that is native to JS.

We choose it because it makes it easy to send asynchronous HTTP requests to

REST endpoints and perform CRUD operations.

5.2 Kotlin sub-project: CoreSystem

As introduced in this chapter, the CoreSystem sub-project is the most complex

among other sub-projects. In order to explain its functioning, we offer an expla-

nation of the most relevant entities.

47

CHAPTER 5. IMPLEMENTATION

5.2.1 Creation of the Server

One of the main tasks of CoreSystem is to open a connection with Bot. To do so,

we use the technology declared in section 2.3, Ktor. Thanks to it, it is possible to

instantiate a Server in just a few lines.

As we show in listing C.2, first of all we configure the server parameters in the

code via the embeddedServer() function. The Netty Engine and the port 8000

where it expects to receive requests, are the Server configuration parameters we

choose.

The embeddedServer method allows us to quickly run our application, invoking

the start() method on the just created Server. The boolean value inside the start

method means that this function exits if the application engine stops and exits.

The execution of the Server happens on a separate thread with respect to the main

one in order to avoid blocking the main thread.

Routing is the core Ktor plugin for handling incoming requests in a Server

application. When a client makes a request to a specific URL, for example, /token,

/ or /freeText, the routing plugin defines how the request has to be served.

/token route This route is used to verify the ”secret” shared between Bot and

Server: in this case a password. We show the process of authentication in fig. 5.1.

If this secret is the same on both sides, then a token, generated via the JWT

library [4], is sent back to the Bot. From this moment, all requests coming from

the Bot and directed to the Server must have the generated token among the other

parameters. If this is not present, the request is not valid; otherwise the Bot is

considered reliable and communication can take place.

48

5.2. KOTLIN SUB-PROJECT: CORESYSTEM

Figure 5.1: Authentication phase

Therefore:

• Bot sends a request on /token route by adding, as a parameter, the password

that was chosen to configure the bot.

• CoreSystem receives the request and extracts the parameter. If the received

message is the same as the password the core uses to encrypt, then Bot is

really Bot. So it generates a token and sends it back to the Bot as a response.

• At this point, the token is inserted into the Axios header and all future

requests will have it as the header.

/ route This route is used when a user starts the Bot application. When re-

quested, this route firstly checks query parameters and then, if parameters are

correct, creates a user account, if not already exists. At this point, it can send to

the user the welcome message and a possible list of commands that he can invoke.

49

CHAPTER 5. IMPLEMENTATION

/freeText route This route is used when the bot sends a request to the Server

with any message other than the initial one, which is the default message “/s-

tart”. In this case, the received text must be parsed. This check is done via

handleText(chatId, text) method and it needs to avoid SQL injection. If the

text is valid, then the request is processed and the response is sent to the Bot.

5.2.2 WhitePaper

It is the entity which manages all data about users and sensors inside CoreSystem.

This entity contains all the logic of loading information from the database, when

starting the application, and the logic of handling users’ accounts. In particular,

it exposes the methods:

• addNewAccount(chatId: String, username: String): The first thing

that we do, as soon as the application is started, is to check the existence

of the user within the system. If he does not exist then, we add him to the

database and we set his initial state.

• updateUserAccount(chatId: String,

update: (Account) -->Account): Account: Given a specific chatId,

this function return a new account with updated information about that

user.

• handle(chatId: String, text: String)

: Pair<String, List<String>>: This function, given a chatId and a

text, returns the new message and the list of commands.

5.2.3 State

Our FSM features six different states, only one of each is initial. We have no finite

states as this machine takes care of keeping track of the possible actions that users

can do. These states expect some parameters, which are:

50

5.2. KOTLIN SUB-PROJECT: CORESYSTEM

• message: What is shown to the user. It is provided by the state itself.

• account: Object used to keep track of user’s account information.

• back method: To go back to the previous state. It returns a new account

where the status is updated. This latter does not change according to the

previously performed action but with respect to the FSM.

• next method: To go to the next state in the FSM. Given a command, it

returns a new account with an updated state, which is the next state in the

FSM.

• getCommandList method: It returns a list of commands to show to users.

These are provided by the state itself except in the case of StateHomeAu-

tomation in which this list is provided by the Raspberry pi component that

manages the home automation.

5.2.4 UtilityHomeConnection

This is the entity that takes care of managing the connection between CoreSystem

and Raspberry pi. It is launched by the StateRegisterInfoHomeAutomation

when, for the first time, the user registers the IP address of his home automation.

When an instance of UtilityHomeConnection is created, as we show in list-

ing C.3, it opens the websocket connection specifying the IP address, the port and

the routing path which is used to forward requests. The opening process is made

in a separate thread from the main one because this operation is blocking.

Once the connection is established, the first operation executed is the hand-

shake. In this phase, CoreSystem sends to Raspberry the shared secret to assure

Raspberry about his identity. If the handshake succeeds, a message and a list of

commands is given as a response.

After this phase, UtilityHomeConnection manages the websocket. As shown in

listing C.4, it uses two different threads:

51

CHAPTER 5. IMPLEMENTATION

• One is used to catch all incoming messages that arrive in the ReceiveChannel

from the user. Then, they are sent to Raspberry pi.

• The other one is used to catch messages coming from Raspberry pi and to

send them to Bot.

5.3 PublisherClient sub-project

This sub-project is intended to simulate MQTT clients which publish data on the

topic channel of the MQ Broker.

Each PublisherClient has a unique identifier and uses credentials to connect

to the Broker. In this project we only have one publisher, the temperatureClient,

which pushes on topic channel data of a specific city.

5.3.1 InputAnalyzer

Data shared with CoreSystem comes from another important entity inside this sub-

project: InputAnalyzer. This component is started by the main class, as shown in

listing C.5, and its task is to analyze all incoming messages. So, it takes messages

received on channel and verifies that they respect a certain pattern, str:str:str$.

If the message is valid, it drops the last character and splits that message into three

pieces, two of which are used by InputAnalyzer:

• The central one that specify the type of message and

• The last one that contains the value that the sensor reads.

Based on the type, the value is stored in a specific data structure. When it reaches

10 elements, InputAnalyzer calculates the value to share and then sends a specific

message to PublisherClient containing the data that needs to be pushed on the

specific topic channel.

52

5.4. HOMEAUTOMATIONCONTROLLER

5.3.2 Detector

The channel from which InputAnalyzer reads data is shared with another entity

inside that project, which is Detector. This takes care of opening the serial port

through which communication occurs with the Arduinos that read sensors.

The message arrives in byte format, thus the Detector has to convert it in a

format that is comprehensible by InputAnalyzer.

Both InputAnalyzer and Detector are started by the main class and, due to

their blocking behaviour, they are launched with their own coroutine.

5.4 HomeAutomationController

This sub-project is intended to simulate our home automation controller. In order

to manage the house, HomeAutomationController communicates with CoreSystem

using Websocket. Incoming accepted messages can be: a password or a string in

a specific form.

• pwd: This means that, for the first time, CoreSystem connects to Home-

AutomationController. Thus, the mechanism of the handshake takes place.

In this case HomeAutomationController sends to CoreSystem, through the

websocket, a message containing:

– A message to show to the user.

– The names of all components.

– The status of the components.

• A string in the form name:command$: This means the user requests the exe-

cution of a particular command on a home automation component. In this

case Arduino sends a reply message to HomeAutomationController contain-

ing

53

CHAPTER 5. IMPLEMENTATION

– The new list of commands to be executed on that component,

– The updated status of these components.

5.4.1 Store

It is the object that contains a map where the key is the name of a component,

while the value is the component itself. The latter is the entity that simulates home

automation on which one command at a time can be executed. The command to

execute is requested by the user. When HomeComponent receives the command to

execute, it writes it to the serial port and sends it to the specific home automation

component.

5.4.2 HomeComponentHandler

The entity which takes care of opening the serial port with Arduino is HomeCom-

ponentHandler. When invoked for the first time, it sends to Arduino an “info”

message on the serial port. The response from Arduino, which contains the list

of possible commands that a user can invoke on a home automation component,

arrives in byte format. Thus, it needs to be converted into a Triple. This latter,

is, then, split in three pieces. This allows HomeComponentHandler to create a

HomeComponent.

54

Chapter 6

Conclusions and Future works

This thesis focuses on providing a complete distributed system over the network.

At first, the focus is on the design of the system in all its components.

The work on this thesis is marked by two important phases: firstly the research

and then the development.

The former involves the research and analysis phase in order to know the ap-

plication domain and which may be the most suitable technologies to create our

system.

The latter, instead, refers to the effective development of the system, during

which, given the analysis of the problem, we proceed to develop the solution. So, to

apply the decided architecture, Client-server, we realize all individual components

of the system in disjoint sub-projects.

Several improvements and interesting topics in different areas are still available.

One component available for improvements is SensorReadingBot. For example, it

is possible to redefine the model by accepting other formats such as audio streams,

images, etc.

Another improvement of the bot could be the combination of AI and Natural

Language Processing to increase its capacity of dialogue and interaction. In fact,

55

CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

at the moment, our bot is rule-based, so it accepts only a limited number of

commands which are predefined during the implementation phase. As mentioned

in chapter 1, a Bot could be AI-based and, thus, it is possible to train our bot

through a machine learning process to autonomously recognize user requests.

A further area of improvement could be the inclusion of a push notification

system. Since our Bot is also used for home automation management, an important

feature would be to notify the user about an anomalous detection or a malfunction

of a component. For example, the user wants to switch on the light bulb but it has

burned out. The Bot should notify the user about the problem of the light bulb.

In this way the user can have a direct relationship with the Bot and, therefore,

experience a more natural interaction with its home as if it were a real human.

56

Bibliography

[1] Mukesh Singhal Ajay D. Kshemkalyani. Distributed computing: Principles,

algorithms, and systems. https://eclass.uoa.gr/modules/document/

file.php/D245/2015/DistrComp.pdf.

[2] Apple. Virtual assistants: What is apple siri. https://yakbots.com/

virtual-assistants-what-is-apple-siri/#more-1442, 2010.

[3] Arduino. Arduino - introduction. https://www.arduino.cc/en/guide/

introduction.

[4] auth0.com. Json web token introduction. https://jwt.io/introduction.

[5] Advanced encryption standard. https://www.tutorialspoint.com/

cryptography/advanced_encryption_standard.html.

[6] Definition of chatbot - it glossary. https://www.gartner.com/en/

information-technology/glossary/chatbot.

[7] Oxford Dictionary. Chatbot—meaning & definition for uk english—

lexico.com. https://www.lexico.com/definition/chatbot?locale=en/,

2021.

[8] Eric Evans. Domain driven design. https://martinfowler.com/bliki/

DomainDrivenDesign.html.

57

https://eclass.uoa.gr/modules/document/file.php/D245/2015/DistrComp.pdf
https://eclass.uoa.gr/modules/document/file.php/D245/2015/DistrComp.pdf
https://yakbots.com/virtual-assistants-what-is-apple-siri/#more-1442
https://yakbots.com/virtual-assistants-what-is-apple-siri/#more-1442
https://www.arduino.cc/en/guide/introduction
https://www.arduino.cc/en/guide/introduction
https://jwt.io/introduction
https://www.tutorialspoint.com/cryptography/advanced_encryption_standard.html
https://www.tutorialspoint.com/cryptography/advanced_encryption_standard.html
https://www.gartner.com/en/information-technology/glossary/chatbot
https://www.gartner.com/en/information-technology/glossary/chatbot
https://www.lexico.com/definition/chatbot?locale=en/
https://martinfowler.com/bliki/DomainDrivenDesign.html
https://martinfowler.com/bliki/DomainDrivenDesign.html

BIBLIOGRAPHY

[9] Eric Evans. Domain driven design- bounded context. https://

martinfowler.com/bliki/BoundedContext.html.

[10] Fazecast/jSerialComm. jserialcomm: Platform-independent serial port access

for java. https://github.com/Fazecast/jSerialComm.

[11] Google. Virtual assistants: What is google now. https://www.

androidcentral.com/google-now, 2012.

[12] Hivemq cloud :: Hivemq documentation. https://www.hivemq.com/docs/

hivemq-cloud/introduction.html#guide, 2021.

[13] ActiveBuddy Inc. Chatbot history: What is smarterchild. https://yakbots.

com/chatbot-history-what-is-smarterchild/, 2001.

[14] Java. Gson: A java serialization/deserialization library to convert java objects

into json and back. https://github.com/google/gson.

[15] Java. hivemq/hivemq-mqtt-client: Hivemq mqtt client. https://github.

com/hivemq/hivemq-mqtt-client.

[16] JetBrains. Kjetbrains/exposed: Kotlin sql framework. https://github.com/

JetBrains/Exposed.

[17] Ktor: Build asynchronous servers and clients in kotlin. https://ktor.io/.

[18] Karolina Kuligowska. Chatbot parry, kenneth mark colby — virtual assistant

parry — virtual agent parry — chat bot parry — conversational agent parry.

https://www.chatbots.org/chatbot/parry/, 1972.

[19] Creative Labs. Chatbot history: What is dr. sbaitso. https://yakbots.com/

chatbot-history-what-is-dr-sbaitso/, 1992.

58

https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/BoundedContext.html
https://github.com/Fazecast/jSerialComm
https://www.androidcentral.com/google-now
https://www.androidcentral.com/google-now
https://www.hivemq.com/docs/hivemq-cloud/introduction.html#guide
https://www.hivemq.com/docs/hivemq-cloud/introduction.html#guide
https://yakbots.com/chatbot-history-what-is-smarterchild/
https://yakbots.com/chatbot-history-what-is-smarterchild/
https://github.com/google/gson
https://github.com/hivemq/hivemq-mqtt-client
https://github.com/hivemq/hivemq-mqtt-client
https://github.com/JetBrains/Exposed
https://github.com/JetBrains/Exposed
https://ktor.io/
https://www.chatbots.org/chatbot/parry/
https://yakbots.com/chatbot-history-what-is-dr-sbaitso/
https://yakbots.com/chatbot-history-what-is-dr-sbaitso/

BIBLIOGRAPHY

[20] Creative Labs. Chatbot jabberwacky, icogno — virtual assistant jabberwacky

— virtual agent jabberwacky — chat bot jabberwacky — conversational agent

jabberwacky. https://classicreload.com/dr-sbaitso.html, 1992.

[21] Leslie Lamport and Nancy A. Lynch. Distributed computing: Models and

methods. In Jan van Leeuwen, editor, Handbook of Theoretical Computer

Science, Volume B: Formal Models and Semantics, pages 1157–1199. Elsevier

and MIT Press, 1990.

[22] Robert Martin. A quick introduction to clean ar-

chitecture. https://www.freecodecamp.org/news/

a-quick-introduction-to-clean-architecture-990c014448d2/.

[23] Robert Martin. Clean architecture: A craftsman’s guide to soft-

ware structure and design. https://booksvooks.com/nonscrolablepdf/

clean-architecture-pdf-robert-c-martin.html, 2018.

[24] Microsoft. Cortana, 2015. https://yakbots.com/

virtual-assistants-microsoft-cortana-chatbot/#more-18145, 2015.

[25] Node.js. node-telegram-bot-api: Telegram bot api for nodejs. https:

//github.com/yagop/node-telegram-bot-api.

[26] Dominik Obermaier and Ian Skerret. Introducing hivemq cloud. https:

//www.hivemq.com/blog/introducing-hivemq-cloud/.

[27] Dominik Obermaier and Ian Skerret. Introducing hivemq mqtt client. https:

//hivemq.github.io/hivemq-mqtt-client/.

[28] Dominik Obermaier and Ian Skerret. Mqtt: The messaging and data exchange

protocol of the iot. https://www.hivemq.com/mqtt-protocol/.

59

https://classicreload.com/dr-sbaitso.html
https://www.freecodecamp.org/news/a-quick-introduction-to-clean-architecture-990c014448d2/
https://www.freecodecamp.org/news/a-quick-introduction-to-clean-architecture-990c014448d2/
https://booksvooks.com/nonscrolablepdf/clean-architecture-pdf-robert-c-martin.html
https://booksvooks.com/nonscrolablepdf/clean-architecture-pdf-robert-c-martin.html
https://yakbots.com/virtual-assistants-microsoft-cortana-chatbot/#more-18145
https://yakbots.com/virtual-assistants-microsoft-cortana-chatbot/#more-18145
https://github.com/yagop/node-telegram-bot-api
https://github.com/yagop/node-telegram-bot-api
https://www.hivemq.com/blog/introducing-hivemq-cloud/
https://www.hivemq.com/blog/introducing-hivemq-cloud/
https://hivemq.github.io/hivemq-mqtt-client/
https://hivemq.github.io/hivemq-mqtt-client/
https://www.hivemq.com/mqtt-protocol/

BIBLIOGRAPHY

[29] Vincent Rijmen and Joan Daemen. axios/axios: Promise based http

client for the browser and node.js. https://www.tutorialspoint.com/

cryptography/advanced_encryption_standard.htm.

[30] Vincent Rijmen and Joan Daemen. Kotlin- rsa, aes, 3des encryption and

decryption with example. https://www.knowledgefactory.net/2021/01/

kotlin-aes-rsa-3des-encryption-and.html.

[31] Vincent Rijmen and Joan Daemen. What is the aes algorithm? https:

//www.educative.io/edpresso/what-is-the-aes-algorith.

[32] Andrew S. Tanenbaum and Maarten van Steen. Distributed systems - princi-

ples and paradigms, 2nd Edition. Pearson Education, 2007.

[33] Developing the ubiquitous language. https://thedomaindrivendesign.io/

developing-the-ubiquitous-language/.

[34] Edwin van Asch. Chatbot jabberwacky, icogno — virtual assistant jab-

berwacky — virtual agent jabberwacky — chat bot jabberwacky — con-

versational agent jabberwacky. https://www.chatbots.org/chatterbot/

jabberwacky/, 1988.

[35] Erwin van Lun. Chatbot eliza, joseph weizenbaum — virtual assistant eliza

— virtual agent eliza — chat bot eliza — conversational agent eliza. https:

//www.chatbots.org/chatbot/eliza/, 1966.

[36] Richard Wallace. Chatbot a.l.i.c.e., a.l.i.c.e. a.i foundation — virtual assistant

a.l.i.c.e. — virtual agent a.l.i.c.e. — chat bot a.l.i.c.e. — conversational agent

a.l.i.c.e. https://www.chatbots.org/chatbot/a.l.i.c.e/, 1995.

[37] Richard Wallace. Chatbot history: The alice chatbot. https://yakbots.

com/chatbot-history-the-alice-chatbot/, 1995.

60

https://www.tutorialspoint.com/cryptography/advanced_encryption_standard.htm
https://www.tutorialspoint.com/cryptography/advanced_encryption_standard.htm
https://www.knowledgefactory.net/2021/01/kotlin-aes-rsa-3des-encryption-and.html
https://www.knowledgefactory.net/2021/01/kotlin-aes-rsa-3des-encryption-and.html
https://www.educative.io/edpresso/what-is-the-aes-algorith
https://www.educative.io/edpresso/what-is-the-aes-algorith
https://thedomaindrivendesign.io/developing-the-ubiquitous-language/
https://thedomaindrivendesign.io/developing-the-ubiquitous-language/
https://www.chatbots.org/chatterbot/jabberwacky/
https://www.chatbots.org/chatterbot/jabberwacky/
https://www.chatbots.org/chatbot/eliza/
https://www.chatbots.org/chatbot/eliza/
https://www.chatbots.org/chatbot/a.l.i.c.e/
https://yakbots.com/chatbot-history-the-alice-chatbot/
https://yakbots.com/chatbot-history-the-alice-chatbot/

BIBLIOGRAPHY

[38] J. Weizenbaum. Eliza—a computer program for the study of natural language

communication between man and machine. Commun. ACM, 9:36–45, 1966.

61

BIBLIOGRAPHY

62

Appendix A

Technologies

A.1 MQTT

A.1.1 MQTT Topic: # Wildcard

Listing A.1: Example of multi-level topic in the MQTT Client�
1 mqttTempClient.toAsync ().subscribeWith ()

2 .topicFilter("sensors /#") //Multi -level topic

3 .qos(MqttQos.EXACTLY_ONCE) //QoS level

4 .send()
� �
In MQTT, the word topic refers to hierarchical UTF-8 strings. Each topic level is

separated by a forward slash, the topic level separator.

A client can subscribe to individual or multiple topics using wildcard charac-

ters.

In listing A.1, we show an example of a multi-level topic wildcard, which is repre-

sented by the hash symbol, the multi-level wildcard. It must be placed as the last

character to allow the Broker to determine which topics match. Furthermore, when

63

APPENDIX A. TECHNOLOGIES

a client subscribes to a topic with a multi-level wildcard, it receives all messages

of a topic that begins with the pattern before the wildcard character.

A.1.2 QoS

In listing A.1, another important aspect of the MQTT protocol is reported, that

is the QoS. As already mentioned, there are 3 levels of QoS:

• QoS 0: “at most once delivery.”

• QoS 1: “at least once delivery”.

• QoS 2: “exactly once delivery”.

In this case, we show the declaration of the QoS level we decide to use, that is to

say that of level 2. This latter involves a four-step handshake in order to confirm

that the sender has actually received the messages and that it is received only

once.

A.1.3 Creation of a MQTT Client

In listing A.2, we show the process of creation of an MQTT client. An utility

that we use is that of the builder, which is accessible from the MqttClient class

existing in the com.hivemq.client.mqtt.* package.

Thanks to the builder, it is possible to configure and create an MQTT client,

which can be used to connect to Broker, subscribe to topics and, then, publish

messages.

The created client has its own UUID and connects to the MQTT cloud Broker

using SSL protocol, a specific port (the 8884), and a specific version (the MQTT 5

protocol).

Once we create the MQTT client, the next step is to connect it to the Broker

and the procedure is shown in listing A.3.

64

A.1. MQTT

Listing A.2: Creation of an MQTT Client�
1 fun initialize () {

2 var mqttPublisherClient: Mqtt5BlockingClient =

MqttClient.builder ()

3 .useMqttVersion5 ()

4 .identifier("temperatureClient_\${UUID.
randomUUID ()}")

5 .serverHost(host)

6 .serverPort (8884)

7 .sslWithDefaultConfig ()

8 .webSocketConfig ()

9 .serverPath("mqtt")

10 .applyWebSocketConfig ()

11 .buildBlocking ()

12 }
� �

Listing A.3: Connection to the MQTT Broker using credentials�
1 // Connect securely with username , password.

2 mqttPublisherClient.connectWith ()

3 .simpleAuth ()

4 .username(username)

5 .password(Charsets.UTF_8.encode(pwd))

6 .applySimpleAuth ()

7 .cleanStart(false)

8 .send()
� �

65

APPENDIX A. TECHNOLOGIES

66

Appendix B

Library

B.1 Exposed

One of the most popular libraries for working with databases is the Exposed library.

It is an ORM framework for Kotlin which offers two levels of database access: a

typesafe SQL-wrapping DSL, the one we choose, and a lightweight data access

object (DAO).

Every database access, using Exposed, is started by obtaining a connection

and, then, creating a transaction. First of all, we need to define how to connect to

a database. This is done via the Database.connect() function, as can be seen in

listing B.1 (line 2). This function will not create a real database connection but

only provide a descriptor for future usage. A real connection will be instantiated

thanks to the transaction lambda, a CRUD operation which encapsulates a set of

DSL operations.

The database we have chosen to save data is H2 while the saving method is “in

file” with SQL mode.

67

APPENDIX B. LIBRARY

Listing B.1: Data Persistence through Exposed library�
1 // Database connection

2 Database.connect(

3 "jdbc:h2:./ main/resources/cityTempAndHumidity;MODE=MySQL

",

4 "org.h2.Driver"

5)

6 transaction {

7 SchemaUtils.create(CityTemperature)

8 SchemaUtils.createMissingTablesAndColumns(

CityTemperature)

9 }
� �
B.2 Gson

Gson is typically used by first constructing a Gson instance and then invoking

toJson(Object) or fromJson(String, Class) methods. Gson instances are

Thread-safe so we can reuse them freely across multiple threads without caus-

ing any blocks.

In listing B.2, the sendSuccessResponse method (line 11)is used to serialize

the ComplexMsgWithParams data structure in a Json object and, then, send it to

the Bot which renders the message and the list of commands to the user.

An example of the use of Gson to execute deserialization is reported in list-

ing B.2 (line 29). In this case, the message that is received in the communication

channel, received as a Json String, is converted into an Object of the specified

class, the ComplexMsg class.

68

B.2. GSON

Listing B.2: Use of Gson to implement (De)serialization�
1 @Serializable // Serializable data structure

2 data class ComplexMgsWithParams(

3 val message: String?,

4 val command: List <String >?,

5 val contentType: ContentType ,

6 val httpStatusCode: HttpStatusCode

7)

8 // Serialization method

9 var gson = Gson() //Gson instance

10

11 private fun sendSuccessResponse(message: String ,

commands: List <String >): String {

12 return gson.toJson(

13 ComplexMgsWithParams(

14 message ,

15 commands ,

16 ContentType.Text.Plain ,

17 HttpStatusCode.OK

18)

19)

20 }

21 // Deserialization method

22 @Serializable

23 data class ComplexMsg(

24 val message: String ,

25 val command: List <String >

26)

27

28 val cMsg: ComplexMsg =

29 gson.fromJson(

30 channelOutput.receive (),

31 ComplexMsg ::class.java

32)
� �

69

APPENDIX B. LIBRARY

70

Appendix C

Code representation

C.1 Telegram Bot: Node.js Telegram Bot API

Listing C.1: Implementation of the back-end of the Bot application�
1 const TelegramBot = require(’node -telegram -bot -api’);

2 var token = "" //Use the real telegram token

3 const bot = new TelegramBot(token , {polling: true});

4 bot.on(’message ’, (msg) => {

5 const msgReceived = msg.text.toString ()

6 if (msgReceived === "/start") {/* Welcome */

7 const params = { chatId: msg.chat.id};

8 return axios.get(url , { params }).then((res) => {

9 bot.sendMessage(msg.chat.id , res.data.message , {

10 reply_markup: {keyboard: [res.data.command]}

11 });

12 })

13 } });
� �
71

APPENDIX C. CODE REPRESENTATION

C.2 CoreSystem

How to declare a server-side application

Listing C.2: Creation of the Server using Ktor�
1 fun createServer(pwd: String) {

2 embeddedServer(Netty , port = 8000) {

3 routing {

4 get("/token") { ... } // Authentication API

5 get("/") { ... } //START API

6 get("freeText") { ... } // Message handling

API

7 }

8 }.start(false)

9 }
� �
UtilityHomeConnection: Open websocket

Listing C.3: Opening websocket�
1 scope.launch {

2 client.webSocket(method = HttpMethod.Get , host =

ipAddress , port = 8080, path = "/home") {

3 handshake ()

4 handleWS ()

5 }

6 }
� �
72

C.3. PUBLISHERCLIENT

Listing C.4: Method to handle websocket�
1 private suspend fun DefaultClientWebSocketSession.

handleWS () {

2 try {

3 val inputCh: ReceiveChannel <String > = channelInput

4 val outputCh: SendChannel <String > = channelOutput

5 val jobIn = scope.launch {

6 while (true) {

7 val input = inputCh.receive ()

8 send(input)

9 }

10 }

11 val jobOut = scope.launch {

12 for (message in incoming) {

13 message as? Frame.Text ?: continue

14 val receivedText = message.readText ()

15 outputCh.send(receivedText)

16 }

17 }

18 jobIn.join()

19 jobOut.join()

20 } catch (e:Exception){

21 e.printStackTrace ()

22 }

23 client.close()

24 }
� �
UtilityHomeConnection: Manage websocket

C.3 PublisherClient

73

APPENDIX C. CODE REPRESENTATION

Listing C.5: Main function of the project with concurrent threads�
1 suspend fun main() = coroutineScope {

2 val channel: Channel <String > = Channel ()

3 val publisher = PublisherClient ()

4 publisher.initialize ()

5 launch {

6 Detector.initialize(channel , serialName)

7 Detector.runDetector ()

8 }

9 launch {

10 InputAnalyzer(channel , publisher).run()

11 }

12 }
� �

74

	Introduction
	Technologies and libraries
	Chatbot: What are we talking about?
	How do chatbots work?
	A brief history of chatbots

	MQTT
	MQTT: Key aspects
	Advantages of MQTT and why we choose it

	Ktor
	Key aspects
	How Ktor was used?

	Main libraries
	JetBrains Exposed
	Gson
	Node.js Telegram Bot API
	jSerialComm library

	Utilities
	Security mechanisms
	Raspberry PI
	Arduino
	Coroutines and concurrency in Kotlin

	Requirements
	Ubiquitous Language
	Non-functional requirements
	Functional requirements

	Design
	Architecture
	Description of the architecture inside the project
	Application of the architecture in the project
	Clean architecture

	Sub-domains of the system
	Core logic
	Bounded Context
	Core Finite State Machine

	Implementation
	JavaScript sub-project: Telegram Bot
	Kotlin sub-project: CoreSystem
	Creation of the Server
	WhitePaper
	State
	UtilityHomeConnection

	PublisherClient sub-project
	InputAnalyzer
	Detector

	HomeAutomationController
	Store
	HomeComponentHandler

	Conclusions and Future works
	Technologies
	MQTT
	MQTT Topic: # Wildcard
	QoS
	Creation of a MQTT Client

	Library
	Exposed
	Gson

	Code representation
	Telegram Bot: Node.js Telegram Bot API
	CoreSystem
	PublisherClient

