
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA
CAMPUS DI CESENA

Scuola di Ingegneria e Architettura

Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

Extending the 2P-Kt ecosystem
with Concurrent Logic Programming

support

Tesi di laurea in
Sistemi Autonomi

Relatore
Prof. Andrea Omicini

Correlatore
Dott. Giovanni Ciatto

Candidato
Andrea Giordano

Sessione Unica di Laurea

Anno Accademico 2020-2021

ii

Abstract

It is widely acknowledged that logic programming is very well suited for con-

currency and a lot of research exists on this topic. However, despite the many

contributions laying under the umbrella of concurrent logic programming, only a

small amount of technologies survived the passage of time. Survivors, in turn, are

tailored on an ancient way of designing (and implementing) concurrent systems.

Accordingly, in this thesis we address the problem of designing and implement-

ing a concurrent LP solution taking advantage of modern concurrent programming

facilities such as co-routines and non-blocking I/O. In doing so, we leverage upon

the 2P-Kt ecosystem for symbolic AI, following the purpose of enriching it towards

concurrency.

Along this line, the contribution of this thesis is three-folded. First, we review

the state of the art of concurrent logic programming, providing an overview of its

most important aspects and problems. We then formally model the behaviour of

an OR-concurrent Prolog solver as a state machine which we adopt to extend the

2P-Kt ecosystem with concurrent Prolog support. Finally, we design, implement

and validate an OR-concurrent Prolog solution reifying the aforementioned model

into some actually usable technology.

We put a lot of effort in the validation of our solver and then we assess the

speedup of our concurrent Prolog solver via comparative benchmark with respect

to sequential Prolog. Notably, our solution achieves some good results in terms of

speedup and memory usage with respect to the sequential case.

iii

iv

To all grandparents.

v

vi

Acknowledgements

I thank my university colleague Alessia Cerami for the help given in this work,

especially in the correction of the thesis. She also supported and encouraged me

and was always there whenever I needed her.

I thank Professor Andrea Omicini for the kindness and sympathy he always

shows and for the passion he transmitted to me for the argument of this thesis. I

thank Giovanni Ciatto for the great help during the design and the implementation

phases but also for encouragement when I was getting disheartened.

I thank my family for the support during the whole university course.

I specially thank my mom, without whom I would not have reached this finishing

line. I thank my friends, who listened to me when I needed it, but also for the

awesome experience we had together.

vii

viii

Contents

Abstract iii

1 Introduction 1

2 State of the Art 5

2.1 Concurrent LP . 5

2.1.1 Macro parallelism types . 7

2.1.2 Implicit parallelism in LP 8

2.1.3 Problems of implicit parallelism 10

2.1.4 Concurrent Prolog . 13

2.2 Logic Programming Ecosystems and 2P-Kt 17

2.2.1 2P-Kt overview . 17

2.2.2 Resolution . 19

2.2.3 Primitives . 21

2.2.4 State Machine . 22

2.3 Coroutines and concurrency in Kotlin 23

3 Requirements 27

3.1 Constraints . 27

3.2 Goals . 28

4 Design 31

4.1 Abstract design . 31

4.1.1 Syntax and Notational Conventions 31

4.1.2 Semantics . 34

ix

x CONTENTS

4.2 Concrete design . 41

5 Implementation 47

5.1 Execution Context . 47

5.2 Concurrent Solver . 48

5.3 Utils . 51

5.4 Concurrent State Machine . 53

6 Validation 57

6.1 Test framework . 57

6.2 Metrics and benchmarks . 59

7 Conclusions 63

7.1 Open issues . 65

List of Figures

2.1 2P-Kt project structure . 18

2.2 Prolog State Machine . 23

4.1 Concurrent Prolog State Machine 33

4.2 Main abstractions . 42

4.3 Overview of user consuming solutions 44

4.4 Resolution Job and Channel interaction 45

4.5 Channel and Sequence interaction 45

xi

xii LIST OF FIGURES

Listings

5.1 Apply method of the ExecutionContext 48

5.2 The solveImpl method . 49

5.3 How solveConcurrently handle the solutions channel 49

5.4 startAsync in detail . 50

5.5 coroutines launch for each next possible state 50

5.6 How solutions are published when needed 51

5.7 Jvm conversion of a channel to a sequence 52

6.1 Unit test example . 58

6.2 Unit test concrete class example . 58

xiii

xiv LISTINGS

Chapter 1

Introduction

The technology for sequential implementation of logic programming languages has

evolved considerably since its birth. In recent years, it has reached a notable state

of maturity and efficiency. Today, a wide variety of commercial logic programming

systems and excellent public-domain implementations are available that are being

used to develop large real-life applications.

For years logic programming has been considered well suited for execution on

multiprocessor architectures. Indeed research in concurrent logic programming is

vast and dates back to the inception of logic programming itself. There is a healthy

interest in parallel logic programming ever since, as is obvious from the number

of papers that have been published in proceedings and journals devoted to logic

programming and parallel processing.

Technology evolved year after year moving from machines with limited re-

sources to modern computers with a multiprocessor and a lot of memory, improv-

ing their performances drastically. The software evolved hand in hand with the

hardware in all areas, like the operating systems and the programming languages.

This evolution raised the abstraction of the technologies available increasing the

software development reachable complexity.

There are many types of parallelism and even more techniques to exploit them.

Logic programming is very well suited for concurrent resolution because each sub-

goal can be solved in parallel. Furthermore each matching clause, when more than

one is found, can create a separate resolution branch. While the theory is quite

1

2 CHAPTER 1. INTRODUCTION

simple, practically many problems arise like, for example, the preservation of the

Prolog semantics or the handling of variable dependencies.

Various systems have been developed during the years to support concurrency

in logic programming, each one with different features. The problem is that most

of them are not supported anymore due to the complexity they have and, fur-

thermore, these systems are designed for the machine available at that particular

time.

We want to adapt the vast knowledge on the field of concurrent logic program-

ming to actual technologies, like the modern programming language Kotlin and

the lightweight coroutines, to develop a concurrent Prolog solver.

The goal of this thesis is to extend the 2P-Kt ecosystem with Concurrent Logic

Programming support and, hence, to till the soil for future works. The contribution

of this thesis is four folded: an overview of the state of art on the concurrent logic

programming field, the design of an OR-parallel Prolog solver, its implementation

and some comparative benchmarks.

The knowledge about concurrency in logic programming is very broad and

overwhelming. For ease of reading we report the main aspects available in papers

and works about this field, giving an overview to the reader. Then we deepen the

concepts useful for our work to support its understanding.

The core of the contribution given by this thesis is the design of an OR-parallel

Prolog solver. Firstly we formally describe the design using a labelled transition

system and then we present the concrete design of the main entities of the solver.

Another important contribution is the implementation of the concurrent Prolog

solver. We keep a high level of abstraction to ease the reusability of each compo-

nent, but also to increase the extensibility. Furthermore we set up a framework

for testing concurrent solvers, which is reusable, extensible and flexible.

The last contribution of this thesis is the measurement of the speedup gained

by our solver. This is obtained through comparative benchmarks of the concurrent

solver with respect to the sequential Prolog solver.

Thesis Structure Accordingly, the reminder of this thesis is structured as fol-

lows.

Chapter 2 discusses the state of the art of parallelism in logic programming

3

and it explains the technologies we use.

Chapter 3 contains the constraints and the goals we follow, giving a brief

explanation of each of them.

Subsequently, chapter 4 discusses both abstract and concrete design of our

concurrent solver. The former is a formal description of the concurrent state

machine while the latter presents the main abstractions of the system.

After that, chapter 5 explains in detail the implementation step and it shows

the most important code snippets.

Chapter 6 reports the validation process and the benchmarks. It also explains

our test framework.

Finally, chapter 7 concludes this thesis by summarising its main contribution

and the open issues.

4 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

In this chapter, we recall the state of the art of parallelism in logic programming

and the technologies we use.

It is important to remember that there are many aspects that are not explained

in detail because they are not relevant for our purpose. The interested readers can

explore the bibliography to deepen concurrency in logic programming.

From now on LP acronym is used instead of logic programming for ease of

reading. Furthermore, to be consistent with literature, in this chapter we use

parallelism as a synonym of concurrency.

Firstly, we propose an explanation of what is concurrent LP, detailing funda-

mentals, problems and how it is applied to Prolog. Then is reported the 2P-Kt

ecosystem, showing an overview and detailing the most relevant aspects. The last

part of this chapter is about concurrency in Kotlin and how it is handled.

2.1 Concurrent LP

A logic program is expressed as a set of logical formulas precisely specifying what

is true. This approach to programming is different from the others, where the

concern is how a specific problem should be solved. Here, the specification of how

a problem is to be solved is expressed in the form of a precise sequence of steps

executed by an engine.

One of the most attractive features of logic programming is the clean separation

5

6 CHAPTER 2. STATE OF THE ART

of logic and control. The efficiency of the solution of a problem can be improved

without any change in the solution itself. Concurrent LP is the set of algorithms

and techniques that assess the concurrent research of the resolution tree to find

answers to submitted queries.

In logic programming there is a knowledge base, an ordered set of clauses, to

which a query is submitted. The answer to the query, which is a goal, is searched

sequentially trying to match it with the head of each clause. When a match is

found, a choice point is created to let the solver know where to backtrack if this

clause fails or if other answers are requested. Likewise, each sub-goal is checked,

sequentially and left to right, to find all the possible answers. When a (sub-)goal

fails the backtracking takes place, moving the resolution to the last choice point

created. Then the resolution restarts with the matching process from the next

clause.

Before presenting the macro parallelism types, we briefly talk about non-

determinism introduced by concurrency. There are two non-determinism types as

explained in [36] and [22]: the Don’t-Know non-determinism and the Don’t-Care

non-determinism.

The former occurs when the program has more than one clause to choose from,

it picks one non-deterministically and creates a choice point used to backtrack in

case of failure of the clause. This means that all the possible alternatives are tried

and all the solutions can be found. In this type of non-determinism only successful

computations are considered as results while the failings are not observed.

The latter non-determinism occurs when only a clause is chosen: no choice

points are created and no backtracking is performed even if the clause fails. This

means that only one alternative is explored so that only one result is obtained. In

this type of non-determinism any computation is observed (hence failure is a valid

result), so there is only one output that is logically correct.

When a query is submitted to a solver it is common that at least a positive

answer is looked for, while the negative ones are not interesting. For this reason in

this thesis, between the two kinds of non-determinism, we choose the Don’t-Know

one. Our choice implies a more complex resolution process but, as described in

chapter 3, let us support the most known logic programming language, Prolog.

2.1. CONCURRENT LP 7

2.1.1 Macro parallelism types

In LP many kinds of concurrency can be exploited and they are grouped in three

main categories: explicit, implicit, and hybrid parallelism.

Explicit parallelism This type of parallelism involves the extension of logic

programming languages with explicit constructs that enable the control of par-

allelism. This means that the programmer has to control concurrency manually

through the code.

The explicit control of concurrency needs a higher skilled programmer who can

take advantage of the extending constructs to produce very efficient code, but it

can create difficulties in debugging and testing so it is not suited for everyone.

There are three sub-types of explicit parallel logic languages:

• Those that add explicit message passing primitives.

• Those that add blackboard primitives used by multiple processes running

concurrently to communicate with each other.

• Those based on guards, committed choice, and data flow synchronization.

In order to keep this thesis focused, we consider these approaches only marginally

and in those cases where they introduce execution mechanisms that are applicable

also in the case of implicit exploitation of concurrency.

Implicit parallelism This type of parallelism involves the capability of the

logic program engine to perform concurrent operations autonomously, extracting

parallelism from logic programs without any programmer intervention. In contrast

to the explicit parallelism, there are no extensions to the logic language so that

the programmer writes classic logic programs. Instead, concurrency is achieved

automatically running multiple processes that cooperate or concur to compute the

results.

The aim is to speed up existing and new logic programs without any change

to the code. There are three forms of implicit parallelism:

AND-parallelism The parallelism lays in the selection of the next literal to be

solved. This allows the resolution of multiple literals concurrently. This form

of parallelism, as mentioned into [40] and [41], can again be divided into:

8 CHAPTER 2. STATE OF THE ART

• Independent AND-Parallelism: Literals of a clause are independent

from each other, thus they do not share variables.

• Dependent AND-Parallelism: Literals of a clause are dependent from

each other, thus they share variables.

OR-parallelism The parallelism resides in the selection of the clause to be used

in the computation of the resolvent. This allows the solver to try multiple

clauses in parallel.

Unification-parallelism The parallelism is at the level of the unification process

when complex terms are present.

Mixing these OR-types of implicit parallelism together is possible, but implies an

increase of problems that need to be handled.

Hybrid parallelism One last type of parallelism is the hybrid solution which

takes advantage of both implicit and explicit parallelism. Typically the language

is an extension of Prolog supplied with constructs that let the programmer handle

concurrency. The engine exploits implicit parallelism unless explicit constructs are

used.

An example of a hybrid parallel model is ACE [34] in which the programmer

can either use standard Prolog and let the compiler take care of detecting implicit

parallelism or use explicit language constructs to express parallelism.

2.1.2 Implicit parallelism in LP

Our goal, as it emerges from chapter 3, is to support Prolog improving perfor-

mances of execution. To do so, we focus only on implicit parallelism. Before

diving into the 2P-Kt ecosystem, we want to explain deeper this type of par-

allelism and the problems it involves. There are three main sources of implicit

parallelism: OR-parallelism, AND-parallelism and Unification parallelism.

OR-parallelism OR-parallelism resides in the selection of the clause to be used

in the computation of the resolvent. It means that this parallelism can be exploited

every time a sub-goal unifies with more than one rule head: the bodies of each

rule can be executed in parallel. A clear explanation can be found in [11].

2.1. CONCURRENT LP 9

This parallelism is the way of searching for all the solutions to the query by

exploring the whole search space generated by multiple clauses applicable at each

resolution step.

Or-parallelism not only allows the parallel execution of multiple clauses, but

also enables the concurrent search into the whole search space generated for dif-

ferent alternatives applicable to the selected sub-goal.

This type of parallelism is more frequent in applications that explore a large

search space via backtracking.

AND-parallelism AND-parallelism provides a means for performing concurrent

evaluation of sub-goals in a clause. In this form of parallelism, a clause is seen

as a problem that can be divided into sub-problems which can then be solved

simultaneously. Each of these sub-problems will produce its own solution. At

the end, the final solution is obtained by putting together the results of the sub-

problems.

From a logic programming point of view, this means that each literal appearing

in the selected clause body can be executed in parallel. There are two sub-types

of AND-parallelism: Independent and Dependent.

Independent AND-Parallelism As mentioned in [40] and [41], Independent

AND-Parallelism, IAP for brevity, parallel computation is exploited only

between independent sub-goals and, therefore, is crucial to identify the in-

dependence.

Dependent AND-Parallelism The Dependent AND-Parallelism, DAP shortly,

is similar to IAP with the difference that literals share dependencies from

each other, as explained in [41]. It occurs when and-parallelism is allowed

between sub-goals which share unbound variables at the time of invocation of

the goals. Thus, processes compete in binding a shared variable or cooperate

if the goals share the task of creating the binding for the common variable.

In both cases some form of synchronization is needed when sub-goals are

executed concurrently because their computation is affected by others.

This type of parallelism is harder to be exploited for Prolog. In fact, often,

it is handled converting the language to a committed choice language or

adopting other changes to operational semantics.

10 CHAPTER 2. STATE OF THE ART

To deepen the concept, literals are considered independent when they do not share

any unbound variable at run-time. That condition guarantees that the execution

of one clause will not affect the other’s execution. In this way, there is no need to

introduce any form of synchronization during parallel execution.

The main focus in AND-parallelism is the detection of dependency between

variables. In IAP only independent sub-goals are allowed for AND-parallel execu-

tion, while in DAP dependencies are handled exploiting synchronization mecha-

nisms. Detection of dependencies can be done in three ways:

• exclusively at run-time, by parallelization tests that may slow down execution

but guarantee the maximum grade of parallelism.

• exclusively at compile-time, by preprocessing the code that does not reduce

performance but uses a lower grade of parallelism.

• both at compile-time and at run-time, by marking at compile-time selected

literals and, when independence cannot be determined statically, generating

a reduced set of efficient parallelization tests checked at run-time, as shown

in [4].

There also exists a narrower form of IAP, which is called restricted independent

AND-Parallelism, that implies stronger independence constraints.

Unification parallelism This parallelization, as explained in [19], arises during

the unification of the arguments of a goal with the arguments of a clause head. The

different argument terms can be unified in parallel as can the different sub-terms

in a term. Thus, unification of two complex terms is broken down in pairwise

unification of the different arguments. In this way, the sequence of unification can

be performed in parallel.

This type of parallelism has a big disadvantage: due to its fine granularity,

it requires specialized architectures in order to achieve results of any interest or,

otherwise, it will incur in performance degradation due to the overhead.

2.1.3 Problems of implicit parallelism

At first sight exploiting parallelism seems simple but, in reality, many problems

arise. Here, we report the main problems grouped by the parallelism type from

2.1. CONCURRENT LP 11

which they are generated.

Common problems There are some problems in common between all the par-

allelism types, so they are stated first. These are: Granularity control, Scheduler,

Process-based versus Processor-based and Architectural Influence.

Granularity control Knowing the size of a task, in terms of execution time and

space, is really important and it becomes almost a must if the parallelization is

made on a distributed system where communication is a bottleneck. In reality, it

is not possible to know the exact size of the task but only an estimation can be

made.

Scheduler Many factors influence when a piece of work has to be executed and

to which worker has to be assigned. This duty is in the hand of the scheduler,

therefore, a lot of effort goes into its design and implementation.

Process-based versus Processor-based Deciding if it is better to spawn a process

for each goal encountered (process-based) or to spawn multiple threads ahead of

time and assign them parts of the computation (processor-based) is not simple.

There are many aspects to consider, hence, both of these approaches are correct

under specific circumstances.

Architectural Influence The architecture of the system can significantly impact

the performances. Many architectures have been studied and each one tackles

problems in different ways obtaining different results but, actually, there is no

evidence that a particular architecture is the best and research is needed.

OR-parallelism problems Besides the common problems, OR-Parallelism has

only a main issue to tackle that is known as Multiple environment representation,

as mentioned in [38].

First of all, when implementing this type of parallelism, you have to visualize it

and the easiest way is through the or-parallel search tree. At this point it appears

obvious that the main problem in implementing this form of parallelism is the

management of multiple bindings. In fact, the problem arises in the moment of

representing and accessing the conditional bindings that are variables that can be

assigned by more processes.

12 CHAPTER 2. STATE OF THE ART

AND-parallelism problems This type of parallelism is more complicated than

OR-parallelism due, but not limited, to the complexity of dependency detection,

as explained in [32] and [33]. In fact there are four different problems: Detec-

tion of data dependencies, Goals ordering, Management of shared variables and

Backtracking.

Detection of data dependencies Sub-goals can share variables directly or

indirectly. The former can be detected at compile-time while the latter can be

detected only at run-time. The condition of independence requires that there are

no shared variables at the run-time execution.

Goals ordering This problem is about ordering sub-goals execution, hence de-

termining if these are ready for execution.

Management of shared variables In case of dependencies, shared variables

need to be validated and controlled.

Backtracking When the failure of a sub-goal occurs the main problem is to

determine to which sub-goal execution should backtrack. This is due to the mis-

match of the order of sub-goals. The problem becomes more complicated because

and-parallel sub-goals may have nested sub-goals currently executing which have

to be terminated or backtracked over.

AND-OR-parallelism problems The problems arising from combining AND-

parallelism and OR-parallelism are various. They are not only the sum of both

types of parallelism problems, but also those arising from requirements that are in

contrast. Mainly:

• OR-parallelism focuses on improving the separation between parallel com-

putations by assigning separate environments to the individual computing

agents.

• AND-parallelism relies on the ability of different computing agents to coop-

erate and share environments to construct a single solution to the problem.

2.1. CONCURRENT LP 13

There are some other less important problems in this system: whether to re-

compute solutions of independent goals or to reuse them or how to deal with an

additional level of scheduling, that is to determine whether an idle worker should

perform OR-parallel work or AND-parallel work.

2.1.4 Concurrent Prolog

In this section we report the differences between a pure Logic Programming Lan-

guage and Prolog. Moreover, we explain how to adapt concurrency to this specific

language, which are the arising problems and how they can be tackled. Lastly

some of the most known implementations are reported.

Prolog Logic programming is a quite powerful instrument that lets the program-

mer focus on what he wants to do instead of how to do it. In fact, there is a clear

separation between logic and control. But there is a major drawback in those

languages: there are no side-effects.

This shortage means that you can only find solutions to a problem without

effectively exploiting them. Often, it is important to read or write on a file some

solutions or to control the execution. These were the reasons for the birth of

Prolog. This language supports many side-effects, ranging from reading or writing

a file to modifying the knowledge base and, furthermore, controlling the execution

by the use of cut.

Handling side-effects is not simple, in fact there are many articles that explain

techniques and algorithms to tackle side-effects and even more implementations.

Prolog execution is a sequential depth-first and left to right research of the resolu-

tion tree. This means that it is simple to know exactly when and where side-effects

occur. Another important aspect that differentiates Prolog from traditional logic

programming is that solutions are ordered.

Concurrency and side-effects When we introduce concurrency in the resolu-

tion process, things get complicated. Firstly, there is no solution ordering: this

is not a problem corresponding to traditional logic programming, but it is for all

those Prolog programs that rely on the order of solutions. In those cases, it is

14 CHAPTER 2. STATE OF THE ART

necessary to add an ordering mechanism.

The other issue, the hardest one, is how to handle side-effects. Using this

impure construction in Prolog is quite simple, thanks to its well defined path of

exploration of the resolution tree. When we introduce concurrency, we need to

define when a side-effect can be executed. The most effective technique is based

on the left-most principle. This is a bit of information about the position of

the current node of the resolution tree we are exploring. This knowledge lets us

suspend the execution when a side-effect is encountered until that node becomes

the leftmost, so that these constructs are executed in the same order of Prolog.

We describe the three most effective techniques proposed in relevant papers.

In [39] is reported a method for preserving Prolog semantics in which the exe-

cution of logic programming can be seen as the process of maintaining a dynamic

tree. The operational semantics of the language determines what operations on

the tree are of interest. That method is used in DAP. Preventive strategies enforce

the correct order of variable bindings by assigning producer or consumer status to

each sub-goal that shares a given dependent variable. The strategy used is: the

leftmost sub-goal that has access to the variable is designated as the producer for

that variable, while all the others are consumers.

The articles [15] and [16] explain how to preserve Prolog semantics both in

pure OR-parallel systems and in IAP systems. The former is the left-most prin-

ciple. The latter is a technique that requires that sub-goals with side-effects have

to suspend until all the preceding sub-goals (left to right precedence) finish. Fur-

thermore, it is explained how to combine these two techniques for hybrid systems.

Another method to preserve Prolog semantics is presented in [21]. The idea

is that instead of recomputing every sub-goal, some of the results can be reused

and an algorithm is presented to handle this problem. The choice, recompute or

reuse, is based on side-effects and where they appear in the resolution tree, using

the left-most principle.

Relevant implementations Following, the most famous systems that support

parallel logic programming are reported with a brief explanation. Readers should

remind that many more exist but often these are extensions or adaptations of the

most known for some specific needs. In [25] is presented Aurora, an or-parallel

2.1. CONCURRENT LP 15

implementation of Prolog based on a shared memory multiprocessor. This imple-

mentation uses the SRI model to represent different bindings of the same logical

variable corresponding to different branches of the search space. In the SRI model,

a group of workers cooperate to explore the Prolog search tree, which is defined

implicitly by the program and needs to be constructed explicitly during the course

of the exploration. In order to share or-parallel work, Aurora protects the choice

points with locks avoiding that several workers steal the same piece of work. Fur-

thermore, the Aurora system supports cut and standard Prolog built-in predicates

including those which produce side-effects. Procedures to these predicates are

required to suspend their resolution until they are in the leftmost branch of the

tree.

Muse, which is reported in [3] and [2], is based on multiple sequential Prolog

engines. Both conditional and unconditional variables are not shared in the MUSE

system. Each processor operates as a sequential Prolog engine with its local mem-

ory. The MUSE OR-parallel Prolog system assumes a number of extended Prolog

engines called workers. Each worker consists of two components: the engine and

the scheduler. The former works as a sequential Prolog engine, the latter main-

tains the work between engines. Furthermore, the MUSE scheduler supports the

sequential semantics of Prolog and efficient scheduling of speculative work.

In [11] is reported the &-Prolog system that exploits the independent AND-

Parallelism combining a compiler performing independent detection with an effi-

cient implementation of AND-parallelism on shared-memory multiprocessors. This

system supports both automatic and user-expressed parallelisms. This can be ex-

pressed explicitly with the &-Prolog language. Input code is processed by several

compiler modules: The parallelizer performs a dependency analysis on the input

code using a conditional graph-based approach. It also receives information from

the Side-Effect Analyzer on whether each non built-in predicate and clause of the

given program is pure, or contains a side-effect. This information adds depen-

dencies to correctly sequence such side-effects. The parallelizer then encodes the

resulting graph using the & operator producing an “annotated” (parallelized) &-

Prolog program. The parallelizer also receives information from the granularity

analyzer regarding the size of the computation associated with a given goal, as

can be seen in [24]. In order to improve its performance, a tool, written in Pro-

16 CHAPTER 2. STATE OF THE ART

log, was implemented. IDRA (IDeal Resource Allocation) [14] collects traces from

sequential executions and uses them to simulate an ideal parallel execution of the

same program.

CIAO [20] is a modern, multi-paradigm programming language with an ad-

vanced programming environment. It aims at combining the flexibility of dynam-

ic/scripting languages with the guarantees and performance of static languages. It

is designed to run very efficiently on platforms ranging from small embedded pro-

cessors to powerful multi-core architectures. Ciao has its main roots in &-Prolog.

The most interesting aspect of this system is that it is one of the few still supported

nowadays.

The ACE system [17], [31], [18], [30], [29] supports all form of parallelism.

The dependent AND-parallelism has been incorporated in ACE using the Filtered

Binding Model that directly encodes in the access path itself the information that

allows a sub-goal to discriminate between producer and consumer accesses. Thus,

the filtered binding model exploits restricted DAP and performs all operations in

constant-time. The restriction is that unbound shared variables are not allowed

to be bound to each other. Independent and-parallelism is also exploited via

conditional graph expressions.

The idea behind the Andorra-I, [9], [37] is that if a goal has only one solution,

it can be executed regardless of what other goals have been initiated. Such goals

are called determinate. If no determinate goals can be found, a branch point for

the leftmost goal is inserted. Each solution that is found for this branch point

may spawn a different parallel branch (OR-parallelism using the binding array

technique). This model leads to AND-parallel coroutines if two determinate goals

are executed in parallel. In other words, dependent AND-parallelism is obtained by

having determinate goals executed in parallel. The different alternatives to a goal

may be executed in or-parallel. In Andorra-I, workers are arranged into teams that

cooperate to exploit or-parallelism. Workers within a team cooperate to exploit

and-parallelism. A team is composed of a master and some or no slaves. The

configuration of workers into a team is decided by the user. In [10] it is explained

that, in doing so, the problem that arises is the selection of a work, and more

generally, where to redeploy workers to. The Andorra-I component responsible for

doing that is the preconfigurer.

2.2. LOGIC PROGRAMMING ECOSYSTEMS AND 2P-KT 17

2.2 Logic Programming Ecosystems and 2P-Kt

We want to extend the 2P-Kt ecosystem, so first we explain what it is, giving an

overview of it, and then we delve into its core aspects.

2.2.1 2P-Kt overview

To date, logic-based technologies are either built on top or as extensions of the

Prolog language, mostly working as monolithic solutions tailored upon specific

inference procedures, unification mechanisms, or knowledge representation tech-

niques. Instead, to maximise their impact, logic-based technologies should support

and enable the general-purpose exploitation of all the manifold contributions from

logic programming. This is the idea behind tuProlog.

Nowadays, as explained in [6], it exists a reboot of the tuProlog project offer-

ing a general, extensible, and interoperable ecosystem for logic programming and

symbolic AI: 2P-Kt, an open, multi-platform, multi-paradigm ecosystem for LP.

2P-Kt is the main Kotlin-based implementation available, currently targetting

both JVM and JS, involving both GUI and CLI executables and providing a rich

library for LP where each aspect is made individually available for re-use. More

details about the history of Prolog can be found in [23] while the ISO specifications

here [1]. The original idea behind the tuProlog implementation was based on four

points:

• A light-weight Prolog system for distributed applications [12];

• Intentionally designed around a minimal core;

• Configurable by loading/unloading libraries of predicates;

• Native support for multi-paradigm programming [13] with a bi-directional

integration among OOP and Prolog.

2P-Kt is an ecosystem of modules denoted by Gradle’s notation: :moduleName.

These modules are loosely-coupled, yet incrementally inter-dependent with an

onion-like architectural design. Each one is a deployment unit, hence there is

one jar file on the JVM for each module. Using a module as a dependency im-

plies importing all its dependencies. The project structure in fig. 2.1 shows all the

modules and their dependencies.

18 CHAPTER 2. STATE OF THE ART

core

unify

theory

solve

solve-classic

solve-streams

repl

serialize-core

serialize-theory

dsl-core

dsl-unify

dsl-theory

parser-core

parser-theory

parser-jvm parser-js

Legend

module

root

api only

implementation

dsl-solve

ide

oop-lib

io-lib

depends on

uses

Figure 2.1: 2P-Kt project structure

:core provides knowledge representation facilities and common features.

:unify provides support for logic unification and a customisable notion of unifi-

cator based on [26].

:theory provides the support for in-memory storage and indexing of clauses.

:solve provides generic support for resolution-related stuff and it is agnostic with

respect to inference procedures and resolution strategy.

:solve-* provides specific implementation for inference procedures and resolution

strategy. It contains:

:solve-classic SLD NF (Prolog-like) resolution [35, 8] based on the Pi-

ancastelli’s state machine [28] (Prolog ISO [1] Compliant).

:solve-streams SLD NF (Prolog-like) resolution [35, 8] based on Enrico

Siboni’s master thesis and on [5].

:parser-* supports parsing of terms and clauses in Prolog syntax. In particular:

:parser-core supports parsing terms.

:parser-theory supports parsing knowledge bases and streams of clauses.

:parser-jvm/js platform-specific implementations, based on ANTLR [27].

:serialization-* supports the (de)serialization of terms, clauses, knowledge

bases in YAML/JSON. It is divided in:

2.2. LOGIC PROGRAMMING ECOSYSTEMS AND 2P-KT 19

:serialization-core the (de)serialization of terms and clauses.

:serialization-theory the (de)serialization of knowledge bases and the-

ories.

:dsl-* incrementally supports the Kotlin-based DSL for LP described in [7],

aimed at blending LP, FP, and OOP. More in detail:

:dsl-core basic DSL for building terms/clauses in Kotlin.

:dsl-unify extension of the DSL including :unify facilities.

:dsl-theory extension of the DSL including :theory facilities.

:dsl-solve extension of the DSL including :solve facilities.

:repl command-line interface for Prolog.

:ide JavaFX-based GUI for Prolog (customisable).

:io-lib Prolog ISO compliant Prolog library for I/O.

:oop-lib Prolog library for OOP interoperability that lets Kotlin and Java OOP

facilities be exploited from LP but only JVM is currently supported, due to

limitations in Kotlin’s reflection API.

2.2.2 Resolution

To help readers understand what we want to do in this thesis, we explain how the

resolution is executed.

The :solve module provides generic support to logic resolution and re-use as

much as possible of the Prolog standard without committing to any particular

resolution strategy nor to any inference procedure. Thus, :solve provides the

following abstractions: Solvers and Solutions. Solvers are reactive entities

capable of answering users’ queries by producing one or more Solutions, exploiting

logic resolution. The exploration of the resolution tree to answer queries, requires

a lot of information that are found in the execution context.

This container encapsulates some solver’s internal state, so that resolution

affects and is affected by the solver’s execution context. The information contained

herein are at least six: libraries, flags, knowledge bases (KB), operators, channels

and, optionally, resolution-specific aspects.

Libraries are containers of built-in functionalities exploitable by resolution.

20 CHAPTER 2. STATE OF THE ART

Possibly, including: some clauses containing logic predicates provided by the li-

brary, some primitives that are logic predicates implemented in Kotlin and pro-

vided by the library, some functions that are custom ways to reduce expressions of

terms and some operators automatically imported into the solver along with the

library.

Flags are configurable aspects of a solver. These are key-value pairs aimed

at configuring a solver behaviour where the key is a string and the value is an

arbitrary term.

Knowledge bases (KB) are the containers of the logic knowledge used by res-

olution to answer users’ queries. Following Prolog’s conventions, KB are of two

sorts: static and dynamic. The former cannot be altered during resolution while

the latter can be altered during resolution.

A set of operators is used to parse queries and to present solutions. Each

solver may operate upon a dynamic set of operators that may be loaded along

with libraries or be dynamically altered during resolution. Operators may affect

the way users’ queries are parsed and the way solutions are presented to users.

Channels are I/O facilities used to communicate with the external world. These

are of two sorts: Input channels, also known as sources, which let a solver receive

input messages and Output channels, also known as sinks, which let a solver

provide output messages.

In the execution context there is also any resolution-specific aspect, which may

vary depending on how resolution is implemented.

Solvers expose many solve* methods that return one or more Solutions. Each

of these methods accept two parameters: a goal and the options. A goal is a

Struct that represents the query to be answered via resolution. The options are

in the form of an instance of SolveOptions, which describes or constrains the way

answers are provided.

A Solution represents an answer provided by a Solver with respect to the

user’s query. It can be of three actual sorts:

• Solution.Yes: Representing a positive answer carrying a Unifier assigning

some variable from the user’s queries.

• Solution.No: Representing a negative answer.

2.2. LOGIC PROGRAMMING ECOSYSTEMS AND 2P-KT 21

• Solution.Halt: Representing an exceptional answer which carries a specific

TuPrologRuntimeException locating the error with respect to the resolution

process.

Notice that there are two types of solvers: MutableSolvers and Solvers. Both

expose properties supporting inspection of their state but only mutable solvers

expose methods to alter their state. Nonetheless the state of non-mutable solvers

may change too, because of resolution and, thus, they are not immutable.

2.2.3 Primitives

Some built-in logic functionalities are easier to write in Kotlin as they require

altering the solver’s execution context. Furthermore some logic functionalities

may exploit external computational facilities. Here is where primitives come into

play because they are a means for calling Kotlin code from LP and a means for

writing logic relations via OOP+FP+IP. To better explain how primitives work,

we present a simple metaphor: users are clients for solvers, which act as servers,

while the latter are clients for primitives, which act as servers. Thus, when needing

to solve a (sub-)goal G, a solver may:

• Look into its knowledgebase.

• Pick a primitive P , compliant with G, from a library and, in order:

– Send a request, describing G, to P ,

– Receive several responses, describing solutions to G, from P that pos-

sibly contain some side effects, to be reified.

To deepen the concept of primitives, these are:

• N-ary relations, in the eyes of logic programming,

• Servers & data producers, in the eyes of solvers,

• Callbacks, in the eyes of library implementers.

Within primitives, requests are descriptors of the current execution context and

of the actual arguments of the (sub-)goal but, also, factories of responses which

specify success or failure or exceptions and may provoke side effects. To expand the

meaning of side effects, they represent an edit to be performed to some execution

22 CHAPTER 2. STATE OF THE ART

context where only differences are represented. SideEffects can be applied to an

ExecutionContext producing a new one that only differs from the former for the

specific edit.

2.2.4 State Machine

To give the reader the last piece of knowledge needed to understand what we are

doing, we need to explore one last module of the 2P-Kt ecosystem. This is the

:solve-classic. Herein there is the main implementation of solver that provides

Prolog ISO Standard resolution and has a State-Machine-based design, inspired

by [28]. In this module there are the following main entities:

State base type for states of the Prolog State Machine (PSM).

ClassicExecutionContext data structure containing the execution context of

(each state of) the PSM.

SolutionIterator where the PSM is executed which is an object iterating over

states and outputting solutions.

MutableSolutionIterator a particular sort of solution iterator supporting hi-

jack of state transitions that lets alter the execution context or the destina-

tion state.

AbstractClassicSolver abstract class for classic-like solvers supporting the cre-

ation of custom solvers reusing (part of) the PSM.

The core logic dwells in the PSM, reported in fig. 2.2. This state machine features

nine different states, one of which is initial while the other two are ending. Fur-

thermore, there are two auxiliary data structure: the Execution Context Stack

(E), tracking currently exploring items of the proof-tree, and the Choice Point

Queue (C), tracking unexplored items of the proof-tree. The nine possible states

are:

Goal Selection selects the next (sub-)goal to be proved, possibly popping from

E.

Primitive Selection looks for a primitive to solve the selected (sub-)goal.

Primitive Execution if some is found, the first response is consumed, while a

choice point is appended to C for the others.

2.3. COROUTINES AND CONCURRENCY IN KOTLIN 23

Goal
Selection

End

Primitive
Selection

Back
tracking

Exception

Primitive
Execution

Rule
Selection

Halt

Rule
Execution

Primitive

Request

Response ...

Response Stream

KB

Goal

Rule...

W
o
rl

d

Execution-Context Stack Choice-Point Queue

All locations

state transition

data flow

Figure 2.2: Prolog State Machine

Rule Selection if no primitive is selected, some rule is looked for instead, for the

same sub-goal.

Rule Execution if a rule is found, resolution proceeds by pushing a new execu-

tion context to E, to tackle the body.

Backtracking if no rule is found, the sub-goal is considered failed and resolution

continues taking the next choice point in C.

End reached when there are no more goals or no more choice points.

Exception reached when some primitive responses carry an exception. This is

where catching occurs.

Halt reached when an exception is not caught.

2.3 Coroutines and concurrency in Kotlin

To explain how we exploit concurrency in Prolog firstly we must briefly expose

how Kotlin can support it. Here we introduce the main constructs available, how

they work and how they interact.

24 CHAPTER 2. STATE OF THE ART

Coroutines Coroutines1 are computer program components that generalize sub-

routines for non-preemptive multitasking, by allowing execution to be suspended

and resumed. Kotlin language provides only minimal low-level APIs in its stan-

dard library to enable various other libraries to utilize coroutines. Kotlin’s concept

of suspending function provides a safer and less error-prone abstraction for asyn-

chronous operations than futures and promises.

A coroutine is an instance of suspendable computation. It is conceptually

similar to a thread, in the sense that it takes a block of code to run that works

concurrently with the rest of the code. However, a coroutine is not bound to

any particular thread. It may suspend its execution in one thread and resume in

another one. Coroutines can be thought of as light-weight threads with a number

of important differences that make their real-life usage very different from threads.

Coroutines follow a principle of structured concurrency which means that new

coroutines can be launched only in a specific CoroutineScope2 which delimits

the lifetime of the coroutine. Structured concurrency ensures that coroutines are

not lost and do not leak. An outer scope cannot complete until all its children

coroutines complete. Structured concurrency also ensures that any errors in the

code are properly reported and are never lost.

Coroutines always execute in a context represented by the CoroutineContext3

type, defined in the Kotlin standard library. The coroutine context is a set of vari-

ous elements. The main elements are the Job4 of the coroutine and its dispatcher.

The coroutine dispatcher determines what thread or threads the corresponding

coroutine uses for its execution. The coroutine dispatcher can confine coroutine

execution to a specific thread, dispatch it to a thread pool, or let it run unconfined.

When a coroutine is launched in the CoroutineScope of another coroutine,

it inherits its context and the Job of the new coroutine becomes a child of the

parent coroutine’s job. When the parent coroutine is cancelled, all its children are

recursively cancelled, too.

1https://kotlinlang.org/docs/coroutines-basics.html
2https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.

coroutines/-coroutine-scope/index.html
3https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.

coroutines/-coroutine-scope/coroutine-context.html
4https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.

coroutines/-job/index.html

https://kotlinlang.org/docs/coroutines-basics.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/coroutine-context.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/coroutine-context.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html

2.3. COROUTINES AND CONCURRENCY IN KOTLIN 25

Channels Coroutines are the components that allow execution to be suspended

and resumed and, thus, let the programmer exploit concurrency. Often these com-

ponents need to communicate. When coroutines need to exchange many values, a

stream, channels5 comes into play.

A Channel is a non-blocking primitive for communication between a sender and

a receiver. It is conceptually very similar to a BlockingQueue. One key difference

is that instead of a blocking put operation it has a suspending send, and instead of

a blocking take operation it has a suspending receive. Unlike a queue, a channel

can be closed to indicate that no more elements are coming. Conceptually, a close

is like sending a special close token to the channel. The iteration stops as soon as

this close token is received, so there is a guarantee that all previously sent elements

before the close are received.

5https://kotlinlang.org/docs/channels.html

https://kotlinlang.org/docs/channels.html

26 CHAPTER 2. STATE OF THE ART

Chapter 3

Requirements

Concurrent Logic Programming, as shown in chapter 2, is a complex and vast

world where many choices can be made. To avoid losing sight of our goal, in this

chapter we define what we want and which are the constraints.

3.1 Constraints

To avoid reinventing the wheel, we want to exploit something that already exists.

Our choice falls on the adoption of 2P-Kt since we already have the source code and

we can use it without any further problem. Moreover, this ecosystem is already

prepared for adding new modules and to support reuse. This choice implies two

constraints:

Kotlin The adopted programming language is Kotlin. This technological com-

mitment entails three main advantages:

• A wide support for concurrency through coroutines. The documenta-

tion is easily available and the library provides simple mechanisms with

a high level of abstraction, so design and implementation are simplified.

• Multi-platform support. Artefacts creation for different platforms is

extremely simplified and does not require any particular effort.

• The management of synchronization mechanisms is simple. Corou-

tines are defined to reduce synchronization problems, in fact they are

equipped with ad-hoc mechanisms to handle these aspects.

27

28 CHAPTER 3. REQUIREMENTS

However, there are also two main disadvantages to consider:

• The level of abstraction increases. This is a trade-off because, to lower

it, a much more complex design and implementation process would be

required.

• Work is bound to the coroutines library. This drawback can be miti-

gated by abstracting the model of the concurrent resolution mechanism,

such that, theoretically, it is possible to realize alternatives but func-

tionally equivalent implementations on different platforms with similar

abstractions.

Multi-platform The 2P-Kt is a multi-platform project which target both the

JVM and JS. This is not a hard constraint because, to further reduce com-

plexity, we can focus on one platform at a time. In the first implementation

we work only on the JVM due to its better support for concurrency.

3.2 Goals

The main goal we want to achieve in this thesis is to create an application pro-

gramming interface for a concurrent Prolog’s resolution. As reported in chapter 2,

many types of parallelism and even more techniques and algorithms exist to obtain

concurrency. Furthermore, there are a large number of problems to tackle.

For these reasons, we choose to focus on the creation of all the abstract compo-

nents that support a concurrent solver. We add a module to 2P-Kt, that contains

these abstractions which can be concretely implemented in a concurrent solver.

Then, we have to implement a concrete solver which supports one type of concur-

rency, specifically the OR-parallelism.

The abstractions are the basis for new implementation while our solver is the

starting point for further developments. This means that the design has to support

features added in the future.

The first goal is to implement a concurrent resolution module that supports

pure logic programming, where pure means without side effects. To pursue our

goal, which is the creation of a basic concurrent solver, we need to analyze the

problems that the use of Prolog entails and how they can be handled. The main

3.2. GOALS 29

ones are to respect the Prolog semantics and the handling of side-effects.

Respecting the Prolog semantics, which means adhering to the ISO standards,

is not a priority to us. Nonetheless our goal is to design the abstraction to be

reusable and extensible so that a mechanism that preserve the Prolog semantics

can be added. The drawback of this mechanism is that it reduce drastically the

benefits of the concurrent exploration of the resolution tree.

Another goal is to support the injection of a mechanism of explicit control over

what tree exploration model the solver uses. This control tool allows us to respect

Prolog semantics only when necessary.

This leads us to initially create a pure solver with a level of abstraction and en-

capsulation that allows the injection of new mechanisms as additional components

without changes to the solver itself.

The other core problem is the side-effects handling : in pure logic programming

side-effects do not exist, but to support Prolog in its entirety, we have to prepare

the solver to support these constructs. The idea, as with the semantics problem,

is to encapsulate components and to make them as much reusable as possible in

order to add side-effects management mechanisms. In literature, the most used

technique is the one related to the leftmost concept. Thus, solver must allow the

injection of a mechanism that can:

• Suspend computation.

• Resume computation.

• Calculate the current node position with respect to the resolution tree.

This level of encapsulation allows us to re-elaborate some constructs in order to

give them a different semantics and, thus, obtain greater flexibility. An example

is the cut that, instead of the classic behavior, can become a limiter when infinite

recursive computation occurs.

30 CHAPTER 3. REQUIREMENTS

Chapter 4

Design

In this chapter we define the design of the concurrent solver for pure logic pro-

gramming. Firstly we report the abstract design that formalizes the state machine

used by the solver. Then we present the concrete design describing the main ab-

stractions in terms of structure, interaction and behavior. Furthermore we discuss

how this design meets the requirements described in chapter 3.

4.1 Abstract design

4.1.1 Syntax and Notational Conventions

Knowledge Bases Let A be the set of all atomic logic formulæ, and let H be

the set of all well-formed Horn clauses in the form:

a← a1, . . . , an s.t. n > 0

(also known as rules) where a, a1, . . . , an ∈ A are logic predicates of arbitrary arity.

Let us enumerate rules in H by h. Thus, we define knowledge bases as ordered

containers of rules of the form [h1, h2, . . .].

Let K denote the knowledge base, with K ∈ H∗, where H∗ is the set of all

possible KB.

31

32 CHAPTER 4. DESIGN

Finally, let get : H∗ ×H → H∗ be a function defined as follows:

get(K,h) =


[h′ | get(K ′)] if K ≡ [h′ | K ′] ∧mgu(h, h′) ̸= ⊥

[get(K ′)] if K ≡ [h′ | K ′] ∧mgu(h, h′) = ⊥

[] if K ≡ []

aimed to select all rules in K unifying with the clause h.

Primitives Let F be the set of all predicate symbols, enumerated by f , and let

N be the set of natural numbers. Thus,

• let F × N denote the set of all possible signatures and

• let (f, n) ∈ F × N denote the generic signature of a n-ary predicate whose

functor is f .

Let us define the function signature : A → F × N as:

signature(f(t1, . . . , tn)) = (f, n)

that computes the signature of any possible atomic predicate.

Let Θ be the set of all possible substitutions – including the failed substitution

⊥, the empty unifier ∅, and any unifier in the form {V1 7→ t1, V2 7→ t2, . . .} where
Vi are logic variables and ti are logic terms – and let us enumerate elements in Θ

by θ.

Let then X be the set of all possible exceptions – i.e., arbitrary terms describing

error situations –, enumerated by x.

Accordingly, R = X ∪Θ represents the set of all possible primitive responses,

enumerated by r.

Then, let P be the set of all possible primitives with the form:

p : H∗ ×A → R∗

In other words, we call “primitive” any function p ∈ P accepting a knowledge base

K ∈ H∗ and a goal a ∈ A as input and producing a stream of responses p(K, a) =

4.1. ABSTRACT DESIGN 33

Figure 4.1: Concurrent Prolog State Machine

r̄ ∈ R∗ as output—where each response r ∈ r̄ may either be a substitution or an

exception.

Finally, we define a primitive store I as a relation of the form:

I ⊆ F × N× P

that is, any possible indexing of primitives by signatures. Given a particular

primitive store I, we enumerate its elements by (f, n, p).

Solver Automaton We define an execution context E as a tuple of the form

(θ, ā, h, p) where:

• θ ∈ Θ is a substitution;

• ā ∈ A∗ is a stream of goals ;

• h ∈ H ∪∅ is a rule;

• r ∈ R ∪∅ is a primitive response.

34 CHAPTER 4. DESIGN

Accordingly, letting E denote the set of all possible execution contexts, we define

an execution-context stack E as a list of the form [E0, E1, . . .] ∈ E∗, where E0

can either be called the “current execution context” or the “top of the execution-

context stack”. Finally, let L denote the set containing all the locations depicted

in fig. 4.1:

L = {Goal Selection,Primitive Selection,Primitive Execution,Rule Selection,

Rule Execution,Exception,End,Halt}

We enumerate items in L by L.

4.1.2 Semantics

The semantics of our concurrent Prolog state machine can be described in terms

of states and transitions between them. In this regard, a state is a tuple of the

form ⟨L,E⟩ where

• L ∈ L is a location,

• E ∈ E∗ is an execution-context stack

Accordingly, the state machine semantics is defined as a labelled transition

system ⟨S,Λ, s0,−→⟩ where:

• S is the set of all possible states,

• Λ = {τ} ∪ X ∪Θ is a set of labels,

• s0 ∈ S is the initial state,

• −→⊆ S × Λ × S is a transition relation dictating how state may evolve in

time.

There, transition labels in Λ denote relevant observable events, while the anony-

mous label τ denotes internal events. Observable events of interest can be, for

instance, the production of either a positive or negative solution – denoted by the

corresponding substitution in Θ – or the production of an exceptional solution—

denoted by the corresponding exception in X . In the following, for the sake of

notation simplicity, we write s
λ−−→ s′ instead of (s, λ, s′) to refer to transitions in

−→.

4.1. ABSTRACT DESIGN 35

Assuming that a KB K and a primitive store I are provided, and that the

initial state s0 ∈ K is always a tuple of the form:

⟨Goal Selection, [(∅, [g0],∅,∅)]⟩

for some initial goal g0 – meaning that (i) the initial location is always Goal Se-

lection, (ii) the current context initially only contains the empty unifier ∅, g0, the

empty rule ∅ and the empty primitive response ∅ – we can intentionally define

the admissible transitions in −→ via the following transition rules—each one cor-

responding to an arrow in fig. 4.1. It is important to highlight that when more

than one rule is found and when more than one primitive result is obtained, con-

currency starts, because each possibility is handled in a new resolution branch.

This is depicted with a bold arrow in the picture.

Goal Selection The purpose of the Goal Selection location is to decide what to

do next depending on which and how many (sub-)goals are in the current execution

context. There are three relevant situations handled in this location, by as many

transition rules. More precisely, if the current execution context does not contain

any goals, this implies either that a new solution should be yielded, or the top

execution context should be popped from the stack. Conversely, if the current

execution context does hold at least one goal, the automaton commits to that

goal—meaning that it tries to prove its truth via subsequent transitions.

Accordingly, the following transition rule handles the case where there is only

one last execution context on the stack with no more goals—thus, implying the

automaton should move into the End location and a new solution should be yielded:

E = (θ, [],∅,∅)

⟨Goal Selection, [E]⟩ θ−→ ⟨End, [E]⟩

The positive or negative solution depends on the θ substitution of the last execution

context E, which can be either a unifier or the failed substitution ⊥. In the former

case, θ synthesises all the variable assignments computed so far by the automaton.

Conversely, the following transition rule handles the case where the current ex-

ecution context has no more goals, but the stack contains more execution contexts.

36 CHAPTER 4. DESIGN

When this is the case, the automaton simply pops the current execution context

from the stack and holds the Goal Selection location:

E0 = (θ0, [],∅,∅) E1 = (θ1, ḡ,∅,∅) E ′
1 = (θ0, ḡ,∅,∅)

⟨Goal Selection, [E0, E1 | E]⟩
τ−−→ ⟨Goal Selection, [E ′

1 | E]⟩

Before popping the current execution context E0, the automaton spreads its θ0

substitution to the parent execution context E1—as θ0 can contain more assign-

ments than θ1.

Finally, the following transition rule handles the case in which the current

execution context contains a non-empty stream of goals ḡ. When this is the case

the automaton applies the most recent substitution θ to all the goals in ḡ before

moving into Primitive Selection location and tries then to prove the truth of the

first sub-goal in ḡ:

E = (θ, ḡ,∅,∅) E ′ = (θ, ḡ′,∅,∅) ḡ′ = ḡ/θ

⟨Goal Selection, [E | E]⟩ τ−−→ ⟨Primitive Selection, [E ′ | E]⟩

where by ḡ/θ we mean the application of substitution θ to all goals in ḡ.

Primitive Selection The purpose of the Primitive Selection location is to se-

lect a primitive in the primitive store I in order to prove a (sub-)goal—provided a

primitive matching the goal’s signature exists in I. If this is the case, the primitive

is triggered and all the primitive responses are handled, firing a new concurrent

resolution branch for each response. Thus, there are three relevant situations han-

dled in this location, by as many transition rules. A pivotal role in discriminating

among situations is played by the first goal g of the current execution context. If

primitive p is indexed in I via signature of g, then p is triggered and a response

stream is generated in return. All the items in the stream are consumed individ-

ually, each in a new concurrent resolution branch with its own execution context.

Each item can be either an exception or a substitution. Each case is handled by

a different transition rule. Otherwise, if the signature of g matches no primitive

in I, no primitive is selected and, via subsequent transitions, a rule for the same

goal is searched.

In particular, the following transition rule handles the case where a primitive

4.1. ABSTRACT DESIGN 37

p is found in I and the response r, one of the streams, is a substitution. When

this is the case, a new execution context is pushed on the stack for handling the

response. After that, the automaton moves to the Primitive Execution location.

E0 = (θ, ḡ,∅,∅) ḡ = [g | ḡ′] (f, n) = signature(g) (f, n, p) ∈ I

p(K, g) = (r1, r2, . . . , ri, . . .) ∈ R∗ ri ∈ Θ E1 = (θ, ḡ,∅, ri)

⟨Primitive Selection, [E0 | E]⟩
τ−−→ ⟨Primitive Execution, [E1, E0 | E], ⟩

Conversely, the following transition rule handles the case in which the primitive

response r is an exception. The automaton moves to the Exception location:

E0 = (θ, [g | ḡ′],∅,∅) ḡ = [g | ḡ′] (f, n) = signature(g) (f, n, p) ∈ I

p(K, g) = (r1, r2, . . . , ri, . . .) ∈ R∗ ri ∈ X E1 = (θ, ḡ,∅, ri)

⟨Primitive Selection, [E0 | E]⟩
τ−−→ ⟨Exception, [E1, E0 | E]⟩

In this case as well a new execution context is pushed on the stack in order to

make the exception visible in Exception.

Finally, the following transition rule handles the case in which a primitive is

not available in I for the goal g. When this is the case, the automaton simply

moves to the Rule Selection location:

E = (θ, [g | ḡ′],∅,∅) (f, n) = signature(g) (f, n, p) ̸∈ I

⟨Primitive Selection, [E | E]⟩ τ−−→ ⟨Rule Selection, [E | E]⟩

Primitive Execution The purpose of the Primitive Execution location is to lazily

handle the response produced by primitives. To this regard, there are three relevant

situations, handled by as many transition rules. In fact, while consuming a solution

response, the automaton may either encounter an exception or a substitution,

which can be positive or negative. The latter case is the most interesting one,

as the substitution must be kept into account in the next computational steps.

Conversely, in the other case, the exception needs to be handled accordingly.

In particular, the following transition rule handles the case where the response

is a positive unifier θ′. When this is the case, θ′ is merged with the current execution

38 CHAPTER 4. DESIGN

context substitution θ and execution proceeds to the Goal Selection location.

E = (θ, [g | ḡ],∅, θ′) θ′ ∈ Θ− {⊥} E ′ = (θ ∪ θ′, ḡ,∅,∅)

⟨Primitive Execution, [E | E]⟩ τ−−→ ⟨Goal Selection, [E ′ | E]⟩

Conversely, the following transition rule handles the case where the response is

a failure (i.e. ⊥). In this case, the automaton simply moves to the End location.

E = (θ, ḡ,∅, r) r = ⊥ E ′ = (θ, ḡ,∅,⊥)
⟨Primitive Execution, [E | E]⟩ τ−−→ ⟨End, [E ′ | E]⟩

Finally, the following transition rule handles the case where the response is an

exception. When this is the case, the automaton simply moves into the Exception

location.
E = (θ, ḡ,∅, x) x ∈ X E ′ = (θ, ḡ,∅, x)

⟨Primitive Execution, [E | E]⟩ τ−−→ ⟨Exception, [E ′ | E]⟩

Rule Selection The Rule Selection location is for clauses what the Primitive

Selection location is for primitives. It aims at querying the KB and selecting

the rules to be executed to prove a particular (sub-)goal true, provided that no

primitive has been selected for the purpose. Accordingly, three transition rules

are defined, each one handling a particular situation. The most common situation

here is that a rule r is selected from K in order to solve some goal g. However,

there is a small set of goals for which a particular treatment is reserved. These

are: true, fail, and false. The first is always considered successful, while the

others are always considered failed.

More precisely, the following transition rule takes care of the goal true. As it

must always be evaluated successfully, this transition simply makes the automaton

move to the Goal Selection location, after consuming the current goal g0. More

formally:

E = (θ, [true | ḡ],∅,∅) E ′ = (θ, ḡ,∅,∅)

⟨Rule Selection, [E | E]⟩ τ−−→ ⟨Goal Selection, [E ′ | E]⟩

Conversely, the following transition rule takes care of goals such as fail and

false. As they must always be evaluated unsuccessfully, this transition simply

makes the automaton move into the End location, after consuming the current goal

4.1. ABSTRACT DESIGN 39

g. This transition rule also handles the case where K is queried for all rules whose

head unifies with the current goal g, but no one is found.

E = (θ, [g, . . .],∅,∅) g ∈ {false, fail} ∨ get(K, g) = []

⟨Rule Selection, [E | E]⟩ τ−−→ ⟨End, [E | E]⟩

Finally, the following transition rule handles the general case where K is queried

for all rules h̄ whose head unifies with the current goal g. These rules are handled

individually, thus for each rule h a concurrent resolution branch is created and

the automaton must then move to location Rule Execution, after pushing a new

execution context on the stack aimed at handling h:

E0 = (θ, ḡ,∅,∅) ḡ = [g | ḡ′] g ∈ A− {true, false, fail}
get(K, g) = [h1, . . . , hi, . . .] E1 = (θ, ḡ, hi,∅)

⟨Rule Selection, [E0 | E]⟩
τ−−→ ⟨Rule Execution, [E1, E0 | E]⟩

Rule Execution The Rule Execution location is for clauses what the Primitive

Execution location is for primitives. Thus, the purpose of this location is to lazily

handle the rule produced by KB. Accordingly, two transition rules are defined,

each one handling a particular situation. In both situations, the current execution

context is assumed to carry a non-empty rule to be handled. One situation con-

cerns the case where the rule has a head matching the current context goal. In

this case, the execution can go on and focus on the body of that rule. The other

situation concerns the opposite case, where execution must proceed to the End.

Accordingly, the following transition rule handles the first situation. The cur-

rent execution context’s first goal is g and the rule is h. Provided that the head

of h unifies with g, and letting θ′ be their unifier, the current execution context is

updated in such a way that the new substitution is θ∪ θ′ and the new goal stream

contains all the atoms from the body of h, subject to the substitution θ′. After

that, the automaton moves to the Goal Selection location.

E = (θ, [g | ḡ], h,∅) h = (a← a1, . . . , an) θ′ = mgu(g, a) ̸= ⊥
ḡ = [g1, . . . , gn] E ′ = (θ ∪ θ′, [g1/θ

′, . . . , gn/θ
′],∅,∅)

⟨Rule Execution, [E | E]⟩ τ−−→ ⟨Goal Selection, [E ′ | E]⟩

40 CHAPTER 4. DESIGN

Conversely, the following transition rule handles the case where the head of

h does not unify with g. In this case, the automaton simply moves to the End

location.

E = (θ, [g | ḡ], h,∅) h = (a← . . .) mgu(g, a) = ⊥ E ′ = (θ, [g | ḡ],∅,∅)

⟨Rule Execution, [E | E]⟩ τ−−→ ⟨End, [E ′ | E]⟩

Exception Handling The Exception location has the purpose of managing ex-

ceptions possibly raised by primitive responses in the Standard Prolog way—in

example by climbing the proof tree towards the root, looking for a catch/3 (sub-

)goal whose second argument unifies with the raised exception and setting its third

argument as the next sub-goal to be proved.

Following this purpose, the Exception location may encounter two notable situ-

ations. In both ones, the current execution is assumed to be carrying an exception

x ∈ X . The first situation concerns the case where the exception can be caught

since there exists on the stack an execution context of the form catch/3 which

may intercept the exception and let resolution continue. The second situation con-

cerns the opposite case where the exception cannot be caught – since no such an

execution context is contained into the stack – and resolution must be therefore

interrupted.

In particular, the following transition rule handles the first situation where an

execution context E ′ exists on the stack whose first goal is catch(g1, g2, g3). When

this is the case, we denote by θ′ the MGU among x and g2. Then, the automaton

pops from the stack all execution contexts up to E ′ (included), pushes a new

execution context carrying g3 as the first goal, and moves to the Goal Selection

location.

E = (θ, [g | ḡ],∅, x) x ∈ X E ′ = (ϑ, [catch(g1, g2, g3), . . .], h, r)

θ′ = mgu(x, g2) ̸= ⊥ θ′′ = ϑ ∪ θ′ E ′′ = (θ′′, [g3/θ
′′],∅,∅)

⟨Exception, [E, . . . , E ′ | E]⟩ τ−−→ ⟨Goal Selection, [E ′′ | E]⟩

Conversely, the following transition rule handles the opposite situation where

no execution context on the stack carries catch(g1, g2, g3) as the first goal—or, if

it does, g2 does not unify with x. When this is the case, the automaton simply

4.2. CONCRETE DESIGN 41

moves to the Halt location, yielding an exceptional solution to the users.

E = (θ, [g | ḡ],∅, x) x ∈ X
∄E ∈ E : E = (ϑ, [catch(g1, g2, g3), . . .], . . .) ∧mgu(g2, x) ̸= ⊥

⟨Exception, [E | E]⟩ x−−→ ⟨Halt, [E | E]⟩

Next Solutions Both the End and Halt locations are final, meaning that the

automaton reaches them immediately after the production of a novel solution—

be it positive, negative, or exceptional. In a concurrent Prolog state machine

these states are both sink, certainly provoking the automaton termination, thus

terminating the current resolution branch. Resolution terminates only when all the

fired branches terminate unless a maximum number of solutions is requested, in

which case computation ends when the solution count reaches the specified limit.

Ordering of solutions Given the initial goal g0, it is possible to compute the

admissible transitions using the transition rules. The solutions to the query con-

tained in the initial state are obtained by collecting all the labels of transitions

other than τ . These transitions represent output events of a solution.

The state machine is nondeterministic because more than one transition rule is

available in some locations. Moreover each resolution branch has its own length.

This means that the number of consecutive transitions that lead to a solution

varies from one resolution branch to the other. Due to the nondeterminism of the

state machine the ordering of solutions is unpredictable.

4.2 Concrete design

To isolate as much as possible each component of our module, we define some ab-

stractions to improve the reusability. Some already exist, so we give their overview,

while others are made from scratch as shown in fig. 4.2.

Solver This already existing abstraction is a general type for logic solvers, which

is any entity capable of solving some logic query provided as a goal according

to some logic. This entity needs to implement one or more inference rules,

via some resolution strategy. Solvers are not immutable entities. Their state

42 CHAPTER 4. DESIGN

Figure 4.2: Main abstractions

may mutate as an effect of solving queries. Herein there are all the solve*

methods, each of which is an overload of a core solve function.

AbstractSolver It is part of the :solve module and it handles the general setup

shared by any Solver. Furthermore, it contains some utility functions. The

main role of this abstraction other than to reduce code redundancy, is to

introduce the ExecutionContext. The last important aspect of this entity

is that it defines the solve method based on a new concept of solveImpl

which needs to be implemented in concrete classes.

ConcurrentSolver This new abstraction is the concurrent version of the Solver.

Herein we define a solveConcurrently method that, like the solve one,

accepts a goal and some options and returns a ReceiveChannel and, thus,

computes solutions concurrently.

ExecutionContext It is an already existing concept defined in the :solve mod-

ule. It is an interface representing the Solver execution context, containing

important information that determines its behaviour. Herein there are:

4.2. CONCRETE DESIGN 43

• The current procedure being executed;

• The set of current substitution till this context;

• The Prolog call stack-trace till this ExecutionContext;

• The custom-data;

• The utility methods to create a sub-solver;

• The apply method that handle side-effects;

ConcurrentExecutionContext It is the newly created entity used by concur-

rent solvers which store, as the ExecutionContext, the information needed

in the resolution process. The main difference with the classic context is that

herein there is at most one rule and at most one primitive response.

SolverFactory This already present entity has the duty of creating solvers giving

standard methods. It contains many overloads to provide a huge reusability

and flexibility. Furthermore, this abstraction holds the default data struc-

tures needed to create a solver.

ConcurrentSolverFactory This component, like the SolverFactory, lets cre-

ate solvers but, conversely, it instantiates concurrent ones.

Utilities These abstractions define all the methods and data structures needed in

the resolution process. These entities are meant for raising up the abstraction

from the platform.

These abstractions are meant for meeting as many requirements as possible. The

design is based on encapsulation and reusability so that it is possible to replace

any component without affecting the whole system.

Furthermore the abstraction level is high enough to allow adding a new platform

without any change to the solver.

Another important aspect of this design is the possibility of injection of a

synchronization mechanism to support the Prolog ISO standard. In the same

way, it is possible to add side-effects handlers as well as introducing different

schedulers or granularity control entities. The only flaw of our design is that the

concurrent PSM, defined in section 4.1.2, needs to be modified to support AND-

parallelism, but this change affects only the Goal Selection state while leaving the

rest untouched.

44 CHAPTER 4. DESIGN

Figure 4.3: Overview of user consuming solutions

Interactions Another important part of our design is how the components of

the system interact with each other. Here we call a component each entity that has

its own control flow. There are four main components: User, Job, SolutionChannel

and Sequence. The User in our system is whoever uses the solver to compute an

answer of a query. This component can be a real user by a GUI, but it can also

be another entity with its own control flow. The user, after submitting a query to

the concurrent solver, consumes solutions from the sequence as shown in fig. 4.3

We design our concurrent solver to handle multiple control flow. In fact each

resolution branch has its own control flow. We call Job each separate resolution

branch. As can be seen in fig. 4.4, this component has to compute the next states

of the FSM. For each state it checks whether it is an end state or not. In the

former case the Job sends the solution of the state to the channel. In other cases

a new Job is launched, which behaves in the same way.

The communication between each entity of the system takes place by means

of the SolutionChannel. This component is passive, meaning that it never starts

an interaction with another entity but, instead, it can only receive requests. The

channel behaves as a temporary store for solutions that the Jobs send. The last

4.2. CONCRETE DESIGN 45

Figure 4.4: Resolution Job and Channel interaction

Figure 4.5: Channel and Sequence interaction

46 CHAPTER 4. DESIGN

main component of our system is the Sequence. As can be seen in fig. 4.5, this

entity is in charge of consuming the solutions from the channel, yielding each one

to the user.

Chapter 5

Implementation

In this chapter we report the relevant implementation parts, explaining in detail

the most delicate aspects. To help the readers understand what we do, some

snippets of code are shown.

5.1 Execution Context

The first entity we report is the ConcurrentExecutionContext which is the con-

tainer of all the information required during the resolution process, each referring

to a specific step. The core data structures it holds are:

• substitution: The substitution unifier up to the current resolution step;

• staticKb: The static knowledge base, but also the other source of knowledge;

• flags and operators: The set of flags and operators defined for the resolu-

tion;

• *Channels: The input, output and warning channels;

• customData: User defined custom data;

• goals: The list of goals to be solved;

• rule: An optional rule of the current resolution step;

• primitive: An optional primitive of the current resolution step.

This context contains other utility information required during the computation.

It is not only a data container, in fact another important part is the apply method

47

48 CHAPTER 5. IMPLEMENTATION

Listing 5.1: Apply method of the ExecutionContext�
1 fun apply(sideEffects: Iterable <SideEffect >): ExecutionContext {

2 var current = this

3 for (sideEffect in sideEffects) {

4 current = sideEffect.applyTo(current)

5 }

6 return current

7 }
� �
and its overloads. As shown in listing 5.1, this function takes a list of SideEffect

and returns a new ExecutionContext obtained applying all the side-effects.

The ConcurrentExecutionContext, which implements this interface, overrides

the apply method casting the returned object to its concurrent version while the

concrete class overrides createSolver to output a ConcurrentSolverImpl.

5.2 Concurrent Solver

The core of the module :solve-concurrent is the ConcurrentSolverImpl which

extends AbstractSolver.

Intuitively, it is a concurrent version of the classic solver where the resolution

process is based on a state machine but, instead of moving sequentially between

states, this solver launches a new coroutine for each next state creating many

disjoint resolution branches.

We report the most relevant methods of the ConcurrentSolverImpl with their

respective snippets of code.

solveImpl shown in listing 5.2: It is the override of its abstract version. It

requires a goal and the options to solve it, and output a sequence of solutions.

This method calls the solveConcurrently one, converts the channel to a

sequence and ensures that at most there is one negative solution in the output

sequence.

The conversion of a Kotlin channel to a sequence is platform dependent so,

to unbound the implementation from specific technologies, we use an expect

function.

5.2. CONCURRENT SOLVER 49

Listing 5.2: The solveImpl method�
1 override fun solveImpl(goal: Struct , options: SolveOptions):

Sequence <Solution > {

2 return solveConcurrently(goal , options).toSequence ().

ensureAtMostOneNegative ()

3 }
� �
Listing 5.3: How solveConcurrently handle the solutions channel�

1 override fun solveConcurrently(goal: Struct , options: SolveOptions

): ReceiveChannel <Solution > {

2 val channel = KtChannel <Solution >(KtChannel.UNLIMITED)

3 val initialState = initialState(goal , options)

4 val handle = ConcurrentResolutionHandle(options , channel)

5 val resolutionScope = createScope ()

6 resolutionScope.launch {

7 startAsyncResolution(initialState , handle)

8 }

9 return channel

10 }
� �
solveConcurrently shown in listing 5.3: It is the heart of this concurrent solver.

This method takes a goal and the options to solve it and returns the channel

where the solutions are sent. It instantiates the channel, the initial state, the

handler utility and the resolution scope. After that, it launches a coroutine

where the resolution is started.

startAsyncResolution shown in listing 5.4: It is the method that launches the

first resolution step, the handleAsyncStateTransition, and then suspends

until it completes. The completion of the computation occurs when all the

child jobs complete and, hence, no more steps are available. At this point,

using the handler utility, the output channel is closed.

handleAsyncStateTransition shown in listing 5.5: It is a CoroutineScope ex-

tension method which requires a state and the handler utility and returns its

Job. It is the engine of the state machine, in fact, it iterates the next states

and for each call itself recursively. Furthermore, this method checks if the

current state is an EndState and, in that case, publishes its solution.

publishSolutionAndTerminateResolutionIfNeed shown in listing 5.6: It is the

50 CHAPTER 5. IMPLEMENTATION

Listing 5.4: startAsync in detail�
1 private suspend fun startAsyncResolution(initialState: State ,

handle: ConcurrentResolutionHandle) = coroutineScope {

2 handleAsyncStateTransition(initialState , handle).join()

3 handle.closeSolutionChannelWithNoSolutionIfNeeded(initialState.

context.query)

4 }
� �

Listing 5.5: coroutines launch for each next possible state�
1 private fun CoroutineScope.handleAsyncStateTransition(state: State

, handle: ConcurrentResolutionHandle): Job =

2 launch {

3 if (state is EndState) {

4 handle.publishSolutionAndTerminateResolutionIfNeed(state.

solution , this)

5 } else {

6 for (it in state.next()) {

7 handleAsyncStateTransition(it, handle)

8 yield ()

9 }

10 }

11 }
� �

5.3. UTILS 51

Listing 5.6: How solutions are published when needed�
1 suspend fun publishSolutionAndTerminateResolutionIfNeed(

2 solution: Solution ,

3 resolutionScope: CoroutineScope

4): Boolean {

5 if (solutionChannel.isClosedForSend) return false

6 solutionChannel.send(solution)

7 if (! solution.isNo && solutionCounter.incAndGet () >=

solveOptions.limit && solveOptions.isLimited) {

8 terminateResolution(resolutionScope)

9 }

10 return true

11 }
� �
most important part of ConcurrentResolutionHandle, which is the handler

utility class. This method has the duty of sending solutions to the output

channel and, to do so, it first verifies whether the channel is still open and

then checks if the solutions limit has been reached, terminating the resolution

prematurely in that case.

In the same class there are other utility methods used to:

• Terminate the execution of the resolution.

• Append a negative solution.

• Close the output channel.

The ConcurrentSolverImpl respects the design defined in chapter 4 but it can

be improved with a small refactoring to extract the logic of coroutine launch. In

this way we can add a scheduler and a granularity controller.

Instead, the mechanism to preserve the Prolog semantics is a bit more tricky

and affects both the solver and the execution context. In fact, it requires additional

information to adopt the leftmost principle explained in chapter 2.

5.3 Utils

The most complex part we tackle in this thesis is the conversion of a Kotlin channel

to a sequence, which is platform specific.

This conversion bridges the concurrent solver to the abstract one. To do this

52 CHAPTER 5. IMPLEMENTATION

Listing 5.7: Jvm conversion of a channel to a sequence�
1 @OptIn(ExperimentalCoroutinesApi :: class)

2 actual fun <T> ReceiveChannel <T>. toSequence(coroutineScope:

CoroutineScope): Sequence <T> {

3 val queue = LinkedBlockingQueue <Any?>()

4 coroutineScope.launch {

5 val iterator = this@toSequence.iterator ()

6 try {

7 while (iterator.hasNext ()) {

8 queue.add(iterator.next())

9 }

10 } catch (e: Throwable) {

11 e.printStackTrace ()

12 throw e

13 } finally {

14 queue.add(PoisonPill)

15 }

16 }

17 return sequence {

18 while (true) {

19 val current = queue.take()

20 if (current == PoisonPill) {

21 break

22 } else {

23 @Suppress("UNCHECKED_CAST")

24 yield(current as T)

25 }

26 }

27 }

28 }
� �

5.4. CONCURRENT STATE MACHINE 53

conversion we define, in a utility class, an expect function called toSequence

which is an extension of ReceiveChannel.

2P-Kt currently supports both Jvm and Js but the implementation for the

latter platform requires some machinery so we focused only on the Jvm version.

The actual implementation, shown in listing 5.7, firstly instantiates a jvm data

structure, the LinkedBlockingQueue, and then features two parts:

• The first part launches a coroutine which, through the channel iterator, con-

sumes each element of the channel. These are added to the queue. This

coroutine terminates when the channel is closed and all the elements are

consumed. Before terminating, it adds a PoisonPill to the queue. We use

a detached CoroutineScope for this coroutine to isolate as much as possible

the resolution from the conversion.

• The second part returns a lazy sequence which takes an element from the

queue and yields it. The sequence terminates when the PoisonPill is en-

countered. This computation executes on the caller’s thread which usually

is the main one as in the sequential version.

There are two side notes we want to highlight about this specific method. The

first is that it is annotated with @OptIn which is the mechanism for requiring and

giving explicit consent for using certain elements of APIs. The channel API may

change at any time, meaning that also this implementation may change at any

time. The same annotation is present in the code where channels are used.

The other side note we highlight is referred to the annotation @Suppress for

the unchecked cast over the yield method. This warning derives from the generic

implementation, useful for the reusability of the code.

5.4 Concurrent State Machine

Our solver is based on a non-deterministic state machine. To develop this state

machine we define three interfaces: State, EndState and ExceptionalState.

Each concrete class has to implement one of these interfaces, based on which is

the specific state.

54 CHAPTER 5. IMPLEMENTATION

The State interface contains the next method, which returns a list of states,

and some utility functions. The non-determinism of our concurrent solver dwells

in the return type of the core function of this interface. In fact the returned list can

contain from zero to infinite states. For each element of the list a new resolution

branch is launched.

EndState is the interface that describes a sink state of the concurrent state

machine. It contains a solution and its next method always returns an empty

list. ExceptionalState is an extension of the EndState that carries with it an

exception thrown during the execution.

As described in chapter 4, our state machine features eight states:

• StateGoalSelection

• StatePrimitiveSelection

• StatePrimitiveExecution

• StateRuleSelection

• StateRuleExecution

• StateEnd which implement EndState

• StateHalt which implement ExceptionalState

• StateException which implement ExceptionalState

For each state we briefly describe the behaviour of the next method highlighting

its important aspects.

StateGoalSelection handles three cases:

• The goal is over and the context is root: the returned list contains a

StateEnd with a positive solution.

• The goal is over but the context is not root: the execution context is

popped from the stack and a new StateGoalSelection is returned.

• The goal is not over: the substitution is applied to the goal and a

StatePrimitiveSelection is returned.

StatePrimitiveSelection when the current goal is a struct a matching prim-

itive is looked for in the knowledge base. If a match is found, the solve

method of that matching primitive is called and each response is mapped

to a StatePrimitiveExecution. Conversely, when no match is found, the

returned state is StateRuleSelection.

5.4. CONCURRENT STATE MACHINE 55

StatePrimitiveExecution handles the three possible primitive responses. When

it is a Solution.Yes the state machine moves to StateGoalSelection.

When the primitive response is Solution.No it goes to StateEnd with a neg-

ative solution. Instead, the Solution.Halt is converted to StateException.

StateRuleSelection works similarly to the selection of a primitive. The knowl-

edge base is plumbed for matching rules. Each rule found is mapped to

StateRuleExecution.

StateRuleExecution tries to unify the current goal with the head of the rule.

If it succeeds the returned state is StateGoalSelection while, in case of

failure, a StateEnd with Solution.No is returned.

StateEnd simply returns an empty list.

StateHalt forces the end of the computation throwing an exception.

StateException checks whether the current goal is a Catch and it unifies with

the exception. If this is the case the returned state is StateGoalSelection.

Otherwise the exception is handled in the parent context or, when the root

is reached, the state machine moves to StateHalt.

56 CHAPTER 5. IMPLEMENTATION

Chapter 6

Validation

In this chapter we present the validation process, explaining in detail the testing

ecosystem. Furthermore, we report the test metrics and some benchmarks to

compare our concurrent solver with the classic one.

6.1 Test framework

2P-Kt contains a specific module for testing solvers which is designed for reusabil-

ity. The problem is that it works for solvers compliant with the Prolog ISO stan-

dard.

Our base implementation works concurrently but for now it does not feature a

mechanism for the solution ordering. This forces us to design a more abstract and

reusable test framework.

The purpose of unit tests for concurrent solvers is to verify the amount and

type of solutions produced, while their order may vary. To fulfill this goal, we

define two interfaces:

WithAssertingEquals: This interface exposes the assertingEquals method

which is used like equals but, instead of returning a Boolean, it checks

equality through the assertion methods.

FromSequence: This interface is generic in T with WithAssertingEquals up-

per bound and extends SolverTest. It exposes the function fromSequence

which takes a list of solutions and returns an instance of the generic type.

57

58 CHAPTER 6. VALIDATION

Listing 6.1: Unit test example�
1 interface TestConcurrentTrue <T : WithAssertingEquals > :

FromSequence <T>, SolverFactory {

2 fun testTrue () {

3 prolog {

4 val solver = solverWithDefaultBuiltins ()

5 val query = atomOf("true")

6 val solutions = fromSequence(solver.solve(query ,

mediumDuration))

7 val expected = fromSequence(sequenceOf(query.yes()))

8

9 expected.assertingEquals(solutions)

10 }

11 }

12 }
� �

Listing 6.2: Unit test concrete class example�
1 class TestConcurrentTrueImpl :

2 TestConcurrentTrue <MultiSet >,

3 SolverFactory by ConcurrentSolverFactory ,

4 FromSequence <MultiSet > by ConcurrentFromSequence {

5 @OptIn(ExperimentalCoroutinesApi :: class)

6 @Test

7 override fun testTrue () = multiRunConcurrentTest { super.

testTrue () }

8 }
� �

6.2. METRICS AND BENCHMARKS 59

These interfaces let us define abstract and reusable tests. The other part of

our framework are the unit tests. We define an interface for each Prolog con-

struct, generic in T with WithAssertingEquals upper bound, which extends the

FromSequence casting its generic also to T. Inside these interfaces we implement

a function for each unit test of the construct we want to verify.

In listing 6.1 we show the unit test of the True construct, one of the most

straightforward. The body of each unit test is standard, firstly the solver is in-

stantiated, then the query is defined and it is solved. The sequence of solutions is

converted to the utility class that implements the WithAssertingEquals interface

and it is compared by the assertingEquals method to the expected result.

To use this framework the only part that needs to be implemented is the

concrete class of each Prolog construct. The example of the True construct test

class is shown in listing 6.2. The class has to extend the respective interface, but

also the SolverFactory and the FromSequence to cast the generic type. In this

class we override all the unit test functions to add the @Test annotation and call

the equivalent super method. The last detail that can be seen in the code is the

multiRunConcurrentTest which is a method to run the same body multiple times

to check that there are no deadlock or other concurrency problems.

To reuse this framework it is enough to define a class that implements the

interface WithAssertingEquals defining the equality assertion based on the need.

The other pieces that need to be implemented are the concrete class for each

construct.

6.2 Metrics and benchmarks

The validation of the concurrent solver is, probably, the most important part of

the system. In fact, we put a lot of effort into it to reach a great number of unit

tests.

Unit tests
Passed tests Skipped tests Total tests
286 53 339

Table 6.1: Test metrics

60 CHAPTER 6. VALIDATION

In table 6.1, we report the number of unit tests. As can be seen, most of

them pass, but 53 are skipped. These come from some constructs we have not

implemented because they contain side effects like, for example, the cut. All the

other constructs are tested successfully.

Machine with two physical core
Prolog program Sequential time Concurrent time Speedup
7-Queens 2,23 1,58 1,41
8-Queens 10,05 5,97 1,68
9-Queens — 28,96 —

Table 6.2: Benchmarks comparing solvers on a two physical core machine

Machine with four physical core
Prolog program Sequential time Concurrent time Speedup
7-Queens 2,39 1,14 2,10
8-Queens 9,30 4,30 2,16
9-Queens 45,38 20,62 2,20

Table 6.3: Benchmarks comparing solvers on a four physical core machine

Furthermore, we make some benchmarks to compare our concurrent solver with

the sequential one. We use two different machines to run the benchmarks:

• A two physical core machines: its CPU is an i7-6th generation Intel core at

2,5GHz and 12GB RAM.

• A four physical core machines: its CPU is an i7-8th generation Intel core at

1,8GHz and 16GB RAM.

In table 6.2 are reported execution times of both types of solvers and the speedup

achieved using the two physical core machines. The same benchmarks are executed

on the four physical core machines and the results are reported in table 6.3.

We use the problem of n-queens with different values of n. This problem comes

from chess and requires placing n queens on a board with size n× n so that none

attack each other. We use this specific program because it has a good grade of

parallelism and it requires a lot of computation. We test the same program with

different values of n to better understand how our concurrent solver performs.

6.2. METRICS AND BENCHMARKS 61

The results show a good speedup, which means that concurrency works effi-

ciently. Nevertheless, there are three important points we want to highlight:

• The classic solver execution time for 9-queens in the two physical core ma-

chines is missing because the computation fails due to a stack overflow. This

prevents us from comparing the results and, hence, to calculate the speedup.

• Our solver is a work-in-progress and features only the basic OR-parallelism.

This means that performance can improve significantly adding a granularity

control mechanism or a scheduler or AND-parallelism.

• We use only the n-queens for our benchmarks because it is a well known

problem. Other CPU-intensive Prolog programs may perform differently,

depending on the grade of parallelism.

We do not compare performance of a non CPU-intensive Prolog program because

we know that the concurrent solver performs worse than the sequential one. This

is due to the overhead introduced by the handling of threads and coroutines.

62 CHAPTER 6. VALIDATION

Chapter 7

Conclusions

In this thesis, our main goal is to extend the 2P-Kt ecosystem to support the

concurrent logic programming. To fulfill it, we proceed by steps. Firstly we study

in details the state of the art about parallelism in logic programming to understand

what and how to do to reach our goal. Due to the great number of problems that

arise from each type of parallelism, we decide to focus on the OR-parallelism.

This, with respect to the other type of parallelism, entails the best improvements

of performances.

The next step is to design the concurrent solver reusing as much as possi-

ble the 2P-Kt ecosystem. We decide to model our solver’s core logic as a state

machine. Concurrency in our solver entails nondeterminism and, hence, also the

state machine is nondeterministic. In fact, we have to handle a list of state at

each transition, possibly empty, instead of just one and, to do so, we manage the

concurrent resolution branches. Furthermore, we design each component of our

solver to be encapsulated and isolated as much as possible. This helps us to fulfill

the requirement of extensibility of the solver.

After the design step, we move to the implementation phase, where we handle

technical problems. We firstly implement the nondeterministic state machine,

following the design and, then, we work on the concurrent solver. To conform

our solver to the already present interfaces and abstraction, we have to create the

bridge from the concurrent world to the sequential one. This connection is possible

converting a channel to a sequence, which is a platform specific implementation.

63

64 CHAPTER 7. CONCLUSIONS

The last step is to verify the correct functioning of the solver. We develop a test

framework that lets reuse unit tests without much effort. It features tests for all

the Prolog constructs. We use this environment to test our solver but, because it

does not support the Prolog semantics, we have to skip the tests of the constructs

that causes side effects.

After the solver is done, we make some benchmarks to compare it to the se-

quential one in terms of performances, which can be seen in chapter 6. The results

are far better than what we expect. We explain the two relevant improvement

achieved: Speedup and Memory usage.

Speedup The execution time decreases significantly with a CPU-intensive Prolog

program with a high grade of OR-parallelism. However the speedup rate is

far from the linearity for at least three reasons:

• We do not implement the AND-parallelism mechanism, losing a signif-

icant amount of speedup.

• A granularity control mechanism can reduce the overhead of spawning

and handling a coroutine when it is not needed.

• A scheduler can further improve performances because it can balance

the workload.

Memory usage The amount of memory needed during the resolution is reduced.

This is evident when, executing the 9-queens Prolog program, the sequential

solver throws a stack overflow exception, while our concurrent solver suc-

ceeds. This comes from the removal of choice points which take up a fair

amount of memory.

To conclude this thesis, we have met the goals defined in chapter 3. Our design

defines an abstract layer that gives an application programming interface that can

be reused and extended to create new concurrent solvers. We then develop a pure

OR-concurrent solver. Our implementation is extensible so that new mechanisms

can be added. We have a high abstraction level so that the injection of new

functionalities does not entail any change to our base solver.

7.1. OPEN ISSUES 65

7.1 Open issues

Due to its nature of being a base for future implementations, our solver is not com-

pleted yet and many open issues are present. We list the most relevant ones with a

brief overview and we provide some tips on how to address them: AND-parallelism,

Granularity control, Scheduler, Memory usage, Preprocessing, Js channel conver-

sion and Smart solver controller

AND-parallelism: This means that each sub-goal is executed in parallel. It in-

volves many synchronization problems that need to be handled. A first ver-

sion should focus only on this specific type of parallelism, which can be devel-

oped creating a list of state when the next goal is selected instead of picking

one at a time. After that, the OR-parallelism and the AND-parallelism can

be mixed together addressing the arising problems.

Granularity control : A mechanism that tries to estimate the size of each resolution

branch and that decides if it is useful to spawn a coroutine. This mechanism

would require an analysis at compile time of the program to generate a partial

resolution tree and a set of checks to evaluate at runtime.

Scheduler : This component would balance the workload. This work is based

on the granularity control mechanism, whose results would be used by the

scheduler to balance how many and which piece of work it has to give to

each thread.

Memory usage: In the actual implementation an issue is the big memory usage.

It comes from the execution context, which contains some debugging data

and, thus, can be reduced. To further decrease the memory used, some other

data structures can be streamlined.

Preprocessing : Analysis at compile time are required to enhance the granularity

control and the scheduler. This mechanism has to parse the Prolog program

to make estimates, which can be done when the knowledge base is loaded.

The Js channel conversion implementation is missing. This requires some ma-

chinery to use multiple threads on this platform.

Smart solver controller : This mechanism is an high level controller that runs a

set of checks and, based on the results, it decides which of all the existing

solver should be used. This component requires a lot of preprocessing, but

66 CHAPTER 7. CONCLUSIONS

can also be used at run time to pick a sub-solver for each primitive.

Bibliography

[1] ISO/IEC JTC 1/SC 22 Technical Committee. ISO/IEC 13211-1:1995: Infor-

mation technology — Programming languages — Prolog — Part 1: General

core. International Standard ISO/IEC 13211-1, ISO/IEC, 1995.

[2] Khayri A. M. Ali and Roland Karlsson. Full prolog and scheduling or-

parallelism in muse. Int. J. Parallel Program., 19(6):445–475, 1990.

[3] Khayri A. M. Ali and Roland Karlsson. The muse or-parallel prolog model

and its performance. In Saumya K. Debray and Manuel V. Hermenegildo,

editors, Logic Programming, Proceedings of the 1990 North American Con-

ference, Austin, Texas, USA, October 29 - November 1, 1990, pages 757–776.

MIT Press, 1990.

[4] Francisco Bueno, Maria J. Garćıa de la Banda, and Manuel V. Hermenegildo.

Effectivness of abstract interpretation in automatic parallelization: A case

study in logic programming. ACM Trans. Program. Lang. Syst., 21(2):189–

239, 1999.

[5] Mats Carlsson. On implementing prolog in functional programming. New

Generation Computing, 2(4):347–359, 1984.

[6] Giovanni Ciatto, Roberta Calegari, and Andrea Omicini. 2P-Kt: A logic-

based ecosystem for symbolic AI. SoftwareX, 16:100817:1–7, December 2021.

[7] Giovanni Ciatto, Roberta Calegari, Enrico Siboni, Enrico Denti, and Andrea

Omicini. 2P-Kt: logic programming with objects & functions in kotlin. In

Roberta Calegari, Giovanni Ciatto, Enrico Denti, Andrea Omicini, and Gio-

vanni Sartor, editors, WOA 2020 – 21th Workshop “From Objects to Agents”,

67

68 BIBLIOGRAPHY

volume 2706 of CEUR Workshop Proceedings, pages 219–236, Aachen, Ger-

many, October 2020. Sun SITE Central Europe, RWTH Aachen University.

[8] Keith L. Clark. Negation as failure. In Hervé Gallaire and Jack Minker,

editors, Logic and Data Bases, Symposium on Logic and Data Bases, Centre

d’études et de recherches de Toulouse, France, 1977, Advances in Data Base

Theory, pages 293–322, New York, 1977. Plemum Press.

[9] Vı́tor Santos Costa, Ricardo Bianchini, and Inês de Castro Dutra. Evaluating

parallel logic programming systems on scalable multiprocessors. In Hoon

Hong, Erich Kaltofen, and Markus A. Hitz, editors, Proceedings of the 2nd

International Workshop on Parallel Symbolic Computation, PASCO 1997,

July 20-22, 1997, Kihei, Hawaii, USA, pages 58–67. ACM, 1997.

[10] Inês de Castro Dutra. Distributing and-work and or-work in parallel logic

programming systems. In 29th Annual Hawaii International Conference on

System Sciences (HICSS-29), January 3-6, 1996, Maui, Hawaii, USA, pages

646–655. IEEE Computer Society, 1996.

[11] Jacques Chassin de Kergommeaux and Philippe Codognet. Parallel logic

programming systems. ACM Comput. Surv., 26(3):295–336, 1994.

[12] Enrico Denti, Andrea Omicini, and Alessandro Ricci. tuProlog: A light-

weight Prolog for Internet applications and infrastructures. In I.V. Ramakr-

ishnan, editor, Practical Aspects of Declarative Languages, volume 1990 of

Lecture Notes in Computer Science, pages 184–198. Springer Berlin Heidel-

berg, 2001. 3rd International Symposium (PADL 2001), Las Vegas, NV, USA,

11–12 March 2001. Proceedings.

[13] Enrico Denti, Andrea Omicini, and Alessandro Ricci. Multi-paradigm Java-

Prolog integration in tuProlog. Science of Computer Programming, 57(2):217–

250, August 2005.

[14] M. J. Fernández, Manuel Carro, and Manuel V. Hermenegildo. IDRA (ideal

resource allocation): Computing ideal speedups in parallel logic programming.

In Luc Bougé, Pierre Fraigniaud, Anne Mignotte, and Yves Robert, editors,

BIBLIOGRAPHY 69

Euro-Par ’96 Parallel Processing, Second International Euro-Par Conference,

Lyon, France, August 26-29, 1996, Proceedings, Volume II, volume 1124 of

Lecture Notes in Computer Science, pages 724–733. Springer, 1996.

[15] Gopal Gupta and Vı́tor Santos Costa. Complete and efficient methods for

supporting side-effects and cuts in and-or parallel prolog. In Proceedings of the

Fourth IEEE Symposium on Parallel and Distributed Processing, SPDP 1992,

Arlington, Texas, USA, December 1-4, 1992, pages 288–295. IEEE Computer

Society, 1992.

[16] Gopal Gupta and Vı́tor Santos Costa. Cuts and side-effects in and-or parallel

prolog. J. Log. Program., 27(1):45–71, 1996.

[17] Gopal Gupta and Bharat Jayaraman. Analysis of or-parallel execution models.

ACM Trans. Program. Lang. Syst., 15(4):659–680, 1993.

[18] Gopal Gupta and Enrico Pontelli. High performance parallel logic program-

ming: The ACE parallel prolog system. In Moreno Falaschi, Marisa Navarro,

and Alberto Policriti, editors, 1997 Joint Conf. on Declarative Programming,

APPIA-GULP-PRODE’97, Grado, Italy, June 16-19, 1997, pages 25–32,

1997.

[19] Gopal Gupta, Enrico Pontelli, Khayri A. M. Ali, Mats Carlsson, and

Manuel V. Hermenegildo. Parallel execution of prolog programs: a survey.

ACM Trans. Program. Lang. Syst., 23(4):472–602, 2001.

[20] Manuel V. Hermenegildo, Francisco Bueno, Manuel Carro, Pedro López-

Garćıa, Edison Mera, José F. Morales, and Germán Puebla. An overview

of ciao and its design philosophy. Theory Pract. Log. Program., 12(1-2):219–

252, 2012.

[21] Zhiyi Huang, Chengzheng Sun, and Abdul Sattar. Selective recomputation

for handling side-effects in parallel logic programs. In Hugh Glaser, Pieter H.

Hartel, and Herbert Kuchen, editors, Programming Languages: Implemen-

tations, Logics, and Programs, 9th International Symposium, PLILP’97, In-

cluding a Special Trach on Declarative Programming Languages in Education,

70 BIBLIOGRAPHY

Southampton, UK, September 3-5, 1997, Proceedings, volume 1292 of Lecture

Notes in Computer Science, pages 275–289. Springer, 1997.

[22] Matthew M. Huntbach and Graem A. Ringwood. Programming in concurrent

logic languages. IEEE Softw., 12(6):71–81, 1995.

[23] Philipp Körner, Michael Beuschel, João Barbosa, Vı́tor Santos Costa,

Verónica Dahl, Manuel V. Hermenegildo, Jose F. Morales, Jan Wielemaker,

Daniel Diaz, Salvador Abreu, and Giovanni Ciatto. A multi-walk through

the past, present and future of prolog. (Submitted to) Theory and Practice of

Logic Programming (TPLP), 2021.

[24] Pedro López-Garćıa, Manuel V. Hermenegildo, and Saumya K. Debray. A

methodology for granularity-based control of parallelism in logic programs. J.

Symb. Comput., 21(4):715–734, 1996.

[25] Ewing L. Lusk, Ralph Butler, Terrence Disz, Robert Olson, Ross A. Overbeek,

Rick Stevens, David H. D. Warren, Alan Calderwood, Péter Szeredi, and Seif

Haridi. The aurora or-parallel prolog system. New Gener. Comput., 7(2-

3):243–271, 1990.

[26] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM

Trans. Program. Lang. Syst., 4(2):258–282, April 1982.

[27] Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2nd

edition, 2013.

[28] Giulio Piancastelli, Alex Benini, Andrea Omicini, and Alessandro Ricci. The

architecture and design of a malleable object-oriented Prolog engine. In

Roger L. Wainwright, Hisham M. Haddad, Ronaldo Menezes, and Mirko

Viroli, editors, 23rd ACM Symposium on Applied Computing (SAC 2008),

volume 1, pages 191–197, Fortaleza, Ceará, Brazil, 16–20 March 2008. ACM.

Special Track on Programming Languages.

[29] Enrico Pontelli and Gopal Gupta. Data parallel logic programming in &ace.

In Proceedings of the Seventh IEEE Symposium on Parallel and Distributed

BIBLIOGRAPHY 71

Processing, SPDP 1995, San Antonio, Texas , USA, October 25-28, 1995,

pages 424–431. IEEE, 1995.

[30] Enrico Pontelli and Gopal Gupta. On the duality between or-parallelism

and and-parallelism in logic programming. In Seif Haridi, Khayri A. M. Ali,

and Peter Magnusson, editors, Euro-Par ’95 Parallel Processing, First In-

ternational Euro-Par Conference, Stockholm, Sweden, August 29-31, 1995,

Proceedings, volume 966 of Lecture Notes in Computer Science, pages 43–54.

Springer, 1995.

[31] Enrico Pontelli and Gopal Gupta. Parallel symbolic computation in ACE.

Ann. Math. Artif. Intell., 21(2-4):359–395, 1997.

[32] Enrico Pontelli and Gopal Gupta. Efficient backtracking in and-parallel imple-

mentations of non-deterministic languages. In 1998 International Conference

on Parallel Processing (ICPP ’98), 10-14 August 1998, Minneapolis, Min-

nesota, USA, Proceedings, pages 338–345. IEEE Computer Society, 1998.

[33] Enrico Pontelli and Gopal Gupta. Backtracking in independent and-parallel

implementations of logic programming languages. IEEE Trans. Parallel Dis-

tributed Syst., 12(11):1169–1189, 2001.

[34] Enrico Pontelli, Gopal Gupta, and Manuel V. Hermenegildo. &ace: a high-

performance parallel prolog system. In Proceedings of IPPS ’95, The 9th

International Parallel Processing Symposium, April 25-28, 1995, Santa Bar-

bara, California, USA, pages 564–571. IEEE Computer Society, 1995.

[35] J. A. Robinson. A machine-oriented logic based on the resolution principle.

J. ACM, 12(1):23–41, January 1965.

[36] Ehud Shapiro. The family of concurrent logic programming languages. ACM

Comput. Surv., 21(3):413–510, 1989.

[37] Marcio G. Silva, Inês de Castro Dutra, Ricardo Bianchini, and Vı́tor Santos

Costa. The influence of architectural parameters on the performance of par-

allel logic programming systems. In Gopal Gupta, editor, Practical Aspects of

72 BIBLIOGRAPHY

Declarative Languages, First International Workshop, PADL ’99, San Anto-

nio, Texas, USA, January 18-19, 1999, Proceedings, volume 1551 of Lecture

Notes in Computer Science, pages 122–136. Springer, 1999.

[38] Rui Vieira, Ricardo Rocha, and Fernando M. A. Silva. Or-parallel prolog exe-

cution on multicores based on stack splitting. In Umut A. Acar and Vı́tor San-

tos Costa, editors, Proceedings of the POPL 2012 Workshop on Declarative

Aspects of Multicore Programming, DAMP 2012, Philadelphia, PA, USA, Sat-

urday, January 28, 2012, pages 1–10. ACM, 2012.

[39] Yao Wu, Enrico Pontelli, and Desh Ranjan. Computational issues in exploit-

ing dependent and-parallelism in logic programming: Leftness detection in

dynamic search trees. In Geoff Sutcliffe and Andrei Voronkov, editors, Logic

for Programming, Artificial Intelligence, and Reasoning, 12th International

Conference, LPAR 2005, Montego Bay, Jamaica, December 2-6, 2005, Pro-

ceedings, volume 3835 of Lecture Notes in Computer Science, pages 79–94.

Springer, 2005.

[40] Kang Zhang. A review of exploitation of and-parallelism and combined

and/or-parallelism in logic programs. ACM SIGPLAN Notices, 29(2):25–32,

1994.

[41] Yuhua Zheng, Honglei Tu, and Li Xie. And/or parallel execution of logic

programs: Exploiting dependent and-parallelism. ACM SIGPLAN Notices,

28(5):19–28, 1993.

	Abstract
	Introduction
	State of the Art
	Concurrent LP
	Macro parallelism types
	Implicit parallelism in LP
	Problems of implicit parallelism
	Concurrent Prolog

	Logic Programming Ecosystems and 2P-Kt
	2P-Kt overview
	Resolution
	Primitives
	State Machine

	Coroutines and concurrency in Kotlin

	Requirements
	Constraints
	Goals

	Design
	Abstract design
	Syntax and Notational Conventions
	Semantics

	Concrete design

	Implementation
	Execution Context
	Concurrent Solver
	Utils
	Concurrent State Machine

	Validation
	Test framework
	Metrics and benchmarks

	Conclusions
	Open issues

