![]() |
Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato Download (997kB) | Contatta l'autore |
Abstract
Con lo scopo di risparmiare capitale e incrementare i profitti tramite attività di marketing sempre più mirate, conoscere le preferenze di un cliente e supportarlo nell’acquisto, sta passando dall’essere una scelta all’essere una necessità. A tal proposito, le aziende si stanno muovendo verso un approccio sempre più automatizzato per riuscire a classificare la clientela, cos`ı da ottimizzare sempre più l’esperienza d’acquisto. Tramite il Machine Learning è possibile effettuare svariati tipi di analisi che consentano di raggiungere questo scopo. L’obiettivo di questo progetto è, in prima fase, di dare una panoramica al lettore su quali siano le tecniche e gli strumenti che mette a disposizione il ML. In un secondo momento verrà descritto il problema della Customer Segmentation e quali tecniche e benefici porta con sé questo tema. Per finire, verranno descritte le varie fasi su cui si fonda il seguente progetto di ML rivolto alla classificazione della clientela, basandosi sul totale di spesa effettuata in termini monetari e la quantità di articoli acquistati.
Altri metadati
Statistica sui download
