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Sommario

In questo lavoro viene presentato un servizio che consegna i messaggi sfruttando
le caratteristiche native della tecnologia blockchain. L’obiettivo principale è
quello di trasmettere informazioni da una parte all’altra quando una delle due
parti si trova offline, senza la preoccupazione di intrusioni indesiderate. Nello
specifico, l’obbiettivo é l’implementazione di un servizio che permette ad utenti
che si trovano in aree non conesse di poter transmettere i propi dati ad utenti
che sono conessi sulla rete. Il passaggio dei dati da una parte all’altra viene
fatta da un ’mulo’. Quest’ultimo puó essere definito come l’insieme dei pro-
cessi che permettono la trasmissione dei dati da un ente offline ad uno che si
trova online assicurando i dati con la tecnologia blockchain. Rendendo possi-
bile l’implementazione di questo servizio, utenti che normalmente non hanno la
possibilitá di inviare messaggi o dati, possono usufruire del mulo per trasmet-
tere dati ad un utente arbitrario mantenendosi ’scollegati’ dalla rete restando
peró sereni riguardo alla privacy dei dati trasmessi. Questo perché oltre ad us-
are la tecnologia blockchain, i dati vengono criptati con due livelli di sicurezza.
Piú precisamente, é stata implementata la crittografia a chiave publica la quale
rende praticamente impossibile il tampering dei dati dato che l’unico modo per
decriptare il messaggio in oggetto é con la chiave privata del destinatario. In-
oltre, il messaggio viene dato in pasto ad un algoritmo crittografico chiamato
keccak256 il quale restituisce un hash univoco e quindi ogni cambiamento ai
dati, ha come risultato un hash differente.

Caratteristiche come l’immutabilità, la sicurezza e la scalabilità sono quelle
che attraggono sempre più persone, portando cos̀ı ad una più ampia adozione di
tale tecnologia. Ma c’è anche un lato negativo. Si discute quindi il meccanismo
pricipale dietro alla architettura della tecnologia blockchain Ethereum 1.0. Fino
a quando Ethereum non passerà da un protocollo PoW a un PoS, le soluzioni di
secondo livello come Polygon, Optimism ecc, giocheranno un ruolo importante
nell’adozione istituzionale della predetta tecnologia.

Inoltre, conoscendo le limitazioni della suddetta, si é cercato di ovviare real-
izzando un progetto scalabile. Nello specifico, sono stati implementati un tipo
di payment channel chiamati state channel i quali servono a portare gran parte
delle computazioni costose lontano dalla blockchain primaria e quindi risparmi-
are risorse e denaro caricando solo lo stato finale del ciclo di transazioni. Con
l’implementazione dei canali, si é cercato di ridurre i costi relativi alle com-
missioni di transazione ed il tempo di attesa, poiché l’unica interazione con la
catena è durante la dichiarazione dell’intenzione di aprire un canale e quella
relativa alla chiusura.

Abbiamo dunque sfruttato le caratteristiche native della blockchain per avere
un ambiente di lavoro sicuro ed in teoria a prova di manomissione. La scelta di
sviluppare tutto basandosi su i concetti del web 3.0, é stata fatta per cercare
di provare che l’uso di tale tencologia ha notevoli benefici quando si parla di
sicurezza e di privacy dei dati - personali o non.
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Abstract

Although the fact that nowadays we are continuously connected to the web
may sound great, in reality it is not all as it seems regarding the architecture
of data transmission. In most use cases, the data architecture is still based on
the concept of an independent computer, where data is centrally stored and
managed on the server and sent or retrieved by the client. Each time you
communicate over the Internet, a copy of your data is sent to your service
provider’s server, and you lose control of your data each time. There were
implemented solutions that aim to overcome this privacy issue like SSL, but
even that it is applied on top of something centralized. This means that in case
the central processing unit is taken down, everything will go down as well.

Moreover, there are a lot of places around the world where connection to the
internet is at early stages or nonexistent meaning that people are not able to
make use of all the helpful services that come with having an internet connection.
Not to mention the overall cost of connecting a specific area that was previously
categorized as rural.

Trying to modernize rural areas of the globe should be considered an im-
portant achievement. Nowadays being able to have an internet connection can
prove life-saving. Although technological progress made sure to make the lat-
ter accessible to almost anyone, there are places that are hard to reach. The
B-Mule project aims to bring messaging services to rural areas that cannot or
do not have access to the internet. One of the perks of this service is the fact
that an offline user can transmit data to an online one and for that, a data mule
that can provide useful and trustworthy services was implemented. By doing so,
people inhabiting those areas will be able to communicate with the outer world
without having actual access to the net. The aim of this work is to display the
feasibility of creating a data delivery service (MULE) with the aid of blockchain
technology. The reason for using the aforementioned technology is that we tried
to take advantage of the fact that data on the blockchain is immutable and
thus, creating a delivery service that is tamper-proof would have a positive out-
come in how data is delivered around the world. Using the blockchain for data
transmissions is a safe way to communicate, but it comes with a cost. Trying
to minimize the interactions with the online chain can assure the scalability
of the application since costs can be vastly reduced. For this reason, B-Mule
implements state channels in order to produce off-chain transactions maintain-
ing costs as low as possible (nearly 0). As soon as the parties agree upon the
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fact that everything prior can be transferred online, the initiator will ‘upload’
everything online essentially paying only one time instead of every time there is
a task. More specifically, the application will act as a data mule that transfers
messages between parties securing the latters throughout the whole transferring
process with the native features of the blockchain technology like immutability,
security and decentralization. On top of that, a cryptographic algorithm that
will further encrypt the data set to be delivered is used. In particular, we de-
cided to implement keccak256 which is a one way algorithm that given some
data, it will return a hash that is irreversible. This will ensure that the data
that was encrypted will not be tampered because in case something like that
happens, the resulting hash will be different from the first one.

Based on that, in the third chapter we will present the overall architecture
of the application. Over there, it will be explained how the data passes through
a two layer encryption process in order to ensure the maximum efficiency and
security. Moreover, it will be described the mechanism that aims to reduce the
costs and make scalable the whole application logic. Finally, the process with
which the mule gets rewarded will also be introduced.

In the last chapter we will describe the respective implementation of the
application as well as the results of the total costs that were needed for the
completion of one full cycle meaning from the opening of the channel, the re-
warding of the mule and the closure of the latter.
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Chapter 1

Introduction

The internet as we know it today is a way of connecting us all seamlessly.
Although this might sound like a wonderful thing, in reality, we do not control
our data, nor do we have a native value settlement layer. For the majority of
our use cases, data architectures are still based on the concept of stand-alone
computers, where data is centrally stored and managed on a server, and sent or
retrieved by a client. Every time we interact over the Internet, copies of our data
get sent to the server of a service provider, and every time that happens, we lose
control over our data. Even though we live in a connected world, with more
and more devices getting connected to the Internet – including our watches,
cars, TVs, and fridges – our data is still centrally stored: on our computers
or other devices, on the USB stick, and even in the cloud. This raises issues
of trust. The current Internet – with its client-server-based data infrastructure
and centralized data management – has many unique points of failure, as we can
see from the recurring data breaches of online service providers. It furthermore
produces high costs of document handling, as well as non-transparencies along
the supply chain of goods and services [1].

The Internet and the emergence of the WWW brought a data transmission
protocol – TCP/IP – that made the transfer of data faster while massively
reducing the transaction costs of information exchange. As years passed and
the understanding of all these concepts became more clear, we saw the rise of
the so-called Web2, which brought us social media and e-commerce platforms
[2]. Web2 revolutionized social interactions, bringing producers and consumers
of information, goods, and services closer together, and allowed us to enjoy P2P
interactions on a global scale, but always with a middleman: a platform acting as
a trusted intermediary between two people who do not know or trust each other.
While these platforms have done a fantastic job of creating a P2P economy, with
a sophisticated content discovery and value settlement layer, they also dictate
all the rules of the transactions, while controlling all the data of their users.

With the adoption of the idea to decentralize the entire digital world, the
concept of blockchain was introduced. In this context, blockchain seems to be a
driving force of the next-generation Internet, what some refer to as the Web 3.0.
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Blockchain reinvents the way data is stored and managed. It provides a unique
set of data (a universal state layer) that is collectively managed. This unique
state layer for the first time enables a value settlement layer for the Internet. It
allows us to send files in a copy-protected way, enabling true P2P transactions
without intermediaries, and it all started with the emergence of Bitcoin [1]. The
Bitcoin blockchain and similar protocols are designed in a way that you would
need to break into multiple houses around the globe simultaneously, which each
have their own fence and alarm system, in order to breach them. This is possible
but prohibitively expensive. In Web3, data is stored in each system that is part
of the respective network. The management rules are formalized in the protocol
and verified through the consensus of all the network participants, who are in-
centivized with a native network token for their activities. Blockchain, redefines
the data structures in the back-end of the Web. It introduces a governance layer
that runs on top of the current Internet, which allows for two people who do
not know or trust each other to reach and settle agreements over the Web.

Besides that, a crucial necessity is that users, in order to interact with each
other (in a centralized or decentralized way), have to be both online and as a
result this creates a sort of restriction to users that do not have daily access
to the web. This means that in order for the users to exchange messages, they
have to stay connected otherwise they will never be able to interact with others.
As a result, this work will try to overcome the issue of the necessary connection
requirements in order to be able to exchange data. It’s goal is pretty simple:
Introduce a way with which an offline user can send information to an online one
and vice versa thus minimizing the gap between people that have daily access
to the web and others that struggle to obtain such a commodity. Additionally,
within this work it will introduced the term of data mule which can be thought
as the main protagonist of the overall architecture. The latter is the device that
acquires the data while offline from a respective user, secures it with specific
processes and takes care of the online delivery.

By creating such a system, it is possible to modernize areas that normally
would require days or weeks to send a message from one side to another. Based
on the aforementioned context, this thesis will describe the implementation of a
decentralized application based on the ethereum network that will take care of
the data acquisition from an offline user as well as the delivery of the respective
message to the receiver. More specifically, the application will act as the data
mule that transfers messages between parties securing the latters throughout
the whole transferring process with the native features of the blockchain tech-
nology like immutability, security and decentralization. The application will be
controlled from the browser as it has a web interface where a control panel was
implemented in order to demonstrate the feasibility of the application. More-
over, an IoT device will be used in order to try to simulate a real case scenario
where a sender sends the data to the MULE which will then deliver it to the
receiver. For testing purposes, the receiver is not a real device, but an auto-
mated server that was implemented within the application web interface. Its
job is to simulate the receiver’s actions based on the data that was supposed to
be delivered to the latter.
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Chapter 2

State of the Art

In this chapter we will introduce the architecture of the blockchain as well as
the platform Ethereum, it’s characteristics and how it changed the blockchain
technology.

2.1 Blockchain

A decentralized system is a peer-to-peer system in which anyone can participate.
When someone joins the network, he receives a complete copy of the blockchain
so practically, he synchronizes with the latter and becomes an active node in
it. The blockchain’s existence depends on its users. For example, if a block is
created during a transaction, it will be sent to all participants of the network
who will verify it. If the verification ends positively, then this block will be
added to the network and all nodes will automatically have a copy of it as seen
in Figure 2.4. The latter is signed by the node through a digital signature using
its private key. Each user in the network has two keys.

A private key is used to create digital signatures and a public key that has
two use cases:

• The first is that it acts as an address in the network and

• The second is that it is used to verify a signature or validate the identity
of a sender.

The development of a blockchain is therefore aimed at enabling the exchange
of digital assets between parties without trust between each other, reducing the
number of intermediaries. This mechanism of data creation and management
has had a strong impact across sectors as it is very efficient, automates processes
reducing costs and enables the creation of new business models.
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Figure 2.1: The evolution of the aforementioned architectures.

2.1.1 Traits of a blockchain

• Immutability: Data stored in blockchain is immutable and cannot be
changed easily as explained above. Also the data is added to the block
after it is approved by everyone. Those who validate the transactions
and add them in the block are called miners. The validation process is
called consensus algorithm and in general the most used is the one called
proof of work (PoW). Proof-of-work is the underlying algorithm that sets
the difficulty and the rules that miners must comply with. Mining is the
”work” itself. It’s the act of adding valid blocks to the chain as seen in
Figure 2.3.

• Decentralization: A blockchain is decentralized as well as an open
ledger. A ledger acts as a record holder of the transactions done and
because it is visible to everyone, is called an open ledger. No individual
or any organisation is in charge of the transactions. Each and every node
in the blockchain network has the same exact copy of the ledger.

• Consensus Driven: (trust verification) each block on the blockchain is
verified independently via a Consensus mechanism which provides rules for
validating a block, and often uses a scarce resource (such as computing
power) to show the proof that adequate effort was made. In Bitcoin, this
is referred to as the mining process. This mechanism works without the
use of a central authority or an explicit trust-granting agent [12].

• Transparent: (full transaction history) - Since the blockchain is an open
source project, any party can access it and audit transactions. This creates
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Figure 2.2: Comparison of Centralized and Decentralized architectures.

Figure 2.3: Representation of blocks inside the blockchain.

provenance under which each transaction can be tracked down to the first
initiator in the genesis block.

2.2 A new Era

Ethereum was introduced by Vitalik Buterin in 2014 as an alternative to Bitcoin,
optimized for the development of applications based on the blockchain [3]. The
main proposed enhancement involves the introduction of the Ethereum Virtual
Machine. The EVM’s physical instantiation can’t be described in the same
way that one might point to a cloud or an ocean wave, but it does exist as
one single entity maintained by thousands of connected computers running an
Ethereum client. The Ethereum protocol itself exists solely for the purpose of
keeping the continuous, uninterrupted, and immutable operation of this special
state machine; It’s the environment in which all Ethereum accounts and smart
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Figure 2.4: The standard PoW consensus algorithm.

contracts live. At any given block in the chain, Ethereum has one and only one
’canonical’ state, and the EVM is what defines the rules for computing a new
valid state from block to block [4].

The analogy of a ’distributed ledger’ is often used to describe blockchains
like Bitcoin, which enable a decentralized currency using fundamental tools of
cryptography. A cryptocurrency behaves like a ’normal’ currency because of
the rules that dictate what one can and cannot do to modify the ledger. For
example, a Bitcoin address cannot spend more Bitcoin than it has previously
received. These rules underpin all transactions on Bitcoin and many other
blockchains.

Figure 2.5: The EVM.
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2.3 Smart Contracts

A smart contract is a program that runs at an address on Ethereum. They’re
made up of data and functions that can execute upon receiving a transaction.
Here’s an overview of what makes up a smart contract.
Any contract data must be assigned to a location and that means either as
storage or memory. It’s costly to modify storage in a smart contract so devel-
opers should consider where their data should live. Persistent data is referred
to as storage and is represented by state variables. These values get stored per-
manently on the blockchain. Declaring the type is important in order for the
contract to be able to keep track of how much storage it needs when compiling.
Values that are only stored for the lifetime of a contract function’s execution
are called memory variables. Since these are not stored permanently on the
blockchain, they are much cheaper to use.

For these more complex features, a more sophisticated analogy is required.
Instead of a distributed ledger, Ethereum is a distributed state machine. Ethereum’s
state is a large data structure that holds not only all accounts and balances, but
a machine state which can change from block to block according to a predefined
set of rules, and execute arbitrary machine code. The specific rules of changing
state from block to block are defined by the EVM. The latter, behaves as a
mathematical function would: Given an input, it produces a deterministic out-
put. It therefore is quite helpful to more formally describe Ethereum as having
a state transition function:

Y (S, T ) = S′

Given an old valid state (S) and a new set of valid transactions (T), the
Ethereum state transition function Y(S, T) produces a new valid output state
S’.

2.3.1 Accounts

Users on the Ethereum platform are identified by a 20-byte address, and their
state.
Ethereum assumes two types of accounts:

• accounts controlled by a private key (externally owned), similar to those
of Bitcoin for example, and

• accounts controlled by the code of a smart contract.

Each account is characterized by 4 fields:

• Nonce: in case of accounts controlled by a private key, it corresponds to
the number of sent transactions, while in case of accounts referred to a
smart contract it counts the number of additional contracts created by it.

• Balance: indicates the number of wei owned by the account. A wei
indicates the smallest fraction of the respective cryptocurrency.
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• The hash of the contract code: relevant field only for the second type
of account, it represents the Keccak-256 hash of the bytecode of the smart
contract.

• Storage root: this value is relevant only for accounts controlled by a con-
tract: it contains the 256-bit hash of the root node of the smart contract
used to represent the content of the account.

Transactions
An Ethereum transaction refers to an action initiated by an externally-owned
account or,in other words, an account managed by a human, not a contract. For
example, if Bob sends Alice 1 ETH, Bob’s account must be debited and Alice’s
must be credited. This state-changing action takes place within a transaction.

Transactions, which change the state of the EVM, need to be broadcasted
to the whole network. Any node can broadcast a request for a transaction to be
executed on the EVM; after this happens, a miner will verify the transaction and
propagate the resulting state change to the rest of the network. Transactions in
Ethereum 1.0 require a fee and must be mined to become valid. A submitted
transaction includes the following information:

• Recipient – the receiving address (if an externally-owned account, the
transaction will transfer value. If it is a contract account, the transaction
will execute the contract code).

• Signature – the identifier of the sender. This is generated when the
sender’s private key signs the transaction and confirms the sender has
authorised this transaction.

• Value – amount of ETH to transfer from sender to recipient (in WEI, a
denomination of ETH).

• Data – optional field to include arbitrary data.

• GasLimit – the maximum amount of gas units that can be consumed by
the transaction. Units of gas represent computational steps.

• GasPrice – the fee the sender pays per unit of gas.

Gas is a reference to the computation required to process the transaction by a
miner. Users have to pay a fee for this computation. The gasLimit and gasPrice
determine the maximum transaction fee paid to the miner. For the time being,
due to the fact of implementing PoW in Ethereum 1.0, the more demands there
are, the higher the fees. This can be seen if we take a look at the recent spike
in the cryptomarket. During the month of May 2021, Ethereum registered the
highest fee for a single transaction (52.43 dollars)[5].
The transaction object will look like this:

For specific data, a signature might be required in order to have the certainty
that the transaction is valid. Thus, a transaction object needs to be signed using
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Figure 2.6: An Ethereum transaction summary.

the sender’s private key. This proves that the transaction could only have come
from the sender and was not sent fraudulently.

Transaction Lifecycle
Once the transaction has been submitted the following happens:

• Once you send a transaction, a cryptographic transaction hash is gener-
ated:
0x97d99bc7729211111a21b12c933c949d4f31684f1d6954ff477d0477538ff017

• The transaction is then broadcasted to the network and included in a pool
with lots of other transactions.

• A miner must pick the respective transaction, include it in a block in order
to verify it and consider it ”successful”. Users may end up waiting at this
stage if the network is busy and miners aren’t able to keep up. Miners
will always prioritise transactions with higher gas prices because they get
to keep the fees.

• The transaction will also get a block confirmation number. This is the
number of blocks created since the block that your transaction was in-
cluded in. The higher the number, the greater the certainty that the
transaction was processed and recognised by the network. This is because
sometimes the block your transaction was included in, may not have made
it into the chain. The larger the block confirmation number the more im-
mutable the transaction is. So for higher value transactions, more block
confirmations may be needed.

14



2.4 ERC 20 Standard

Before diving into the actual standard, it is worth getting accustomed to the
term token. A token in the Ethereum ecosystem can be thought of as anything
having a certain value, something precious. Just to illustrate some examples:

• Reputation points on an online platform.

• Skills of a character in a game of lottery tickets.

• Financial assets like a share in a company.

• Fiat currency like USD.

• Gold.

It is easily understood that there have to be specific rules that define the be-
haviour of such an asset in Ethereum. These particular rules are defined by
the ERC (Ethereum Request for Comment) 20 Standard. This standard was
proposed by Fabian Vogelsteller in November 2015 [6], and implements an API
for tokens within smart contracts. It provides functionalities like transferring
tokens from one account to another, getting the current token balance of an
account and also the total supply of the tokens available on the network.

Figure 2.7: Interface functions that comply with the ERC 20.

Besides these, it also has some other functionalities like to approve that an
amount of tokens from an account can be spent by a third party. If a smart
contract implements the methods shown in Figure 2.7, once deployed, it will be
responsible for keeping track of the created tokens on Ethereum.

By following the above rules any developer can create an ERC-20 token that
will be used inside his application as the native currency. As already stated,
Ethereum itself is not a currency. On the contrary, it is a medium that allows
the creation of whole systems. Thinking of Ethereum as a baseline from which
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Figure 2.8: Event functions that comply with the ERC 20.

other ecosystems can be built is the most realistic way to start comprehending
its power.
From 2014, a lot of projects are following this logic. A live example is Chain-
link, a project that aims to help with an oracle network that provides reliable,
tamper-proof inputs and outputs for complex smart contracts on any blockchain
[7]. Another set of projects that are worth mentioning are NFTs (Non Fungible
Tokens) like the one called crypto-punks. Recently, the market of NFTs, sky-
rocketed and the most expensive crypto-punk sold for an astronomical amount
of 11 million dollars [13].

2.5 Blockchain’s Limits

The main limitation is related to the transaction throughput and that is also one
of the main factors that decides the rate of the adoption from institutions. This
performance constraint is closely related to the inefficiency of proof-of-work con-
sensus algorithm and the constraint that every transaction must be processed
by every single node connected to the network. On the other hand, this con-
straint is necessary to consider a blockchain as authoritative: distributed nodes
must not rely on third parties to stay updated on the status of the blockchain.

In order to scale a blockchain, increasing the block size or decreasing the
block time by reducing the hash complexity is not enough. With either method,
the ability to scale reaches a ceiling before it can hit the transactions necessary
to compete with businesses like VISA, which handles an average of 150 million
transactions every day or around 1,736 transactions per second (TPS). Right
now, the Ethereum 1.0 network can only support approximately 30 transac-
tions per second which is quite slow when compared to the amount of VISA
transactions at peak hours [8].

When looking for a potential answer to the scalability problem, multiple
other issues arise. For example, if the answer is only applicable for one particular
blockchain, then it relies on the assumption that the particular blockchain will
be the one that needs that scalability in the future; otherwise, the effort is undue
or misplaced. Another consideration is to understand what the trade-offs may
be. Right now, all solutions available come with limitations.
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2.5.1 Scalability Trilemma

The Scalability Trilemma, a term coined by Vitalik Buterin (founder of Ethereum),
refers to the tradeoffs that crypto projects must make when deciding how to opti-
mize the underlying architecture of their own blockchain. The trilemma Vitalik
is referring to involves three components:

1. Decentralization

2. Scalability

3. Security

Figure 2.9: The Trilemma proposed by Vitalik.

The freedom that comes when building things with Ethereum and the fact that
everything is decentralized, brings a lot of benefits to the developers and to the
end-users:

• Decentralization, at a philosophical level, aims to bring power back to
the community. By using a blockchain, where the rules of governance are
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literally codified and cannot be edited, one can maximize the distribution
of influence, wealth and ownership across the community. The more de-
centralized a system is, the more secure (typically) is as well. There is no
central point of failure or hack. There are, however, certain ways to hack
even the most decentralized systems. Just to mention an example, one of
the most common attacks is the double-spend attack. In this attack sce-
nario, an attacker attempts to spend the same amount at least two times,
hence double-spend. The attacker attempts to perform a transaction, wait
for the merchant to approve it, and then revert it and spend the same
currency in another transaction. In blockchains, this can be achieved by
presenting a conflicting transaction possibly in a different branch.

• Scalability. In order for the blockchain to be used for mainstream appli-
cations such as payment systems, it needs to be able to process thousands
of transactions per second. When a blockchain system is highly decentral-
ized, scalability becomes a challenge as the ledgers on all nodes have to
be updated concurrently. The less nodes you have, the more scalable the
system is. It is quicker to update 10 rather than 1,000 distributed ledgers.

• Security. For the data on the blockchain to be trusted, the data should
be protected from being leaked, lost or modified. It should be immutable
and resistant to hacks (i.e. Sybil attacks, DDoS attacks, etc.). This is a
basic and essential requirement.

2.6 Layer 1 Solutions

Layer 1 solutions aim to overcome the problems of Ethereum by operating di-
rectly into the core (source code) of the platform meaning that a refactoring is
necessary for it to work.

2.6.1 Ethereum 2.0

Ethereum 2.0 aims to solve the aforementioned problems by creating new ways
of doing things. First and most important is that the latter will no longer use
a PoW protocol but rather it will start implementing PoS and this is necessary
in order to combat the wastefulness and inefficiency of PoW. By doing that,
consensus is achieved in a much more efficient and less intensive way. On a
proof of stake blockchain, the nodes that want the chance to mine new blocks
and claim the rewards can stake their crypto for a chance to become what is
known as a ‘validator.’ This works much like a lottery: the more tickets you
buy (the more you stake) the greater your chance of winning (get rewarded).

One validator is then chosen randomly to mine the new block and claim the
reward, which is usually a cut of all the fees paid for the transactions contained
within the block. This way of achieving consensus eliminates the need for mul-
tiple miners to use huge amounts of power in order to be allowed to mine a new
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block. However, Ethereum’s switch to this new system is not straightforward
and will be conducted in three discrete stages.

Stage 1 - The Beacon Chain
The beacon chain doesn’t change anything about the Ethereum we use today.
It will coordinate the network while introducing proof-of-stake to the Ethereum
ecosystem as well as staking as a mechanism of reward based on your amount
of ether that you expose to the public community.

Stage 2 - The merge
Eventually the current Ethereum Mainnet will ”merge” with the beacon chain
proof-of-stake system. This will mark the end of proof-of-work for Ethereum,
and the full transition to proof-of-stake. This is planned to precede the roll
out of shard chains. In the Ethereum ecosystem this process is referred as ”the
docking.”

Stage 3 - Shard Chains
Sharding is a multi-phase upgrade to improve Ethereum’s scalability and capac-
ity. Shard chains spread the network’s load across 64 new chains and they make
it easier to run a node by keeping hardware requirements low. This upgrade is
planned to follow the merge of the Mainnet with the Beacon Chain.

2.6.2 Sharding

Based on the trilemma mentioned before, it is impossible to achieve all three:
Decentralization, Security, and Scalability simultaneously. A trade-off is neces-
sary (you can choose any two but not all). Sharding is an attempt to solve this
challenge. The latter is a proposed method of splitting Ethereum’s infrastruc-
ture into smaller pieces in an attempt to scale the network.

This can be achieved by splitting the state and history of Ethereum up into
partitions called “shards”. For example, a sharding scheme on Ethereum might
put all addresses starting with 0x00 into one shard, all addresses starting with
0x01 into another shard, etc. In the simplest form of sharding, each shard also
has its own transaction history, and the effect of transactions in some shards
are limited to the state of that same shard. One simple example would be
a multi-asset blockchain, where there are many shards and where each one of
them stores the balances and processes the transactions associated with one
particular asset. In more advanced forms of sharding, it might exist some form
of cross-shard communication capability, where transactions on one shard can
trigger events on other shards.

For example, let’s assume there is a set of validators (proof of stake nodes),
who randomly get assigned the right to create shard blocks. During each slot
(e.g. an 8-second period of time), for each shard in [0...999] a random validator
gets selected, and given the right to create a block on a shard, which might
contain up to, say, 32KB of data. Also, for each shard, a set of 100 validators
get selected as attestors. The header of a block, together with at least 67 of
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the attesting signatures, can be published as an object that gets included in the
”main chain” (also called the beacon chain).
Note that there are now several ”levels” of nodes that can exist in such a system:

• Super-full node - downloads the full data of the beacon chain and every
shard block referenced in the beacon chain.

• Top-level node - processes the beacon chain blocks only, including the
headers and signatures of the shard blocks, but does not download all the
data of the shard blocks.

• Single-shard node - acts as a top-level node, but also fully downloads
and verifies every collation on some specific shard that it cares more about.

• Light node - downloads and verifies the block headers of main chain
blocks only; does not process any collation headers or transactions unless
it needs to read some specific entry in the state of some specific shard, in
which case it downloads the Merkle branch to the most recent collation
header for that shard and from there downloads the Merkle proof of the
desired value in the state.
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2.7 Layer 2 Scaling Solutions

2.7.1 Optimism

Optimism is a Layer 2 scaling solution for Ethereum that can support all
of Ethereum’s Dapps. Instead of running all computation and data on the
Ethereum network, Optimism runs computations off-chain, increasing Ethereum’s
transactions per second and decreasing transaction fees. Tests have shown a
143x decrease in transaction fees on the Synthetix Exchange and up to a 100x
decrease on Uniswap. Since the transaction data still stays on the Ethereum
network, this scaling solution does not sacrifice Ethereum’s decentralisation or
security for scalability.

Sequencers on Optimism are responsible for executing computations off-
chain and publishing compressed transaction data onto a smart contract on
Ethereum at regular checkpoints. Since computation is resource-intensive, mov-
ing it off Ethereum allows it to scale by orders of magnitude.

But what if sequencers are malicious and send fraudulent data? When the
sequencer publishes the transaction data, there is a window of time where anyone
can run their own computation to determine if the transaction data is fraudulent.
If the data was indeed fraudulent, the verifier runs the computation on-chain
and the smart contract will verify the data. The sequencer will then lose their
deposit, a part of which will be sent as a reward to the verifier, and the other
amount burnt. As all transactions’ data is submitted on-chain, a new sequencer
will be able to compute the data and replace the role of the previous sequencer.
This creates:

• An economic incentive for sequencers to act honestly and,

• An economic incentive for verifiers to check on the sequencers

There are also other parties that are incentivised to verify data, such as stake-
holders on Optimism or stakeholders of Dapps deployed on Optimism.

2.7.2 Side chains

Another Layer 2 scaling solution are side chains for off-chain computations. In
particular the whole mechanism consists of using another blockchain, i.e. a
side-chain, that runs a faster or a lighter protocol, in order to manage assets in
the original blockchain, i.e. the main-chain. For instance, the Matic side-chain
can ensure the asset’s security using the Plasma framework and a decentralized
network of Proof-of-Stake (PoS) validators. Matic strives to solve scalability
and usability issues while not compromising decentralization and leveraging the
existing developer community and ecosystem. The latter is a kind of para-chain
scaling solution for existing platforms that provides scalability and superior user
experience to DApps/user functionalities.

Key Features Highlights:
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Figure 2.10: Matic Chain architecture.

• Scalability: Fast, low-cost and secure transactions on Matic side-chains
with finality achieved on the main-chain and Ethereum as the first com-
patible Layer 1 base-chain

• High Throughput: Achieved up to 10,000 TPS on a single side-chain
on internal test-net; Multiple chains to be added for horizontal scaling

• User Experience: Smooth UX and developer abstraction from main-
chain to the Matic chain; native mobile apps and SDK with WalletConnect
support

• Security: Matic chain operators are themselves stakers in the PoS system

• Public Sidechains: Matic side chains are public, permissionless and
capable of supporting multiple protocols

Matic is unique both in terms of its technical approach towards Layer 2 as
well as its potential support for a variety of use cases.

• Matic Layer 2 is an account-based variant of MoreVP (More Viable Plasma).
The Plasma framework is used to guarantee the security of the assets on
the main-chain (such as ERC-20 and ERC-721 tokens for Ethereum), while
generic transactions are secured by a Proof-of-Stake network, built on top
of Tendermint. Matic side-chains are essentially EVM-enabled chains and
are conducive to the ready deployment of the solidity smart contracts, es-
sentially making it an easy tool for Ethereum Developers to use for scaling
their DApps/Protocols.

• Commercially, Matic side-chains are structurally effective for supporting
Decentralized Finance (DeFi) protocols available in the Ethereum ecosys-
tem.
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• Matic’s core philosophy is to enable DApps to compete with the user
experience that is offered by centralized apps today.

• Ethereum is the first base-chain Matic Network supports, but it intends to
offer support for additional base-chains, based on community suggestions
and consensus, to enable an interoperable decentralized Layer 2 blockchain
platform.

Matic Network solves the low transaction throughput problem by using a Block
Producer layer to produce blocks a very fast rate. The system ensures decentral-
ization using PoS checkpoints which are pushed to the Ethereum main-chain.
This enables Matic to theoretically achieve 216 transactions on a single side-
chain.

2.7.3 State Channels

State channels are a very broad and simple way to think about blockchain
interactions which could occur on the blockchain, but instead get conducted off
the blockchain, without significantly increasing the risk of any participant. The
most well known example of this strategy is the idea of payment channels in
Bitcoin, which allow for instant fee-less payments to be sent directly between two
parties [9]. In public blockchains, micropayment transactions are too expensive
to be performed on-chain because the required transaction fee might be higher
than the monetary value associated with the transaction. Such micropayments
could be exchanged off-chain while periodically recording settlements for larger
amounts on-chain. Such a solution is called a payment channel, and could also
be generalised for arbitrary state updates. State channels are very similar to
the concept of payment channels in Bitcoin’s Lightning Network, but instead
of only supporting payments, they also support general ‘state updates’. By
implementing the aforementioned features in our application, we can scale the
system while keeping the transaction costs as low as possible. As it will be
described throughout the remaining report, the goal of the application is to
have only two interactions with the actual network. One for creating the intent
to open a channel and one for the closure of the latter.

Using such a method, users can deposit funds into a contract and sign state
updates representing moves conducted in a game of Chess without the need to
communicate with the actual chain on every move (it will get costly like that).
On the chain, only the final outcome of the game would be broadcasted thus
marking the end of the respective game session. This allows ethereum appli-
cations to ”move” expensive transactions off-chain, increasing the usefulness of
the network as a whole.

State channels work by “locking up” some portion of the blockchain state
into a multi-signature contract, controlled by a defined set of participants. The
state that is “locked up” is called a state deposit and this might be an amount
of ether or an ERC20 token. After the state deposit is locked, channel partici-
pants use off-chain messaging to exchange and sign valid ethereum transactions
without deploying them into the chain. The latters are transactions that could
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be put on chain anytime, but are not.
Below, a basic breakdown of the structure of a simple payment channel:

1. Part of the blockchain state is locked via multi-signature or some sort of
smart contract, so that all participants must agree with each other for the
state to be updated and eventually broadcasted.

2. Participants update the state amongst themselves by constructing and
signing transactions that could be submitted to the blockchain, but instead
are merely held onto for now. Each new update replaces previous updates.

3. Finally, participants submit the state back to the blockchain, which closes
the state channel and unlocks the state again (usually in a different con-
figuration than it started with).

Figure 2.11: State Channels Architecture.

Since all exchanged transactions are equally valid as far as the blockchain is
concerned, state channels need a mechanism to ensure that the latest off-chain
state is the one that ultimately gets settled on the main-chain. Thus, if a party
attempts to unilaterally close a channel, other parties in the channel have a
period of time — a ”dispute window” — in which they have an opportunity
to submit a more recent state, thereby proving that a fraud was attempted.
Once an infraction is proven, the contract handles the resolution process, which
typically involves punishing the guilty party by slashing their deposited funds
(though one could also simply update the system to the last valid state and
proceed accordingly)[9].

If the “state” being updated between participants was a digital currency
balance, then we would have a payment channel. Steps 1 and 3 (Figure 2.11),
which open and close the channel, involve blockchain operations. But in step 2
an unlimited number of updates can be rapidly made without the need to involve
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Figure 2.12: State Channels Pattern.

the blockchain at all — and this is where the power of state channels comes into
play, because only steps 1 and 3 need to be published into the network, pay
the fees, or wait for confirmations. In fact, with careful planning and design-
ing, state channels can remain open almost indefinitely, and can be used as a
part of a larger hub and spoke systems to power an entire economy or ecosystem.

Benefits

• Speed – As the blockchain is not involved in every transaction, the
off-chain transactions can be settled almost instantaneously. The delay
could be as low as a fraction of a second rather than whole minutes for a
blockchain where we need to wait for the network to process the transac-
tion, generate a new block with the transaction, reach consensus, and the
desired number of confirmation blocks.

• Throughput – The number of off-chain transactions that can be pro-
cessed is not limited by the blockchain’s throughput, which depends on
multiple factors such as the block size, the inter-block time, and the trans-
action fee. Thus a much higher throughput can be achieved for off-chain
transactions.

• Privacy – Other than the settlement transaction(s), off-chain transactions
do not show up in the public ledger. Thus, the detail of these intermediate
off-chain transactions is not publicly visible.

• Cost – If a public blockchain is used, only the final settlement transaction
costs are included in the blockchain. Off-chain transactions do not cost
any money. In the context of payment channels network, transactions
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may still pay a fee that is relatively low compared to its monitory value.
For example, such networks typically charge a small percentage of the
transacted amount.

Drawbacks

• Trustworthiness – Off-chain micropayment transactions might not be
as trustworthy as on-chain transactions because they are not stored in
an immutable data storage system. The intermediate state of payment
channels might be lost after the payment channels are closed or do not
have sufficient availability.

• Liquidity – To establish a payment channel, money from one or both
sides of the channel participants needs to be locked up in a smart contract
for the lifetime of the payment channel. The liquidity of the channel
participants is thereby reduced.

• Modifiability – A new wallet or extension to the existing wallet is needed
in order to support the micropayment protocol.
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Chapter 3

B-Mule

This chapter will introduce our application called B-Mule, its goals and the
overall implementation of the application. In the first part of this chapter it will
be discussed the architecture starting from how the application can implement
the state channels in order to safely operate and thus, the security mechanisms
will also be mentioned in order to have a more complete overview of the context.
Afterwards, a section dedicated to the architecture of the latter by showing the
data flow diagrams for both parties (intended as sender/receiver) will follow.
These diagrams’ goal is to explain how a full transaction (online offline) cycle
works. Finally, it ends with a section dedicated to the actual implementation
by showing some snippets in order to understand how the logic of the source
code works.

3.1 Goal

Trying to modernize rural areas of the globe should be considered an important
achievement. Nowadays being able to have an internet connection can prove
life-saving. Although the technological progress made sure to make the latter
accessible to almost anyone, there are places that are hard to reach. The B-
Mule project aims to bring messaging services to rural areas that cannot or
do not have access to the internet. A data mule that can provide useful and
trustworthy services to people inhabiting those areas in order for them to be
able to communicate with the outer world without having actual access to the
net.

The aim of this work is to display the feasibility of creating a data delivery
service (MULE) with the aid of blockchain technology. In particular, the ideal
goal would be to launch the service on the Ethereum network. The reason for
using the aforementioned technology is that we try to take advantage of the
fact that data on the blockchain is immutable and thus, creating a delivery
service that is natively tamper proof would have a positive outcome in how
data is delivered around the world. As stated in the previous chapters, using
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the blockchain’s principles for data transmission, is a safe way to communicate
but there is a cost. Trying to minimize the interactions with the chain can assure
the scalability of the application since the costs can be vastly reduced. For this
reason, B-Mule uses state channels in order to make off-chain transactions.

As soon as the parties agree upon the fact that everything prior can be
transferred online, the initiator will ‘upload’ everything online essentially paying
only one time instead of every time there is a task. In the image below we can
see how the logic of the application works:

Figure 3.1: Initial Logic for the communication. (credits: Mirko Zichichi).

We are assuming that at some point in the past the user had access to the
internet in order to be able to interact with the Dapp. Using state channels,
the interactions with the main chain can be as low as 2. The first one happens
whenever the user needs to declare the fact that he would like to open a state
channel with a mule that will later deliver his message. This is mandatory since
the intent to open a state channel must be recorded on-chain for obvious reasons
and as such, a smart contract that will control these behaviours will be needed.

After the state channel is set up, the parties can exchange data without
the need of broadcasting every step on the chain. This makes transactions
almost costless and as a result, it can easily scale if necessary. The only cost
related to the whole process is that of the actual payload of the message and the
reward of the mule that will act as a bridge between the sender and the receiver.
Whenever the state channel closes the accumulated reward will be transferred
into the mule’s wallet and the connection between the mule and the user can be
marked as terminated and this process must be recorded online as well in order
to ensure the cohesion of the state channel and the actual online chain. In case
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the user wants to transmit new data, he has to make sure that an open state
channel exists. If not, he can open one by calling the smart contract.
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3.2 Security - Encryption

3.2.1 First-layer encryption

Regarding the security of the transactions, B-mule makes use of a two layer
security system. For starters, the message is encrypted using cryptographic
primitives like keccak256 in order to obtain a hash. This was an implementa-
tion choice as Ethereum uses Keccak-256 in a consensus engine called Ethash.
Keccak is a family of hash functions that eventually got standardized to SHA-3
(SHA256 is part of a family of hash functions called SHA-2). Ethereum called it
Keccak instead of SHA-3 as it has slightly different parameters than the current
SHA-3. Colloquially, Ethereum mining is never called Keccak mining because
Ethash utilizes mix hashes in a DAG, which is different from the Hashcash
proof-of-work.

Keccak is a family of sponge functions [11] that use, as a building block, a
permutation from a set of 7 permutations. It is important to understand that
it is not possible to decrypt the output of Keccak, since it isn’t an encryption
algorithm, but a one way hash function. Instead, it’s being used for verifying
that a hash value is indeed the hash output of a particular text (which is already
known), simply by calculating the hash of the text, and comparing the output
to the first hash value.

3.2.2 Second-layer encryption

In order to operate safely off the chain as said before, data must be encrypted
and as a result we opted for an asymmetric encryption and specifically, public
key encryption, or public key cryptography, which is a method of encrypting
data with two different keys and making one of the keys, the public key, available
for anyone to use. The other key is known as the private key. Data encrypted
with the public key can only be decrypted with the private key. Implementing
the encryption process following the aforementioned logic, we can assure that
the only person who is eligible to decrypt the data is the private key holder.
Even in the unlikely case of someone trying to access the data, the hash of
the message will change, pointing out immediately the fact that something got
tampered and as a result, the receiver can reject the message without the need
to decrypt it first.

The increased data security provided by public key cryptography is its main
benefit. Public key cryptography remains the most secure protocol (over private
key cryptography) because users never need to transmit or reveal their private
keys to anyone, which lessens the chances of cyber-criminals discovering an
individual’s secret key during the transmission.

3.3 Architecture

In this section, we will describe the architecture of our application based on
what mentioned in the chapters above.
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Figure 3.2: Simplified view of delivering a message through a mule.

3.3.1 Front-end UI

The client is a single-page application (SPA) where all the necessary code is
downloaded when the page is requested through the browser meaning that all
additional resources are dynamically loaded into the application without updat-
ing or changing entirely the displayed web page.
For the realization, different tools that allow us to interact with the web 3.0
were used:

• Metamask: A crypto wallet that allows you to store and transact Ethereum
or any other Ethereum-based (ERC- 20) tokens. You do not register it on
a website, but rather install it as an extension to your Chrome or Firefox
browser.

• Ganache: A personal blockchain for rapid Ethereum and Corda dis-
tributed application development. You can use Ganache across the entire
development cycle; enabling you to develop, deploy, and test your dApps
in a safe and deterministic environment.

• Truffle: A world-class development environment, testing framework and
asset pipeline for blockchains using the Ethereum Virtual Machine (EVM),
aiming to make life as a developer easier.

• Web3.js: A collection of libraries that allow you to interact with a local
or remote ethereum node using HTTP, IPC or WebSocket.

• React: A Javascript library developed by Facebook to develop SPA. It is
based on the concept of Components that allow to divide a user interface
into reusable and independent parts
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• Eth-Crypto: Cryptographic javascript-functions for ethereum.

• Express.js: A modular web framework for Node.js. It is used for the
easier creation of web applications and services. Express.js simplifies de-
velopment and makes it easier to write secure, modular and fast applica-
tions.

3.3.2 Smart Contracts

Since this application is coupled with the Ethereum test net, smart contracts
were implemented in order to comply with the guidelines. Specifically, the main
contracts created were:

• OffChainPaymentChannel.sol,

• Whistle.sol

The most important smart contract for the logic of our application is the
OffChainPaymentChannel.sol. The latter is the handler of the state channels
that users can open or close with a given Mule and as a result, whenever the
latter is being called, all the following data will be registered on-chain.

Given the fact that our application is Ethereum-based, we took advantage
of the ERC-20 standard mentioned in section 2.3. As stated before, following
the guidelines of ERC-20, developers can create their own token that can be
used inside the respective application. For our case, we minted a token called
Whistle (WHL) that can be used to pay for the transactions made inside the
application. For every new account created a total of 100 tokens (WHL) will be
assigned to the latter. In order for the user to get the initial amount of tokens,
a request to the Whistle contract has to be made. This is necessary as a link
between the account address and the token contract is mandatory in order to
be able to use the contract. Each time a request is made, an instance of type
User is created and saved inside the contract for that specific address.

3.3.3 Application interaction

Initiating the delivery intent
The first thing that has to happen before starting to make use of the application
is to connect to MetaMask with a valid account. For this purpose, we can take
an account from Ganache and import it into MetaMask. Once the account has
been imported we can connect to the Ethereum Testnet and start interacting
with the blockchain. As stated in the previous chapters, the aim is to make
the application scalable and thus we have to have the least possible number of
interactions with the main chain in order to pay fewer transaction fees.

We opted for the implementation of state channels. More specifically, each
user should have one and only one channel with a given Mule meaning that a
client cannot have multiple open channels with the same Mule. Each channel has
an identification parameter and conveniently we assign the block number that
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the request for opening a state channel between the user and Mule receives.
As soon as a block number has been assigned to the channel, the user can
start transmitting encrypted messages off-chain thus, easily scaling to whatever
number wanted.

An instance of a Channel has 6 attributes.

• The block number and this complies with the fact that for each channel
there has to be one unique identifier.

• The Whistle structure that has all the encrypted data as seen in Figure
3.4,

• The PaymentInfo structure which is an object that encapsulates the
whistle,

• A boolean that serves as a controller for the delivery status,

• The total cost of that channel up until that point and

• The timeStamp that will be checked whenever there is a closing request

Figure 3.3 shows how the user can open a channel. It has to have a trans-
action with the OffChainPayment contract stored into the online chain in order
to register the intent. The call, as mentioned above, will return a block number
that will be used every time we want to refer to the specific channel. From now
on, the user has various options:

• Create a message to be delivered,

• Close the channel

In case the latter decides to initiate a message delivery the core logic of the
application will take over, create the data necessary, and in the end if everything
went well, the message will be passed to the Mule already encrypted. The Mule
itself is not carrying just a message, but rather a whole structure. An example
of the structure of the object carried by the mule can be seen in Figure 3.4 .
One important fact to note is that for every inner object like:

• A Whistle,

• a PaymentInfo or,

• a Receipt

there is always the identification parameter of the channel currently utilized
(block number of the initial request). This is due to the fact that until every-
thing is ready to be settled on the online chain, each offline transaction must
be identified by an unique id.

Receiving the intent
As far it concerns the delivery, once the Mule has reached its receiver, the latter
has also a couple of options:
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Figure 3.3: Flow chart - Sender’s process.

• Initiate the decryption process, or,

• Initiate a closing request

Following the first point means that before decrypting the actual core mes-
sage, the application must verify the integrity of some specific parameters like:

• The receiver address,

• If the value of the balance declared in the message intent is equal to the
one received from the Mule,

• If the hash declared in the message intent is equal to the one received from
the Mule

All these parameters can be retrieved following the object attributes shown
in Figure 3.4. Once all the requirements have been met, the application can
continue with the decryption. This process is quite straightforward and costless
since the receiver does not need to encrypt and compare but rather compare the
hash since keccak is a one-way encryption hash generator. If the hashes match
it means that the message has its integrity and thus, can be considered safe to
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Figure 3.4: Contents of an object of a channel.

open and as a result it can be signed by the receiver. Every non-intentional
operation will alter the latter prompting to the fact that the tampered message
will get exposed.

Signing the delivery
Once the receiver gets its message, the application requires the user to sign
the transaction. Again, by using the web3.js libraries, just like the sender,
the message is signed offline and thus the cycle of that message delivery intent
can be marked as completed inside the object of the state channel (Figure 3.4,
@delivered:true).

The structure of the offline signature requires some specific parameters in
order to create a valid hash. These mandatory parameters are:

• The address of the MetaMask wallet account,

• The block number that has been previously assigned during the channel
opening,
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• The latest balance amount of the the respective wallet and lastly,

• The address of the contract that handles the channels (OfflChainPay-
mentChannel.sol)

For demonstration purposes, as soon as the receiver gets the message, it signs
it and sends back a response that can be considered as an ‘acknowledgment’.
A more in-depth look can be given by referring to Figure 3.5. On the other

Figure 3.5: Flow chart - Receiver’s process.

hand, if the request is about closing the state channel, it means that the sender
is declaring an intent to close the current channel. Before closing it and up-
loading the last state that both parties agreed upon on the actual blockchain,
the application must have both signatures. As a result, always through Meta-
Mask, a signature request is processed and finally the verdict is published on
the blockchain. The aforementioned action is considered the second and last
interaction with the main-chain.

After all the interactions, the ending structure is modeled as seen in
Figure 3.6.
Due to implementation difficulties, in our application we can act as a sender.
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Figure 3.6: Final data structure of the concluded process.

The receiver is implemented as an ExpressJS server. One fact that is worth
mentioning is that while the state channel is kept open, there is no limit to
the number of off-chain transactions so the sender or the receiver can continue
exchanging messages basically for free.

As far as the mule retribution, the latter will get rewarded once the chan-
nel is closed and all members involved in it agree upon the last published
state. More about the retribution process can be read in the next section.

3.3.4 Mule Reward

Considering the reward of the mule, the latter will get it expressed in the native
tokens of the application (WHL). As previously mentioned, a mule can get its
retribution if one of the following cases are met:

1. The user decides to close the channel or

2. The Mule itself decides to do so

One peculiarity that maybe is not expected is the fact that no deposit was
made into the contract for the opening of the state channel. This means the
retribution works a bit differently than expected. This is due to the fact that
the application takes advantage of the ERC-20 standard function approve(...)
that allows a third party user to pay on behalf of the allower’s account up to
specified amount. Not having any tokens locked up in the contract, makes it
even more secure as, even in the case of an intruder, there will be no tokens
to transfer to his/her account. Below we describe an example of the functions
mentioned above:

Let’s say that the state channel closes and the latest timeStamp has an ag-
gregated cost of 5 WHL, meaning there were n transactions for a total cost
of 5 WHL. Moreover, let’s remember that the initial allowance (defined by ap-
prove(...)) was 50. Due to the fact that there was no deposit, the contract
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address was allowed by the client to transfer on his behalf up to 50 WHL. This
implies the fact that the OffChainPaymentChannel contract will use the func-
tion transferFrom(from , to, amount) and no refunds will be made (thus less
transactions in the long run). The only thing that will also need to get updated
is the amount of allowance that now will be 45 WHL (unless an additional re-
quest for an allowance was made). As already mentioned, the mule can have
different deliveries, but until that task is marked as completed, the mule cannot
be awarded for that specific delivery. The closure request usually comes from
the receiver of the data once the latter has been verified. In case something
like that happens, the mule will get the reward based on the latest timeStamp
recorded for that specific block number.

3.4 Implementation

Following what mentioned in the above section, in this one, it will be described
the actual implementation of the respective concepts. A first thing that needs
to be introduced is the basic structure of the object the application uses and
interacts. The latter is a structure of type aWhistle and its implementation can
be seen in the figure below:

Figure 3.7: aWhistle as implemented in our Dapp.

The logic for our application is based on objects because it is easier to
manipulate attributes when transferring data from and to the mule. From
picture 3.7, the object aWhistle is a whole structure itself containing important
information like:

• sender’s wallet address,

• receiver’s wallet address,

• the actual data to be transferred,
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• the cost of the respective payload,

• receiver’s public key that was used to encrypt the data

The next thing that was implemented was the medium with which these whistles
will ’travel’. For convenience, the latter was implemented as an object of type
Channel and it is implemented as follows:

Figure 3.8: Channel as implemented in our Dapp.

As a result, the final structure will be an object of objects. As for the validity
of the parameters, when it comes to the comparison of attributes, with an object
oriented approach everything is more fluid and flexible. Once the channel has
been created and the blocknumber assigned, the user can proceed in starting the
exchange of messages. In figure 3.9 we can see the request to the main contract
that resides on the blockchain. The resulting blocknumber that will be assigned
to the Channel instance will be extracted from the transaction receipt that will
be returned.

Figure 3.9: First online transaction - assigning the block number.

As mentioned earlier, messages will be transmitted offline meaning that there
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is a need for security. With the Web3 utils, we can sign a transaction through
MetaMask and thus create a ’portable’ and secured object from the device to
the mule and vice versa.

In Figure 3.10 we can see how a message can be signed offline. Whenever the
function web3.eth.sign(...) is called, MetaMask will prompt a pop up informing
us for the intent of the application we are connected to. Once the transaction
is registered through MetaMask, a hash is returned, which will then be added
into the application native structure (aWhistle). The respective pop up can be
seen in Figure 3.11.

Figure 3.10: Web3 Utils for signing an off-chain transaction.

Encryption
As stated in the previous chapter, the encryption will be composed of two lay-
ers. The first layer is related to the encryption of the payload. The latter will
get encrypted using the keccak256 algorithm and the result of the process will
be a hash that is impossible to reverse-engineer. In our application this can
be achieved by using the tools provided by the EthCrypto library. As depicted
in Figure 3.12, after the keccak256 encryption, we create a signature with the
private key of the respective wallet as well as the payload that will later be
transmitted to the mule. Finally, the public key encryption takes place (second
layer encryption). For this process, the data needed is the public key of the
receiver and the actual payload. The result will be stringified in order to be
able to transmit it far easier by serializing it.

Decryption
Once the mule has reached the destination, it can deliver the payload. The re-
ceiver will then start the verification process by calculating by its own the hash
of the payload. If the hash is the same as the one received, it means the data is
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Figure 3.11: MetaMask prompt for signature.

still intact and as a result, he will proceed with the actual decryption in order
to get the sent message. Specifically, two conditions have to be met in order for
the receiver to sign the delivery and update the status of the respective cycle.

• The calculated hash has to be equal to the one received and,

• the sender address has to be equal to the one extracted from the EthCrypto.revocer(...)
method.

The aforementioned logic can be seen implemented in Figure 3.13.

Closing the state channel
If the user or the mule decides to close the latter, the OffChainPaymentChannel
contract can initiate the reward process. More specifically, as seen in Figure
3.14, by calling the respective function, the first thing that the contract does
is to identify the channel, which is saved inside the contract’s memory. After
identifying the latter, the contract checks for the block number as it should
and must be greater than 0 and if everything is valid it then proceeds with the
deletion of it from the internal memory of the contract and the actual transfer
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Figure 3.12: Receiver verification process.

of the funds from the sender’s wallet into the mule’s one. Let’s remember that
this is possible due to the approved amount when the channel was opened for
the first time.
In the image below (Figure 3.14) we can see the snippet related to the actual
retribution. The funds will go from the user’s wallet into the Mule’s.

For demonstration purposes, the application will let the user initiate the in-
tent to close an open channel with the mule. More specifically, by calling the
closeChannel(...) function the application will interact with the smart contract
OffChainPaymentChannel. The interaction with the aforementioned contract
marks the second and last transaction with the actual blockchain.

As stated already, in this specific transaction, the final state to which all
parties agree upon, will be published online. After this point the channel may
stay open for further deliveries given that the updated amount of the allowance
is still valid. In case there are no further funds available, the user can make a
contract call and get an additional amount approved for spending otherwise the
channel can safely close and as a result, for that particular blocknumber, the
life cycle can be marked as completed.
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Figure 3.13: Functions used from the EthCrypto library.

Figure 3.14: Closing the state Channel rewarding the mule.
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Chapter 4

Demo - Results

In this chapter, the key components for the realization of the demonstration
will be described. We will try to simulate the data acquisition process with the
aid of an IoT device (ESP32). The device is thought of as the Sender, and the
localhost as the data-mule/receiver. For testing purposes, the idea is to make
them exchange information through a WiFi connection. Below the device that
will act as the user that sends a message.

4.1 Hardware - Software

In Figure 4.1, we can see an az-delivery ESP32 prototyping module and the
power connector which is a simple USB (Figure 4.1.1).

The module was programmed into the Arduino IDE and as a result, the code
was then flashed inside its memory.

In order to allow communication from the module to the localhost, we cre-
ated a static IP with the help of XAMPP in which PHP scripts that captured
the data from the IoT module were written. These scripts processed the lat-
ter and sent it over to the application. The application itself is mainly built
with React, thus nodeJS had also an important role in the initial setup.

Figure 4.1 ESP32
Figure 4.1.1 USB
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4.2 Demo Implementation

Figure 4.1: Architecture of the Demo.

With the ESP, an async server was implemented in order to be able to
access it through its static IP from a mobile phone. This server will act as the
application of the sender of the information. The HTTP protocol which will
transmit the data can be taken as the mule (only conceptually as the mule has a
real wallet address). This was done in order to visualize the whole logic better.
From the module, we simulate a message delivery intent that will get captured
and sent to the application through the scripts, thus simulating an interaction
with a mule and a client.

The App.js is the control panel from which we can ‘send’ a message after
an account has been connected to the test-net chain. As far as it concerns
the Server.js, it can be considered the other member of the whole cycle. As
mentioned in the previous chapter, the Server.js will try to decrypt the message
if the hash is valid and eventually sign the latter and finalize the transaction.

It is worth mentioning that the application is implemented in a way that
permits the testing of all phases from the data acquisition, to the closure of the
channel and as a result the mule is represented as well in the initial interface.

More on this in the following paragraphs. As soon as the application loads,
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it checks whether an account has been connected to MetaMask. In case there is
an active connection it will open a channel and the returned message is depicted
below: After opening the channel successfully, in the upper right corner of Figure

Figure 4.2: Response from Metamask.

4.4 we can see some useful data regarding the connected wallet address, the state
of our balance, our approved allowance and the balance of our Mule. The data
displayed in the DEVICE section can be thought of as the content of the mule.
For testing purposes, there is a submit button that initiates the sending process
meaning the delivery intent.

In Figure 4.3, we can see the summary of the opening process. More specif-
ically, we can see the block number that was assigned to the channel which
means that from now on until the latter closes, the channel will be identified
by checking the block number and the gas used to do such an operation on the
Ethereum test-net.

Figure 4.3: Response from Metamask.

By clicking the SEND button, the first thing that happens is that MetaMask
will ask for the signature of the data as can be seen in Figure 4.5. When the data
reaches this point, it is already encrypted with the public key of the receiver.
The latter is then technically sent to the mule (in this case it’s the connection
between the App.js and the Server.js). In order to observe what is happening
through the process, we logged the results of every step. As depicted also in
Figure 4.6 as soon as the sender signs the message, a complex object is created.
From it, it is worth mentioning the following details:

• The block number,
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Figure 4.4: Response from Metamask.

• The cost,

• The boolean that checks whether this particular cycle has been completed,

• The balance of the sender (it’s the latest after the operation)

Moreover, by taking a look inside the object we can see that there are the
following structures:

• A whistle and,

• A paymentInfo

In order to keep the integrity of the application, the data inside the two objects
must coincide and from Figure 4.6, we can see that this is our case meaning that
the transmission of all the important data has been done correctly. As far as it
concerns the receiver’s signature, as mentioned earlier, it is an operation that is
being carried away inside the Server.js logic. The result of the operations can
be seen in Figure 4.7 where the complete log is printed in the console. The first
thing to notice is the boolean attribute ‘delivered’ that was set to true. That
means the delivery was successful and the receiver signed the message implying
his agreement on the state of the transaction. The attribute timeStamp is critical
because it serves as a filter when rewarding the mule. As already mentioned the
latter will get the reward based on the latest settled transaction. If for some
odd reason, one of the members does not agree upon a given state, then, if the
channel closes, the mule will get paid based on the last agreed state.
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Figure 4.5: Requesting the sender’s signature.

Figure 4.8 shows us the result that comes after closing a channel. The red
squares indicate that the balance of the sender and the mule is now updated
based on the latest transactions. The MetaMask pop up asks again if we would
like to open a new channel. This was done in order to check whether the logic
of the application works or not.

4.3 Results

In the following section we summarized the overall costs of an entire cycle,
meaning:

• Approve() function in order to approve the spending on behalf of the
client,

• Declaring that the channel is being opened,

• TransferFrom() for the reward of the Mule,

• Uploading the settlement of the closure of the channel.

The table depicted in Table 4.1 describes the cost of opening a channel, sending
a single offline message and then closing it while uploading the verdict on the
blockchain.
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Figure 4.6: Result of the hypothetical transmission from the sender to the Mule.

Figure 4.7: Data that comes from the delivery of the message.

ACTION GAS(Gwei) ETHER
Opening the
channel +
approve allowace

70095 0.002103

Closing the
channel +
transferFrom()

39743 0.002782

TOTAL 109838 0.004885 (19.22
USD)

Table 4.1: Actions Cost Table.
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Figure 4.8: A cycle has closed and the Mule balance has been updated.
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Chapter 5

Conclusions

In this project we tried to create a service that delivers messages securing them
with the aid of the native characteristics of the blockchain. Thus, the project
satisfies the initial requirements by maintaining stable off-chain transactions
and guaranteeing their security and validity. With the implementation of state
channels we tried to reduce the costs related to transaction fees and the waiting
time since the only interaction with the chain is during the declaring intent to
open a channel and the one related to the closure. We also took advantage of
the native features of the BC like immutability, security and scalability in order
to have a safe environment that is, in theory, tamper-proof. Another aim of the
project was to render it scalable through the usage of layer 2 scaling solutions
which are a good alternative when the issue is the scalability and the costs of
the respective operations.

As far as it concerns our application, the implementation of the aforemen-
tioned concepts had a positive outcome since the overall costs were greatly
reduced compared to what it would have been if the state channels were not
implemented. In specific, let’s take a look at the following 4 operations that are
necessary in order to be able to interact with the application:

1. Opening the channel,

2. Creating an allowance to be spent on our behalf,

3. Closing the channel and,

4. Transferring the funds into the mule’s wallet

The overall operational cost of the interaction was 19.22 USD. This amount
is independent of how many messages were exchanged between the parties. One
thing to note is that the way these fees are formulated is based on the market
trend as well and given the fact that our tests were made during a frenzy period
with the NFTs, the fees can be considered expensive. Nonetheless, the amount
of money that we would have paid if no state channels were implemented, it
would have been exponentially greater. For example, a single transaction in
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Ethereum (during the frenzy) could go as high as 23 USD and that is just for
one transaction. Based on our application that would mean [4*23=92] USD just
for the operational costs. As a result, we can see how the implementation of
layer 2 scaling solutions can help overcome the cost issue when talking about
the Ethereum network.

It’s worth mentioning that although it seems like layer 2 scaling solutions are
the only way to overcome these problems, recently Ethereum had a fork named
’London Hard Fork’ which changed the core algorithm. This particular upgrade
was proposed in the EIP-1559 and it introduces a new mechanism called fee
burning. Basically, part of the fee is burnt and lost (making it a deflationary
asset in the long run) and the remaining part is given to the miners-validators
as a reward for validating the transactions block.

These features are the ones that attract more and more people thus leading to
a wider adoption of such a technology. In fact, during the last year, institutions
like MicroStrategy and others had adopted Ethereum and as a result invested
in it. But there is also a downside. With more people, more resources are
needed meaning higher fees in general and this is where layer 2 scaling solutions
come into play for the time being. Up until Ethereum transitions from a PoW
protocol to a PoS, layer 2 solutions like Polygon, Optimism etc, will play a
major role in the institutional adoption of the blockchain technology.
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