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Abstract

Il presente lavoro è la prosecuzione dell’attività di due mesi di tirocinio svolto presso la
École Normale Supérieure (ENS) di Lione, in collaborazione col team di ricerca DANTE
(Dynamic Network), in particolare, con la Professoressa Elisa Riccietti, e i Professori
Nelly Pustelnik e Paulo Goncavels.

Lo stage si inserisce all’interno di un progetto di ricerca più ampio del team DANTE.
Lo scopo del progetto è quello di studiare nell’ambito della ricostruzione di immagini,
l’uso di un insieme di tecniche di ottimizzazione numerica, note come metodi multilivello,
già ampiamente utilizzate nel campo delle equazioni alle derivate parziali [4].

I metodi multilivello si basano sulla costruzione di un insieme di approssimazioni
della funzione obiettivo a più livelli, gradualmente meno accurate e computazionalmente
meno costose da minimizzare, e sulla definizione di specifici operatori in grado di trasferire
informazioni da un livello ad un altro [3].

La prima parte del presente elaborato introduce il problema inverso per la ricostruzione
di immagini e alcuni metodi numerici utilizzati per risolverlo, focalizzandosi in partico-
lare, sugli algoritmi di ottimizzazione del gradiente.

In seguito, viene trattata la teoria dei metodi multilivello, dapprima in generale e
poi, adattati al problema inverso per la ricostruzione di immagini: infatti nel corso
dello stage si è cercato di sviluppare, sia dal punto di vista teorico che implementativo,
un algoritmo multilivello come alternativa ai metodi già esistenti, al fine di ricostruire
immagini degradate.

Una prima versione di tale algoritmo MGM (Multilevel Gradient Method) elabo-
rata durante lo stage, viene presentata in dettaglio e testata in diverse applicazioni reali
nell’ambito della ricostruzione di immagini. I risultati ottenuti durante le simulazioni
sono analizzati e confrontati con i metodi di ottimizzazione non vincolata noti in letter-
atura.

L’ultima parte dell’elaborato illustra brevemente la teoria delle wavelets, strumento
ampiamente utilizzato per processare immagini, in quanto consente di ottenerne una
rappresentazione "sparsificata", mantenendone intatte le principali caratteristiche. Con-
siderando le wavelets da una nuova prospettiva, è stato possibile definire degli operatori
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integrabili nello schema del multilvello al fine di trasferire informazioni da un livello di
approssimazione minore ad uno maggiore e viceversa. Grazie all’utilizzo delle wavelets
nel nuovo contesto, si è potuta sviluppare una seconda versione dell’algoritmo MGM,
che viene presenta e paragonata alla prima.

Dallo stage e dal presente lavoro, lo studio sui metodi multilivello nella ricostruzione
di immagini, proseguirà nella prospettiva di trattare problemi di dimensioni maggiori e
in contesti più generali, in collaborazione con l’ENS di Lione.
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Introduction

In many fields of interest, for example in satellite imaging, original data are usually
degraded by physical processes during their acquisition or transmission and it could also
happen that they are affected by some noise which brings to uncertainty. The need of
having access to original data is what justifies the formulation of inverse problems in
image restoration, which consist in recovering from a degraded image, the most similar
approximation of the original one, that is usually unknown. [7].

In next chapters, this class of problems will be formalized from a mathematical point
of view and some techniques for their solution will be presented. In particular some
unconstrained minimization techniques such as Constant Step Size Gradient method
(CGM) and Backtracking Gradient Method (BGM) will be discussed and then applied
to the reconstruction of degraded images [5].

Furthermore, part of the theory of the so-called multilevel approach will be reviewed
with the aim of providing an algorithm (MGM), which represents an alternative to the
standard gradient minimization methods. The multilevel scheme is based on the knowl-
edge of a set of estimations for the initial function on different levels of approximation,
less costly to minimize than the original one and on some operators allowing to transfer
information from one level to another [4].

This class of methods is widely used in the field of partial differential equations
(PDEs) and in this thesis, the theory will be adapted and applied to the restoration of
degraded images. We will also provide some versions of multilevel algorithms that can
be used to solve particular instances of the image restoration problem.

In addition a quick overview of wavelets theory will be presented, explaining how
using wavelets, it is possible to decompose an image into a parsimonious representation,
containing all the main information from the original image but in few sparse coefficients
[2]. This feature of wavelets representation will be exploited in order to define new
operators, able to transfer information between two different levels of the multilevel
hierarchy scheme.
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Chapter 1

Inverse problem in image restoration

The inverse problem in image restoration consists of recovering from degraded observed
data the most similar image possible to the original one (see Fig. 1.1). Usually the orig-
inal image is unknown and the observed data are degraded by physical processes during
acquisition or storage and they could also be affected by random noise.

Original image

(a) Original image

Degraded image

(b) Degraded observation

Restored image

(c) Restored image

Figure 1.1: example of image restoration problem.

1.1 Problem construction
From a mathematical point of view it is possible to describe such a problem using the
following equation [7]:

z = Dα(Ax̄), (1.1)

where z ∈ Rm is the observed degraded image in vector form, x̄ ∈ Rn is the original
image (usually unknown), A ∈ Rm×n is the linear degradation operator (e.g. blur),
Dα : Rm → Rm is the noise, parametrized by the scalar α ≥ 0.
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In the following, it will be considered a particular instance of this general problem,
in which Dα is assumed to be an additive noise (usually gaussian noise). The new
formulation, therefore is:

z = Ax̄+ b, (1.2)

where b is the realization of the noise, for example gaussian noise with variance α.
We want to find the best possible approximation x̂(z) ∈ Rn of the original image x̄
starting from z, the observed image.

Let us first assume that the image formation process is noise free. The problem z = Ax̄
is said to be well-posed if it fulfills the Hadamard conditions namely:

1. existence of a solution, i.e. range(A) = Rm;

2. uniqueness of solution, i.e. ker(A) = {0};

3. stability of the solution x̂ relatively to the observation z i.e.

∀(z, z′) ∈ (Rm)2, ∥z − z′∥ → 0 ⇒ ∥x̂(z)− x̂(z′)∥ → 0.

If the first and second conditions are satisfied it means that the solution exists and it is
unique, while the stability condition ensures that a small perturbation on the observed
image leads to a slight variation of the recovered image.

Note that, assuming A to be a square matrix, in image restoration problem, an ill
conditioning of the matrix A can lead to deal with an ill-posed problem. Unfortunately
for most of the common choices of A in applications, usually blur operators, the resulting
image restoration problem is ill-posed.

1.2 Problem formulations
In this section we are going to introduce some possible formulations for the image restora-
tion problem (1.2), analyzing first the non regularized models, and then focusing on
different types of regularization terms that can be considered to stabilize the model.

• Naive model
Assuming n = m and A being a full rank matrix, a solution always exists and it
is unique as A is injective. One simple way to find a possible solution to problem
(1.2) is to apply the inverse matrix A−1 to the degraded observation:

x̂ = A−1(Ax̂+ b) = x̂+ A−1b. (1.3)

Since the inverse of the matrix A has to be computed, this way of proceeding has
an high computational cost. Furthermore, if the matrix A is ill-conditioned the
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term A−1b may become very large, amplifying the noise and leading to an irregular
restored image.

• Least-squares model
If A is not invertible, it is reasonable to think that the degraded version Ax̂ of the
solution x̂ can be close to the observed vector z. In other words, the Euclidean
distance between Ax̂ and z should be minimized:

x̂ ∈ arg min
x∈Rn

∥Ax− z∥22.

– If A has rank r = m < n, the problem is under-determined and the second
Hadamard condition is not satisfied. Then, A is a “wide” matrix and the
uniqueness of the solution is not guaranteed.
The generalized inverse of A is thus equal to AT (AAT )−1 so the solution can
be computed by

x̂ = AT (AAT )−1z.

– If A has rank r = n < m, it is a “tall” matrix and the first Hadamard condition
is not fulfilled. There is no exact solution if z /∈ Range(A). The least-squares
problem however has a unique solution given by

x̂ = (ATA)−1AT z.

• Regularized least-squares
In order to stabilize the solution and to guarantee its uniqueness, a regularization
term can be added so that the new problem becomes:

x̂ ∈ arg min
x∈Rn

∥Ax− z∥22 + λΦ(x), (1.4)

where Φ: Rn → R is the regularization function, λ >0 is the regularization param-
eter.

The first term in the objective function is called the data fidelity term and the λ
can be interpreted as a trade off between this term and the regularization one. The
more λ is large and the more the regularization term plays a relevant role on the
minimization of the objective function.

There are different possible choices for the regularization term. If we consider D a
linear operator, which often corresponds to an high pass filter operator, such as a
gradient or Laplacian operator, Φ can be chosen as follows:
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1. l2 regularization term (Tikhonov regularization):
Consider Φ(x) = ∥Dx∥22, the original problem becomes:

x̂ ∈ arg min
x∈Rn

∥Ax− z∥22 + λ∥Dx∥22. (1.5)

In this particular case it is possible to compute the exact solution obtained
by the annihilation of the gradient of the objective function and solving the
resulting linear system, that is:

x̂ = (ATA+ λDTD)−1AT z. (1.6)

If the dimension of the problem is large, the computation of the exact solution
in (1.6) can be very expensive, so in many cases, iterative strategies converg-
ing to the minimum of the function are used, even though an exact solution
exists.
Here again, if the matrix (ATA + λDTD) is ill conditioned, the problem is
ill-posed.

2. l1 regularization term
Let us define Φ(x) = ∥Dx∥1, where ∥x∥1 =

∑n
i=1 |xi|, so problem (1.4) be-

comes:
x̂ ∈ arg min

x∈Rn
∥Ax− z∥22 + λ∥Dx∥1.

This type of regularization term is often used when the product Dx gives a
sparse resulting vector. In some applications in image reconstruction, D is
considered to be the operator which performs the wavelet transform of the
image x, in this case Dx corresponds to the wavelet coefficients of the image
x, which are in general really sparse so the l1-regularization has to be pre-
ferred. [7].

Another possible choice for D could be an operator which performs the dif-
ference between adjacent pixels on the image, in this case the resulting vector
Dx is still sparse and we refer to this kind of regularization as TV (Total
Variation) [8].

3. Huber function regularization term:
We can also consider Φ(x) = hη(Dx), where η > 0 is called the Huber param-
eter and the function hη is defined as:

hη(y) = hη(y1, . . . , yn) =
n∑

i=1

h̃η(yi), ∀y ∈ Rn,
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where h̃ is the 1-D Huber function [1] (see Fig 1.2), defined as:

h̃η(x) =

{
1
2
x2 se |x| < η,

η|x| − 1
2
η2 se |x| > η,

∀x ∈ R.

The Huber function h̃η is a smooth approximation of the l1 norm obtained
reshaping the function in a neighborhood of the origin, which is a non-
differentiability point, and considering instead the l2 norm in that interval.
The more the Huber parameter η is small and the more the function is close
to the l1 norm.
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Figure 1.2: 1-D Huber function with different parameters.

In this thesis, we focus on the problem formulation which uses the Huber function
regularization term, in order to consider a smooth imaging model that allows to apply
the class of multilevel optimization algorithms, typically employed for partial differential
equation (PDEs). For this reason, from now on the image restoration problem to which
we refers to will be:

min
x∈Rn

f(x) := ∥Ax− z∥22 + λhη(Dx). (1.7)

In the next chapter, some general minimization algorithms will be reviewed, and they
will be used to solve the problem (1.7).
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Chapter 2

Iterative methods for unconstrained
minimization problem

We address the problem of minimizing a smooth function of real variables, that is solving
the following unconstrained optimization problem

min
x∈Rn

f(x), (2.1)

where f : Rn → R is a continuously-differentiable function called the objective function.
The algorithms for the numerical solution of (2.1) are iterative, that is, starting from
an initial guess x0 ∈ Rn, a sequence {xk}k∈N of approximations of a solution of (2.1)
is generated. Typically these methods are constructed to be convergent to a stationary
point x∗ ∈ Rn of problem (2.1), that is such that:

lim
k→∞

∥∇f(xk)∥ = 0. (2.2)

In addition the convergence to a (local) minimum is ensured by imposing the simple
decrease of the objective function, f(xk+1) ≤ f(xk), ∀k ∈ N.

In particular, an algorithm is said to be globally convergent if the condition (2.2) is
guaranteed for any initial guess x0.

Moreover a vector d ∈ Rn is said to be a descent direction for f in x if ∇f(x)Td < 0.

One of the standard way to design a convergent algorithm is to pick a descent direction
dk ∈ Rn for f in xk and consider the iteration:

xk+1 = xk + αkdk, (2.3)

where αk is the step length at each iteration k [5].

A standard choice for the descent direction is dk = −∇f(xk), which is called the steepest
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descent direction and it is the one in which the value of f decreases the fastest. In
addition, the steepest descent direction is also the one that minimizes the directional
derivative of f in xk, in fact:

∂f

∂dk
(xk) = ∇f(xk)Tdk = ∥∇f(xk)∥∥dk∥ cos(θ),

where θ denotes the angle between ∇f(xk) and dk. The minimum value is reached by
cos(θ) = π, which gives the direction of maximum decrease:

dk = − ∇f(xk)
∥∇f(xk)∥

.

For what it concerns the step length computation, assuming dk to be a descent
direction, ideally we would like to choose the step length that solves the problem:

min
α
ϕ(α) = f(xk + αdk). (2.4)

In fact, solving the problem (2.4) exactly will provide the step that best minimizes the
objective function. Unfortunately, the solution of (2.4) would require an high compu-
tational cost, therefore in practice, the function ϕ is not exactly minimized but a step
length that achieves an adequate reductions of ϕ at low cost is identified.
Different techniques can be used for this purpose and some are reviewed in the next
sections.

2.1 Armijo and Wolfe conditions
In the following section, we will investigate under which assumptions on the step αk, it is
possible to provide a proof of the global convergence of the sequence {xk} to a stationary
point of the objective function f .
Armijo rule:
Given xk and dk descent direction for f in xk i.e. ∇f(xk)Tdk < 0 and c1 ∈ (0, 1), choose
αk such that:

f(xk + αkdk) < f(xk) + αkc1∇f(xk)Tdk. (2.5)

Since ∇f(xk)Tdk < 0 this condition is stronger than just imposing the simple decrease
of the objective function.

Define
ϕ(α) = f(xk + αdk),

l(α) = f(xk) + αc1∇f(xk)Td.
The Armijo condition states that the step α is acceptable if ϕ(α) ≤ l(α).
Note that for small positive values of α, the linear function l lies above the graph of ϕ.
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This is true because the slope of l(α) is c1∇f(xk)Tdk which is equal to c1ϕ′(0) and, since
c1 < 1 and both terms are negative, it holds c1∇f(xk)Tdk > ∇f(xk)Tdk.

Choosing αk according to (2.5) avoids selecting too large steps, but this condition is
not still sufficient to ensure the convergence of the method, since it may happen that
too small steps are taken not allowing the algorithm to make reasonable progress on
decreasing the function.

Wolfe rule:
Given xk and dk descent direction for f in xk and c2 ∈ (c1, 1), choose αk such that:

∇f(xk + αkdk)
Tdk ≥ c2∇f(xk)Tdk. (2.6)

This condition can be interpreted as a comparison between the slope of
ϕ′(αk) = ∇f(xk + αkdk)

Tdk and a desired slope c2∇f(xk)Tdk. We want the slope ϕ(αk)
to be significantly negative so that we can expect to reduce the function moving further
on that direction.
Choosing αk according to Wolfe condition avoids to select to small steps.

Theorem 2.1.1. [5, lemma 3.1] Let f : Rn → R be continuously differentiable and
bounded below in {xk + αdk|α > 0}, with dk descent direction for f in xk, and let
c1, c2: 0 < c1 < c2 < 1.
It exists I ⊆ (0,+∞) non empty such that every α ∈ I satisfies Armijo and Wolfe
conditions.

Proof. Let
ϕ(α) = f(xk + αdk), l(α) = f(xk) + αc1∇f(xk)Td.

Define g(α) = ϕ(α)− l(α), Armijo condition requires that g(α) < 0.

We have:

g(0) = ϕ(0)− l(0) = f(xk)− f(xk) = 0,

and

g′(0) = ϕ′(0)− l′(0) = ∇f(xk)Tdk − c1∇f(xk)Tdk = (1− c1)∇f(xk)Tdk < 0.

Since g(0) = 0, g decreases and g ∈ C0, it exists a right neighbourhood of zero where
g(α) < 0. Let ᾱ be the smallest positive zero of g(α).
It holds g(α) < 0, ∀α ∈ [0, ᾱ], which is equivalent to state that all α ∈ [0, ᾱ] satisfy
Armijo rule.
In particular in ᾱ it holds g(ᾱ) = 0, so it follows

f(xk + ᾱdk)− f(xk) = c1ᾱ∇f(xk)Tdk.
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For the mean value theorem applied to ϕ(α) in [0, ᾱ], it exists α̃ ∈ (0, ᾱ) such that

ϕ(ᾱ)− ϕ(0) = ᾱϕ′(α̃),

that is:

ᾱ∇f(xk + α̃dk)
Tdk = f(xk + ᾱdk)− f(xk) = c1ᾱ∇f(xk)Tdk > c2ᾱ∇f(xk)Tdk.

Deleting ᾱ we obtain:
∇f(xk + α̃dk)

Tdk > c2∇f(xk)Tdk,

The strictly Wolfe condition is satisfied in α̃, so it exists a neighbourhood IW of α̃ where
Wolfe condition is satisfied. This means that in IW ∩ [0, ᾱ] both Armijo and Wolfe
criterion are fulfilled.

We now provide the main convergence result.

Theorem 2.1.2. The Zoutendijk’s Theorem [5, Theorem 3.2]

Let Ω = {x ∈ Rn|f(x) ≤ f(x0)}, f ∈ C1(Ω) and lower bounded on Ω, dk descent
direction for f , and assume that αk satisfies Armijo and Wolfe condition and that ∇f(x)
is Lipschitz continuous in Ω.
Let θk be the angle between −∇f(xk) and dk, i.e. the angle such that

cos(θk) = − ∇f(xk)Tdk
∥∇f(xk)∥∥dk∥

.

The numerical series
+∞∑
j=0

cos2(θj)∥∇f(xj)∥2

is convergent.

Proof. Start considering the Wolfe condition:

∇f(xk + αkdk)
Tdk ≥ c2∇f(xk)Tdk.

Add −∇f(xk)Tdk to both members:

∇f(xk + αkdk)
Tdk −∇f(xk)Tdk ≥ c2∇f(xk)Tdk −∇f(xk)Tdk,

that is,
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(c2 − 1)∇f(xk)Tdk ≤ (∇f(xk + αkdk)−∇f(xk))Tdk
≤ ∥∇f(xk + αkpk)−∇f(xk)∥∥dk∥
≤ L∥(xk + αkdk)− xk∥∥dk∥ = Lαk∥dk∥2,

That gives

αk ≥
(c2 − 1)∇f(xk)Tdk

L∥dk∥2
,

which is a positive quantity because c2 − 1 < 0 and ∇f(xk)Tdk < 0.

Note that

f(xk+1) ≤ f(xk) + αkc1∇f(xk)Tdk ≤ f(xk) +
(c2 − 1)c1

L

(∇f(xk)Tdk)2

∥dk∥2

= f(xk)− q
(∇f(xk)Tdk)2

∥∇f(xk)∥2∥dk∥2
∥∇f(xk)∥2 = f(xk)− q cos2(θk)∥∇f(xk)∥2,

where q = − (c2−1)c1
L

> 0.

This inequality is verified for each αj that satisfies the assumptions, so it holds:

f(xj+1) ≤ f(xj)− q cos2(θj)∥∇f(xj)∥2, ∀j ≤ k.

Using it recursively we have:

f(xk+1) ≤ f(xk)− q cos2(θk)∥∇f(xk)∥2 ≤ f(x0)− q
k∑

j=0

cos2(θj)∥∇f(xj)∥2,

which gives the inequality

k∑
j=0

cos2(θj)∥∇f(xj)∥2 ≤
f(x0)− f(xk+1)

q
.

It holds:
+∞∑
j=0

cos2(θj)∥∇f(xj)∥2 = lim
k→+∞

k∑
j=0

cos2(θj)∥∇f(xj)∥2 ≤ lim
k→+∞

f(x0)− f(xk+1)

q

=
f(x0)

q
− 1

q
lim

k→+∞
f(xk+1) ̸= +∞.

This limit can not be infinite because Armijo rule implies the simple decrease of the
objective function f , so it means that xk ∈ Ω, ∀k ∈ N, so f is both lower and upper
bounded.

This implies that the positive term series
∑+∞

j=0 cos
2(θj)∥∇f(xj)∥2 is not divergent, so in

this case it is also convergent.
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Implication of the theorem: Global convergence

Since the series
∑+∞

j=0 cos
2(θj)∥∇f(xj)∥2 is convergent, it holds:

lim
k→+∞

cos2(θj)∥∇f(xj)∥2 = 0.

There are two possibilities: the first one is that limk→+∞ ∇f(xj) = 0, which means that
every accumulation point of {xk} is a stationary point for the function f .

The second possibility is that limk→+∞ cos(θk) = 0, which means that
limk→+∞ ∇f(xk)Tdk = 0. This situation occurs when ∇f(xk) and dk tend to be orthog-
onal and it can be avoided choosing a descent direction dk such that cos(θk) > M for
some M > 0.
For example in the gradient descent method, selecting dk = −∇f(xk) we have:

cos(θk) = − ∇f(xk)Tdk
∥∇f(xk)∥∥dk∥

=
∇f(xk)T∇f(xk)

∥∇f(xk)∥∥∇f(xk)∥
= 1.

With this choice of dk = −∇f(xk) the deriving gradient method is globally convergent
to a stationary point for any choice of the starting point x0 under the assumption of
Zoutendijk’s Theorem (2.1.2).

Note that the method does not necessarily converge to a minimum of the function but
it is only guaranteed that the limit point is a stationary point. In order to be sure that
the iteration gives a minimum, additional information from the Hessian of the function f
has to be added in the computation of the descent direction dk, as it happens on Newton
method or Quasi-Newton methods [5].

2.2 Backtracking gradient method (BGM)
Applying the two rules already presented and choosing as descent direction the steepest
descent direction dk = −∇f(xk), yield the so-called the Backtracking Gradient Method
(BGM).

An implementation of the BGM is reported in Algorithm 1, where the step length αk is
chosen using an adaptive strategy (the backtracking) and in such a way that it satisfies
Armijo and Wolfe conditions.
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Algorithm 1 Backtracking Gradient Method (BGM)
1: Given x0, α0, bmax, c1 ∈ (0, 1), γ ∈ (0, 1), ϵ.
2: Set k = 0.
3: while ∥∇f(xk)∥ ≥ ϵ do
4: for b = 0, 1, ..., bmax do
5: if f(xk − αk∇f(xk)) < f(xk)− αkc1∥∇f(xk)∥2, i.e. Armijo condition then
6: stop
7: else
8: αk+1 = γαk

9: end if
10: end for
11: xk+1 = xk − αk∇f(xk)
12: k = k + 1
13: end while

The backtracking algorithm works as follows: if αk = α0 does not satisfy Armijo rule,
we reduce αk by the multiplication with γ and this is repeated until the new step αk

satisfies Armijo.

This procedure is justified by Wolfe’s lemma (Theorem 2.1.1) which ensures that it exists
ᾱ such that ∀α ∈ [0, ᾱ], α satisfies Armijo condition, so if αk = α0 ≥ ᾱ we decrease it
multiplying by γ until the new αk < ᾱ. After a finite number of reductions we will find
an appropriate αk so the backtracking strategy never fails if Wolfe’s lemma’s assumptions
are satisfied.

In the algorithm a maximum number of iterations bmax is fixed, because if ᾱ is too small,
we will be forced to take too small steps, leading to a slow convergence, so we stop before
this may occur.

Since Wolfe’s condition avoids to consider too small steps, and since bmax plays the
same role, explicitly verifying Wolfe’s condition would be redundant, for this reason only
Armijo condition is checked in backtracking algorithm.

2.3 Constant step length gradient method (CGM)
We now present an implementation of the gradient method in which the step length is
no longer chosen using and adaptive strategy but it is kept constant.
Assume f : Rn → R twice differentiable with Lipschitz continuous gradient, i.e.

∃L∇f > 0 such that ∥∇f(x)−∇f(y)∥ ≤ L∇f∥x− y∥, ∀x, y ∈ Rn. (2.7)
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Then define an approximation of the function using the Taylor series of order one to
define the model mk(d) as a function of the direction of descent d:

f(xk + αkd) ≤f(xk) + αk(∇f(xk))Td+
(αk)

2

2
dTH(zk)d

≤ f(xk) + αk(∇f(xk))Td+
(αk)

2L∇f

2
∥d∥2︸ ︷︷ ︸

mk(d)

,
(2.8)

where zk ∈ [xk, xk + αkd], H(x) is the Hessian matrix of the function f .

The step length αk is selected by minimizing the model mk(d), that is by annihilating
its gradient:

αkdk = − 1

L∇f

∇f(xk).

The equation shows that at each iteration k the step length can be chosen to be always
equal to αk = − 1

L∇f
. Therefore the corresponding iteration scheme is given in Algorithm

2.

Algorithm 2 Constant Step Size Gradient Method (CGM)
1: Given x0, L∇f , ϵ.
2: Set k = 0.
3: while ∥∇f(xk)∥ ≥ ϵ do
4: xk+1 = xk − 1

L∇f
∇f(xk)

5: k = k + 1
6: end while

2.4 Numerical results in image restoration problem
In this section we will show the compared results applying both the backtracking gra-
dient method (BGM) and the constant step size gradient method (CGM) to the image
restoration problem that has been presented in Chapter 1.
In particular, considering the notation previously introduced, we want to solve the prob-
lem:

min
x∈Rn

f(x) = ∥Ax− z∥22 + λhη(Dx), (2.9)

where, f : Rn → R, is smooth, convex, x̄ is the original image, z is the degraded
observation, hη is the Huber function with Huber parameter η, λ ≥ 0 is the regularization
parameter and D an high pass filter operator.

In our experiments we fixed the initial parameters in Algorithms 1 and 2: bmax = 20,
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c1 = 10−4, γ = 0.5, ϵ = 10−7 and we started from x0 random vector. Moreover, we
considered the following setting:

• x̄ ∈ Rn, n = 5122 is the vectorized version of an image,

• z = Ax̄ + b, where A ∈ R5122×5122 , square matrix that performs the blur, by the
convolution of the image with a gaussian filter of variance 3 (see Fig. 2.1) and b is
the realization of gaussian noise with variance 0.03.

gaussian 3 filter

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Figure 2.1: Gaussian filter for the blur with variance 3.

• D is a tall matrix D=
[
D1

D2

]
∈ R2n×n where D1 performs the horizontal differences

between adjacent pixels on the image and D2 performs the vertical differences.

• The hyper-parameter λ is fixed: λ = 0.05.

We now discuss the results obtained using CGM and the BGM for different values
of the Huber parameter η. In particular, focusing on the behaviour of both algorithms
when the η is decreased, which means that the Huber function is close to be equal to the
l1 norm and the problem is close to a non-smooth problem.

In these experiments, the noise level is evaluated with a signal-to-noise-ratio (SNR) [7]
measure defined as

10 log10

(
variance of x̄

variance of noise

)
.

The higher the SNR is and the more the restored image is considered a good approxi-
mation of the original one.

In Fig. 2.2 and Fig. 2.4 the first picture represents the degraded observation and the
second is the decrease of the objective function analysis, where the red line is the CGM
and the blue line is the BGM.
In Fig. 2.3 and Fig. 2.5 the comparison between the restored images after 100 iterations
of the two methods is proposed.
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Huber parameter η = 1

Degraded image, snr=18.978
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Figure 2.2: Results for Huber parameter η = 1, after 100 iterations.

Restored image, snr=22.8038

(a) CGM restored image

Restored image, snr=24.8063

(b) BGM restored image

Figure 2.3: Restored images comparison for η = 1, after 100 iterations.

We now decrease the value of the Huber parameter η from 1 to 0.01 and we repeat
the same analysis of the results in Fig 2.4 and in Fig 2.5.

Huber parameter η = 0.01

Degraded image, snr=18.978
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Figure 2.4: Results for Huber parameter η = 0.01, after 100 iterations.
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Restored image, snr=7.9916

(a) CGM restored image

Restored image, snr=22.2502

(b) BGM restored image

Figure 2.5: Restored images comparison for η = 0.01, after 100 iterations.

Observations:

It seems clear from the results that for large values of Huber parameter, for example
η = 1, both CGM and BGM have better performances in terms of decrease of the
objective function and quality of restoration after the same number of iterations.

The more the problem is close to a non smooth problem, which is equivalent to choosing
a small η parameter, and the more both algorithms slow down their convergence and
also the quality of the restoration decreases.

Comparing the CGM to the BGM, it seems clear that in inverse problems, an adaptive
step length computation is more efficient, since it brings to a faster convergence and an
higher quality restored image after the same number of iterations.

In the next chapters, considering what has been observed so far, the Huber parameter η
will be fixed to η = 1, that is the Huber function is expected to behave simile to the l2
norm.

Since this study is a preliminary analysis, the problem that has been considered is a small
size problem and for this reason it is not provided an analysis in terms of computational
time.

When larger problems are considered, gradient methods can have really slow convergence,
especially dealing with ill-posed problem, for example when the matrix ATA+ λDTD is
ill-conditioned.

For this reason, other methods could be used to solve the problem. One possibility,
assuming the objective function to be twice differentiable, could be to use a second order
Taylor model to create the approximation of the objective function used to define the
step αk. Newton methods, or Quasi Newton methods are some examples of these two
order methods [5].
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Chapter 3

Multilevel gradient method

In order to accelerate the performance of the gradient method it is possible to introduce
a multilevel approach. The main idea that stands behind the class of multilevel methods
is to reduce the cost of the step computation at each iteration by reducing the dimension
of the problem and by exploiting the knowledge of alternative simplified expressions of
the objective function.
This class of methods, called multigrid methods [3], is often used in partial differential
equations (PDEs) with good results both in terms of computational time and decrease
of the objective function, as shown in the paper [4].
In the next section, the general theory of multilevel methods will be presented and applied
to the inverse problem in image restoration.

3.1 General multilevel scheme
Let us consider a minimization problem of the form:

min
x∈Rn

f(x),

where f : Rn → R is a bounded below, continuously differentiable function.
Assumption

1. We assume to know a collection of continuously differentiable functions {f l}lmax
l=1 ,

where nl ≥ nl−1, f
l : Rnl → R and f lmax(x) = f(x).

This collection of functions has to be such that for each l = 2, . . . , lmax, fl is more
costly to minimize than fl−1.

2. We have at disposal some operators to transfer variables from one level to another:
restriction operators Rl : Rnl → Rnl−1 and prolongation operators P l : Rnl−1 → Rnl

[4].
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It is possible to summarize the structure of the multilevel as in Table 3.1:

level variables approximation

lmax xlmax ∈ Rnlmax f lmax = f
...

...
l + 1 xl+1 ∈ Rnl+1 f l+1

Rl+1 ⇓ ⇑ P l+1

l xl ∈ Rnl f l

...
...

1 x1 ∈ Rn1 f 1

Table 3.1: Hierarchy structure in the multilevel framework.

Example of restriction and prolongation operators

The standard Rl and P l operators are simple restriction and interpolation operators
which are commonly used with PDEs [3]. A simple example of 3× 3 matrix is proposed
below in order to give an idea on how variables are transferred from one level to another.
As the example shows, the dimension of the matrix is increased by simply adding the
mean value between two adjacent entrances of the matrix in the position between each
couple of elements.

1 2 3
4 5 6
7 8 9

 → Pl →


1 1.5 2 2.5 3
2.5 3 3.5 4 4.5
4 4.5 5 5.5 6
5.5 6 6.5 7 7.5
7 7.5 8 8.5 9


It is a common choice in multigrid theory, to construct the prolongation operator P l

and to consider the relationship Rl = α(P l)T to determine Rl. The scalar α is often set
α = 1

2d
, where d is the dimension of the problem considered. For example the image

restoration problem is a two dimensional problem, so we set α = 1
22

= 1
4

[3].

Note that P l and Rl are not orthogonal operators, so starting from a matrix, restricting
it and after projecting it back, does not give exactly the original matrix.

3.2 Two level method
For simplicity we reduce the analysis to the two level case, introducing the index h to
denote the fine level or upper level and H to denote the coarse level or lower level.
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In this particular case the general scheme becomes:

f = fh : Rnh → R, fH : RnH → R,

R : Rnh → RnH , P : RnH → Rnh .

The problem that has to be solved in this new notation has the form:

x̂ ∈ arg min
x∈Rn

f(x) ⇐⇒ x̂h ∈ arg min
xh∈Rnh

fh(xh). (3.1)

Note that the aim is to minimize the function fh at fine scale, while the coarse
approximation fH is just a tool that is used to reduce the computational cost of the
algorithm, it does not necessarily need to be decreased because there is nothing ensuring
that minimizing fH , also the fine function fh is decreased.

For this reason, it needs to be defined a model at coarse scale starting from the coarse
function fH which is less costly to minimize than the function fh at fine scale and such
that it ensures that the fine objective function is decreased while the coarse model is
minimized (see Section 3.2.1).

Moreover, a condition stating when it is advantageous to use the coarse model has to be
defined (see Section 3.2.2 ) together with a starting point to start the coarse minimization
(see Section 3.2.1 ).

3.2.1 Coarse model construction

Consider the k-th iterate at fine level xhk, in order to define a starting point for the coarse
minimization the current fine iterate is simply restricted to coarse scale:

xH0,k = Rxhk,

where in this notation, the k refers to the iteration at fine scale, while the 0 tells that
this is the starting point at coarse scale. The index of the iteration at coarse scale will
be denoted by ℓ.

If at fine iteration k it is decided to perform a coarse minimization, the coarse model
mH

k (s) is defined as function of the step direction s and a regularization term has to be
added to the coarse function fH , this is due to the fact that, minimizing fH is in general
not sufficient to guarantee that fh is minimized as well[4]. So let us consider the vector

vH = R∇fh(xhk)−∇fH(xH0,k), (3.2)

and define the coarse model as:

mH
k (s) = fH(xH0,k + s) + (R∇fh(xhk)−∇fH(xH0,k)︸ ︷︷ ︸

vH

)T s. (3.3)
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In this way if the minimization of the model afterm iteration yields a coarse step direction
sHm,k, we will show that the definition of such a model ensures that the angle between
∇fh(xhk) and PsHm,k is equal to the angle between ∇mH

k (0) and sHm,k.
In order to prove this fact, we first show:

(R∇fh(xhk))
T sHm,k = ∇mH

k (0)
T sHm,k ∼ mH

k (s
H
m,k)−mH

k (0) < 0. (3.4)

From this relation, if we project the coarse step to the fine level, defining shk = PsHm,k we
have that the fine step is a descent direction for fh in a neighbourhood of xhk in fact:

∇fh(xhk)
T shk = ∇fh(xhk)

TPsHm,k = (R∇fh(xhk))
T sHm,k = ∇sm

H
k (0)

T sHm,k < 0. (3.5)

In order to obtain the coarse step sHm,k, the model mH
k can be minimized using any op-

timization method (gradient method, Newton, etc.). For example applying the gradient
method the coarse model scheme gives:

sHℓ+1,k = sHℓ,k − τℓ∇mH
k (s

H
ℓ,k), (3.6)

∇mH
k (s

H
ℓ,k) = (∇fH(xH0,k + sHℓ,k) +R∇fh(xhk)−∇fH(xH0,k)), (3.7)

where the step τℓ can be chosen using a backtracking strategy. After m iterations the
final coarse step will be:

sHm,k =
m∑
ℓ=1

−τℓ∇mH
k (s

H
ℓ,k). (3.8)

The strength of the multilevel approach is the fact that for a single fine scale iteration,
at coarse scale much more steps are performed and they are less costly than computing
the same number of iterations at higher level (see Algorithm 3).

Even though there are no theoretical results, it has also been observed in PDEs that
when the function is minimized at coarse scale, the resulting step direction is usually a
better descent direction than the one that could have been computed at fine scale.

After the minimization of the coarse model the step is projected at fine scale and the
fine iterate is updated using a backtracking gradient step:

xhk+1 = xhk − γkPs
H
m,k = xhk − γks

h
k. (3.9)

We can briefly resume the procedure with the scheme in Fig 3.1.
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xhk

xH0,k := Rxhk

R

sHm,k

min
sH∈RnH

mH
k (s

H)

m iterations

xhk+1 = xhk + shk

shk = PsHm,k

shk = −γk∇fh(xhk)

Figure 3.1: Scheme of iteration k of the multilevel procedure. Option 1 (dotted line):
take a gradient step at high level. Option 2 (straight line): exploit lower level model:
take m steps of an optimization method to decrease the lower model.

3.2.2 Coarse step condition

The last step that needs to be done is defining a condition stating when the coarse model
can be used instead of performing a backtracking gradient step at fine scale.

Obviously, it is not always possible to use the lower level model. For example, it may
happen that R∇f(xhk) lies in the nullspace of R which means that R∇f(xhk) is zero while
∇f(xhk) is not. In this case, the current iterate appears to be first-order critical at lower
level while it is not at higher level. Using the model mH

k is hence potentially useful only
if R∇f(xhk) is large enough compared to ∇f(xhk). [4]
We therefore restrict the use of the model mH

k to iterations where

1. ∥R∇fh(xhk)∥ > κ∥∇fh(xhk)∥,

2. ∥R∇fh(xhk)∥ > θ,

for some constant κ ∈ (0;min{1; ∥R∥}) and where θ ∈ (0, 1).
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Algorithm 3 Multilevel Gradient Method (MGM)

1: Set k = 0 and initialize xhk.
2: while ∇fh(xhk) ≥ ϵ do
3: if ∥R∇fh(xhk)∥ > κ∥∇fh(xhk)∥ and ∥R∇fh(xhk)∥ > θ then
4: Project to smaller dimension
5: xH0,k = Rxhk, sH0,k = 0
6: Minimize the coarse model to find the coarse step
7: for ℓ = 0, . . . ,m− 1 do
8: |∇mH

k (s
H
ℓ,k) =

(
∇fH(xH0,k + sHℓ,k) +R∇fh(xhk)−∇fH(xH0,k)

)
9: ⌊ sHℓ+1,k = sHℓ,k +−τℓ∇mH(sHℓ,k)

10: Reproject into the original domain
11: xhk+1 = xhk − γkP (s

H
m,k)

12: end for
13: else
14: xhk+1 = xhk − γk∇fh(xhk)
15: end if
16: k = k + 1
17: end while

3.3 Multilevel in image restoration
In this section it will be presented a version of the MGM algorithm applied to the inverse
problem in image restoration. The aim of the study is to identify some situations in which
a multilevel approach can be more effective with respect to the backtracking gradient
method. Since it is a preliminary study on a small dimension problem, we will not focus
on the computational time comparison but only on decreasing the objective function and
providing a good quality restored image.

We consider an inverse problem in image restoration choosing the Huber function on the
regularization term in order to have an objective function which is smooth. This choice
is justified by the fact that as a preliminary study, the problem is constructed in such a
way that it has a similar formulation to PDEs minimization problems [4].
It has already been proved that in PDEs the multilevel scheme can be really effective, so
the first goal is to recreate similar conditions for the image problem to see if the MGM
brings the same results as in PDEs and if it so, in which cases it happens.

3.3.1 Problem formulation

The problem to solve is to find a minimizer of:

f(x) = ∥Ax− z∥22 + λhη(Dx), (3.10)
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which using the notation of the two level scheme becomes:

fh(xh) = ∥Ahxh − zh∥2 + λhhη(D
hxh), (3.11)

where

• x̄h ∈ Rnh is the vectorized original image (dimensions usually 512× 512);

• zh = Ahx̄h + bh, where Ah ∈ Rnh×nh performs the blur convolving the image with
a gaussian filter and b is the realization of gaussian noise;

• Dh ∈ R2nh×nh is a tall matrix Dh =

[
Dh

1

Dh
2

]
, where Dh

1 performs the horizontal

differences between adjacent pixels on the image and Dh
2 performs the vertical

differences;

• The hyper-parameter λh ≥ 0, is fixed before performing the method.

In order to construct the coarse model mH
k we need to define a coarse function fH

and then modify it adding the regularization term vH .
As first step of the procedure, the variables and the operators need to be restricted in
order to be used at coarse scale. The procedure applied is a standard choice in multigrid
theory as explained in [3]:

• AH = RAhP , restricted blur matrix,

• zH = Rzh, restricted observed image,

• DH =

[
DH

1

DH
2

]
=

[
RDh

1P
RDh

2P

]
restricted high pass filter operator.

At this point the coarse function fH and the coarse model mH
k can be defined:

fH(xH) = ∥AHxH − zH∥22 + λHhη(D
HxH), (3.12)

∇fH(xH) = 2(AH)T (AHxH − zH) + λH(D
H)T∇hη(DHxH), (3.13)

mH
k (s) = fH(xH0,k + s) + (R∇fh(xhk)−∇fH(xH0,k)︸ ︷︷ ︸

vH

)T s. (3.14)

Once the model is defined the MGM algorithm previously described can be applied in
this context and the results can be compared to the ones obtained using the backtracking
gradient method.
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3.4 Numerical comparison of the MGM and the back-
tracking gradient method

We performed experiments where the original image is 512 × 512 pixels, both blur and
noise are considered to be Gaussian, the Huber parameter η is fixed (η = 1), the max-
imum number of coarse iterations allowed at coarse scale fixed to 50 and the coarse
condition parameter κ = 0.3. In all the experiments xh0 is selected as a random vector.
The analysis with different value of noise, blur and parameters is provided in the fol-
lowing sections in order to individuate particular configurations in which the use of the
MGM may be advantageous .

3.4.1 Ideal situation

After trying different combinations of noise, blur and Hyper-parameters, it has been
observed that, in order for the multilevel to be effective with respect to the gradient
method, the gradient method’s convergence has to be slow.

Since the behaviour of the MGM is really affected by the choice of parameters, it is
convenient to move the focus on those situations in which the backtracking gradient’s
convergence is particularly slow. If the gradient is not too fast, the multilevel approach
has more probability to decrease the function better than the gradient even for a choice
of parameters which is not optimal.

Finding those particular instances is really useful because it is not always possible to set
the best parameters’ configuration since in many cases some hyper-parameters are kept
constant .
Configurations in which the convergence of the gradient has been observed to be slow
are:

• Huber parameter η = 1,

• high value of gaussian filter variance on blur operator,

• low value of gaussian noise’s variance,

• small λh hyper-parameter.

This is a particularly promising situation for the MGM and it is described in Fig. 3.2,
fixing the gaussian noise at 0.5% so the resulting SNR of the degrade image will be 19.07,
fixing the gaussian filter variance for the blur at 3 and the λh = 0.005 we have that:
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Original image

(a) Original image x̄

gaussian 3 filter
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(b) blur filter

Degraded image, snr=19.0735

(c) Degraded image z

Figure 3.2: Initial configuration on ideal case.

Starting from this configuration and applying both methods, since the problem is convex
they converge to the same optimal value which gives the restored image in Fig. 3.3:

Restored image, snr=25.4961

Figure 3.3: Restored image x̂.

In Fig. 3.4 the comparison between MGM and backtracking gradient, is plotted in terms
of the the decrease of the objective function in the first picture and the second, in terms
of the convergence of the norm of the gradient to zero. In this plots the red line refers
to the MGM and the blue line to the BGM.

We can observe in Fig. 3.4 that in this ideal situation, once the optimal parameters
are fixed, the MGM is able to have a better decrease on the objective function and also
the convergence of the norm of the gradient to zero seems faster.
As next step an analysis varying this ideal parameters will be provided in order to
understand how the performance of both methods are affected by different types of
variations on the model.
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Figure 3.4: Objective function and norm of the gradient comparison.

3.4.2 Blur variation

Different gaussian filters have been applied to the original image in order to perform the
initial degradation of the observation, while all the other parameters are kept constant.
The results are presented decreasing the value of the variance of the gaussian filter whose
convolution with the original image generates the blurred image. In other words the first
image is less blurred while the last one has more blur.

Gaussian filter variance 1.3
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(a) Degraded image

Restored image, snr=32.5215

(b) Restored image
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Figure 3.5: Results comparison for gaussian filter variance 1.3.
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Gaussian filter variance 1.7
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(a) Degraded image

Restored image, snr=29.9503

(b) Restored image
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Figure 3.6: Results comparison for gaussian filter variance 1.7.
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Figure 3.7: Results comparison for gaussian filter variance 3.

In Fig. 3.5, Fig. 3.6 and Fig. 3.7 we can observe that in all the situations the restored
image improves the observation as the higher value of SNR index confirms. Clearly the
restoration of one observation in which an high value of blur has been applied has a lower
quality if compared to the restored image of a less blurred observation.
Analyzing the plots of the objective function, we can observe that for higher value of blur,
the BGM as a slower convergence, allowing the MGM to gain significantly in decreasing
the objective function.
This behaviour is particularly clear looking at the case with gaussian filter variance equal
to 3 in Fig. 3.7, in which the red line of the MGM gets close to the minimum value of
the function much faster than the blue line of the BGM.
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3.4.3 λh hyper-parameter variation

In this section, fixing the gaussian filter variance of the blur to 3 and maintaining the
other parameters unchanged, we try increasing value of the λh parameter on the defini-
tion of the objective function.
The λh parameter is strictly related to the value of noise. In order to have an high
quality restored image, for small value of noise a small λh parameter has to be chosen
and increasing the noise λh has to be increased as well.
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Figure 3.8: Results comparison for λ = 0.05.
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Figure 3.9: Results comparison for λ = 0.1.
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λh = 0.5

Degraded image, snr=19.0735
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Restored image, snr=23.4065

(b) Restored image
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Figure 3.10: Results comparison for λ = 0.5.

Changing the λh on the definition of the objective function, really affects the conver-
gence of both methods. In particular, it the first case (Fig. 3.8) form a small λh = 0.05,
the backtracking gradient method has a slow convergence if compared to the MGM,
while increasing λh = 0.5 (Fig. 3.10), the backtracking gradient becomes faster and it
gets close to the minimum value of the function in almost 20 iterations. In this last case,
we can not observe a gain in decreasing the function using the MGM method because
the gradient is already too fast.

Note that a faster convergence does not imply a better quality in the restored image,
indeed in Fig. 3.10, even if the function decreases fast to the minimum, this minimum
represents a restored image which is a lower quality approximation of the original, if
compared to the one obtained in Fig. 3.8 for λh = 0.05, where the convergence is slower.

We could say that for small value of λh the gradient method is in general slow, so poten-
tially the MGM represents a good alternative since, for a good choice of hyper-parameter,
it decreases the objective function faster.

3.4.4 Instability of the model

One of the most important problems in the analysis and interpretation of the results is
the initial choice of hyper-parameters used to set the problem.

In many situations a variation of just one hyper-parameter brings to very different be-
haviours of the MGM algorithm; let us provide some examples.
As it has been already discussed in previous sections, the main hyper-parameters involved
in the MGM method are:

• λh: in the definition of the objective function,

• λH : in the definition of the coarse model,
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• κ, θ : in the coarse step condition,

• m: maximum number of iterations at coarse scale.

Analysis of parameter m
The impact of λh variation has already been discussed, so we will provide an example of
how the convergence of the MGM is affected by the choice of the maximum number of
iteration at coarse scale.
A new situation will be analyzed, where all the parameters are unchanged with respect
to the previous ideal case except for the maximum number of coarse iteration m, which
is reduced from m = 50 to m = 10.
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(a) Objective function, m=50
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Figure 3.11: effect of m parameter’s variation on the objective function.

Setting m = 50 leads to a more efficient decrease of the objective function as the
plots clearly show, but considering too many iterations at coarse scale is not in general
the optimal alternative. The reason for which setting m too large may not be the best
choice is that performing too many iteration to minimize the coarse model could be really
computationally expensive.

To explain better this concept the weighted analysis of the objective function is provided
in the next plots. This means that we penalized the multilevel considering each coarse
step on the minimization of mH

k as a 1
4

of a standard step at fine scale. This kind of
analysis allows to take into account the steps done at coarse scale, which unless would
not be observable on a simple plot of the objective function.
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Figure 3.12: Weighted analysis of objective function for different m parameters

It is clear from the plots in Fig. 3.12 that we can not increase m as much as we want,
because it will lead the algorithm not to be computationally efficient, for this reason a
compromise should be found between a reduced number of iterations at coarse scale and
a sufficient decrease of the objective function.
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Chapter 4

Multilevel and wavelet theory

4.1 Wavelet in brief
Wavelets theory has many applications in many fields, one of the most important is
the signal and image processing. The purpose of a wavelets analysis of a signal or an
image is to find a parsimonious representation which preserves the initial features of the
signal/image but expresses the signal/image using a relatively small set of coefficients.

In wavelets analysis, two functions play a particularly important role: the scaling function
or father wavelet ϕ and the mother wavelet or simply wavelet ψ. This two functions
generate a family of functions that can be used to break up or reconstruct a signal or an
image[2].
In the next section a brief overview of this topic will be presented.

Definition 4.1.1. Multiresolution analysis Let {Vj}, j = . . . ,−1, 0, 1, . . . , be a sequence
of subspaces in L2(R). The collection of spaces {Vj, j ∈ Z} is called a multiresolution
analysis with scaling function ϕ if the following conditions hold:

1. Vj ⊂ Vj+1, ∀j ∈ Z

2.
⋃

j∈Z Vj = L2(R)

3.
⋂

j∈Z Vj = ∅

4. f(x) ∈ Vj ⇐⇒ f(2−jx) ∈ V0

5. ϕ ∈ V0, and the set {ϕ(x − k), k ∈ Z} is an orthonormal basis for V0 with respect
to the inner product of L2(R)

The V ′
j s are called approximation spaces.

The scaling functions ϕ can be of very different types, but the most useful class of scaling
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functions are those that have compact support. Different choice for ϕ may yield different
multiresolution analyses.

Theorem 4.1.1. [2, Theorem 5.5] Suppose {Vj, j ∈ Z} is a multiresolution analysis with
scaling function ϕ, then for any j ∈ Z, the set of functions

{ϕjk(x) = 2
j
2ϕ(2jx− k); k ∈ Z}

is an orthonormal basis for Vj.

Theorem 4.1.2. [2, Theorem 5.6] Suppose {Vj, j ∈ Z} is a multiresolution analysis with
scaling function ϕ, then the following scaling relation holds:

ϕ(x) =
∑
k∈Z

pkϕ(2x− k), where pk = 2

∫ +∞

−∞
ϕ(x)ϕ(2x− k)dx.

Moreover
ϕ(2j−1x− l) =

∑
k∈Z

pk−2ϕ(2
jx− k),

equivalently
ϕj−1,k = 2−

1
2

∑
k∈Z

pk−2ϕj,k,

where ϕjk(x) = 2
j
2ϕ(2jx− k).

In order to visualize better these concepts, we propose the Haar wavelet example,
which is the simplest wavelet possible. First we define the father wavelet or scaling func-
tion ϕ

ϕ(x) =

{
1 if x ∈ [0, 1),

0 otherwise.

Now it is possible to define the approximation sets. V0 will be the set of all functions of
the form

∑
k∈Z akϕ(x − k), V1 the set of all functions

∑
k∈Z akϕ(2x − k) and in general

Vj the set of all functions
∑

k∈Z akϕ(2
jx− k).

Using Theorem (4.1.1) we have that the set of functions {ϕjk(x) = 2
j
2ϕ(2jx− k); k ∈ Z}

is an orthonormal basis of Vj.

In fact fixing j = 0 it holds:

∥ϕ(x− k)∥2L2 =

∫ +∞

−∞
ϕ(x− k)2dx =

∫ k+1

k

1dx = 1,
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⟨ϕ(x− j), ϕ(x− k)⟩ =
∫ +∞

−∞
ϕ(x− j)ϕ(x− k)dx = 0.

The second equality holds because the intersection between the supports of ϕ(x− j) and
ϕ(x− k) is empty.

The next step on the study is to decompose Vj+1 into the sum of Vj and its orthogonal
complement which will be called Wj and as we did for Vj, identify a function ψ, whose
translation generate all the set Wj.
First will be examined the Haar case with j = 0, and we have that V1 = V0 ⊕ V ⊥

0 and
we want to find a function ψ whose translates generate V ⊥

0 . Such a function should have
the properties:

• ψ ∈ V1 so ψ(x) =
∑

l alϕ(2x− l),

• ψ ⊥ V0, so
∫ +∞
−∞ ψ(x)ϕ(x− k)dx = 0, ∀k ∈ Z.

A function of this type is ψ(x) = ϕ(2x)− ϕ(2x− 1) and it is called Haar wavelet.
The set W0 = V ⊥

0 and it is the space of all functions of the form
∑

k∈Z akψ(x− k).
This type of construction can be done starting from a general scaling function ϕ and
approximation set Vj and it holds the following theorem.

Theorem 4.1.3. [2, Theorem 5.10] Suppose {Vj, j ∈ Z} is a multiresolution analysis
with scaling function

ϕ(x) =
∑
k∈Z

pkϕ(2x− k).

Let Wj be the span of {ψ(2jx− k); k ∈ Z}, where

ψ(x) =
∑
k∈Z

(−1)kp1−kϕ(2x− k).

Then Wj ⊂ Vj+1 is the orthogonal complement of Vj in Vj+1.
Furthermore, {ψj,k := 2

j
2ψ(2jx− k); k ∈ Z} is an orthonormal basis for the Wj.

Iterating this decomposition we obtain:

Vj = Wj−1 ⊕ Vj−1 = Wj−1 ⊕Wj−2 ⊕ · · · ⊕W0 ⊕ V0.

This means that for all f ∈ Vj we can write f = wj−1 + wj−2 + · · · + Φ0 + f0, where
wj ∈ Wj and f0 ∈ V0.

As j → +∞ a similar decomposition can be extended to all function f ∈ L2(R) and the
following theorem holds:
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Theorem 4.1.4. [2, Theorem 5.11] Suppose {Vj, j ∈ Z} is a multiresolution analysis
with scaling function ϕ. Let Wj be the orthogonal complement of Vj in Vj+1, then

L2(R) = · · · ⊕W−1 ⊕W0 ⊕W1 ⊕ . . .

In particular each function of L2(R) can be uniquely expressed as a sum
∑+∞

k=−∞wk, with
wk ∈ Wk. Equivalently the set of all wavelets, {ψj,k}j,k∈Z is an orthonormal basis for
L2(R).

Thanks to those results it is possible to fix a scale j = j0 and this will give an ap-
proximation of each function f ∈ L2(R) in terms of the coefficients of the decomposition
in the base we presented up to scale j0 [9], which means:

f(t) =
∞∑

k=−∞

⟨f, ϕj0,k⟩︸ ︷︷ ︸
smooth coefficients

ϕj0,k(t) +

j0∑
j=−∞

∞∑
k=−∞

⟨f, ψj,k⟩︸ ︷︷ ︸
details coefficient

ψj,k(t).

Very efficient algorithms exist to easily evaluate both the wavelet decomposition of a
discretized function (image/signal) and on the other hand, starting from the coefficients,
recover the original function.
This algorithms are actually used when wavelet theory is applied in image or signal
processing and denoising.

4.2 Wavelets and images
The next step will be to understand how wavelets can be used in image restoration
problem and how they can be combined with multilevel theory.

For simplicity, the wavelet theory that has been presented refers to a continuous 1-D
signal, when we deal with images we consider each image as the discretized version of
a 2-D function f(x, y) on a finite grid, where f(x0, y0) represent the grey scale value at
point (x0, y0) of the grid.

Keeping this in mind, in Fig. 4.1 we provide at first, an example of a decomposed image
using Haar wavelet in order to visualize how the approximation and detail coefficients
look like.

If we start from an original image N×N and we fix j0 = 1, which means that the wavelet
decomposition is done up to scale one, what we get is an approximation of the image
N
2
× N

2
(approximation coefficient) and three matrices N

2
× N

2
containing the horizontal,

vertical and diagonal details of the image (detail coefficients).

Notice that performing the wavelet decomposition up to scale 2 is equivalent to perform
a wavelet decomposition up to scale 1 on the approximation coefficient that has been
already obtained.
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Original image

Figure 4.1: 1 level Wavelet decomposition.

4.3 Wavelet in multilevel scheme
Performing such a decomposition of an image allows in particular to have a smaller
approximation at a different scale of the original image. Intuitively, this fact can be used
in the multilevel scheme in order to define the starting point of the coarse minimization.
In addition, wavelets can be used to provide a different version of the MGM in which the
projection operator P and the restriction operator R (see Chapter 3 ) are substituted by
others operators which perform 1 level wavelet transform and inverse wavelet transform.

The R and P operators play a fundamental role on the multilevel scheme. In Fig. 4.2
we provide an example of their behaviour when applied to images, in order to better
understand how they can be replaced by others operators coming from wavelet theory.

Consider to start from an original image x̂, then using the restriction operator we can
obtain Rx̂, and this restricted image can be reprojected back using P operator: PRx̂.

Note that R and P are not orthogonal operators, so what we get at the end is not the
original image x̂.

41



Original image

→

Restricted

→

Projection

Figure 4.2: Restriction and prolongation example.

This procedure can be reproduced substituting R with the operator Φ0 which per-
forms the Haar wavelet transform on the original image, from which the approximation
coefficients is taken as restricted image (see Fig. 4.3) .

Original image

→ →

Approximation

Figure 4.3: Φ0 operator.

The P operator instead is substituted by a new operator called ΦT
0 that performs the

inverse wavelet transform considering the details coefficient constantly equal to zero (see
Fig. 4.4).
The choice of considering the details coefficients equal to zero when projecting from
coarse scale to fine scale, is justified by the fact that in the MGM algorithm, the details
coefficients are known only for the starting point xH0,k of the coarse minimization but they
can not be evaluated for the successive coarse iterates.
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Approximation

→

Reconstructed approximation

→

Inverse wavelet transform

Figure 4.4: ΦT
0 operator.

4.3.1 MGM with wavelet operators Φ0 and ΦT
0

Consider the same problem at fine scale:

fh(xh) = ∥Ahxh − zh∥2 + λhhη(D
hxh). (4.1)

In this new formulation of the MGM algorithm it only changes the coarse model con-
struction, in which R and P operators are replaced by Φ0 and ΦT

0 , so it becomes:

• AH = Φ0A
hΦT

0 , restricted blur matrix,

• zH = Φ0z
h, restricted observed image,

• DH =

[
Φ0D

h
1Φ

T
0

Φ0D
h
2Φ

T
0

]
restricted high pass filter operator.

At this point the new coarse function f̃H and the new coarse model m̃H can be defined:

f̃H(xH) = ∥AHxH − zH∥22 + λHhη(D
HxH), (4.2)

∇f̃H(xH) = 2(AH)T (AHxH − zH) + λH(D
H)T∇hη(DHxH), (4.3)

m̃H(s) = fH(xH0,k + s) + (Φ0∇fh(xhk)−∇fH(xH0,k)︸ ︷︷ ︸
ṽH

)T s. (4.4)

4.4 Numerical results
In this section we present the results obtained comparing the new version of the MGM
with wavelets operators to the BGM and the standard MGM.

Unfortunately it has been not possible to identify well defined situations in which the
new version of the MGM is more effective than the previous one, but one important
feature of the new algorithm emerges in several of the studied configurations.
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It has been observed that decreasing m, the maximum number of iterations allowed to
minimize the coarse model mH

k can have negative effects on the convergence of the MGM;
for this reason in previous experiments we considered m = 50, in order to have good
results in terms of decrease of the objective function.

What emerges from the experiments on the MGM using wavelets operators Φ0 and ΦT
0

is that, in general the maximum number of iterations needed at coarse scale m can be
decreased and still obtain good results.
It seems that the coarse model constructed using wavelets needs less iterations to be
minimized in order to provide a good descent direction sHm,k.
One reason that can justify this behaviour could be the fact that the approximation
Φ0x

h
k, from which the coarse model starts to be minimized, is potentially a better ap-

proximation than Rxhk used in standard MGM.

As it has been considered in previous analyses, the original image is 512 × 512 pixels,
both blur and noise are Gaussian, the Huber parameter η is fixed (η = 1), the maximum
number of coarse iterations allowed at coarse scale is decreased from 50 to 10, the coarse
condition parameter remains κ = 0.3 for the standard MGM while it is κ̃ = 0.9 for the
wavelet MGM.

In Fig. 4.5 and Fig. 4.6 we present the gaussian filter used to perform the blur, the
degraded and the restored image, the plot of the objective function and the weighted
objective function in which the blue line is the backtracking gradient method, the red
line is the standard MGM and the black line is the wavelet MGM.
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First situation: In this first case it has been considered a 0.5% noise, a blur given by
the convolution with a gaussian filter with variance 3 and λh = 0.05.
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Figure 4.5: Results comparison in first situation.

Second situation: In this second case it has been considered a 0.1% noise, a blur given
by the convolution with a gaussian filter with variance 1.7 and λh = 0.05.
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Figure 4.6: Results comparison in second situation.
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Although it is not observable for all the choice of parameters, in several cases, as in
the two showed above, it seems that few number of iterations at coarse scale are needed
for the wavelet MGM to obtain a good restored image and a decrease on the objective
function faster than the other two methods.

It is not always true that for any choice of parameters the wavelet MGM has better
results than the standard MGM, but it could be an alternative algorithm to solve the
problem.
In these experiments, we selected the Haar wavelet, since it is similar to the standard R
and P operators, but different type of wavelets can be used in the algorithm.
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Conclusions

It emerges from this preliminary study of the multilevel scheme applied in image restora-
tion problem, that it has been possible to identify some situations in which it could be
worth it to apply the MGM in order to solve the problem. For example for high value
of blur and small regularization parameter. The gain that has been observed is only
in terms of decrease of the objective function, but one further goal of the study is to
consider a larger problem and optimize the algorithm in order to have similar results
also in terms of computational time.

Furthermore, since only the two level case has been tested, the number of levels on
the multilevel scheme has to be increased in order to spend less computational time on
the minimization at coarse scale.

It has also been observed that wavelets operators can be used to transfer information
from one level to another, replacing R and P operators. The resulting approximated
image at coarse scale obtained restricting the original image with the operator Φ0, seems
to be a better approximation than the one obtained using R, since the minimization at
coarse scale needs less iterations to give consistent results.

On the current version of the algorithm the information contained in the detail coeffi-
cients of the wavelet transform of the current image are not used; for this reason another
goal will be to include such information in order speed up the minimization process.

One last goal for the future is to design a multilevel scheme for the non smooth
case, for example considering the l1 norm on the regularization term in order to promote
sparsity. This change on the design of the problem does not allow to use minimization
techniques requiring smoothness of the objective function such as the gradient method.

For this reason the multilevel method should be applied to another class of method
called proximal methods. Even though some algorithm has been proposed [6], the field
of multilevel proximal methods is still growing and the future goal of this study is to
contribute to enlarge the theory and to provide practical solutions to solve the general
image restoration problem.
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