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Abstract

Le teorie di gauge sono onnipresenti nella fisica moderna, trovando applicazioni in diversi
ambiti, dal modello standard alla fisica della materia condensata. Il recente sviluppo della
tecnologia quantistica apre ora le porte a nuove tecniche utili al loro approfondimento,
ampliando la nostra conoscenza di questi modelli ed oltrepassando i limiti degli approcci
basati sul metodo di Montecarlo, quali il problema del segno e l’impossibilità di studiare
la dinamica dei sistemi in tempo reale.
Questa tesi si concentra sull’implementazione di una simulazione per una teoria di Yang-
Mills su reticolo con un gruppo di simmetria finito. Abbiamo testato diversi gruppi, sia
abeliani (Z2 e Z4) che non abeliani (D4), per i quali abbiamo emulato i risultati di un
computer quantistico in un modello a 2+1 dimensioni. Una caratteristica fondamentale
di questi modelli è la presenza di vincoli sullo spazio di Hilbert che determinano quali stati
possono entrare nella dinamica. Nel caso abeliano siamo in grado di sfruttare la minore
dimensione dello spazio degli stati fisici per introdurre una codifica più efficiente nella
base computazionale. Nel caso invece di una simmetria data da gruppi non abeliani,
questo metodo non può essere direttamente implementato a causa della comparsa di
stati più complessi. Usando la misura del valore di aspettazione di vari Wilson loop,
abbiamo trovato che tutti i sistemi analizzati presentano due fasi, una confinata e una
non confinata. Sfruttando la semplicità dei sistemi abeliani siamo anche riusciti in quei
casi a verificare direttamente la legge del perimetro e la legge dell’area, che descrivono il
comportamento dei Wilson loop nelle due differenti fasi.



Abstract

Gauge theories are ubiquitous in modern physics, finding applications from the stan-
dard model to condensed matter. While they have been studied in the past, the recent
development of quantum technology opens the door to new techniques, expanding our
knowledge of these models and overcoming the limits of classical Montecarlo approaches,
mainly the sign problem and the lack of real time dynamic.
This thesis focuses on the implementation of a simulation for a lattice Yang-Mills theory
with a finite group gauge symmetry. We test different groups, both abelian (Z2 and Z4)
and non-abelian(D4), and emulate the results of a quantum computer on a 2+1 dimen-
sional lattice. A key feature of these models is the presence of constraints on the Hilbert
space, dictating which states can enter the dynamic of the system. In the abelian case,
we are able to take advantage of the smaller dimension of the constrained space, produc-
ing a more efficient encoding into the computational basis. In the case of a non-abelian
group symmetry, this method cannot be directly implemented due to the emergence of
more complex excitations. Using the measurement of the expectation values of various
Wilson loops we found all the different systems to exhibit two phases, a confined and
a deconfined one. Due to the small complexity of the abelian systems we were able in
those cases to directly verify the perimeter and area law, which dictates the behavior of
the Wilson loops in the two phases.
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Introduction

Gauge theories are a class of field theories which, under a set of local transformations
called gauge transformations, remain invariant[42]. The term gauge refers to the math-
ematical apparatus needed to describe systems with redundant degrees of freedom. The
invariance under a gauge transformation is therefore connected to the different ways in
which the same physical state can be described. Historically the first known gauge theory
has been classical electromagnetism, describing the behavior of the electric and magnetic
phenomena.
With the advent of quantum field theory gauge theories have seen incredible success due
to their ability to describe three of the four fundamental interactions[42]. The quantum
field theory of these interactions describes both how matter interacts with the gauge
fields and the dynamics of the fields themselves.
Quantum electrodynamics (QED), the quantum field theory generalization of classical
electrodynamics, can be obtained by imposing invariance under a local U(1) transforma-
tion. This simple invariance condition provides a set of constraints on the form of the
theory and on the coupling between the fermionic field, describing charged matter, and
the vector field which describes the particles that mediate electromagnetic interaction.
The gauge fields connected to the other two fundamental interactions were found to be
described by Yang-Mills theories[54]. These theories were first introduced in order to
understand the forces between nucleons, and were based on a generalization of the elec-
tromagnetic theory obtained by requiring invariance under a more general group SU(N).
Quantum chromodynamics (QCD), the quantum field theory connected to the strong in-
teraction, can be described by a SU(3) Yang-Mills theory coupled with matter.
Similarly quantum flavourdynamics (QFD), related to the weak interaction, is described
by a SU(2) Yang-Mills theory coupled with matter. However, the term QFD is rarely
used, because the weak force is better understood by electroweak theory, which describes
both the weak and the electromagnetic interactions.

The application of gauge theories is not limited to high energy physics. Condensed
matter physics has provided a different field where gauge theories have been implemented
with great success [17], leading to important results in the description of particularly
difficult phenomena such as fractional quantum Hall effect, which finds its theoretical
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framework in Chern-Simons theory[53], and superconductivity. In this field the con-
stant interplay between the theoretical models and easily accessible physical systems has
pushed toward new developments in both directions. While at first condensed systems
were considered ”toy models” in which to try new techniques of field theory, the direct
observations have provided the phenomenology on which it was possible to investigate
many fundamental conceptual problems in quantum field theory.

The first framework which has been used in the study of gauge theories on a contin-
uum spacetime is perturbation theory, in which an expansion is performed in terms of
the coupling parameter. However the coupling parameter itself depends on the energy
scale of the analyzed process, due to renormalization. This leads to widely different
behaviors between gauge theories with different gauge groups. For example in QED the
coupling parameter becomes larger as the energy scale of the system increases, show-
ing that perturbation theory can be applied only in the low energy regime. The point
at which perturbation theory becomes unreliable is nevertheless at an extremely high
energy[42], where other effects are already expected to produce deviations for the model.
In QCD, the coupling parameter is instead observed to decrease as the energy of the
system increases[42]. This allows the possibility to obtain precise results in the high en-
ergy limit using perturbation theory. At lower energies it is instead impossible to apply
perturbation methods, due to the diverging value of the coupling parameter. This widely
different behavior is connected to the non-abelian nature of the symmetry group SU(3).
In order to study this limit an extremely successful scheme has been the introduction of
lattice gauge theories[52]. In this method the continuous spacetime is substituted by a
discrete lattice, which introduces a high energy cut-off. The fields and Lagrangian are
then redefined on this lattice, using the euclidean path-integral approach. The action and
observables are then calculated numerically via Montecarlo methods[19]. This technique
has achieved a number of successes, the most important of which is the reproduction of
confinement[5], where the large coupling constants at low energies forbids the existence
of free quarks, which are instead found only clumped together in small color-neutral
groups.
However, there are two limits to the use of Montecarlo methods. The first appears when
we try to introduce fermions at a finite chemical potential. In that case the partition
function becomes a sum of highly oscillating terms, making it difficult to compute. This
is known as the sign problem[1, 20] and it limits the regions of the phase diagrams
where it is possible to obtain results. The second limit is that the computation can be
preformed only in the euclidean theory, where the path integral is positive. This means
that we cannot obtain results for dynamical processes, and out of equilibrium phenomena.

The presence of these difficulties has encouraged researchers to try different kinds
of simulations. A new approach, which was made possible by the recent develop-
ment in quantum technologies[50], is to use quantum simulations for lattice gauge sys-
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tems. The idea of using quantum systems to simulate other quantum systems has seen
R.Feynman[16] as one of its first proponents. Many high energy and condensed matter
phenomena owe their non trivial behavior to their inherent quantum mechanical proper-
ties. While classical computing allows us to approximate this behavior, it can do so only
at a high computational cost. On the other hand a quantum simulator is intrinsically
equipped to work efficiently. In the past, the required technology to control a quantum
down to its single components was a significant limiting factor. A great push has been
performed to cross this barrier, and at the present day many architectures capable of
performing quantum simulations are in development, varying from ultra-cold atoms, to
trapped ions, photons and superconducting circuits[50].
The common effort in the development of quantum technologies has also seen the birth
of new devices, called quantum computers[38], which directly harness the properties of
quantum mechanical systems in order to perform certain calculations. This devices al-
lowed the introduction of a universal language for quantum computations, separating
the algorithms from the specific implementations.

In the case of the lattice gauge theory, quantum simulations have been shown to be
intrinsically free of the sign problem[3] and, since they are formulated in the Hamiltonian
formalism, it is possible to study the real dynamic of the system.
There are two challenges we need to solve in order to produce a quantum simulation for
a gauge theory. The first is the description of the system in the Hamiltonian formal-
ism, which is required to implement quantum computing methods. The solution to this
problem has been addressed by Kogut and Susskind [26]. The second issue is that even
on a finite lattice the degrees of freedom are infinite. Quantum simulations are instead
limited to the finite number of degrees of freedom that the experimental apparatus can
control. The way in which the number of degrees of freedom are reduced to a finite
number may vary. The works that give the foundations for the models in this thesis
solve this problem by substituting the gauge group with a finite group[32, 40], producing
a set of models with the desired characteristics for the implementation.

The model we will study describes a lattice Yang-Mills theory with a finite group
gauge symmetry. The representation of this system is a quantum link model, which
consists in a lattice where a quantum state lives on each link. Gauge theories repre-
sent a special case of quantum link models, since the redundant degrees of freedom are
translated into constraints for the physical states of the systems. The techniques neces-
sary for the analysis of constrained system are of great interest for quantum simulations
algorithms, either because it is necessary to devise a way to maintain the system in
a physical state, or because the smaller space can be exploited to work only with the
physical degrees of freedom, greatly reducing the computational costs of the simulations.
More generally, quantum link models have been object of recent interest. In particular
the toric code has been shown to be the simplest example of a system with topological
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order[55]. This model has also been studied since the high resistance of its ground states
against decoherence has been considered as a strategy for protecting quantum computers
from decoherence errors[55]. The group based generalization of the toric model, known
as Quantum Double model[7] is strictly connected to lattice Yang-Mills theory. This
connection allows many results of one system to be related to the other, providing a new
interesting point of view.

The study of finite groups Yang-Mills theories is the crossroad of many interest. From
a gauge theory perspective we are interested in probing new regions of the phase dia-
gram, where classical computation fails. From a quantum computing perspective, gauge
theories prove to be an important testing grounds for the implementation and confronta-
tion of different quantum algorithms. From a quantum information perspective we are
interested in the features of the model, and its connections to important topological
properties.
Since the implementation of simulations of Yang-Mills theories with Z2 gauge symmetry
has already been performed[8, 30], in this thesis we aim at extending these results to
more general groups, in particular non-abelian groups, where more complex phenomena
are expected.

The first chapter of the thesis focuses on the general aspects of the model. We start
through a description of the derivation of the model, showcasing the connection between
continuous Yang-Mills theory with a continuous symmetry group and the lattice model
with a finite group gauge symmetry. This connection allows us to define and interpret
many different observables encountered in the following parts of the thesis.
We then focus on the Hilbert space of the theory, studying its structure for a general
finite group. Borrowing the notation from Quantum Double Models we introduce the
plaquette and vertex operators, from which we are able to define the one-plaquette char-
acter states, which form the simplest examples of gauge invariant states. Generalizing
the one-plaquette states to arbitrary loops allows also the description of many different
gauge invariant states. The development of this notation allows also to show the con-
nection between Yang-Mills lattice gauge theories and Quantum Double Models. The
magnetic ground state of the Yang-Mills theory is easily calculated trough this relation,
showing the topological nature of the state.
The closing part of the chapter investigates the phase structure, providing a guide for
where and what to look for in the numerical analysis. In particular it introduces the
area and perimeter laws, which are able to identify the confined and deconfined phase of
the system.

The second chapter is devoted to the implementation of the theory for abelian groups.
Exploiting the simplicity of these theories we show that the one-plaquette states gives a
complete description of the gauge invariant subspace, allowing a more efficient implemen-

7



tation of the simulation algorithms. We discuss various schemes for the implementation
of the algorithm, focusing on the advantages and disadvantages of each. Our choice
settles on the adiabatic algorithm, which takes the greatest advantage of the pseudo
quantum simulation we are able to implement. These simulations emulate the behav-
ior of a quantum computer utilizing classical hardware and are crucial in verifying the
correct behavior of the implementation methods, in wait for more advanced quantum
computers to be developed.
We end the chapter with an explanation of the implementation of the circuit for Z2 and
Z4, and the analysis of the numerical results. A direct investigation of the area and
perimeter law is used to identify the confined and deconfined phase.

The third chapter focuses on non-abelian theories. A series of examples with a small
number of plaquettes in the D4 model is used to underline the non-trivial behaviors.
Although a complete description of the Hilbert space is no longer available, it is still
possible to perform the adiabatic simulation.
We show the quantum circuit implementation for the simulation of theD4 group, focusing
on the more complex combination of gates needed to implement the needed operations.
In the last section of the chapter the results of a simulation on a 2x2 periodic lattice are
analyzed, showcasing the transition from a confined to a deconfined phase.
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Chapter 1

Quantum Links models and Lattice
gauge theory

The aim of this chapter is to introduce the physical system that will be the focus of study
of this thesis. The first section will show how a lattice Hamiltonian with a finite group
gauge symmetry can be derived from the continuous gauge theory. Then we will give a
description of the Hilbert space of such system, showcasing important conventions for all
states. We will then calculate some general results, using also the comparison between
the Yang-Mills model we study and another similar quantum link model: the Quantum
Double Model. In the end we will use the conventions previously defined to figure out
what are the main observables of the theory.

1.1 Gauge Hamiltonian with finite group gauge sym-

metry

A gauge Hamiltonian with finite group gauge symmetry describes a constrained lattice
system. In order to understand its main features and nomenclatures we will briefly show
how it is derived, focusing on the key steps of its derivation. We will not go into too
many details since a more extensive derivation has already been performed by Mariani
[32] and Lumia [30], where more insight is given into each step.
We will also focus only on the gauge fields leaving out of our analysis the fermionic
matter part, which won’t be studied in this thesis.

The starting point for our analysis will be Yang-Mills theories. This class of theories
was firstly introduced as a generalization of electrodynamics, and has its most important
applications in the description of strong and weak nuclear forces. It describes a set of N
fermionic fields ψ(x), when their SU(N) symmetry becomes local. Preserving the local
symmetry requires the introduction of a set of vector field. Since the group SU(N) has
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N2− 1 generators τa there are N2− 1 vector fields Aµa , each corresponding to one boson.
The generators of the su(2) Lie algebras are chosen such that

[τa, τb] = fabcτc (1.1)

tr(τaτb) = 2δab (1.2)

where fabc are the structure constants of the Lie algebra.
The theory is then described by the Yang-Mills Lagrangian:

L = ψ̄(i /D −m)ψ − 1

2g2
tr (F µνFµν) (1.3)

We use some typical conventional notations:

• Aµ =
∑

aA
µ
aτa represents the sets of gauge fields

• We use the Dirac slashed notation /D = γµDµ, where the Clifford’s algebra’s oper-
ators acts on the components of the Dirac spinors, in the same way on each of the
N fermionic fields.

• The covariant derivative is Dµ = ∂µ − iAµ. where the gauge part Aµ introduces
non trivial couplings between the various fermionic fields.

• The field strength tensor (aka curvature tensor) Fµν = i[Dµ, Dν ] = dµAν − dνAµ−
i[Aµ, Aν ]

• The coupling constant in the denominator of the second term is g. Sometimes a
different convention is used for the electromagnetic potential Ãµ = gAµ(x), which
leads to equivalent results.

From the Lagrangian we can calculate the action of the system:

S[ψ, ψ̄, Aµ] =

∫
dxdL[ψ(x), ψ̄(x), Aµ(x)] (1.4)

This theory contains N spinor matter fields and N2 − 1 gauge fields. The coupling be-
tween spinors and gauge fields is through the minimal coupling given by the covariant
derivative Dµ. Moreover there is a non-trivial coupling between the gauge fields them-
selves, whenever the gauge group is not abelian (e.g. SU(N) for N ≥ 2).
Any gauge transformation on this Lagrangian is described by a function g :M→ SU(N)
from the spacetime M to the group. Under such transformation the spinor and vector
fields transform as: {

A′µ(x) = g(x)Aµ(x)g(x)−1 + g(x)∂µg(x)−1

ψ′(x) = g(x)ψ(x)
(1.5)
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Substituting such transformations in the action leaves it invariant, showing the symme-
try of the system.
This Lagrangian is usually studied in the Minkowski 3 + 1 dimensional spacetime, but
can be generalized also to other dimensions. For the SU(3) model in 3 + 1 dimensions
the antisymmetric tensor Fµν can be divided into 2 parts with specific names: the chro-
moelectric field Ei = F0i, which correspond to mixed time and spatial indices, and the
chromomagnetic part Bi = 1

2
εijkFjk, which correspond to a double spatial index. In the

more general cases we will keep a similar nomenclature, distinguishing the electric and
magnetic parts of the field strength tensor.

The process by which we obtain the finite group Hamiltonian corresponding to the
previously described Lagrangian can be broken down into three steps. The first is reduc-
ing the system from the continuous spacetime to a discrete lattice. This step has been
historically important because it produces a class of theories known as lattice gauge
theories, and has been the base for many classical computational results. Many of the
observables that we will look at in the following sections are described in these formu-
lation. These first two steps can be taken independently in any order. We will then
combine them to obtain a lattice Hamiltonian, known in the literature as the Kogut-
Susskind Hamiltonian [26]. In this combination we will have an important difference:
while the lattice Lagrangian is usually defined on a spacetime lattice, the lattice Hamilto-
nian is defined on a space lattice, while the time coordinate is kept continuous. Although
it should be possible to obtain a lattice Lagrangian with continuous time and a space
lattice, it is never done in literature, because the completely discretized version is better
suited for classical computations. The final step will be changing the gauge symmetry
group from continuous (as SU(N) is) to a finite group.

1.1.1 Lagrangian lattice gauge theory

The first step we have to perform in order to change the spacetime of the theory from
continuous to discrete is to substitute the Minkowski spacetime M with a directed
spacetime hyper-cubic lattice Λ of spacing a:

Λ =

{
x ∈ Rd s.t x =

d∑
µ=1

nµaµ̂, nµ ∈ Z

}
(1.6)

where d is the dimension of the system and µ̂ is the unit vector in the µ = 1, ..., d space-
time dimension.
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Figure 1.1: Piece of an ordered lattice Λ in d = 2 dimensions. Each link is identified by
a vertex x and a versor µ̂. We say that the link is traversed in the positive direction if
the versor is aligned with the lattice orientation, and negative otherwise. The size of the
lattice can be infinite in theoretical models, but is usually restricted to a finite lattice
for numerical simulations.

In this lattice each vertex is identified by its position x. To refer to a given link
instead, we use a couple (x,±µ), where x is the position of the vertex to which the link
is connected, µ identify one of the d Cartesian axis, and the sign identify one of the two
possible directions along that axis. Each vertex is connected to 2d links. In return each
link is connected to 2 vertices. We can see that it is possible to describe each vertex in
two different ways: (x, µ) and (x + aµ̂,−µ). This double description allow us also to
know if the link is traversed in the positive or negative direction (which can be chosen
arbitrarily). An example of this notation is given in figure 1.1, in the case of a 2d lattice.
The clear simplification of working on a lattice is that where in the continuous case the
action is an integral of the Lagrangian, in the lattice case it is reduced to a sum on the
lattice sites: ∫

dxd → ad
∑
x∈Λ

(1.7)

thus obtaining a finite sum which can be computed directly in numerical simulations.
Another feature introduced by the lattice, common in condensed matter systems, is the
existence of a Brillouin zone, to which the momenta of the theory are confined. In this
sense the lattice acts as a high-energy regularization of the system. From another point
of view we can see that a lattice makes the low wavelengths/high frequency states im-
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possible, imposing a high energy cut-off [36].

We now face the challenge to understand how to represent the fields, which make up
the Lagrangian. The guiding principle in this section will be the correspondence between
the continuous theory and the lattice theory in the limit for the spacing a→ 0.
The fermionic part ψ(x) can be conveniently approximated by simply requiring the po-
sitions x to be in the lattice. The derivatives reduce to finite differences and the action
can be calculated out of finite sums. Nevertheless this process is not trivial due to the
emergence of unexpected poles in the Brillouin zone, leading to the so called fermion
doubling [37, 46]. Such problem can be solved with different methods [14].
The gauge fields are described instead as living on the links, which means that we will
have a quantity that describes Aµ(x) at each link of the model.
One heuristic argument we can give to justify this description goes as follows. The
minimal coupling between spinors and gauge fields is given by the covariant derivative
Dµ = ∂µ− iAµ. In the lattice the partial derivative is substituted by the finite increment

∂µf(x) ≈ f(x+aµ̂)−f(x)
a

, which contains two vertices. Accordingly the other term in the
sum will connect the two vertices, as the link does.
The quantity used to describe the value of a field Aµ(x) on a link (x, µ) is the comparator:

Uµ(x) = exp(iaAµ(x)) (1.8)

This quantity is used whenever the link is traversed in the positive direction. Instead
when the link is traversed in the negative direction we use the adjoint Uµ(x)†. Since
Aµ(x) is an element of the Lie algebra the comparators belong to the Lie group SU(N).
The question we still have to answer is how the gauge fields appear in the Lagrangian.
In order to do so we define the plaquette Wilson loop:

trW� = trUµ(x)Uν(x+ aµ)Uµ(x+ aν)†Uν(x)† (1.9)

This quantity is the product of four comparators along the four links surrounding an
elementary plaquette, identified by a starting vertex x and two directions µ and ν. We
can expand the comparators for small a. For example for the first comparator in the
previous equation we have:

Uµ(x) = 1 + iaAµ(x)− a2

2
A2
µ(x) + ... (1.10)

Substituting this and similar expansions in equation (1.9) we find:

trW� = N +
a4

2
F µνFµν +O(a6) (1.11)

where we don’t sum over the indices µ and ν.
Fixing the constants we find that the pure gauge action can be rewritten as:

S = − 1

g2a3−d

∑
�

tr
(
W� +W †

�

)
(1.12)

13



where the sum over all plaquettes also restores the sum over the Minkowski indices.

In this formalism the general gauge transformation is defined by an element g(x) on
each vertex of the lattice. Under such transformation the comparator transform as:

Uµ(x)→ g(x)Uµ(x)g(x+ aµ̂)† (1.13)

If we expand such transformation for small a, at the first non-trivial order, we recover
the condition:

Aµ(x)→ g(x)Aµ(x)g(x)−1 + ig(x)∂µg(x)−1 +O(a) (1.14)

which is compatible with the continuum case.
From the expression of the gauge transformation on the comparators it can be seen that,
in the products present in the plaquettes Wilson loop, the gauge element on each vertex
cancels and the plaquette Wilson loop remains unchanged. This implies that the action,
which is a sum of gauge invariant quantities, remains gauge invariant even in the lattice
model.
This cancellation of the transformation in two adjacent comparators can be used to define
more general gauge invariant objects, which are known as Wilson loops. Take a closed
path γ of consecutive links {(xi, µi)}. Then we can define the Wilson loop:

WΓ = tr
∏
i∈γ

U |µi|µi
(xi) (1.15)

where |µi| = ±1 depending whether the link is traversed in the positive or negative di-
rection.

Classical lattice simulations use the lattice action to calculate average observables,
often after applying a Wick rotation in order to work in the euclidean formalism [4].

〈O〉 =
1

Z

∫
DUO(U)e−S[U ] (1.16)

These quantities can be calculated through numerical methods and can be used to find
the structure of the phase space.

1.1.2 Hamiltonian formalism

While the euclidean formalism allows simpler classical computations, the Hamiltonian
formalism takes a different path, enforcing the difference between time and space coor-
dinates. This choice allows the study of the time evolution of the system and is better
suited for quantum simulations, where we can directly implement the Hamiltonian in
the simulator. This approach has been pursued as a way to overcame the sign problem,
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which prevents the application of Monte Carlo algorithms in regions of the phase space
with non-zero chemical potential [20]. We will focus from now on only on pure gauge
theories.
The first step to obtain the Hamiltonian is to calculate the conjugate momenta:

Πa =
δL[φa, ∂µφa]

δ∂0φa
(1.17)

Then we perform a Legendre transformation to obtain the Hamiltonian density:

H =
∑
a

Πa∂0φa − L[φa, ∂µφa] (1.18)

which, after some substitutions, depends only on the fields, their spatial derivative and
the conjugate momenta.

The first issue we have in applying this methodology is that for any given gauge field
Aaµ the time derivative of the time component ∂0A

a
0 is not present in the pure gauge

Lagrangian Lg. Therefore we have

Π0
a =

δLg
δ∂0Aa0

= 0 (1.19)

and it is impossible to define a conjugate momentum.
In order to circumvent this problem we can exploit the gauge invariance to fix the tem-
poral gauge A0 = 0 (also know with other names [28, 29, 40, 45]), which allows us to
perform the Legendre transform without issues. The price to pay is that the Hamilto-
nian obtained is no longer gauge independent. Moreover we only used a part of the total
gauge invariance, and we will have some leftover invariance to take care of, as we will
see later.
In the temporal gauge we find the conjugated momenta to be

Πi
a =

Ei
a

g2
(1.20)

Once substituted in the Legendre transform we obtain the Hamiltonian density:

H = tr

(
g2Π2 +

1

g2
B2

)
(1.21)

where we used bold symbols to denote spatial components of the fields. Expanding the
trace and the spatial indices, and using the normalization of the generators τa, we find

tr B2 =
1

2

∑
a,i

Bi
aB

i
a (1.22)
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and a similar result for tr Π2.
Following canonical quantization the gauge field and the canonical momenta are pro-
moted to operators which follow the commutation relations:

[Âai (x), Π̂j
b(y)] = iδabδijδ

3(x− y) (1.23)

In order to better understand the operatorial nature of Âi and Π̂j we need to find a
description of the Hilbert space of the system. It turns out that such space is the set
of complex valued functionals ψ[A]. The reason is that similarly to the |x〉 basis in
canonical quantization, we can introduce a position basis |A〉. Any given state is a
linear superposition |ψ〉 = ψ[A] |A〉. The functionals can then be understood as the
coordinate representation of a given state with respect to the position basis.
In the position basis the operators act as

Âai (x)ψ[A] = Aai (x)ψ[A] (1.24)

Π̂i
a(x)ψ[A] = −i δ

δAai (x)
ψ[A] (1.25)

With this expression we can prove the previous commutation relations, and also calculate
other commutations relation between all the important fields, like Ai, Ei and Bi. We can
also notice that the momenta act as generator of the translations on the Hilbert space.
This fact will be useful later.

As previously stated, we used a part of the gauge invariance to be able to go in
the Hamiltonian formalism. Nevertheless, there is still some invariance in the system.
This fact lead to the presence of many non-physical states in the Hilbert space. In
order to extract the physical subspace we must impose some conditions to ensure the
invariance of the states under the remaining symmetry. It is found the generators of the
transformation can be written as DiÊi. Therefore to ensure the physicality of the states
the gauge invariance is expressed through the conditions [14, 29]:

DiÊi |phys〉 = 0 (1.26)

This condition is referred as Gauss’ law, since it implies the conservation of charges of
the theory.

1.1.3 Kogut-Susskind Hamiltonian

If we combine the previous two step we obtain an Hamiltonian for a lattice gauge theory,
known as the Kogut-Susskind Hamiltonian [26]. The starting point is the continuous
Hamiltonian:

H =

∫
dx tr

(
g2Π̂(x)2 +

1

g2
B̂(x)2

)
(1.27)

16



We then try to introduce a lattice. The first difference from the previous case is that
since the Hamiltonian is the generator of the temporal translations we need to keep the
time dimension continuous and substitute the lattice only for the spatial dimensions.
This constraint imposes a stark difference between spatial and time dimensions. It
is then useful to divide the Hamiltonian into two parts: the electric part HE which
contains temporal related quantities, and the magnetic part HB which only contains
spatial quantities.
Starting form the magnetic part we notice that B(x)2 = 1

2
F ijFij and we already shown

that the corresponding quantity in lattice formalism is the Wilson plaquette loop trW� '
a4

2
F ijFij, where we used the fact that all plaquette are doubly spatial, since there is no

temporal lattice. Nevertheless since the magnetic fields are now operators we must find
an Hilbert space based description of the Wilson loop quantity.
As in the continuous Hamiltonian case we want to use a position basis to describe the
Hilbert space, but by introducing the lattice we substitute the gauge field A(x) with the
comparators U(x, µ), therefore the basis of the Hilbert space will be given by one |U〉
for each link in the model: ⊗

#links

|U〉 U ∈ SU(N) (1.28)

Any general state is a square integrable superposition of these states, so that the total
Hilbert space can be expressed as

H =
⊗

#links

L2(SU(N)) (1.29)

On any given link two elements of the continuous basis follow the orthogonality condition:

〈U |V 〉 = δ(U, V ) (1.30)

and a general state con be decomposed as

|ψ〉 =

∫
dUψ(U) |U〉 (1.31)

where dU is the Haar measure [2].
It is important to notice that while in the Lagrangian lattice we have also comparators
representing the state in the time direction it is not so in the Hamiltonian case, since
we don’t have time directed links. Luckily it is not a problem since by working in the
temporal gauge we have A0 = 0 so that we don’t need any more information on the
temporal configuration of the gauge field.
On the Hilbert space we can introduce a set of position operators ûmn, defined by their
action

ûmn |U〉 = Umn |U〉 (1.32)

17



These operators form a N ×N matrix, which will be denoted by û. We can also define
the adjoint operator:

(û†)mn |U〉 = (U †)mn |U〉 (1.33)

These operators can be used to define the Hamiltonian version of the Wilson loop.
For any closed loop on the lattice we give one matrix of operators for each link in the
loop û(el), where el identifies the links in the loop. Such matrix is û whenever the link is
traversed in the positive direction, and û† when it is traversed in the opposite direction.
In the plaquette case we obtain

tr Ŵ� = tr
∏
l∈�

û(el) (1.34)

where the order of the operators follow the path around the plaquette, as can be seen in
figure 1.2. The starting vertex can be chosen arbitrarily, due to the cyclic property of
the trace.

Figure 1.2: Disposition for ordered links around a plaquette 2d plaquette, with the
plaquette index in blue, link index in red and vertex index in green. With this ordering
we traverse first the two positive links and later the two negative links.

In a more general Wilson loop we similarly have

tr Ŵγ = tr
∏
l∈γ

û(el) (1.35)

where γ is a closed path in the system.
The action of any Wilson loop operator on the Hilbert space is diagonal on the position
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basis, with each eigenvalue equal to the value of the Wilson loop on the field configuration
defined by the quantum state.
Extending this to the whole lattice we find that the magnetic part of the Hamiltonian
can be written as

HB = − 1

g2a4−d

∑
�

tr
(
Ŵ� + Ŵ †

�

)
(1.36)

where the sum is now only on the plaquettes of the spatial lattice.
Since there are no plaquettes whose sides lie in the temporal direction, which is not
discretized, we cannot use a similar procedure for the electric portion of the Hamiltonian.
We can overcome this difficulty by noticing that the canonical momenta, which constitute
the electric term, act as generators of the translations on the position basis. In the case of
lattice Hamiltonian theory the position basis is |U〉, and finite translations are described
by the regular representation [18]:

LU |V 〉 = |UV 〉 (1.37)

For each Lie group representation π it is possible to obtain a Lie algebra representation
π̃ which describes its infinitesimal action [18, 21]. Therefore it is possible to define the
regular Lie algebra representation L̃. The representations of the generators of su(N) are
the quantities we are looking for:

l̂a = L̃(τa) L̃ : su(N)→ End(L2(SU(N))) (1.38)

Using these operators the electric Hamiltonian becomes

HE =
g2

2ad−2

∑
e∈links

∑
a

l̂2a(e) (1.39)

Regarding gauge invariance we want to find the new expression for the constraint on
the physical states. We start by looking at the effect of a gauge transformation on the
system. Such a transformation is defined by by an element g(x) at each vertex. On any
given link the transformation becomes

|U〉 → |g(x1)Ug(x2)†〉 = Lg(x1)Rg(x2) |U〉 (1.40)

where g(x1) is the transformation at the starting vertex and g(x2) at the arriving one,
and we used the left and right regular representations L and R to describe the action
in term of operators on the Hilbert space. This operators are defined uniquely for each
vertex, it is therefore possible to describe the single vertex transformation. For vertex v
and gauge element g we have

Gv(g) = ⊗e+Lg(e+)⊗e− Rg(e−) (1.41)
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where e+ are the outgoing links and e− the incoming ones. An example in the 2-
dimensional case is given in figure 1.3.

Figure 1.3: Disposition for the links around a vertex in the 2-dimensional case. We
number the links going counterclockwise from the link in the positive x direction, so that
links 1 and 2 are outgoing and links 3 and 4 go into the vertex.

The general condition for gauge invariance becomes

Gv(g) |phys〉 = |phys〉 ∀g ∈ SU(N), v ∈ Λ (1.42)

As can be expected, the Hamiltonian is gauge invariant, since it is a physical quantity.

1.1.4 Finite group gauge Hamiltonian

The final step of our discussion will be to introduce the finite group Hamiltonian, which
allows the system to have a finite number of degrees of freedom. The main difference
between finite groups and Lie groups is that the latter have an infinitesimal description
given by the Lie algebra, which is not present anymore.
Regarding the Hilbert space this problem is already circumvented by working with the
comparators U(x, µ), which are elements of the group, instead of the gauge fields Aµ(x),
which are elements of the algebra. This fact allow the introduction of the Hilbert space

H =
⊗

#links

L2(G) (1.43)
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Looking closely at the single link space we can see that L2(G) is the group algebra,
which is a finite complex vector field of dimension equal to the group order |G|. This
algebra has many useful structures and properties which are analyzed in appendix A.
Adopting this space it easy to define the positions operator

ûmn |g〉 = ρmn(g) |g〉 (1.44)

where we have chosen an arbitrary representation of the group ρ as a substitute to the
defining representations in the SU(N) case. This representation is denoted as πF , in
analogy with the fundamental representation for SU(N) groups, and choosing different
representations produces different results.
From the position operators it is possible to define the single plaquette Wilson loop and
therefore the magnetic Hamiltonian in the same way as in the continuous case.

HB = −λB
∑
�

tr
(
Ŵ� + Ŵ †

�

)
(1.45)

More problems arise with the description of the electric parts, where the operators
l̂a, which are element of a Lie algebra representation, have no analog in the finite group
systems. We need to find another way to describe the electric Hamiltonian.
The term that we should focus on is the single link electric Hamiltonian∑

a

l̂a
2

(1.46)

To find a new expression for this quantity we need to take a step back. In the SU(N)
case we introduced the position basis for a single link |U〉. As for many system in the
canonical quantization there is another basis, connected to the momenta which should
be better suited to describe the electric term. Such a basis is called the representation
basis. This basis consist in the matrix elements of all irreducible representations πjmn.
Using Haar measure these functions can be interpreted as orthonormal states [48], if we
adjust the normalization:

|jmn〉 =

√
dj

V ol(G)

∫
dUπjmn(τa) |U〉 (1.47)

In this basis the left regular representation takes the form

LU =
⊕
j

π∗j(U)⊗ 1 (1.48)

where the direct sum is performed over all irreducible representations.
In the SU(N) case l̂a was defined from the regular representation of LU , using the
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derivative at the identity. In the same way we can obtain the regular representation of
the Lie Algebra as

l̂a =
⊕
j

π̃∗j(U)⊗ 1 (1.49)

Substituting this identity in equation (1.46) we obtain∑
a

l̂a
2

=
⊕
j

∑
a

π̃Tj(τa)π̃
Tj(τa)⊗ 1 =

⊕
j

π̃j(Ω)⊗ 1 (1.50)

where Ω is the Casimir element. This quadratic operator is constant on all representa-
tions, therefore the electric term can be expressed by the Casimir eigenvalues C(j):

∑
a

l̂a
2

=
∑

C(j)Pj Pj =

dj∑
m,n=1

|jmn〉 〈jmn| (1.51)

The last expression does not depends on the representation of the Lie algebra generators
and we are free to use it in the finite case as well.
As shown in appendix A the properties of the finite groups algebras are similar: we still
have a representation basis |jmn〉 on which the left and right representations take the
form

Lg =
⊕
j

π∗j(g)⊗ 1dj Rg =
⊕
j

1dj ⊗ πj(g) (1.52)

The electric term on a link is written as

hE = λE
∑
j

f(j)Pj (1.53)

where the general function f(j) takes the place of the Casimir eigenvalues, since we no
longer have an analog of the Casimir operator in finite groups.
The choice of the function f(j) can be performed in various ways. For example in ZN

theories it can be obtained as a truncation of the U(1) group infinite representations.
As explained in [32], another possibility is to use graph theory and construct a discrete
laplacian operator, giving an expression for f(j):

f(j) = |Γ| − 1

dj

∑
g∈Γ

χj(g) (1.54)

where χj is the character of representation j, while Γ is a generating set closed under
conjugation and inversion.
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After describing the two parts of the Hamiltonian we are left with one last object
to define: the gauge conditions. Similarly to the continuous case it is possible to im-
pose invariance under any gauge transformation on the Hilbert space through a set of
conditions:

Gv(g) |phys〉 = |phys〉 ∀g ∈ G, v ∈ Λ (1.55)

Gv(g) = ⊗e+Lg(e+)⊗e− Rg(e−) (1.56)

which restrict the Hilbert space into a smaller physical space.
For finite groups it is possible to rapidly reduce this constraints, by asking the states to
be invariant under the generators only, instead of under all the elements of the group.

1.2 Structures in the Hilbert space

Since the aim of this thesis is to study the properties of the previously described Hamil-
tonian it is useful to introduce some convenient descriptions of the Hilbert space, in
order to allow a better mapping to a quantum device and an easier description of the
theoretical properties of any given state .
Our analysis will focus on two dimensional systems. In this case we can write the total
Hamiltonian as

H = λEHE + λBHB (1.57)

= λE
∑
l

hlE − λB tr
∑
�

Ŵ� + Ŵ †
� (1.58)

with
hlE =

∑
j

f(j)Pj(el) tr Ŵ� = tr
∏
l∈�

û(el) (1.59)

The two dimensional gauge conditions become

Gv(g) = Lg(e1)⊗ Lg(e2)⊗Rg(e3)⊗Rg(e4) (1.60)

with e1, e2 outgoing and e3,e4 going into the vertex.
In order to be able to perform numerical simulations we will work with a finite lattice
with periodic boundary conditions (PBC).

1.2.1 The Hilbert space

The Hilbert space is constituted by the tensor product of L copies of the group algebra,
one for each link in the system. We can introduce a basis, called the group basis,
composed by the elements:

|g1...gL〉 (1.61)
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where the subscript identify which link it is referred to. One convention for the number-
ing of links is given in figure 1.4.

Figure 1.4: 3x3 configuration for the lattice in 2 dimensions. The right and top links
are left empty due to periodic boundary conditions. The vertices and plaquettes are
numbered from the bottom left, and are colored in green and blue respectively. The links
follow the vertex order; since we have 2 links for each vertex we number the horizontal
one first.

There is another useful basis, dual to the previous one, called the representation
basis. The elements of these basis are written as

|̄1...̄L〉 (1.62)

In this case we used a compact notation ̄l to describe the set of three indices (jl,ml, nl)
which identify an element of the representation basis on the link l, as in equation (1.47).
On each link the group basis |g〉 is connected to the representation basis |̄〉 by the
transformation:

|̄〉 =

√
dj
|G|

∑
g∈G

πjmn(g) |g〉 (1.63)

24



which is known as the group Fourier transform (GFT).
The two bases for the total system are therefore connected by the product of L group
Fourier transforms:

|̄1...̄L〉 =

√
d1...dL
|G|L

∑
g1,...,gL

πj1m1n1
(g1)....πjLmLnL(gL) |g1...gL〉 (1.64)

The representation basis is useful due to the fact that it diagonalizes the electric portion
of the Hamiltonian. For any link we have:

hlE |̄1...̄L〉 = f(jl) |̄1...̄L〉 (1.65)

For any finite group there is always a 1-dimensional irreducible representation, called the
trivial representation, defined as π0(g) = 1 ∀g ∈ G.

The magnetic part is diagonal on the group basis as can be seen by the action of the
Wilson loop:

tr Ŵ� |g1...gL〉 = tr ρ(
∏
l∈�

g(el)) |g1...gL〉 = χF (
∏
l∈�

g(el)) |g1...gL〉 (1.66)

Here g(el) is gl if the link is traversed in the positive direction, and g−1
l otherwise, while

χF is the character of the chosen representation πF . The starting element of the loop
doesn’t matter due to the cyclic property of the trace, but it matters the succession
between the links.
There is a better way to describe this action, using quantities related to each plaquettes
as we will see in the next section.

1.2.2 Plaquette and Vertex operators

The single plaquette Wilson loop acts on four continuously connected links, while the
gauge conditions acts on four links connected to a vertex. This action can be formalized
in vertex and plaquette operators [24], on the footprints of another quantum link model:
the toric code.
The vertex operators are defined in terms of left and right regular representations as a
generalization of the vertex operators of the toric model [25]. Their explicit expression
is found to be equal to the action of the gauge constraints:

Agv = Gv(g) (1.67)

These operators commute whenever they are applied on different vertices, since they
have at most one link in common and in that case they act once with the left and once
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with the right regular representation. If instead they act on the same vertex they follow
the relation:

AgvA
h
v = Aghv (1.68)

So they commute only if g and h commute.
Since in a finite group any element g has finite order, that we denote by |g|, we have:

(Agv)
|g| = 1 (1.69)

The eigenvalues of the vertex operators are therefore complex roots of unity.
From the action of the single element g it is possible to obtain a total vertex operator:

Av =
1

|G|
∑
g∈G

Agv (1.70)

This operator is a projector, which means that A2
v = Av, therefore it can have only eigen-

value 1 or 0. The states with eigenvalue 1 are the gauge invariant states, because we have
|G| terms in the sum, each of which is a root of unity. Since we divide by |G| in front,
each of them must be one, which implies the invariance under gauge transformation.

For the plaquette operator we want to associate a group element to the given loop.
We start by considering a plaquette p, then choose one vertex v, and enumerate from 1
to 4 the links on the boundary. The operator is defined as

Bh
p,v =

∑
g1,...,g4

δ(h, g(e1)g(e2)g(e3)g(e4))Pg1Pg2Pg3Pg4 (1.71)

where g(el) is again gl or g−1
l depending on the orientation of the link and Pgl = |gl〉 〈gl|

is a projector over the state |gl〉 in the Hilbert space of the link l. The action is assumed
to be the identity on all other links of the system.
Again we have (Bh

p,v)
2 = Bh

p,v, which means that the plaquette operators are projectors,
with eigenvalues always 1 or 0.
The vertex choice is important, since it leads to different operators. To understand why
we can confront for example the case in which we start at the bottom left of a plaquette
and the case in which we start at the bottom right. In one case we have:

Bh
p,v =

∑
g1,...,g4

δ(h, g1g2g
−1
3 g−1

4 )Pg1Pg2Pg3Pg4 (1.72)

while in the other we have:

Bh
p,v′ =

∑
g1,...,g4

δ(h, g2g
−1
3 g−1

4 g1)Pg1Pg2Pg3Pg4 =
∑
g1,...,g4

δ(g1hg
−1
1 , g1g2g

−1
3 g−1

4 )Pg1Pg2Pg3Pg4

(1.73)
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When we try to confront the two states on the same vertex the path between the two
vertices (in this case the link e1) act as a conjugation on the group element representing
the state. The support of the two operators overlap only in part, having some states in
common while others not.
We have already shown some commuting properties, but it is useful to look at all of them
to better understand their interaction. We will look at all possible configurations on the
lattice for all combination of vertex and plaquette operators. Obviously if the operators
act on different links they commute, so we can restrict ourself to a smaller set of non
trivial cases. We will not go through the algebra, which can be found in [24].
There are two non-trivial cases for vertex-vertex configuration:

• One link in common. In this case: [Agv, A
h
v′ ] = 0

• On the same vertex. In this case: AgvA
h
v = Aghv , so they commute only if g and h

commute

We have three cases for plaquette-plaquette configurations:

• One link in common. In this case: [Bg
p,v, B

h
p′,v′ ] = 0

• Same plaquette but different vertices. In this case: [Bg
p,v, B

h
p,v′ ] = 0

• Same plaquette and same vertex. In this case: Bg
p,vB

h
p,v = δ(g, h)Bg

p,v, so they
commute again.

We have two non trivial case for plaquette-vertex configuration

• The starting vertex of the plaquette operator is different from the vertex of the
vertex operator. In this case the operators commute: [Agv, B

h
p,v′ ] = 0

• The starting vertex of the plaquette operator is the same as that of the vertex
operator. In this case AgvB

h
p,v = Bg−1hg

p,v Agv. They commute only if h is invariant
under commutation by g. This is true for example if h = e.

From these relations it is possible to obtain also the commutation relations for the
total vertex operator Av.

We saw that vertex operators are connected to the gauge invariant conditions. The
plaquettes operators can instead be used to obtain a convenient expression of the mag-
netic Hamiltonian. Using equation (1.66) on a single plaquette described by the con-
ventions in figure 1.2, we can write the action of the plaquette Wilson loop operator
as:

tr Ŵ� |g1g2g3g4〉 = χF (g1g2g
−1
3 g−1

4 ) |g1g2g3g4〉 (1.74)
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From which we can see that:

tr Ŵ� =
∑

g1,g2,g3,g4∈G

χF (g1g2g
−1
3 g−1

4 )Pg1Pg2Pg3Pg4 (1.75)

We can then expand this expression as

tr Ŵ� =
∑
g∈G

∑
g1,g2,g3,g4∈G

χF (g)δ(g, g1g2g
−1
3 g−1

4 )Pg1Pg2Pg3Pg4 (1.76)

where we can recognize the expression for the plaquette operators. The final result is:

tr Ŵ� =
∑
g∈G

χF (g)Bg
v,p (1.77)

From these expression for the Wilson loops the magnetic Hamiltonian can be written in
the equivalent form:

HB =
∑
p

∑
h∈G

(χF (h) + χ∗F (h))Bh
v,p (1.78)

1.2.3 The electric ground state

Since we want to study the properties of the Hamiltonian as a function of the parameters
λE and λB we can start by considering the extreme cases where the Hamiltonian is totally
dominated by the electric or magnetic part.
In the electric case we can see that on a single link the function f(j) has always a
minimum on the trivial representation. In fact we have f(j = 0) = 0 for any group
and choice of the generators. This means that the ground state of the system in the
representation basis is:

|0E〉 = |0〉⊗L (1.79)

where we omitted themn indices since the trivial representation is always one-dimensional.
Since in this basis the left and right regular representations act trivially, this state is al-
ways gauge invariant.
Another interesting property comes from expressing the electric vacuum in the group
basis, where it turns out that the electric vacuum is an equal weight superposition of all
group states:

|0E〉 =
1√
|G|L

∑
g1...gL∈G

|g1, ...gL〉 (1.80)

This state can be extremely useful because it can be defined universally for any finite
group theory, and can be used as a starting point to generate other important states in
the theory, in a structure similar to the creation and annihilation operators in second
quantization.
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1.2.4 The one-plaquette states

The simplest case of states obtainable from the electric vacuum are the one-plaquette
group states, in which we can assign one group element to each plaquette in the system,
through the action of a plaquette operator. On a lattice with M plaquettes we obtain
the state:

|g̃1...g̃M〉 = cnB
g1
p1,v1

...BgM
pM ,vM

|0E〉 (1.81)

where the tilde indicates that they refer to a plaquette, while cn is the normalization
constant of the state. In general we would expect that each plaquette operatorBg

p,v selects
a fraction 1/|G| of the states. Therefore in order to keep the normalization we should
just need to introduce a factor

√
|G| for each plaquette operator. This reasoning fails in

the case of a PBC lattice, where the plaquette projectors combine in more convoluted
ways. In that case it is also possible for a set of projectors to have only the 0-norm
state as common support. This state is not normalizable and cannot be interpreted
as a physical wave function. It is therefore important to understand that describing a
state through the previous definition is not enough to warrant its existence. We will
show an example of such effects in the case of the group D4, when we will analyze the
non-abelian theory. The one-plaquette group states depend on the vertices we chose for
each plaquette. Conventionally, if nothing else is specified, we can take them to be the
bottom left corner.
These states are not a basis of the Hilbert space, since generally there are always more
links than plaquettes. Moreover they are not gauge invariant, as can be calculated from
the commuting relations on a single plaquette:

Ahv |g̃〉 = |G|
1
2AhvB

g
p,v |0E〉 = |G|

1
2Bh−1gh

p,v Ahv |0E〉 = | ˜(h−1gh)〉 (1.82)

We can nonetheless use these states as a starting point to obtain gauge invariant states.
There are in fact two ways to do so. The first is to perform a linear combination
of all group elements belonging to a given conjugacy class, in which case the gauge
transformation leads only to a reshuffling of terms, leaving the state invariant. For the
single plaquette we write those as

|C〉 =
1√
|C|

∑
g∈C

|g̃〉 (1.83)

where C is a conjugacy class of G.
The other way is to introduce the character states, defined as

|χj〉 =
1√
|G|

∑
g∈G

χj(g) |g̃〉 (1.84)

which remain unchanged under a gauge transformation since the characters are class
functions [47].
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Sometimes it is useful to describe these states through the action of an operator. In
order to do so we define:

Ĉp =
∑
g∈C

Bg
p,v (1.85)

χ̂j(p) =
∑
g∈G

χj(g)Bg
p,v (1.86)

The two sets of states are related by the transformation:

|χj〉 =
∑
C∈G̃

√
|C|
|G|

χj(C) |C〉 (1.87)

which can be calculated easily from the group Fourier transform. In this case G̃ is the
set of conjugacy classes, and χj(C) is the value of the character on any element of the
conjugacy class.
Another remarkable property of the conjugacy and character sets of states is that they no
longer depend on the vertex choice. This is again because when we change the starting
vertex we change the group state by a conjugation, which is canceled by reshuffling in
the conjugacy case and characters being class functions in the other.

We can generalize the one-plaquette states to the whole lattice as

|χj1 ...χjM 〉 =
1√
|G|M

∑
g1,...,gM∈G

χj1(g1)...χjM (gM) |g̃1...g̃M〉 (1.88)

|C1...CM〉 =
1√

|C1|...|CM |

∑
g1,...,gM∈C1,...,CM

|g̃1...g̃M〉 (1.89)

The character states can also be represented as

|χj1 ...χjM 〉 =
1√
|G|M

∑
g1,...,gL∈G

χj1(gγ1)...χjM (gγM) |g1, ..., gL〉 (1.90)

where gγp is the product of the four group elements on the links around plaquette p taken
directly or inverted based on the orientation in which the link is traversed.
It is useful to notice that states in these two sets are orthonormal. This is obvious in
the conjugacy case, since two group states with different conjugacy class are orthog-
onal. In the representation case it is instead due to the orthogonality of characters:∑

g∈G
χ∗i (g)χj(g) = |G|δi,j [56].
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1.2.5 General results on one-plaquette states

The one-plaquette states can be useful to calculate matrix elements of the Hamiltonian.
Starting from the magnetic part the group plaquette states can be used to easily calculate
the matrix elements, since the action of the Wilson loops becomes trivial:

〈g̃1...g̃M |HB |h̃1...h̃M〉 = −2δg1,h1 ...δgM ,hM

M∑
p=1

Re(χF (gp)) (1.91)

A similar relation also holds for the conjugacy class states:

〈C1...CM |HB |C ′1....C ′M〉 = −2δ(C1,
′C1)...δ(CM , C

′
M)

M∑
p=1

Re(χF (Cp)) (1.92)

The situation for the electric term is more complicated. We can start by calculating the
value for a single link operator hlE. If we have only one plaquette than

|χj〉 =
1√
|G|4

∑
g1,g2,g3,g4∈G

χj(g1g2g
−1
3 g−1

4 ) |g1g2g3g4〉 (1.93)

In this case the character of four elements can be made explicit as the product of the
representations, which in turn can be understood as elements of the representation basis:

|χj〉 =
1√
|G|4

∑
m1,m2,m3,m4
g1,g2,g3,g4

πjm1m2
(g1)πjm2m3

(g2)πj∗m4m3
(g3)πj∗m1m4

(g4) |g1g2g3g4〉(1.94)

=
1√
d4
j

dj∑
m1,m2,m3,m4=1

|jm1m2jm2m3j
∗
m4m3

j∗m1m4
〉 (1.95)

where we used the conjugate representation j∗. Since the single link electric term is
constant for all states with the same j it is easy to see that on any of the four links

hlE |χj〉 = f(j) |χj〉 (1.96)

since f(j∗) = f(j) for a symmetric set of generators Γ.
In case we have more than one plaquette we notice that the state of a link can be in-
fluenced only by the state of the two nearest plaquettes. To solve the general case we
can then reduce ourself to a two-plaquette system, and calculate the value of hlE on the
shared link.
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Figure 1.5: Conventions for a 2 plaquette system. In this case γ1 is the loop around
plaquette 1, γ2 the loop around plaquette 2 and γ3 the loop around both plaquettes.

Using the conventions in figure 1.5, the only non-trivial single link electric component
is related to link 2. Therefore we calculate:

〈χi1χi2 |h2
E |χj1χj2〉 =

1

|G|2
∑

gagbhahb

χ∗i1(ha)χ
∗
i2

(hb)χj1(ga)χj2(gb) 〈h̃ah̃b|h2
E |g̃ag̃b〉 (1.97)

The last term can be expanded on the group basis:

〈h̃ah̃b|h2
E |g̃ag̃b〉 =

1

|G|5
∑

h1,...,h7
g1,...g7

δ(ha, hγ1)δ(hb, hγ2)δ(ga, gγ1)δ(gb, gγ2) 〈h1...h7|h2
E |g1...g7〉

(1.98)
where hγi =

∏
l∈γi h(el) and gγi =

∏
l∈γi g(el).

We notice that h2
E acts only on the subspace of link 2, therefore the scalar products on
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all the other links can be resolved as 〈hlgl〉 = δ(hl, gl). On link 2 we have instead:

〈h2h
2
Eg2〉 =

∑
j

f(j) 〈h2Pjg2〉 (1.99)

=
∑
j,m,n

f(j) 〈h2jmn〉 〈jmng2〉 (1.100)

=
∑
j,m,n

dj
|G|

f(j)πjmn(h2)πj∗mn(g2) (1.101)

=
∑
j,m,n

dj
|G|

f(j)πjmn(h2)πjnm(g−1
2 ) (1.102)

=
∑
j

dj
|G|

f(j)χj(h2g
−1
2 ) (1.103)

(1.104)

Substituting this relation, and simplifying the 6 simplest deltas we get

〈h̃ah̃b|h2
E |g̃ag̃b〉 =

∑
j

∑
g1,...g7,h2

δ(ha, g1h2g
−1
3 g−1

4 )δ(hb, g5g6g
−1
7 h−1

2 ) (1.105)

δ(ga, g1g2g
−1
3 g−1

4 )δ(gb, g5g6g
−1
7 g−1

2 )
dj
|G|6f(j)χj(h2g

−1
2 ) (1.106)

In order to simplify this expression we use the first and third term to solve the sum over
h2 and g2. In the character term all group elements cancel thanks to the cyclic property.
We are left with

〈h̃ah̃b|h2
E |g̃ag̃b〉 =

∑
j

∑
g1,g3,...g7

δ(hb, g5g6g
−1
7 g−1

3 g−1
4 h−1

a g1) (1.107)

δ(gb, g5g6g
−1
7 g−1

3 g−1
4 g−1

a g1)
dj
|G|6f(j)χj(hag

−1
a ) (1.108)

The product g5g6g
−1
7 g−1

3 g−1
4 is the same in the two deltas. From the second delta it is

equal to gbg
−1
1 ha, which can be substituted in the first one so that we can also write

〈h̃ah̃b|h2
E |g̃ag̃b〉 =

∑
j,g1

dj
|G|6f(j)χj(hag

−1
a )δ(h−1

b gb, g
−1
1 hag

−1
a g1) (1.109)∑

g3,...g7
δ(hb, g5g6g

−1
7 g−1

3 g−1
4 h−1

a g1) (1.110)

The last five sums are trivial, and give as a result a factor |G|4. To solve the sum in g1

instead we notice that ∑
k∈G

δ(g, k−1hk) (1.111)

is always zero if g and k are in different conjugacy classes. If they are in the same then
the result of such sum is |G|

|C(g)| . Thanks to the orthogonality relations of characters we
can write it as ∑

k∈G

δ(g, k−1hk) =
∑
j

χ∗j(g)χj(h) (1.112)
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Using this expression in the previous equation we find:

〈h̃ah̃b|h2
E |g̃ag̃b〉 =

∑
l,m

dl
|G|2f(l)χl(hag

−1
a )χ∗m(h−1

b gb)χm(hag
−1
a ) (1.113)

If we substitute this expression in equation (1.97) we obtain:

〈χi1χi2|h2
E |χj1χj2〉 =

1

|G|4
∑
l,m

∑
gagbhahb

f(l)d(l)χ∗i1(ha)χ
∗
i2

(hb)χj1(ga)χj2(gb) (1.114)

χl(hag
−1
a )χ∗m(h−1

b gb)χm(hag
−1
a ) (1.115)

In this formula we can change variable from ga to k = hag
−1
a . We can then recognize two

convolutions and one orthogonality relations, given by the sums over gb, ha and hb. The
end result is:

〈χi1χi2 |h2
E |χj1χj2〉 = δi1,j1δi2,j2

1

di1di2|G|
∑
l,k

f(l)dlχ
∗
i1

(k)χl(k)χi2(k) (1.116)

If we make the electric eigenvalues f(l) explicit, according to equation (1.54), it is possible
to simplify this expression further:

〈χi1χi2|h2
E |χj1χj2〉 = δi1,j1δi2,j2

1

di1di2 |G|

(∑
l,k∈G dl|Γ|χ∗i1(k)χl(k)χi2(k)− (1.117)∑

l,k∈G,g∈Γ χl(g)χ∗i1(k)χl(k)χi2(k)
)

(1.118)

In the first term we can substitute dl with χ∗l (e), and perform the sum over l. This gives
a term δk,e which can be used to calculate the sum in k:∑

l,k∈G

dl|Γ|χ∗i1(k)χl(k)χi2(k) = didj|G||Γ| (1.119)

In the second term instead we perform the sum over l, which restricts k to give non
zero results only on the conjugacy classes of the elements in Γ. Since the latter group is
closed under conjugation the result is:∑

l,k∈G,g∈Γ

χl(g)χ∗i1(k)χl(k)χi2(k) = |G|
∑
g∈Γ

χ∗i1(g)χi2(g) (1.120)

Putting together the two results we find

〈χi1χi2|h2
E |χj1χj2〉 = δi1,j1δi2,j2 f̄(i1, i2) (1.121)

where we defined

f̄(i, j) = |Γ| − 1

didj

∑
g∈Γ

χ∗i (g)χj(g) (1.122)
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This function can be seen as a generalization for the average electric energy on a link,
when two plaquettes interact to give the state of the link. From this simple relation it
is possible to see that the matrix elements between character one-plaquette basis states
for an arbitrary lattice can be written as

〈χi1 ...χiMHEχj1 ...χjM 〉 = δ(i1, j1)...δ(iM , jM)
∑

<im,in>

f̄(im, in) (1.123)

where the sum is performed over nearest neighbor plaquettes.

While this relations can be useful to calculate matrix values and average energies, it
is important to notice that the electric part is not diagonal on the one-plaquette states.
This is due to the fact that those states don’t form a basis of the Hilbert space. Although
the electric Hamiltonian has matrix element zero between two one-plaquette character
states, there could be other states for which it is not so.
Since the Hamiltonian is gauge invariant these other states must be in the gauge invariant
sector. A key example of this fact will be shown when we will treat the non-abelian
theory.

1.2.6 Multiple plaquette states

If we want to work with more general gauge invariant states and operators we need to
consider closed paths which surround more than one plaquette. If we call one of those
paths γ we can define the operator that associates it to a group element as

Bg
v(γ) =

∑
h1,...,hlmax

δ (g, hγ)
⊗
l∈γ

Phl(el) (1.124)

where hγ =
∏

l∈γ h(el).
We can use this operator to construct projectors to the character and conjugacy class
states as

χ̂j(γ) =
∑
g∈G

χj(g)Bg
v(γ) (1.125)

Ĉ(γ) =
∑
g∈C

Bg
v(γ) (1.126)

These operators can be used on the electric vacuum to obtain gauge invariant states,
written as |χj(γ)〉 or |C(γ)〉, and no longer depend on the starting vertex v due to the
same reasons as for the one-plaquette case.
They can also be combined to create more complex states, such as

|χj1(γ1)χj2(γ2)...〉 = cnχ̂j1(γ1)χ̂j2(γ2)... |0E〉 (1.127)
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The main issue of these states is that if we use all possible paths we obtain many
redundant descriptions of the same state, leading to an over-complete sets of states for
the description of the gauge invariant subspace.
This is a known problem [26], particularly hard to solve in the case of non-abelian
theories, as we will show later.

1.3 Related models

Now that we have introduced the plaquette and vertex operators it is interesting to look
at another class of quantum link models, collectively known as Quantum Double Model
(QDM) [10, 11, 13, 31]. They were first developed as group based generalization of the
toric model.
QDM are defined on a ordered lattice as the previous models and base their structure
on a finite group G. The total Hilbert space is the same: a copy of the group algebra
for each link in the model. From the group structure it is possible to construct the same
plaquette and vertex operators, from which we can write the Hamiltonian as

H = −
∑
p

Bp −
∑
v

Av (1.128)

where Bp = Be
p,v and we can omit the vertex index, since on a plaquette operator

connected to the identity element e all starting points are equivalent. This can be seen
from the special case h = e in equation (1.73).
In the QDM all addends of the Hamiltonian commute with each other. This means that
it is possible to diagonalize both on the same basis. We can then look at the spectrum
of each individual part separately and then combine the results to obtain the spectrum
of the whole theory.
In the case of gauge group theories we have instead the electric term, which does not
commute with the magnetic term, giving a non-trivial behavior.
Looking at the vertex part first, in order to reconstruct the spectrum of the whole theory,
we can start by noticing that the operators Av are projectors, therefore they can only
have eigenvalues equal to 0 or 1. Since each vertex operator enters the Hamiltonian with
a minus sign the lower energy states correspond to states on which the eigenvalue of each
vertex operator is 1. In principle we cannot know if there is only one ground state or
if it is a degenerate eigenspace. Nevertheless we know that on any state in the ground
eigenspace of the vertex part |ψ0

v〉 all vertex operators act with eigenvalue 1, which means
that we can write:

Av |ψ0
v〉 = |ψ0

v〉 (1.129)

The energy of such states is Ev = −Nv, where all Nv vertices contribute with an energy
−1.
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This condition is the gauge invariant condition of the finite group Yang-Mills mod-
els. Therefore the vector space of physical states in the gauge theory corresponds to the
eigenspace of ground states of the QDM.

Also the operators Bp are projectors, and enter the Hamiltonian with a minus sign.
Therefore, we have a minimum of the plaquette term when all plaquettes correspond to
the eigenvalue 1, giving a total contribute to the energy equal to Ep = −Np, where Np

is the number of plaquettes. These states satisfy the condition

Bp |ψ0
p〉 = |ψ0

p〉 (1.130)

In order to understand the relation between QDM and the Yang-Mills model we can look
at a single plaquette in the group plaquette basis, which is defined by a state |g̃〉, and
compare the action of one operator Bp with the one plaquette Wilson loop operator. In
this case we have:

Bp |g̃〉 = δe,g |g̃〉 (1.131)

Wp |g̃〉 = χF (g) |g̃〉 (1.132)

where χF is again the character of the arbitrary representation πF . This relation allows
us to draw a parallel between the plaquette part of the QDM Hamiltonian with the
magnetic part of the Yang-Mills Hamiltonian. In the magnetic Hamiltonian we have also
to consider the action of the adjoint Wilson loop, which, summed to the other, leads to
real eigenvalues 2 ReχF (g). Since the value of any character χj is a sum of dj complex
roots of unity [23], where dj is the dimension of representation πj, the maximum value of
ReχF (g) is attained when all addends are equal to 1. The sum becomes ReχF (g) = dF
which is always true for g = e. In this case the single plaquette contribute assumes
the value 2dF . But such state correspond also to the greatest possible eigenvalue on
the double model, which is 1. Therefore, a state that minimizes the plaquette part also
minimizes the magnetic Hamiltonian.
If we look instead at one-plaquette states with g 6= e we have eigenvalue zero in the
QDM case, while we have different values in the gauge case, which depend on the group
G and the chosen representation πF . This means that the magnetic excitations of the
Yang-Mills model are more complex than in the QDM.

Putting together the considerations on both the plaquette and the vertex part we can
see that the ground states of the QDM minimizes the magnetic energy and are gauge
invariant. Therefore they can be useful to describe the ground state of the Yang-Mills
Hamiltonian in the case it is totally dominated by the magnetic part.
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1.3.1 The toric model

The simplest and most studied double model is the toric model, which corresponds to
the choice of Z2 as the defining group.
For this group we have 2 elements: e and r. Since each of them form a conjugacy class
we have 2 conjugacy classes and therefore 2 irreducible representations. We denote the
trivial as π0, with π0(g) = 1 ∀g, and the non trivial as π1, which has values π1(e) = 1
and π1(r) = −1.
We can then define the 2-dimensional single link Hilbert space in the position basis as
|e〉 and |r〉, or equivalently in the representation basis as |0〉 and |1〉. The two bases are
connected by the group Fourier transform:

〈g|j〉 =
1√
2
πj(g) (1.133)

This change of basis can be represented as a 2 by 2 matrix:

〈g|j〉 =
1√
2

(
1 1
1 −1

)
(1.134)

The left and right regular representations are 2-dimensional representations, since |G| =
2. The representations of element e are Le = Re = 12 in all bases, while the regular
representations of element r are diagonal in the representation basis:

Lr |0〉 = Rr |0〉 = +1 |0〉 (1.135)

Lr |1〉 = Rr |1〉 = −1 |1〉 (1.136)

which means that we can write Lr = Rr = σz in the representation basis, using the Pauli

matrix σz =

(
1 0
0 −1

)
.

This allows us to write the vertex operators as

Aev = 1 (1.137)

Arv = σ(1)
z σ(2)

z σ(3)
z σ(4)

z (1.138)

Av =
1

2
(1 + σ(1)

z σ(2)
z σ(3)

z σ(4)
z ) (1.139)

The position operators û are 1 × 1 matrices since the chosen representation πF = π1 is
one dimensional. They are diagonal on the position basis and have eigenvalue +1 on |e〉
and eigenvalue −1 on |r〉. Using the relation between position basis and representation
basis we can see that on the latter they take the form û = σx. We can then rewrite
the eigenstates as |e〉 = |+〉 and |r〉 = |−〉, in accordance to classical conventions for
2-dimensional Hilbert spaces.
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We have two plaquette operators Be
p,v and Br

p,v. If we look at the product of four σx
along the boundary of a plaquette acting on a state in the position base we can see that
they have eigenvalue 1 when the group product of the links is e and −1 when it is r. We
can then write:

Be
p,v =

1

2
(1 + σ(1)

x σ(2)
x σ(3)

x σ(4)
x ) (1.140)

Br
p,v =

1

2
(1− σ(1)

x σ(2)
x σ(3)

x σ(4)
x ) (1.141)

From these we can define also the single plaquette Wilson loop operator:

Ŵ = χ1(e)Be
p,v + χ1(r)Br

p,v = σ(1)
x σ(2)

x σ(3)
x σ(4)

x = û(e1)û(e2)û(e3)û(e4) (1.142)

where Ŵ = tr Ŵ , since the chosen representation is one-dimensional. We can use these
operators to write the Hamiltonian

Htoric = −
∑
p

Bp −
∑
v

Av (1.143)

Before moving forward it is useful to comment about conventions. In many standard
textbooks [55, 8] the Hamiltonian is given as

H ′toric = −
∑
p

B′p −
∑
v

A′v (1.144)

B′p =
∏
l∈p

σ(l)
x A′p =

∏
l∈v

σ(l)
z (1.145)

Since the two Hamiltonians (1.143) and (1.144) differ only by a constant (equal to
Nv +Np) they have the same structure of the spectrum.
Another common difference in conventions is that the Pauli matrices are often inverted,
using σx for the vertex operators and σz for the plaquette operators. This can be inter-
preted as working in position basis instead of representation basis, where û = σz and
Lr = Rr = σx.

Using the plaquette operators it is possible to define the ground state of the system
as

|ψ0
B〉 =

∏
p

Bp |0E〉 (1.146)

To prove that this is indeed the ground state of the system we can see that all Av op-
erators commute with the plaquette operators and act trivially on the electric ground
state. The plaquette operators Bp combine with the plaquette operator in the definition
as BpBp = Bp, leaving the state invariant.
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In order to visualize this ground state we can work in the representation basis and indi-
cate the states in the |0〉 state as turned off, while the states in the |1〉 state as turned
on. The σx operator act as a toggle, changing the state on a link from off to on and vice
versa. The Wilson plaquette loop operator Ŵ is a product of σx operators, and therefore
simultaneously toggles all states around a given plaquette. The action of the Bp operator
can be divided in two parts: the first acts trivially, leaving the state unchanged, while
the second is proportional to the plaquette toggle Ŵ .
Moreover when two adjacent plaquettes are turned on the link in between is acted upon
twice, leaving it unchanged. This produces active loops which wrap around more than
one plaquette.
Putting all this together we can see that the magnetic ground state is a superposition of
all possible combinations of on and off plaquettes. It also contains all loops that can be
represented as a union of 2 or more plaquettes. Such a state is called a loop gas [24].

Not all the possible loops are found in such state. Due to the PBC the topology of
the space is a torus and there are two non contractible loops which cannot be represented
as a product of plaquettes as can be seen in figure 1.6.

Figure 1.6: Non-contractible loops in a 3x3 2-dimensional periodic lattice. In red and
blue are shown the two possible loops in the direct lattice, while γ∗x and γ∗y are the loops
in the dual lattice.

We can access states which contains non contractible loops turned on through the
action of the Wilson loop operators Ŵ (γx) =

∏
l∈γx û(el) and Ŵ (γy) =

∏
l∈γy û(el).

Since these two operators commute with all Bp and Av they don’t change the value of
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the Hamiltonian. We can then define:

|ψ0
B,x〉 = Ŵ (γx) |ψ0

B〉 |ψ0
B,y〉 = Ŵ (γy) |ψ0

B〉 |ψ0
B,xy〉 = Ŵ (γx)Ŵ (γy) |ψ0

B〉 (1.147)

These three states, together with the starting state |ψ0
B〉 are all ground states of the toric

model, and therefore are also ground states of the Z2 gauge theory, when dominated by
the magnetic term.
This states cannot be easily perturbed from one to the other and have been used to
prove that the Hamiltonian is topological [51] and play a fundamental role in the study
of quantum error correcting codes [55].
In general all states that can be obtained by local transformation on these four states
are said to belong to the same topological sector. Therefore we can say that the toric
model has four topological sectors.
In order to understand if a state is in a certain topological sector we can use the t’Hooft
loop operators, defined as

Z(γ∗) =
∏
l∈γ∗

σ(l)
z (1.148)

where γ∗ is a closed loop in the dual lattice, as seen in figure 1.6. In this case the t’Hooft
loops around the non contractible dual loops γ∗x and γ∗y have eigenvalues ±1 and can be
used to categorize states into the four sectors: ”++”, ”−+”, ”+−”,”−−”.
It is simple to see that |ψ0

B〉 is in the first sector, |ψ0
B,x〉 is in the second, |ψ0

B,y〉 is in the
third, and |ψ0

B,x,y〉 in the fourth.

1.3.2 The magnetic ground state

Using the toric model as a guideline we would like to find an explicit description of the
ground state of double models with a different gauge group, which corresponds to the
various magnetic ground states of the related Yang-Mills theories.
We can start by defining the simple state

|ψ0
B〉 = cn

∏
p

Bp |0E〉 (1.149)

From the commutation rules between Bp and Av, the action of Av on |0E〉 and the
composition of Bp and Bp′ we can see that this is indeed a ground state for the QDM.
Before moving forward we must verify that this state indeed exist. In order to do so we
can calculate the normalization constant:

1

|cn|2
= 〈0E|

∏
p,p′

Bp′Bp |0E〉 (1.150)
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We can use the projector relations between the plaquette operators to simplify the ex-
pression, expand the electric vacuum in the group basis and obtain:

〈0E|
∏
p,p′

Bp′Bp |0E〉 = 〈0E|
∏
p

Bp |0E〉 (1.151)

=
1

|G|L
∑

g1,...,gL

∏
p

δ(e, g(γp)) (1.152)

Here g(γp) is the product of the group elements along the path which wraps around the
p plaquette. Using the conventions for the states on the 3x3 lattice, as can be seen in
figure 1.7, we can show that the deltas combine nicely. For example for plaquette 1 and
2 we have

δ(e, g(γp1))δ(e, g(γp2)) = δ(e, g1g4g
−1
7 g−1

2 )δ(e, g3g6g
−1
9 g−1

4 ) = (1.153)

= δ(e, g1g4g
−1
7 g−1

2 )δ(g4, g3g6g
−1
9 ) = δ(e, g1g3g6g

−1
9 g−1

7 g−1
2 )δ(g4, g3g6g

−1
9 ) (1.154)

This is due to the fact that taken any two vertex on a plaquette, the delta on that
plaquette produces an identification between the two possible paths between the two
vertices, which can be substituted on other plaquettes to obtain any contractible loop.
After the substitution there is only one dependence on g4 and therefore we can sum over
it, solving one of the deltas in the sum.
Extending this reasoning on the whole lattice we can put all loops into one, eliminating
the other M − 1 deltas. The choice of merging is arbitrary. We use the comb shape in
figure 1.7, which can be easily generalized to larger lattices. The result is:

1

|cn|2
=

1

|G|L
∑
gi

δ(e, g(γcomb)) (1.155)

where the gi summed over are the one appearing in γcomb.

42



Figure 1.7: 3x3 periodic lattice, with two useful paths γcomb and γtot shown.

The group elements between the comb teeth are taken once in a direction and once
in the opposite, canceling each other out. We can then sum over those states, obtaining
a factor |G| for each. We are left with a loop γtot which wraps around the whole lattice.
Due to the PBC these loop contains the lower border and the left border twice, traveled
in opposite direction. Instead of summing over each link in the lower border we can
substitute their product with a new element gx, and do the same for the vertical border
gy. The sum depends only on these products, and we are free to sum over the remaining
elements to obtain a factor |G| for each. We are left with

1

|cn|2
= |G|−M−1

∑
gx,gy

δ(e, gxgyg
−1
x g−1

y ) (1.156)

The last sum can be calculated as∑
gx,gy

δ(gy, gxgyg
−1
x ) =

∑
gy

|G|
C(gy)

= |G||Ĝ| (1.157)

where |Ĝ| is the number of irreducible representations. We can then write the normal-
ization constant as

cn =

√
|G|M

|Ĝ|
(1.158)
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which proves that the state |ψB0 〉 exists for any group G.
We can also interpret such a state as a loop gas. In fact, using the orthogonality relations
one finds:

Bp =
∑
gi

δ(e, g1g2g
−1
3 g−1

4 )Pg1Pg2Pg3Pg4 (1.159)

=
∑
j,gi

χ∗j(e)

|G|
χj(g1g2g

−1
3 g−1

4 )Pg1Pg2Pg3Pg4 (1.160)

=
∑
j

dj
|G|

χ̂j(p) (1.161)

Therefore each plaquette operator projects over the superposition of all possible charac-
ter states on that plaquette. The product of all plaquette operators therefore projects
on all possible combinations of one-plaquette character states.

We can also introduce the concept of topological sectors in the following way. We
define the operators χ̂jx(γx) and χ̂jy(γy) and apply them on the magnetic vacuum. We
obtain

|ψB0 (jx, jy)〉 = χ̂jxχ̂jy(γy) |ψB0 〉 (1.162)

These states have the same energy of the ground state, but exhibit an excitation along a
non contractible loop, which makes them topologically different. Therefore the eigenspace
with minimum energy of the QDM is |Ĝ|2 dimensional.
It is interesting to notice that the choice of the two non-contractible loops is irrelevant,
since given two operators χ̂j along the loop γx and another loop γ′x parallel to the first,
acting on the state |ψB0 〉, it is possible to use the identities on each plaquette to deform
a loop into the other.

Comparing the toric case with the more general quantum double model we can see
that in both cases it is possible to describe explicitly the ground states through the action
of certain operators. Such state can be interpreted as a loop gas, although only states
that can be described as products of one-plaquette states are present.
Nevertheless there are some important differences. In the toric case the Ŵ (γ) operators
act as toggles. This is due to the fact that the operator Ŵ (γ) can be interpreted as
χ̂1(γ), where χ1 is the character of the non-trivial representation π1, and that χ2

1 = χ0.
Therefore applying two times the operators is equal to applying the trivial operator χ̂0

which leaves the state invariant. In more general quantum double models applying two
times any operator can lead to more general results. An example will be studied later.
Another difference is that in the toric case we were able to define the ’t’Hooft loop
operator Z(γ∗) which allowed us to distinguish between states of different topological
sectors. This operator is a product of the left(or right) regular representations of the
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elements r along the dual path γ∗. This description does not allow us to easily generalize
to different gauge groups. Since it is not needed for the numerical analysis, the search
of an explicit expression of t’Hooft loop operators for finite group gauge theories is left
to further development.

1.4 Phases and observables

The main aim of the study of gauge theories with a finite symmetry group is to under-
stand the structure of its phase diagram, which determines the macroscopic behavior at
different energy scales. In this sections we will show which are the interesting phases of
the system and which are the observables that allow us to identify such phases. Before
moving forward we need first to clarify which are the coordinates of the phase diagram,
which correspond to the parameters of the Hamiltonian.

1.4.1 Parameterization of the Hamiltonian

The Hamiltonian of Yang-Mills theories assumes the form:

H = λEHE + λBHB (1.163)

Since we are not interested in the absolute values of the energies, but only on the structure
of the Hamiltonian it is useful to study the Hamiltonian

H = HE + λHB (1.164)

which differs from the previous only by a trivial multiplicative constant. This convention
will be useful in the numerical calculations that we will perform later. In this case we
study the Hamiltonian for λ ∈ [0,+∞). This substitution shows that we have only one
meaningful parameter on which we need to study the system. It is possible to work with
more complex models, with more parameters, for example by introducing the chemical
potential µ.
An equivalent choice of parameterization, widely used in literature [17] is

H = gHE +HB (1.165)

In this case the constant g multiplies the electric part. It is through this convention that
the nomenclatures ”strong-coupling phase” and ”weak-coupling phase” are defined: the
first corresponding to the case in which the electric term is stronger then the magnetic,
while the latter to the opposite case.
Another convention that we will use is the compactified version:

H = (1− λc)HE + λcHB (1.166)
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which has the nice property that it reduces to the purely electric Hamiltonian for λc = 0
and to the purely magnetic Hamiltonian for λc = 1, allowing us to describe all possi-
ble relative weights of the two parts with a single parameter on a finite interval λc ∈ [0, 1].

1.4.2 Confinement

Now that we have defined where we are looking, we need to understand what we are look-
ing for. The characteristic that differentiates the various phases of Yang-Mills theories
is a property called confinement. Confinement is the phenomenon, typical in chromody-
namics, in which particles cannot be isolated, and therefore cannot be directly observed
in normal conditions. This happens when the attraction between particles doesn’t de-
crease with the distance between them, requiring infinite energy to keep them apart.
In order to describe confinement in our theory we must introduce particles. We can do
so by introducing the operators

π̂jmn(γ) =
∑
gi∈G

πjmn(gγ)
⊗
i

Pgi (1.167)

where γ is an open path, and the index i runs over all links in path γ. This operator
can be applied on the electric vacuum to obtain states that violates the gauge invariant
conditions at the two extreme points v1, v2 of the path γ. This loss of symmetry can
be recovered if we recall that the gauge invariant condition serve to enforce charge con-
servation, therefore the state can be understood as the case in which two charged static
particle from the matter field live on the two vertices. We can then calculate the energy
of the interaction as the difference between the energy of the ground state vacuum and
the energy of the ground state when the gauge conditions are violated at two points of
the lattice. This energy, which is given as a function of the distance R between the two
points is usually known as the static quark potential V (R). If the system is confined it
increases continuously at large values of R, while it stops growing if the system is not
confined.

It is simple to see that in the electric dominated phase the difference in energy between
the vacuum ground state and the static quark ground state is exactly ∆E(R) = Rf(j),
since the lowest energy state in the latter case is the one in which the path γ connects the
two points through the shortest path, giving a contribute f(j) for each link traversed.
This potential increases linearly with R, showing that in the strong-coupling regime the
system is confined. The proportionality constant is called the string tension σ.
In the magnetic case the ground state with two static quarks is a superposition of all
possible path between the two points, combined with all possible loops on the lattice.
The energy of the magnetic Hamiltonian on such state is the same as the energy on
the magnetic vacuum. Therefore the static quark potential V (r) is always zero, and the
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weak coupling phase is not confined.

Although it is possible to identify the phases through the calculations of the static
quark potential there is a better alternative, through the study of an order parameter,
which corresponds to the average value of a certain observable on the ground state. Due
to Elitzur’s theorem [15] the observable must be gauge invariant, otherwise it would have
a vanishing expectation value, therefore a good candidate is the Wilson loop:

〈tr Ŵγ〉g = 〈0g| tr Ŵγ |0g〉 (1.168)

where |0g〉 is the ground state for parameter g. It has been shown [17] that indeed the
Wilson loop gives a good order parameter, which is able to feel the global changes of the
system due to its non-local nature.

It is found that in the confined phase the expectation value follows the area law

〈tr Ŵγ〉g = constant× e−µ(g)A[γ] (1.169)

where A[γ] is the area enclosed in the closed loop γ and µ is a function of g. If the
Hamiltonian is purely electric the expectation value is zero, which means that if g →∞
than µ → ∞. At the transition point both the parameter µ and the string tension σ
goes to zero, allowing us to identify the transition.

Instead in the deconfined phase the Wilson loop follows the perimeter law

〈tr Ŵγ〉g = constant× e−ρ(g)P [γ] (1.170)

where P [γ] is the length of the closed loop γ. In the extreme case, where g = 0, we have
〈tr Ŵγ〉g=0 = χF (e) = dF , showing that ρ(g)→ 0 for g → 0.
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Chapter 2

Abelian field theory

In this chapter we will focus on a subset of Yang-Mills theories where the gauge group is a
finite abelian group on a periodic 2-dimensional lattice. These theories feature a number
of simplifications, which can be used to create a more efficient quantum algorithm.
We will start the chapter by describing these features, and how they can be derived from
the theoretical context described in the previous chapter. Then we will use these models
to discuss the different ways in which this system can be implemented on a quantum
device. In the last sections we will give a precise description of the implementation in
two cases, the Z2 and Z4 models, and show the results.

2.1 Simplifications in the abelian case

2.1.1 Finite abelian groups

Finite abelian groups are remarkably easy to describe. Thanks to the fundamental
theorem of finite abelian groups [27] every finite abelian group G can be expressed as
the direct sum of cyclic subgroups of prime-power order, up to an isomorphism. A cyclic
group of order n is always isomorphic to the additive group Zn of integers modulo n.
Therefore any finite abelian group can be written as

G ' Zp1
m1 × ...× ZpN

mN (2.1)

where pj are primes and mj are positive integers. The number of terms in this decom-
position and the order of each group is uniquely determined by the group G.
Due to this decomposition we will focus mostly on cyclic groups in the following sec-
tions, keeping in mind that it is possible to generalize to all possible abelian groups by
combining them appropriately.
All irreducible representations of any abelian group is 1-dimensional. Since for a finite
group

∑
j d

2
j = |G| (as is shown in equation (A.5)), there are exactly |G| irreducible rep-

resentations for any group G. There is a single matrix element for each representation,
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which can be denoted simply as πj(g), and it corresponds to the value of the irreducible
character χj(g).
The unitarity of the representations requires that πj∗(g) = πj(g−1).

2.1.2 Lattice structures

Since the irreducible representations are one dimensional we can write each single link
state in the representation basis as |j〉 = |jmn〉, where mn are both always 1. The group
basis is still denoted with |g〉.

The vertex operators, which correspond to the gauge conditions defined in equation
(1.60), are defined in terms of the left and right regular representations. Since all irre-
ducible representations are one dimensional the regular representations are diagonal in
the representation basis:

Lg =
⊕
j

πj∗(g) Rg =
⊕
j

πj(g) (2.2)

Therefore the representation basis diagonalizes all gauge conditions, and is the best basis
to use in order to find the gauge invariant subspace.
Whenever two vertex operators defined with the same group element Agv and Agv′ are
applied to two neighboring vertices the action on the link between is given by the product
of the action of a left and right regular representation. Therefore we have:

LgRg |j〉 = πj∗(g)πj(g) |j〉 = |j〉 (2.3)

which always leaves the state invariant. This fact can be easily seen also in the group
basis:

LgRg |h〉 = |ghg−1〉 = |h〉 (2.4)

due to the abelian nature of the group. Extending this property to the whole lattice we
find that ∏

v

Agv = 1 (2.5)

since each link in a periodic lattice is acted upon twice from the two vertices it is con-
nected to. This means that the gauge condition on one of the vertices is always trivial,
since it can be expressed through the action of the other vertex operators.

Regarding character loop operators we can make two interesting considerations. The
first one is that since all irreducible representations are one dimensional we can separate
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the action on each link. For example for the one-plaquette states we have:

χ̂j |0000〉 =
1

|G|2
∑

g1g2g3g4

χj(g1g2g
−1
3 g−1

4 ) |g1g2g3g4〉 (2.6)

=
1

|G|2
∑

g1g2g3g4

πj(g1)πj(g2)πj(g
−1
3 )πj(g

−1
4 ) |g1g2g3g4〉 = |jjj∗j∗〉 (2.7)

where j∗ is the state corresponding to the conjugate representation πj
∗
.

The second is that when acting on two neighboring plaquettes the action on the central
link is trivial. This can be seen using the conventions in figure 1.5:

χ̂j(γ1)χ̂j(γ2) |0E〉 =
1√
|G|7

∑
{gi}

χj(g1g2g
−1
3 g−1

4 )χj(g5g6g
−1
7 g−1

2 ) |g1g2g3g4g5g6g7〉(2.8)

=
1√
|G|7

∑
{gi}

πj(g1)πj(g2)πj(g
−1
2 )πj(g

−1
3 )... |g1g2g3g4g5g6g7〉 (2.9)

= χ̂j(γ3) |0E〉 (2.10)

This means that each character operator described by contractible loop can be expressed
as a product of one-plaquette operators.
If we apply a single plaquette character operator on each plaquette of a lattice with
periodic boundary conditions we can see that on each link the action of the two adjacent
plaquette cancels out, therefore we have∏

p

χ̂j(γp) = 1 (2.11)

where γp is the path along the p-th plaquette.

2.2 ZN Yang-Mills theories

Since all other abelian groups are a direct sum of cyclic groups it is useful the develop
explicitly the theory for ZN groups.
Any cyclic group will be defined as

ZN := {g|g = rk and k = 0, ..., N − 1} (2.12)

where r is the generator of the group. The group basis can be written simply as |k〉 = |rk〉
on a single link, with k = 0, ..., N − 1.
In this case the N irreducible representations are

πj(r
k) = (ωjN)k = ωjkN j = 0, ..., N − 1 (2.13)
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where ωN = exp{2πi/N}.
In particular we can see that for j = 0 we obtain the trivial representation π0(g) = 1 ∀g.
The arbitrary representation πF is usually chosen as π1, which is always faithful for all
N . The û operators used in the definition of the Wilson loop act on the group basis as

û |k〉 = π1(rk) |k〉 = ωkN |k〉 (2.14)

The group Fourier transform which allow us to change from the group basis to the
representation basis is given by

|j〉 =
N−1∑
k=0

〈k|j〉 |k〉 =
1√
N

N−1∑
k=0

ωkjN |k〉 (2.15)

which is the well-known quantum Fourier transform.

2.2.1 Gauge invariant subspace

The remarkable feature of ZN models is that it is possible to completely describe the
gauge-invariant subspace of the theory. To prove this fact we will start by calculating
the dimension of the gauge-invariant subspace, and then we will provide a base which
contains all the possible states.
Since the ZN group has only one generator, denoted r, the gauge conditions reduce to

Arv |ψ〉 = |ψ〉 ∀v (2.16)

since all other restrictions can be traced back to it. Working in the representation basis,
we can see the action on a single vertex becomes:

Arv |j1j2j3j4〉 = ωj1+j2−j3−j4
n |j1j2j3j4〉 (2.17)

Therefore a state is gauge invariant if j1 + j2 − j3 − j4 = (0 mod N). This means that
on any vertex we can choose three links arbitrarily, while the fourth link is forced by
the invariance condition. Each condition reduces the space of states by a factor of |G|.
This is true for all vertices except the last one. In this case we can use equation (2.5) to
show that the action of the last operator is trivial, and doesn’t add any constraints to
the system. Since the dimension of the total Hilbert space is |G|L and we impose V − 1
constraints, where L is the number of links and V the number of vertices, the dimension
of the gauge invariant Hilbert space is |G|L−V+1.

In order to describe the gauge invariant subspace we can start by looking at a single
plaquette. The character one-plaquette states are best suited since they can be easily
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described in the representation basis. On a single plaquette there are N gauge invariant
states, which we can write as

|χj〉 = χ̂j(p) |0E〉 (2.18)

Since on any element of the group we have that

χj1(rk)χj2(rk) = ω(j1+j2)k
n = χj1+j2(rk) (2.19)

applying plaquette operators repeatedly leads to the useful identity

χ̂j1(p1)χ̂j2(p1) |0E〉 = χ̂j1+j2(p1) |0E〉 (2.20)

The Wilson loop operator, which corresponds to χ̂1, cycles through all the possible
invariant states. We can then use its action multiple times to obtain all the one-plaquette
invariant states:

|χj〉 = Ŵ j
� |0E〉 (2.21)

Another consequence of equation (2.20) is that we can easily find that the inverse of any
χ̂j is χ̂N−j, if we consider the sum as modulo N .
On the full lattice we can use these properties to write the set of one-plaquette states as

|χj1 ...χjM 〉 =
M∏
p=1

Ŵ jp(p) |0E〉 (2.22)

There is an important issue with these states. If we write equation (2.11) in the case for
j = 1 we find that the operators Ŵ (p) are not independent:∏

p

χ̂1(p) =
∏
p

Ŵ (p) = 1 (2.23)

We can then solve for one of the plaquette Wilson loop operator, as a function of all the
others. Conventionally we choose the operator on plaquette M , which we call the M -th
operator:

Ŵ (M) =
∏
p6=M

Ŵ−1(p) (2.24)

Substituting this identity in equation (2.22) gives us the identities:

|χj1 ...χjM 〉 = |χj1−jM ...χjM−1−jMχ0〉 (2.25)

which show that some states in the previous description are described in multiple different
ways. To remove this redundancy we can simply take the M -th plaquette to be in the
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state of the trivial representation. Therefore, if we want to uniquely describe all one-
plaquette states, we can use the set of states

|χj1 ...χjM−1
〉 =

M−1∏
p=1

Ŵ jp(p) |0E〉 (2.26)

Due to the combinations between one-plaquette states in the abelian theory all combina-
tions of contractible loops are also present in this set of states. We can just add the two
non contractible loops to obtain all possible loops, which means introducing the Wilson
loop operators along the two non contractible loops γx and γy, and obtain the following
states:

|χj1 ...χjM−1
;χjxχjy〉 = Ŵ jx(γx)Ŵ

jy(γy)
M−1∏
p=1

Ŵ jp(p) |0E〉 (2.27)

This set of states contains |G|M+1 states. Since on a periodic lattice M = V = L/2 this
is exactly the dimension of the gauge invariant subspace previously calculated. Therefore
this is a basis of the gauge invariant subspace.
The values of jx and jy cannot change under an evolution of the system, since the
Hamiltonian only contains local terms. Therefore we can identify different sectors, called
topological sectors, that are not connected to each other, and simulate in only one of
them at a time. The simplest case is jx = jy = 0, which is called the trivial sector.

2.2.2 Energy eigenvalues in the gauge invariant basis

It is useful to write the energy eigenvalues in the basis defined in (2.27).
The state on a single link is given by the two adjacent plaquettes and one of the non-
contractible loops, if they pass through that link. The result is:

|jl〉 = |jp1 − jp2 + jx/y〉 (2.28)

where p1 is the plaquette for which the loop passes through link l in the positive direction,
p2 is the plaquette for which the link is traversed in the negative direction, and jx/y is the
state of the non-contractible loop, if present. Recalling equation 1.54 we can calculate
the single link electric eigenvalues as

hE |j〉 = f(j) |j〉 = 4 sin2

(
πj

N

)
|j〉 (2.29)

where we used Γ = {r, r−1}, which is the smallest generating set closed under conjugation
and inversion.
In ZN groups the function f , which gives the single link electric eigenvalues, has two
useful properties: it is symmetric (f(j) = f(−j)) and periodic f(j +N) = f(j).
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The electric eigenvalues on the total system can be obtained as the sum of the electric
eigenvalues on each link. The result is:

HE |χj1 ...χjM−1
;χjxχjy〉 =

∑
<jp1,jp2>

f(jp1 − jp2 + jx/y) |χj1 ...χjM−1
;χjxχjy〉 (2.30)

where the sum is over all neighboring plaquettes, except for links around theM plaquette,
for which we have only one-plaquette contribute.

For the magnetic part of the Hamiltonian we notice that on a plaquette

Ŵ |χj〉 = Ŵ j+1 |0E〉 = |χj+1〉 (2.31)

so that the one plaquette Wilson loop operator cycles through all the character states.
We can take an Inverse Quantum Fourier transform on the first M − 1 plaquettes in
order to obtain a dual basis:

|q1, ...qM−1;χjxχjy〉 =
1√
|G|M−1

∑
j1,...jM−1

ω
−i(j1q1+...+jM−1qM−1)
N |χj1 ...χjM−1

;χjxχjy〉

(2.32)
On this base the fist M − 1 Wilson loops operators are diagonal and simple to calculate:

Ŵ (p) |q1, ...qM−1;χjxχjy〉 = ω
qp
N |q1, ...qM−1;χjxχjy〉 (2.33)

On plaquette M we need to use identity (2.24) first, which gives us the following eigen-
values:

Ŵ (M) |q1, ...qM−1;χjxχjy〉 = ω
−

∑
p6=M qp

N |q1, ...qM−1;χjxχjy〉 (2.34)

In the Hamiltonian the contribution form any single plaquette is proportional to

− (Ŵ (p) + Ŵ †(p)) (2.35)

The eigenvalues of such expression can be easily calculated for each plaquette as

− (ω
qp
N + ω

qp
N
∗
) = −2 cos

(
2πqp
N

)
= 4 sin2(

πqp
N

)− 2 (2.36)

which is only a constant away from the form of the electric single link eigenvalues in
(2.29). This symmetry between the electric and magnetic part is peculiar in ZN theories,
and can be used to simplify the implementation of the system, as we will see shortly.

2.3 Quantum simulations

The recent interest in the Hamiltonian formalism of quantum gauge theories has been
caused by the advancement in quantum technologies, which promise a more efficient way
to perform simulations.
Due to their simplicity Zn models are an ideal testing ground for quantum computing
implementations. This section will offer a general overview of quantum simulations, in
order to understand how they can be used, their techniques and limitations.
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2.3.1 Analog and digital quantum simulations

The scale of quantum systems grows exponentially with their size, therefore it becomes
increasingly difficult to use them to gain insight in a reasonable amount of time. There-
fore it has been proposed to use quantum systems to simulate other quantum systems
[16], in a way that the resources needed for the simulations grow at the same rate of the
complexity of the system.
The most direct way to perform this task is to create a similar system in the controlled
environment of a laboratory. This can be done for example with ultracold quantum
gasses, photons, and trapped ions [50, 35]. In all these cases the simulator is a quantum
system where many different parameters can be tuned precisely, which can be used to
manipulate the interactions between the components and other physical properties. This
method is called analog simulation, and can be used to great results. The limit is that
only certain systems lend themselves to be simulated this way, and for each of them the
required architecture of the simulator can vary greatly.
Another way to perform quantum simulations is to use quantum computers, which con-
sist of a general programmable quantum device. It is usually constructed out of a set of
2-level quantum systems, called qubits. The original system is mapped onto the quan-
tum computer and all possible operations, such as the unitary evolution, are encoded into
gates [38]. This sort of simulations is called digital. Using a quantum computer in order
to program simulations has the advantage that any possible system can be simulated.
It also allows the development of an universal language which can be used regardless of
the specific construction of the computer.
Quantum computers can be used also for different applications, such as integer factoriza-
tion, or search algorithms [38]. At the present time we are in the Noisy Intermediate-Scale
Quantum(NISQ) era [43], which means that quantum computers are confined by their
size and by the noise of each gate, which limits the number of subsequent calculations
that can be performed reliably. In working with present day computers it is of interest
to develop algorithms that work well even on NISQ devices.
Digital simulation is a powerful tool that can be used on many different systems, while
keeping the overall architecture similar; in contrast analog simulation is a narrower tool,
which requires a different implementation on a case by case basis, but is also more robust
against noise and imperfections.
In the case of lattice gauge theories, there have recently been many proposals for the
analog implementation of lattice gauge theories [9, 22, 39, 49], using ultra-cold atoms
or trapped ions in a lattice to reproduce the interactions of the model. These schemes
mostly focus on 1+1 dimensional systems, in the presence of fermionic matter. At the
same time digital simulation has started to give its first results [33], using a four qubit
quantum computer.
The focus of this thesis will be on digital simulations, which allows us to obtain more
general results.
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2.3.2 Simulating on a quantum computer

The procedure to develop any digital quantum simulation can be divided into three main
steps: how to encode the system into the set of qubits, how to evolve the state, and how
to connect the measures on the quantum computer to the observables of the system.
Since each qubit corresponds to a Hilbert space of dimension 2, a collection of n qubits,
called the quantum register, can be used to describe a quantum system with dimension
up to 2n. Larger systems require a larger number of qubits, in order for their states to
be mapped into the quantum register. Systems with a Hilbert space dimension equal to
a power of 2 can be implemented more efficiently, since it is possible to map them one
to one.
On each qubit it is possible to use the standard notations for two levels systems. The
computational basis is {|0〉 , |1〉} and a tensor product can be used to obtain a basis for
all states of the quantum computer.

The evolution of the system is performed through a series of gates. The simplest
gates act on a single qubit and can be described as rotations:

Rj(θ) = exp

(
−iθ

2
σj

)
(2.37)

where σj are the Pauli matrices. In general any unitary operation can be broken down
to arbitrary accuracy through the action of the three rotations on all qubits and the
CNOT gate [55].
A key step in encoding complex evolutions in a series of gates can be obtained from the
de Trotter formula[55]:

ei(A+B)t = lim
n→∞

(eiAt/neiBt/n)n (2.38)

which allows to approximate the evolution of any system by breaking down the evolution
of an Hamiltonian made of different non-commuting terms into the evolution of each term
separately. Each of these terms can then be given a gate implementation separately,
which is simpler than the one for the total Hamiltonian.
The most direct version of this decomposition is given by:

ei(A+B)∆t = eiA∆teiB∆t + O(∆t2) (2.39)

An alternative expansion, which leads to more accurate results at a low computational
cost, is the symmetrized version:

ei(A+B)∆t = eiA∆t/2eiB∆teiA∆t/2 + O(∆t3) (2.40)

In order to perform a quantum measurement of any observable O, we need to first
perform an unitary operation such that the eigenstates of operator O are mapped into
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the computational basis. We can then perform a projective measurement on each qubit,
in order to identify which eigenstate of the operator the state is in. The corresponding
eigenvalue gives us the result of the measurement. Multiple measurements can be used
in order to compute the average value 〈O〉 of an observable on a given state.

2.3.3 Simulating lattice gauge theories

There are different algorithms which can be used to obtain useful results for any physical
system. In the case of pure lattice gauge theories we want to find the ground state for
the Hamiltonian as the relative importance of the electric and magnetic Hamiltonian
part changes.
The first algorithm we will look at is based on adiabatic evolution. This method allows us
to find the ground state of a parametric Hamiltonian as the parameters change. We start
by initializing the system in a ground state for one configuration of the parameters, then
we evolve it while slowing changing the parameters and, if the change is slow enough,
the final state is a ground state for the Hamiltonian at the final parameter configuration.
We can then perform measurements to obtain any interesting observable on the system.
Using the conventions in equation (1.164), in which

H = HE + λHB (2.41)

We can see that we can initialize the system in the electric ground state, which corre-
sponds to parameter λ = 0, and is easy to implement. Then we can evolve it up to a
certain value λmax before taking measurements for the Wilson loops and other quantities.
The main issue of this method is that the number of gates which needs to be implemented
grows with the value of λmax, which means that we need a high fidelity device, in order
to obtain meaningful results for higher values of λmax. Although such devices don’t exist
at the present day, it is still interesting to develop the theory behind this simulations.

An alternative, which has been developed to work on NISQ hardware, is the Varia-
tional Quantum Eigensolver (VQE), which consists of an hybrid quantum and classical
algorithm [34, 41]. In the VQE a quantum algorithm is used to calculate the average
value of an Hamiltonian on any state. This results are used by a classical algorithm in
order to improve an ansatz for the ground state. The procedure is repeated multiple
times in order to obtain a good enough approximation of the ground state.

2.3.4 Real quantum computers and their simulations

Although there are already some openly available quantum computers, they are still lim-
ited by performance, number of qubits and infrastructure, since on many public quantum
computers not all qubits are connected directly, which greatly hinders how they can be
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used. Nevertheless programs have been developed in order to reproduce the results of
quantum computers with classical computations. An example is the qiskit language [6],
developed as a python extension, which we will use in the following part of the thesis.
Using these languages allows us to test the algorithms and prepares us for applications
with real quantum computers in the future.
There are some important differences between a real quantum computer and their clas-
sical simulations. Recognizing these differences allows us to be more efficient with our
computations and produce better results.
The first difference is that since the Hilbert space grows exponentially with the number
of qubits any classical simulation is exponentially hard. Consequently we can only use
classical simulations for relatively small systems.
Another main difference is that while quantum measurements are destructive, their clas-
sical counterpart is not. This can be used extremely well in the simulation of the adiabatic
algorithm where, instead of starting over after each measurement of the system at λmax,
we can instead save the wave function, take the measurement and then move on to the
next chosen value.
Although in the long run the hope is for quantum algorithms to assert their dominance
and produce efficient results on larger and more interesting systems, we can start to probe
the quantum computing techniques for lattice gauge theories, and understand how they
work.

2.4 Implementation for ZN theories

It is now time to show how to implement a simulation of a ZN theory on a quantum com-
puter. We will work directly in the gauge invariant subspace, and in a fixed topological
sector, using the bases:

|χj1 ...χjM−1
;χjxχjy〉 (2.42)

|q1, ...qM−1;χjxχjy〉 (2.43)

We will focus on cyclic groups with order N equal to a power of 2, which allows us to
achieve an efficient simulation and simpler implementation in gates.
Each of the M − 1 plaquettes corresponds to a N dimensional Hilbert space, while the
total invariant subspace can be represented as a tensor product, of dimension NM−1. We
can map each plaquette into a set of n qubits, such that N = 2n.
Working in the character basis, on each plaquette the N states are identified by jp =
[0, N−1], and can be mapped into n qubits. This map is simply the base 2 representation
of jp:

|jp〉 = |(jp)2〉 (2.44)

58



In particular the state associated with the trivial representation jp = 0 is mapped into
the state |0〉⊗n. Which means that the electric ground state is:

|0E〉 = |0〉⊗Nq (2.45)

where Nq = n(M − 1) is the total number of qubits necessary for the simulation. This
is the state in which we initialize our system for the adiabatic algorithm.

For the evolution we notice that the Hamiltonian is composed of two non-commuting
parts: the electric Hamiltonian HE and the magnetic Hamiltonian HB. We can then use
the symmetric Trotter formula to decompose the evolution as:

U(∆t) ≈
∏
ti

e−iHE
∆t
2 e+iλ(ti)HB∆te−iHE

∆t
2 (2.46)

where ti is the initial time at each step and ∆t is the time interval of each step. In
principle there is no difference in placing the electric or the magnetic as the external
term in this approximation. Nevertheless, since in our case the electric part does not
depend on the parameter λ, it is convenient to put it as the outside term. This allows us
to combine the last term of each step with the first term of the next step, using a single
set of gates with parameter ∆t instead of 2 sets with parameter ∆t/2, greatly reducing
the depth of the algorithm.
We are now left to describe the evolution of the two separate parts. In both cases such
evolution is simpler if we can work in a basis in which they are diagonal. In the case
of the electric part the correct basis is the character basis, described in equation (2.42),
while for the magnetic part it is better to use the group plaquette basis, described in
equation (2.43). The connection between the 2 basis can be implemented by a quantum
Fourier transform on each set of qubits representing the M − 1 plaquettes.

For the electric part the contribution of each link to the evolution can be determined
by the configuration of the two adjacent plaquettes. The single link eigenvalues are:

hE |χj1χj2〉 = f(j1 − j2) |χj1χj2〉 (2.47)

The states are encoded in the quantum register as binary numbers:

|χj1χj2〉 = |j1, j2〉 (2.48)

Therefore we can encode the evolution starting with a gate that makes the difference
between the two states

M12 |j1, j2〉 = |j1, j2 − j1〉 (2.49)

Then we can use a single plaquette gate U1, which depends on the group we wish to
simulate, to evolve the state:

U1(∆t) |j〉 = e−if(j)∆t |j〉 (2.50)
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which, if applied to the plaquette in state |j2 − j1〉, gives the correct evolution.
In the end we use a summing gate S12, defined as:

S12 |j1, j2〉 = |j1, j2 + j1〉 (2.51)

Applying these gates in succession allows us to reconstruct the correct phase attained
by evolution on the original state, as can be seen by the composition:

S12U1(∆t)M12 |j1, j2〉 = e−if(j1−j2)∆t |j1, j2〉 (2.52)

These 3 operations can be collected into a single gate, which represents the single link
evolution. We call this gate Uab, where a and b are the two plaquettes it act on.
Applying this evolution on all couples of plaquettes allows us to reconstruct the total
electric evolution. We need to take care that for the four links adjacent to the M -th
plaquette, the state is defined by only one of the plaquettes. We can therefore implement
their evolution directly with the U1 gate, without the need of the summing or subtracting
gates.
For the implementation of the magnetic evolution we start by using a set of unitary gates
that bring us in the basis in equation (2.43), where the magnetic part is diagonal. We
can then implement directly the evolution on each of the M − 1 plaquettes using the U1

gates:
U1(∆t) |q〉 = e−if(q)∆t |q〉 (2.53)

taking advantage of the symmetry between single link electric eigenvalues and single
plaquette magnetic eigenvalues. For the last plaquette we can reconstruct evolution
using a total sum circuit:

STOT |q1, ..., qM−1〉 = |q1, ...,
M−1∑
p=1

qp〉 (2.54)

and then apply the inverse U1 gate to the qubits representing M − 1 plaquette.

After completing the evolution the only step left to perform is the measurements. We
take 3 types of measurements: electric Hamiltonian, magnetic Hamiltonian, and Wilson
loops of varying length.
For the electric Hamiltonian we can work in the plaquette character basis directly. If
the ground state, obtained at time tm through the adiabatic evolution, is |ψ(tm)〉 we can
decompose it on the computational base as

|ψ(tm)〉 =
∑

j1,...,jM−1

cj1,...,jM−1
|χj1 ...χjM−1

;χ0χ0〉 (2.55)
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We can calculate the expected value as:

〈HE〉 =
∑

j1,...,jM−1

HEj1,...,jM−1
|cj1,...,jM−1

|2 HEj1,...,jM−1
=

∑
<jp1,jp2>

f(jp1 − jp2) (2.56)

The other two measurements are better performed in the dual basis, in which the wave
function can be decomposed as:

|ψ(tm)〉 =
∑

q1,...,qM−1

cq1,...,qM−1
|q1, ...qM−1;χ0χ0〉 (2.57)

The expectation value of the magnetic energy is

〈HB〉 =
∑

q1,...,qM−1

HBq1,...,qM−1
|cq1,...,qM−1

|2 (2.58)

HBq1,...,qM−1
=

(
M−1∑
p=1

4 sin2
(πqp
N

)
− 2

)
+ 4 sin2

(
−
π
∑M−1

p=1 qp

N

)
− 2 (2.59)

The expectation value for any Wilson loop on a closed loop γ is:

〈
Ŵ (γ)

〉
=

∑
q1,...,qM−1

(∑
p∈γ

ω
qp
N

)
|cq1,...,qM−1

|2 (2.60)

where the sum is over the plaquettes inside the closed loop γ.

2.4.1 Example: 2x2 lattice for Z2 and Z4

In this section we will show the circuitry for the two cases on which we will perform
simulations. The main difference between the two is the U1 gate, and the fact that for
Z2 we have one qubit for each plaquette, while for Z4 we have 2.
We show the case for a 2x2 lattice, since it can be displayed in a smaller space, while
using comments to explain how it can be generalized, whenever it is not intuitive.
In this case we will need to describe 3 plaquettes, while the state of the fourth will be
given implicitly from the states of other plaquettes. We use the conventions in figure 2.1
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Figure 2.1: Conventions for the 2x2 lattice used in the examples of the quantum circuit.
Plaquette p4 is chosen as the M-th plaquette, which is not mapped in any set of qubits.

We evolve the state from λ0 = 0 at time τ0 to λmax at time τmax taking Ns steps. For
each step the evolution U(τ1, τ2) is divided in N∆ substeps. At the end of each step we
save the wave function and calculate the measurements.
Using the previous notions we know that we can combine the last electric evolution of
each substep with the first of the next. This is true except for the first and last substep.
The evolution of each step Us can be broken down as

p3 :

Us(τs, τs+1) UE(∆t
2

) UB(ti) UE(∆t)

. . .

UE(∆t
2

)p2 : . . .

p1 : . . .

=

where we repeat the couple of gates UB(ti) and UE(∆t) for N∆ times, with ti starting
from τs and increasing at each step. Each line in this circuit represents the set of qubits
which describes one of the M − 1 plaquettes.
For UE(∆t) we notice that in a 2x2 periodic lattice we have four links around the M− th
plaquette for which the state is described by only one of the plaquettes, while for the
other four links we need to create operators which act on couples of plaquettes. Each
UE(∆t) can be represented as
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p3 :

UE(∆t) U13 U31

U1(∆t) U1(∆t)

p2 :
U12 U21

U1(∆t) U1(∆t)

p1 :

=

where each 2-plaquette operator Uab can be broken down further as

pb :

Uab Mab

U1(∆t)

Sab
pa :

=

The implementation of the sum and difference gates is described in a general way in [12],
while the explicit form they take in the case of the Z2 and Z4 algorithms is found in
appendix B.

In a larger lattice we would still have 4 links around the M -th plaquette, whose
evolution can be implemented directly by a U1 gate. The other L − 4 links are instead
implemented through Uab gates.
In a 2x2 lattice we have a particular circumstance, in which two Uab gates representing
different links act on the same couple of plaquettes. For example link 2 and 4 are both
described by the couple of plaquettes p1 and p2. Since the action of Uab is symmetric
on the plaquettes it acts upon, we can combine the two gates into one, reducing the
number of gates required for the simulation. Nevertheless this is only a special case; it
can be easily seen that for larger lattices each link is described by a different couple of
plaquettes, requiring one gate for each link.

For the magnetic evolution we instead use the following circuit:

p3 :

UB(∆t, ti)

F−1 U1(λi∆t)

UM

F

p2 : F−1 U1(λi∆t) F

p1 : F−1 U1(λi∆t) F

=

where we start by taking an inverse Fourier transform on each plaquette, followed by the
evolution of each plaquette. The value λi is the value of λ at time ti. We then perform
the evolution on the M -th plaquette UM , followed by a set of Fourier transform gates
which bring us back to the character plaquette basis. The gate UM can be expanded
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further as:
p3 :

UM S3

U1(λi∆t)

M3p2 :

p1 :

=

The gate U1 needs to encode the evolution on a single link, or equivalently on a single
plaquette. In the Z2 case the electric eigenvalues are

f(j) = 4 sin2

(
πj

2

)
(2.61)

As previously stated it is useful to use a new set of eigenvalues, shifted by a constant.
This new set of eigenvalues translates to a global phase in the evolution, which doesn’t
affect the final measurements. We call these new eigenvalues f̃ defined as:

f̃(j) = f(j)− 2 (2.62)

which take the values
f̃(0) = −2, f̃(1) = 2 (2.63)

The single link electric Hamiltonian becomes proportional to the Pauli matrix σz, and
the evolution is encoded by a rotation around the z − axis:

pa : U1(∆t) = Rz(−4∆t)

where Rz(θ) = exp
(
−iσz θ2

)
is a fundamental gate.

j 0 1 2 3
|j〉 |00〉 |01〉 |10〉 |11〉
f̃(j) -2 0 2 0

Table 2.1: Conventions for encoding states into the computational basis for a Z4 model,
and eigenvalues connected to each state.

In the case of the Z4 groups the shifted eigenvalues are given by

f̃(j) = f(j)− 2 = 4 sin2

(
πj

4

)
− 2 (2.64)

These values are shown in table 2.1. In the same table we also show that the four states
are encoded in a binary base |j〉 = |q1q0〉. On this base it is possible to construct the
Hamiltonian with the correct eigenvalues using Pauli matrices:

hE = −σ1
z − σ1

zσ
0
z (2.65)
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where the superscript identify on which qubit it acts. The first term can be performed
simply by a rotation on qubit 1, while for the second we need to use a couple of CNOT
gates, whose description is found in appendix B. The circuit of the U1 gate becomes

q0 :
U1(∆t)

Rz(−2∆t)

q1 : Rz(−2∆t) • •
=

2.5 Results

In order to perform the simulation we use a PY THON code, taking advantage of the
qiskit package in order to encode the various operations. The important parameters of
the simulations are the size of the system, described by the number of plaquettes M , the
time increment ∆t and the total number of substeps Ntot. Finding the correct balance
between the last two is the key to obtain an efficient code. If we use a smaller ∆t we
reduce the error in the Trotterization; nevertheless by reducing it we also give less time
for the system to evolve, and lose the adiabatic hypothesis. The solution is to increase
the number of steps, which allows the system enough time to fully evolve into the new
ground state. The cost of this process is an increase in the length of the simulation.
Using instead larger ∆t and less steps improves the speed of the simulations, but intro-
duces larger errors in the Trotterization, which can hinder the quality of the results.
It is possible to recognize if the parameters are wrong by analyzing the value of the ground
state energy in the simulation, by looking for pathological behaviors or by confronting it
with the theoretical results we have for the extreme cases of a system dominated by the
electric or magnetic term. In case a diverging behavior is found we can use these obser-
vations to distinguish if the problem is the adiabatic evolution, which can be corrected
with larger ∆t or more steps, or if it is a Trotterization problem, which can be resolved
with smaller ∆t.
In the first case the state doesn’t evolve fully, therefore the ground state energy in the
magnetic limit tends to be different from its correct value. In the second case we have
the excitation of non ground states, causing a rapid oscillation in the energies.

We analyze the system with λ going from 0 to λmax. The latter needs to be high
enough to approach the magnetic dominated regime. Nevertheless we cannot raise it
too much otherwise the simulations become too long. The compromise leads us to chose
λmax = 5.
In order to get a better representation, all final results are mapped such that they are
in accordance to the conventions in the compactified version of the Hamiltonian (1.166).
We can confront the two:

H1 = HE + λHB (2.66)

H2 = (1− λc)HE + λcHB (2.67)
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and find that we can transform from one to the other by setting

H2 = (1− λc)H1 (2.68)

λ =
λc

1− λc
⇒ λc =

λ

1 + λ
∈ [0, 1] (2.69)

2.5.1 Results for Z2

In the Z2 model each of the M − 1 plaquettes used to describe the system is mapped
into a single qubit. The first parameter that we need to fix is the size of the system,
which we try to make as large as possible in order to better represent the adiabatic limit.
The limiting factor is the computational power required to perform the calculation in a
reasonable time, and the RAM space required to work on the results. Using a computer
equipped with an Intel(R) Core(TM) i7(2.80GHz) and 16 GB RAM, we find that the
maximum size we can achieve is a 4x4 lattice, which requires M − 1 = 15 qubits, and
takes around 10 minutes per run. The next step, a 5x5 lattice, would require M−1 = 24
qubits. This implies that the Hilbert space grows by a factor 29 = 512. Since the number
of operations grows at least linearly with the dimension of the Hilbert space each run
would take at least 1 week. Larger lattices cannot be simulated using a qiskit code since
the software is limited to simulate up to 24 qubits.

We now need to find the parameters for the evolution of the system. We first chose
the interval λ ∈ [0, λmax] which we want to analyze. Our choice, allowing us to probe an
interesting region, is λmax = 5. It corresponds to a value of the compactified parameter
λc ∈ [0, 0.83]. We then choose the number of measurements that we want to take, which
we set to Ns = 50. We are left with the need to fix the number of substeps Ntot and
the time ∆t by which the system is evolved after each substep. Since we need to take
at least Ns stops we can start by setting Ntot = Ns. We then work on ∆t, starting
from a low value, for which the system doesn’t evolve, and increase it until changes are
visible. The result at this stage is a noisy behavior around the expected outcome, due to
large errors in the Trotterization with a small number of substeps. We can then increase
Ntot until this effect becomes negligible. We can double check that we obtained the best
parameters by varying them around the final point.
For the 4x4 system we find Ntot = 1000 and ∆t = 0.05.

The first quantity we look at is the expected value for the total electric energy
〈(1− λc)HE〉, the total magnetic energy 〈λcHB〉, and the total energy 〈H〉, which can
be obtained as the sum of the two parts. In order to make these results independent on
the size of the system we divide all values by the number of plaquettes M . The results
are shown in figure 2.2.
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Figure 2.2: Energy measurements in a Z2 simulation on a 4x4 lattice, with electric and
magnetic part separated. All measures are normalized by the size M = 16 of the system.
The dashed line shows the expected behavior near the magnetic limit.

As expected at λc = 0 the system is in the electric ground state. The total energy is
the sum of the single links electric energy, which with our convention is −2 for each link.
The total energy is −2L = −64, while the energy per plaquette is −2L/M = −4. In
the magnetic limit the total energy corresponds to the magnetic energy on the magnetic
ground state, which is −2 for each plaquette, for a total of −2M = −32. Since we cannot
reach the magnetic limit, which would require an evolution up to λ = +∞, we cannot
compare the values we obtained directly. We need to confront them with the behavior
near the limit instead. In order to so we notice that near the magnetic limit the total
energy is 〈Htot〉 ≈ −λc 〈HB〉, and the magnetic energy is 〈HB〉 ≈ −2M . The behavior
for the total energy per plaquette is therefore 〈Htot〉 /M ≈ −2λc, which is represented
as a dashed line in the previous graph. The results we obtained are in accordance with
this model as can be seen in the picture. This fact, combined with the absence of undu-
lating behaviors, verifies that the choice of parameters for the simulation is sufficient for
obtaining correct results.
By looking at the energies we find that in the region with λc small the total energy is
mostly determined by the electric contribution, while for λc large it is mostly determined
by the magnetic part. There is an intermediate region in which the dominating factor
switches from one case to the other. This region, around λc = 0.7 is a sign of the phase
transition.

In order to better characterize the phase transition we can look at the behavior of
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the Wilson loops 〈Wγ(λc)〉. There are various choices for the Wilson loops that we can
analyze. We will focus on 9 loops, which are shown in figure 2.3.

Figure 2.3: The 9 loops we analyze. The loops grow horizontally first and vertically
second.

The first analysis we will perform on such quantities is to fix one of the loops and
look at its expected value as a function of λc. The results are shown in figure 2.4.
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Figure 2.4: Expectation values of the nine Wilson loops we analyzed, as a function of
the coupling parameter λc

As we can see each Wilson loop has zero expectation value in the purely electric
limit. It then grows slowly as the increase in the magnetic contribution to the total
Hamiltonian introduces excitations of the Wilson loops expectation values. This in-
crease becomes sharp in the region around λc = 0.7, after which all Wilson loops tend
to their limit in the purely magnetic Hamiltonian, which is 〈Wγ(λc)〉 = 1. We can there-
fore identify three regions: the electric dominated region in which loop excitations are
suppressed, indicating a confined phase, the transition region in which the expectation
value of Wilson loops rapidly change, and the magnetic dominated region, in which we
find loop excitations of any size.
It is interesting to notice how the size of the loop affects its expectation value. We can
see from the graph that larger loops always have lower expectation values than their
smaller counterparts. This effect is particularly strong in the confined region, with low
λc, where large excitations are suppressed.
As a consequence large loops show a sharper change in the transition region, and are
better indicators of its position. This effect can be understood by the fact that larger
loops are dependent on larger regions of the system, and are better equipped to detect
the macroscopic changes in the system.

Another useful analysis that we can perform using the Wilson loops is a direct in-
spection of the area law and perimeter law. The area law is

〈tr Ŵγ〉λc = constant× e−µ(λc)A[γ] (2.70)
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and should describe the behavior of the system in the confined phase.
The perimeter law is instead

〈tr Ŵγ〉λc = constant× e−ρ(λc)P [γ] (2.71)

and should give a better description in the deconfined phase.
In order to perform this analysis we start by calculating area A[γ] and perimeter P [γ]
of each of the 9 analyzed loops. For the perimeters this is simple. For the areas we need
more care, since due to periodic boundary conditions every close loop can be seen as
enclosing two different sections of the lattice, with different areas. When dealing with
the area law each loop gains two contributes to its expectation values, one for each of
the two sections of the lattice it encloses. Since the contribution for the smaller of the
two areas dominates the other one, whenever we calculate the area of a loop we consider
the smaller of the two possible areas.
Out of the 9 loops we used in our analysis we can see that for γ1, ...γ8 the colored area
in figure 2.3 is the smaller of the two. For γ9 the colored area has value 9 while the non
colored area has value 7. Therefore we need to consider γ9 as a loop with area 7.
We can plot the Wilson loops as a function of area and perimeter, obtaining the results
in figure 2.5.

(a) (b)

Figure 2.5: Area law (a) and perimeter law (b) for Wilson loops of varying length
at different values of λc. The sample values of λc are chosen out of the Ns = 50
measurements we performed to be evenly spaced across the studied region.

We can recognize two different behaviors in the previous graphs: if λc is small we
have a rapid decrease in the expectation values of Wilson loops as their size increase,
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as can be expected for a confined phase. For large values of λc we have instead a slow
decrease. For values of λc in the transition region we have a rapid change from one case
to the other, with intermediate expectation values, as can be seen for λc = 0.71.
Since the expected behavior in at least one of the two cases is an exponential it is
interesting to look at the logarithms of the values. This operation cannot be performed
with λc = 0, since in that case the expected values of the Wilson loops is 〈Wγ(λc)〉 = 0,
for which we cannot take the logarithm. The results are shown in figure 2.6.

(a) (b)

Figure 2.6: Area law (a) and perimeter law (b) in logarithmic scale for Wilson loops of
varying length at different values of λc.

In these graphs we can see that for low λc the area law assumes almost a linear rela-
tion. The exception are the results for the loop with area 8 which show values greater
then we expected. This can be understood by the fact that a loop with area 8 in a lat-
tice with M = 16 plaquettes gains two equal non-negligible contributions to its expected
value, one for each of the two sections with area 8 it encloses, instead of a meaningful
and a negligible one like the other loops.
In the perimeter law graph we find a discontinuous behavior. This effected is caused by
having multiple loops with the same perimeter, but with different areas. In the confined
phase the perimeter law is not followed, therefore this effect can be expected. Neverthe-
less the same effect is present also for high values of λc, even if of a lower magnitude. In
that case it can be caused by a finite size effect, due to the small size of our system.

In order to find the parameters of the two laws, µ and ρ, we perform a linear least
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square fit using the two following linearized relations:

log
〈Wγ(λc)〉
〈Wγ1(λc)〉

= −µ(λc) (A[γ]− A[γ1]) (2.72)

log
〈Wγ(λc)〉
〈Wγ1(λc)〉

= −ρ(λc) (P [γ]− P [γ1]) (2.73)

where we used the measure on the one plaquette Wilson loop to eliminate the dependency
on the constants.
The method we used for obtaining the values on which we perform the fit doesn’t allow a
way to estimate the confidence interval of each point, therefore we assume unitary errors,
which translate in the fit procedure as an equal weight for all measures.
For the fits of the area law we don’t use the loop γ8, which would introduce a systematic
error due to its double excitation. For the perimeter law we can instead use all the data
points.
The results for the two fits are shown in figure 2.7.

Figure 2.7: Parameter µ of the area law and parameter ρ of the perimeter law, as a
function of the parameter λc. Results are obtained through a least square fit on the
linearized relationship in equations (2.72) and (2.73)

As we can see the values for µ is larger then ρ in the confined phase. They then
decrease more rapidly in the transition region and are almost equal thereafter.
It might seem counter-intuitive that the parameter ρ doesn’t dominate the other in the
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deconfined phase. This effect can be explained by the small size of our system. We can
show this by considering what would happen in a larger lattice. For a square loop whose
side has length Lx the area is L2

x, while the perimeter is 4Lx. The scaling factors in the
area and perimeter laws becomes respectively e−µL

2
x and e−ρ4Lx .

Therefore we can expect a surpass of ρ only for loops with Lx > 4 where the quadratic
term becomes more influential than the coefficient 4. This system would require at least
the possibility to measure loops of area 16, which requires at least M = 32 plaquettes.
This can be attained in a 6x6 or larger lattice.
In order to find which of the two fits better describes the system in the two regions we
can look at the χ2 of the fits. Since we assumed unitary errors the value of the χ2 is
not a reliable parameter for the goodness of the fit. Nevertheless it is well positioned
to understand which of the two laws is a better description at a fixed value of λc. In
order to confront the two results we use the χ2 normalized with respect to the number
of degrees of freedom, which is 7 for the area law fit and 8 for the perimeter law. The
results are shown in figure 2.8.

Figure 2.8: Normalized χ2for the fits with respect to area and perimeter law. Logarithmic
scale is used to better represent the data.

As we can see the area law has a smaller χ2 in the confined region, showing that it is
better suited to describe the system where λc is small. The perimeter law gives instead
a better description in the magnetic dominated region confirming that it corresponds to
the deconfined phase.
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Taking into account the various considerations in this section we can say that we
found a phase transition in the region λc ∈ [0.65, 0.75], which is in accordance to previous
results obtained from similar methods [8]. We are limited in finding more precise results
by the size of the transition region. A larger system would allow to improve on this
result, giving a smaller interval.

2.5.2 Results for Z4

In the Z4 case each link is mapped into 2 qubits. Since it is more computational intensive
we can only simulate up to a 3x3 lattice, which corresponds to a simulation with 2(M −
1) = 16 qubits. The time required for a single run with a system of this size is around 20
minutes depending on the choice of the evolution parameters. A 4x4 lattice simulation
can be estimated to to take around 20 × 214 minutes, which is more than 200 days,
underlining the exponential growth in the complexity of the algorithm.
The main difference we incur in using a smaller lattice is that we have a smaller choice
of Wilson loops, as can be seen in figure 2.9.

Figure 2.9: The four loops on which we perform the measurements in the 3x3 Z4 simu-
lations.

The parameters of the simulation are obtained in the same way as for the Z2 model.
We start by imposing λmax = 5 and Ns = 50, and then we run the algorithm multi-
ple times in order to find the best values for ∆t and Ntot. We obtain ∆t = 0.05 and
Ntot = 1000. These values are the same as the ones we used in the Z2 simulation. Per-
forming the same calibration on Z4 lattices of smaller size gives a different set of optimal
parameters, showing that this coincidence is probably due to the similar number of qubits
needed to perform the simulations, which is 15 in the Z2 4x4 case and 16 in the Z4 3x3
case.

We start by looking at the ground state energies, both total and divided into the
electric and magnetic component. The results are shown in figure 2.10.
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Figure 2.10: Energy measurements in a Z4 simulation on a 3x3 lattice. We take Ns = 50
measurements. All measures are normalized by the size M = 9 of the system. The
dashed line shows the expected behavior near the magnetic limit.

The expected results are 〈HE〉 /M = −2L/M = −4 in the case the Hamiltonian is
purely electric. Near the magnetic limit we instead expect the system to have energy
λc 〈HB〉 /M = −2λc. The observed behavior is in accordance with the predictions, show-
ing that the simulation has been performed with a good enough set of parameters.

We then look at the measured value for the four Wilson loops on which we are able
to perform measurements. The results are shown in figure 2.11.
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Figure 2.11: Expectation values of the four Wilson loops we analyzed, as a function of
the coupling parameter λc

Although we don’t have access to larger loops, which are better at detecting the phase
transition, we can still see how the expectation values of all loops rapidly increase in the
region around λc = 0.7, signaling a change in the phase of the system, from one where
loops are suppressed, to one where excitations of any size can be found.

We then look at how the expectation values of these loops change as a function of the
area and the perimeter of the loops themselves. Since the largest loop has area 4, and the
total system has area 9, we can use the colored parts of figure 2.9 in order to calculate
the areas A[γ] of each loop. The calculation of perimeters P [γ] is again straightforward.

We then show the behavior of the Wilson loops expectation value as a function of
area and perimeter, which is found in figure 2.12.
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(a) (b)

Figure 2.12: Area law (a) and perimeter law (b) for Wilson loops of varying length at dif-
ferent values of λc. The sample values of λc are chosen out of the Ns = 50 measurements
we performed to be evenly spaced across the studied region.

In the figures we can see the different behavior for λc small, big or in the intermediate
region (λc = 0.71). Since the expected behavior in at least in one of the two phases is
an exponential we can look at the graph in the logarithmic scale, which is shown in
figure 2.13. We have to omit the case λc = 0, where numerical issues make the logarithm
impossible.
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(a) (b)

Figure 2.13: Area law (a) and perimeter law (b) in logarithmic scale for Wilson loops of
varying length at different values of λc.

The typical step in the perimeter law, caused by two different loops with the same
perimeter is observed. The area law shows the expected behavior.

We can then perform the least square linear fit on equations (2.72) and (2.73), in
order to obtain the parameters µ and ρ. All loops can be used both for the area and for
the perimeter law. The results are shown in figure 2.14.
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Figure 2.14: Parameter µ of the area law and parameter ρ of the perimeter law, as a
function of the parameter λc. Results are obtained through a least square fit on an
exponential law at each λc

In this graph we can see µ larger then ρ in the confined phase, a rapid decrease in
both during the transition region, and almost the same value thereafter. The best way
to confront the two laws is to look at the χ2 of the fits. We show the χ2 normalized by
the number of degrees of freedom, which is 3 in both cases. The result is found in figure
2.15.

Figure 2.15: Normalized χ2 for the fits with respect to area and perimeter law. Loga-
rithmic scale is used to better represent the data.
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The transition is less defined than in the Z2 case. Nevertheless we can see that the
area law better describes the confined phase, while the perimeter law is better for the
description of the deconfined region.

The general behavior of Z4 theory is almost the same as in the Z2 theory, with a small
difference in the size of the transition region, which can be ascribed to a smaller size of
the system. This effect come directly from the larger distance to the thermodynamics’s
limit, and is enforced by not having access to large Wilson loops, which are better suited
to detect the phase transition. Taking into account all the observations of this section
we can say that the phase transition is found in the region λc ∈ [0.65, 0.75].
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Chapter 3

Non-abelian field theory: D4

This section will focus on simulations on Yang-Mills gauge theories with a finite non-
abelian symmetry group. The structure of non-abelian finite groups is much deeper that
the one of abelian groups, which causes many simplifications we used earlier to fail. In
order to examine these effects we will focus on a specific non-abelian group: the dihedral
group of order 8, which will be described in the first section. The order of the group is
chosen to be a power of 2 for efficient implementation. Working with a specific group
allows us to give some explicit examples, which constitute the second section. In the
end of this chapter we will discuss ways to implement the circuit and overcome the
adversities, and report the results.

3.1 The dihedral group

The dihedral group of order 8, usually referred as D4
1, is the non-abelian group that

describes the symmetries of a square. It contains the simple four rotations, and the four
rotations combined with a reflection. It has two generators r and s, in terms of which
the presentation of the group is

D4 =
〈
r, s s.t. r4 = s2 = (rs)2 = e

〉
(3.1)

The 8 elements can be written as

e, r, r2, r3, s, rs, r2s, r3s (3.2)

The identity (rs)2 = e can be rewritten as a conjugation between the two generators

srs−1 = r3 (3.3)

1This notation is used in geometry; in abstract algebra it is called D8 instead
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From this identity it is possible to calculate all possible conjugations by any element.
We find that the group has 5 conjugacy classes:

{e}, {r, r3}, {r2}, {s, r2}, {rs, r3s} (3.4)

This means that we have 5 irreducible representations. We can number them for j from
0 to 4 where the first is the trivial representation. The characters for each representation
can be found in table 3.1.

{e} {r, r3} {r2} {s, r2s} {rs, r3s}
χ0 1 1 1 1 1
χ1 1 -1 1 1 -1
χ2 1 1 1 -1 -1
χ3 1 -1 1 -1 1
χ4 2 0 -2 0 0

Table 3.1: Character table of the D4 group

As can be seen from the first column of the table the first 4 representations are 1-
dimensional. Therefore their characters correspond to the single matrix element of the
representation. The representation j = 4 is the only 2-dimensional representation, which
is the only faithful one. This representation is the one chosen for the eigenvalues of the
û operators used in the construction of the magnetic term.
The representation j = 4 can be written explicitly as:

π4(g) =



(
ik 0

0 i−k

)
if g = rk(

0 ik

i−k 0

)
if g = rks

(3.5)

meaning that

π4(r) =

(
i 0
0 −i

)
and π4(s) =

(
0 1
1 0

)
(3.6)

Obviously this is not the only explicit representation. An insightful equivalent one is

π4(g) =



(
cos
(
kπ
2

)
− sin

(
kπ
2

)
sin
(
kπ
2

)
cos
(
kπ
2

) ) if g = rk(
cos
(
kπ
2

)
sin
(
kπ
2

)
sin
(
kπ
2

)
− cos

(
kπ
2

)) if g = rks

(3.7)

which is more cumbersome, but shows explicitly that this is a subgroup of the orthogonal
group O(2).
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The subgroup N := {e, r, r2, r3}, generated by r, is also a subgroup of the special or-
thonormal group SO(2), and is one of the 2 non-trivial normal subgroups, the other
being {e, r2}.
Another interesting subgroup is H := {e, s}, generated by s. Since any element in G can
be written uniquely as a product of an element in N and an element in H, we can say
that G is a semidirect product of H and N :

D4 = N oH (3.8)

Since N ' Z4, and H ' Z2 we find that the dihedral group can be described as a
semidirect product of two cyclic groups:

D4 = Z4 o Z2 (3.9)

We can brake down the group product operation of D4 by representing each element of
D4 as couple (n, h) ∈ N ×H. The product becomes

(n1, h1)(n2, h2) = (n1ϕh1(n2), h1h2) (3.10)

where ϕ : H → Aut(N) is the group homomorphism given by ϕh1(n2) = nh1
2 .

The group algebra of D4 is an 8-dimensional complex linear space which admits the
matrix elements πjmn as a basis. Each of them is described by a triplets of indices, to which
we can associate one index ̄ in the condensed notation, according to the conventions in
table 3.2. This allow us to cleanly reference all 8 states in the representation basis.

jmn 011 111 211 311 411 412 421 422

̄ 1 2 3 4 5 6 7 8

Table 3.2: Conventions for the condensed notation in the D4 group

3.1.1 Dihedral group gauge theory

Since we have chosen a gauge group we can give an explicit description of the Hilbert
space, the terms of the Hamiltonian and the gauge conditions.
The single link Hilbert space can be defined in terms of the group basis or the represen-
tation basis:

|g〉 and |̄〉 (3.11)

which are connected by the group Fourier transform:

|̄〉 =

√
dj
|G|

∑
g

πjmn(g) |g〉 (3.12)
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The single link electric eigenvalue can be calculated from equation (1.54):

f(j) = |Γ| − 1

dj

∑
g∈Γ

χj(g) (3.13)

where we need to choose Γ as a generating set closed under conjugation and inver-
sion. The set with the smaller number of elements that satisfy this condition is Γ :=
{r, r3, s, r2s}, which leads to the values for f(j) shown in table 3.3.

j 0 1 2 3 4
f(j) 0 4 4 8 4

Table 3.3: Electric single link eigenvalues

The one plaquette Wilson loop operators, which constitutes the magnetic part of the
Hamiltonian, can be written in terms of the plaquette operators using equation (1.77):

tr Ŵp =
∑
g∈G

χ4(g)Bg
p (3.14)

where χF = χ4 due to the choice of the representation πF .
Evaluating this operator on the group basis we obtain:

tr Ŵp |g1, ..., gL〉 = χ4(gγp) |g1, ..., gL〉 (3.15)

where we can see that it has eigenvalue −2, 0 or 2, corresponding to the single plaquette
energy contribution in the magnetic limit.
The gauge invariant conditions on a given vertex are:

Gv(g) |phys〉 = |phys〉 ∀g Gv(g) = Lg(e1)Lg(e2)Rg(e3)Rg(e4) (3.16)

where the four link around the vertex are numbered in the conventional way as in figure
3.1. These conditions are quickly simplified by requiring them to be true only for the
two generators, which in this case are r and s.
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Figure 3.1: Details of a single vertex conventions. In this case the choice of using
counterclockwise order in the closed paths gives the position of when to use the adjoint
and when not to use it for the representation states on a given link.

The left and right representations are easily given in the representation basis:

Lg =
⊕
j

π∗j (g)⊗ 1dj Rg =
⊕
j

1dj ⊗ πj(g) (3.17)

Using the knowledge of the irreducible representations of the group we can write them
explicitly. Before doing so it is useful to make some remarks: there is a noticeable
difference in the following analysis in the behavior of states and operators acting based
on abelian and non-abelian representations. It is useful to already start to differentiate
between the two. In the case of the regulars representation we can separate them by
defining

Lαg =
⊕
j∈A

π∗j (g) Lβg =
⊕
j∈NA

π∗j (g)⊗ 1dj (3.18)

where the direct sum is performed only on the abelian (A) or non-abelian (NA) sector.
In the abelian sector all irrep are one dimensional, which means that we can drop the
tensor product with the identity.
The total regular representation can be obtained simply as

Lg = Lαg ⊕ Lβg (3.19)

where each part acts on a different set of states. In particular Lαg acts on states |α〉 = |̄〉,
with ̄ = 1, 2, 3, 4, which are states in the representation basis which correspond to
abelian representations. Meanwhile Lβg acts on states |β〉 = |̄〉, with ̄ = 5, 6, 7, 8, which
correspond to the non-abelian representation.
Through these considerations we can write explicitly the left regular representation of
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the generators:

Lαr =


+1

−1
+1

−1

 Lβr =


−i
−i

+i
+i

 (3.20)

Lαs =


+1

+1
−1

−1

 Lβs =


+1

+1
+1

+1

 (3.21)

and, following the same conventions, the right regular representation is:

Rα
r =


+1

−1
+1

−1

 Rβ
r =


i
−i

+i
−i

 (3.22)

Rα
s =


+1

+1
−1

−1

 Rβ
s =


+1

+1
+1

+1

 (3.23)

Having written the regular representations, which make up the gauge conditions, it
is insightful to describe the gauge invariant states on any given vertex. As a starting
point we can see that the total Hilbert space on the four links has dimension |G|4 = 84.
We will show that the gauge conditions reduce the dimension of the space by a factor |G|.

Considering invariance under G(r) we see that the eigenvalues are ±1 in the abelian
sector and ±i in the non abelian sector. Therefore only an even number of abelian links
can be connected to a given vertex, otherwise the product would be ±i. We can than
distinguish 3 possible cases: 4 abelian links, 2 abelian and 2 non abelian, and 4 non
abelian links.
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Figure 3.2: In this picture are shown the 8 possible configuration for abelian (in black)
and non abelian (in blue) links around a given vertex. The third configuration in the
second row is the one chosen out of the six possible for the explicit calculations in the
case with two abelian and two non abelian links

In the first case we can arbitrarily choose the states of 3 out of the four links, for
example the first three:

|ψ〉 = |α1α3α3X〉 (3.24)

The fourth state is then uniquely determined, since there is only one state for which
Rr |α4〉 = ±1 |α4〉 and Rs |α4〉 = ±1 |α4〉, for each combinations of ±1, which are de-
termined by the other three states. Therefore this space has a dimension of 64, with 4
choices for each of the first three α.

The second case actually consist of 6 different configurations, which are related to
the choice in position of the two abelian and two non abelian links. We give the case
for |α1α2β3β4〉 since the other are similar. As before we can choose arbitrarily α1α2, and
then look at the constraint on the non abelian part |β3β4〉. The best way to develop the
calculation is to make the matrix elements of the non-abelian part explicit:

|β3β4〉 = |4m1n14m2n2〉 (3.25)

Since Rg = 1 ⊗ π4(g) in this subspace, m1 and m2 are automatically invariant under
the action of the gauge operators, and can therefore be chosen arbitrarily (in the case
of configurations with the two non-abelian links in a different position we would have
the index ni fixed for each link acted upon by a left representation, instead of index
mi). Once α1, α2,m1 and m2 are chosen the values of n1 and n2 are fixed by the gauge
conditions, and must be summed over in accordance to the fact that representation states
are not sufficient for the gauge invariant basis. In the end we get that the gauge invariant
states can be written as

|α1α24an14bn2〉 ± |α1α24an′14bn′2〉 (3.26)
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where the sign between the two parts, and the values of n1, n
′
1, n2, n

′
2 are uniquely deter-

mined. Again we have 64 states due to 4 choices for α1 and α2 and 2 choices each for a
and b.

In the third case we can write explicitly the representation basis and we find that the
state can be written as

|4m1a4m2b4cn34dn4〉 (3.27)

where from the same argument as before a, b, c, d are arbitrary. Invariance under G(r)
implies that any choice of m1m2n3 fixes n4, and invariance under G(s) pairs them up in
4 possible choices, which are shown in table 3.4. Again we have a total of 64 states: 24

for each choice of a, b, c, d and 4 for the rest.

|41a41b4c14d1〉+ |42a42b4c24d2〉
|41a41b4c24d2〉+ |42a42b4c14d1〉
|41a42b4c14d2〉+ |42a41b4c24d1〉
|41a42b4c24d1〉+ |42a41b4c14d2〉

Table 3.4: Four choices for fixing the indices ni and mi in order to obtain gauge invariant
states on a vertex connected to 4 non-abelian links

Since we have 8 configurations with 64 states each the invariant subspace is |G|3-
dimensional, as previously stated. The general action of a the invariance condition on a
vertex is the reduction of the dimension of a space by a factor 1/|G|.

Figure 3.3: Single vertex enclosed by the neighboring links, in order to show the four
plaquettes around the vertex in terms of which the state on the vertex can be described.
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There is an insightful way to look at these states, based on the plaquette character
states. Consider the system in figure 3.3, in which each of the four plaquettes is in a
character state χj. The state of the system is∑

{g}

χj1(gγ1)χj2(gγ2)χj3(gγ3)χj4(gγ4) |g1...gL〉 (3.28)

Focusing on the internal links we can write their state as∑
{g},{n}

πj1†a1n1
(g2)πj1n1b1

(g1)πj2a2n2
(g3)πj2n2b2

(g2)πj3a3n3
(g4)πj3†n3b3

(g3)πj4†a4n4
(g1)πj4†n4b4

(g4) |g1g2g3g4〉

(3.29)
where the sum is over all g and n, and a and b are the indices on which we sum over in
order to complete the plaquette loops. The state on each link is given by 2 contributes,
for example link 1 is ∑

g1

πj1a1n1
(g1)πj4†a4n4

(g1) |g1〉 (3.30)

which can be interpreted in terms of the product algebra, described in appendix A. Using
the structure constants defined in equation (A.8) we find:

π̄1π̄2 =
∑
̄3

c̄3̄1 ̄2π̄3 (3.31)

In order to obtain a representation of the structure of the product algebra we can calculate
the pairwise product of the matrix elements. For the D4 group we obtain the structure
in table 3.5.

π1 π2 π3 π4 π5 π6 π7 π8

π1 π1 π2 π3 π4 π5 π6 π7 π8

π2 π2 π1 π4 π3 π8 π7 π6 π5

π3 π3 π4 π1 π2 π5 −π6 −π7 π8

π4 π4 π3 π2 π1 π8 −π7 −π6 π5

π5 π5 π8 π5 π8
1
2
(π2 + π4) 0 0 1

2
(π1 + π3)

π6 π6 π7 −π6 −π7 0 1
2
(π2 − π4) 1

2
(π1 − π3) 0

π7 π7 π6 −π7 −π6 0 1
2
(π1 − π3) 1

2
(π2 − π4) 0

π8 π8 π5 π8 π5
1
2
(π1 + π3) 0 0 1

2
(π2 + π4)

Table 3.5: Structure of the product algebra of the D4 group. In the first column is π̄1 ,
and in the first row π̄2 . Each element of the table corresponds to

∑
̄3
c̄3̄1 ̄2π̄3 .

We find an intresting property in the product algebra of the D4 group: the product
of two abelian or two non-abelian matrix elements is an abelian matrix element, while
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the product of one of each type is a non-abelian matrix element. Therefore in order to
produce a non abelian state on a link one of the two neighboring plaquette must be in
the non-abelian character state χ4.
We can see this explicitly in the case with link 1 and 2 in an abelian representation and
3 and 4 in the non-abelian. In this situation plaquette 3 must be in the non-abelian
character state. We can then use plaquette 2 and 4 to set the abelian state of links 1
and 2. The resulting state is

2∑
n=1

∑
g1g2g3g4

πα2(g3)πα2(g2)π4
an(g4)π4†

nb(g3)πα1†(g1)πα1†(g4) |g1g2g3g4〉 (3.32)

where α1 is the state of link 1 and α2 is the state of link 2.
The choice of using plaquettes 2, 3 and 4 is not unique. For example, the same state

as before can be described by setting plaquette 1 with α1, plaquette 2 in a certain α3

chosen such that the product between α1 and α3 gives α2 on the second link and pla-
quette 3 in representation 4. The states on the border of figure 3.3 can be used to find
which one is the correct representation.

3.2 Difficulties of the non-abelian case

In this section we will focus on small systems, in order to appreciate the differences
between the abelian and non-abelian case.

3.2.1 Two plaquette system

The first appearances of non-trivial behavior can be found in analyzing two neighboring
plaquettes, which are shown in figure 3.4. We will show how the one-plaquette basis is
no longer enough for the description of the gauge invariant Hilbert space.
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Figure 3.4: Conventions for the two plaquette system, with numbered links and vertices.
Three fundamental loops are also shown: γ1 and γ2 wrapping around the respective
plaquette, and γ3 wrapping around both plaquettes.

Since the system is small we can find all gauge invariant states explicitly. In doing
so we can utilize the knowledge of the single vertex gauge invariant states, which was
previously developed. In principle we cannot apply it directly, since by working in a
system without periodic boundary condition some vertices are connected only to 2 links
(like vertex 1,4,5, and 6) and some have 3 (like vertex 2 and 3). Nevertheless we can
consider each of these vertices as a four link vertex where all the links corresponding to
missing links are in the trivial state j = 0. Since the regular representations act trivially
on such states (Lg |0〉 = Rg |0〉 = |0〉) this doesn’t affect the conditions on the other links.
The condition that the number of non-abelian links connected to a given vertex must
be even can be made more precise on the vertices in this system, knowing that the
missing links count as abelian. On a vertex connected to two links we can have two
configurations: both links are abelian or both links are non-abelian. A vertex connected
to 3 links we can have 4 configurations. One in which all links are abelian, and 3 in
which we have 2 non-abelian links and one abelian link.
Distinguishing between abelian and non-abelian links leads us to four possible cases for
the two plaquette system, which are shown in figure 3.5.

Figure 3.5: Four possible configurations for the abelian states, in black, and the non-
abelian states, in blue, for the 2 plaquette system.
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In the case of all abelian links there are 16 possible states, which can be written as:

|χα1χα2〉 =
1√
|G|2

∑
g1,...,g7∈G

χα1(gγ1)χα2(gγ2) |g1, ..., g7〉 (3.33)

The second and third configuration can be interpreted as one plaquette being in an
abelian character one-plaquette state and the other plaquette in a character state con-
nected to the non-abelian representation. Each case contains 4 possible states:

|χ4χα2〉 =
1√
|G|2

∑
g1,...,g7∈G

χ4(gγ1)χα2(gγ2) |g1, ..., g7〉 (3.34)

|χα1χ4〉 =
1√
|G|2

∑
g1,...,g7∈G

χα1(gγ1)χ4(gγ2) |g1, ..., g7〉 (3.35)

The fourth configuration is the most interesting one, since it cannot be represented as a
single plaquette state but only by using a multiple plaquette character state. There are
four such states:

|χ4(γ3)χα(γ1)〉 =
1√
|G|L

∑
g1,...,g7

χ4(gγ3)χα(gγ1) |g1g2g3g4g5g6g7〉 (3.36)

However this is not the unique way to obtain a state with non abelian links on the
boundary and a single abelian link in the middle. An alternative way would be to use
|χ4(γ3)χα(γ2)〉, using the abelian representation on plaquette 2. The resulting state
would have the same abelian state α in the middle link, and a superposition of the
four non abelian links on each of the other links. This state is exactly the same as
|χ4(γ3)χα(γ1)〉, as can be checked explicitly, providing two different expressions for the
same state. It is a similar situation as in the abelian case, where we didn’t need to know
the state of the M -th plaquette, since it was only producing equivalent expressions of
other known states.
In total there are 28 gauge invariant states on a 2 plaquette system. We can check di-
rectly that the 28 states we defined are orthonormal.

It is interesting to confront the 28 states we have found with the 25 plaquette character
states |χj1χj2〉 we would obtain if we naively used them as we had in the abelian case. In
doing so we find that 24 states are precisely the same. The difference between the two
cases lays in the final states, which is the state |χ4χ4〉 in the plaquette basis, and the
four states |χ4(γ3)χα(γ1)〉 in the explicit description of the gauge invariant space. Some
simple calculations shows the relation between these states:

|χ4χ4〉 =
1

2

3∑
α=0

|χ4(γ3)χα(γ1)〉 (3.37)
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where we can see that the state on the left is a superposition of the four states on the
right.
This means that while the one-plaquette character states are all gauge invariant, they
cannot be considered a basis since they are not generators of the gauge invariant sub-
space. Multiple plaquettes loops are necessary for a complete description.

In section 1.2.5 we warned about an atypical behavior of one-plaquette character
states with respect to the single link electric energy, which was given by

〈χi1χi2|h2
E |χj1χj2〉 = δi1,j1δi2,j2 f̄(i1, i2) f̄(i, j) = |Γ| − 1

didj

∑
g∈Γ

χ∗i (g)χj(g) (3.38)

The problem appears since the matrix elements make the states looks like they diago-
nalize the electric operator. Working explicitly in the non-abelian case allows us to show
an example of how this is not true.
In order to see this we look at state |χ4χ4〉, which can be decomposed as an equal weight
sum of |χ4(γ3)χα(γ1)〉. The state of link 2 in each of the latter is determined uniquely
by the index alpha, therefore we get:

h2
E |χ4(γ3)χα(γ1)〉 = f(α) |χ4(γ3)χα(γ1)〉 (3.39)

This means that state |χ4χ4〉, being a sum of states with different eigenvalues, is not an
eigenstate of the single link Hamiltonian.
In the abelian case the one-plaquette states were a complete basis for the gauge invariant
subspace, therefore having diagonal eigenvalues was enough to guarantee the diagonallity
of the operator. Instead in the non-abelian case the 28 states are all needed to guarantee
a diagonal basis for the single link electric operators.
The reason this is interesting is because if the one-plaquette character base was truly
diagonal for all the electric terms we would be able to implement the adiabatic evolution
simply by using the matrix elements in equation (3.38). Unfortunately this is not so,
and state |χ4χ4〉 would be given the wrong evolution by those values.

3.2.2 Periodic boundary conditions

Another issue in the description of gauge invariant states for a non-abelian theory arises
when we introduce periodic boundary conditions. In order to show this we can work on
two plaquettes with periodic boundary conditions in the horizontal direction, as can be
seen in figure 3.6.
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Figure 3.6: Conventions for a two plaquette system with PBC in the horizontal direction.
Four important closed loops are shown, two around the plaquettes and two around non-
contractible loops. Links and vertices with the same number are identified.

In order to find all the gauge invariant states we can start by looking at all the possible
configurations of abelian and non-abelian links. There are 8 possible configurations,
which are shown in figure 3.7.

Figure 3.7: Configurations for abelian and non-abelian links for a 2 plaquette system
with PBC in one direction.

The simplest configuration is made up of all abelian links, contains 43 possible states,
and can be described as:

|χα1χα2χαx〉 =
1√
|G|3

∑
g1,...,g7∈G

χα1(gγ1)χα2(gγ2)χαx(gγx) (3.40)
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All other 7 configurations contains 42 states, which can be distinguished by the states of
the abelian links.
In particular for all cases except configuration (d) we can use an operator χ4 acting on
the non-abelian path to obtain the correct configuration, and then use abelian character
operators acting on 2 out of the three loops γ1, γ2, γx to obtain all the states in that
configuration.

For example in configuration (b) the non-abelian path is γ1, and the two abelian
paths we need to use are γ2, γx, since applying an abelian operator on loop γ1 would
leave the state unchanged. We can write these states as:

|χ4χα2χαx〉 =
1√
|G|3

∑
g1,...,g7∈G

χ4(gγ1)χα2(gγ2)χαx(gγx) (3.41)

In configuration (d) instead we have two non-abelian loops, γx and γ′x. The 42 possible
states can be identified by the abelian links’ states, which in our conventions are link 2
and 4. A problem arises when we try to interpret some of these states as loop states.
The position of the non-abelian links implies that in order to construct these states we
need to act on the electric vacuum with χ̂4(γx) and χ̂4(γ′x). We then need an abelian
character’s operator in order to set the correct state for the abelian states; looking at
χ̂α1(γ1) we can see that it acts on both links 2 and 4, setting both of them in state
|α1〉. Operator χ̂α2(γ2) does the same. More generally since any operator connected to
a closed loop traverse from the bottom row to the top row an even number of times we
are unable to produce a loop representation for any states in which the two abelian links
are in two different states.
As an explicit example we can look at the case in which link 2 is in state α2 = 0 and
link 4 in state α4 = 1. Applying directly the gauge invariant conditions shows that such
state can be represented as

|χ4(γx)χ4(γ′x)π0(l2)π1(l4)〉 ∝
∑
g

χ4(g1sg3)χ4(g5sg6)π1(g4) |g1g2g3g4g5g6〉 (3.42)

In this expression we have inserted explicitly the element s, in order to keep the state
invariant on vertices 2 and 4.
The problem of using these expressions is that if we want to completely describe the
gauge invariant theory we can no longer use a combination of character operators acting
on certain loops, but we need to manually find a good expression for each state.

3.2.3 Generalizing counting

Finding explicit description of the gauge invariant space for larger systems becomes
increasingly cumbersome. One step that we can take in this direction is to find a general
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way to calculate the number of states in a given lattice.
The quantities we should look at are the number of links L which is related to the size of
the total Hilbert space |G|L and the number of vertices V which gives how many gauge
constraint we have to impose.
We also know that for the purely abelian states such constraints are reduced by one,
since by the same argument we used in section 2.2.1, now restricted only to the abelian
sector, the last constraint is always trivial. It becomes important therefore to calculate
how many configurations of abelian and non abelian links are possible.
On each vertex the condition between abelian and non-abelian links reduces to having
an even number of each, as we have seen in section 3.1.1. This condition is in direct
analogy with the gauge invariant states of an Ising Z2 gauge model, in which the number
of excited states |1〉 and ground states |0〉 in the representation basis on each vertex are
even. Since the latter is an abelian model with a group of order two the last condition
is always trivial. We define K = L− V + 1 and find that there are 2K configurations, of
which only one is purely abelian.
For a D4 group each configuration contains 4L states, before further constraints. In the
purely abelian case such constraints reduce the space to a dimension 4K , while in all
the other 2K − 1 configurations we get only 4K−1 states, due to the non trivial extra
condition. The result is that for any given lattice we have:

#states = 4K + (2K − 1)4K−1 (3.43)

To compare it with the abelian case, where we had |G|K states we can collect such factor
in front, obtaining

#states = |G|K
(

1 + 3× 2−K

4

)
(3.44)

where the second term is always less then one, implying a smaller gauge invariant space.
We can verify this formula on small systems, as can be seen in table 3.6.

Dimensions PBC L V K #states
2x1 no 7 6 2 28
2x1 horiz. 6 4 3 176
2x2 no 12 9 4 1216
2x2 both 8 4 5 8960

Table 3.6: Number of gauge invariant states for a few small systems. A n ×m lattice
has n columns and m rows. PBC indicates if periodic boundary conditions are present
in the horizontal or vertical direction, or in both.
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3.3 Simulation of D4 gauge theory

We have now seen how some difficulties arise in the description of a Yang-Mills theory
with a non-abelian group gauge symmetry. In this section we will focus on the conse-
quences for the simulation of these systems.

3.3.1 Techniques

Similarly to the abelian case we can start by working directly in the gauge invariant
space. This allows us to work with the minimal possible number of degrees of freedom,
thus producing a small Hilbert space which can be encoded efficiently in any quantum
computer. The first issue with this approach is that we can no longer rely only on the
one-plaquette basis to generate all gauge invariant states, but we need to also consider
all loops around multiple plaquettes. This produces many different representations for
some states, and we need to manually eliminate all duplicates. A generating procedure
that we used in the previous sections was to first find the configurations of abelian and
non-abelian links, and then produce an identifier for every state in each configuration.
Nevertheless this procedure is impossible to generalize and require too much manual
tuning as soon as the size of the system grows.
Moreover whenever we introduce periodic boundary conditions we can find states that
cannot be expressed as combination of loops, and need to be written out explicitly on a
case by case basis, elongating this procedure even more.

The only choice we have in order to produce a code which can be generalized to larger
lattices is to renounce to the gauge invariant subspace, and work directly on the total
Hilbert space, which also contains the non-physical states.
If we use the adiabatic evolution algorithm the state evolves under the Hamiltonian with
varying parameters. Being the latter gauge invariant by construction, the state, which
starts as the always gauge invariant electric vacuum, will remain invariant during the
whole evolution, even if we don’t work explicitly in the invariant subspace.

3.3.2 Implementation of the adiabatic algorithm

There are two ways in which we can implement the adiabatic algorithm. The first one is
similar to the one we used in the abelian case, mapping the system into a quantum register
and using python’s qiskit package to reconstruct the evolution through the action of
simple gates. The second one instead aims at reproducing the same evolution by writing
the unitary matrices and compute the evolution through simple matrix multiplications,
and can be implemented efficiently in Matlab. With the first technique we construct
a quantum circuit, which is then used to build the evolution from which we calculate
our results. In the second method we cut out all the encoding procedure necessary to
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produce the quantum circuit, and dive at the core of the operations of the simulation,
thus producing a more efficient code. Nevertheless it is still interesting to develop all
the circuitry, which corresponds to the structure that would be used on a real quantum
computer simulation.

3.3.3 The Quantum circuit

Since we now work with the total Hilbert space we can encode each link in a set of qubits.
Being the single link Hilbert space of dimension |G| = 8, we can map each link into three
qubits, associating the states in the representation basis with the computational basis,
as can be seen in table 3.7. To describe the whole lattice we need Ntot = 3L qubits.

jmn 011 111 211 311 411 412 421 422

|ψ〉 |000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉

Table 3.7: Conventions for the encoding of single link states.

We can introduce the electric evolution directly on each link of the system, since
it is diagonal in the representations basis. For the magnetic part we need instead to
first perform a group Fourier transform on each link, in order to go to the group basis.
We then need to combine the group elements in order to find the group element that
represent each plaquette, on which we can implement the magnetic evolution given by
each plaquette Wilson loop.
We can recognize four actions for which we need to give a gate expression: the single link
electric evolution, the single plaquette magnetic evolution, the group Fourier transform,
and the group operations used to obtain the plaquette state. The first two correspond to
a diagonal evolution, and can be easily implemented through control-phase gates. The
other two are more complicated and will be analyzed hereafter.

D4 group Fourier transform. The GFT for group G = D4 can be obtained through
the methods derived by M. Püshel [44]. The idea of this algorithm is that if a group
G can be written as a semidirect product of a group N and a cyclic group H, and if
we know the GFT of N and H, we can combine them in order to obtain the GFT of
the total group. Since the H is a cyclic group its GFT is the discrete Fourier transform
(DFT ). For N we need instead to apply the algorithm recursively, until a group with a
known GFT is found.
The core mechanism, by which the algorithm is derived, is obtained by noticing that the
GFT of any group is the matrix by which we conjugate the right regular representation
in order to obtain the irreducible components of the representation. This idea can be
expressed as:

〈g1|Rg|g2〉 = 〈g1|̄1〉 〈̄1Rg ̄2〉 〈̄2|g2〉 (3.45)
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where 〈g1|Rg|g2〉 is the right regular representation on the group basis, 〈g1|̄1〉 is GFT,
and 〈̄1Rg ̄2〉 =

⊕
j(1dj ⊗ πj(g)) are the irreducible components. This allows us to draw

a parallel between the irreducible representations and the GFT of any group. Extending
step by step the irreducible representations of N to the irreducible representations of G
is in a one to one correspondence to the steps we need to take in order to extend the
GFT of N to the GFT of G.
Writing B as the GFT of G and A as the GFT of N we get the decomposition:

B = (1p ⊗ AP1M)D(DFTp ⊗ 1|N |)CP2E (3.46)

where p = |H|, P1 and P2 are permutation matrices, DFTp is the GFT of H, M,D,C
are tuning operations, and E is needed to adjust the conventions used in this thesis with
the ones in [44].
Due to the implementation methods of the algorithm we also introduce a conventional
ordering of the states of the group basis. Since each element of G can be uniquely rep-
resented as a couple (h, n) ∈ H ×N , the states |g〉 can be encoded in the product basis
|h〉 ⊗ |n〉. The order in the tensor product can be understood by looking at equation
(3.46), where the GFT of H acts on the first term of the tensor product, while the GFT
of N on the second.

In the case of the group D4 we know that it can be decomposed in the semidirect
product

D4 = H nN (3.47)

where N = {e, r, r2, r3} ' Z4 and H ' Z2 is the cyclic group of order p = 2. The
GFT of N is therefore QFT2, the Quantum Fourier transform on 2 qubits, which is
already known and we don’t need to iterate the algorithm further. The discrete Fourier
transform DFT2 acts instead on length 2 sequences, and can be implemented by QFT1,
the Quantum Fourier transform on a single qubit.
The states of the group basis are encoded into the computational basis in two steps. In
the first we assign to each state |g〉 the state |h〉 ⊗ |n〉. We can then encode |h〉 into the
one qubit state |q2〉, and |n〉 into the two qubit states |q1q0〉. The final encoding will be
in terms of the computational state |q2q1q0〉, and can be found in table 3.8.

g e r r2 r3 s rs r2s r3s
|ψ〉 |000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉

Table 3.8: Conventions for the encoding of single link states.
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Using this basis we can then calculate all the components of formula (3.46) as:

p = 2 (3.48)

|N | = 4 (3.49)

A = QFT2 (3.50)

P1 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (3.51)

M = 14 (3.52)

D = 16 ⊕ σx (3.53)

C = 16 ⊕ σz (3.54)

P2 = 12 ⊕ (σx ⊗ 12)⊕ 12 (3.55)

E = 14 ⊕ (H ⊗ 12) (3.56)

Each of these matrices can then be implemented into a gate:

q0 :
P1

×
q1 : ×
q2 :

=
q0 :

D

X
q1 : •
q2 : •

=

q0 :

C

Z
q1 : •
q2 : •

=

q0 :
P2q1 : ×

q2 : ×
=

q0 :

Eq1 : H
q2 : •

=

where we used the conventionally defined swap and double controlled gates, whose de-
scription is found in the appendix B.

Group operations. Since the group element representing any given plaquette can
be given by gγp = g1g2g

−1
3 g−1

4 , we need two operations. The first one is the inversion
operator INV |g〉 = |g−1〉, the second is the group composition Pr |g1, g2〉 = |g1, g1g2〉.
Under inversion we only need to exchange state to |r〉 with state |r3〉, since all other
group elements are their own inverse. This can be performed by the following circuit:

q0 :

INV
•

q1 :
q2 :

=

where we used an anti-control gate, described in appendix B.
For the group product we use instead the following expression, already shown in equation
(3.10):

(n1, h1)(n2, h2) = (n1(n2)h1 , h1h2) (3.57)
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A first gate is used to calculate (n2)h1 , and then two summing circuits are implemented,
the first for 2 qubits number which allows us to calculate n1(n2)h1 , and the second one
on 1 qubit for h1h2. The final circuit is

q0 :

Pr

•

S2

q1 : |g1g2〉
q2 :
q′0 :
q′1 : |g1〉
q′2 : • •

=

|g2〉

|g1〉

3.3.4 The direct evolution

Although in principle using the unitary matrices directly to calculate the adiabatic evo-
lution is simple, there are some subtleties that can be exploited to obtain a more efficient
implementation. Each step of the evolution can be broken down through Trotterization
into an electric or magnetic substep, where

UE = e−i∆tHE UB = e−ig∆tHB (3.58)

If we use the representations basis UE is diagonal, and contains only Ntot = |G|L non-
zero elements. A similar condition holds for HB in the group basis. A large number
of zero-elements is useful because we can use sparse matrices, which require less space
and can be multiplied faster. Since we cannot diagonalize both at the same time we
need at least one of the two to be expressed in the non-ideal basis. It turns out that
implementing UE in the group basis is the more efficient choice, since every single link
evolution can be expressed as

GFTe−i∆th
l
EGFT−1 ⊗ 1Ntot/|G| (3.59)

which has at most |G|L+1 non-zero elements.
Working instead with the magnetic evolution in the electric base, we can separate the
single plaquette evolution, which contains up to |G|L+4 non-zero elements, and is much
more expensive to calculate.
It is important to multiply always a matrix operator directly with the state vector, if
possible, since matrix-matrix multiplication is always slower.

3.4 Results

In the D4 simulations we work with a system whose Hilbert space has dimension |G|L.
We can simulate it in reasonable times up to a 2x2 lattice.
The limiting factor is given by the RAM requirements needed in order to save the evo-
lution matrices which give the evolution of the system. The most expensive one is the
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single link electric evolution, which has |G|L+1 non-zero complex double elements. In a
2x2 lattice, we have L = 8 and it occupies a space of 231B ∼ 1GB, which is manageable.
The next size step, which would be the 3x2 lattice, has L = 12 and the single link elec-
tric evolution operators has 239 non-zero elements, and it occupies 243B ∼ 10TB, which
makes it harder to simulate.

In order to find the simulation parameters we can follow a similar procedure as the
one defined in the abelian section. We start by choosing the region that we want to
study, which in this case is λ = [0, 5]. This corresponds to the region in the compactified
parameter given by λc ∈ [0, 0.83]. We then choose the number of measures we want to
obtain, which we set to Ns. ∆t and Ntot are set at low values and then increased until
satisfactory results are achieved. We found that the optimal parameters are ∆t = 0.03
and Ntot = 1500.

The first quantity that we look at is the electric and magnetic energy of the ground
state, which is shown in figure 3.8.

Figure 3.8: Expectation values for the electric and magnetic energy for a D4 2x2 simu-
lation, normalized by the size M = 4 of the system.

We can see that in the electric limit the system is in the electric ground state. With
our conventions the single link electric energy is 0, therefore the total electric energy in
this limit is also zero. Also the magnetic energy is expected to be zero, since the electric
ground state is an equal weight superposition of all possible eigenstates for the one-
plaquette Wilson loop operators. In the magnetic limit the magnetic energy receives a
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contribute −4 for each plaquette, for a total of −16. Also the electric energy expectation
value can be calculated on the magnetic ground state, and is found to be 4 for each link,
for a total of 32. The results of the simulation are found to be in accordance with the
theoretical predictions, verifying that the choice of parameters is sufficient for obtaining
the correct results.
We can also see that there is a transition region around λc = 0.7, where the two energies
rapidly change, while in the other regions there are only small changes. Looking at the
total energy we find the results shown in figure 3.9

Figure 3.9: Total energy and its electric and magnetic contributes, normalized by the
size M = 4 of the system.

These results are not visually pleasing, due to the non-zero expectation value of the
electric energy on the magnetic ground state, which combines with the factor (1 − λc)
to give the results shown in the picture. In order to obtain better looking results we
can take page out of the analysis we performed on the abelian theories, and redefine the
electric eigenvalues so that they are centered around zero. This allows better symmetry
between the electric and magnetic contribution, without changing the physics of the
system. Since the single link electric eigenvalues are centered around the value 4, we can
define the new eigenvalues as f̃(j) = f(j) − 4. The results with this new definition are
shown in figure 3.10.
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Figure 3.10: Total energy and its electric and magnetic contributes, with the electric
eigenvalues shifted to be symmetric around zero.

This graph shows a more familiar behavior in which the electric and magnetic parts
dominates one of the two regions of the graph, with a transition region in the middle.

In order to better investigate the nature of the transition we can look at the ex-
pectation value of the Wilson loops. In a 2x2 system we have only 1 non-contractible
loop, which correspond to the single plaquette. Therefore we cannot study the area and
perimeter laws as we did for the abelian case. Nevertheless we can gain an insight in
the position of the transition by noticing that the expected value of the one plaquette
Wilson loop rapidly changes in the region corresponding to the phase transition, as can
be seen in figure 3.11
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Figure 3.11: Expectation value for a one plaquette Wilson loop, as a function of the
parameter λc

In this graph we can recognize the confined phase, in which the expectation value
of the loop is highly suppressed, and the deconfined phase, in which the Wilson loop
reaches a value close to its maximum.
Even with a smaller system the single plaquette shows a sharper transition from one
phase to the other than what was observed in the abelian case, meaning that the loops
in the confined phase are suppressed to a larger degree. In order to better understand
what happens in each phase we would need to investigate the perimeter and area law,
which is outside of our present capabilities.
We can nonetheless identify the position of the transition, which happens at λc ∈
[0.65, 0.75].
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Conclusions and Outlook

In the work of this thesis we have discussed the possibilities for the simulation of a Yang-
Mills lattice gauge theory with a finite symmetry group up to a direct implementation
for small systems on a classical emulator of a quantum computer, both in the abelian
and non-abelian case.
We started from a derivation of the model, showing the connection between the contin-
uous Yang-Mills theory with a continuous symmetry group and the lattice model with
a finite group gauge symmetry. Focusing on the general structure of the model we in-
troduced important concepts, such as the character states, and provided useful results
regarding the eigenenergies of the two components of the Hamiltonian.
The knowledge developed in the first chapter was applied in the second and third, al-
lowing the implementation of the simulation on the abelian and non-abelian systems.

The main result of this thesis was a complete implementation of a quantum simula-
tion algorithm for both abelian and non-abelian systems. For both cases we were able
to show the complete description of the algorithm gate by gate, giving the indications
for the possible future implementations on a quantum computer.
In the abelian case we were able to show that the one-plaquette basis forms a complete
description of the gauge invariant subspace. We used this result to produce a more
efficient encoding of the system on the computational basis. Using plaquette variables
instead of link variables in a (2+1)-dimensional system reduces the required number of
qubits by half. Due to the relation between quantum computation and its classical emu-
lation this fact provided an exponential speed up in the simulations, which was invested
in analyzing larger systems. We were able to perform simulations on a Z2 4x4 lattice and
on a Z4 3x3 lattice, both with periodic boundary conditions. In both cases we identified
two phases: a weak coupling deconfined phase and a strong coupling confined phase.
The relatively large size of the system we were able to simulate allowed us to analyze
the behavior of Wilson loops of different length. We used this data in order to verify the
area law and perimeter law. Comparing the two trough a χ2 goodness fit, we found that
the area law better describes the system in the confined phase, while the perimeter law
gives a better description in the deconfined phase.
In the case of non-abelian groups we showed how the one-plaquette basis is not sufficient
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for the description of the gauge invariant subspace, using examples on small sized sys-
tems. We found that this barrier was caused by the emergence of states with multiple
plaquette excitations connected to the non-abelian representations of the group, which
could not be interpreted as combinations of one-plaquette states like in the abelian case.
Nevertheless we successfully developed an algorithm for simulating the non abelian the-
ory D4 and tested it on a 2x2 periodic lattice. The gate implementation was more
complex than in the abelian case. In particular the group operations and the group
Fourier transform required more advanced techniques in order to be reduced into smaller
substeps, up to the known fundamental gates.
In this algorithm we took the second of the two possible roads in dealing with a con-
strained quantum mechanical system, forbidding it to evolve into non physical states.
In this case this result was achieved by the adiabatic evolution, which acts trough the
gauge invariant Hamiltonian.
The results of the simulation were analyzed. Due to the small size of the system we were
able to measure only the one plaquette Wilson loop. Nevertheless this was enough to
recognize the confined and deconfined phase, and the transition region in-between.

There is still space for improvement in the implementation for the algorithms. A use-
ful step in this direction would be to introduce the evolution with a dynamical ∆t. This
would allow the algorithm to move faster through the regions of the two phases, while
maintaining the computational error small in the rapidly changing transition region. The
main issue with this approach is that our algorithm is influenced by two principal errors:
the adiabatic approximation and Trotter approximation. A system should be designed
in order to keep the changing parameter from improving one of the two but deteriorating
the other.
In all our simulations we started from the electric ground state, causing our simulation to
be more accurate in the confined phase. Moreover we were unable to reach the magnetic
ground state, which would have required an evolution up to a parameter λ = +∞. This
problem could be solved by starting from the magnetic ground state instead. Checking
that in the middle region both methods lead to the same results would be an important
confirmation that the adiabatic algorithm works.
In our analysis we confined ourself to the simplest topological sector. A direction in
which we could expand the obtained results, would be to analyze the other topological
sectors of the theories, looking for different and new phenomena.
Another improvement could be attained by using more powerful computers to simulate
larger systems. Nevertheless the exponential scaling of the complexity of the quantum
system would quickly limit the size of the system even on powerful supercomputers.
Even a the simple description of the state of a 3x3 D4 system occupies 254B, a space
larger than the RAM of a supercomputer. True progress will be possible only with real
quantum computers, which at the present time are still in development.
A direct implementation on a quantum computer could be made possible by trying dif-
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ferent algorithms, better suited for the noisy small scale systems of the present era.
Classical emulation of this algorithms could be useful to predict the expected results,
and could be verified by comparing them against the result of our thesis.

Going beyond the model we analyzed, an important step would be the generalization
of the system, in order to include fermionic matter, allowing the study of interesting
dynamical phenomena. It would also allow to perform the simulation in regions with
a non-zero chemical potential, justifying the original reason for the implementation of
gauge theory simulations on a quantum computer.

108



Appendices

109



Appendix A

Finite Groups: Representations and
algebra

In this section are gathered some important results regarding finite groups, their repre-
sentations, and the group algebra, which are used through the thesis. We will refrain
from giving proofs, which can be found in [56].
Let’s start with some basic definitions. For any group G the order |G| is the number of
elements in the group.
Two elements g1, g2 of G are called conjugate if there exist h ∈ G such that g1 = hg2h

−1.
Being conjugate is an equivalence relation, the resulting set is the set of conjugacy classes
G̃

A.1 Finite groups representation

Definition 1 The representation of a group G is a couple (V, ρ) where V is a complex
vector space and ρ is a linear map ρ : G → GL(V ) which preserve the group structure.
The degree d of a representation is the dimension of the space V.

A representation is called unitary if ρ(g)−1 = ρ(g)† ∀g. In the case of finite groups it’s
possible to redefine any hermitian product on V in a way that all finite representations
are unitary. To do so we start from any hermitian product 〈, 〉0 on V. Then we define:

〈x, y〉 =
1

|G|
∑
g∈G

〈ρ(g)x, ρ(g)y〉0 (A.1)

These new product is hermitian, and it can be shown with some simple calculations that
the representation ρ is unitary with respect to it.
A representation is called irreducible if it does not contain any non-trivial invariant sub-
spaces. An invariant subspace is a subspace L of V which is closed under the action of
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the representation: ρ(g)x ∈ x ∀x ∈ L.
Two representations ρ1, ρ2 are said to be equivalent if there exist a vector space isomor-
phism A : V1 → V2 such that Aρ1(g) = ρ2(g)A ∀g.
A representation is called reducible if it is equivalent to a direct sum of irreducible rep-
resentations.
We are now ready to give the first important results:

Theorem 1 All unitary representation are reducible

Corollary 1.1 All finite representations are reducible

This means that instead of studying all possible representations of a given group
we only need to describe the irreducible representations, which will be referred as πj
to distinguish them from the general representations ρ. For a finite group G, by Ĝ we
denote the set of isomorphism classes of the irreducible representations of G.

A.2 The Group Algebra

Definition 2 The Group algebra C[G] is the set of all functions f : G→ C

In the case of finite groups this space corresponds to the space C|G| or equivalently the
Hilbert space L2(G).
There are 3 important structures on the group

• The hermitian product 〈f1, f2〉 =
∑

g∈G f
∗
1 (g)f2(g)

• The function product (f1f2)(g) := f1(g)f2(g) which produces a C-algebra structure
on the space.

• The convolution f1?f2(g) := 1
|G|
∑

h∈G f1(gh−1)f2(h) which gives another C-algebra
structure on the space.

A orthonormal basis of the space is given by the set eh defined such that eh(g) = δ(h, g).
Any other functional can be written as f =

∑
g fgeg, where:

fg = 〈eg, f〉 = f(g) (A.2)

As with all binary linear operations, once a basis is chosen it is possible to calculate
the structure constants of the operation on that basis. For the two algebras we have
introduced the structures constants are respectively

• 〈eg, ehek〉 = δ(g, h)δ(g, k)

• 〈eg, eh ? ek〉 = δ(g, hk)
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In order to introduce the Dirac formalism we can simply associate eg with |g〉. In
this formalism an arbitrary state can be represented by |f〉 =

∑
g fg |g〉.

Let’s now look at an important subspace of the group algebra

Definition 3 A class function on a group G is a function which is constant on conjugate
classes; that is, f(g) = f(hgh−1)forallg, h ∈ G.

Since both binary operations are closed on the set of class function, such set is a sub-
algebra of the group algebra. The dimension of the space is equal to the number of
conjugacy classes of the set C(G).

A.3 Character theory

Definition 4 We define the character of a representation (V, ρ) to be the map χ : G→
C, where χ(g) = Tr(ρ(g)) ∀g ∈ G

Characters can be used to find all irreducible representations of a given group, thanks
to the following result.

Theorem 2 The characters of all the elements of the quotient group of irreducible rep-
resentation Ĝ form an orthonormal basis for the space H of class functions on G with
respect to the Hermitian inner product (|) = 1

|G| 〈, 〉

Corollary 2.1 For a finite group there are as many irrep as the number of conjugacy
classes |C(G)|.

Corollary 2.2 Given an arbitrary character χ of a representation ρ and a irreducible
character χj then (χ|χj) = nj, where nj is the number of times the representation j
appears in the decomposition of ρ

If we collect the values for all irreducible characters on all conjugacy classes of G we
obtain the character table, which is a square table useful to collect information about
the representations. Since ∑

g

χ∗i (g)χj(g) = |G|δij (A.3)

∑
j

χ∗j(g)χj(h) =

{
|G|
|C(g)| if g ∼ h

0 otherwise
(A.4)

Where C(g) is the conjugacy class of g. These relations means that both the columns
and the rows of the character table are orthogonal.
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Calculating the orthogonality relation for the identity element e, we get the useful rela-
tion: ∑

j

d2
j = |G| (A.5)

Which imply that a finite group has a finite number of irreducible representations, each
with a finite dimension.

A.4 Representation basis and Group Fourier trans-

form

Connecting representation theory with the group algebra we notice that given an ir-
reducible representation (Vj, πj), all the matrix elements πjmn are elements of L2(G).
Moreover it is possible to show that these functions are orthogonal:

〈
πj1m1n1

, πj2m2n2

〉
=
|G|
dj1

δ(j1, j2)δ(m1,m2)δ(n1, n2) (A.6)

This property, together with the fact that |G| =
∑

j d
2
j shows that the matrix elements

form a basis of L2(G). After normalization we get the elements of the new basis to be:

|jmn〉 =

√
dj
|G|

∑
g∈G

πjmn(g) |g〉 (A.7)

This basis is known as the representation basis, which will be sometimes written in the
condensed notation |̄〉, where we make a one to one identification between the triplet
j,m, n and ̄.
The transformation from the group basis to the representation basis is known as the
group Fourier transform(GFT).
It can be seen as a generalization of the quantum Fourier transform, which correspond
to the group Fourier transform for G = Zn.

Since the matrix elements are a basis of the Hilbert space we can calculate the
structure constants of the two algebras with respect to them.

〈π̄1 , π̄2π̄3〉 = c̄1̄2 ̄3 (A.8)

〈π̄1 , π̄2 ? π̄3〉 = C ̄1
̄2 ̄3 (A.9)
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Appendix B

Quantum gates

In this chapter we introduce the quantum gates used in the description of the circuits
used in the thesis. In the first section we will show the circuit and matrix expression for
various fundamental gates, while in the second we will focus on two more complex gates,
used in the implementation of the sum and difference operation.

B.1 Fundamental quantum gates

There are many gates commonly used in quantum computing. In order to give the proper
matrix expression we will need to define a conventional order for the computational
states. Following typical quantum computing conventions each computational state is
mapped into a binary number. The qubit corresponding to the least significant figure
is assigned the index 0, and all the other qubits are subsequently named. As a result a
n-qubit states can be written as

|qn−1, ..., q0〉 (B.1)

The binary number it represent can be written as

N =
n−1∑
k=0

qk2
k (B.2)

All states are then put in increasing order based on the number N they represent, from
0 to 2n − 1.

The three simplest gates are the ones associated with the three Pauli matrices. They
act on a single qubit and take the matrix form:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(B.3)

114



In a quantum circuit they are represented by

q0 : X q0 : Y q0 : Z

The X gate is also known as the NOT gate, since when acting on the computational
state |0〉 gives as an output state |1〉, and vice versa, mimicking the action of the NOT
boolean operation in classical computing.
Another set of important one qubits gates are the three rotations, related to the three
Pauli matrices:

Ri(θ) = exp

(
−iσi

θ

2

)
i = x, y, z (B.4)

They are implemented on a circuit by the following gate

q0 : Ri(θ)

On two qubits the most important gate is the controlled-NOT gate, abbreviated as
CNOT gate. This gate applies the NOT gate only if the state in the control qubit is in
state |1〉. It has the matrix representation

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (B.5)

and is implemented in the quantum circuit by

q0 :
q1 : •

where the dot represents the control qubit, while the ⊕ symbol represents the NOT
operation, and is equivalent to the X gate.
A generalization of the CNOT gate is the controlled-U gate where the NOT gate is
substituted with a more general unitary operation U . This gate has matrix representation

C-U =

(
12 0
0 U

)
(B.6)

and circuit representation

q0 : U
q1 : •

The controlled operation U can also act on multiple qubits. A gate similar to the
controlled gate is the anti-controlled gate, in which the controlled operation is performed
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only if the controlling qubit is in state |0〉. In the case the controlled operation is NOT
it has the matrix representation 

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 (B.7)

and is introduced in the circuit formalism by an empty dot:

q0 :
q1 :

Another useful 2 qubit gate is the SWAP gate, in which the state of the two qubits is
exchanged. It is represented by the matrix

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (B.8)

and the circuit
q0 : ×
q1 : ×

On three qubits an important gate is the Toffoli gate, also known as the controlled-
controlled-NOT gate. It performs the NOT operation only if both the controlled qubits
are in the |1〉 state. It has matrix representation

1
1

1
1

1
1

0 1
1 0


(B.9)

where all spaces correspond to zeroes. Its circuit representation is

q0 :
q1 : •
q2 : •

One generalization of the Toffoli can be obtained by using more general U gate instead
of the NOT gate. Another generalization substitutes one or both of the control qubits
with anti-control qubits. The matrix and circuit representations of these gates can be
easily found.
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B.2 Sum and difference gates

In this section we will follow the procedure described by T. Draper[12], in order to figure
out the correct expression for the summing and subtracting circuits. The main advantage
of using this algorithm is that it doesn’t need any ancillary qubits in order to perform the
computation. Since one operation is the inverse of the other we need only to show the
summing circuit; the subtracting circuit can then be obtained by inverting the previous
gate by gate.
If we want to add M numbers we need M sets of n qubits, where n is the number of
qubits in which each addend is encoded. Using larger n allows us to sum bigger numbers.
All sums are performed modulo 2n.
In the algorithm a set of qubits is chosen as the target set, in which the end result of the
operation will be stored. All other sets are left unchanged.
The circuit can be divided in three parts: in the first a quantum Fourier transform is used
on the target qubits, in the second a set of gates, which we denote as CZ (generalized
control z) is used to adjust the phase on each qubit of the first set based on the state of
the other sets, and in the end an Inverse Quantum Fourier transform is applied on the
first set, in order to produce the correct result.

In the Z2 case we sum 1 digit numbers. The 1 qubit Fourier and Inverse Quantum
Fourier transform is the Hadamard gate H. The CZ gate reduces to the 2 qubit control
z gate. Therefore to sum 2 numbers we have

|a〉 :
Sa

H Z H |a+ b〉
|b〉 : • |b〉=

where the subscript in Sa identify the qubit on which the final sum is stored. If we want
to sum over 3 or more numbers we need to include a CZ from all the addends to the
target qubit:

|a〉 :

Sa

H Z Z H |a+ b+ c〉
|b〉 : = • |b〉
|c〉 : • |c〉

In the Z4 case we are interested in the sum of two digits number. Each CZ gate can
be expressed as 3 control phase gates, where the phase gate Pk is a 1 qubit gate whose
matrix representation is:

Pk =

(
1 0

0 e
i2π

2k

)
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The sum between two numbers is

Sa

F
P1 P2

F−1

P1

• •
•

|a〉

|b〉
=

|a+ b〉

|b〉

while the sum between three or more numbers can be performed by repeating the three
gates that compose the CZ gate for each other addend:

Sa

F
P1 P2 P1 P2

F−1

P1 P1

• •
•

• •
•

|a〉

|b〉

|c〉

=

|a+ b+ c〉

|b〉

|c〉
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[44] Markus Püschel, Martin Rötteler, and Thomas Beth. Fast quantum fourier trans-
forms for a class of non-abelian groups. In International Symposium on Applied Al-
gebra, Algebraic Algorithms, and Error-Correcting Codes, pages 148–159. Springer,
1999.

[45] H. Reinhardt, G. Burgio, D. Campagnari, E. Ebadati, J. Heffner, M. Quandt,
P. Vastag, and H. Vogt. Hamiltonian approach to qcd in coulomb gauge - a survey
of recent results, 2017.

[46] U.-J. Wiese S. Chandrasekharan. An introduction to chiral symmetry on the lattice.
Progress in Particle and Nuclear Physics, 53(2):373–418, Oct 2004.

[47] Jean-Pierre Serre. Linear representations of finite groups, volume 42. Springer,
1977.

[48] Barry Simon. Representations of finite and compact groups. 1995.

[49] Federica M. Surace, Paolo P. Mazza, Giuliano Giudici, Alessio Lerose, Andrea Gam-
bassi, and Marcello Dalmonte. Lattice gauge theories and string dynamics in rydberg
atom quantum simulators. Physical Review X, 10(2), May 2020.

[50] Andreas Trabesinger. Quantum simulation. Nature Physics, 8(4):263–263, Apr
2012.

[51] Xiao-Gang Wen. Topological orders in rigid states. International Journal of Modern
Physics B, 4(02):239–271, 1990.

122



[52] Kenneth G Wilson. Confinement of quarks. Physical review D, 10(8):2445, 1974.

[53] Edward Witten. Quantum field theory and the jones polynomial. Communications
in Mathematical Physics, 121(3):351–399, 1989.

[54] C. N. Yang and R. L. Mills. Conservation of isotopic spin and isotopic gauge invari-
ance. Phys. Rev., 96:191–195, Oct 1954.

[55] Bei Zeng, Xie Chen, Duan-Lu Zhou, and Xiao-Gang Wen. Quantum information
meets quantum matter – from quantum entanglement to topological phase in many-
body systems, 2018.

[56] A. Zimmerman. Representation theory of finite groups and burnside’s theorem.
2015.

123


	Introduction
	Quantum Links models and Lattice gauge theory
	Gauge Hamiltonian with finite group gauge symmetry
	Lagrangian lattice gauge theory
	Hamiltonian formalism
	Kogut-Susskind Hamiltonian
	Finite group gauge Hamiltonian

	Structures in the Hilbert space
	The Hilbert space
	Plaquette and Vertex operators
	The electric ground state
	The one-plaquette states
	General results on one-plaquette states
	Multiple plaquette states

	Related models
	The toric model
	The magnetic ground state

	Phases and observables
	Parameterization of the Hamiltonian
	Confinement


	Abelian field theory
	Simplifications in the abelian case
	Finite abelian groups
	Lattice structures

	ZN Yang-Mills theories
	Gauge invariant subspace
	Energy eigenvalues in the gauge invariant basis

	Quantum simulations
	Analog and digital quantum simulations
	Simulating on a quantum computer
	Simulating lattice gauge theories
	Real quantum computers and their simulations

	Implementation for ZN theories
	Example: 2x2 lattice for Z2 and Z4

	Results
	Results for Z2
	Results for Z4


	Non-abelian field theory: D4
	The dihedral group
	Dihedral group gauge theory

	Difficulties of the non-abelian case
	Two plaquette system
	Periodic boundary conditions
	Generalizing counting

	Simulation of D4 gauge theory
	Techniques
	Implementation of the adiabatic algorithm
	The Quantum circuit
	The direct evolution

	Results

	Conclusions and Outlook
	Appendices
	Finite Groups: Representations and algebra
	Finite groups representation
	The Group Algebra
	Character theory
	Representation basis and Group Fourier transform

	Quantum gates
	Fundamental quantum gates
	Sum and difference gates

	Bibliography

