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Abstract

Cluster analysis is an ensemble of techniques whose aim is to divide an unlabeled dataset
into groups so that samples with similar features are assigned to the same groups and dissimilar
samples are assigned to different ones; it has been applied in several fields and it consists of a
wide variety of techniques, each one designed for a specific type of dataset and required prior
informations on its structure. In this thesis we discuss a new formulation of clustering technique
whose structure is similar to that of an unsupervised random forest; it is based on the Mondrian
stochastic process and it consists of a hierarchical partition of the space of definition of the given
dataset. It gives as output an estimation of the probability distribution to belong to a certain
class, defined on the whole underlying space, and it shows some interesting properties, like the
automatic determination of the number of clusters and the capability to deal with different
shape datasets. After a brief theorical introduction about clustering, the Mondrian stochastic
process and its main mathematical properties are defined. The Mondrian clustering algorithm
is then described and results of its applications on two and three dimension toy datasets are
presented; the discussion focuses on the role of the algorithm parameters, that characterize the
method and can be possibly tuned by the user, in order to obtain better performances when
dealing with different datasets, and on the comparison of the results with that of some notable
clustering algorithms. Finally, some interesting aspects that could be further investigated are
discussed.
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Chapter 1

Clustering

Cluster analysis is a machine learning approach whose aim is to divide a population of data
into a certain number of groups, by recognizing patterns and relationships among the data
points. It is part of the branch of machine learning called unsupervised learning, in contrast
with the supervised learning methods, like classification, in which data are grouped on the
basis of some existing labeling. In this latter case, the assignment of a sample to a certain
class is obtained by first training the algorithm with a labeled dataset, in order to associate
each class to some corresponding features of the input samples; once the algorithm has been
trained, it is able to assign unlabeled samples to the already determined classes, on the basis
of their feature similarity with the training data ones. On the contrary, in the unsupervised
learning case, the input data are not labeled and the division into classes is performed in order
to maximize intra-class similarity and minimize inter-class similarity. Since there is not an
unique and precise definition of similarity, several clustering techniques have been developed,
each one characterized by a specific metric.

Cluster analysis has been widely studied and applied in various fields. A possible application
is the division of a great number of biological data into groups, each one corresponding to a cell
tipology. We can for example measure, for each cell, some shape feature, as the diameter, and
other numerical values, as the data related to the radiation emitted, through fluorescence, after
excitation with different wavelength; since different cell typologies are characterized by their
own range of dimensions and react differently to the same stimulus, similar cells are expected
to exhibit similar values. Since, when dealing with large number of data, a manual labeling is
not viable, cluster analysis is used, in order to group data into clusters, each one corresponding
to a specific cellular tipology, through the evaluation of the similarity between the features.

In this chapter, we briefly illustrate the main tipologies of clustering techniques, describing
more in detail some popular algorithms, that will be used in the next chapters; then, the role
of decision trees and random forests in unsupervised learning is discussed and, finally, a few
methods used to compare different clustering results are presented.

1.1 Types of clustering algorithms
In order to deal with datasets with different numerosity, number of clusters or cluster shapes, a
wide variety of clustering techniques has been developed; all of them are characterized by their
own methods and metrics and are designed to be applied to datasets with specific features and
in presence of specific prior knowledges about the samples.

A fundamental distinction is between hierarchical and partitioning clustering methods;
however, several other classifications have been formulated, since the large number of algorithms
can’t be strictly categorized. In the following, the main typologies of clustering methods are
presented.
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Hierarchical clustering
In hierarchical clustering methods, clusters are formed by iteratively dividing the patterns using
top-down or bottom up approach [1]; the divisive or top-down algorithms start by considering
the whole set of data as belonging to an unique initial cluster, that is progressively divided into
an increasing number of clusters; on the contrary, the aggregative or bottom-up algorithms
start with each element of the set of data belonging to different clusters and progressively merge
them; the splitting or merging procedure is carried on until a specific condition is satisfied or
until all elements are completely separated (in case of divisive approach) or all gathered in a
unique cluster (in case of agglomerative approach). The hierarchical structure consists on the
partitioning/merging of the objects organized in levels and on the property that whenever two
samples are in the same cluster at level k, they remain together at all higher levels [2]. The
splitting and merging procedures are performed by defining a measure of the similarity of two
groups of points; usually, a metric and a linkage criterion are defined. The metric allows to
evaluate the distance between each pair of points within the clusters, while the linkage is a
function of the metric and defines a criterion to evaluate the similarity between two clusters.

The main advantages of the hierarchical approach are that it gives informations at different
levels of granularity of the dataset and it easily handle any metric and linkage formulation;
the disadvantages are, besides the sensitivity to noise and outliers, that there is a no reliable
stopping criterion for the merging/splitting procedure and that, once a merge or a split is
committed, it cannot be undone or refined [3] [4] [1].

Partitioning clustering
Partitioning clustering algorithms assign data to a certain number of clusters by iteratively
optimizing some objective function. In particular, since testing every possible cluster configu-
ration is too computationally expensive, often the initial dataset partition is randomly choosen;
then a relocation scheme, that reassigns points to the clusters, is iterated until convergence.

Although partitioning algorithms are relatively simple, scalable and at low computational
cost, they often require the knowledge of the number of clusters in advance, are high sensitive
to initialization phase, noise and outliers and are not able to deal with non-convex cluster of
varying size and density [1].

k-means An example of partitioning clustering technique is the k-means algorithm; it divides
data into clusters by minimizing the variance within the groups. In particular, the objective
function that has to be minimized is the within-cluster sum-of-squares criterion [5], calculated
for each cluster:

fobj =
n∑

i=0
min(||xi − c||2) (1.1)

where xi, with i = 1, . . . , n, are the points assigned to the cluster, c is the centroid calculated
as the arithmetic mean of the point positions and ||xi − c|| is the euclidean distance between
the chosen point and the centroid.

Once the number of clusters k is given as input, a centroid is randomly assigned to each
cluster; then, the following two steps are iterated:

1. each point of the dataset is assigned to a cluster in order to minimize the objective
function

2. for each cluster, new centroids are calculated in order to minimize the objective function

The two steps are iterated until convergence, that means until no change in the data assignment
is observed.
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Although k-means algorithm has been widely used for its low computational cost and be-
cause it provides good results in practical situation as anomaly detection and data segmenta-
tion, it is subject to some limitations; above all, there is no efficient method for recognizing
the number of clusters and the initial centroid locations; moreover, it assumes that clusters
are convex shaped and consequently doesn’t provide good results if applied to datasets with
elongated and irregular shapes and, finally, it is sensitive to outliers, noise and initial seed
selection [1][6].

In the following chapters we will use the cluster.KMeans object of the Python scikit-learn
package.

Density-based clustering
The density-based algorithms treat clusters as regions of high density, separated by regions
of no or low density [4]; The density estimation is made by evaluating, for each sample, the
number of data objects in its neighborhood. We see more in detail the fundamental ideas of
the density-based approach by considering the DBSCAN algorithm.

DBSCAN The Density-Based Spatial Clustering of Applications with Noise works by finding
core samples at high density and expand clusters from them [5]. It requires as input two
parameters: ϵ is the maximum distance between two points such that one of them is considered
in the neighborhood of the other, while n is the minimum number of samples belonging to a
neighborhood of a point such that it is considered a core object. The algorithm considers each
point of the dataset, computing the corresponding ϵ-neighborhood; a neighborhood with points
in common to the neighborhood of a core sample is assigned to the same cluster of the core
sample and its neighboring points. If a point isn’t connected to a core point, it is classified as
noise.

In order to determine if a sample is in the neighborhood of an other one, their distance is
computed and, if the distance value is lower than ϵ, the point is assigned to the neighborhood.
The evaluation of the neighboring points and, consequently, the determination of the clusters,
highly depend on the chosen metric.

The main advantages of this method are that clusters found by DBSCAN algorithm can
be of any shape, so they are not assumed to be convex-shaped as in k-means case; moreover,
it doesn’t require as input the number of clusters and it is able to detect outliers; finally,the
result doesn’t depend on the order of the data points considered by the algorithm. On the
other hand, the performance of the algorithm can be very different depending on the chosen
distance metric used to calculate the ϵ-neighborhood; moreover, since the ϵ parameter is unique
for the whole dataset, the algorithm may be not able to identify groups of data with different
densities.

In the following chapters we will use the cluster.DBSCAN object of the Python scikit-learn
package. The ϵ parameter is set differently depending on the considered dataset, while n is set
to the default value of 5; the metric is always euclidean.

Graph-based Clustering
In the graph-based approach, the dataset is represented through a similarity graph. Each node
represents a sample and, for each pair of samples i and j, a similarity measure sij between them
is computed; if the value of sij is positive or larger than a certain threshold, the corresponding
pair of nodes in the graph are connected through ad edge, weighted by some function of sij.
Once the similarity graph is created, the problem of clustering consists of finding a partition
of the graph such that the edges between different groups have very low weights (which means
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that points in different clusters are dissimilar from each other) and the edges within a group
have high weights (which means that points within the same cluster are similar to each other)
[7].

The variety of graph-based algorithms differs by both the way in which the similarity graph
is buit and the criterion used to divide it into clusters. In the next paragraph we describe one
grid-based algorithm in detail.

Spectral clustering The spectral clustering algorithm clusters data using eigenvectors of
matrices derived from the samples. It requires as input the number n of clusters and performs
the clustering through the following steps [1]:

1. creation of the similarity matrix, after the definition of a distance metric as similarity
measure. In our cases the metric will be euclidean.

2. creation of the similarity graph according to a specific building criterion; in our cases,
in order to build the graph, we will set the k-nearest neighbors criterion, that consists in
connecting each point only to its k nearest points, according to the similarity matrix; k
is set to 10

3. the Laplacian L = D −W is computed; D is the degree matrix defined as the diagonal
matrix with degrees on the diagonal, while W is the adjacency matrix of the graph

4. the first k generalized eigenvectors of u1, . . . , uk of the generalized problem Lu = λDu
are computed

5. defining U ∈ Rn×k as the matrix containing the vectors u1, . . . , uk as columns, the points
with coordinates the rows of U, y1, . . . , yk are clustered with k-means algorithm into
clusters C1, . . . , Ck

6. the final clusters are Ai, . . . , Ak with Ai = {j|yj ∈ Ci}

The main advantage of the spectral clustering is that it provides good performances with
datasets characterized by different shapes, since it doesn’t make strong assumptions on the
form of the clusters; moreover, it works efficiently if applied to large datasets. On the other
hand, it is sensitive to the initial conditions and the choice of the building criterion of the
similarity graph is not trivial.

1.2 Decision tree

Given a set of data X ⊆ RD, a decision tree on X can be defined as a hierarchical, axis-
aligned, binary partitioning of X [8]. It has a network structure, where each node represents
a specific restriction of the initial dataset. The binarity of the tree means that each non-leaf
node is linked to exactly two children and, except for the root node that represents the whole
data space X, each node has only one father; in particular, the set of data corresponding to
the father node splits into two subsets assigned respectively to the two children. The term
axis-aligned means that each split of a father into two children is performed by imposing a
threshold value on only one of the features; if we visualize the tree structure in a product
space, this means that each cut is performed orthogonally to one of the axis. The union of
the subspaces corresponding to the leaf nodes coincides with the initial space X and their
intersection is an empty set. Because of its hierarchical structure, the decision tree can be used
as hierarchical clustering method (with both top-down and bottom-up approach), by selecting
a data-dependent splitting (or merging) criterion.
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1.3 Clustering comparison
In order to compare different labelings referred to the same dataset, several clustering compar-
ison measures have been introduced. They are used as both validation measures and tools to
improve the quality of the clustering result [9].

Cluster validation consists of a collection of procedures that quantitatively evaluate the
result of a clustering technique; in general, there are three approaches to investigate cluster
validity [10]: the internal validation criteria entirely rely on quantities and features inherent to
the dataset, the external ones are based on some preexisting knowledge about the structure of
the data, while the relative ones evaluate the result by comparing different versions of the same
algorithm obtained by setting different values of the parameters. Since clustering comparison
measures estimate the similarity of two different classifications of the same dataset, if one
of the two set of labels is the already known ground truth associated to the dataset, the
corresponding measure is considered an external validation one. It thus evaluate how the
predicted classification fits the true one.

On the other hand, clustering comparison is also used to improve the result of the clustering
procedure; in particular, it occurs in the context of ensemble (consensus) clustering, whose aim
is to unify a set of clusterings, already obtained by some algorithms, into a single high quality
one [9]. Consequently, the corresponding measures quantify the information shared between
two clustering results.

In the following chapters, two clustering comparison measures are considered: the Fowlkes-
Mallows index and the adjusted mutual information. The first one is an external validation
measure used to evaluate the performance of the clustering technique; the second one is used to
compare different results, in our case obtained by iterating the same version of the algorithm
(with the same choice of parameters) in order to extract additional informations from the
classified dataset.

The Fowlkes-Mallows index FMI is a pair counting based measure; it evaluates the sim-
ilarity of two data classifications by counting the point pairs on which two clustering results
agree or disagree [11]. It is defined as the geometric mean of the precision and the recall [5].
In particular, we consider two sets of labels corresponding to the true classification and the
predicted one; TP (True Positive) is the number of pairs of points belonging to the same class
in both the true and the predicted classification, FP (False Positive) is the number of pairs of
points belonging to the same class in the predicted classification but not in the true one and FN
(False Negative) is the number of pairs of points belonging to different classes in the predicted
classification but to the same class in the true one. The precision p = T P

T P +F P
is the fraction

of predicted positive cases that are correctly true positives, while the recall r = T P
T P +F N

is the
fraction of real positive cases that are correctly predicted positives [12]. The Fowlkes-Mallows
index is thus formally defined as follows:

FMI = √p · r = TP√
(TP + FP ) · (TP + FN)

(1.2)

The index ranges from 0 to 1 and it is equal to 1 if the two labelings completely overlap. In
the next chapters, it is calculated through the metrics.fowlkes_mallows_score function of
the Python scikit-learn package.

The information theoretic measures [9] [13] [5], as the Adjusted Mutual Information, are
based on fundamental concepts of information theory and, in particular, on the concept of
entropy. Consider two clustering results U = {U1, . . . , UR} and V = {V1, . . . , VC} of the same
dataset, respectively consisting of R and C number of clusters, and imagine to transmit U
on a communication channel; the entropy H(U) of U represents the averaged quantity of
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information required to encode the whole set of labels. The conditional entropy H(U|V) of
U given V is instead the averaged quantity of information required to encode U, when V
is already known. Finally, the Mutual Information represents how much the knowledge of
V reduces the quantity of information needed to encode U and is thus the difference of the
entropy of U and the conditional entropy of U given V. Since the general expression of the
entropy related to U is H(U) = −∑R

i=1 p(i) log p(i), where p(i) is the probability that an object
picked at random from U falls into Ui class, the entropy of U, the joint entropy of U and V,
the conditional entropy of U given V and the mutual information of U and V are formally
defined as follows:

H(U) = −
R∑

i=1

ai

N
log ai

N
(1.3)

H(U, V) = −
R∑

i=1

C∑
j=1

nij

N
log nij

N
(1.4)

H(U|V) = H(U, V)−H(V) = −
R∑

i=1

C∑
j=1

nij

N
log nij/N

bj/N
(1.5)

I(U, V) = H(U)−H(U|V) =
R∑

i=1

C∑
j=1

nij

N
log nij/N

aibj/N2 (1.6)

N is the total number of points, ai, bj and nij are respectively the number of samples belonging
to the i-th cluster of U, belonging to the j-th cluster of V and in common to clusters Ui and
Vj.

Since the mutual information is a symmetric measure (I(U, V) = I(V, U)), it can be used
as consensus similarity measure. Higher is its value, more the knowledge of one of the two
clusterings helps to acquire information on the other one, meaning that more information is
shared between the two sets of labels.

In the following chapters, we will use an adjusted version of the mutual information. Firstly,
the measure is normalized, in order to obtain a result scaled between 0 and 1; in particular, if
the normalized mutual information is equal to 1, the considered classifications exactly coincide,
while, if it is equal to 0, they are completely uncorrelated. The advantage of treat with a
normalized measure is that clustering results obtained from different labels are more easily
comparable. Secondly, a correction for chance is introduced, in order to take into account the
mutual information that entirely depends on random factors, without the presence of a real
correlation between the two clustering results. This adjustement is needed in order to avoid
the dependence of the information measure on the number of clusters and of samples, since
I usually shows higher values for large dataset with a high number of classes. The adjusted
mutual information AMI is defined as follows:

AMI = I(U, V)− E[I(U, V)]
mean(H(U), H(V))− E[I(U, V)] (1.7)

where mean(H(U), H(V)) is the normalization factor and E[I(U, V)] represents the adjuste-
ment for chance. It is the expectation value of the mutual information of two randomly gener-
ated clusterings, linked to have a fixed number of clusters and a fixed number of samples per
cluster and it is defined as:

E(U, V) =
R∑

i=1

C∑
j=1

min(ai,bj)∑
nij=max(ai+bj−N,0)

nij

N
log

(Nnij

aibj

) ai!bj!(N − ai)!(N − bj)!
N !nij!(ai − nij)!(bj − nij)!(N − ai − bj + nij)!

(1.8)
In order to compute the adjusted mutual information of two sets of clustering results, the

metrics.adjusted_mutual_info_score of the Python scikit-learn package is used.
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Chapter 2

The Mondrian Process

The Mondrian process is a temporal stochastic process that recursively partitions the space;
its partitioning procedure allows to generate a binary tree of subspaces, in which each edge
corresponds to a split that divides the father subspace into two smaller children. At the end
of the process, a partition of the initial space into several subspaces is obtained. If we define
a set of points on the initial space that is progressively splitted, at the end of the process
we will obtain, besides the space division into several subspaces, also the dataset division
into smaller subsets, with similar hierarchy of partitions. Since the outcome of a hierarchical
clustering algorithm run on a given dataset consists of a hierarchy of binary restrictions of the
initial dataset (as explained in the first chapter), an adaptation of the Mondrian process as a
clustering hierarchical algorithm can be developed. Rather than directly perform the division
of the dataset, the Mondrian clustering algorithm will thus split the underlying space in which
the dataset is defined; the division criterion must be adapted in order to depend on the data
that we want to cluster.

In this chapter, the Mondrian process is formally defined and its main mathematical prop-
erties are briefly illustrated.

2.1 Definition
The Mondrian process is a recursive generative process, defined over an axis-aligned box
Θ ⊆ RD, that hierarchically partitions the underlying space through axis-aligned cuts [14].
Given an axis-aligned box Θ = [a1, b1]× . . .× [aD, bD] ⊆ RD, defined as the cartesian product
of bounded intervals, the process generates two subspaces Θ< and Θ> by splitting Θ with some
hyperplane orthogonal to one of the coordinate axis; then, it similarly generates independent
splits on Θ< and Θ>, creating new subspaces that are recursively cut until a certain condition
is satisfied. The following scheme shows the generative process in detail [8]:

MONDRIAN(Θ,t0):
1. T ∼ Exp(LD(Θ))
2. d ∼ Discrete(p1, ..., pD) where pd ∝ (bd − ad)
3. x ∼ U([ad, bd])
4. M< ← MONDRIAN(Θ<,t0 + T ) where Θ< = {z ∈ Θ|zd ≤ x}
5. M> ← MONDRIAN(Θ>,t0 + T ) where Θ> = {z ∈ Θ|zd ≥ x}

return (t0 + T, d, x, M<, M>)

The process is initialized by fixing the starting time t0 and the initial axis-aligned box Θ
that will be partitioned. Firstly, in line 1, the time T of the first cut is randomly generated from
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an exponential distribution, with rate the linear dimension of the box LD(Θ) = ∑D
d=1(bd−ad);

this means that cuts in smaller boxes are expected to occur later than in bigger ones. The
absolute time t0 + T at which the cut is generated is called birth time. Then, the dimension
d of the cut is generated from a discrete distribution, with a probability proportional to the
length bd−ad of the corresponding interval (line 2), and the location of the cut is subsequently
uniformly chosen in the interval [ad, bd] (line 3).
At this point, the initial space Θ has been cut by an hyperplane orthogonal to the d-dimension
and intersecting the [ad, bd] interval in d = x, and it has been divided into two axis-aligned
boxes Θ< and Θ>. Lines 4 and 5 generate independent Mondrians on the two new subspaces,
meaning that steps 1,2 and 3 are independently repeated on Θ< and Θ>, starting from an
initial time equal to the birth time of the last cut.
The process recursively splits the space in more and more refined partitions and stops when,
for every independent Mondrian that has been generated, the birth time t0 + T of the last cut
is higher than a fixed lifetime parameter λ. The lifetime λ represents a budget assigned to the
process and, as cuts appear, it is progressively spent; it follows that the time interval T , that
is generated at each iteration, represents the cost related to a specific cut.

The Mondrian process as temporal stochastic process
The formulation of Mondrian process as recursive generative process leads to an other defini-
tion as temporal stochastic process. More precisely, given an axis-aligned box Θ ⊆ RD, the
Mondrian process on Θ, denoted as MP (Θ), can be defined as a temporal stochastic process
(Mt)t>0 taking values in the ensemble of guillotine partitions of Θ and with distribution spec-
ified by the generative process MONDRIAN(Θ, t0) [8]. If we define a guillotine partition as
a hierarchical partition of Θ obtained by recursively splitting the space through hyperplanes
orthogonal to the coordinate axes, the random variable (Mt)t>0 is a guillotine partition of Θ
formed by the cuts with birth time tb ≤ t.

Tree structure of the Mondrian process
The hierarchical structure of Mondrian process reflects the structure of a rooted binary k-d
tree; each node is represented by the tuple (t0 + T, d, x, M<, M>), which entries are the birth
time, the dimension and the location of the cut and the two children of the node itself. Each
non-leaf node has exactly two children and the ensemble of the leaf nodes represents the final
and more refined partition of the initial space. The lifetime parameter λ of the stochastic
process, that regulates the total number of cuts, can be interpreted as the depth parameter of
the tree.

Figure 2.1: A Mondrian partition (left) with corresponding tree structure (right), which
shows the evolution of the tree over time [15]
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2.2 Properties of the Mondrian process
We firstly define a Poisson point process [16], through two equivalent definitions:

Definition 1 A Poisson point process is an arrival process1 for which the interarrival times are
independent and identically distributed random variables and in which the interarrival intervals
have an exponential distribution function. This means that, for some λ > 0, called rate of the
process, the interarrival times are represented by IID random variables {Xj : j = 1, 2, ...} with
the common density fX(t) = λe−λt, with t ≥ 0.

Definition 2 An arrival process is a Poisson point process if its counting process {N(t); t > 0}
has the following properties:

• it is Poisson distributed N(t) ∼ Poisson(λt)
• N(t2)−N(t1) has the same cumulative distribution function as N(t2− t1) for all 0 < t1 <

t2, that means the distribution of the number of events in some interval only depends on
the size of the interval, and not on its starting point (stationary increment property)

• for any positive integer k and every k-tuple of times 0 < t1 < t2 < · · · < tk, the
random variables N(t1), N(t2)−N(t1), ..., N(tk)−N(tk−1) are independent (independent
increment property)

One-dimensional Mondrian process as Poisson point process
Consider a one-dimensional Mondrian process MP (Θ) with Θ = [a, b] ⊆ R and with lifetime λ.
Since, given n independent Poisson processes N1(t), ..., Nn(t) with rates λ1, ..., λn, the combi-
nation of them N(t) = N(t1)+ ...+N(tn) is a Poisson point process with rate λ = λ1 + ...+λn,
and since the time intervals of MP ([a, b]) are independent (for the memoryless property of
the exponential) and generated from an exponential distribution with rate the length of the
interval, the times of the cuts of the Mondrian process form a temporal Poisson process with
rate b − a (see Definition 1). It follows that the number of the times of the cuts in a time
interval of length λ is Poisson(λ(b− a)) distributed.

Now consider the cut locations in the interval Θ = [a, b]: as the process progresses, the cut
locations are generated in each of the subintervals of Θ from a uniform distribution and, con-
sequently, if we consider the ensemble of the cut locations generated in different subintervals,
they are all uniformly generated in the whole interval Θ; moreover, as in the case of exponen-
tial distribution, also an extraction from a uniform distribution is independent from its past
evolution. From these two properties, and since the number of the times of the cuts coincides
with the number of the locations of the cuts and it has thus a Poisson(λ(b − a)) distribution
with rate λ, the distribution of the cut locations of a one-dimensional Mondrian process run
on [a; b] with lifetime λ is a Poisson point process with constant intensity λ (see Definition
2).

Self-consistency
Consider a Mondrian process MP (Θ) over a box Θ = Θ1 × . . . × ΘD and consider a smaller
box contained within it, Φ1 × . . . × ΦD ⊆ Θ1 × . . . × ΘD. The stochastic process induced by
MP (Θ) through its cuts intersecting the smaller box Φ is again a Mondrian process MP (Φ).
This means that, considering all the cuts generated by the Mondrian process on Θ, the ones

1An arrival process is a sequence of increasing random variables, 0 < S1 < S2 < · · · , where Si < Si+1 means
that Si+1 − Si is a positive random variable.

10



that don’t intersect the subspace Φ don’t affect the distribution of the cuts within Φ and this
distribution is the same of that of a Mondrian process applied on Φ.

Mondrian slices Consider a subspace Φ ⊆ Θ, that is a cartesian product space of the
following intervals: Φ1 = {x} and Φd = Θd for d > 1. Since the probability of having a cut in
the d = 1 dimension is zero, no cut occurs in the first dimension. Consequently, for the self-
consistency property, the restriction on the subspace Φ of a D-dimensional Mondrian process
on Θ is a (D − 1)-dimensional Mondrian process. In particular, if Φ is a one-dimensional
subspace of Θ, the restriction of the Mondrian process on it is a one-dimensional process; since
a one-dimensional Mondrian process is a Poisson point process, the location of the cuts of a
D-dimensional Mondrian process, marginally considered in each dimension, follows a Poisson
point process.

Extension on RD A consequence of the self-consistency property is that the definition of the
Mondrian process on an axis-aligned box can be relaxed by defining it on the entire RD. The
structure of the Mondrian process on RD is an infinitely deep tree with no root and infinite
number of leaves.

Conditional Mondrians [8]

Consider again a Mondrian process MP (Θ) over a box Θ and the Mondrian process MP (Φ)
over the restriction Φ ⊆ Θ. Given the Mondrian process over Φ, the property of self-consistency
allows to have information on the unknown Mondrian process running on the whole Θ; in
other words, it is possible to calculate the conditional distribution MP (Θ), given MP (Φ).
In particular, conditionally given the restriction MP (Φ) of a Mondrian process MP (Θ) to a
smaller box Φ, consider the first cut CΦ in MP (Φ) and let tΦ be its time. Then:

• with probability exp(tΦ(LD(Θ) − LD(Φ))), the cut CΦ is the first cut in Θ (it extends
throughout Θ)

• with complementary probability 1− exp(tΦ(LD(Θ)− LD(Φ))) the first cut in Θ misses
Φ, its time has the truncated exponential distribution with rate LD(Θ) − LD(Φ) and
truncation at tΦ, and the cut location is uniformly distributed along the segment where
making a cut doesn’t hit Φ.
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Chapter 3

Clustering algorithm based on the Mon-
drian Process

The tree structure of the Mondrian process, that reflects the way in which the Mondrian process
partitions the space, naturally leads to its adaptation to a clustering hierarchical algorithm.
The adapted process, that we developed for this thesis, differs from the pure Mondrian process
firstly because the splitting criterion must rely on some characteristics of the data that we want
to cluster and, secondly, because the cuts are no more linked to be orthogonal to the axis but
can in principle take any direction.

The Mondrian clustering algorithm consists of a two-step process. The first part has a
top-down approach and is the one that directly exploits the Mondrian process; it partitions the
space on which the set of data is defined by evaluating the similarity of groups of data and,
consequently, favouring the cuts that separate subsets of points belonging to different clusters;
for each leaf node, it assigns all the data contained in the corresponding subspace to the same
class. In order to completely isolate the clusters, the number of cuts may be enough high to
divide each single cluster into more than one subspace; consequently, a further procedure is
required, in order to combining the subspaces that have been separated during the partitioning
phase but that belong to the same cluster. The second part of the two-step process is thus a
merging procedure and has a bottom-up approach; it starts from considering each final subspace
(corresponding to a leaf node of the tree) as an independent cluster and hierarchically merges
them on the basis of the same metric used in the previous splitting process.

After a brief mathematical description of how cuts and subspaces are defined, the Mondrian
clustering algorithm is described; in particular, the partitioning and the merging phases are
separately illustrated by making references to specific procedures of the implementation, that
is written in the Phyton programming language. The metrics used to evaluate the similarity
between groups of points are subsequently defined and, finally, the advantages of considering
a forest (that averages the result of several trees) rather than a single tree are highlighted.

3.1 Description of hyperplanes and polytopes
If we consider a D-dimensional space Θ, an hyperplane is a (D − 1)-dimensional subspace
defined on Θ; this means that any hyperplane belonging to Θ cuts the underlying space into
two D-dimensional subspaces. It can be described by a linear equation a1x1 + ... + aDxD = b,
that is written in vector form as aaa · xxx = b; in particular, the vector aaa determines the direction
orthogonal to the hyperplane. A generic hyperplane can be thus univocally characterized by
the radius vector aaa with norm equal to 1 and by the scalar b, that represents the distance
between the hyperplane and the origin of the axes.
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As regards the mathematical description of Θ, any D-dimensional space processed by the
algorithm is a convex polytope; a convex polytope is defined as the convex hull of a non-
empty finite set of points belonging to a D-dimensional Euclidean space [17]. In particular, a
convex hull is the smallest convex set containing the points, while a subset C ⊆ RD is convex if
λ1x1+λ2x2 belongs to C for all x1, x2 ∈ C and for all λ1, λ2 ∈ R, with λ1+λ2 = 1 and λ1, λ2 ≥ 0.
Since a closed convex D-dimensional set is bounded by a set of intersecting (D−1)-dimensional
hyperplanes [18], a polytope can be described through its half-space representation, that means
it is defined as the intersection of a finite number of half spaces. In particular, starting from
the equation of the hyperplane that splits the whole space RD into two half spaces, we can
write each half space as a linear inequality: a1x1 + ... + aDxD ≤ b and a1x1 + ... + aDxD ≥ b. A
polytope is thus described as a system of linear inequalities, and the number m of inequalities
is equal to the number of sides of the polytope:

a1,1x1 + ... + a1,DxD ≤ b1

...

am,1x1 + ... + am,DxD ≤ bm

The system of inequalities can be written in matrix form A · x ≤ b; a polytope is thus
characterized by a m×D matrix A and a m-dimensional vector b.

As said before, any (D − 1)-dimensional hyperplane intersecting a D-dimensional space Θ
cuts the space itself into two D-dimensional subspaces Θ< and Θ>; if Θ is a convex polytope,
the two subspaces are polytopes as well, with the hyperplane representing the face that Θ<

and Θ> have in common, and the convexity property holds on both of them.
In order to perform geometric operations on generic-dimensional polytopes, the Polytope

package of Python is used [19]. In particular, a specific polytope is described by the class
polytope.Polytope, that requires as input two arrays representing the matrix A and the
vector b.

3.2 Mondrian clustering tree
In this section, we will describe how the unsupervised tree based on the Mondrian process
performs the clustering on a set of points. Besides separating the whole dataset XXX into a
certain number of groups, each one corresponding to a specific class, the algorithm univocally
associates a class to each point of the space Θ in which the dataset is defined. In particular,
albeit the cutting criterion is exclusively based on the structure of the dataset, the splitting
procedure doesn’t involve only the dataset, but is applied to the whole Θ; consequently, at
the end of the whole process, each subset of points corresponds to a specific subspace of Θ, in
which is contained. Every class, that represents a particular cluster of the data, is thus assigned
not only to a specific subset of samples, but also to its corresponding subspace. This means
that, even if the clustering procedure is exclusively performed on the basis of the informations
derived from XXX, if we consider an other point not belonging to the dataset but defined on Θ,
we are able to assign it to a specific cluster.
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3.2.1 Partitioning phase
The partitioning of the space is the phase of the method that directly involves the adaptation
of the Mondrian process. Analogously to what was described in Chapter 2, once the initial
space Θ is defined, it is recursively splitted by hyperplanes; the recursivity consists on the fact
that the same splitting criterion is independently applied to the different subspaces that are
progressively generated. In particular, each subspace is splitted by a single hyperplane and is
consequently divided into two smaller subspaces, that will be similarly splitted in the following
iterations.

Since the goal of the algorithm is to find out a classification of the given dataset that reflects
some intrinsic properties of the data, the first difference from the pure Mondrian process is
that both the definitions of the initial space and the cut choice depend on the input unlabeled
data XXX = (xxx1, ...,xxxn) ∈ RD. In particular, since we perform a cut in order to separate groups
of points that have a high within similarity and a low between similarity, the method to choose
the cut must be related to a metric that evaluates the similarity between points. An other
important peculiarity of this implementation is that the cuts are no more bound to take a
specific direction of the space, differently from the pure Mondrian process, that only considers
axis-aligned cuts. Before the splitting procedure begins, both the initial space and the ensemble
of possible cutting hyperplanes are defined.

Initial space Given a dataset XXX ∈ RD, the initial space is defined as any convex subspace
of RD containing XXX. The convexity property is required in order to guarantee some space
features that are necessary to apply the Mondrian process. Firstly, since the Mondrian process
performs a binary splitting of the space, each space, cut by a hyperplane, has to be divided
into no more than two subspaces, and this property holds only if the space is convex. More-
over, the convexity property is preferred because it is related to other features that make the
mathematical description of the space simpler (like, for example, the verification that a point
belongs to a certain space); in addition, since the goal of the algorithm is to assign a probability
to belong to a certain class to each point of the space, every subspace that will be considered
must contain a subset of the initial dataset; in case of concave spaces, this is not guaranteed,
with the consequence that it may be not possible to assign a class to some regions of the space.
Finally, the fact that a hyperplane cutting a convex polytope generates two convex polytopes
allows to recursively apply the Mondrian process under the same conditions.

In our cases, the initial space is defined as the smaller axis-aligned box Θ that contains
XXX; it is thus a particular case of convex polytope. Since polytopes, generated by cutting
a convex polytope with an hyperplane, are convex as well and since the splitting procedure
of the Mondrian process is performed through hyperplanes, all the subspaces created in the
partitioning procedure are convex polytopes (and, in case of axis-aligned cuts, all the subspaces
are axis-aligned boxes). This guarantees the iterative applicability on each subspace of the
splitting procedure.

The initial box Θ is described by defining the input parameters A and b of polytope.Polytope.
As said in the previous section, each row of A represents the radius vector (with norm equal
to one) that indentify the orthogonal direction to the corresponding hyperplane, while each
element of the b vector represents the distance between the origin and the hyperplane. Since
each face of an axis-aligned box is orthogonal to a specific axis, for each i-coordinate axis, two
radius vectors (rows of A) with corresponding magnitudes (elements of b) are defined. The
first vector (pointing towards the positive direction) consists of all zero elements, except the
i-one that is equal to 1; the second one points towards the negative direction and has all zero
elements except the i one, equal to -1. The corresponding magnitude elements of b depend on
the data: considering the ensemble of i-coordinates of all the points, the distance h between
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the maximum and the minimum element is computed; then, the first positive radius vector
is associated to the maximum coordinate increased of 0.05h, while the second negative radius
vector is associated to the minimum coordinate value decreased of 0.05h.

Ensemble of hyperplanes As said before, differently from the pure Mondrian process case,
the cuts are no more constrainted to be orthogonal to the coordinate axis, but can in principle
take any direction of the space. In fact, considering that cuts are performed in order to divide
different clusters, it may happen that the more suitable direction of the cut, for a given dataset
shape, is not that orthogonal to one of the axis; since the dataset is unknown, we prefer not
to be linked to specific direction when splitting the space and the condition of orthogonality is
thus relaxed.

The ensemble of all possible cutting hyperplanes intersecting the space Θ is restricted to
a number of hyperplanes equal to the number of sample pairs of the dataset; in particular,
an hyperplane is associated to each pair of points xxxi,xxxj ∈ XXX and it orthogonally intersects
the segment connecting the two samples in its middle point. More precisely, the ensemble of
hyperplanes from which the cut is extracted is created by applying the followingsteps to each
pair of points xxxi and xxxj:

1. mmmij = (mij,1, . . . , mij,D) with mij,d = (xi,d + xj,d)/2 ∀d = 1, . . . , D
midpoint

2. vvv = (v1, . . . , vD) with vd = xi,d − xj,d ∀d = 1, . . . , D
vector orthogonal to the hyperplane

3. nnn = vvv/d with d = dist(xi, xj)
single-norm vector orthogonal to the hyperplane

4. h = nnn ·mmmij

hyperplane distance from the origin of the axis
5. hk = nnn · xxxk − h ∀xxxk ∈XXX

distance between the hyperplane and every point of the dataset
Firstly, for each pair of samples, their midpoint mmmij is calculated, in line 1. Then, the

hyperplane perpendicular to the segment connecting them is computed; it is determined by its
orthogonal vector nnn with norm equal to 1, that is parallel to the segment connecting the two
points. Each vector coordinate is calculated by subtracting the two corresponding coordinates
of the points (line 2) and normalizing the result to their euclidean (line 3). The distance h
between the cutting hyperplane and the origin of the axis is then computed, in line 4, through
the scalar product of its single-norm orthogonal vector and the cut point, that is the midpoint
of the two considered samples.

The last step performed before the splitting process starts is the computation of the distance
hk between each hyperplane and every point of the dataset. It is performed by firstly com-
puting the scalar product between the orthogonal vector determining the hyperplane and the
considered point; then the point-hyperplane distance is calculated by subtracting the distance
between the hyperplane and the origin of the axis to the obtained result. The point-hyperplanes
distances will be useful during the assignation of subsets of points to the corresponding sub-
spaces obtained after the splitting procedure.

In the next chapter, we will evaluate the differences between outcomes of the algorithm
when cuts are forced to be orthogonal to the coordinate axis and when they are generated
through the just described procedure. In case of orthogonal cuts, the ensemble of hyperplanes
is created by firstly considering the projections of each point xxx ∈ XXX on the coordinate axis.
For each dimension d, an hyperplane is associated to each pair of consecutive projections: it is
orthogonal to the corresponding d coordinate axis and intersects the segment connecting the
two projection points in its middle point.
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Recursive generative process Once the initial polytope and the ensemble of possible cut-
ting hyperplanes are defined, the space is recursively splitted, similarly as in the pure Mondrian
process. Following the scheme presented in Section 2.1, the new data-dependent Mondrian re-
cursive generative process is shown below:

DATA-DEPENDENT-MONDRIAN(XXX,Θ,t0):
1. T ∼ Exp(vol(Θ(XXX))))
2. h ∼ Discrete(h1, . . . , hn) with probabilities of extraction p1, . . . , pn

3. definition of Θ<, Θ> with Θ< ∪Θ> = Θ
4. XXX<, XXX> assigned to Θ<, Θ>, with XXX< ∪XXX> = XXX
5. M< ←DATA-DEPENDENT-MONDRIAN(XXX<, Θ<, t0 + T )
6. M> ← DATA-DEPENDENT-MONDRIAN(XXX>, Θ>, t0 + T )

return (t0 + T, Θ<, Θ>,XXX<,XXX>, M<, M>)

Firstly, in line 1, the time of the cut is generated from an exponential distribution with
rate the volume of the initial space Θ. For the random extraction, the random.exponential
function of numpy is used; it requires as input the scale parameter, that is the inverse of the rate;
the volume of the polytope is computed through the polytope.Polytope.volume function.
The dependence on the volume is defined in analogy with the pure Mondrian process, in which
the rate of the exponential distribution is represented by the linear dimension; in particular,
the linear dimension is a measure of the size of the axis-aligned box, as the volume represents
the size of the polytope. In both cases, therefore, the cut is expected to be sooner in larger
polytopes than in smaller ones.

In line 2, the cutting hyperplane is randomly generated from the previously defined en-
semble of possible cuts, through the numpy.random.choice function; each hyperplane hi is
characterized by a specific probability of extraction pi. In order to associate a probability
value to each possible cut, a metric, that estimates the similarity of the two groups of samples
belonging to Θ and divided by the cut, is considered; once the metric value is computed, the
probability is set equal to its normalized value. The metrics used to evaluate the similarity of
groups of different samples are presented in Section 3.2.3; as the value of the metric increases,
the corresponding two groups of points are decreasingly similar and the probability to extract
the corresponding hyperplane increases as well. Depending on the distribution of the normal-
ized metric values over all the possible hyperplanes, it could be necessary to raise the metric to
a certain power exp, before the normalization. This happens, for example, in presence of few
cut with high probability and a large number of cuts with similar and low probability; if the
number of low probability cuts is high enough, the high probability hyperplanes are no more
favoured in the extraction. This implies that the choice of the cut is more randomized and
the partitioning doesn’t take into account the similarity evaluation between different groups of
points. In order to favour the extraction of cuts corresponding to a higher metric value, the
metric is thus raised to a certain power exp > 1.

Once the hyperplane has been extracted, the two new subspaces generated after the split-
ting are formally defined through the polytope.Polytope object (line 3); this requires the
determination, for each subspace, of the input parameters A and b. As explained in Section
3.1, any polytope is described by the inequality A · x ≤ b, representing the intersection of
half spaces; each row of A is the orthogonal radius vector of a specific face and each element
of b is the face distance from the origin of the axis. Since the initial space Θ has been cut
into two parts by the previously generated hyperplane, each new subspace is the result of the
intersection between Θ and one of the two half spaces defined by the hyperplane. Consequently,
in order to find the new A and b to assign to each new polytope, a row, representing the new
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intersecting half space, has to be added to the inequality that characterizes Θ. More precisely,
if aaacut is the radius vector of the new hyperplane and bcut is its distance from the origin, the
inequalities aaacut · xxx ≤ bcut and −aaacut · xxx ≤ −bcut have to be added to those of Θ, in order to
respectively define the two new subspaces Θ< and Θ>.

Besides the splitting of Θ into Θ< and Θ>, the introduction of the cut determines the
division of the set of points XXX ∈ Θ into two subsets. In line 4, the two subsets of points XXX<

and XXX> are associated to the corresponding subspaces Θ< and Θ>. The identification of the
two groups is performed by considering their distance from the cutting hyperplane, computed
before the extraction of the time of the cut; in particular, all the points locating in the same
half space, defined by the hyperplane, are characterized by distances from the hyperplane
itself with the same sign. It is thus possible to determine the two subsets, separated by the
hyperplane, by grouping them on the basis of their distance sign. Once the determination
of the two subsets XXX< and XXX>, they have to be assigned to the corresponding subspaces.
In particular, in order to check if a point is contained in a polytope, an expression already
implemented in the polytope package is used; if x is the list of coordinates of the considered
point and p = polytope.Polytope(A,x) is the Python object identifying the polytope, the
sintax of this expression is x in p and its output is boolean. In our case, once the two objects
p< and p> corresponding to the new polytopes are created (line 3), a single point xxx ∈ XXX is
tested through the just mentioned expression, referring to one of the two polytopes; if the point
belongs to the polytope, all the points characterized by the same distance sign are assigned to
it and those with opposite sign are assigned to the other polytope; if the point doesn’t belong
to the considered polytope, the assigment is opposite. The polytope-hyperplane matching is
an essential step in the partitioning phase because it allows to correctly apply the recursive
process to the previously created subspaces, since the criterion used to split the polytope is
based on the data defined on it. Also in the case of leaf polytopes, that will not be splitted
since they represent the final partition of the whole space, the matching allows to associate
each subset and its corresponding subspace to the same cluster; this is important in the case
of assigment of a point, that doesn’t belong to the clustered subset, to a class.

Finally, as in the pure Mondrian process, in lines 5 and 6, the previous steps are indepen-
dently repeated over the two new subspaces.

Result of the partitioning process and considerations The whole process stops when,
for each split that is independently generated on different subspaces, the characteristic absolute
time of the cut is higher than the lifetime parameter λ (as in the pure Mondrian process), or
when the set of points XXX contained on the considered polytope consists of only two points.
The output of the algorithm keeps track of the history of the space splitting, meaning that it
stores, at each iteration of the recursive process, the time of the cut, the polytope object that is
splitted and its two children, with their corresponding subsets of points; this allow the program
to reconstruct the full process and obtain the full hierarchical structure of the splitting.

As mentioned before, the Mondrian hierarchical structure is that of an unsupervised decision
tree, whose ensemble of leafs represents the final and more refined partition of the initial space
and dataset. The main difference in the splitting procedure, between the Mondrian and the
decision trees, consists in the different cutting directions, since the second one performs axis-
aligned cuts, by imposing, at each step, a threshold on each considered feature.

The tree structure reflects also on the fact that the evaluation of the similarity within
and between groups of points, during the partitioning procedure, is carried on locally: more
precisely, since, in order to perform the cut, only the data belonging to the considered subspace
are involved in the similarity estimation, only in the case of the first split, the whole dataset
is considered; as the splitting process goes on, the similarity evaluation is made on smaller
and smaller subspaces and data subsets until, at the beginning of the merging procedure, each

17



subspace and the corresponding subset of data are assigned to the same class.
Figure 3.1 shows an example of one possible output of the partitioning phase run on a 2D

dataset consisting of two circular clusters. It is obtained by hierarchically splitting the initial
space through 15 cuts and the final partition consists of 16 adjacent polygones. Each subspace
is associated to its characteristic number.

Figure 3.1: Final output of the partitioning phase run on a dataset consisting of two concentric
circles. Each polygon represents a leaf node of the corresponding tree and contains only data
belonging to the same cluster; it is identified by a number.

3.2.2 Merging phase
As described in the previous section, the output of the partitioning phase consists of a division
of the dataset and its underlying space respectively into subsets and subspaces. Since the aim
of the method is to separate different clusters, each final subspace is considered to contain only
data belonging to the same class. Depending on the dataset shape, in order to completely
separate the clusters, more than one cut may be required and, if the number of cuts is high
enough, at the end of the partitioning process, each cluster is divided into more than one
subspace. A further procedure is thus needed, in order to collect the more similar subspaces
into clusters and assign them to the same class.

The merging procedure is performed by hierarchically evaluating the similarity of adjacent
polytopes; the similarity metric used is the same of the partitioning phase while, in regards to
the evaluation of adjacency, a list of neighboring subspaces is associated to each leaf polytope
as preliminary computation. The measure is restricted to adjacent subspaces because we
expect that, if two polytopes are not closed, the corresponding subsets of points are dissimilar
(since the similarity is based on the concept of euclidean distance). In order to do that, the
polytope.is_adjacent function is used; it requires as input two polytopes objects and it
checks if they are adjacent, providing a boolean output. Every pair of leaf subspaces is tested
and a list of neighbors is assigned to each polytope.

A bottom up approach is used; this means that, firstly, no more than one subspace is
assigned to the same cluster and, since all the points enclosed in the same subspace belong to
the same class, the number of clusters is equal to the number of subspaces. The initial state is
described by an undirected network G with number of nodes equal to the number of subspaces
and without edges; each node represents a specific leaf polytope. One by one, edges are added
to the network. The presence of an edge connecting two nodes means that two subspaces are
merged, consequently assigning the corresponding groups of data to the same class; only two
nodes corresponding to adjacent polytopes are thus allowed to be connected with an edge. At
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Figure 3.2: Three steps of the merging process, corresponding to a division of the two cluster
dataset into 6, 4 and 2 clusters. On the left, the partitioned space is shown, with the subspaces
belonging to the same class characterized by the same color; on the right, the corresponding
undirected network describing the state of the clusterization. Each node of the graph represents
a subspace and an edge between two nodes indicates that the corresponding subspaces are
merged; the process starts by considering all the subspaces as separate clusters and progressively
joins them. The number of clusters is equal to the number of connected components of the
graph.
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each step, the total number of custers is equal to the number of connected components of the
network. In order to treat with graph objects, the networkx package is used.

The order in which the edges are added to the network is determined by assigning a score to
every possible edge between neighbouring subspaces; it represents a similarity measure between
adjacent groups of data and is the same metric used to partition the space in the first part
of the algorithm (see Section 3.2.3 for the description of the considered metrics). With the
decreasing of the metric value, two subspaces are considered more and more similar, with
consequent higher probability to belong to the same cluster. After the scores of all the possible
edges are calculated, the edge with lower score is added to the network, indicating that the two
subspaces corresponding to the nodes linked by the edge are merged. The lists of neighbors,
corresponding to the polytopes that have been combined, are merged as well and the new list is
assigned to the subspace resulting from the merging; the lists of its new neighbouring subspaces
are equally modified. Finally, the metric is again calculated for the pairs of new neighbouring
subspaces and the score list is updated.

Because the metrics considered in Section 3.2.3 compare two groups of data with numerosity
higher than one, they can’t be computed if at least one of the two polytopes contains only one
point. In order to avoid this issue, before creating the initial network G, each subspace with
single data is merged to the corresponding nearest neighbouring subspace containing more than
one data, by using a different metric (described in the same section).

Figure 3.2 shows three steps of the merging process applied to a partition of a dataset
consisting of two clusters elongated in the diagonal direction.

3.2.3 Metric choice for splitting and merging subspaces
Since a way to estimate the similarity of two groups of data is to evaluate how they are spatially
separated, the chosen metrics are functions of the euclidean distance dist. Lower is the value
of the metric, more similar are the two groups of points; for this reason this value can be used
as probability of extraction of the corresponding cut (higher is the value of the metric, less
similar are the two groups of data and higher is the probability to extract the hyperplane).
The considered metrics are described in the following.

Variance based metric
1. ddd = dist(XXX), ddd< = dist(XXX<), ddd> = dist(XXX>)
2. v = var(ddd)
3. v<,> = var(d<d<d< ∪ d>d>d>)
4. metric = v/v<,>

This metric is based on the computation of the variance, that is an estimate of the dispersion
of a set of measurements from their average value. The dispersion is separately computed on
the whole dataset and on the subset of points that may be divided by the cut; a great decrease
of the dispersion value, after the space splitting, means that the internal averaged distance
between samples of each of the two final groups is lower than those of the initial unified one
and this is probably due to the presence of an empty space between the two groups. The
variance is mathematically defined as follows:

var(d1, . . . , dn) =
∑n

i=1(di − d̄)2

n
(3.1)

where d1, . . . , dn are the considered measurements and d̄ is their mean value.
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Firstly, the set of points XXX belonging to the initial space and the two subsets XXX< and
XXX> created after the splitting are considered. In line 1, the pairwise distances between points
within the three sets are computed. Later, in step 2 and 3, we calculate the variance of the
set of distances respectively corresponding to XXX and to the union of XXX< and XXX>. Finally, the
metric is set equal to the ratio of the two variances.

Centroid based metric
1. c = C(XXX), c< = C(XXX<), c> = C(XXX>)
2. ddd = dist(c,XXX), ddd< = dist(c<,XXX<), ddd> = dist(c>,XXX>)
3. d̄ = mean(ddd), d̄<,> = mean(ddd< ∪ ddd>)
4. metric = d̄− d̄<,>

The concept of this metric is similar to that of the previous one, since we calculate the
dispersion of the dataset before and after the possible cut; in this case, we use a different
estimator of the dispersion and, more precisely, the averaged distance of the samples from
their centroid. Firstly, in line 1 we calculate the centroid for each of the three sets of points XXX,
XXX< and XXX>; the centroid C of a set of points is defined as the arithmetic mean of the point
positions. Then, in line 2, the distances between the centroid and all the samples within each
set are considered; in line 3, we compute the mean of the distances of the whole set XXX and the
mean of the union of the distances corresponding to the two subsets XXX< and XXX>. The metric
is finally defined as the difference between the two averaged values.

Minimum distance based metric
1. ddd = dist(XXX<,XXX>)
2. dmin = min(ddd)
3. dddj,i = dist(xxxi,XXXj) ∀xxxi ∈XXXj where j =<, >
4. dj,i = min(dddi,j) ∀xxxi ∈XXXj where j =<, >
5. d̄ = mean(d<,1, . . . , d<,n, d>,1, . . . , d>,m)
6. metric = |dmin − d̄|

In this case, the base concept is different from the two previous ones since we don’t calculate
the same quantity before and after the cut, but we directly consider the situation after the
splitting. In particular, we evaluate how neighbouring points are close in the two separate
groups and we compare the values obtained with minimum separation between the two groups;
if the distance between groups is comparable with the distances that separe neighbouring
samples, the two groups are considered similar.

Firstly, in line 1 and 2, we calculate the minimum distance between two points respectively
belonging to different subspaces. Then, for each sample in XXX< and XXX>, in line 3 the distances
from all the other points enclosed in the same subspace are computed and, in line 4, the
minimum distance value is taken. The mean value of the minimum distances is considered,
in line 5. The metric is finally set equal to the absolute value of the difference between the
minimum distance between the groups and the mean of the minimum distances within the
groups.

Minimum distance based metric with correction
1. ddd = dist(XXX<,XXX>)
2. dmin = min(ddd); the corresponding nearest points are (xxx<,1,xxx>,1) ∈XXX< ×XXX>
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3. dddj,i = dist(xxxi,XXXj) ∀xxxi ∈XXXj where j =<, >
4. dj,i = min(dddi,j) ∀xxxi ∈XXXj where j =<, >
5. d̄ = mean(d<,1, . . . , d<,n, d>,1, . . . , d>,m)
6. xxx<,2, xxx>,2, with dist(xxx<,1,xxx<,2) = min(dist(xxx<,1,XXX<)) and dist(xxx>,1,xxx>,2) = min(dist(xxx>,1,XXX>))
7. dmin,< = min(dist(xxx<,2,XXX>)), dmin,> = min(dist(xxx>,2,XXX<))
8. metric = |dmin − d̄|+dmin,< + dmin,>

In the last case, the minimum distance based metric is modified with a correction. The
first five steps of the scheme are exactly the same of the previous metric, with the difference
that, in line 2, the nearest points xxx<,1 and xxx>,1 that belong to different subspaces are identified.
In line 6, for each of these two nearest points, its closest point belonging to the same subset
is considered; more precisely, xxx<,2 is the nearest point to xxx<,1 belonging to XXX< and xxx>,2 is
the nearest point to xxx>,1 belonging to XXX>. In line 7, for both xxx<,2 and xxx>,2, the minimum
distance between them and a point of the opposite subset is computed. The correction to add
to the previously defined minimum distance metric is the sum of these two distances. Figure
3.3 shows a scheme describing the lengths considered in the computation of this metric. The
correction, as will be explained in Chapter 4, is a way to take into account inaccuracies in the
partitioning phase.

Metric for single data merging
1. ddd = dist(xxx<,XXX>), with xxx< ≡XXX<

2. dmin,1 = min(ddd); the nearest points are xxx< and xxx>,1
3. xxx>,2 with dist(xxx>,1,xxx>,2) = min(dist(xxx>,1,XXX>))
4. dmin,2 = dist(xxx<,xxx>,2))
5. metric = dmin,1 + dmin,2

As explained in Section 3.2.2, before the merging procedure, each subspace containing only
one sample is merged with the nearest one with higher numerosity; the metric used in the
merging is the equivalent of the minimum distance metric with correction, with a variation
in order to take into account that one of the two groups consists of a single point (that, in
this notation, is XXX<). The minimum distance between the two subsets is considered (step
1 and 2), with xxx>,1 the nearest point to the single data set. In line 3, the closest point to
xxx>,1 is considered and, in line 4, its distance with the point belonging to the other subspace is
computed. The metric is finally set equal to the sum of the two previously computed distances.

Figure 3.3: Points and segments considered in the calculation of the minimum distance based
metrics; XXX< and XXX> are the two sets of data separated by the red line.
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3.3 Ensemble prediction using multiple process
Given a dataset XXX ∈ Θ, the output of the Mondrian clustering tree run on XXX consists of an
ensemble of partitions of Θ. Each partition is characterized by a specific number of clusters and
the subspace classification is performed such that each point of Θ is univocally associated to a
cluster. Since the partitioning phase is randomized, at fixed number of clusters, it is possible
that outcomes of different iterations of the algorithm exhibit different subspace shapes, even
in the case that the corresponding data classifications exactly coincide. In order to improve
the result of the clustering procedure, an unsupervised Mondrian forest, that averages the
results of different trees, is considered. The advantages of considering the forest are, besides
the limitation of the effect of possible misclassifications (resulting from the averaging process),
the estimation of a probability distribution of belonging to each cluster, associated to each
point of the space, and the capability to automatically recognize the correct number of clusters
in which the dataset is divided.

Firstly, the main difference between the forest and the tree outcomes is that the forest
result associates, to each point of the space, a measure of the probability to belong to a certain
cluster. In particular, a specific point is no more univocally related to a single cluster but to
more than one, depending on the specific output of the tree belonging to the forest; the number
of times that a point is assigned to the same class gives an estimation of the probability that
the point belongs to that cluster. The advantage of treating with probability distributions is
that we are able to evaluate the uncertainty that characterizes the attribution of the class and,
in particular, the variation of uncertainty among different regions of the space. Figure 3.4, on
the left, shows a visualization of the averaged output of 10 Mondrian trees in case of a dataset
consisting of two interleaving half circles. The different classifications of the space into two
clusters are overlapped and the two regions characterized by the lighter and the darker colors
correspond to a perfect agreement of all the tree results; in particular, the region characterized
by a lighter color has a probability p1 = 1 to belong to the first class and a probability p2 = 0 to
belong to the second class and, on the contrary, the darker region has p1 = 0 and p2 = 1. The
region between the two clusters is characterized by a range of intensities between the lighter
and the darker ones and is thus associated to different values of probabilities in the interval
[0, 1]; a point in that region is thus not univocally associated to one of the two classes but to
both of them with different probabilities. The variation of the probability of belonging to a
class, depending on the location, reflects the uncertainty on the evaluation of some regions of
the space, that is due to the fact that we can not have exact informations about the regions in
which there are no data. Moreover, the introduction of the probability allows to recognize and
eventually reject the outputs of the trees that misclassify the data (since they are expected to
be the less probable).

Besides the intrinsic randomization of the partitioning process, due to the formulation of
the cut random extraction, with probabilities proportional to the normalized metric values,
the level of determinism of the extraction procedure is also influenced by the power to which
the metric is raised. In particular, with the increase of the exponent, the more the probability
values, assigned to the different hyperplanes to be used to divide the polytope, diverge and
the more the extraction of higher probability cuts is favoured. The forest outcome will conse-
quently show a greater accordance between the tree cluster’s shapes, since the frequencies of
extraction of the most probable hyperplanes are higher; however, even by setting the exponent
to higher and higher values, the splitting process can’t be completely deterministic, since its
formulation intrinsicly includes the random component of the extraction. The exponentiation
of the normalized metric is related to the concept of regularization. The regularization in ma-
chine learning has been introduced in order to reduce the overfitting and the overly complexity
of the model used to describe the data; overfitting occurs when the model excessively adapts to
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the data and consequently is not able to distinguish the general behaviour that characterize the
distribution of points from other informations that have a certain weight only if considered in a
restricted region of the dataset. In our case, the excessive adaptation to data is a consequence
of the fact that the evaluation of the best split, in phase of partitioning, is performed locally (as
explained in Section 3.2.1); in fact, it may occur that a specific splitting is highly convenient
if we estimate the metric on a restricted portion of the dataset, but it is nearly equivalent
to the other choices, if it is evaluated by considering the whole dataset. If this particular
choice is enhanced by a high exponentiation of the metric, the frequency of extraction of the
corresponding cut will be higher, in case of iteration of the algorithm; the final cluster shapes
obtained by a forest may consequently exhibit some patterns that don’t reflects the real shape
of the whole dataset. The regularization consists in limiting this local effects by increasing the
randomization of the process (in our case, by lowering the exponent), since it may occur (as
will be shown in Section 4.4 and 5.2), that the theoric best choices of cutting hyperplanes, that
correspond to the ones separating less similar groups of points, lead to results that are worst
with respect to more randomized outcomes.

An other advantage of averaging the result of different trees is that the forest allows the
algorithm to automatically determine the number of clusters in which the data and the corre-
sponding space are divided. For this purpose, we consider, for each tree, the labeling associated
to each point of the dataset; for each possible number of clusters, we have a different set of
labeled data. The labels obtained by two different trees are compared, through the adjusted
mutual information, for each possible fixed number of clusters, and this measure is repeated
for each possible pair of considered trees. As explained in Section 1.3, the adjusted mutual in-
formation quantifies the information shared by two classifications and is thus a measure of the
similarity of two labeling of the same set of data, invariant to permutations of the label names.
It ranges between 0 and 1 and, higher is its value, more similar are the two sets of labels. Since
pairs of groups of points with similar density and distance between them have similar values of
the metric, we expect that the space partitioning within each cluster is more randomized than
the partitioning between two clusters; consequently, if we consider different tree outcomes, we
expect that the separation of the same cluster into subspaces varies in a more significant way
with respect to the separation of the whole dataset in the correct number of clusters. We thus
assume that each pair of tree outputs shows a different value of compatibility for a different
division of the space into classes and, in particular, that the adjusted mutual information index
is higher in correspondence of the real number of clusters. The number of clusters correspond-
ing to the higher value of the AMI score is thus considered the most probable. Figure 3.4,
on the right, shows a plot of the adjusted mutual information in function of the number of
clusters; all the values of the score, corresponding to different pairs of trees, are averaged, for
each fixed number of clusters, and the mean value is considered. The plot is referred to the
forest result of 10 trees shown on the left of the figure and it correctly exhibit the higher value
of compatibility for the number of clusters equal to 2. The different degree of randomization,
due to different choices of the exponent, is also connected to the automatic determination of the
number of clusters. In fact, more deterministic is the process, more the different tree outputs
are compatible. This happens not only in regards to the division of the dataset into the right
number of classes, but there may be a great accordance in the substructure of each cluster,
with consequent difficulty in the identification of the correct number.
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Figure 3.4: On the left, output of a Mondrian clustering forest (averaged over 10 trees)
applied on a dataset consisting of two interleaving half circles. On the right, corresponding plot
of the adjusted mutual information in function of the number of clusters; each line corresponds
to a specific pair of tree outputs, while the more intense blue dotted line represents their
average value. The algorithm is able to identify the correct number of clusters, since the higher
compatibility between predicted labelings is shown for 2 clusters.
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Chapter 4

Application to 2D toy datasets

The formulation of the algorithm, described in Chapter 3, allows a certain flexibility as regards
the definition of similarity used to firstly partition the space and subsequently merge the
obtained subspaces; the flexibility consists in the possibility to set different metrics, that are
based on different concepts of similarity. Since the same definition of similarity may be not
suited for every structure of the data, it may happen that the performance of the algorithm
based on different metrics isn’t the same when applied to datasets with different shapes or
densities; in the following, the algorithm based on alternative metric choices is thus run on
datasets with different characteristics, in order to compare the clustering results.

An other aspect that the algorithm allows to be adjusted by the user is the choice of
the cutting hyperplanes. More precisely, besides the setting of both axis-aligned and generic
direction cuts, whose outcome comparison is shown in Section 4.2, it is possible to tune the
randomization of the hyperplane extraction process; in fact, since the probabilities of extraction
of the cuts are raised to a certain power, we are able to decide how much favouring the extraction
of the most probable cuts.In Section 4.4, the effect of different levels of randomization in the
hyperplane extraction are evaluated.

The comparison between different versions of the algorithm is made by separately observing
the partitioning and the merging phase results and the forest outcomes. As regards the evalu-
ation of the partitioning phase, since the merging phase doesn’t assign more than one cluster
to each subspace, we should firstly check if each final subspace only contains data belonging to
the same class; moreover, since the number of splits is related to the computational cost of the
algorithm, we should measure how many splits are necessary to completely separate the two
clusters. Regarding instead the evaluation of the merging phase, we observe how the predicted
classification and the true one are closed. In order to evaluate the classification overlap, the
Fowlkes-Mallows index FMI, introduced in Section 1.3, is used.

4.1 Datasets
The 2 dimension datasets, considered in the analysis and described in the following paragraphs,
are artificial datasets provided with true labelings. The dataset choice has been made in order
to represent different dataset structures and to consequently test different characteristics of the
algorithm; in particular, we consider a simple data structure consisting of two well separated
convex shaped clusters, an other one consisting of three convex shaped clusters with different
densities and two more datasets characterized by non convex clusters that can not be separated
with a single linear cut. In particular, the density variation between clusters may be problematic
in case of metrics based on the minimum distance, since the averaged minimum distance isn’t
the same for all the clusters, while the presence of non convex clusters may negatively influence
the performance of the variance or centroid based algorithm, since the measure of the spreading
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of the data is not so meaningful in case of elongated and irregular shapes.

blobs The first dataset consists of two groups of 50 points elongated in the diagonal direction.
Each set of points is generated from a multivariate normal distribution and, in particular, the
random.multivariate_normal function of numpy is used; the input parameters are the mean,
the covariance matrix and the random seed. The covariance matrix is the same for both clusters
and is a 2 × 2 matrix with diagonal and non-diagonal entries respectively equal to 0.07 and
0.06; the values of the mean and the random seed are respectively (0.2, 0) and 2 for one cluster
and (0.6, -0.5) and 1 for the other one.

circles It is generated through the datasets.make_circles function of scikit-learn li-
brary and it consists of two concentric circles, centered in (0,0), with different radius and some
added noise. The distance between the inner and the outer circle is determined by the scale
factor parameter, that is set to 0.5; the noise is set to 0.05 and the random seed to 500. The
whole dataset is constituted by 200 samples, equally divided between the two clusters.

moons This dataset consists of two interleaving half circles with some added noise and is
generated through the datasets.make_moons function of scikit-learn. The noise and the
random seed are respectively set to 0.05 and 500. The total number of samples is 150 and the
points are equally divided between the two half moons.

(a) blobs (b) circles

(c) moons (d) varied

Figure 4.1: 2D datasets
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varied Also the last considered dataset is generated by a function of scikit-learn library,
datasets.make_blobs, and consists of three adjacent isotropic Gaussian blobs with different
density and equal numerosity (the total number of points is 200). In particular, two blobs of
higher density are separated by the third blob of lower density. The parameter that determines
the spreading of the points of each cluster is the standard deviation, that is set to 1, 2.5 and
0.5; the random seed is 170.

4.2 Evaluation of clustering results with different choices
of the cutting hyperplanes

Figure 4.2 shows the partitioning phase output of blobs dataset in case of axis-aligned and
generic direction cuts. In both cases, the space is splitted in order to have each polygon
containing data belonging only to one class; from this point of view, it means that the two
methods are equivalent and the partitioning output of both the algorithms can be considered
a good input for the next merging phase.

As regards the evaluation of computational costs, in the partitioning procedure performed
through non axis aligned cuts, the first split is enough to totally separate the two groups of
data; on the contrary, in the other case the complete separation is obtained after nine splits.
This means that the method with cuts that are not linked to be orthogonal to the coordinate
axis is much more convenient from a computational point of view, especially when the datasets
require a splitting procedure on the diagonal direction.

An other reason to prefer the non-axis-aligned cuts is the absence of preferred directions.
Figure 4.3 shows the Mondrian forest output, obtained by averaging the result of 20 trees, that
performed the cuts with the two different choices of hyperplanes. The considered dataset is the
circles one, that is rotation-invariant with respect to the axis perpendicular to the plane and
intersecting the center of the circles. We see that the right plot reflects the rotation-invariant
structure of the dataset, while the left plot shows the presence of preferred directions that is
not a real characteristic of the data.

(a) axis-aligned cuts (b) generic direction cuts

Figure 4.2: Output of the partitioning phase run on blobs dataset, for different choices of
the cuts; λ = 4, exp = 50. In both cases the clusters are completely separated by the splits but
the computational cost is much higher in the case of axis-aligned cuts, since the separation is
obtained after nine splits in (a) and after only one split in (b).
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(a) axis-aligned cuts (b) generic direction cuts

Figure 4.3: Output of the Mondrian forest run on circles dataset, for different choices of
the cuts; λ = 6, exp = 50. Both the outputs well classify the data but in (b) the probability
distribution that describes the two clusters reflects their shape, while in (a) it shows the
presence of preferred directions that doesn’t characterize the dataset.

4.3 Evaluation of clustering results with different choices
of the metric

In this section we highlight the differences between versions of the algorithm based on different
metrics; we only consider the splitting procedure through generic direction cuts, since its per-
formance is more convenient with respect to the axis-aligned one, as explained in the previous
paragraphs.

4.3.1 Evaluation of the partitioning phase
If the value of λ is high enough, each subspace that forms the final partitioning, obtained with
any metric criterion, only contains points belonging to the same class. However, the splitting
procedure is different in case of variance and centroid based metric or in case of minimum
distance based metric. Figure 4.4 shows the partitioning phase output of blobs, circles and
moons datasets, obtained by using the variance based metric (left) and the minimum distance
based metric with correction (right). In case of symmetric distributions of data, the variance
based method tends to firstly split the set of points in order to obtain two groups with the
same numerosity; the same behaviour is verified in the case of centroid based metric. On the
contrary, the minimum distance based methods tend to firstly separate the groups of points with
cuts passing through empty regions. Depending on the specific dataset, the variance/centroid
based method is equivalent or less convenient than the other one, in terms of number of cuts
required to completely separate the groups; in particular, for blobs and moons datasets, the
two methods are equivalent, while for circles dataset, the two groups of points are completely
separated after 4 cuts for the minumum distance based method, and after 15 cuts for the
variance based one.
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(a) variance (b) minimum distance with correction

Figure 4.4: Output of partitioning phase with variance based metric (left) and minimum
distance based metric with correction (right); the algorithm is applied to blobs, circles and
moons datasets. λ = 4 for the first dataset and equal to 6 for the other ones, exp = 50. The
variance based method tends to firstly split the space in order to obtain to groups with same
numerosity, while the minimum distance based one tends to favour cuts passing through empty
regions.
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4.3.2 Evaluation of the merging phase
As regards the classification obtained through the merging phase, the performance of the
algorithms based on different metrics is different according to the dataset structure. In order
to evaluate the compatibility between the true and predicted labelings, the Fowlkes-Mallows
index is calculated, for each combination of metrics and datasets; Table 4.1 shows the Fowlkes-
Mallows index value, averaged over 20 iteration of the algorithm, while Figure 4.5, 4.6 and 4.7
show some examples of single merging outputs.

Metric blobs circles moons varied
Variance 0.66 ± 0.01 0.67 ± 0.02 0.67 ± 0.01 0.9 ± 0.1
Centroid 0.99 ± 0.02 0.61 ± 0.07 0.647 ± 0.008 0.70 ± 0.01
Minimum distance 0.97 ± 0.05 1 0.97 ± 0.09 0.748 ± 0.007
Minimum dist. with corr. 0.999 ± 0.004 0.999 ± 0.002 0.987 0.551 ± 0.002

Table 4.1: Fowlkes-Mallows index: the value is averaged over 20 iterations of the algorithm for
each combination of metrics and datasets. The versions of the algorithm based on the minimum
distance metric generally provide better results, except in case of datasets with different density
clusters; in this latter case the version based on the variance is the only one that is able to well
classify the samples.

Considering blobs dataset, the algorithms based on centroid, minimum distance and mini-
mum distance with correction metrics have very similar performances and the predicted labeling
overlaps almost in every case the true one (see the right plot of Figure 4.5). The variance based
method instead doesn’t recognize the two groups of points but tends to separate single sub-
spaces from the rest of the ensemble; the corresponding averaged FMI is indeed much lower
than that of the other metrics.

(a) variance (b) minimum distance with correction

Figure 4.5: Output of merging phase run on blobs dataset, with different choices of the
metric; λ = 4, exp = 50. The variance based method, differently from the minimum distance
based one, is not able to correctly divide the samples into two clusters.
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(a) centroid (b) minimum distance with correction

Figure 4.6: Output of merging phase run on circles and moons dataset; centroid based
metric (left) and minimum distance based metric with correction (right). λ = 6, exp = 50.
Only the minimum distance based method is able to well classify the dataset.

As regards circles and moons datasets (Figure 4.6), the result of the minimum distance
based algorithms (with and without correction) is still very good, since it reflects almost in
any case the true classification (right plot). The variance method keeps to behave similarly as
in the blobs case (it isolates single subspaces), while the centroid based algorithm is no more
able to well classify the two groups of data (left plot); the Fowlkes-Mallows indexes related to
the variance and the centroid based methods have indeed similar values.

In case of varied dataset, the performances of the different methods are opposite: the
variance based algorithm is the only one able to well recognize the three sets of points on
the basis of their different densities, while the other three methods fail in any iteration of the
algorithm (see the corresponding Fowlkes-Mallows indexes). The misclassification, in case of
metric based on the minimum distance, is due to the fact that the algorithm isn’t able to
recognize two sparse groups of points as similar. More specifically, the ranking of the minimum
distance values is unique for the whole dataset but each cluster is characterized by a specific
averaged minimum distance, that is higher for the cluster with lower density; consequently, the
algorithm tends to not consider the low density set of points as a single cluster.

Finally, we evaluate the difference between the two minimum distance based metrics, with
and without correction. In order to compare them, we consider the merging procedures ob-
tained by starting from the same output of partitioning phase. Figures 4.8 shows a space
partition of moons dataset that don’t completely separate the two groups of data; in partic-
ular, the subspace 14 contains one point belonging to the lower semicircle and all the other
points belonging to the upper one. If the groups of data are not well divided by the partitioning
procedure, meaning that some final subspace contains points belonging to more than one class,
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(a) variance (b) minimum distance with correction

Figure 4.7: Output of merging phase run on varied dataset, with different choices of the
metric. λ = 6, exp = 50. The minimum distance based method, differently from the variance
based one, is not able to correctly divide the samples into three clusters; in fact, the ranking of
the minimum distance is unique for the whole dataset, it considers groups of points belonging
to the low density cluster as the most dissimilar.

the metric without correction is not able to correctly assign the clusters (that means to choose
the classification more similar to the true one) and we need the correction to well classify the
data.

The left plot of the figure shows the result of the merging procedure in the case of metric
without correction: by only considering the difference between the minimun distance between
subspaces and the mean of the minimum distances within the subspaces, the subspaces 14
and 10 are considered more similar than the subspaces 11 and 17 and, consequently, they are
separated later; we see that, in this case, the division into two cluster doesn’t correspond to
the division into two semicircles. If we add the correction to the metric, the score depends on
more than one minimum distance between subspaces and it is thus a way to take into account
the presence of a single outlier; the right plot of Figure 4.8 shows the correct classification of
the dataset. However, in presence of more than one extra point in the same subspace, the
correction is no more able to balance the incomplete partitioning of the initial dataset.

Moreover, an other difference between the two metrics is observed if we compare the outputs
of the Mondrian forests averaged over 20 trees; Figure 4.9 shows that the one obtained with
the metric with correction better reflects the structure of the dataset. This improvement is,
however, observed only in case of moons dataset and thus depends on the particular shape of
the clusters.

In conclusion, the centroid based method works only for very simple structures of data, like
well defined and separated blobs. The minimum distance based methods are instead able to
classify well separated groups of data with more complicated shapes; in particular, the metric
with correction covers some specific cases, because it is less conditioned by the presence of
single outliers in each subspace. Finally, the variance based method is the only one able to
recognize adjacent clusters characterized by different densities.

In the next chapter, we will only consider the versions of the algorithm based on the variance
and on the minimum distance with correction metrics.
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(a) minimum distance (b) minimum distance with correction

Figure 4.8: Output of the merging phase run on moons dataset, with minimum distance
based metrics with and without correction. λ = 6, exp = 50. The presence of the correction
allows to take into account the presence of the outlier in the subspace 14.

(a) minimum distance (b) minimum distance with correction

Figure 4.9: Output of the Mondrian forest (averaged over 20 trees) run on moons dataset,
with minimum distance based metrics with and without correction: both of them well classify
the data but the version with correction better reflects the structure of the dataset. λ = 6,
exp = 50.

4.4 Evaluation of clustering results with different levels
of the cut extraction randomization

The clustering Mondrian forest gives as output a probability distribution: since a single tree
uniquely associates a class to each subspace (and hence to each point of the space), when
we overlap different space classifications obtained by several trees, each point of the space is
no more related to a single class, but to more than one class with a certain probability. As
explained in Section 3.3, the absence of a complete overlap of different tree results is due to the
randomization of the partitioning procedure and, in particular, to the hyperplane extraction,
that can be tuned by setting different values of the normalized metric exponent. In the following
paragraphs we will firstly evaluate the effect of the intrinsic randomization, by considering the
overlapping of different tree results obtained at fixed exponent, and we will see that it allows
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(a) blobs (b) circles

(c) moons (d) varied

Figure 4.10: Averaged adjusted mutual information as a function of the number of clusters,
for different choices of the metric. In (a), (b) and (c) the minimum distance based metrics
exhibit the highest values of compatibility, and the metric with correction is always able to
automatically determine the correct number of clusters; in every case, the methods showing
higher compatibility are those that provide a better classification of the dataset. In (d), all
the results show similar levels of compatibility, that don’t correspond to similar performances
as regards the classification of the dataset; in this case, the variance based method is the only
one able to cluster the data.

to automatically determine the number of clusters that characterizes the dataset. Secondly,
the randomization due to different settings of the exponent is considered, by evaluating the
consequences in the final probability distribution of each class and in the determination of the
number of clusters.

Automatic determination of the number of clusters Since the cuts that splits different
clusters are expected to be the most probable, while the ones separating homogeneous groups
of points are extracted with similar probabilities and are more in number, if we iterate the
algorithm several times we should observe that the cuts with higher probabilities are more
frequently extracted with respect to the cuts splitting homogeneous clusters. We thus expect
to observe a higher agreement of the different tree results in the shape of the clusters, rather
than in the internal division of each cluster.

Consequently, by evaluating the overlap between predicted labelings, we expect to obtain
an estimation about the most probable number of cluster in which the dataset is divided. As
explained in Section 1.3, the evaluation of the compatibility of the different predicted data
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classification is obtained by computing the Adjusted Mutual Information.
Figure 4.10 shows, for each considered dataset, the adjusted mutual information averaged

over all possible pairs of tree outcomes, in function of the number of clusters in which the
dataset is hierarchically divided. In general, the predicted results that are more compatible
with the true classification (and that are consequently characterized by a Fowlkes-Mallows
index closed to 1), show a greater level of internal compatibility, represented by a high value
of the AMI coefficient. Firstly, we consider the versions of the algorithm run on blobs and
circles datasets that well classify the points (that are the ones based on centroid and minimum
distance metrics for the first dataset and the ones based on the minimum distance metrics for
the second); in each of these cases, the highest value of averaged AMI index is observed for the
number of clusters equal to 2, that is the true number of clusters in which the dataset is divided.
Consequently, the algorithm is able to automatically determine the correct number of clusters.
If we consider the curves corresponding to the variance based method (and the centroid based
one for circles datasets), the compatibility between the predicted labelings is particularly
low at lower number of clusters. This is consistent with the fact that, if the number of cuts
performed in the partitioning phase is high enough, the final division of the whole dataset
into subsets is similar between different tree outputs; however, since the algorithm, during the
merging phase, isn’t able recognize more similar subspaces, the final tree outcomes are less
similar for lower number of clusters than for higher ones. As regards the plot corresponding
to moons dataset, we observe the same previously described behaviour, except for the results
corresponding to the minimum distance based metric without correction; in this case, although
the high level of compatibility between the predicted and the true classification (see Table 4.1
for the Fowlkes-Mallows index value), the algorithm is not able to indentify the correct number
of clusters, since the AMI value in case of dataset divided into two classes is lower than
the values corresponding to higher numbers of clusters. Finally considering varied dataset,
the curve corresponding to the variance based metric shows a slightly higher AMI value for
the correct number of clusters (that is equal to 3); as concerns the other three curves, we
don’t evaluate the presence of the peak, since the corresponding results don’t predict a correct
classification of the data, but we observe that the averaged AMI value is higher than in the
variance based case. The inability to identify the correct number of clusters combined with
a high matching between true and predicted labelings is related to the opposite case of high
compatibility among predicted labelings combined with the misclassification of the points for
any iteration of the algorithm. In particular, in the first case, the behaviour of the averaged
AMI curve is a sign of the recognition of patterns of points inside each cluster, although they
are not considered in the true classification; similarly, the methods that misclassify the data
show a great accordance in the identification of clusters, although they don’t correspond to the
true ones.
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(a) exp = 1 (b) exp = 5

(c) exp = 20

Figure 4.11: Outputs of the forest (averaged over 20 trees) run on moons dataset, with
different values of the exponent. Increasing the exponent, the process becomes more determin-
istic and the more the cluster shapes obtained by different trees overlap. For too low values
of the exponent ((a)), some tree results misclassify the dataset, while, for too high values of
the exponent, the hyperplane extraction is conditioned by local features that may not reflect
the overall structure of the data ((c)); the preferred choice is thus a more randomized method
that well classify the data ((b)).

Role of the exponent As previously said, given that the probability of extraction of a
specific hyperplane consists of the corresponding metric value raised to a power, it is possible
to evaluate how the forest prediction changes by varying the exponent. In particular, higher is
the power, more deterministic the process becomes, since the difference in probability, between
more and less possible cuts, is increased.

Figure 4.11 shows three outputs of the Mondrian forest performed on moons dataset (it
averages the result of 20 trees); each one is characterized by a specific value of the exponent,
that is respectively set to 1, 5 and 20, while the metric used is always the minimum distance
based metric with correction. The variation in the randomization of the process is reflected by
the superposition of the single tree outputs: for the higher value of the exponent, the shapes
of the two subspaces that divide the whole dataset into two clusters are more similar and
the transition between the two regions is sharper; moreover, the exponentiation enhance the
distance of some metric values that actually correspond to equivalent choices of hyperplanes,
and this enhancing may produce some border figures that don’t reflect the shape of the dataset.
With the decreasing of the exponent, the range of the possibile probabilities in the regions
separating the two groups of points is wider than in the previous case; as a consequence, the edge
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separating the two subspaces are less sharp and this means that in the regions without points
the probability to belong to a specific class has on average lower values. On the other hand,
if the exponent is too low, the process may be too randomized and the classification obtained
from each tree may consequently not correspond to the real one; The plot corresponding to
the power equal to 1 shows that, although the final result of the forest well reflects the data
separation into classes, the output of some tree misclassifies the data. Since we can not have
exact informations about the regions in which there are no points, the preferred choice of
exponent is the one corresponding to the less deterministic method that allows to well classify
the data.This behaviour corresponds to the overfitting phenomenon, that is limited by the
regularization approach, explained in Section 3.3; the regularization, in our case, consists in
limiting the value of the exponent, which resuls in favouring the randomness of the splitting,
although, in theory, the better cut choices are always those with higher metric. A further
confirmation of this phenomenon is observed in Figure 4.9 that shows that, for exp = 50, a
single point is sistematically miclassified.

In order to automatically determine the number of clusters in which the whole dataset is
divided, the Adjusted Mutual Information is calculated, as discussed in the previous para-
graphs. Figure 4.12 shows the averaged AMI coefficient in function of the number of clusters,
computed for different settings of the exponent. In the left plot, the results corresponding to
the exponent set in the range between 1 and 3 are shown; we see that, while for the higher value
of the power the line is clearly peaked in correspondence to two number of clusters (that is the
true number for moons dataset), the ones corresponding to the exponent equal to 1, 2 and 2.5
show the higher average AMI coefficient for 8 and 3 number of clusters. Moreover, increasing
the exponent, the mean value of the averaged AMI index, calculated over all possible numbers
of clusters, increases; this means that, as said before, the rising of the power leads to a higher
compatibility among the different tree classifications.

The right plot of Figure 4.12 shows the averaged AMI coefficient with the exponent set
in the range between 5 and 65. While, in case of exponent equal to 5, 20 and 35, the higher
compatibility is observed for two number of clusters, for the two higher values of the power
(50 and 65), there is more than one possible classification with the maximum AMI coefficient.
This is related to what said before about the great accordance in the predicted substructure
of the clusters. In particular, each line is characterized by two peaks in correspondence to the
same values of number of clusters (5 and 10); this means that all the forest outputs agree on
dividing the single clusters into the same subgroups. Moreover, the rising of the curve pointed
out in the previous plot is less significant with the increasing of the exponent: while for low
values of the power a small change of it determines a great improvement on the compatibility
of the results, for higher values of the exponent the curves almost overlap and the variations
don’t positively affect the compatibility.

In conclusion, also as concerns the automatic determination of the number of classes, the
preferred choice of the exponent is the more randomized one that well classify the dataset; in
case of no labeled data, expecially when defined in more than three dimensions, the determi-
nation of the better choice of the exponent is not trivial, since there can actually be several
levels of the dataset classification, that reflects the presence of some substructure of each main
cluster.
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Figure 4.12: moons dataset: averaged adjusted mutual information in function of the num-
ber of clusters, for different values of the exponent. For too low and high values of the exponent,
it is not possible to automatically determine the number of clusters; in the first case, the pro-
cess is too randomized and some tree results are misclassified; in the second case, the outcomes
correspoding to different number of clusters are highly compatible, because of the high level of
determinism.

4.5 Comparison with other clustering algorithms
In this section we compare the outcomes of our algorithm with the results of the clustering
methods described in Section 1. As expected, the k-means algorithm provides good results
only if applied to datasets with convex shaped clusters (in our analysis, blobs and varied
datasets); the classification predicted by the DBSCAN coincides with the true one in any
case, except for the varied dataset since, as explained in Section 1.1, it usually doesn’t have
good performances when dealing with different density clusters. The spectral clustering is
instead always able to well classify the data. The parameters given as input of the scikit-
learn functions that perform the clustering are the number of clusters for k-means and spectral
clustering algorithms, and ϵ for the DBSCAN; ϵ represents the maximum distance between
two points in order to belong to the same cluster. Table 4.2 shows the Fowlkes-Mallows index
that evaluates the matching between the predicted and the true labelings, for each clustering
technique and for each considered dataset. If iterated with different random seed, the k-means
and the spectral clustering algorithms provide almost always the same data classifications and
the Fowlkes-Mallows score has exactly the same value.

blobs circles moons varied
k-means 0.980 0.495 0.623 0.889
DBSCAN 1 1 1 0.907
Spectral 1 1 1 0.980
Mondrian 0.999± 0.004 0.999± 0.002 0.987 0.9± 0.1

Table 4.2: Averaged Fowlkes-Mallows index, for each combination of datasets and clustering
algorithms; except the case of k-means algorithm, the compatibility with the true labeling is
high in all the other cases. For the Mondrian method, the choice of parameters is the one that
provides better results.

In regards to the k-means algorithm, its performance is comparable to that of the Mondrian
clustering method with centroid or minimum distance based metrics, if run on blobs dataset.
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Also when applied to varied dataset, if we consider the variance based Mondrian method, the
two algorithms have similar performances; in both cases, they are able to recognize the three
clusters, with some difficulties in the identification of the border points of the low-density
group of points. On the contrary, when run on circles and moons datasets, the k-means
algorithm isn’t able to well classify the data, since the clusters have no convex shapes; in fact,
it simmetrically divides the whole dataset in two parts of equal numerosity. In these cases the
Mondrian based method (with minimum distance metrics) provides much better results than
k-means algorithm.

Considering the DBSCAN clustering technique, the input values of the parameter ϵ are
set to 0.23, 0.25, 0.25 and 1.3 respectively for blobs, circles, moons and varied dataset.
Its predicted labelings exactly match with the true ones, except for varied dataset; in this
case, although the Fowlkes-Mallows index value is compatible with the one obtained from the
variance based Mondrian outputs, the algorithm is not able to recognize the true number of
clusters. In fact, it groups the data into five classes and, moreover, 13 points belonging to the
low-density cluster in the true classification are labeled as outliers and are thus not associated
to any cluster. The Mondrian algorithm run on the same dataset is instead able to recognize
the true number of classes and, in general, correctly gathers the points, although some border
points of the low-density cluster are misclassified. On the contrary, for the other datasets, the
performance of DBSCAN algorithm is slightly better than the one of the Mondrian method
with minimum distance based metrics; the results are though comparable.

The spectral clustering algorithm requires the number of clusters as input parameter. When
run on every dataset, it provides optimal results; it slightly outperforms the Mondrian clustering
method based on the minimum distance metric with correction in each considered case.

To summarize, the spectral clustering, the DBSCAN and the Mondrian based algorithm,
run on 2 dimensional datasets, have very similar performances, while the k-means algorithm
works only for a more limited variety of cluster shapes. The main difference between them
consists of the different initial informations about the configuration of the dataset, required in
order to make them able to well classify the data. More specifically, the spectral clustering
and the k-means algorithms require the knowledge of the number of clusters, the DBSCAN the
information about the minimum distance separating two clusters and the Mondrian algorithm
requires to know if the cluster are characterized by different densities, in order to set the most
suitable metric. If compared with the spectral clustering, the Mondrian based method has the
advantage of being able to automatically determine the number of clusters, while the advantage
of the spectral clustering is to have very good performances independently from the structure
of the dataset. As concerns the comparison with the DBSCAN, both of the algorithms are
able to automatically determine the number of clusters, but the DBSCAN doesn’t provide
good results for datasets with different density clusters; By changing the metric, the Mondrian
based algorithm is able to overcome the difficulties in the determination of the clusters derived
by dealing with different structures of data. Finally, an important added value of the Mondrian
clustering method is that, other than providing a predicted labeling to the samples, it associates
a probability distribution to each point of the space. This means that, once the dataset has been
classified, given any other point with coordinates in the considered space but not belonging to
the initial dataset, it is possible to estimate the probability of that point to belong to a specific
class.
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Chapter 5

Application to 3D toy datasets

In this chapter we will show the results of the algorithm run on datasets with three features.
Since the different versions of the algorithm applied on the two dimension datasets exhibited
better performances with the metric based on the variance and on the minimum distance with
correction, now we will only consider these two metrics; in particular, in the first section,
a dataset characterized by different density clusters is considered, in order to evaluate if the
performances of the algorithm based on the two different metrics are the same than in the anal-
ogous case in two dimensions. In the following sections, the algorithm based on the minimum
distance metric is applied to datasets with different shapes and we will focus, in particular, on
the different clustering results obtained by varying the exponent and the lifetime parameters.
The adjusted mutual information and the Fowlkes-Mallows index are evaluated by computing
20 iterations of the algorithm for each choice of parameters and datasets.

Figure 5.1: varied3D dataset, with random seed = 50

5.1 Evaluation of clustering results with different choices
of the metric

The first considered dataset, varied3D, shown in Figure 5.1, is the analogous in three di-
mensions of varied dataset and it consists of three isotropic Gaussian blobs with different
densities; it has been chosen in order to check if the behaviour of the algorithm with differ-
ent choices of the metric is the same in two and three dimensions. Also in this case, the
datasets.make_blobs function of scikit-learn is used to generate the samples. The input
parameters are the number of samples, set to 200 (the points are equally divided into the
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Figure 5.2: Output of Mondrian clustering tree run on varied3D dataset (seed = 10); the
minimum distance based metric is used. The regions of the space assigned to each cluster are
shown both separately and in the same plot.

custers), the standard deviation and the random seed. In particular, the standard deviations
of the Gaussian distributions are set to 1, 2.5 and 0.5 and three different seeds (10, 50 and
150) are considered for the random generation of the dataset, in order to have slightly different
arrangements of points.

In Figure 5.2, the space partition of the Mondrian tree run on the dataset with seed = 10 is
shown; for clarity, the subspaces corresponding to different clusters are shown both separately
and in the same plot.

While, in the case of 2 dimension datasets with similar structure, the variance based metric
is the only one that well recognizes the different groups of points, in three dimensions both
the considered metrics are able to classify the data, but the algorithm based on the minimum
distance metric generally works better than the one based on the variance. For each iteration
of the algorithm, the exponent is set to 20 and the lifetime is set high enough to make the
splitting stop only when all the subspaces contain only one or two points.

In particular, if we consider the dataset with random seed equal to 10, all the results of the
trees based on the minimum distance exactly coincide and the predicted classification is equal
to the true one; the Fowlkes-Mallows score value (for the classification into three clusters) is
consequently equal to 1 with zero standard deviation. On the other hand, the algorithm based
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on the variance metric does not always provide the same classification of the true labeling,
because it misclassifies some points belonging to the low-density blob that are more separated
from the center of the cluster; however, the compatibility with the true classification is high,
except in two cases where the algorithm completely misclassifies the data. The corresponding
Fowlkes-Mallows score is FMS = 0.97± 0.07.

As regards the dataset with random seed equal to 50, the considerations about the results
corresponding to the minimum distance metric are exactly the same, while the performance of
the variance based algorithm is worst than the previous case; in particular, in six out of twenty
cases, the algorithm misclassify the data and the corresponding averaged Fowlkes-Mallows
index is FMS = 0.89± 0.15.

Despite the algorithm based on the minimum distance achieve in general good results,
for particular configurations of the dataset it is not able to correctly recognize the groups of
points. For example, considering the generation of the dataset with random seed equal to
150, we observe that two of the three adjacent clusters with different densities are considered
more similar than some groups of points belonging to the lower density cluster in the true
classification. This behaviour is observed in the output of every tree, and the corresponding
value of Fowlkes-Mallows index is FMI= 0.766 ± 0.001. In this case, the performance of the
variance based method is better, since the predicted labelings are highly compatible with the
true one and the averaged Fowlkes-Mallows index is FMI= 0.991± 0.007.

Figure 5.3 shows, for each considered dataset, the averaged adjusted mutual information
in function of the number of clusters. In case of random seed equal to 10 and 50, the lines
corresponding to the minimum distance based algorithm show the maximum accordance in
case of two and three number of clusters, while the compatibility in case of the variance metric
is lower (especially for the dataset with random seed equal to 50). The different levels of
compatibility between the predicted labelings, in this case, reflects the different performances of
the considered configurations of parameters and datasets. However, the internal compatibility
between predicted labels is not always related to a good performance of the algorithm; the
plot corresponding to the random seed equal to 150 shows, for example, a high value of the
averaged AMI coefficient in case of the classification into two and three clusters with the
minimum distance based method; this means that different iterations of the algorithm agree on
considering the same groups of points belonging to the low-density blob in the true labeling as
separated clusters, although this result doesn’t match with the true classification. In particular,
the peak of the blue line corresponding to 5 clusters coincides with the correct separation of
the two adjacent blobs, that, as said before, are divided after some groups of points belonging
to the low-density cluster.

As regards the automatic determination of the correct number of clusters, it can be achieved
for the minimum distance metric result of the datasets with random seed equal to 10 and 50
since, in this case, the compatibility of the predicted labelings starts to decrease from the
number of clusters equal to 4. On the contrary, in all the cases based on the variance metric,
the AMI score exhibit the higher value for 2 number of classes and progressively decreases
with the increase of the number of clusters. This means that the different trees agree more
on the first division of the dataset into two clusters than in the following one into three and,
consequently, even if the algorithm is able to well classify the data, it may be not able to
automatically determine the correct number of clusters.
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(a) seed = 10 (b) seed = 50

(c) seed = 150

Figure 5.3: Averaged adjusted mutual information in function of the number of clusters for
varied3D dataset, with different choices of random seed and metric. The blue line corresponds
to the minimum distance based metric with correction and the yellow line corresponds to the
variance based one. (a) and (b): the minimum distance based metric generally shows the
higher compatibility between predicted labelings and is able to identify the correct number
of clusters; the variance based metric shows a lower compatibility and the correct number of
clusters is not recognized. (c): for low values of the number of clusters, the two methods have
similar levels of compatibility, however, the corresponding performances of the algorithm are
completely different, since the version based on the minimum distance completely misclassifies
the dataset, while the variance based one provides a good classification.
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Figure 5.4: circles3D dataset

5.2 Evaluation of clustering results with different choices
of the exponent and the lifetime parameters

The second considered dataset, circles3D, is shown in Figure 5.4. In has been chosen in
order to test the algorithm when run on clusters with non trivially separable shapes; we com-
pare different results, obtained by varying the exponent parameter, that represent the level of
randomization in phase of hyperplane extraction, and the lifetime parameter. It consists of
three circles of 100 samples: two of them are concentric circles with different radius and their
axis is perpendicular to the axis of the third circle, that intersects the center of the previous
two. More specifically, both the single circle and the set of two concentric circles are generated
through the datasets.make_circles function of scikit-learn; the noise is set to 0.05, while
the number of samples, the scale factor and the random seed take different values. As concerns
the single circle, the total number of points is set to 100 and the scale factor to 0.9, in order
to make the function generate two overlapping circles, each one constituted by 50 points and
centered in (0,0); the resulting group of points can thus be considered as a single circular cluster
of 100 samples. The random seed value is 500. The obtained point coordinates are arranged
in order to belong to the (x, y) plane, while the z-coordinates to associate to the points are
extracted from a Gaussian distribution with 0 mean and standard deviation equal to 0.05; the
function used to generate the z coordinates is the random.normal function of numpy. The
cluster is finally translated along the y axis, in order to be centered in (0,-1,0). As regards the
two concentric circles, they are generated by setting the random seed to 550, the number of
samples to 200 and the scale factor to 0.5; we thus obtain two concentric clusters of 100 points
each, centered in (0,0). This time, the 2 dimensonal data coordinates are arranged to belong
to the (y, z) plane, while the x coordinates are generated from the same Gaussian distribution
used in the previous case.

In order to evaluate the performance of the algorithm by varying the exponent and the
lifetime parameters, we consider two values of the lifetime, 50 and 200, and, for each case, we
set the exponent equal to 5, 10 and 20. Table 5.1 shows the Fowlkes-Mallows index values
for each combination of parameters. The general observed behaviour consists of a significant
improvement of the results with the decreasing of the exponent; the decrease of the lifetime
parameter is as well related to an improvement, but not particularly relevant.

The best outcome is obtained for λ = 50 and exp = 5: in 17 out of 20 cases the predicted
labeling is equal to the true one and the corresponding averaged Fowlkes-Mallows index shows
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λ exp FMI
5 0.96 ± 0.10

50 10 0.86 ± 0.15
20 0.79 ± 0.12
5 0.93 ± 0.12

200 10 0.80 ± 0.10
20 0.83 ± 0.11

Table 5.1: Fowlkes-Mallows index for each combination of lifetime and exponent parameters.
The greater variability is observed with the variation of exp, while the results are less affected
by the variation of λ; the best outcome is obtained for the lower values of both parameters.

the highest value. With the increasing of the exponent, a lower number of predicted results
is compatible with the true classification; in particular, the predicted and true classifications
coincide in 10 cases for exp = 10 and in 4 cases for exp = 20. By setting the higher value of
the lifetime, λ = 200, the results are similar for the exponent equal to 5 and 20, since the data
are correctly classified respectively in 15 and 6 cases out of 20; on the contrary, for exp = 10,
the result is much worst, since the true and predicted labelings coincide only in 4 cases.

In Section 4.4, we evaluated the compatibility between the predicted point classifications in
the case of the 2 dimensional moons dataset; we saw that, with the increase of the exponent,
the values of the AMI coefficient tend to get closer to 1, since the exponent parameter is related
to the randomness of the splitting and, higher is the power, more deterministic is the process of
the extraction of the hyperplanes. In the case of circles3D dataset, however, the behaviour of
the curves corresponding to different values of the exponent is exactly the opposite. As shown
in Figure 5.5 (each plot corresponds to a different value of the lifetime), the curve representing
the averaged Adjusted Mutual Information in function of the number of clusters for exp = 5
takes higher values with respect to the curves corresponding to the other values of the power.

Both the observed behaviours of the increase of the compatibility among the predicted clas-
sifications and between the predicted classifications and the true one (respectively represented
by the adjusted mutual information and the Fowlkes-Mallows index values), for decreasing
values of exp, can be interpreted through the concept of regularization (see Section 3.3). As
previously said, in our case the regularization consists in limiting the level of determinism
of the hyperplane extraction in favour of a more randomized procedure. While, in the 2 di-
mensional case, the increasing of the exponent doesn’t produce a significant decrease on the
compatibility between predicted and true classifications and among different predicted classi-
fications, in 3 dimensions this procedure is more clearly shown by the corresponding values
of Fowlkes-Mallows and adjusted mutual information indexes, that quantitatively confirm the
achievement of better results for lower values of the exponent.

By considering a fixed value of the exponent, the slight difference between the performances
of the algorithm corresponding to the two values of the lifetime depends on the fact that, for
higher λ, the initial space has been splitted more times and, consequently, there may be a
greater number of final subspaces containing only one point; Since the metric used to merge
a single point subspace with one of its neighbors is different from the metric used to combine
subspaces with more than one point, the inequality of the performances is due to the existence
of this two merging criterions.

Finally, we consider the version of the algorithm with exp = 5 and λ = 50, that is the one
that better classifies the data, in order to evaluate the automatic determination of the number
of clusters. Athough the result shows a high level of compatibility between the predicted
labelings, as well as a great matching between predicted and true classifications, the averaged
AMI curve doesn’t exhibit a peak in correspondence of the correct number of clusters. In fact,
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the compatibility between labelings is higher in correspondence of the division of the dataset
into two groups and a great accordance in the recognition of the substructure of the single
clusters is shown; it consequently leads to the inability to recognize the division into 3 clusters
as the most significant for the description of the dataset.

(a) λ = 50 (b) λ = 200

Figure 5.5: Averaged adjusted mutual information in function of the number of clusters for
circles3D dataset, for different values of exp and λ. The outputs that better classify the
dataset also show a higher compatibility between predicted labelings; in all the cases, the
algorithm is not able to automatically determine the number of custers.

5.3 Evaluation of clustering results obtained on datasets
with different shapes

In this section we evaluate the performance of the algorithm run on two new datasets of different
shapes, shown in Figure 5.6 and 5.7.

cylinder dataset consists of three clusters: a cylinder surrounding a thin and elongated
blob and adjacent to an other isotropic Gaussian blob. The cylinder is constituted by 200
samples and has axis orthogonal to the (x, y) plane; it is generated by expressing its points in
cylindrical coordinates and, more precisely, the coordinates of each sample (x, y, z) are written
in the form (ρsinθ + ϵ1, ρcosθ + ϵ2, z). ρ is fixed to 0.5, while θ is randomly extracted from a
Uniform distribution between 0 and 2π; ϵ1 and ϵ2 are instead generated from a Gaussian dis-
tribution with 0 mean and standard deviation equal to 0.05 and, finally, z is extracted from a
Uniform distribution between 0 and 0.5. As regards the blob surrounded by the cylinder, it con-
sists of 50 samples; its coordinates are extracted from a Uniform distribution defined between
-0.1 and 0.1, in case of x and y coordinates, and between 0 and 0.5, in case of z coordinates.
The random extractions are obtained through the random.uniform and random.normal func-
tions of numpy; the random seeds are set to different values for any extraction of the values.
The third Gaussian cluster is generated through the sklearn.datasets.make_blobs func-
tion, used in the previous cases. The input parameters are the number of samples, the cluster
standard deviation, the random seed and cluster center coordinates; they are respectively set
to 50, 0.1, 0 and (0.8,0.8,0.8).
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Figure 5.6: cylinder dataset

Figure 5.7: sphere dataset

sphere dataset consists of two non linearly separable clusters: a sphere with low-density
homogeneous distributed points and a higher density blob, centered in the center of the sphere.
Each sphere point (x, y, z) is expressed in spherical coordinates and takes the form (ρsinϕ ·
cosθ + ϵ1, ρsinϕ · sinθ + ϵ2, ρcosϕ + ϵ3). ρ is set equal to 0.25, while θ and ϕ are randomly
extracted from a Uniform distribution, respectively in the range [0, 2π] and [0, π]; ϵ1, ϵ2 and
ϵ3 are extracted from a Gaussian distribution with 0 mean and standard deviation equal to
0.01. The random seed is changed at each random generation. As in the previously described
dataset, the numpy.random.uniform and numpy.random.normal functions are used to generate
the points. The total number of samples constituting the sphere is 120. The blob located in the
sphere center is generated through the sklearn.datasets.make_blobs function; the number
of samples, the cluster standard deviation, the cluster center and the random seed are set
respectively to 40, 0.02, (0,0,0) and 18.

Since, in the previously considered cases, the best results were obtained for exp = 5, we
keep the same value of the exponent when running the algorithm on the two new datasets; the
lifetime λ is set to 50 for the cylinder dataset, and to 200 for sphere dataset. In both cases,
the predicted classification is highly compatible with the true one. In particular, for the first
one, the predicted labeling exactly matches the true one for any iteration of the algorithm;
the averaged Fowlkes-Mallows index is consequently equal to 1 with zero standard deviation.
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When applied to the second dataset, the algorithm misclassifies the data in three out of twenty
cases; the value of the corresponding Fowlkes-Mallows index is FMI = 0.97± 0.08.

As regards the matching of the different predicted classifications, Figure 5.8 shows the
two plots of the averaged Adjusted Mutual Information in function of the number of clusters.
We observe full compatibility in case of cylinder dataset; in particular, the highest value of
AMI coefficient is obtained for two and three number of clusters. Since, from 4 number of
clusters, the averaged AMI value suddenly decreases, it is possible to automatically recognize
the correct number of classes as the higher value before the lowering of the curve. In the case
of sphere dataset, the overall compatibility is much lower than the previous case; this is due
to the presence of some tree outcomes that completely misclassify the data although, in 17 out
of 20 cases, the predicted classifications completely overlap. Despite the relative low averaged
compatibility, by locally observing the behaviour of the curve (that means by considering the
averaged AMI only at low values of the number of clusters), it is possible to determine in how
many classes the dataset is divided, since the higher value of adjusted mutual information is
locally shown for 2 clusters. Despite this procedure doesn’t lead to the correct number of classes
without any doubt, the local evaluation of the curve peaks at low number of clusters may help
to understand the structure of the dataset; in fact, the rising of the curve may correspond to a
higher compatibility among the different prediction due to different factors, like the presence of
similar subsets of points in different partitioning outcomes, related to the high fragmentation
of the dataset.

(a) cylinder (b) sphere

Figure 5.8: Averaged adjusted mutual information in function of the number of clusters. (a)
maximum compatibility between predicted labelings for 2 and 3 number of clusters; since, for
4 clusters, the AMI value suddenly decreases, it is possible to recognize the division of the
dataset in three clusters as the correct one (b) low compatibility between different predicted
labelings; however, by locally observe the behaviour of the curve at small values of the number
of clusters, it is possible to correctly indentify the correct number.

5.4 Comparison with other clustering algorithms
In this section, we compare the previously described results with the outcomes obtained by
running the k-means, DBSCAN and spectral clustering algorithms on the same datasets. As in
the two dimensional case (see Section 4.5), while the k-means algorithm is able to well classify
the data only in presence of convex-shaped clusters, the other two methods provide good results
when applied to any dataset. The input parameters are the number of clusters, for k-means
and spectral clustering algorithms, and ϵ for the DBSCAN method; in particular, ϵ is set to
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3.5, 4.3, 2.7, 2.5, 0.2 and 0.15 respectively for the datasets considered in the order presented
in this chapter. Table 5.2 shows the values of the Fowlkes-Mallows index for each combination
of dataset and clustering technique.

If we consider the first 3D dataset, consisting of three blobs of different densities, for any
choice of the seed the predicted classifications are highly compatible with the true ones, al-
though a few points belonging to the low-density clusters are, in some cases, misclassified or
considered as outliers (in case of DBSCAN algorithm). As observed in Section 5.1, the most
problematic version of this dataset is the one with seed equal to 150: a higher number of points
is misclassified and the corresponding values of Fowlkes-Mallows index are lower (although the
results are still highly compatible). If we examine the performance of the DBSCAN algorithm
run on the 2D blobs dataset, that is the analogous version of the 3D considered one, we ob-
serve that the results in three dimensions are much better that those in two dimensions. In
particular, despite in both cases some low-density points are categorized as outliers, in the
3D case the algorithm is able to recognize the correct number of clusters. The improvement
of the DBSCAN outcomes with the increase of the number of dimensions in similar to the
improvement observed for the Mondrian clustering technique based on the minimum distance
metric with correction results.

As regards the other three datasets with no convex shape, the k-means algorithm isn’t
able to well classify the points; the other two methods show optimal results, except for the
three-cluster dataset consisting of one cylinder and two blobs, in which the spectral clustering
algorithm completely fails in six out twenty cases. This dataset is the only one for which the
resulting Fowlkes-Mallows index exhibit a variation, when the random seed of k-means and
spectral clustering algorithms is changed.

In conclusion, the considerations regarding the comparison between these three clustering
techniques and the Mondrian based one are analogous to those expressed in Section 4.5. The
performances of the algorithms, except the case of k-means applied to concave-shaped datasets,
are similar; in general, DBSCAN and spectral clustering algorithm are more accurate in the
prediction, but the first one requires the knowledge of the minimum distance that separates
two clusters and the second one requires as input the number of clusters. The Mondrian
based method is less accurate in the classification of the dataset but is able to automatically
identify the correct number of clusters without any knowledge on the shape of the dataset;
however, this result is not achieved for every dataset (see the case of the three circular clusters
in three dimensions). Moreover, other than the predicted data classification, it gives as output
a probability distribution and, in particular, it associates to each point of the space a value
that estimates the probability to belong to a certain cluster.

varied3D
(seed = 10)

varied3D
(seed = 50)

varied3D
(seed = 150)

circles3D cylinder sphere

k-means 0.980 0.980 0.980 0.445 0.610 ± 0.003 0.583
DBSCAN 0.995 1 0.972 1 1 1
Spectral 1 1 0.990 1 0.9 ± 0.2 1
Mondrian 1 1 0.991±0.007 0.96± 0.10 1 0.97± 0.08

Table 5.2: Averaged Fowlkes-Mallows index, for each combination of datasets and clustering
algorithms; except the case of k-means algorithm, the compatibility with the true labeling is
high in all the other cases. For the Mondrian method, the choice of parameters is the one that
provides better results.
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Chapter 6

Conclusions

The proposed clustering method based on the Mondrian process provides as outcome an es-
timation of the probability distribution to belong to a certain class, that is defined in each
point of the underlying space of the clustered dataset. The fact that the estimation of the class
is not exclusively related to the data implies the possibility to classify samples not belonging
to the dataset used to obtain the classification; this means that, if the initial dataset is suf-
ficiently representative of a certain population, the clustering procedure is not required to be
repeated on different samples of the same population, in order to obtain their corresponding
classification.

The probability of estimation is, furthermore, hierarchical, since it is not provided for a
single division of the dataset, but is related to a certain range of possible number of clusters. In
the majority of the considered cases, the algorithm is however able to automatically recognize
the correct number of clusters in which the dataset is divided, by evaluating the similarity
of different tree outputs through the adjusted mutual information index. In this case, the
classifications obtained at other values of the number of classes provides an estimation, at
higher levels, of the further subclassification of each cluster that, in case of real data, may
reflects some peculiar features of a subpopulation.

If compared with other notable clustering algorithms, as DBSCAN or spectral clustering,
the Mondrian based method provides, in two and three dimensions, slightly lower but com-
parable and very good performances; on the contrary, the k-means algorithm well clusters
data only in case of convex shaped datasets. All the considered techniques require some prior
informations and, depending on our prior knowledge on the dataset, each of them may be
preferable to the others. The advantage of the Mondrian clustering forest, with respect to
spectral clustering, is that it doesn’t require as input parameter the number of clusters. The
algorithm is in fact able to automatically determine the correct number, as DBSCAN does, but
unlike this, it doesn’t need to a priori know the minimum distance that separates the clusters.
In addition, it provides hierarchical informations over the overstructure and substructure of
the dataset; however, it isn’t able to take into account the presence of outliers. Finally, the
main difference from DBSCAN and spectral clustering is that the Mondrian based technique
is able to make predictions about the assignment of extra-dataset points to a specific cluster,
providing a probability measure of the estimation; in fact, among the considered three notable
algorithm, only the k-means one is characterized by the predictive property, although it is not
comparable with the Mondrian method in regards to the quality of the clustering results.

The encouraging results obtained with toy datasets in two and three dimensions suggest that
it is worth to deeply investigate the behaviour of the algorithm with datasets characterized by
other distributions of data in terms of numerosity, shape and density, higher number of clusters
and, expecially, with higher dimensional toy and real datasets. In particular, the algorithm
may behave differently with the increase of the number of dimensions, since the concept of
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closeness based on the euclidean distance changes as well. Moreover, it may be possible that,
even when the unsupervised classification provides good results, the automatic determination
of the number of clusters doesn’t work.

In this respect, the role of the randomization, in both the reliability of the probability of
estimation and in the determination of the number of clusters, needs to be further studied.
We saw how different values of the exponent influence the probability of extraction of the
hyperplanes and, consequently, the cluster shapes of the forest final result: too low values of
the exponent, that correspond to a high randomization, may be related to misclassifications,
while too high values cause a more deterministic hyperplane extraction that may be influenced
by local characteristics of the data; in both cases, the algorithm may be not able to recognize
the correct number of clusters. The exponent can be thus used as regularization parameter of
the clustering process; in particular, the influence of the exponent on the level of randomization
may depend on the dimensionality and numerosity of the dataset.

An other aspect that requires a deeper investigation is the role of the lifetime λ and, in
particular, how the complexity of the tree is related to the complexity of the dataset. Since
each cut is associated to a time instant, randomly extracted from an Exponential distribution,
and the splitting procedure stops when the absolute time is higher than λ, the lifetime is related
to the number of splits performed by the algorithm during the partitioning phase. The value of
lambda, in order to be meaningful about the expected number of splits, must be evaluated in
relation to the rate of the Exponential distribution, that determines the absolute value of each
time increment. In our implementation of the algorithm, the rate is set equal to the volume of
the polytope that will be splitted; this means that the number of cuts performed in a certain
time interval λ is related to the specific considered dataset and space in which it is defined.
For this reason, different datasets may require the setting of different values of the lifetime
in order to obtain the same number of cuts that well split the space and, consequently, the
comparison between lifetime values of different dataset has no meaning. Moreover, since the
initial space is defined as any convex space containing the dataset, although we restricted it to
the smallest axis-aligned box containing the samples, the size of each subspace doesn’t always
gives informations about the quantity of samples belonging to it; it may thus occur than a
larger polytope containing few points is splitted more times than a smaller polytope containing
a large amount of samples; this is due to the fact that, larger is the subspace (and higher is
the rate of the Exponential), sooner the cut occurs. A more significant definition of the rate
would be obtained by making it related to the numerosity of the dataset rather than of the
volume of its underlying space; this would remove the dependence on the absolute size of the
underlying space and would allow to make analogies between different datasets.

Finally, other alternatives to the formulation of the metric and the choice of the hyperplane
should be find, in order to obtain variables that better describe specific characteristics of the
dataset.
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