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Abstract

Models with an axion-like inflaton have received considerable attention since the early
90’s, since pseudo-Nambu Goldstone bosons (pNGBs) have a radiatively stable potential
and they are abundant in string theory. In these models, the inflaton can be coupled with a
gauge field through the operator ΦFµνF̃

µν , leading to a rich phenomenology. The produced
gauge quanta source the scalar and tensor components of the metric perturbations, with
the latter giving rise to non-vanishing TB and EB correlation functions in the Cosmic
Microwave Background (CMB), which can be detected by ongoing and future experiments.

In this work, we study the dynamics of axion-inflation models, both analytically and
numerically, focusing mainly on chiral gravitational waves that are generated in three
different scenarios: natural inflation, axion monodromy and a linear potential with a
step-like feature. We find that a signal can be detected by LISA and by advanced LIGO
and Einstein Telescope if the step is broad or very steep, respectively, but in these cases
problems related to strong backreaction on Friedmann equation might arise. If instead
the step is just a small correction to the linear potential, chiral gravitational waves might
be detected by LISA in a weak backreaction regime.
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Introduction

Our Universe is in first approximation homogeneous, isotropic and flat. The Friedmann-
Lemâıtre-Robertson-Walker cosmological model, also known as the Hot Big Bang theory,
allows to understand the evolution of the universe so successfully that sensible speculations
about the universe at times as early as 10−43 sec after the Big Bang are possible.
Nevertheless, it is insufficient to account specifically the properties listed above, leading
to the flatness problem, the horizon problem and the entropy problem.

Inflation represents a simple and elegant theory that can solve all three of them. In
its essence, it represents an early epoch in the history of our Universe when it expanded
exponentially. Mathematically, this is translated into aH being an increasing function
of time. This condition can be achieved if we consider a quasi-deSitter universe, filled
with matter that violates the Strong Energy Condition. In particular, the easiest models
which satisfy this requirement, called slow-roll models, consider a scalar field as inflaton
with a build-in mechanism to interrupt inflation after a certain amount of time.

In this thesis we will focus in the specific case in which the inflaton is an axion.
Axions are the simplest spin-zero particle with a radiatively stable potential, thanks to
their broken shift symmetry, and they are also abundant in string theory. In any model
of axion inflation, the scalar field is coupled to a gauge field through an interaction of
the form ΦFµνF̃

µν , where α is the dimensionless coupling constant and f is the axion
decay constant. This coupling makes axion inflation phenomenology extremely rich and
complex. For instance, the gauge field generates a backreaction effect on both the inflaton
dynamics and Friedmann equation, effectively slowing down the axion when it rolls down
its potential and extending the duration of inflation. The energy absorbed through this
dissipative channel ignites the creation of gauge quanta which become classical and source
scalar and tensor perturbations in the metric. In particular, given the parity-violating
nature of the system, the tensor modes produced during inflation will also be parity-odd,
and they can show up in the CMB in the form of B-modes, the parity-odd, divergence-free
component of the polarized radiation. On the other hand, the curl-free component of
the CMB, the E-modes, and the temperature anisotropies are parity-even. Therefore,
a signal for a non-vanishing 〈BE〉 or 〈B T 〉 correlation will signal parity violation and
might be detected by ongoing and upcoming Earth- and space-based experiments, like
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advanced LIGO and LISA. We will verify this hypothesis for three specific axion models:
natural inflation, axion monodromy and an ad-hoc model with a suitable modulated
linear potential.

This work will be structured as follows. In chapter 1 and 2 we will briefly review the
Standard Cosmological Model, its merits and drawbacks, before introducing the concept
of inflation and discuss its dynamics. In particular, we will show how scalar and tensor
perturbations arise at the cosmological scale in standard slow-roll models. In chapter 3
we will start our treatment of axion inflation by studying the generation of gauge modes
at the expenses of the inflaton energy and their conversion into scalar perturbations. The
results will be given firstly in full generality and then specifically for the three models we
are taking into account. Finally, in chapter 4 we move our attention to the production
of gravitational waves and their power spectrum, which can be easily related to the
sensitivity curves of current experiments. In particular, we will study the possibility of
detected a chiral signal for all three models.
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Chapter 1

The Hot Big Bang theory
and its drawbacks

In this first chapter we will review the main features of the Standard Cosmological
Model and its drawbacks, which led to the introduction of the concept of inflation. We
will briefly show how a period of exponential expansion of the Universe can account all the
problems encountered in the Hot Big Bang theory, before introducing the requirements
which are essential for all inflation models.

1.1 The Standard Cosmological Model

The Cosmic Microwave Background, also called relic radiation, was first predicted in
1948 by Ralph Alpher and Robert Herman and then experimentally discovered in 1964 by
Arno Penzias and Robert Woodrow Wilson. The photons which constitute this radiation
are the ones that decoupled from matter in an early stage of the history of our Universe,
namely at the last scattering surface. The CMB has a thermal black body spectrum at
a temperature of approximately 2.73 K, with anisotropies of at most δT/T ∼ 10−5. Its
great degree of homogeneity, together with other astrophysical observations, is the main
evidence that supports the Cosmological Principle, which states that the Universe looks
exactly the same in all directions, i.e. it is homogeneous and isotropic, on sufficiently
large scales.

Taking these properties for granted, we can apply it to General Relativity and try to
find solutions to Einstein’s field equation

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν , (1.1)

a second-order differential equation for the metric tensor gµν , where Tµν is the energy-
momentum tensor of the source we are considering. In general, it is impossible to find
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Figure 1.1: The Cosmic Microwave Background as observed by the Planck observatory.
The differences in color denote the ∼ 10−5 energy fluctuations.
Source: https://www.esa.int/ESA_Multimedia/Images/2013/03/Planck_CMB.

analytical solutions to it if there are no symmetries in the system. In our case, homogeneity
and isotropy are related to the existence of 3 space-like Killing vectors generating space
translations and 3 space-like Killing vectors generating rotations, respectively. Hence, our
4D space-time can be divided into a maximally symmetric three-manifold Ω and a time
direction with no related Killing vector, since our Universe is expanding. It can be proven
that the Cosmological Principle determines uniquely the Friedmann-Robertson-Walker
(FRW) metric

ds2 = −dt2 + a2(t)
[ dr2

1− kr2
+ r2(dθ2 + sin2(θ)dφ2)

]
, (1.2)

where t is the proper time of an observer comoving with the cosmic fluid that fills the
Universe, a is the scale factor and k = 0,±1 is the curvature constant. Depending on
the value of k, we have three different cases: a flat space, corresponding to the usual
Minkowski space-time, or a closed/open space (de Sitter and Anti de Sitter space),
respectively.

In order to solve Einstein equation we need also to define our source. The assumptions
of homogeneity and isotropy allow us to consider the Universe filled with a perfect fluid,
for which the energy-momentum tensor has the form

Tµν = (p+ ρ)UµUν − pgµν , (1.3)

where Uµ is the fluid 4-velocity. In the case of a comoving fluid Uµ = (−1,0), and assuming
a flat FRW metric, then the stress-energy tensor becomes Tµν = diag(ρ,−p,−p,−p).
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This tensor must also satisfy the continuity equation ∇µT
µ
ν = 0, whose ν = 0 component

is
∇µT

µ
0 = ρ̇+ 3H(p+ ρ) = 0, (1.4)

where the dot implies derivation with respect to the cosmic time t and H = ȧ/a is the
Hubble parameter. At this point we assume an equation of state for the fluid of the form
p = ωρ, which inserted back in the energy conservation equation gives

ρ̇

ρ
= −3(1 + ω)

ȧ

a
, (1.5)

whose general solution is
ρ(t) ∝ a(t)−3(1+ω). (1.6)

There are some particular cases, depending on the value of ω:

• ω = 0, dust. In this case, there is no pressure since the particles do not interact
among themselves. The energy density then reads

ρdust(t) =
E

V
∝ a(t)−3. (1.7)

This result is compatible with the rescaling of the two quantities determining the
energy density, namely, the mass of the fluid and its volume. The former is an
invariant quantity, while the latter goes like V ∝ a3, since every spatial dimension
rescales like a.

• ω = 1/3, radiation: in this specific scenario, massless particles have no mass scale,
so the trace of the energy-momentum tensor has to vanish

T µµ = T = −ρ+ 3p = 0→ p =
1

3
ρ. (1.8)

Moreover, the energy density rescales as

ρradiation(t) ∝ a(t)−4, (1.9)

as we expect since in addition to the rescale of the volume, also the frequency of
the photons redshifts and so rescales as ν ∝ a−1.

• ω = −1, vacuum energy: Finally, one can also choose an equation of state of the
form

ρΛ = −p =
Λ

8πG
, (1.10)

where Λ is the famous cosmological constant first introduced by Einstein. In this
case the energy density does not rescale in time with a(t), and as we will see this
property will be fundamental to obtain an accelerated expansion of the Universe.
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Now that we have both the FRW metric and the stress-energy tensor of our source
which describes our expanding Universe, we can insert both back in Einstein equation.
The results are the two Friedmann equations for the scale factor a(t):

3

[(
ȧ

a

)2

+
k

a2

]
= 8πGρ, (1.11)

3
ä

a
= −4πG(ρ+ 3p) (1.12)

where, technically speaking, the first one is a constraint on the initial conditions of a(t),
while its dynamics is described by the second one. It is useful to introduce the density
parameter Ω as

Ω :=
ρ

ρcritical

=
8πG

3H2
ρ, (1.13)

so that the first Friedmann equation becomes

Ω− 1 =
k

a2H2
. (1.14)

In this way we can now classify the topology of our Universe depending on the value of
either k, ρ or Ω as follows:

• ρ < ρcritical or equivalently Ω < 1 or equivalently k = −1 corresponds to an open
Universe;

• ρ = ρcritical or equivalently Ω = 1 or equivalently k = 0 is a flat Universe;

• ρ > ρcritical or equivalently Ω > 1 or equivalently k = +1 instead represents a closed
Universe.

One can also show that once we fix the topology via suitable initial conditions, the
Universe evolves in time preserving it. Then, the evolution of the scale factor depends
on the value of k and on the specific equation of state of our source. In particular,
observations tell us that we are very close to Ω = 1, so our Universe is almost flat, and
we can therefore solve Friedmann equations for the three values of ω discussed earlier:

• ω = 0, dust, ρ ∝ a−3 =⇒ ä ∝ a−2 =⇒ a(t) ∝ t
2
3 ;

• ω = 1/3, radiation, ρ ∝ a−4 =⇒ ä ∝ a−3 =⇒ a(t) ∝ t
1
2 ;

• ω = −1, vacuum energy, ρ = Λ/(8πG) = constant =⇒ ä = H2
0a = (Λ/3)a =⇒

a(t) ∝ eH0t, and the Hubble parameter is a constant.

Notice that in the cases of dust and radiation there is always a time t = 0 at which the
scale factor goes to zero. This represents an unavoidable, physical singularity not related
to the choice of the coordinates system, and it is known in the literature as the Big Bang
singularity.
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1.2 The shortcomings of the standard

Big Bang theory

Despite being a very clear and powerful model, the Big Bang theory presents some
drawbacks and limits which require the introduction of a new theory, namely inflation.
In this section we will briefly introduce the two main problems that arise in the Standard
Cosmology model and explain how inflation is able to solve all of them at once.

The flatness problem As we saw earlier, once the initial conditions induce a certain
topology, i.e. flat, open or close according to the initial value of the energy density and
consequently of k, the Universe evolves maintaining that topology. Whereas an open
and close topology lead to an eternal expanding Universe or to a gravitational collapse
known as the Big Crunch, respectively, a flat Universe represents a fixed point in which
Ω = 1 at all times. Nevertheless, this scenario is unstable, since even a small perturbation
will cause a non-zero curvature which will result in an expanding Universe or in the Big
Crunch.

Since observations suggest that we live in an almost flat Universe, the condition Ω = 1
had to hold during all the history of the Universe. Today we are living in a vacuum
dominated era, and using Friedmann equations we can evolve Ω0 at present time back to
the matter dominated era and then to the radiation dominated period until the Planck
time, assuming that Einstein’s General Relativity is valid until the Planck era. The final
result is

|Ω(tP )− 1| ∼ 10−60. (1.15)

Hence, the flatness problem consist precisely in explaining how the initial conditions can
be extremely fine-tuned in order to respect the bound on Ω, not a very appealing method.

The horizon problem The second main problem related to the Hot Big Bang theory is
the so called horizon problem, which comes directly from the great homogeneity of the
CMB. The relic radiation fills all the sky and has a temperature of T ≈ 2.73K everywhere
we look up to one part per 100000. Therefore, the photons that constitute the CMB should
had some time in the past to thermalize with each other. If we consider the comoving
particle horizon for a photon propagating in a flat FRW metric and compute the maximum
angle in the sky which connects two points that could have been in causal contact during
recombination, we find that the all sky can be divided into 104 disconnected patches.
Hence, the horizon problem arises from the following question: how is it possible that so
many casually disconnected regions of the Universe are now at the same temperature
T ≈ 2.73K within one part per 100000?

One common solution to all the aforementioned problems is to consider a period of
accelerated expansion of the Universe, called inflation. Indeed, if we introduce a new
stage before RD in which a(t) ∝ eHt, or equivalently aH is an increasing function of
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time with H constant, then the current value of Ω can be easily explained without any
fine-tuning once we remember that

Ω− 1 =
k

a2H2
=

k

H2
0

e−2H0t (1.16)

and therefore by considering two different times at the beginning and at the end of
inflation (i.e. at the start of RD), we will have

|Ω− 1|t=tf
|Ω− 1|t=tI

=
(aI
af

)2

= e−2N , (1.17)

from which we can see that in order to solve the flatness problem is sufficient to have
N ≥ 60, once we require |Ω− 1|t=tI to be of order one. Notice that in the last equation
we have introduce the number of efoldings N as dN := d log a as time variable.
In addition to this, inflation provides an elegant solution also to the horizon problem.
Even if today two points are casually disconnected because the proper distance between
them have increased so quickly during inflation, they could have been in causal contact
before that epoch in the early Universe. Conversely, the whole observable Universe could
be produced by the inflationary process starting from a small homogeneous domain even
if the Universe was strongly inhomogeneous outside that domain.

The condition for inflation d(aH)/dt > 0 that we have provided can be restated in
equivalent forms:

1. ω < −1/3, i.e. a source which violates the strong energy condition (SEC). This can
be seen using Friedmann equation:

H2 =
ρ

3
=⇒ ȧ =

√
ρ

3
a

d/dt−−→ ä = ȧ

√
ρ

3
+

a

2
√

3ρ
ρ̇ ⇐⇒ ä =

ρa

6
(−1− 3ω), (1.18)

so if we have an accelerated expansion ä > 0 then ω < −1/3;

2. A decreasing comoving horizon, since

dp(t) =

∫ tf

0

dt̃

a(t̃)
∼ a

1
2

(1+3ω), (1.19)

where we have used Friedmann equation and continuity;

3. A slowly decreasing Hubble parameter. From the definition of H, taking its time
derivative we have

Ḣ =
ä

a
−
( ȧ
a

)2

=⇒ Ḣ

H2
=
äa

ȧ2
− 1 = −3

2
(1 + ω), (1.20)

which is negative for ω < −1/3;
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4. A source with an energy-momentum tensor which has a negative pressure, as one
can see from the equation of state p = ωρ.

Focusing on the last condition and in the time dependence of a, we see as the only
possible source which could develop a stage of inflation is vacuum energy, i.e. a de Sitter
space-time. Nevertheless, the field that triggers the exponential expansion of the Universe
must have a build-in mechanism to exit inflation and enter the RD era. A de Sitter
space-time fails in this particular condition since it is eternal. Moreover it does not
contain any other type of matter except the cosmological constant. Nowadays, inflation
is described considering sources which realize what is called a quasi-de Sitter space-time.
In the following chapter we will review their properties, dynamics and observables.
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Chapter 2

Slow-roll inflation and
cosmological perturbation

In this chapter we will review in more detail the slow-roll inflation models, their
dynamics and properties, as well as show how to treat cosmological perturbations in this
setup and how those perturbations can be compared with observations.

2.1 Inflation and slow-roll conditions

As we saw earlier, in order to have inflation it is necessary to have a source with a
negative pressure. Within the framework of field theory, the easiest field which can have
the correct conditions is a single scalar field φ, minimally coupled to gravity. Therefore,
the total action of our system will be

S =

∫
d4x
√
−g
[
LEH + L (φ)

]
=

∫
d4x
√
−g
[
M2

P

2
R +

1

2
gµν∂µ∂νφ− V (φ)

]
, (2.1)

where g is the determinant of the metric tensor gµν , R is the Ricci scalar and V (φ) is the
field potential. By using a perturbative approach, so that the scalar field can be divided
into an homogeneous background φ(t) plus a small perturbation δφ(t, ~x), and focusing
for the time being on the background in a flat FRW metric, their dynamics are described
by Klein-Gordon equation

φ̈+ 3Hφ̇ = −V,φ, (2.2)

and Friedmann equation

H2 =
1

3M2
P

(
φ̇2

2
+ V (φ)

)
. (2.3)
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The energy-momentum tensor of the inflaton φ(t) can be computed in the standard way
as

Tµν =
2√
−g

δS

δgµν
= ∂µφ∂νφ+ gµνL , (2.4)

and since the background is homogeneous and isotropic by construction, it reduces to the
stress-energy tensor of a perfect fluid Tµν = diag(ρ,−p,−p,−p), where in particular

T00 = ρ =
φ̇2

2
+ V (φ), (2.5)

T i i
3

= p =
φ̇2

2
− V (φ). (2.6)

From these expressions we can easily compute the equation of state parameter

ω =
p

ρ
=

φ̇2

2
− V (φ)

φ̇2

2
+ V (φ)

, (2.7)

from which we can see that in order to satisfy the condition for inflation ω ∼ −1,
the kinetic term of the inflaton has to be negligible with respect to its potential, i.e.
φ̇2 � V (φ). This requirement is known as the slow-roll condition, since in order to have
inflation the scalar field has to slowly roll down its potential. Equivalently, this means
that the potential has to be flat and we would therefore expect that also φ̈ is negligible.
Under these requirements, the Klein-Gordon and Friedmann equations can be rewritten
as follow

3Hφ̇ = −V,φ (2.8)

H2 =
1

3M2
P

V (φ), (2.9)

which in turn can be used to restate the slow-roll conditions in terms of the inflaton
potential:

φ̇2 � V (φ) ⇐⇒ V,φ
V
� 1 (2.10)

|φ̈| � |3Hφ̇| ⇐⇒ |V,φφ|
V
� 1. (2.11)

Again, these conditions suggest that the inflaton potential should be sufficiently flat in
order for the field to slowly roll down on it until it reaches its minimum, when inflation
stops since the potential does not dominate anymore.
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It is customary to introduce three Hubble slow-roll parameters, ε, η and κ as follows:

ε = − Ḣ

H2
; (2.12)

η =
d log ε

dN
=

ε̇

Hε
; (2.13)

κ =
d log η

dN
=

η̇

Hη
. (2.14)

In this way, the slow-roll conditions can be recast as ε < 1 and η � 1. it is also possible
to write the slow-roll parameters in terms of the scalar potential using the Friedmann
equations and the equation of motion for φ:

ε =
M2

P

2

(
V,φ
V

)2

, (2.15)

η = M2
P

V,φφ
V

. (2.16)

Despite the constraints given by the slow-roll conditions, one can design several
slow-roll models, which are characterised by two independent mass scales: a ”height” Λ4,
corresponding to the vacuum energy density of the field during inflation, and a width µ,
which instead represents the change in the field value ∆φ during inflation. Those models
are usually divided into small field and large field models, although other possibilities
have been studied, like Hybrid models or Plateau models.

Large field models: In large field models, the inflaton is displaced from the minimum of
the potential by an amount usually greater or of order the Planck mass (∆φ ≥MP ). They
are characterised by V,φφ > 0, where the potential is usually polynomial, V (φ) = Λ4(φ/µ)p,
or exponential, V (φ) = Λ4 exp(φ/µ). In this scenarios, slow-roll happens because it is
assumed that the Universe emerged from a quantum gravitational state with an energy
density comparable to that of the Planck density, resulting in a large friction term in
Friedmann equation.

Small field models: The name given to this models comes from the fact that usually
the scalar field starts from near an unstable equilibrium taken to be at the origin and
slowly rolls down to a stable minimum of its potential, so ∆φ < MP . An example of
small field models are hill-top models, which are characterised by V,φφ < 0, and their
potential have the form V (φ) = Λ4[1− (φ/µ)p].

15



2.2 Cosmological perturbations

Since our goal is to compare the theoretical predictions with observations, we need
a framework in which we can define observable quantities. We know that the CMB
anisotropies are very small, so we will use cosmological perturbations theory to achieve
our purposes. Here we will first introduce the theory in full generality, before then
specializing it to the specific case of perturbations produced during inflation.

Until now we have studied a scalar field coupled with gravity in a flat FRW metric at
the level of the background. Adding small but completely unfixed perturbations to both
the metric and the energy-momentum tensor, we have, respectively,

gµν(τ, ~x) = ḡµν(τ) + δgµν(τ, ~x) (2.17)

Tµν(τ, ~x) = T̄µν(τ) + δTµν(τ, ~x). (2.18)

Thanks to their smallness, we can study their dynamics by making a perturbative
expansion order by order of Einstein equation:

O(δ0) : Ḡµν = 8πGT̄µν (2.19)

O(δ1) : δGµν = 8πGδTµν (2.20)

as well as for the continuity equation, which can be written at first order as ∇µδTµν = 0.
Then, in order to solve Einstein equation, we have first to develop more explicitly the
perturbations for the metric and the stress-energy tensor. Let’s start from the latter.

The most general form for each metric component perturbations is given by the
following equations: 

δg00 = 2a2Φ, (2.21)

δg0i = a2(B,i + Si), (2.22)

δgij = a2(2Ψδij + 2E,ij + Fi,j + Fj,i + hij), (2.23)

where Φ, B,Ψ and E are scalar perturbations, S and F are traceless/divergence free
vectors and h is a traceless and transverse tensorial perturbation. Moreover, h represents
gravitational waves whereas S and F are related to the rotational motion of the fluid,
and we will no more take them into account since they are of no interest in primordial
cosmology.
In total, they have 10 physical degrees of freedom, but, as one can show by developing
the tensorial transformation of the perturbed metric under an infinitesimal coordinate
transformation of the form xµ → x̃µ = xµ + ξµ, they are not all independent since one has
to take into account also gauge invariance. Without dwelling on this matter, we simply
say that whereas h is already gauge invariant, for scalar perturbations one can either use
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Bardeen’s Gauge Invariant Variables

ΨGI = Ψ +
a′

a
(B − E ′) (2.24)

ΦGI = Φ− 1

a
[a(B − E ′)]′, (2.25)

where the prime denotes derivation with respect to conformal time τ =
∫
dt/a(t), or fix

the gauge by choosing the Conformal Newtonian Gauge, in which E = B = 0, as we will
assume from now on. In the end, the perturbed metric will be

ds2 = −a2(1 + 2Φ)dτ 2 + a2[(1− 2Ψ)δij + hij]dx
idxj. (2.26)

Moving to the perturbations of the energy-momentum tensor, we consider, without
losing generality, the one for a perfect fluid

T µ ν = (ρ+ p)UµUν − δµ νp (2.27)

and we expand those perturbations as follows

ρ = ρ̄+ δρ, (2.28)

p = p̄+ δp, (2.29)

Uµ = Ūµ + δUµ, (2.30)

where the four-velocity is time-like and normalized as usual UµUµ = 1. Manipulating the
four-velocity, one finds that

U0 =
1

a
(1 + δU0), (2.31)

U i =
1

a
δvi, (2.32)

with δU0 = −h00/2. Hence, it is possible to find first the expression for U0 and finally
the expression for δT µ ν : 

δT 0
0 = δρ, (2.33)

δT 0
i = −vi( ¯rho+ p̄), (2.34)

δT i j = −δi jδp. (2.35)

From the continuity equation instead one has two constraints:
δρ′ + 3

a′

a
(δρ+ δp) + (ρ̄+ p̄)(∂ivi −

1

2
h2
ii) = 0 ν = 0 (2.36)

∂iδp+ (ρ̄+ p̄)(4
a′

a
vi +

1

2
∂ih00) + [vi(p̄+ ρ̄)′] = 0 ν = i. (2.37)

17



At this point we have all the information that we need to solve Einstein’s equation,
which in the specific case of a single, perfect fluid (i.e. in absence of anisotropic stress)
appears as

δG0
0 =

2

a2

(
−∂i∂iΨ + 3

a′

a
Ψ′ − 3(

a′

a
)2Φ

)
= 8πGδT 0

0 = 8πGδρ, (2.38)

δG0
i =

2

a2

(
−∂iΨ′ +

a′

a
∂iΦ

)
= 8πG(ρ̄+ p̄)∂iv, (2.39)

δGi
j =

1

a2
∂i j(Φ + Ψ)− 2

a2
δi j

[
−ψ′′ + 1

2
∂k∂k(Φ + Ψ) +

a′

a
(Φ′ − 2Ψ′) +

+2
a′′

a
Φ−

(
a′

a

)2

Φ

]
= −8πGδi jδp. (2.40)

These equations, together with the constraints on T µ ν in equations (2.36) and (2.37), can
be simplified by noticing that equation (2.41) reduces to ∂i j(Φ + Ψ) = 0 ⇐⇒ Φ = Ψ
when i 6= j.

In the end, these five equations can be used to obtain a master equation for Φ

Φ′′ + 3
a′

a
Φ′(1 + c2

s)− c2
s∂

i∂iΦ +

[
2
a′′

a
−
(
a′

a

)2

(1− 3c2
s)

]
Φ = 4πGa2(δp− c2

sδρ), (2.41)

where cs, defined by δp = c2
sδρ, is the speed of sound for the fluid perturbations in

the case there is no entropy perturbations. Moreover, since the fluid is perfect, one
has that c2

s = ω everywhere in the evolution of the Universe, except for the transitions
between radiation/matter and matter/vacuum. Under this further assumption and using
Friedmann equations, the master equation assume the final form

Φ′′ + 3
a′

a
(1 + c2

s)Φ
′ − c2

s∂
i∂iΦ = 0. (2.42)

Instead of solving it for some specific cases, like for example non-relativistic or ultra-
relativistic matter, we will proceed directly to develop the same machinery in the case
the perturbations are produced during inflation.
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2.2.1 Scalar cosmological perturbations during inflation

Considering the scalar perturbations of a single perfect fluid in conformal Newtonian
gauge, the line element is

ds2 = −a(τ)2[(1 + 2Φ)dτ 2 − (1 + 2Φ)δijdx
idxj], (2.43)

while the stress-energy tensor

T µ ν = gµλ∂νφ∂λφ− δµ ν(
1

2
gλρ∂λφ∂ρφ− V,φ) (2.44)

develops perturbations of the form
δT 0

0 = δρ =
1

a2

[
−Φφ̄′2 + φ̄′δφ′ −

(
φ̄′′ + 2

a′

a
φ̄′
)
δφ

]
(2.45)

δT 0
i =

1

a2
φ̄′∂iδφ (2.46)

δT i j = −δi jδp, (2.47)

where we have used the field equation for the background inflaton field. Therefore,
Einstein equations are

(0, 0) ∂i∂iΦ− 3
a′

a
Φ′ − 3

(
a′

a

)2

Φ = −4πGφ̄′2Φ +

+4πG

[
φ̄′δφ′ −

(
φ̄′′ + 2

a′

a
φ̄′
)
δφ

]
(2.48)

(0, i) Φ′ +
a′

a
Φ = 4πGφ̄′δφ (2.49)

(i, j) Φ′′ + 3
a′

a
Φ′ + 2

a′′

a
Φ−

(
a′

a

)2

Φ = 4πGa2

[
1

a2

(
φ̄′δφ′ − Φφ̄′2

)
− V,φδφ

]
.(2.50)

By combining the equations in the system it is possible to obtain a master equation for Φ,
which can be further simplified once we introduce Mukhanov-Sasaki variable u = zΦ+aδφ,
where z ≡ (a2φ̄′)/a′. The final result is the so called Mukhanov-Sasaki equation

u′′ − z′′

z
u+ ∂i∂iu = 0 (2.51)

which determines completely the dynamics of scalar perturbations in an inflationary
Universe. Notice that it is very similar to Klein-Gordon equation of a scalar field, except
for the effective mass term m2

eff = z′′/z, which is time dependent.
Introducing the Fourier modes

uk(τ) =
1

(2π)3/2

∫
R3

d3x e−ik·x u(τ,x) (2.52)
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and knowing that
z′′

z
=
ν2 − 1/4

τ 2
, (2.53)

where ν ' 3/2 + ε+ η/2, Mukhanov-Sasaki equation becomes

u′′k +

(
k2 − ν2 − 1/4

τ 2

)
uk = 0. (2.54)

Its solution can be given in terms of Hankel functions

uk(τ) =
√
τ [C1H

(1)
ν (−kτ) + C2H

(2)
ν (−kτ)] (2.55)

where the constants C1 and C2 are fixed once we choose a vacuum. In our case we will
impose that the modes reduce to the usual Minkowski ones uk = 1/(

√
2k)eikτ in the far

past, i.e. for |kτ | � 1, which means C1 = 0 and C2 =
√
π/2. Hence, the solution to

Mukhanov-Sasaki equation is given by the so called Bunch-Davis modes :

uk(τ) =

√
π

2

√
−τH(2)

ν (−kτ). (2.56)

In order to compare our theoretical predictions with experimental results, the main
observable used in the literature is the so called scalar power spectrum. It is defined as

< 0|ûk, ûk′ |0 >= |uk|2δ(3)(k + k′) = Pu(k)δ(3)(k + k′), (2.57)

together with its dimensionless version

Pu(k) :=
k3

2π2
Pu(k). (2.58)

Equivalently, one can define the power spectrum for the comoving curvature perturbations
ζ = u/z by simply dividing the expressions above by z2, obtaining:

Pζ(k) =
k3

2π2

∣∣∣∣ukz
∣∣∣∣2. (2.59)

An explicit calculation in the case of a quasi de Sitter spacetime for super-horizon scales
gives as a result

Pζ(k � aH) =
1

z2
Pu(k � aH) =

22ν−3

πεa2k

(
k

aH

)1−2ν

Γ2(ν) =⇒

Pζ(k) =
H2

8π2ε

(
k

aH

)3−2ν

= As

(
k

k∗

)ns−1

,

(2.60)

where As is the amplitude of the scalar perturbations, ν = 3/2 + ε+ η/2, ns = 1− 2ε− η
is the spectral index and k∗ is the pivot scale. Both As and ns, together with the
dimensionless scalar power spectrum, are tied by observational constraints [24], which are

Pζ(kCMB) = 2.5 · 10−9, (2.61)

ns = 0.9649± 0.0042 (at 68% CL). (2.62)
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2.2.2 Tensor cosmological perturbations during inflation

Proceeding in a similar way as we did for the scalar case, we will now work out the
tensor power spectrum. Again, the starting point are the tensorial part of the perturbed
metric

ds2 = −a(τ)2dτ 2 + a(τ)2(δij + hij)dx
idxj, (2.63)

and the perturbed stress-energy tensor. One can show that only the ij component of
Einstein tensor is different from zero

δGi
j =

1

a2

(
h′′ij + 2

a′

a
h′ij − ∂l∂lhij

)
, (2.64)

but since T ij ∝ δij, then the corresponding Einstein equation has no source on the
right-hand side. In the end, Einstein equation reads(

h′′ij + 2
a′

a
h′ij − ∂l∂lhij

)
= 0. (2.65)

Physically, this means that a perfect fluid with no anisotropic stress can not produce
gravitational waves.

Moving to Fourier space, we express

hij(τ,x) =
1

(2π)3/2

∫
R3

d3k
[
h

(+)
k (τ)e

(+)
ij (k) + h

(×)
k (τ)e

(×)
ij (k)

]
eik·x (2.66)

in terms of the polarizations tensors for the + and the × modes, e+,×
ij (k), and we solve

eq. (2.66) as we previously did. We introduce a new variable v
(·)
k = ah

(·)
k /2, where (·)

denotes either (+) or (×), such that the equation of motion becomes

v
(·)′′
k +

(
k2 − a′′

a

)
v

(·)
k = 0, (2.67)

specular to the one for the scalar perturbations except for the effective mass term, which
has a′′/a instead of z′′/z. Thanks to this similarity, its solution is again given in terms of
Hankel functions, and imposing Bunch-Davis initial conditions we have

v
(·)
k (τ) =

√
−πτ
2

H(2)
νT

(−kτ), (2.68)

where now νT = 3/2 + ε.
Analogous definitions can be made for the tensor power spectrum and its dimensionless

variant. For super-horizon scales, the latter has the form

Ph(k � aH) =
2H2

π2

(
k

aH

)3−2νT

= At

(
k

aH

)3−2νT

, (2.69)
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so in this case nT = 3− 2νt = −2ε.
Finally, we define the tensor-to-scalar ratio r as

r :=
AT

As

= 16ε, (2.70)

which is bounded by experiment to be r < 0.056 at 95% CL [26].
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Chapter 3

Scalar perturbations from
axion-inflation models

In this chapter, we will start our description of axion-inflation models. In particular,
we will focus on the dynamics of the system and the generation of scalar perturbations,
with the final result represented by the power spectrum of those perturbations. In the
first 4 sections the subject will be treated in full generality, i.e. without specifying the
form of the inflaton potential, whereas the last 2 parts of this chapter will apply the
results to two specific models, namely natural inflation and axion monodromy.

3.1 Introduction to axion-inflation

Even in its simplicity, a compelling particle physics realization of inflation is still
lacking. The main obstruction comes from the requirement to have a sufficiently flat
scalar potential, with slow-roll parameters ε, η � 1. These parameters are extremely
sensitive to UV corrections, leading to fine-tuning problems that have to be addressed in
any particle physics model of inflation.

Luckily, Pseudo-Nambu-Goldstone-Bosons (PNGB) represent excellent inflation can-
didates in an UV complete theory that includes also gravity. Indeed, axion-like particles
are the simplest spin-zero degrees of freedom, with a shift symmetry ϕ → ϕ+ const
broken either explicitly or by quantum effects which provides a radiatively stable potential.
Moreover, axions are plentiful in string theory compactifications.
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In any axion inflation model, the inflaton is minimally coupled to gravity and is also
expected to couple with some gauge field Aµ via interactions of the type

Lint = − α

4f
ΦF µνF̃µν , (3.1)

where Fµν = ∂µAν − ∂νAµ is the field strength and F̃ µν = 1
2
εµναβFαβ is its dual. As

one can see, the strength of the interaction is controlled by the axion decay constant
f and the dimensionless parameter α. Through this coupling the kinetic energy of the
rolling inflaton is partially transferred into gauge field fluctuations, which in turn produce
inflaton fluctuations via either a back-reaction effect or via a inverse decay process of the
form δA+ δA→ δΦ, as we will discuss later on in this chapter. Taking into account also
this contribution, the total Lagrangian density has the form

L = −
[1

2
(∂Φ)2 + V (Φ) +

1

4
FµνF

µν +
α

4f
ΦFµνF̃

µν
]

(3.2)

where for the time being we will keep the potential V (Φ) arbitrary and f .MP .
The equations of motion can be found using Maxwell’s and Klein-Gordon’s equations. In
term of the electric and magnetic fields ~E and ~B and as a function of conformal time τ ,
they have the following form

Φ′′ + 2aHΦ′ −∇2Φ + a2dV (Φ)

dΦ
=
α

f
a2 ~E · ~B,

~E ′ + 2aH ~E −∇× ~B = −α
f

Φ′ ~B − α

f
~∇Φ× ~E,

~∇ · ~E = −α
f

(~∇Φ) · ~B, (3.3)

where H ≡ a′(τ)/a2(τ) and where the prime denotes differentiation with respect to

conformal time τ . The Bianchi identities are ~B′+ 2aH ~B+ ~∇× ~E = 0 and ~∇· ~B = 0. The
other fundamental equation we will use throughout the following chapters is Friedmann
equation, which in cosmological time reads

3M2
PH

2 =
1

2
Φ̇2 + V (Φ) +

1

2

(
~E2 + ~B2

)
. (3.4)

Notice by inspecting the first equation in (3.3) and in the one above that the fluctuations
in the gauge field can have two types of back-reaction: they give rise to a dissipative
term into the homogeneous Klein-Gordon equation and they enter as a new source into
Friedmann equation through their energy density. In what follows, we will still consider
the back-reaction of the gauge field on the inflaton, while we will neglect it in the second
case.
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3.2 The slow roll solution

Since the inflaton is homogeneous, we have that ~∇Φ = 0, and we can introduce the
vector potential ~A(τ, ~x) such that a2 ~B = ~∇× ~A and a2 ~E = − ~A′. The equations for ~A
then read (

∂2

∂τ 2
−∇2 − αΦ′

f
~∇×
)
~A = 0, ~∇ · ~A = 0. (3.5)

At this point, we promote ~A to an operator
~̂
A(τ, ~x) and decompose it into annihilation

and creation operators

~̂
A =

∑
λ=±

∫
d3k

(2π)3/2

[
~ελ(~k)Aλ(τ,~k)a

~k
λe
i~k·~x + h.c.

]
, (3.6)

where the helicity vectors ~ε± have the properties ~k · ~ε± = 0, ~k × ~ε± = ∓i|~k|~ε±. Then, the

equations of motion for ~A are translated in the following equations for A±

A′′± + (k2 ∓ αkΦ′

f
)A± = 0. (3.7)

Since we are interested in inflationary solutions, we assume that a(τ) ' −1/(Hτ) and
dΦ/dt ≡ Φ̇0 =constant. Hence, the equation for A± reduces to

d2A±(τ, k)

dτ 2
+
[
k2 ± 2k

ξ

τ

]
A±(τ, k) = 0, (3.8)

where we have defined the quantity

ξ ≡ α
Φ̇0

2fH
. (3.9)

One of the two solutions between A+ and A− will develop an instability, depending on
the sign of ξ. Without losing generality, we assume that α > 0 and Φ̇ > 0, so that overall
ξ > 0.

Looking for solutions which have positive frequency in the sub-horizon regime, when
|~k|τ → −∞, we have that

A±(τ, k) =
1√
2k

[iF0(±ξ,−kτ) +G0(±ξ,−kτ)], (3.10)

where F0 and G0 are the regular and irregular Coulomb wave functions, respectively.
When the second term in brackets in (3.8) dominates over the first one, i.e. when
|kτ | � 2ξ, one can see by inspecting the limiting form of those functions that A+ gets
rapidly amplified, since it is well approximated by

A+(τ, k) ' 1√
2k

( k

2ξaH

)1/4

eπξ−2
√

2ξk/aH . (3.11)
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On the other hand, the modes A− are not amplified by a factor eπξ by the rolling inflaton,
so from now on we will ignore them.

We can now find the slow roll solution for the pseudoscalar inflaton Φ, including the
contribution from the backreaction of the gauge field on Φ. Using the decomposition of
~A described above, the right hand side of equation (3.3) can be rewritten as

〈
~E · ~B

〉
= − 1

a4

∫
d3k

(2π)3

|~k|
2

∂

∂τ

(
|A+|2 − |A−|2

)
, (3.12)

that can be simplified by using the approximation for A+ in equation (3.11) and setting
A− ' 0. Indeed, we notice that the integral above is dominated by small momentum modes
with (8ξ)−1 . kc/Ha(τ) . 2ξ, and rapidly decreases outside that region. We therefore
extend the integration interval from 0 to +∞, and we approximate dA+/dτ '

√
2ξkaHA+,

so that in the end the gauge field term reduces to

〈
~E · ~B

〉
' −

(H
ξ

)4

e2πξ ×
[

1

221π2

∫ ∞
0

dx x7e−x
]
. (3.13)

The term in square brackets can be computed numerically, giving

I ≡ 7!

(221π2)
' 2.4× 10−4. (3.14)

Plugging back in equation (3.3) the result for
〈
~E · ~B

〉
, Klein-Gordon equation for the

inflaton now reads, in physical time,

d2Φ

dt2
+ 3H

dΦ

dt
+ V ′(Φ) = −Iα

f

(H
ξ

)4

e2πξ. (3.15)

In this section, our goal is to find inflationary solutions where slow roll is supported by
the dissipation into electromagnetic modes. So, we assume that both Φ̈ and 3HΦ̇ are
negligible with respect to V ′(Φ). In this way, an approximate solution of equation (3.15)
is

ξ ' 1

2π
log

[
9

Iα
M4

Pf |V ′(Φ)|
V 2(Φ)

]
, (3.16)

where we have assumed that 3M2
PH

2 = 1
2
Φ̇2 + V (Φ) + 1

2
( ~E2 + ~B2) ' V (Φ).
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3.3 Constraints on the inflaton solution

The approximate solution for the quantity ξ have been found under different require-
ments, from which we can derive several constraints:

i. First of all, we want to approximate H2 ' V (Φ)/3M2
P , as in standard slow roll

inflation. This requires that both
〈
~E2 + ~B2

〉
and Φ̇2 be negligible with respect to

V (Φ). With similar techniques to the ones we used for computing
〈
~E · ~B

〉
, we can

estimate
1

2

〈
~E2 + ~B2

〉
=

6! e2πξ

219π2

H4

ξ3
' 4

7

ξ

α
fV ′(Φ), (3.17)

where we have used the relation Iα(H/ξ)4e2πξ ' f |V ′(Φ)|. These conditions are
satisfied for α� ξ, for which the energy in the electromagnetic field can be neglected
with respect to the energy in the inflaton, unless we are close to the minimum of
the potential.

Moving to the second condition Φ̇2/2� V , by using Φ̇ = 2fHξ/α, we obtain

Φ̇2

2V (Φ)
= 2

ξ2

α2

f 2H2

V (Φ)
' 2

3

ξ2

α2

F 2

M2
P

. (3.18)

This result shows that the kinetic energy of the inflaton can be neglected with
respect to the potential energy for (ξ/α)(f/MP )� 1, which is equivalent again to
the condition α� ξ, since f .MP ;

ii. One has also to check whether this solution actually corresponds to an inflating
Universe. To do it, we compute the slow roll parameter

ε ≡ −Ḣ/H2 =
1

2M2
PH

2

[
Φ̇2 +

2

3

(
~E2 + ~B2

)
+
~∇ ·
(
~E × ~B

)
3aH

]
, (3.19)

where we have used the equations of motion and
〈
~∇ ·
(
~E × ~B

)〉
. By inserting into

equation (3.19) the expressions for Φ̇2,
〈
~E2 + ~B2

〉
and H2 found above, we finally

derive the result

ε ' 2ξ2

α2

f 2

M2
P

+
8

7

ξ

α

fV ′(Φ)

V (Φ)
. (3.20)

Hence, the condition for inflation ε < 1 is satisfied as long as the constraint in i is
satisfied;

27



iii. Next we have to find out for which values of the parameters the terms Φ̈ and 3HΦ̇
can be neglected. The conditions to satisfy are the following:

(a)
3HΦ̇

V ′
∼ ξ

2α

fV/V ′

M2
P

� 1, (3.21)

(b)
Φ̈

V ′
∼ 2ξ

3α

(
−εfV/V

′

M2
P

+
f 2

πM2
P

V V ′′/V ′2 − 2

α

)
� 1. (3.22)

Again, since fV/V ′ = O(f 2) and V V ′′/V ′2 = O(1), unless we are close to the
minimum of the potential, then α� ξ & 1 guarantees that both (a) and (b) hold;

iv. Finally, the last and strongest constraint comes from the requirement that inflation
lasts for long enough. To check it, we compute the number of efoldings, given by

N '
∫ Φf

Φi

H dΦ

Φ̇
=

α

2f

∫ Φf

Φi

dΦ

ξ
' α

2ξ

Φf − Φi

f
. (3.23)

Since we have that |Φf − Φi| . πf , the above equation implies that α & 2ξN/π.

3.4 Scalar perturbations and Power Spectrum

Now that we have obtained the slow roll solutions for both the inflaton Φ and the
gauge field ~A and the corresponding constraints that apply to the case, we can look for
their perturbations and power spectrum.

In our setup, perturbations in Φ arise from the classical inhomogeneities in the
electromagnetic field, whereas usually they are generated by quantum fluctuations of the
inflaton which are amplified by the evolving background. To begin with, we define ζ to
be the curvature perturbation on a uniform energy density hypersurface. This quantity
equals the perturbation of the number of efoldings ζ = δN ≡ N(x)− N̄ , where N̄ is the
number of efoldings in case of an homogeneous background. If we write the perturbed
value of the axion as Φ = Φ0 + φ(τ, ~x), then ζ = Hφ/Φ̇0. Hence, if we want to compute
the power spectrum for ζ, we have to first compute the two-point function of φ.

The inflaton perturbation φ obeys the equation

φ′′ + 2aHφ′ +
(
−∇2 + a2V ′′

)
φ = −α

f
a2δ
[
~E · ~B

]
, (3.24)

where the fluctuation δ
[
~E · ~B

]
(τ, ~x) gets two main contributions: the intrinsic inhomo-

geneities in ~E · ~B, which would be present even if φ = 0, and a further one that comes
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from the fact that
〈
~E · ~B

〉
depends on Φ̇. As a consequence, when we substitute Φ + φ

to Φ, then
〈
~E · ~B

〉
will become

〈
~E · ~B

〉
+ φ̇

∂
〈
~E · ~B

〉
∂Φ̇

. (3.25)

Therefore, the fluctuation in equation (3.24) can be expressed in the following way

δ
[
~E · ~B

]
'
[
~E · ~B −

〈
~E · ~B

〉]
φ=0

+
∂
〈
~E · ~B

〉
∂Φ̇

φ̇. (3.26)

In the second term of the right hand side,
〈
~E · ~B

〉
depends on Φ̇ only through ξ. Since

∂
〈
~E · ~B

〉
/∂ξ ' 2π

〈
~E · ~B

〉
, using the background equation α

〈
~E · ~B

〉
/f ' V ′ we can rewrite

it as παV ′φ̇/(fH). Instead, we will denote the term in square brackets by δ ~E· ~B(τ, ~x).
Moving to Fourier space, the equation of motion for the perturbation φ will be

φ′′(~p)− 2

τ

(
1− παV ′

2fH2

)
φ′(~p) +

(
p2 +

V ′′

H2τ 2

)
φ(~p) = −α

f
a2

∫
d3x

(2π)3/2
e−i~p ~xδ ~E· ~B(τ, ~x).

(3.27)
Once we denote with G(τ, τ ′) the Green function associated to the differential operator
acting on φ in the equation above, the correlator of the inflaton in momentum space reads

〈
φ(~p)φ(~p ′)

〉
=
α2

f 2

∫
dτ ′dτ ′′G(τ, τ ′)G(τ, τ ′′)a′2a′′2×δ(~p+~p ′)

∫
d3xei~p ~x

〈
δ ~E· ~B(τ ′, 0)δ ~E· ~B(τ ′′, ~x)

〉
,

(3.28)
where we have used the notation a′ ≡ a(τ ′) and a′′ ≡ a(τ ′′).

Hence, in order to find the propagator for φ, we must first compute the two-point
function of δ ~E· ~B, find the Green function associated to the homogeneous part of equation
(3.27) and solve the integral in (3.28). The details of all this calculation can be found in
Appendix 1. Here we will present the final result

〈
φ(~p)φ(~p ′)

〉
' 2× 10−6α

2e4πξ

ν2
+f

2

δ(~p+ ~p ′)

p3

H4

ξ8

(25ξp

aH

)2ν−
, (3.29)

where we have defined

ν+ '
παV ′

fH2
∝ αM2

P

f 2
� 1,

ν− '
V ′′f

παV ′
∝ 1

α
� 1. (3.30)

Now we have all the ingredients to compute the power spectrum of the scalar pertur-
bations Pζ . For generality, we want a result which is valid also in the case we are dealing
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with a number of gauge fields N 6= 1. In this extended scenario, the constraints we have
found before remain unchanged, while the power spectrum is suppressed by a factor
1/N , since the different contributions to the two-point function of δ ~E· ~B add incoherently.
Taking the suppression into account and using also the relation α(H/ξ)4e2πξ = f |V ′|/I,
we get the expression

Pζ ≡
p3H2

〈
φφ
〉

2π2 Φ̇2
0 δ(~p+ ~p ′)

' 5× 10−2

N ξ2

(
25 ξ p

aH

)2ν−

. (3.31)

The spectral index of the scalar perturbation is

n− 1 = 2ν− '
2

πα

f V ′′(Φ0)

V ′(Φ0)
. (3.32)

Studying its behaviour with respect to V ′ and V ′′, we notice that the sign of the former
doesn’t change during inflation, whereas V ′′ crosses zero. As a consequence, the spectrum
can be either red or blue, depending on the value of Φ when the relevant scale leaved the
horizon.
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3.5 Scalar perturbations in natural inflation

Historically, natural inflation was the first axion model attempted, proposed as
early as in 1990. In this particular setup, the potential is periodic and has the form
V (Φ) = Λ4[cos(Φ/f) + 1], which arises from nonperturbative effects and the break of the
axion shift symmetry down to a subgroup Φ→ Φ + (2π)f . Unfortunately, the condition
for inflation, i.e. the flatness requirement for the inflaton potential, is satisfied only for
f � MP , a regime which is impossible to achieve in a controlled effective field theory
without having a global symmetry breaking below the Planck scale. Moreover, such large
values of the axion constant seem to be not allowed in string theory.

Nevertheless, it is still possible to obtain inflation if we add precisely an interacting
term to the Lagrangian like the one in (3.1). In this way, even if f < MP and the inflaton
potential is steep, a part of the kinetic energy of the axion is transferred to the gauge
field, effectively slowing it down to the point that the slow-roll conditions are obeyed.
The transferred energy is transformed into classical fluctuations of the gauge field that,
besides their dissipative effect on the inflaton, become gravitational sources and generate
scalar and tensorial perturbations in the metric.

Under these assumptions, all the calculations we have done in the previous sections
are still valid. In particular, we are interested in inflationary solutions where the slow-roll
regime is supported by dissipation into electromagnetic modes, so ξ is governed by the
transcendental equation in (3.16). Notice that, unless Φ is very close to an extremum of
V (and with α not exponentially large or small), ξ grows logarithmically on V (Φ):

ξ ∼ 2

π
log

[
MP

Λ

]
, (3.33)

and it will never be larger than O(10). For example, for Λ ∼ 107 GeV, ξ ' 20.
Looking at the constraint on our solution, the condition α� ξ found previously it is

mandatory in order to neglect the backreaction of the gauge field on Friedmann equation.
As we mentioned before, it is violated when the inflaton approaches the minimum of the
potential. In this case we enter the reheating stage, and by approximating V (Φ) ∝ Φ2

one finds that the energy density at reheating is ∼ Λ4Φ2
RH/f

2, so that the temperature in
this phase will be of the order of Λ

√
ξ/α. The expression for the reheating temperature

can be used also to estimate how large ξ can be. If we want the reheating temperature to
be larger than O(102) GeV in order to have enough room for baryogenesis to occur, since
ξ/α ∼ 10−2 there are two possible cases: a low energy scale inflation, where Λ can be as
low as few TeVs, ξ ≥ 20 and α ≥ 400, so that from the relation α ≥ 2ξN/π we see as
only 30 efoldings of inflation are sufficient to solve all the Hot Big Bang theory problems;
otherwise, in the opposite regime of high energy inflation, ξ can be as small as 4 with
α ≥ 150 for Λ ' 1016 GeV, in which case N ' 60 [9].
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Figure 3.1: Evolution of φ(t) in natural inflation models, in the case the coupling between
the inflaton and the gauge field is absent and when the backreaction is taken into account,
respectively on the left and right panel. For clarity, in the left panel we consider a small
temporal window.

Finally, we analyse the scalar power spectrum expression in equation (3.31). Com-
paring it with the COBE normalization Pζ = 2.5 ∗ 10−9, the two match only for large
values of N , since ξ = O(10). In particular, if we take ξ ' 20, then N ' 5× 104 if we
want perturbations with the observed amplitude. Such a large number of gauge fields
might seem unattainable, but in [9] the authors claim that is possible to find tens of
gauge fields in string theory, where there may be N branes. Alternatively, they propose
to consider a different gauge group, like SU(

√
N ), with

√
N ' 200 branes. This option

has the advantage that all gauge fields have automatically the same coupling constant α
to the inflaton, but it requires in principle to take into account also their self-interaction,
unless the gauge self-coupling is weak enough to consistently neglect this effect.

In order to visualize the effects of the coupling with the gauge field on the inflaton and
support the validity of the analytical approximations we have made so far, we numerically
solved both Klein-Gordon and Friedmann equations, including the backreaction only in the
former. The computation was made for the choice of parameters α = 300, Λ = 10−3MP

and f = 0.1MP . In fig. 3.1 we show the behaviour of the inflaton in the case where
the coupling is absent, i.e. if we set to zero the right hand side of equation (3.15), and
when the backreaction is taken into account, respectively on the left and right panel.
In the free case the axion rapidly reaches an oscillatory regime, due to the periodicity
of its potential, whereas the dissipative effect of the gauge field in the other case slows
efficiently the inflaton, so much that the minimum of the potential is reached only after
approximately 60 efoldings, as one can easily understand by inspecting the inset of figure
3.2.

The success of the inflationary process can be detected also by looking in the right
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Figure 3.2: Evolution of background quantities for ∆ = 10−3MP , f = 0.1MP , α = 300
and N = 105, with V (Φ) = Λ4[cos(Φ/f) + 1] and time expressed in units of MP/∆

2. Left
panel: evolution of ξ(t). Right panel: behaviour of ε (in the solid blue line) and of the
ratio of the energy of the gauge quanta over the energy of the inflaton (in the red, dashed
curve) during inflation. The inset shows the relation between the cosmic time t and the
number of efoldings N .

panel of figure 3.2, where the slow-roll parameter ε approaches unity only towards the
end of inflation. In the same panel we depict also the ratio of the energy in gauge modes
over the energy of the inflaton. As we expected, this quantity becomes significant only
in the last 10 efoldings, since the production of the gauge modes grows exponentially in
the axion velocity, through ξ. Hence, the backreaction of the gauge field in Friedmann
equation can be safely neglected, as we have assume throughout this chapter.

Finally, in the left panel of the same figure we show the evolution of ξ(t). Rather
than being constant, it increases with time even if mildly, starting from ξ ' 4 and ending
at ξ ' 6 after approximately 60 efoldings of inflation. This behaviour is in agreement
with the logarithmic dependence in equation (3.33), which for this choice of parameters
will give ξ ' 4.4.

3.6 Scalar perturbations in axion monodromy

Axion monodromy is a string-derived model based on a single axion field. The
potential has the form

V (Φ) = µ3Φ + Λ4 cos[
Φ

f
], (3.34)

where the linear contribution arises from the explicit breaking of the shift symmetry when
wrapping an NS5-brane on an appropriate 2-cycle, while the periodic modulation is due
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Figure 3.3: Left panel: contribution of the Hubble and gauge field friction terms to the
dynamics of Φ. Right panel: relative strength of the energy density of the produced
quanta; this term is neglected in the numerical evolution of Friedmann equation. Both
plots were made from a linear potential.

to nonperturbative effects. The axion decay constant is bounded [12, 28] as

0.06V−1/2g1/4
s <

f

MP

< 0.9gs, (3.35)

where gs < 1 is the string constant and V � 1 is the compactification volume in string
units. This bound implies then that f �MP . The linear term in the potential dominates
over the periodic modulation, so we will neglect the latter in what follows. Nevertheless,
it can be shown that this correction can give rise to resonant nongaussianities which may
dominate the bispectrum for f �MP . Notice that since we now have a potential that
supports inflation, we do not need to rely on dissipation to drive inflation, even though
the interaction between the axion and the gauge field can enhance the production of
tensor modes allowing for their detection, as we will see in the next chapter.

Considering the dynamical effects produced by the coupling between the axion and the
gauge field, the main results found in the first four sections of this chapter are still valid.
In particular, the backreaction of the gauge field on both Klein-Gordon and Friedmann
equations becomes important only towards the end of inflation, so that at CMB/LSS
scales it can be neglected. Nevertheless, an interaction of the form ΦFF̃ may still have a
profound impact on the cosmological fluctuations since it allows inverse decay processes
δA+ δA→ δΦ [13],[14]. This new source of inflaton fluctuations leads to a scalar power
spectrum that reads, after including also the vacuum contribution,

Pζ = P
(
k

k0

)ns−1[
1 + 7.5× 10−5P e

4πξ

ξ6

]
, (3.36)
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Figure 3.4: Evolution of the inflaton as a function of the number of e-foldings, starting
from |ΦCMB| = 9.9MP , for axion monodromy models. The red solid line (ξCMB = 2.5)and
the green dashed line (ξ = 0) represents the cases with and without the coupling to gauge
fields, respectively. For the first line, the value of α is chosen so to lead to observable
non-Gaussianity from inverse decay. For the second line, we have shifted the number of
e-foldings to make manifest that the two evolutions coincide at early times.

where P1/2 = H2/(2πφ̇), ns is the spectral index and k0 = 0.002Mpc−1 is the pivot
scale. Moreover, since as we saw ξ increases with time, the production of gauge quanta
can results in an additional friction on the inflaton motion that prolongs the duration
of inflation, but at the same time it may even lead to a strong backreaction regime.
Therefore, we studied this possibility and checked the validity of our assumptions by
means of numerical simulations.

We numerically evolve the Klein-Gordon equation and the Friedmann equation,
keeping into account the backreaction term for the axion but disregarding the energy
density of the gauge modes in the latter, so that we have a simple algebraic equation
for H. The right panel of figure 3.3 allows to check that this last assumption is valid.
Indeed, the ratio between the energy density of the gauge quanta and the total energy of
the system becomes dangerously close to unity only at the very end of inflation. The
parameters are chosen so that the results for the power spectrum found previously apply
also in this case. In particular, starting from the slow-roll form of the Klein-Gordon and
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Freidmann equations in (2.10) and (2.11), we can derive a relation between the initial
values of ξ and Φ at the CMB scale and the ratio α/f :

ξ
∣∣
ΦCMB

= 2.5→ α

f
= 5
|ΦCMB|
M2

P

. (3.37)

The mass scale µ was instead derived requiring COBE normalization for the scalar power
spectrum P1/2

ζ = H2/(2πφ̇) ' 5.10−5.
In figure 3.4 we show the evolution of the inflaton as a function of the number of

efoldings for two different values: ξCMB = 2.5 and ξ = 0, i.e. the free case with no
coupling between the axion and the gauge field. Given the same initial value of the field
at the CMB scale, the backreaction of the gauge modes on the background evolution
becomes noticeable only in the last ∼ 25 efoldings of inflation, while it is completely
negligible at earlier times. In particular, the two trajectories reaches the minimum of
the potential with a difference of ∼ 10 efoldings, showing that the backreaction has
successfully increased the duration of inflation.

The effect of the gauge quanta on the dynamics of the inflaton during the last ∼ 25
efoldings is visible also in the left panel of figure 3.3, where we plot the evolution of the
two friction terms in the axion equation as a function of N . The standard Hubble friction
controls the early stages of inflation, but the backreaction of the produced gauge quanta
gradually increases its contribution until it completely dominates the evolution of the
system. Namely, in the last ∼ 10 efoldings the system approaches the strong backreaction
regime, where a more sophisticated numerical method is required, see [16].
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Chapter 4

Tensor perturbations and Power
Spectrum

Until now we have seen how the coupling between the axion-like inflaton and the gauge
field allows the former to slow down when rolling down its potential, while providing
enough energy to the latter to produce classical fluctuations. These particles are then
sources for the gravitational field, leading to scalar and tensor perturbations. The scalar
power spectrum was computed in the last chapter; here we will focus in the production
of tensor modes and in their power spectrum. Again, we will first present the subject in
full generality before specializing our results for particular models.

4.1 Generation of tensor modes

Let us start from the form of the tensorial part of the perturbed metric as a function
of conformal time τ

ds2 = a2(τ)[−dτ 2 + (δij + hij)dx
idxj], (4.1)

where the tensor modes hij are traceless and transverse, i.e. hi
i = hij,j = 0. Introducing

the transverse traceless projector

Πij
lm = Πi

lΠj
m − 1

2
ΠijΠ

lm, (4.2)

with Πij = δij − ∂i∂j/(∂i∂i) = δij − ∂i∂j/∆, and the spatial part of the energy-momentum
tensor for the gauge field

TEM
ij = −a2(EiEj +BiBj) +

a2

2
(E2 +B2)δij, (4.3)

the equation of motion for the gravitational waves hij reads

h′′ij + 2
a′

a
h′ij −∆hij =

2

M2
P

Πij
lmTEM

lm . (4.4)
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From now on, we will ignore the second term proportional to the delta function in the
definition of the energy-momentum tensor, since we are interested only on its traceless
and transverse part.

Moving to momentum space, it is customary to project hij into positive and negative
helicity modes

hij(~k) =
√

2
∑
λ=±

εiλ(
~k)εjλ(

~k)hλ(τ,~k), (4.5)

where the amplitude hλ(~k) can be found by using the polarization tensors Πij
±(~k) =

εi∓(~k)εj∓(~k)/
√

2, so that h±(~k) = Πij
±(~k)hij(~k). Here the helicity vectors εi± are defined

such that kiε
i
± = 0, εabck

bεc± = ∓ikεa±, εi±ε
i
∓ = 1 and εi±ε

i
± = 0. Now we promote the

functions h± to operators. Neglecting for the moment the homogeneous part of the
equation of motion for hij in (4.4), we first introduce the Green function for the operator
d2/dτ 2 − (2/τ)d/dτ + k2,

Gk(τ, τ
′) =

1

k3τ ′2
[(1 + k2ττ ′) sin[k(τ − τ ′)] + k(τ ′ − τ) cos[k(τ − τ ′)]] (4.6)

for τ > τ ′, while Gk(τ < τ ′) = 0. Then, using the property Πij
±Πij

lm = Πlm
± , the

expression for h± is

ĥ±(~k) = −2H2

M2
P

∫
dτ ′Gk(τ, τ

′)τ ′2
∫

d3q

(2π)3/2
Πlm
± (~k)× (4.7)

×
[
Â′l(~q, τ

′)Â′m( ~k − q, τ ′)− εlabqaÂ′b(~q, τ ′)εmcd(kc − qc)Â′m( ~k − q, τ ′)
]
, (4.8)

where we have substituted in the definition of TEM
ij the expressions of ~E and ~B in terms

of the four-potential A(~k, τ).
As we discussed in the previous chapter, only the A+ mode is amplified by the rolling

inflaton while A− can be set to zero. Moreover, since the production of tensor modes is
efficient only when (8ξ)−1 � |kτ | � 2ξ, we can use the approximated form in equation
(3.11) for the positive-helicity gauge mode. By applying Wick’s theorem, one can find
the two-point function for the helicity-λ graviton (see Appendix B for more details in the
calculation):

〈hλ(~k)hλ(~k′)〉 =
H4ξ

4π3M4
P

e4πξδ(~k + ~k′)

∫
dτ ′dτ ′′|τ ′|3/2|τ ′′|3/2Gk(τ, τ

′)Gk(τ, τ
′′)× (4.9)

×
∫
d3~q|εi−λ(~k)εi+(~q)|2|εj−λ(~k)εj+( ~k − q)|2

√
| ~k − q|√qe−2

√
2ξ(
√
|τ ′|+
√
|τ ′′|)(√q+

√
| ~k−q|).

(4.10)

Notice that the result depends on both the propagators, through the Green functions,
and on the amplitude of the gauge field and on the helicity of the graviton. In the large
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scale limit −kτ → 0, the integral above can be computed numerically, but here we prefer
to use a semi-analytical approximation valid for ξ & 3:

〈h+(~k)h+(~k′)〉 ' 8.6 ∗ 10−7 H
4

M4
P

e4πξ

ξ6

δ(~k + ~k′)

k3
, (4.11)

〈h−(~k)h−(~k′)〉 ' 1.8 ∗ 10−9 H
4

M4
P

e4πξ

ξ6

δ(~k + ~k′)

k3
. (4.12)

As we can see, both the left- and right-handed tensor modes spectra are scale invariant,
but thanks to the parity-violating nature of the system, they differ by a factor ∼ 103. The
discrepancy comes from the term |εi−λ(~k)εi+(~q)|2|εj−λ(~k)εj+( ~k − q)|2. In particular, using

the properties of the helicity vectors, when |~q| � |~k| the correlator vanishes for λ = −
but remains finite for λ = +, a result which can be easily explained from a physical
point of view by noticing that for small transverse momentum, conservation of angular
momentum does not allow two positive-helicity photons to generate a negative-helicity
graviton.

As we did for the scalar perturbations, our final goal is to have the tensor mode power
spectrum, which can be then easily compared with experimental results. Its definition is
analogous to the one we provided in the curvature perturbations:

P t,± =
k3

2π2
|h±(~k)|2. (4.13)

In addition to our results in equations (4.11) and (4.12), we must also take into account
the parity-symmetric contribution to gravitons coming from the homogeneous part of
the equation of motion (4.4), i.e. the gravitational waves generated by the standard
amplification of vacuum fluctuations in a de Sitter spacetime. Therefore, the final result
reads

P t,+ =
H2

π2M2
P

(
1 + 8.6× 10−7 H

2

M2
P

e4πξ

ξ6

)
, (4.14)

P t,− =
H2

π2M2
P

(
1 + 1.8× 10−9 H

2

M2
P

e4πξ

ξ6

)
. (4.15)

In order to compare our results with the sensitivity of interferometers, it is convenient to
introduce the fractional energy density per logarithmic wavenumber interval, in units of
the critical density ρcrit,

ΩGW,0 =
1

ρcrit,0

∂ρGW,0

∂ ln k
=

8πG

3H2
0

∂ρGW,0

∂ ln k
, (4.16)

where the label 0 refers to quantities evaluated today, while no label means the end of
inflation. Using the fact that both radiation and GW energy densities scales like a−4, we
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can back evolve the density parameter to the end of inflation, when our results for both
the two-point function and the tensor power spectrum are still valid. Indeed, one can
write

ΩGW,0 =
1

ρcrit,0

∂ρGW,0

∂ ln k
=

1

ρcrit,0

a4

a4
0

∂ρGW

∂ ln k
=

1

ρcrit,0

ργ,0
ργ

ρGW

∂ ln k
= (4.17)

= Ωγ,0
1

ργ

∂ρGW

∂ ln k
= Ωγ,0

1

ρcrit

∂ρGW

∂ ln k
, (4.18)

where in the last step we have used ργ = ρcrit at the end of inflation, i.e. at the beginning
of RD era. The vacuum expectation value of the gravitational wave energy density is
given by

〈0|ρGW|0〉 = 〈0| 1

64πG

(h′ij)
2 + (~∇hij)2

a2
|0〉 =

1

64πG

∫ inf

0

k3

2π2

|h±(~k)′|2 + k2|h±(~k)|2

a2

dk

k
.

(4.19)

Inserting this expression in equation (4.18) and using the property |h±(~k)′|2 = k2|h±(~k)|2,
valid for modes which have re-entered the horizon after inflation, the final result for the
density parameter is

ΩGW,0 = Ωγ,0
8πG

3H2

2k2

64πG

k3

2π2
(|h+|2 + |h−|2) =

Ωγ,0

12

k2

a2H2
(P t,+ + P t,−), (4.20)

where today density parameter for radiation has value Ωγ,0 = ργ,0/3H
2
0M

2
P ' 8.6 · 10−5

and the fraction k2/(aH)2 can be set equal to 1 at horizon crossing. It is useful to plot
ΩGW,0 as a function of frequency f = k/2π, which can on the other hand be related to
the number of e-foldings via the relation

N −NCMB = ln a− ln aCMB = ln
a

aCMB

= ln
kCMB

k
= ln

kCMB

0.002Mpc−1
− ln

k

0.002Mpc−1
=

(4.21)

= ln
kCMB

0.002Mpc−1
− ln

2πf

0.002Mpc−1
= ln

kCMB

0.002Mpc−1
− 44.9− ln

f

102Hz
.

(4.22)

Although the results that we have obtained are independent from the actual form of
the inflaton potential, some constraints need to be applied to the model. First of all, we
have to impose COBE normalization for the scalar perturbations power spectrum, which
we rewrite for convenience as

Pζ =
H2

8π2εM2
P

[
1 + 9.5× 10−7 H

2

εM2
P

e4πξ

ξ6

]
; (4.23)
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such condition then reads Pζ = Pobs
ζ = 2.5 × 10−9. In addition to this, the strongest

constraint comes from the requirement that nongaussianities are within the limits set by
observations. The parameter which encodes departure from gaussianity is the three-point
correlation function, and it can be shown via similar calculations to the ones we already
performed that in our setup it has maximal amplitude for equilateral configurations,
where

f equil
NL ' 8.9× 104 H6

ε3M6
P

e6πξ

ξ9
. (4.24)

Using the expression for the curvature perturbations power spectrum in (4.23) in the
equation above, from the current Planck 2018 limit [25] f equil

NL = −26± 47 at 68% CL we
derive the upper bound ξ < 2.527.

4.2 Tensor perturbations in natural inflation models

In a natural inflation scenario, for such small values of ξ and for H . 10−4MP parity
violation in the CMB is undetectable while respecting the constraints from nongaussiani-
ties, as one can see by considering the net handedness of the tensor modes through the
parameter

∆χ ≡ P
t,+ − P t,−

P t,+ + P t,−
=

4.3× 10−7 e4πξ

ξ6
H2

M2
P

1 + 4.3× 10−7 e4πξ

ξ6
H2

M2
P

. (4.25)

Indeed, a simple calculation made with ξCMB = 2.527 and H = 10−4MP leads to a
chirality parameter ∆χ = 0.00095 at the CMB scales, which is too small to be verified
by any current and future experiments. Therefore, the model needs to be modified for
parity violation to be detected while complying with the other observations. In [10], two
possible ways are proposed.

The first possibility is to consider a second scalar field, a curvaton, that accounts
for the majority of the density perturbations and has a gaussian statistics. Denoting
by δ < 1 the fraction of contribution from equation (4.23) to the observed Pobs

ζ , so that

Pφζ = 2.5δ × 10−9, it is easy to see that if f equil
NL ' 8400δ3/2 the δ ' 0.01 is sufficient to

make fNL compatible with observations for all values of ξ. In the limit ξ � 1, the tensor
modes are fully chiral (∆χ ' 1), and the tensor-to-scalar ratio r = (P t,+ +P t,−)/Pobs

ζ can
be written as r ' 7.2× δ× ε2. Detectable parity violation in the spectrum of gravitational
waves can be reached for r as small as ∼ 0.009, which corresponds to ε & 1/3. Though
this large value of the slow-roll parameter in unusual in standard models of inflation, in
curvaton models the only requirement is that ε . 1 for inflation to occur.

Another possibility is to consider a system with several gauge fields, all with the same
coupling to the inflaton, as we did in the case of the scalar power spectrum. In this
way, equations (4.14),(4.15),(4.23) and (4.25) are modified by multiplying by N their
ξ-dependent parts, as well as the expression for fNL in which a factor of N is added. In
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Figure 4.1: ΩGWh
2 as function of the frequency f in the case of a linear potential for

ξCMB = 0; 2.33; 2.527. We have required N = 60 e-foldings of observable inflation. For
reference we also show the sensitivity curves of LISA, Advanced LIGO/VIRGO and
Einstein Telescope.

the regime of large ξ, once we impose COBE normalization the three point function scales
as 1/

√
N . As a consequence, by setting N ' 105 the constraint from nongaussianities is

satisfied for all values of ξ. As stated in the previous chapter, such a large number of
gauge field can arise in string theory, where string compactifications with thousands of
degrees of freedom is common, according to [9].

4.3 Gravitational waves from axion monodromy in-

flation

Instead of introducing modified natural inflation models to have parity-violating
gravitational waves which can be detected by interferometers, axion monodromy may
constitute a better solution.

As we saw, since the gauge modes get amplified at late times, the tensor power
spectrum grows exponentially only towards the end of inflation, specifically in the last
∼ 10 efoldings. Hence, gravitational waves detectable by interferometers arise only
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on small scales when the backreaction of the gauge quanta becomes important. The
dissipation effect of the gauge modes acts directly on the scalar cosmological fluctuations,
leading to a scalar power spectrum of the form

Pζ ' O(10−2)
1

ξ2
, (4.26)

as we derived in section 4 of the previous chapter. Although curvature fluctuations on
small scales are much larger than on CMB scales, a perturbative analysis of gravitational
waves, as we did before, is still justified for small values of ξ.

The numerical result for the density parameter of gravitational waves as a function
of their frequency is plotted in figure 4.1 for 3 different values of ξ at the CMB scale:
ξ
∣∣
CMB

= 2.527, themaximum values allowed by nongaussianities, ξ
∣∣
CMB

= 2.33 and

ξ
∣∣
CMB

= 0, corresponding to the free case. The computation was done similarly to what
was done in the previous chapter, taking into account the backreaction on the inflaton
field but not on H and defining the ratio α/f and µ as in (3.37) and below. Moreover,
we assumed NCMB = 60 for fluctuations at the CMB scales.

Notice that, for a fixed ξ
∣∣
CMB

6= 0 there are three different phases in the gravitational
signal. For small frequencies, only the vacuum fluctuations are present in the spectrum; as
the frequency increases, there is first a fast growth due to the inverse decay contribution
and then a phase with a reduced increase rate related to the strong backreaction at late
times. In addition to this, a second effect which is clearly visible in figure 4.1 is that for
larger ξ

∣∣
CMB

the whole signal is shifted towards lower frequencies, since there are more
gauge quanta that contribute to the backreaction, effectively increasing the number of
efoldings at the end of inflation. The two effects act in opposite directions, but the latter
dominates over the former, so that the net result is an increase in the signal thanks to
the strong backreaction.

Despite the enhancement in the parity violating gravitational waves signal due to
the backreaction of the gauge modes on the scalar field at late times, figure 4.1 shows
that this effect is not sufficient for detection with interferometers. The maximum value
of ξ

∣∣
CMB

allowed by nongaussianities is barely sufficient to marginally superimpose the
gravitational waves signal and LISA sensitivity curve, whereas the signal is totally absent
for advanced LIGO and Einstein Telescope.
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4.4 Chiral gravitational waves for a step-like poten-

tial

Axion monodromy fails in producing detectable chiral gravitational waves at inter-
ferometers scales, at least in its simplest version, because the tensor perturbations are
efficiently produced only in the last ∼ 10 efoldings and therefore the frequency of their
signal is too high for current interferometers. One possible solution is to slightly change
the linear potential we considered before by adding a step via an hyperbolic tangent. The
generation of gravitational waves increases exponentially in ξ, which in turn is directly
related to the axion’s velocity. In correspondence of the step, the inflaton velocity first
increases and then drops thanks to a positive and negative acceleration, respectively.
Gauge modes production can therefore be localized only within the time period in which
the axion is rolling down the step.

Indeed, if we take a potential of the form

V (φ) = µ3 ×
(
|φ| − δ tanh

[
φ− φ0

∆

]
+ δ

)
(4.27)

then by suitably choosing the parameters δ, ∆ and φ0 we can force the production of
gauge quanta and tensor perturbations at earlier times and at the same time have enough
inflation later to decrease the frequency of the gravitational waves. Here, φ0 sets the
position of the step, ∆ its width and δ how steep it is, and they are all expressed in units
of MP .

In order to explore this model, we numerically solved Klein-Gordon equation for
the inflaton, where we took into account the backreaction term from the gauge modes,
together with the backreaction-free Friedmann equation. The system is governed by 7
parameters, namely f , α, µ, φCMB, φ0, δ and ∆, but not all of them are independent.
Indeed, the ratio α/f is related to the value of ξ at the CMB scale through the relation

ξCMB = − α

2f

V ′

V
= − α

2f
×

|φCMB |
φCMB

− δ
∆

cosh
[
φCMB−φ0

∆

]−2

|φCMB| − δ tanh
[
φCMB−φ0

∆

]
+ δ

, (4.28)

while the mass scale µ is determined once again by requiring COBE normalization for
the scalar power spectrum:

Pobs
ζ =

V 3

12π2V ′2
=

(
µ3 ×

(
|φCMB| − δ tanh

[
φCMB−φ0

∆

]
+ δ
))3

12π2
(
µ3 ×

(
|φCMB |
φCMB

− δ
∆

cosh
[
φCMB−φ0

∆

]−2))2 . (4.29)

Moreover, the values of f and ξCMB can be fixed before the simulation; by requiring to
have NCMB = 60 it is also possible to determine φCMB via an iterative process. The choice
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Figure 4.2: ΩGWh
2 as a function of the frequency f in the case of a linear potential with

a step modulation given by an hyperbolic tangent, for ξCMB = 0; 2.33; 2.527, δ = 3.5 and
∆ = 3. We have required N = 60 e-foldings of observable inflation. For reference we also
show the sensitivity curves of LISA, Advanced LIGO/VIRGO and Einstein Telescope. As
a reference, in purple we show the gravitational signal for ξCMB = 2.527 for plain axion
monodromy.
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Figure 4.3: Friction terms in Klein-Gordon equation for φ (on the left panel) and relative
strength of the energy density of the produced quanta (on the right panel) for ξCMB = 2.33
and ξCMB = 2.527, respectively on the top and on the bottom, for a potential of the form
(4.27). For both values of ξCMB the contribution from the backreaction to Friedmann
equation was neglected and the parameters have values ∆ = 3 and δ = 3.5.
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for φ0 can be made according to when during inflation we need to enhance the production
of gravitational waves, as we will discuss in the following. In the end, the values for α and
µ can be numerically obtained by equations (4.28) and (4.29), respectively, and depends
only on the choice for δ and ∆.

There are two possible regimes, according to the order of magnitude of ∆. In the case
the step given by the hyperbolic tangent is mild, i.e. for super-Planckian values of ∆ & 2,
the model we designed gives a promising result for ξCMB = 2.527 and ξCMB = 2.33, as
can be seen in figure 4.2. The characteristic growth of the density parameter is still
present, but the whole spectrum is successfully shifted towards lower frequencies, so that
LISA may be able in future to detect strong signals of chiral gravitational waves. On the
other hand, advanced LIGO and Einstein Telescope are still blind since for the greater
frequencies in which they operates the signal is still too low. In figure 4.3 we control the
contributions from the two possible backreactions, for both values of ξCMB. In the left
panel we plot the two friction terms in the Klein-Gordon equation. Having set φ0 at 25
efoldings before the end of inflation, we see as the gauge quanta start dissipating the
inflaton energy about 10 efoldings earlier with respect to what was found for plain axion
monodromy. As we expected, the strong backreaction regime already dominates over the
standard Hubble friction term at ∼ 20 efoldings before the end of inflation, doing the
trick to increase at earlier times the tensor power spectrum. In the right panel of figure
4.3, instead, we show the relative energy contained in the gauge quanta. Although it
reaches order of unity only at the very end of inflation, the large plateau between ∼ 30
and ∼ 10 efoldings before inflation ends, where ρgauge/ρtot ∼ 0.01, might give rise to a
cumulative effect that would jeopardise our assumption of no backreaction in Friedmann
equation.

For sub-Planckian values of ∆, i.e. ∆ . 0.8, the step becomes very steep and the
shape of the density parameter as a function of the frequency changes drastically. Instead
of the two-slope increase, as ∆ gets smaller and smaller a peak emerges from the vacuum
signal and gets progressively enhanced. After this hill, the signal doesn’t come back to
the original value, but after a drop which depends on the steepness of the modulation
in the potential, it continues to grow with the same behaviour we saw in the case ∆ is
super-Planckian and in the axion monodromy model, due to the backreaction effect of the
gauge field. This particular behaviour can be physically explained by taking into account
the form of the potential. Indeed, when the inflaton reaches the step it experiences a
sudden, strong acceleration; its velocity increases dramatically in a small period of time,
leading to an overproduction of gauge modes, hence of chiral gravitational waves. Once
the scalar field reaches the end of the step, the negative acceleration slows it down and
the signal gets damped, but not completely.

A visual representation of the dependence of both the maximum value of ΩGW at the
peak and the corresponding frequency f as a function of δ and ∆ are depicted in figure
4.4 and 4.5, respectively. The same values are also reported in table 4.1, for clarity.As a
function of ∆, the peak of the hill grows as ∆ gets smaller, as one expect since the inflaton
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Figure 4.4: Value of ΩGWh
2 at the peak of the hill region for different choices of the

parameters δ and ∆. To each colour corresponds a fixed value of ∆, namely blue, green
and red for ∆ = 0.2; 0.5; 0.8, respectively.

Figure 4.5: Frequency of the maximum of the hill region for different choices of the
parameters δ and ∆. To each colour corresponds a fixed value of ∆, namely blue, green
and red for ∆ = 0.2; 0.5; 0.8, respectively.
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δ ∆ Ωmax fmax

5 0.8 8.53816 · 10−8 0.167557
5 0.5 1.935352 · 10−7 0.0317491
5 0.2 1.074333 · 10−6 0.00538124
4 0.8 8.28382 · 10−8 0.241711
4 0.5 1.87047 · 10−7 0.0175859
4 0.2 1.188560 · 10−6 0.00745644
3 0.8 5.70893 · 10−8 0.0372875
3 0.5 1.42030 · 10−7 0.0200096
3 0.2 9.100469 · 10−7 0.00909497
2 0.8 3.999176 · 10−8 0.203672
2 0.5 8.264101 · 10−8 0.0121956
2 0.2 5.352503 · 10−7 0.00609385
1 0.8 1.086502 · 10−8 0.0178734
1 0.5 2.655666 · 10−8 0.00846694
1 0.2 1.784154 · 10−7 0.0056523

0.5 0.8 2.721432 · 10−9 0.00771076
0.5 0.5 7.460002 · 10−9 0.00865278
0.5 0.2 4.995847 · 10−8 0.00558216

Table 4.1: Value of ΩGWh
2 at the peak of the hill region and corresponding frequency for

different choices of the parameters δ and ∆.
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Figure 4.6: ΩGWh
2 as a function of the frequency f for ξCMB = 0; 1.8; 2.47. The latter was

found for δ = 3 and ∆ = 0.2, while for ξCMB = 1.8 δ = 0.7 and ∆ = 1. We have required
N = 60 e-foldings of observable inflation. For reference we also show the sensitivity
curves of LISA, Advanced LIGO/VIRGO and Einstein Telescope.

acquires a bigger velocity for a steeper potential. For the same reason, the maximum is
reached at earlier times, i.e. for smaller values of the frequency. Studying the shape of the
hill as a function of δ is instead more complicated. The maximum value of Ω decreases if
the steepness of the step gets smaller, as expected, given that the increase in velocity due
to the step is smaller and consequently less gauge field and gravitational wave production
takes place. However, the position of the peak does not display a monotonic behaviour,
despite being directly related to the number of efoldings necessary to the axion to reach
first the top and then the bottom of the step in the potential.

This behaviour can be used to have a detectable signal also for advanced LIGO and
ET. As can be seen from the red curve in figure 4.6, for the choice of parameters δ = 3,
∆ = 0.2 and ξCMB = 2.47, and setting φ0 to be at 15 efoldings before the end of inflation,
ΩGW overlaps both sensitivity curves thanks to a very high peak. The description of
the dynamics we provided before resembles the energy distribution in the Hubble and
gauge field dissipative channels, as one can clearly see by inspecting the top-left panel of
figure 4.7. However, despite the promising result one has to take into account also the
backreaction effect on Friedmann equation. In the top-right panel of the same figure, we
see as the presence of the peak in the density parameter is reflected in the relative energy
of the gauge field, where a crest at ' 0.1 appears around 15 efoldings before the end of
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Figure 4.7: Friction terms in Klein-Gordon equation for φ (on the left panel) and relative
strength of the energy density of the produced quanta (on the right panel) for ξCMB = 2.47
and ξCMB = 1.8, respectively on the top and on the bottom, for a potential of the form
(4.27). For both values of ξCMB the contribution from the backreaction to Friedmann
equation was neglected. See the main text for more details.

inflation, precisely when tensor modes are massively produced. It is therefore possible
that beyond that point our assumptions, as well as our result for the waves signal, are
not valid anymore.

Strong backreation on Friedmann equation appears to be the main problem related
to the possibility of detection of chiral gravitational waves within our ad-hoc designed
potential, for both regimes of super- and sub-Planckian values of the width of the step ∆.
A hill or a plateau formation in the relative energy of the gauge modes are mainly related
to the strength of the coupling between the inflaton and the gauge field, i.e. on the values
of ξCMB, and to the steepness of the potential in correspondence of the hyperbolic tangent
modulation. Indeed, if ξCMB is small enough and the step is just a small correction of
the linear potential, the production of tensor modes can be still enhanced at previous
times with respect to axion monodromy models without leading to strong backreaction
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Figure 4.8: Evolution of ξ as a function of the number of efoldings. The small hill around
25 efoldings corresponds to the production of tensor modes when the inflaton is rolling
down the step.

on Friedmann equation. The green curve of figure 4.6 represents an example. In this case
we have set δ = 0.7, ∆ = 1 and ξCMB = 1.8. A small hill allows for a superimposition
between the signal of the tensor modes and LISA’s sensitivity curve without spoiling our
assumptions. Indeed, the backreaction on the inflaton becomes dominant only in the last
' 10 efoldings, as well as the relative energy contained in the gauge field, as shown in the
bottom-left and bottom-right panel of figure 4.7, respectively. One last check needs to be
done about whether or not for such small values of ξCMB the expressions for the tensor
power spectrum in (4.14) and (4.15) still hold. By inspecting figure 4.8, one can see how
ξ & 3 before the production of tensor modes begins at approximately 30 efoldings before
the end of inflation. Therefore, when step constitute only a small perturbation of the
linear potential, a signal from chiral gravitational waves might be detected in future by
LISA while respecting both the limit from nongaussianities and the weak backreaction
on H assumption.
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Chapter 5

Conclusions and outlook

To summarize, we have seen how the interaction between an axion-like inflaton and a
gauge field can lead to a rich and complex phenomenology. As φ rolls down its potential, it
provides a time-dependent background for the quantization of the gauge field, amplifying
the vacuum fluctuations of one of its helicity modes into classical particles, which become a
source of scalar and tensor perturbations. The gauge modes also backreact on the inflaton,
slowing it down and providing a new dissipation channel in Klein-Gordon equation. As a
result, the inflationary period is extended, leaving enough room to solve the Standard
Cosmological model problems. The energy density in produced gauge field fluctuations
contributes also to the Friedmann equation, but in our computations and numerical
simulations we have systematically neglected it, while we kept its backreaction on the
inflaton.

Since the gauge modes production is enhanced only at late times, these effects become
important only towards the end of inflation and can hence be neglected at the CMB
scales. Nevertheless, scalar perturbations arise also for such large scales due to the decay
process δA+ δA→ δφ. Their power spectrum can be either red or blue, depending on
the form of the inflaton potential. At smaller scales, at which interferometers work, we
enter in a strong backreaction regime. Here is where gravitational waves are efficiently
produced, and the parity-violating nature of the system is translated into a different
power spectrum of the left-handed and right-handed modes. A net handedness of the
tensor modes can then be checked if non-vanishing TE and TB correlation in the CMB
are detected.

For natural inflation, the first axion-inflation model proposed, the interaction with
the gauge field is essential to drive inflation, but in its simplest version the theory is
unable to satisfy COBE normalization for the scalar power spectrum and to provide a
detectable signal for chiral gravitational waves.

Similarly, whereas axion monodromy allows a scalar power spectrum in agreement
with COBE normalization, the secondary tensor modes are still produced too late in the
strong backreaction regime, and their frequency is therefore too large to be detected by
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ongoing and future experiments.
We showed how a solution to this problem might come by considering a slightly different

potential, where a linear behaviour is modified with the introduction of a suitable step.
When the step is too steep or on the other hand too broad, the backreaction on the
Friedmann equation becomes stronger and our results, even if promising, might need to
be reviewed. Instead, if the step represents only a small correction to the well-studied
linear potential, such large backreaction can be avoided and chiral gravitational waves
might be detected in the future by LISA.

The work presented in this thesis has several possibilities for future extensions. It will
be interesting to better understand the behaviour of our designed axion potential as a
function of its parameters which describe the form and position of the step. Moreover, a
more complete and more reliable study of the phenomenology of all three models can
be made by taking into account also the backreaction of the gauge fluctuations on the
evolution of Hubble parameter H. We leave these for future work.
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Appendix A

Calculation of the scalar power
spectrum

As discussed in chapter 3, the curvature perturbation power spectrum is related the
two point function of the perturbations of the inflaton φ, whose expression is given in
equation (3.28). In this appendix we find a solution for that expression and then derive
the scalar power spectrum. In order to perform this calculation, we will first compute
the two point correlator of δ ~E· ~B and the propagator G(τ, τ ′).

A.1 Two-point function of δ ~E· ~B

By using the definition in (3.26) and the properties discussed afterward, the correlator
for δ ~E· ~B can be written as∫

d3x ei~p·~x 〈0 | δ ~E· ~B(τ ′, 0)δ ~E· ~B(τ ′′, ~x) | 0〉 =
1

a4(τ ′)a4(τ ′′)

∫
d3k

(2π)3
|~k||~ε+(−~k) · ~ε+(~p+ ~k)|2×

×
{
|~p+ ~k|A′+(τ ′,−~k)A+(τ ′, ~p+ ~k)A′∗+(τ ′′, ~p+ ~k)A∗+(τ ′′,−~k)+

+ |~k|A′+(τ ′, ~p+ ~k)A+(τ ′,−~k)A′∗+(τ ′′, ~p+ ~k)A∗+(τ ′′,−~k)
}
, (A.1)

where we have also assumed that A−(τ,~k) ' 0. Since the generation of inhomogeneities
in φ is enhanced for wavelengths larger than (2ξH)−1, where the electromagnetic field
has large occupation numbers and can be treated as a classical source, there is no need
to renormalize the expression above. In this regime we can use the approximation in 3.11
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for A+(τ,~k), so that the correlator above becomes∫
d3x ei~p·~x 〈0 | δ ~E· ~B(τ ′, 0)δ ~E· ~B(τ ′′, ~x) | 0〉 =

e4πξ

4a′4a′′4

∫
d3k

(2π)3
|~ε+(−~k) · ~ε+(~p+ ~k)|2×

× e−4
√

2ξ/ãH
(√
|~k|+
√
|~p+~k|

){
|~k||~p+ ~k|+ |~k|3/2|~p+ ~k|1/2

}
, (A.2)

where ã(τ ′, τ ′′) is defined vis 2/
√
ã ≡ 1/

√
a′ + 1/

√
a′′, with a′ ≡ a(τ ′) and a′′ ≡ a(τ ′′).

Using the same reasoning we adopted after equation 3.12, we extend the integral from 0
to ∞. After a change of integration variable, we finally write the correlator as∫

d3x ei~p·~x 〈0 | δ ~E· ~B(τ ′, 0)δ ~E· ~B(τ ′′, ~x) | 0〉 = (A.3)

= e4πξ ã5

a′4a′′4
H5

ξ5
C
(

25ξ|~p|
ãH

)
, (A.4)

where the function C(κ), after directing ~p along the z direction, reads

C(κ) =
κ5

230π3

∫
d3q|~ε+(−~q) · ~ε+(ẑ + ~q)|2× (A.5)

× e−
√
κ
(√
|~q|−
√
|ẑ+~q|

)
|~q||ẑ + ~q|

{
1 +

|~q|1/2

|ẑ + ~q|1/2

}
, (A.6)

where ẑ is the versor of the z axis.

A.2 The Green function

Although the Green function for equation (3.24) can be computed exactly, we will limit
ourselves to the case of the cosine potential V (Φ) ∝ 1+cos(Φ/f), which allows us to obtain
a simpler analytical expression. In this case, V ′(Φ0) ∼ V (Φ0)/f , V ′′(Φ0) ∼ V (Φ0)/f

2,
H2 ∼ V (Φ0)/M

2
P and α � 1 while f . MP . This allows to see that the coefficientof

dφ/dτ in equation (3.24) is much larger than one. Moreover, we can neglect the term p2 in
the coefficient of φ since |p| � a

√
|V ′′| ' (MP/f)aH, which is always true for p� 2ξaH.

Once we have taken into account these two approximations, the Green function can be
obtained by solving

∂2G(τ, τ ′)

∂τ 2
− 1

τ

παV ′(Φ0)

fH2

∂G(τ, τ ′)

∂τ
+ (A.7)

+
V ′′(Φ0)

H2τ 2
G(τ, τ ′) = δ(τ − τ ′), (A.8)
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with G(τ ′, τ ′) = 0 and (∂G/∂τ)(τ ′, τ ′) = 1, whose solution is

G(τ, τ ′) =

{
τ ′

ν+−ν−

[(
τ
τ ′

)ν+
−
(
τ
τ ′

)ν−]
, τ > τ ′

0, τ < τ ′

where

ν± '
παV ′(Φ0)

2fH2

[
1±

√
1− 4

π2

1

α2

V ′′(Φ0)H2f 2

V ′(Φ0)2

]
. (A.9)

The second term under the square root in equation (A.9) scales as (f/αMP )2 and is
much smaller than one. Therefore, we have ν+ ' παV ′/(fH2) ∝ αM2

P/f
2 � 1 whereas

ν− ' V ′′f/(παV ′) ∝ 1/α� 1.

A.3 The scalar power spectrum

As we are interested in the spectrum at p � aH, we can neglect the term (τ/τ ′)ν+

in the expression of the Green function, that goes rapidly to zero. Using the previous
results, a = −1/Hτ and changing the integration variables w′ = −(25ξ|~p|τ ′)−1, w′′ =
−(25ξ|~p|τ ′′)−1, the two-point function reads

〈φ(~p)φ(~p′)〉 =
δ3(~p+ ~p ′)

p3

NαH4

ν2
+f

2ξ8

e4πξ

215

(
25ξp

aH

)2ν−

(A.10)

×
∫ aH

25ξp

0

dw′w′ν−−5

∫ aH
25ξp

0

dw′′w′′ν−−5w̃5C(w̃−1), (A.11)

where we have defined 2/
√
w̃ ≡ 1/

√
w′ + 1/

√
w′′. We see that, as long as ν− � 1 the

spectrum of perturbations in the inflaton is quasi-scale invariant. To find the normalization,
we send p→ 0 in the limits of integration.

The integral can then be computed by performing another change of variables x′ =
w′−1/4, x′′ = w′′−1/4 and going to ”polar coordinates” x′ = ρ cos(θ), x′′ = ρ sin(θ). To
simplify the resulting expression we set ν− = 0. Using the expression A.6 for the function
C, the integrals in θ and ρ can now be computed explicitly:∫ ∞

0

dw′

w′5

∫ ∞
0

dw′′

w′′5
w̃5C(w̃−1) =

Γ(8)Γ(6)

227π5/2Γ(17
2

)
× (A.12)

×
∫
d3q|~ε+(−~q) · ~ε+(ẑ + ~q)|2 |~q||ẑ + ~q|+ |~q|3/2|ẑ + ~q|1/2(√

|~q|+
√
|ẑ + ~q|

)16 (A.13)

, where the integral in d3q can be evaluated numerically to ' 3.5× 10−4. We have now
all the ingredients to find the two-point function of the scalar perturbations, which can
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be written as follows:

〈φ(~p)φ(~p′)〉 = γ
δ3(~p+ ~p ′)

p3

Nα2

ν2
+f

2
e4πξH

4

ξ8

(
25ξp

aH

)2ν−

, (A.14)

where the numerical factor jas value γ ' 2.1 × 10−6. From the formula above we can
extract the curvature perturbation Pζ = p3H2 〈φφ〉 /[2π2Φ̇2

0δ
3(~p+ ~p ′)], which, after using

α(H/ξ)4e2πξ = fV ′/I, has the form

Pζ =
γ

8π4I2

1

ξ2

(
25ξp

aH

)2ν−

' 5× 10−2

ξ2

(
25ξp

aH

)2ν−

. (A.15)

If the theory contains N gauge fields, the different contributions to the two-point function
of δ ~E· ~B adds incoherently, leading to a suppression by a factor of N of Pζ , i.e.

Pζ '
5× 10−2

N ξ2

(
25ξp

aH

)2ν−

. (A.16)
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Appendix B

Calculation of the tensor power
spectrum

The starting point for computing the tensor power spectrum is the equation of motion
for the tensor perturbations hij(τ, ~x) given in (4.4), which we rewrite here for simplicity:

h′′ij + 2
a′

a
h′ij −∆hij =

2

M2
P

Πij
lmTEM

lm . (B.1)

Moving to momentum space and projecting hij into positive and negative helicity modes,
we have

hij(~k) =
√

2
∑
λ=±

εiλ(
~k)εjλ(

~k)hλ(τ,~k), (B.2)

where the amplitude hλ(~k) is given by the relation Πij
±(~k) = εi∓(~k)εj∓(~k)/

√
2 and the

helicity vectors satisfy the properties kiε
i
± = 0, εabck

bεc± = ∓ikεc±, εi±ε
i
∓ = 1 and εi±ε

i
± = 0.

We can now promote the functions h± to operators.
The Green function associated to the homogeneous part of (B.1) can be easily

calculated and has the form, for τ > τ ′,

Gk(τ, τ
′) =

1

k3τ ′2
[(1 + k2ττ ′) sin[k(τ − τ ′)] + k(τ ′ − τ) cos[k(τ − τ ′)]], (B.3)

while Gk(τ < τ ′) = 0. Hence, the expression for ĥ±(~k) is given by the formula

ĥ±(~k) = −2H2

M2
P

∫
dτ ′Gk(τ, τ

′)τ ′2
∫

d3q

(2π)3/2
Πlm
± (~k)× (B.4)

×
[
Â′l(~q, τ

′)Â′m( ~k − q, τ ′)− εlabqaÂ′b(~q, τ ′)εmcd(kc − qc)Â′m( ~k − q, τ ′)
]
, (B.5)

where we have written in the traceless and transverse part of the energy-momentum tensor
TEM
ij = −a2(EiEj +BiBj) the electric and magnetic fields in terms of the four-potential

A(τ,~k).
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Since the production of tensor modes is efficient only for (8ξ)−1 � |kτ | � 2ξ, we use
the approximated form in equation (3.11) for A+, while we set A− = 0. The two-point
function for a gravitational wave with general helicity λ can be computed using Wick’s
theorem:〈

0
∣∣∣hλ(~k)hλ(~k

′)
∣∣∣ 0〉 =

4H4

M4
P

∫
dτ ′dτ ′′(τ ′)2(τ ′′)2Gk(τ, τ

′)Gk′(τ, τ
′′)×∫

d3q

(2π)3
〈0|
{

Πij∗
λ (~k)×

[
Â′∗i (~q, τ ′)Â′∗j (~k − ~q, τ ′)− εiabqaÂ∗b(~q, τ ′)εjcd(kc − qc)Â∗d(~k − ~q, τ ′)

]}
{

Πij
λ (~k ′)×

[
Â′i(~q, τ

′′)Â′j(
~k ′ − ~q, τ ′′)− εirsqrÂs(~q, τ ′′)εjtv(kt − qt)Âv(~k ′ − ~q, τ ′′)

]}
|0〉 .

(B.6)

This equation can be computed using the decomposition into creation and annihilation
operators for the four-potential

Âi(τ,~k) =
∑
λ=±

[
εiλ(
~k)Aλ(τ,~k)â

~k
λe
i~k·~x + h.c.

]
= εi+(~k)A+(τ,~k)â+

~k
ei
~k·~x + h.c., (B.7)

where â+
~k

and â+ †
−~k

satisfy the standard commutation relations[
â+
~k
, â+ †
~k ′

]
= δ3(~k − ~k ′) (B.8)[

â+
~k
, â+
~k ′

]
=
[
â+ †
~k
, â+ †
~k ′

]
= 0. (B.9)

In equation (B.6) there are four products, but only the first one involving only time
derivatives of Â gives a non-vanishing result. Indeed, by inspecting the other three terms
one can see that they contains combinations of the helicity vectors of the form

εi−λ(
~k)εj−λ(

~k)εi−(~q)εj−(~k − ~q)εi−λ(~k)εj−λ(
~k)εirsqrε

s
+(~q)εjtv(kt − qt)εv+(~k − ~q), (B.10)

εi−λ(
~k)εj−λ(

~k)εiabqaε
b
−(~q)εjcd(kc − qc)εd−(~k − ~q)εi−λ(~k)εj−λ(

~k)εirsqrε
s
+(~q)εjtv(kt − qt)εv+(~k − ~q)

(B.11)

which vanish due to the properties εabck
bεc± = ∓ikεc±, εi±ε

i
± = 0 and εi±ε

i
∓ = 1. Therefore,

from now on we will focus only on the first term, which we write explicitly:〈
0
∣∣∣hλ(~k)hλ(~k

′)
∣∣∣ 0〉 =

4H4

M4
P

∫
dτ ′dτ ′′(τ ′)2(τ ′′)2Gk(τ, τ

′)Gk′(τ, τ
′′)×∫

d3q

(2π)3
〈0|
[
Πij∗
λ (~k)Â′∗i (~q, τ ′)Â′∗j (~k − ~q, τ ′)

]
×
[
Πij
λ (~k ′)Â′i(~q, τ

′′)Â′j(
~k ′ − ~q, τ ′′)

]
|0〉

(B.12)
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Looking the decomposition in (B.7), we see there are 16 different products of creation
and annihilation operators acting on the vacuum in the equation above. Among them,
12 are trivially zero and 3 between the remaining combinations are zero after using the
commutation relations. The only combination which gives a contribution is

〈0| â+
~q â

+
~k−~q

â+ †
−~q â

+ †
−~k ′+~q

|0〉 . (B.13)

Hence, the final result for the two-point function of the tensor perturbations is, using
again (B.7),

〈hλ(~k)hλ(~k′)〉 =
H4ξ

4π3M4
P

e4πξδ(~k + ~k′)

∫
dτ ′dτ ′′|τ ′|3/2|τ ′′|3/2Gk(τ, τ

′)Gk(τ, τ
′′)× (B.14)

×
∫
d3~q|εi−λ(~k)εi+(~q)|2|εj−λ(~k)εj+( ~k − q)|2

√
| ~k − q|√qe−2

√
2ξ(
√
|τ ′|+
√
|τ ′′|)(√q+

√
| ~k−q|).

(B.15)
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