

ALMA MATER STUDIORUM

UNIVERSITY OF BOLOGNA

DEPARTMENT OF

COMPUTER SCIENCE AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Artificial Intelligence in Industry

A procedure for modular forecasting at scale

with constraints for business time series

Supervisor

Prof. Michele Lombardi

Candidate

Daniele Domenichelli

Academic Year 2020-2021

to my father

ii

Abstract

Nowadays artificial intelligence algorithms are capable to achieve

impressive results with a reduced amount of physical and time resources.

They cover many different topics with a discrete success, but one of the most

challenging subject to model is the prediction of future trends in complex and

mutable environments, such as market sales.

From a deterministic point of view, the knowledge of the exact state

and the rules of a system in a certain period intrinsically brings the faculty

to forecast any future state. This perspective yields an exact prediction, but

it lays its foundation on the assumption that its possible to model every aspect

of the system, a premise that is usually satisfied only in simple cases.

The difficulty of predicting time-series is amenable to many factors, one

of the most important is the drastically instable and mutable domain

subjected to the competitiveness of its constituents, vendors and buyers, as

described by the principles of the game theory; in such system, the rules are

constantly changing, hardening the predictions of future states.

Furthermore, financial studies produced a variety of economic models

which help to understand the market behaviour. By applying specific

constraints to the prediction, it is possible to exploit these models to reach

better and more explainable results and relate their components to the

relative sources.

The aim of this work is to propose a procedure capable of inject domain

constraints in the prediction in a declarative fashion, addressing different

economic models. This procedure helps the analysts to better express their

domain expertise while keeping a completely explainable approach to

describe their outcomes.

iii

Acknowledgements

I’m extremely grateful to the professor Michele Lombardi who were

exceptionally available to kindly drive and suggest the steps of my work.

My gratitude goes to Alessio Bonfietti, the responsible of my internship

at MindIt, who gives me the opportunity to live this experience.

This project would not have been possible without the precious help

and sustain of Matteo Di Pisello, the company tutor who introduced me to the

MindIt company and who were always by my side. He never let slip my call

for help and he had always actively encouraged, advised and guided me

through the internship and the development of this work.

I am very grateful to the academic professors, teachers and tutors, they

invested their time and resources to contribute in many aspects to my

formation, as a student, as a person.

I would like to express my deepest thanks to my mother, my brothers,

my uncles and every member of my family. They sustained my studies, both

economically and emotionally, encouraging me to express my best self.

Without their effort I would not be gone that far off.

A debt of gratitude is owed to all my colleagues who have collaborated

with me. It was a pleasure for me to exchange our perspective and grow

together.

A special thanks to my dear friends who have supported me in any

moment of my life, the bright as well as the dark ones.

iv

Contents Index

Abstract ii

Acknowledgements iii

Contents Index iv

Image Index vi

Table Index vii

Introduction 1

Business time series 1

Market as Complex System 2

Problem definition 3

Approaches 4

1 Related Works 5

1.1 Recurrent Neural Networks in time series 5

1.2 Forecasting at scale: Facebook Prophet 5

1.3 Painting the future 6

1.4 PSO in time series forecasting 6

2 Data and Feature Extraction 7

2.1 Harvesting 7

2.2 Validation 8

2.3 Pre-processing 9

2.4 Seasonality extraction 10

2.5 Dataset modularity 13

2.6 Intra-product validation 13

v

3 Methods and Models 15

3.1 Methods 15

3.1.1 Polynomial regression model 15

3.1.2 Mean model 16

3.2 Neural Models 18

3.2.1 Multi-layer perceptron 18

3.2.2 Recurrent Neural Network 19

3.3 Prophet 21

3.3.1 Structure 22

3.3.2 Stochastic regression 24

3.3.3 Declarative model 25

3.3.4 Non-positive constraint 25

3.3.5 Piece-wise linear regression 26

3.3.6 Modularity 30

4 Experiments and Results 31

4.1 Synthetic test 31

4.2 Price regression test 32

4.3 Real-case scenario 32

5 Results 34

5.1 Synthetic test 34

5.2 Price regression test 35

5.3 Real-case scenario 38

6 Discussion and Remarks 39

6.1 Limitations 40

7 Conclusions 41

7.1 Future works 41

Bibliography A

Image References D

vi

Image Index

Fig 2.1 Example of an auto-correlation (normalized) plot 11

Fig 2.2 Example of a fast Fourier transform (FFT) plot 12

Fig 3.3.1 Prophet forecasting loop 21

Fig 3.3.2 Prophet components summary 22

Fig 3.3.3
Saturating market law, “supply and demand”,

Jenkin 1870
27

Fig 3.3.4 Regression over a cloud, comparison 28

Fig 3.3.5 Gaussian distribution 29

Fig 3.3.6 Laplace distribution 29

Fig 3.3.7 Cauchy distribution 30

Fig 5.2.1 Prophet, example of a price regression, base model 35

Fig 5.2.2
Prophet, example of a constrained price regression,

proposed model
35

Fig 5.2.3
Prophet, example of a price PWL regression, proposed

model
35

Fig 5.2.4

Comparison of base (Stan v1), non-positive (Stan v2),

constrained and unconstrained PWL (Stan v3)

Prophet models

36

vii

Table Index

Table 2.1 Dataset Description 10

Table 5.1.1 Prophet synthetic test results 34

Table 5.2.1 Prophet models performance comparison 37

Table 5.3.1 Real case model MAE comparisons 38

Table 5.3.2 Real case model R2 comparisons 38

1

Introduction

Forecasting business time series is nowadays still a hard task and

requires analysts specialized in this field. Many researchers recently invested

their efforts to study the best procedures which produce high quality

forecasts, but the practice of prediction is usually intrinsically hard to be

explained and, even in the case of a simple domain, it particularly needs

specialized analysts to make intelligible the results. Furthermore, modern

data-oriented approaches are often treated as black box models which are

hard to tune as well as difficult to properly be explained and usually inflexible

to human observation and domain expertise.

The proposed procedure brings the two realities of interpretability and

domain knowledge injection within the reach of specialists as well as people

who may possess domain knowledge but unexperienced in time series

methods or without any forecast modelling proficiency.

Business time series

Market sales are in constant movement because they are affected by

an immeasurable number of agents, becoming sometimes very hard to

understand even for an expert. Indeed, trading is one of the activities which

most touches the human social behaviour, and its complexity keeps growing

as more studies are experienced in this field, leading to an expansion of the

rules that regulates the market.

In control theory, to precisely predict a future state (and its relative

output) of a system1 it is needed that this one satisfies the controllability

principle [1], which states that it is possible to modify the system internal

state by interacting with one or more inputs. In open world and very complex

environments, it is practically impossible to deterministically model inputs

and state dimension beforehand knowing the market developments:

introducing more agents (vendors or buyers) lead to a change in terms of

internal rules and states of the modelled system. So, changing rules means

1 Controllability is usually described in linear systems, but it is proven that can be

extended to non-linear systems [1]

2

 INTRODUCTION

changing models and so the predictability of a deterministic result become

impossible.

When it could not be possible to deterministically model in detail a

system, because of the many variables to take in account but also for being

able to observe the inputs and the outputs of the system, it is always possible

to stochastically model the same system by assuming that the model is

responsible to introduce an uncertainness in the process. This duality in the

way of seeing the same system is well visible in the famous “coin toss”

problem: we can describe the physical laws underneath the toss of the coin,

needing the initial state, and predict exactly the output [2], or we can describe

the randomness introduced by the unknown initial state in a stochastic

fashion.

Considering the variability of the environment, business time series

are usually analysed, treated and forecasted by leveraging of uncertainty of

unknown or non-modellable factors with the use of stochastic models.

Mahmudov proved that is possible to describe a stochastic systems in terms

of controllability [3], which means that in principle it is possible to predict,

with a certain degree of confidence, the output of a liquid system such as the

market.

Market as Complex System

Even though we could treat the uncertainty with stochasticity, we can’t

exclude that the market is a reactive system composed by agents. Business

analyses are always performed in order to make an action in the sales

environment. Each action is responsible to a slight change of the system

behaviour, given the fact that the agents can adapt and modify their conduct

with the respect to that action or to the system change.

The market can be briefly described as a collection of two kinds of

entities: vendors and sellers. From the 19th century many studies were

conducted in the attempt to model the relations between the agents. One of

the most famous result of these studies, regarding in particular the relation

in between vendor and seller, is the economic model of “supply and demand”

described by Cournot in 1838 [4]. Cournot described a linear proportion

between the price of the product and the sold quantity, which was then

expanded by Jenkin in 1870 [5] with a diminishing return economic model.

Other studies, instead, better describes the relation between different

3

 INTRODUCTION

vendors. These are centred on the game theory, well represented by the

famous “Two prisoner’s dilemma” exposed by Poundstone [6]. Two agents

indeed maximize their expectations by assuming a competitive attitude,

especially if they cannot rely on each other. Inspired by the mean-field

physical theory, Caines has widen and explained what can happen in the case

the agents are a minimal part of the system, constituting a sub-environment

by their own [7].

Other researchers tried to view the market as an undirected graph,

trying to map the relations and transactions between vendor and buyer nodes

to achieve a predictable model for the field.

One last important source of discrepancy between model and reality to

keep in consideration is the human bias, reflected in its models, to learn from

past experiences, which can result into ineffective predictions of the future in

systems which constantly and repeatedly change, even more if the experience

is part of the system change itself.

Many attempts to understand and regulate the market were made, but

the attempt itself is representable as an action of an agent which produces

effects in the system, perturbating the behaviour of the other agents. Still the

prediction of business time series through economical and sociological models

struggle to completely describe the complexity of such a sophisticated and

dynamic environment. These reasons are sufficient to restrict the analytics to

a narrower perspective and draw strict assumptions (such as the Cournot’s

supply and demand relation) in order to simplify the modelling process.

Problem definition

Many modern methods offer the possibility to deal with stochasticity

during the modelling of business time series, but almost all of them lack a

procedure capable to inject domain constraints (discussed in the previous

sections) with ease. Usually, the insertion of such constraints is demanded to

experts who often have no expertise in the market sales domain, creating a

divergence between the implementation and the usage of the model.

This observation inspired this work to focus on the creation of a

procedure capable to respond to different needs: the prediction of a business

time series; the large scale, as amount of data, of the prediction; the easy

usability of the model even for non-experts who may have domain knowledge

about the process; the modularity of the method to be employed multiple

4

 INTRODUCTION

times in the same problem but also the capacity of generalization to reach the

largest variety of forecasting problems (not only related to market sales

domain); the possibility to inject constraints with ease just by exploiting the

owned domain knowledge.

Approaches

The development of the procedure was bound to a real case scenario,

thanks to the work proposal by the MindIt company. The constraint injection

property of the model was initially aimed to prevent unexplainable and

unoptimizable behaviours in the company pipeline, but then it was expanded

to include a more generic approach, imitating the same generalization

approach used by previous models.

The work revolved around the analysis of the data available for a

supermarket chain. For a retailer it is useful to make a distinction between

two different period of the sale: sell-in, when the retailer buys the product

from the manufacturer, and sell-out, when it sells to the single customer. This

distinction is also present in the way the data is collected. Indeed, the sell-in

data is almost always available because it is the retailer itself that manage

the transaction with the manufacturer, furthermore it is also possible to

check the correctness of the data because the source is very reliable. On the

other hand, the sell-out data is harvested by crowd-mining methods, which

sometimes could be unreliable in terms of presence and trustiness of each

single sample, or by assuming companies responsible to collect and process

the data coming from each single store cash desk. This second method is way

more reliable, but it comes with an economic cost that could not be worth

enough to spend.

The taken approaches firstly aimed to ensure the domain constraints

in the relationship between price and the number of units sold, subsequently

expanding the procedure to involve the prediction of a projected

comprehensive units sold baseline for the sell-out. The baseline would be

affected by many components (e. g. leafleting or discounts), so we can simulate

their removal such that we obtain a cleaned baseline, which can be used in

subsequent analysis to understand the impact of certain decisions in the sales

market, such as the appliance of a discount in a certain period of the year,

like Christmas.

5

1 Related Works

1.1 Recurrent Neural Networks in time series

Hybrid approaches can be employed in the time series forecasting. We

can inherit the robustness and explainability of the old fashion models, such

as the autoregressive moving average model (ARMA), but exploiting the

flexibility of neural models. In particular, the use of a recurrent neural

network (RNN) in an extended neural ARMA model (NARMA), was employed

to filter the outliers and improve the training of the hybrid model [8]. Other

approaches benefit from the use of forward and feedback paths while using a

bidirectional RNN directly on the data to make order and sense in the chaos

of a time series [9], achieving better results than old fashion models.

This work employs an unsophisticated recurrent neural network model

to have a basic comparation between deterministic neural approaches and

stochastic methods.

1.2 Forecasting at scale: Facebook Prophet

Meta (Facebook at the time of the paper) employees invested much

effort in the time series forecasting related to the prediction of periods with

overcrowding events [10]. The big company had the necessity to develop a web

environment capable to anticipate event-congested periods to improve the

service for the final user and keep the results as explainable as possible. The

limitation of resources and the outcome clarity bring to the development of a

robust infrastructure capable of predicting time series also in fields unrelated

to the application events. Indeed, different articles mention Prophet, the

model invented by Taylor and Letham at Meta [10], as capable of predicting

business time series. Furthermore, some researchers recently conducted

some studies in this sector, showing that it is possible to build frameworks for

real-world data belonging to sales domain employing Prophet [11].

6

 CHAPTER 1 RELATED WORKS

1.3 Painting the future

Given the success of the deep convolutional networks and the fast

spread and growth in the last years, the newer trend is to find a way to depict

data as a coherent image and try to make a completely new sense from the

rearranged features. For time series, the pioneers in this technique found

successful to convert the data into images that intrinsically contain the time

axis embedded in each pixel position. This encoding is produced by two

different transformations employing transformations such as Gramian

Angular Field (GAF) [12, 13, 14] and Markov Transition Field (MTF) [15].

The concept underneath these encodings is to convert the time

proximity of a sample into a spatial proximity in an image. Then the usual

procedures used in the image processing pipeline are employed to predict the

expected result (e.g. classification, regression, etc.).

By leveraging the experience already accumulated over years of

research in convolutional networks, this approach seems to mine good results,

but this promising approach is still in its infancy.

1.4 PSO in time series forecasting

All the methods described so far do not take in account or exploit the

non-stationary property of the market sales. The financial system is so

complex that even if we perform the same action in two different time periods,

the outcomes could be drastically diverse.

Recent studies discovered that neural models, which employ Particle

Swarm Optimization (PSO) as learning techniques [16, 17], are able to extract

patterns from non-stationary data, improving the performances of the model.

Even if these researches are still experimental, because they just partially

probed the reasons behind their success, their promising outcomes are

attracting interest in the PSO employment for time series forecasting, and

their growing number through the years is proving of this.

7

2 Data and Feature Extraction

The dataset for the real case scenario was provided by the MindIt

company and it was collected over a period of four years. The data contains

sensible information, so every reference to it will be concealed or transformed

for privacy reasons, while keeping the understandability of the discussion.

As already mentioned, the dataset is collected in two different times

and pre-processed to guarantee a unique relation between the two periods.

The curves that were collected for the sell-out were also projected to be

compatible with the curves at sell-in and merged by matching the dates.

Below, we will summarize the process that led the data from the

collection to the usage in the procedure.

2.1 Harvesting

The collection of the data was divided in two different periods: sell-in

and sell-out. The first is easy to harvest, since each retailer has an internal

balance sheet account that enumerates the invoices relative to each purchase

from a specific manufacturer.

In the case of the sell-out instead, the retailer has no information about

the single transaction of each owned store, so it needs to directly collect the

data from them. This usually can be done with crowd-mining techniques or

by assuming companies which collect and process data from the stores.

A generic approach to crowd-mining is to drive customers to record

their receipts through incentives, like discounts and coupons, or by using

loyalty cards. One of the advantages of crowd-mining techniques is the thin

capillarity of the collection, since each person can describe its tiny situation,

but on the other hand the reliability of each one of them is brought up.

For our final dataset the retailers decided to have a reliable source by

investing in other companies that harvested the data. This meant that crowd-

mining is not a viable option, so they have chosen to entrust the data

harvesting to a third company, which grants for the dataset quality. By

involving other companies, the retailer has to spend more money in the

process, and sometimes could not be interested or it could have other reasons

not to buy the data harvesting for a certain period, product or seller. Filling

8

 CHAPTER 2 DATA AND FEATURE EXTRACTION

the gaps introduced by the absence of sell-out data is part of the objective of

this work.

2.2 Validation

The data can be a source of error, especially in the case it is harvested

through unreliable processes. In this work two different datasets were used

in different experiments.

For what concern the price regression experiment (section 4.2), the

used dataset was in part collected through a crowd-mining technique,

requiring a more in-depth analysis and validation before proceeding with the

usual process.

In general, due to a possible partial unreliability of the harvesting

method, or more broadly to a possible data inconsistency during any previous

step, it is needed to perform a validation to ensure the coherence of the

process. The crowd-mined collected material indeed was intrigued by

insertion errors and corrections (e.g. invalid dates, negative or invalid

number of units sold or paid amount, etc.) but also by behaviour anomalies in

the data recording (e.g. users that accumulate receipts for weeks or months

and record them in a single day).

Another important aspect that was taken in account was the effect of

the lockdown due to the pandemic 2019 COVID. In this period indeed the

data, where present and collected, drastically changed because of the forced

modification in the shopping behaviour of the people. For this reason, the data

during this period was briefly analysed to understand the causes and the

effects derived by this period and subsequently was discarded by the process

pipeline to assess more consistently the whole procedure.

In the real-case scenario (section 4.3) was employed a dataset collected

by a third company, which processed and validated the data in advance,

relieving the needing of such operation.

9

 CHAPTER 2 DATA AND FEATURE EXTRACTION

2.3 Pre-processing

After the validation, the data needs to be pre-processed to obtain

coherent results. The first step is to aggregate the sell-in transaction dataset

into coarser grained sets, which can contain daily, weekly or monthly

information. The daily dataset is responsible for the forecasting, while the

others are useful for a broader inspective analysis (i.e. finding anomalies in

the insertion behaviour for the harvesting phase). Subsequently the sell-out

dataset, which has already a daily granularity, is merged into the aggregated

sell-in dataset, obtaining a unique set.

10

 CHAPTER 2 DATA AND FEATURE EXTRACTION

The outcoming set is primarily composed by the following columns:

Column Description

Date Time of transaction (with daily granularity)

Product Code representing a product

Retailer Code representing a retailer

Store Code representing a store owned by a retailer

Units sold SO Units sold in sell-out (retailer to store)

Units sold SO

PROMO

Units sold in sell-out (retailer to store)

during a retailer promotional event

Amount SO Total income in sell-out (retailer to store)

Units sold SI Quantity of units sold in sell-in (store to shopper)

Units sold SI

PROMO

Units sold in sell-in (store to shopper)

during a retailer promotional event

Amount SI Total income in sell-in (store to shopper)

Brand Informative code of the product brand

Pair Tuple describing Product and Store

Price SO Amount SO / Units sold SO

Units SO NP

(No Promo)
Units sold SO – Units sold SO PROMO

Price SI Amount SI / Units sold SI

Units SI NP

(No Promo)
Units sold SI – Units sold SI PROMO

Table 2.1 – Dataset Description

We can compute the price columns (SI and SO) by dividing the amount

by the relative units sold column. The promotional event columns will be later

useful to understand the impact of a retailer investment during different

periods of the year.

Every prediction regards a single product and a single store, so we can

namely index the dataset by the product code and the store code, which we

will call pair.

2.4 Seasonality extraction

A peculiar part of the analysis and pre-processing of a business time

series is the possibility to observe a periodicity in the behaviour of the vendors

selling attitude. This periodicity can have a different time scale. For example,

there are seasonal products which are sold just in a part of the year, indeed

we expect ice-creams to sell more in the summertime while hot chocolate to

11

 CHAPTER 2 DATA AND FEATURE EXTRACTION

be more purchased during the wintertime; recreative or party related

products, such as beverages and finger food, have a selling increasing just

before or at the start of the weekend.

The seasonality of a product is the description of the recurrence of a

selling curve (as a one-dimensional signal) and is composed by two factors:

cadence (or phase), which is the time interval between the peaks of the curve,

and strength (or amplitude), which describe the general intensity of the

recurrence event. The position of each peak represents the time of the selling

concentration, while its height represents how likely is to sell the product in

that time. For example, seasonal (ice-creams) and event-bound (Christmas

decorations) products both share an annual cadence, given the fact that they

will be always sold in certain months of the year, but the latter have a huger

strength then the first. This is because the period of the events is usually fixed

and has a shorter duration than a season, concentrating the selling in well-

defined periods.

The usual way to discover the most qualitatively intense seasonality

cadences is to use the autocorrelation method. It computes, for increasing

lags, the auto-covariance of the signal, or the covariance between a signal and

its time-translated version. The single auto-covariance for the lag L describes

how much the curve match with the same curve but translated for a L period.

Fig. 2.1 – Example of an auto-correlation (normalized) plot

12

 CHAPTER 2 DATA AND FEATURE EXTRACTION

Once the scale of the most promising periods is extracted, we can

proceed with a selective fast Fourier transform (FFT) to decompose the

original signal in a sinusoidal series, including the ranges extrapolated by the

auto-correlation.

Fig 2.2 – Example of a fast Fourier transform (FFT) plot

The seasonality can be useful when employed in the procedure because

it can well explain the measure of the impact in the units sold quantity due

to the period of the year, leading to a better understanding of the best time to

apply a discount. For a trivial example, we can understand that an ice-cream

promotion is ineffective during the wintertime just because the population is

not available to buy that product in that period. Obviously, other cases are

not so trivial to be observed just by looking at data, even for expert analysts,

so this procedure helps to bring out this feature but also allows to

quantitatively compare the intensity between two distinct products.

13

 CHAPTER 2 DATA AND FEATURE EXTRACTION

2.5 Dataset modularity

The whole data came in different chunks, from different kind of sources

and at different times. It was decided to proceed the analysis with a modular

approach, starting by selecting a manageable portion of the dataset, which

was restricted to a part of a chosen target product category, and then more

and more quantities and categories were introduced to work with. This slowly

insertion of increasing chunks of data allowed to better separate which of the

effects were bounded to smaller parts and their categories and which instead

were more broadly describing the whole dataset. The future selection of which

features must be included in the process was also influenced by this procedure

step.

2.6 Intra-product validation

The last aspect that the framework needs to take in account is the

capacity to assess the predictions in a coherent way. The evaluation method

must be equal for all the models but also for all their training conditions.

It is a good practice to analyse the data under different aspects, one

that resulted important is the distinction of the behaviour observed between

different products with respect to the conduct observed in the sellers which

share the same product. We can describe the first perspective as inter-

product, which compare the dissimilarities of different products, while the

second is called intra-product, which instead focusses on the diversity found

in the pairs that shares the same product, but their sellers differ one each

other.

The curves shown a discordant variation in the units sold column,

higher for inter-product and lower for intra-product. This was enough to

create a model validation system which train and validate the model in a

product-seller pair rotation.

This rotation enhances the distinction of different products, in this way

we can create a model specialized in the prediction of a single product,

improving the performances and highlighting product specific features, which

are very valuable for an output backtracking and in subsequent analysis.

14

 CHAPTER 2 DATA AND FEATURE EXTRACTION

Coming to practice, the inter-product validation algorithm for each

train step:

1. Selects a single product from the training set

2. Selects a single target seller from the pairs containing the

selected product

3. Trains the model for all the pairs containing the product and not

containing the target seller

4. Validates the model by computing the metrics on the target pair

predictions

At the end of the training, the model parameters are stored for the

subsequent test phase. This kind of validation better highlights the

possibility of a model overfitting with a specific product, and it also allows to

understand which inter-product features are better represented from

different models.

15

3 Methods and Models

In this chapter we will discuss about the methods and the models used

to assess the overall performances of the forecasting procedure. The final

evaluation of each model and method was assessed with a regression metric

between the target column, which is the reconstruction of the sell-in units

sold curve, and the predicted column.

3.1 Methods

Before using modern approaches, the work started by considering the

history of business time series forecasting. The first approaches studied came

from the research of mathematician in the regression field, with a special

focus over the market sales domain.

3.1.1 Polynomial regression model

This model employs a polynomial regression in order to predict the

units sold at sell-in. This model was the first to be employed since it was

already used as a control step in the reference company analysis pipeline.

There are different grades and approaches to fit a polynomial over a dataset.

The most widespread used approach is the least square method, which was

attributed by both Legendre and Gauss at the beginning of the 19th century.

Gergonne in 1815 then published a first application of this method [18],

making the studies of the two mathematicians practicable. With the advent

of the information technologies, more and more machine learning

techniques involved this method of regression in order to train an algorithm

to infer polynomial curves from a point cloud. The most recent and effective

employment is the LS-SVM (Least Squares Support Vector Machine). It

reformulates the usual SVM classifier in order to include the least squares

method by reinterpreting the classification as a binary regression [19].

Parallelly with the machine learning development, in the second half

of the 20th century, computer graphic also was a hot topic for the research.

Another point of view in the polynomial description was found by Pierre

Bézier, which pointed out a way to draw a polynomial curve from a set of

control points. This method was borrowed from Paul de Casteljau, which

invented an algorithm capable of describe a polynomial curve of grade n

through a summatory of basis polynomial (a linear combination of different

16

 CHAPTER 3 METHODS AND MODELS

polynomial of different grades). Years later, De Boor improved and

generalized the Casteljau’s algorithm revisiting the form of the basis

polynomial, exploiting the Bézier finding, reforming it in the B-spline form.

De Boor stated that a curve is decomposable into a piece-wise concatenation

of curves that can be expressed by a single control point. Theoretically, this

algorithm should be able to describe any polynomial (or any curve locally

expressible through polynomials) of any grade, but practically its complexity

narrows down the possibilities for higher grades. Modern programming

libraries includes implementations of the mentioned algorithm in many

different forms [20], not only for computer graphics fields.

From these two historical branches the choice fell to the Bézier

regression. The reasons we opted for this alternative were the huge

expressiveness and application speed for lower grades, the capacity of the

algorithm to take in account the derivatives during the regression of the

control points and also the intrinsic smoothness of the outcomes.

The polynomial regression model was bound to the piece-wise

prediction of a Bézier curve chain. The advantages presented by this choice

are the non-compliance to the intra-product validation needing and the

possibility to make a prediction without any history or training. Indeed, this

model was useful to have an advanced windowed smoothing of the sell-out

data. This behaviour exploits the fact that sell-in sales are a diluted and

noisy version of their sell-out counterparts, giving the possibility to lay down

an understandable curve that maps the two domains to each other. This

approach led to a better view over the possible problems in the subsequent

models.

At the end, a simple seasonality extraction (FFT) was introduced to

partially inject domain knowledge in the curve trend and give more context

to the actual outcome.

3.1.2 Mean model

The mean model is the most basic and simple model taken in account.

It is based on the assumption that each product has a very strong yearly

seasonality, which means that every year the same store will sell almost the

same number of units in the same periods. This strong assumption is very

effective in non-occasional and seasonal products; indeed it was so efficient in

the real-world dataset and also so simple and explainable that was taken as

a baseline approach for this work. It simply computes the average of the past

17

 CHAPTER 3 METHODS AND MODELS

eq. 3.1.1

eq. 3.1.2

eq. 3.1.3

years for each needed curve, rescaling it by the average of units sold. The

rescaling is a very important step because it reduces the effect due to the

seller size. Logically and just by giving a simple glad to the data, it is very

visible that a huge metropolitan shopping centre will have a number of units

sold way bigger than a small shop of a little town. The observation also shows

that the selling behaviour, and the relative seasonality, of a certain product

will be almost the same for both, just with a different magnitude. The

rescaling allows to make comparable the sellers in the context of a product.

Since we are using the intra-product validation (as explained in section

2.6) this will traduce in computing a rescaled average of the target curve over

all the train pairs for a product and then multiplying the result by the test

factor, which is the mean of the units sold for the target pair.

The model is described by the following formulas:

𝑎𝑝(𝑡) =
𝑥𝑝(𝑡)

𝑤𝑝
, 𝑤𝑝 = 𝑚𝑒𝑎𝑛𝑡(𝑈𝑝(𝑡))

𝐴(𝑡) = 𝑚𝑒𝑎𝑛𝑝(𝑎𝑝(𝑡))

𝑦(𝑡) = 𝑤𝑣𝑎𝑙 ∙ 𝐴(𝑡), 𝑤𝑣𝑎𝑙 = 𝑚𝑒𝑎𝑛𝑡(𝑈𝑣𝑎𝑙(𝑡))

Where 𝑈𝑝(𝑡) is the curve of the units sold for the product p; 𝑤𝑝(𝑡) is the

product weight factor; 𝑥𝑝(𝑡) is the input curve selected for the product p; 𝐴(𝑡)

is the average curve, representing the parameters underneath this model;

then 𝑤𝑣𝑎𝑙 and y are respectively the weight factor and the prediction for the

validation pair.

The generalization of the input curve allows to better explore the

landscape of the interactions between different columns. The input curve

should be the target column or a (usually linear) combination of columns

(including the target one). In our experiments we measured the performances

of a tiny set of combinations, the units sold in sell-out was the target column

which was enriched by other components, like its seasonality or trend.

For training the model it is possible to use any combination of the

columns brought from the dataset. It was firstly used the target column, but

also other combinations were explored. Indeed, the MindIt proprietary

algorithm extracts a baseline reconstructed curve composed primarily by a

trend and a seasonality. The mean model was capable to explore both each

single component of the reconstructed curve and a linear composition of them,

finding out that this last option was the most promising.

18

 CHAPTER 3 METHODS AND MODELS

For the simplicity of this approach and its understandability, it was

taken as a baseline model to compare the efficiency of the other models.

3.2 Neural Models

Recently many studies focused the attention over the possibility to

forecast time series with neural models, which are nowadays the most

successful approaches to mimicking the human expertise for complex

environments. Neural methods introduce the possibility to employ machine

learning algorithms to tune a set of function parameters such that is possible

to reproduce the outcomes of an unknown function. In particular the training

phase of the machine is usually driven by gradient-based learning, making

use of techniques based on gradient descent and backpropagation.

We will explore some of these modern approaches to compare the

outcomes and discuss about the pros and cons with respect to the other

methods.

3.2.1 Multi-layer Perceptron

The most widespread class of artificial neural networks (ANN)

employed in many fields is the so called Multi-layer perceptron (MLP), more

precisely a generic feed forward ANN.

The term perceptron is historically confusing in this case because it

refers to a single artificial neuron with a threshold function (used in binary

classification) [21] that was inspired by the natural neurons of the human

brain. While the strict term of perceptron explicitly refers to this activation,

it became popular when many algorithms employed a collection of

perceptrons stacked in layers (single or multiple layer perceptron) [22]. The

studies deepened through the years the concept of activation function of a

neuron, but the term of layered perceptron became more popular for binary

classificators that employ a group of neurons that shares the same activation.

So, the term of perceptron passed from representing a single neuron to

representing a complete collection of classificators. Nowadays a multi-layer

perceptron can be intended in the literature as a collection of many layers of

threshold-activated neurons but also as any feed forward artificial neural

network, usually represented by a set of fully connected layers.

The research over the time series analysis and prediction through deep

learning models is still active and debated. Gamboa summarized the latest

19

 CHAPTER 3 METHODS AND MODELS

most explored techniques in its work [23] by showing that some works could

be promising and mined some good results in the appliance of deep learning

technique in this challenging field.

The oldest and simplest (but not simplistic) model employed in the time

series analysis is the multi-layer perceptron (intended as a feed forward

ANN). Since the latest 20th century, many researchers started to be interested

in the application of this model in the business time series forecasting.

Hoptroff shown in its work the practical feasibility of this task with the

employment of traditional neural networks approaches [24], such as the MLP.

Many papers of this subject were published until now, meaning that the more

performant approaches are still discussed in the scientific community.

In our case, we decided to implement a fully connected model capable

to analyse an entire year of data and simulate the relative sell-out curve. The

yearly seasonality choice was selected because the human social behaviour is

intrinsically imbued of such periodicity, and also the seasonality extraction

(see section 2.4) from the dataset confirmed this attitude.

The model is composed by a stack of fully connected layers with varying

dimensions. As a good measure, the number of layers and their relative

amount of neurons, are treated as model hyperparameters and were tuned by

an extensive grid search. The search was executed over the full dataset for a

reduced amount of iterations, and then the metrics were compared in order

to declare the baseline model for this class. The most promising models were

then trained for a longer period and their results were compared once again.

After this competitive selection, the best model was stored for the comparison

between the other approaches.

3.2.2 Recurrent Neural Network

With the success of deep learning in the natural language processing

(NLP) field, the recurrent neural network (RNN) became more popular for its

capacity to encapsulate temporal dynamic features in the network weights.

This property comes in handy also when forecasting time series. We can see

a RNN as a peculiar linear2 time-invariant system which has an impulse

response that does not ground to zero after a certain period (infinite impulse

response property) [25]. This means that a portion of the input effects on the

2 It can also be expanded as a non-linear system by using non-linear activations

20

 CHAPTER 3 METHODS AND MODELS

system are retained in a sort of internal memory, condition the outputs at

different time steps.

The innovative discovery about the system temporal dynamic

behaviour allowed to create dedicated network that is responsible to works as

independent memory cell (exploiting feedback loops), surrounding it with

another part which is dedicated to a sort of management of the memory. This

principle is used in the long short-term memory (LSTM) and gated recurrent

units (GRU) networks. These are common and performant expansions for the

RNN network, broadly used in NLP tasks.

Borrowing the experience from the language models, RNN were

employed to assimilate, analyse and predict samples in the time domain,

including the business time series forecasting field. Connor et al. work shown

the promising efficiency of RNN in the cleaning of the data [8]. Later others

were inspired and interested in the deepening of this approach, trying also to

apply it to the market sales domain [9, 25].

The mode employed is a tiny stack of recurrent layers with a decreasing

encoding, which makes use of lookback technique [26]. In practice the

network takes in input more than just one sample but predicts the output

relative to the last item of the input sequence. This gives more context to the

network to work with and it better prevents overfitting, but on the other hand

requires more data to train. Conceptually, it is easier to sees a period (such

as a month or a year) and decide from that context what value should come

next instead of looking at just one sample. The RNN memory is indeed

influenced from a wider period, being able to generalize better the data

behaviour over different time scales.

As for the MLP model, the depth and size of the network layers, as well

as the lookback period, were considered as hyperparameters to tune, by using

a grid search for a reduced amount of iterations. Given the unexpected poor

results, we decided to just keep the best model instead of running another

performance test over the most performant ones.

21

 CHAPTER 3 METHODS AND MODELS

3.3 Prophet

The procedure, final outcome of this work, was inspired and based on

the model developed by Meta (Facebook at time of the paper) employees,

called Prophet [10].

Prophet is a stochastic forecasting framework employed for the

prediction of event-congested periods in the Facebook application. The aim of

this model is to define a framework capable to forecast, through regression

methods, a time series just by declaring the domain knowledge. This is done

by automatizing some procedures that the developers were used to follow

during their data analysis tasks at Facebook. The principle is to involve the

human analyst expertise in the forecasting system by building a solid

framework which takes care of the knowledge needed in the time series

domain.

Fig 3.3.1 – Prophet forecasting loop

22

 CHAPTER 3 METHODS AND MODELS

eq. 3.3.1

3.3.1 Structure

The Prophet model is mainly composed by two elements:

• Pre-processor, responsible to pack and prepare data for

subsequent steps

• Analyst, a stochastic inference model

Fig 3.3.2 – Prophet components summary

The pre-processor works interleaved with the analyst, forming a

communication interface with the analyst, making the process more usable.

The analyst is the core of the Prophet forecasting model and uses a

decomposable time series model that combines a baseline trend with the

effects of each regressors:

𝑦(𝑡) = 𝑔(𝑡) ∙ 𝑟𝑚(𝑡) + 𝑟𝑎(𝑡) + 𝜖𝑡

Where 𝑔(𝑡) is the trend component, responsible of non-periodic

changes; 𝑟𝑚(𝑡) and 𝑟𝑎(𝑡) are the overall effect of, respectively, multiplicative

and additive regressors; 𝜖𝑡 is the (usually) normal distributed error of the

23

 CHAPTER 3 METHODS AND MODELS

eq. 3.3.2

eq. 3.3.3

eq. 3.3.4

regression. Seasonalities in this model are converted and treated as

regressors of the respective type.

It is possible to describe this kind of regression model in two principal

factors: trend and regressors.

The trend is predicted through two different models:

1. Nonlinear, saturating growth - 𝑔𝑁𝐿(𝑡) =
𝐶

1+𝑒−𝑘(𝑡−𝑚)

2. Linear - 𝑔𝐿(𝑡) = 𝑘𝑡 + 𝑚

With C is the carrying capacity, k the growing rate and m the offset.

Such models are not so flexible to changes in a very wide time period, so it

was introduced a series of changepoints that breaks the regression in a piece-

wise fashion. Each changepoint is responsible to perturbate the trend

behaviour at a specific time.

This modification is implemented by adding to k and m the vector of

changes 𝑎(𝑡), which holds just zeros in the position before the changepoint

date and just ones otherwise, rescaled by the intensity vector (𝛿 and 𝛾):

𝑎𝑖(𝑡) = {
1, 𝑖𝑓 𝑡 ≥ 𝑠𝑖

 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�̂� = 𝑘 + 𝑎(𝑡)𝑇𝛿, �̂� = 𝑚 + 𝑎(𝑡)𝑇𝛾

 �̂�𝑁𝐿(𝑡) =
𝐶

1 + 𝑒−�̂�(𝑡−�̂�)
, �̂�𝐿(𝑡) = �̂�𝑡 + �̂�

Where 𝑠 represents the vector of changepoint times. We can describe

then 𝛿 as the vector of delta changes, which are strictly related (exactly in the

linear case) to the slope change at the time described by s. The same applies

for 𝛾 which is just an offset adjustment in both cases. This approach allows to

break the problem of the prediction in smaller, consecutive and dependent

regressions, giving much more flexibility to the process.

The second factor in the regression is the contribution of extra-

regressors described by the user in the model instantiation. A regressor can

be intended as multiplicative (scaling the trend), or additive. Each regressor

is computed punctually, so in the model output we can retrieve the single

component effect in the total prediction.

For what concerning the pre-processor, it formulates the problem

starting by the description of the user and encapsulate the data forwarded to

the analyst. The first step of the pre-processing is the seasonality extraction

24

 CHAPTER 3 METHODS AND MODELS

eq. 3.3.5

eq. 3.3.6

eq. 3.3.7

eq. 3.3.8

eq. 3.3.9

eq. 3.3.10

eq. 3.3.11

made possible with a fast Fourier transform (FFT). Since in the event

forecasting domain there are common repeating seasonalities, the model, by

default, understands and extracts daily, weekly, monthly and annual

seasonalities automatically. Since the analyst can work just with regressors,

the extrapolated seasonalities are converted into a regressor form. Next, if

the user had not explicitly selected a set of changepoints, we have the

computation of the changepoints which are extracted by selecting at regular

intervals from a portion of the dataset (usually 80%).

At the end of the cycle, when the internal analyst produces the results

of the stochastic inference, the pre-processor comes in act again by

rearranging the outputs in a way understandable by the chosen language

interface and, consequently, comprehensible by the final user.

3.3.2 Stochastic regression

As we discussed in the introductory chapter, deterministically

forecasting time series for market sales domain is not viable. In this case a

stochastic regression would come in hand for many reasons. First, we can’t

describe a deterministic model for the system; we have domain knowledge

about the flexibility of the model parameters and last, we have practically

small or no control at all over the extra regressors, we can just make

observations from them.

Prophet employs the Stan platform [27] to build the analyst internal

engine, which is accessed and interfaced with python or R programming

languages.

Now that the principal model steps are described, we can rewrite the

general Prophet trend linear regression into the general stochastic regression

formula:

𝑦(𝑡) = 𝑔(𝑡) ∙ 𝑟𝑚(𝑡) + 𝑟𝑎(𝑡) + 𝜖𝑡, 𝜖𝑡 ~𝑁(0, 𝜎)

𝑔 = 𝑔𝐿(𝑡) = 𝑘𝑡 + 𝑚

𝑃(𝑔|𝑡, 𝑚, 𝑘, 𝜎) = 𝑁(𝑔|𝑚 + 𝑘𝑡, 𝜎)

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∙ 𝑃𝑟𝑖𝑜𝑟

𝑃(𝑚, 𝑘, 𝜎|𝑔, 𝑡) ∝ 𝑃(𝑔|𝑡, 𝑚, 𝑘, 𝜎) ∙ 𝑃(𝑚, 𝑘, 𝜎, 𝑡)

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = 𝑃(𝑔|𝑡, 𝑚, 𝑘, 𝜎), 𝑦~𝑁(𝑚 + 𝑘𝑡, 𝜎)

𝑃𝑟𝑖𝑜𝑟 = 𝑃(𝑚, 𝑘, 𝜎, 𝑡) = 𝑃(𝑚) ∙ 𝑃(𝑘) ∙ 𝑃(𝜎) ∙ 𝑃(𝑡)

25

 CHAPTER 3 METHODS AND MODELS

The stochastic model can be then plugged into the general model

formula (eq. 3.3.5) assuming a normally distributed error. The result is a

model comparable to the description of a generalized additive model (GAM)

proposed by Hastie and Tibshirani [28]. This formulation fit quickly with

LBFGS [29], backfitting or Newton methods. The Stan platform is then

responsible to estimate the maximum likelihood given the set of priors

imposed by the user.

3.3.3 Declarative model

One of the targets of the Prophet model is to drive the responsibility of

the final user toward the modelling instead of designing a time series

regressor. What really makes this possible, is the Prophet declarative

interface. Indeed, the human analyst will describe the problem, defining a set

of variables for the model (such as the priors, the chosen seasonalities, etc.)

as well as a set of extra-regressors and their variables.

3.3.4 Non-positive constraint

Prophet is an event domain related model, indeed the default

regressors available include one that is responsible to weight the effect of the

holydays on the event number trend. While such a constraint would be

effective in this domain, would not be the case for the market sales domain.

Here we are more interested to follow the knowledge that we borrow

from the “supply and demand” law, for example.

The first expansion of this work over the Prophet model born from the

necessity to constraint the relation of a regressor, which could be represented

by the price, with respect to the target column, the sell-out units sold in our

case. Following the economic model, the units sold should be inversely

proportional to the price. Controversially, this relation does not hold many

times during the fit of the Prophet model; often the inferred coefficient of the

regressor is negative, meaning that increasing the price induces an augment

of units sold. This is a deleterious effect, for example it could demolish any

subsequent optimization. To prevent that an optimizer, situated after our

model in the pipeline, would diverge toward an infinite price, breaking any

expected outcome, we can inject a non-positive constraint in the model to

enforce the inference to limit the search toward positive values.

26

 CHAPTER 3 METHODS AND MODELS

eq. 3.3.12

By working on the Stan model, exploiting some of the language

constructs, we can constrain a variable to be sampled over a half normal

distribution and cut the search for negative values.

 Unluckily, Stan does not allow the direct sampling of a model

parameter from a distribution, but it is possible to use an intermediate

backing parameter which is sampled from the half normal, and then constrain

the first to be equal to the latter.

We can dissect a regressor, from the Stan point of view, in order to

understand which impact has this modification to the global model:

𝑟(𝑡) = 𝛽𝑟𝑡 + 𝜖𝑟,𝑡, 𝜖𝑟,𝑡~𝑁(0, 𝜎𝑟)

Where 𝑟(𝑡) can be an additive or multiplicative regressor; 𝛽𝑟 is the

regressor coefficient and 𝜖𝑟,𝑡 its normally distributed error; 𝜎𝑟 is the regressor

prior scale. From the equation we can see that imposing the constraint 𝛽𝑟 ≥ 0

actually affects only the constrained regressor, leaving the other regressors

(including seasonalities) and the trend intact. As a side effect, limiting the

inference to positive coefficients can introduce a slight variation in the trend

due to the inference iterative methods.

A possible drawback of this constraint is the possibility to infer

constrained regressor coefficients close to but not zero. While from an analysis

point of view, non-zero coefficients can help to understand the effect and the

grade of impact of different regressors, for some post-operations (e.g.

multiplications) could be necessary to apply a threshold for the process to be

numerically computable.

3.3.5 Piece-wise linear regression

Another important aspect that Prophet does not provide, is the

flexibility of a regressor to change its effect over the time.

The 𝛽𝑟 coefficient (eq. 3.3.12) is inferred over the complete period of

observation, resulting in an average of a punctual distribution. The linear

model indeed was though for seasonalities and holydays in the event domain,

which are not expected to change their effect over time. In market sales

domain instead, we have not only the possibility of a regressor to change over

time, but also the economic model of “supply and demand”, refined by Jenkin

in 1870 [5], introduce the effect of diminishing returns in the relation between

price and units sold.

27

 CHAPTER 3 METHODS AND MODELS

Fig 3.3.3 – Saturating market law, “supply and demand”, Jenkin 1870

The most natural way to proceed would be the separation of the

problem into smaller piece, leading to a piece-wise forecasting. But,

partitioning the dataset for the prediction, such as each part has a different

regressor coefficient, would be a mistake because first mess up the

seasonalities, which in this way would not be inferred in the whole period

anymore, but also it would produce discontinuities in the outcome prediction.

Prophet already overcame to this problem by evaluating the linear

trend with a piece-wise linear (PWL) regression. It partitions the dataset

through changepoints, which marks certain times for the trend regression

where to change (eq. 3.3.4). We can exploit the same changepoints in order to

change the regression not only for the trend, but also for a regressor.

A PWL regression can fit a regressor over a part of the dataset, includes

a benefit effect in the case of diminishing returns [30] and also allows to inject

domain constraints with ease (e.g. monotonicity, convexity and non-positive

constraints).

Another benefit of this approach, in a stochastic model, is the

possibility to use different uncertainties, or prior scales, for different periods.

Indeed, we could have parts of the dataset with different variations that we

can use to improve the prediction. High variation parts, which could be

relative to smaller sellers for example, can be taken in account with a higher

prior scale, while regions with a lower variation, such as metropolitan

supermarkets, can benefit from a smaller prior scale.

28

 CHAPTER 3 METHODS AND MODELS

eq. 3.3.13

eq. 3.3.14

Fig 3.3.4 – Regression over a cloud, comparison

The last problem to take in consideration is the discontinuities in the

prediction, which is solvable by better modelling the regression around the

changepoints. Instead of “starting from scratch” a new regression at each

changepoint, that could introduce the discontinuity, we can model the

variation of the 𝛽𝑟 coefficient (as 𝛿𝛽𝑟
, eq. 3.3.13) such that at each changepoint

we have a variation of the slope of the linear regressor, ensuring the

continuity in the change interface.

The regression, at the end of all these considerations, takes the shape

of this formula:

𝑟(𝑡) = (𝛽𝑟 + 𝑎(𝑡)𝑇𝛿𝛽𝑟
)𝑡 + 𝑎(𝑡)𝑇𝛾𝛽𝑟

+ 𝜖𝑟,𝑡

𝜖𝑟,𝑡~𝑄(0, 𝜎𝛽𝑟
)

The error component 𝜖𝑟,𝑡 was chosen to sample from different

distributions to give more flexibility during the regression for the final user.

29

 CHAPTER 3 METHODS AND MODELS

The distribution 𝑄 can be one of the followings, some experimental

considerations are given for each distribution:

1. Gaussian distribution (normal) – large and high bell, produces

smooth changes at the interface

Fig 3.3.5 – Gaussian distribution – 𝜇 = 0, σβr = 𝜎

2. Laplace distribution (double exponential) – low and narrow

peak, drastic changes at the interface

Fig 3.3.6 – Laplace distribution – 𝜇 = 0, σβr = b

30

 CHAPTER 3 METHODS AND MODELS

3. Cauchy distribution (Lorentz, Breit–Wigner) – high narrow

peak, better for distributions with marked variation, observed

performance improvement for datasets with strong seasonalities.

Fig 3.3.7 – Cauchy distribution – x0 = 0, σβr = 𝛾

3.3.6 Modularity

When editing the Prophet Stan backend model, it was followed the

modularity principle by stacking the regression constraints over the already

established model. This permitted to keep the declarative behaviour of the

procedure. Indeed, it is possible to describe the constraints by declaring and

adding the appropriate regressor, removing the responsibility of the

constraint implementation from the final user.

In this way, following the original Prophet conduct, an analyst with

domain expertise can inject non-positive constraints and describe a PWL

regressor without worry about the implementation of the framework. Since

the additions are modular, during the procedure the framework automatically

detects the use of constraints or PWL regressions and act consequently by

employing the right regression model for the declared problem.

The modularity is implemented through a selective (usually binary)

multiplication which considers just the selected components. The way the

selection is performed allows to express an amount n in the range 𝑛 ∈ [0, 1]

that indicates the component strength of incidence in the global model.

31

eq. 4.1

eq. 4.2

4 Experiments

The evaluation of the procedure stability and robustness was

conducted through a set of experiments.

Usually, the regression metric taken in consideration is the Mean

Squared Error (MSE), but in the market sales domain we are not interested

in punishing too much farther errors. An error in this field means an effective

economical loss, so a more precise indicator of the model performance, also

considerable in terms of money, is the Mean Absolute Error (MAE):

𝑀𝐴𝐸(𝑦, 𝑥) =
1

𝑛
∑|𝑦𝑖 − 𝑥𝑖|

𝑛

𝑖

This metric indeed represents the average loss in volume that the

model introduces; this was used in all the experiments to strictly evaluate the

best procedure in term of performances and also during the search of the

baseline model for each discussed class.

Another employed metric is the coefficient of determination (R2 or “R

squared”) as an indicative statistic of the quality of the fitting. This coefficient

is an index of how well the model can approximate the real data, but in

stochastic or non-linear multivariable problems could be inefficient. For this

reason, it will be reported just as a qualitative result of our experiments.

𝑅2(𝑦, 𝑥) = 1 −
∑ (𝑦𝑖 − 𝑥𝑖)2

𝑖

∑ (𝑦𝑖 − �̅�)2
𝑖

= 1 −
∑ (𝑦𝑖 − 𝑥𝑖)2

𝑖

𝜎2

4.1 Synthetic test

A first experiment regards the Prophet PWL model testing. A tiny

dataset was generated by sampling the units sold from a composition of a

linear trend, weekly seasonality and a noise (sampled from normal

distribution); the price regressor was sampled by a relation with the units

sold, with respectively a positive linear coefficient (a), a negative linear

coefficient (b), a periodical alternating coefficient (c). The choice was made to

test that the new procedure can forecast exactly the same value of the old one

in the same conditions (a); introducing the non-positive constraint induces

the price beta coefficient to be negative and close to zero (b) and the trend

outcome differs from the old procedure, but not the seasonality; lastly that

32

 CHAPTER 4 EXPERIMENTS

the addition of the PWL regression for the price can improve the

performances of the procedure at least within a simple scenario (c).

4.2 Price regression test

After proving that the proposed procedure is capable of improving the

performances in a toy environment, we proceeded to test it over a specific

dataset. The old procedure, executed over this dataset, produced many

incongruences with the economic model of “supply and demand” [5], starting

from the incoherent relation between price and units sold.

The price regression test was performed with the aim of assessing the

quality of the new procedure over those cases which do not follow the

economic model, so it would be possible to employ an optimizer in the process

pipeline. The dataset was provided by the MindIt company, which already

faced the optimization problem in the process. The availability of a procedure

capable to exclude the risk of diverging results, thanks to the possibility of

taking in account the non-positive domain constraint, resulted ideal.

The target of this experiment was to test and regulate the non-positive

constraint over the price regressor, forgetting about the prediction of the sell-

out curve. The investigation then was expanded to include the effects of the

appliance of the PWL for the price regressor, to better understand the

response of the theorized model with real data.

4.3 Real-case scenario

The real benchmark for the Prophet model was the assessment of the

procedure over a dataset coming from a production environment and then we

compared the results with the old procedure.

A framework was built in order to evaluate each discussed model and

compare their outputs. The framework includes the possibility for a process

to use the intra-product validation, and all the models (except for the

polynomial regressor, section 3.1.1) make use of this feature. The framework

provides a division for test and train set, ensuring that the number of sellers

is sufficient for the intra-product validation and dropping those pairs which

do not respect this property.

33

 CHAPTER 4 EXPERIMENTS

The experiment was conducted by selecting the best model for each

class, excluding the Prophet model. The procedure used to select which would

be the most performant model, including seasonalities and regressors, in the

case of the Prophet class, was found by running an extensive grid search for

each pair in the dataset. The grid search includes 2’160 combinations of which

approximately 1200 uses a combination of non-positive constraint and PWL

regression. During the search the frequency of each combination were stored,

and those that were selected less than 1% of the times were discarded to

improve the speed of the process. The dataset contains almost 1800 valid

pairs, and the combinations survived to the pruning process of the grid search

are 113 and 97 (85.8%) of them make use of non-positive constraint or of PWL

regression.

Furthermore, with the proposed approach, we were able to predict

better the sell-out curve by assuming that each regressor (price excluded),

after the training, would have a value of zero, completely removing its effect.

In practice, this separation between training and test prediction is asking to

the model to predict the curve, from the past experience, as the only present

effect to impact the number of units sold is the price; the rest would produce

a variation of the baseline, which we are not interested in.

Once the best model of each class was selected it was trained over the

whole test set, composed by a selection of the 80% of all the pairs of each

product, ensuring that the number of remaining pairs is greater than 3

(minimal amount for intra-product validation). After the training, the

remaining pairs (20% for each product) were used to evaluate the metrics of

each model.

Thanks to the intra-product validation mechanism, we can now restart

the training process by selecting a different permutation of the train and test

set, reinitializing the model parameters. At the end of all the test runs, an

informative aggregation of the stored metrics is elaborated to compare the

methods and models. The descriptive aggregation includes average, standard

deviation, minimum and maximum value of each metric.

34

5 Results

This chapter will show and describe the results, in terms of metrics

(MAE and R2), obtained in each experiment.

Where possible, it will be reported a comparison between the described

models and a briefly description which presents the considerations taken in

account during the assessment and after its outcome.

The values written in bold will point out the best performant model or

result.

5.1 Synthetic test

The synthetic test produced the expected results: by using a regressor

which can be positive the base and PWL models’ outcome is the same because

we are not involving any type of constraints; in the case where we have the

necessity of a negative regressor the performances are slightly improved; in

the last case, where the regressor keep changing the relation coefficient, the

improvement is less marked but still present.

Here are reported the obtained results:

Benchmark
MAE R2

Base PWL Base PWL

Positive Linear Coefficient 312.5 312.5 0.977 0.977

Negative Linear Coefficient 373.1 358.2 0.963 0.971

Alternating Coefficient 512.4 501.8 0.961 0.965
Fig 5.1.1 – Prophet synthetic test results

35

 CHAPTER 5 RESULTS

5.2 Price regression test

For the price regression test, the first target was to assess the response

of the model to a non-positive constraint. As the results show, the constraint

is working as expected, the 𝛽𝑟 becomes negative as soon as the constraint is

applied.

Here there are two plots showing one of the inversion cases:

Fig 5.2.1 – Prophet, example of a price regression, base model

Fig 5.2.2 – Prophet, example of a constrained price regression, proposed model

Fig 5.2.3 – Prophet, example of a price PWL regression, proposed model

On the right are reported the results of different distributions:

Cauchy (grey), Gaussian (red), Laplace (green)

𝛽𝑟 = −12.5

𝛽𝑟 = +20.7

36

 CHAPTER 5 RESULTS

Here is shown an in-depth analysis of the precedent case, showing how

the different models behave on the same data:

Fig 5.2.4 – Comparison of base (Stan v1), non-positive (Stan v2), constrained and

unconstrained PWL (Stan v3) Prophet models

37

 CHAPTER 5 RESULTS

Below, the table of the metrics shows how the proposed procedure

performs twice as better as the base Prophet model. The introduction of the

PWL slightly reduces the performances, which are still improved with respect

of the base model. The reduction is probably due to the peculiarity of the price

regression task or a non-optimal choice of the changepoints used to partition

the dataset, which subsequently introduces discrepancies between the

seasonalities and the price regressor, slightly degrading the performances.

Prophet Model MAE R2

Base 6366 0.4675

Non-positive constraint 3867 0.5642

PWL – Gaussian 4284 0.4717

PWL – Laplace 4193 0.4952

PWL – Cauchy 4195 0.4935

Table 5.2.1 – Prophet models performance comparison

38

 CHAPTER 5 RESULTS

5.3 Real-case scenario

The last and most important experiment is conducted over the real

dataset provided by the MindIt company.

Even in this experiment, we found an improvement of the proposed

procedure with respect of the base Prophet model. The improvement is not so

considerable as the precedent experiments but still noticeable. The proposed

approach performs similar to the most effective model, the Mean model,

which is one of the most both reliable and explainable techniques employed

in the market sales domain. Furthermore, it is the only approach which

decomposes the output in a composition of effects, making easier to

understand and analyse the causes of the output.

The following tables show the results obtained in this experiment:

Model
MAE

Mean STD Min Max

Prophet PWL 1483.73 5412.47 4.85 77424.48

Prophet (base) 2788.22 5859.11 17.21 101774.12

Mean 1486.48 4362.16 5.48 65981.98

Mean windowed 1488.29 4411.57 5.46 67571.30

Polynomial (Bézier) 2171.97 6727.76 10.08 99410.46

MLP 1980.00 7754.54 9.25 147643.40

RNN 4267.92 12550.98 28.11 200329.50
Table 5.3.1 – Real case model MAE comparisons

Model
R2

Mean STD Min Max

Prophet PWL 0.553 0.790 0.980 4.58e-08

Prophet (base) 0.511 0.512 0.981 1.12e-08

Mean 0.597 0.303 0.996 6.34e-07

Mean windowed 0.598 0.303 0.996 1.42e-09

Polynomial (Bézier) 0.438 0.303 0.988 1.75e-08

MLP 0.411 0.292 0.985 6.98e-09

RNN 0.127 0.224 0.935 2.43e-07
Table 5.3.2 – Real case model R2 comparisons

39

6 Discussion and Remarks

While it may seem not enough to reach, with the proposed approach, a

result comparable to the Mean model, with this work we succeeded to reach

different objectives.

The first and most important is the explainability of the result. The

customers of data analysis companies are usually interested to understand

which process the machine followed because they have a strong need of

reliability and they want a certain degree of control in their operations. There

are also other minor or more specific necessities, sometimes related also to

domain experts which need details for further analysis. The decomposition of

the effects is a very important feature for the market sales domain. Thanks

to the modularity of the Prophet model and the declarative way to describe

regressors, it is possible to go back to the regressor which is the source of a

certain result.

Another target was the success in the improvement of the Prophet base

model. The implementation of a non-positive constraint was a debated and

discussed topic in the Prophet GitHub community. The proposed solution

successfully addressed the problem and expanded to the implementation of a

PWL regression.

One last impressive advantage of this procedure, with respect of the

Mean model, is the capacity to work with an arbitrary number of pairs. The

procedure, indeed, could predict a sell-in baseline by looking at just one pair

of product-seller, while the other models need a huger amount of data.

So, summarizing the evaluation, the success of this procedure does not

lay only in the performances, but in the enhancement that provides to the

already consolidated procedures.

The Mean model, even if worse in absolute terms, still yield more

compact results, gifting to us a suggestion: a point to be taken in consideration

in a future deepening could be an extensive analysis of the worst cases

predicted by our procedure. The proposed model indeed got a discretely higher

MAE standard deviation, meaning that there is a more evident difference

between good and bad predictions.

40

 CHAPTER 6 DISCUSSION AND REMARKS

6.1 Limitations

The proposed procedure comes with some limitations. Below, we will

discuss about some known limitations and their overcomes, where possible.

The first and most known is due to a lack of interest in the developing

process toward undesired complexities. The work revolved around practical

problems and use cases, so it was decided not to expand the logistic regression

already present in the precedent model. The piece-wise regression is actually

available only for linear regressors, while it could be possible to extend the

concept also to the logistic regression already implemented for the trend.

Such a feature could be interesting only in very specific domains and could

also be achieved by simulating it with a dense number of changepoints,

distributed with a symmetrical logistic decay (increasing density toward the

start and the end of a time period).

Another limitation comes from the modular declarative setting of the

procedure. To maintain the simplicity of the work, the model is able to accept

non-positive constraints for simple as well as piece-wise linear regressors, but

it can’t apply directly any constraint to both monotonicity and

convexity/concavity of the regression. We can address the monotonicity with

the non-positive constraint, which can be intended as a restriction to the first

derivative sign, resulting into a non-strict monotonicity constraint by

propagating it to each chunk of the piece-wise regression; on the other hand,

we have no control over the regressor second derivative, so a chunk could

change the convexity (or concavity) of the global function. In theory, we could

predict a logistic shape with a constrained piece-wise linear regression, even

for those cases we are interested to maintain a certain concavity. A restriction

over the second derivative would be more effective in diminishing returns

scenarios, exactly what we could expect from the “supply and demand”

economic model.

41

7 Conclusions

At the end of this work, the proposed approach led to promising results

in the business time series analysis and forecasting. The advantages offered

by the proposed model are the possibility to describe the problem in a

declarative fashion; more than decent performances; huge flexibility with

regressors and periodicity analysis with seasonalities; last, and very

important, the decomposition of the effects involved in the computation which

means an impressive degree of explainability. The model also comes with

some limitations, such as the unimplemented piece-wise logistic regression

for peculiar function shapes, that are also found in the market sales domain.

The work proceeded with a modularity of increasing complexity,

starting from the resolution of simpler or synthetic problems, expanding then

to more complex and real ones. Each experiment of the work was also driven

by concrete necessity in actual and common problems found in company

process pipelines. We started by solving the problems related to the

optimization divergence due to “supply and demand” economic model

inconsistencies, then we added more complexity by expanding the concept of

PWL regression over the already present extra regressors.

The final results show also that there are further margins of improving

in this field, this work could open different fronts toward the distinction of

stochastic and deterministic methods, inferential and neural models.

7.1 Future Work

A natural expansion of this work could be the employment of hybrid

and/or ensembled regressor. We could for example use a collection of Prophet

models, with a special initialization and a specific construction, in order to lay

a variety of results that take in account different type of errors, hoping that

they can compensate one each other. Another approach would be the

establishment of a chain of models that refine the output in different ways;

we could design a MLP or RNN network which takes the proposed procedure

output and corrects those parts which are more likely to be incongruent

within a certain context.

Another point of possible improvements is the development of a piece-

wise polynomial (or spline, PWS) regression which would allow the possibility

42

 CHAPTER 7 CONCLUSIONS

to inject a concavity/convexity constraint, given that a PWS (of grade greater

than 1) belongs to the second order differentiable functions (PDIFF).

This essay also touched other approaches that are worthy to a further

deepening.

A particular attention was recently put toward the time series analysis

and forecasting as an image processing task. Future works may include an

in-depth comparison of the advantages given by a fully convolutional network

employed with the Gramian Angular Field method. This technique is being

more and more used in market trading and exchange fields, which are very

unpredictable environments, even for human experts, yielding promising

results.

Another interesting approach to explore, firstly appeared in the

computer vision area and then expanded to other fields, is the study of time

envelops through non-local operators, which can simulate and implement a

behaviour similar to the self-attention used in natural language processing.

A

Bibliography

[1] R. Hermann and A. J. Krener, Nonlinear controllability

and observability, 1977.

[2] P. Diaconis, S. Holmes and R. Montgomery, Dynamical

Bias in the Coin Toss, Stanford University, Stanford, 2007.

[3] N. Mahmudov, Controllability of linear stochastic system,

IEEE Xplore, 2001.

[4] P. Groenewegen, “Supply and Demand,” The new Palgrave

Dictionary of Economics, 2008.

[5] A. Grant, The Graphical Representation of the Laws of

Supply and Demand, Edinburgh: Edmonston and Douglas, 1870.

[6] W. Poundstone, Prisoner's Dilemma, New York - Anchor:

1st Anchor Books ed., 1993.

[7] P. E. Caines, Mean Field Games, Encyclopedia of Systems

and Control, 2014.

[8] J. T. Connor and L. E. Atlas, Recurrent neural networks

and robust time series prediction, IEEE Transactions on Neural

Networks, 1994.

[9] J. S. Zhang and X. C. Xiao, Predicting Chaotic Time Series

Using Recurrent Neural Network, IOPScience, 2000.

[10] S. J. Taylor and B. Letham, Forecasting at Scale, PeerJ

Preprints, 2017.

[11] E. Zunic, K. Korjenic, K. Hodzic and D. Donko, Application

of Facebook's Prophet Algorithm for Successful Sales Forecasting

Based on Real-world Data, International Journal of Computer

Science & Information Technology, 2020.

B

 CHAPTER BIBLIOGRAPHY

[12] N. Maaroufi, M. Najib and M. Bakhouya, Predicting the

Future is Like Completing a Painting: Towards a Novel Method

for Time-Series Forecasting, IEEE Access, vol. 9, 2021.

[13] S. Barra, S. Carta, A. Corriga, A. S. Podda and D. R.

Recupero, Deep Learning and Time Series-to-Image Encoding,

University of Naples, Journal of Automatica Sinica, 2019.

[14] J. F. Chen, W. L. Chen, C. P. Huang, S. H. Huang and A. P.

Chen, Financial Time-Series Data Analysis Using Deep

Convolutional Neural Networks, IEEE, 7th International

Conference on Cloud Computing and Big Data (CCBD), 2016.

[15] Z. Wang and T. Oates, Imaging Time-Series to Improve

Classification and Imputation, Neural and Evolutionary

Computing (cs.NE), 2015.

[16] R. Adhikari and R. K. Agrawal, Effectiveness of PSO Based

Neural Network for Seasonal Time Series Forecasting, Indian

International Conference on Artificial Intelligence (IICAI), 2011.

[17] G. K. Jha, P. Thulasiraman and R. K. Thulasiraman, PSO

based neural network for time series forecasting, International

Joint Conference on Neural Networks, 2009.

[18] J. D. Gergonne, The application of the method of least

squares to the interpolation of sequences, 1815.

[19] J. A. K. Suykens and J. Vandewalle, Least squares support

vector machine classifiers, Neural Processing Letters, 1999.

[20] E. T. Y. Lee, A Simplified B-Spline Computation Routine,

Computing. Springer-Verlag, 1982.

[21] F. Rosenblatt, The Perceptron: A Probabilistic Model for

Information Storage and Organization in the Brain, Cornell

Aeronautical Laboratory, 1958.

[22] S. I. Gallant, Perceptron-based learning algorithms, IEEE

Transactions on Neural Networks, 1990.

C

 CHAPTER BIBLIOGRAPHY

[23] J. Gamboa, Deep Learning for Time-Series Analysis,

University of Kaiserslautern, Germany, 2017.

[24] R. G. Hoptroff, The principles and practice of time series

forecasting and business modelling using neural nets, Neural

Computing & Applications , 1993.

[25] M. Miljanovic, Comparative analysis of Recurrent and

Finite Impulse Response Neural Networks in Time Series

Prediction, Indian Journal of Computer and Engineering, 2012.

[26] E. Waite, D. Eck, A. Roberts and D. Abolafia, Project

Magenta: Generating longterm structure in songs and stories,

Tensorflow, https://magenta.tensorflow.org, 2016.

[27] B. Carpenter, A. Gelman, M. Hoffman, D. Lee, B. Goodrich,

M. Betancourt, M. A. Brubaker, J. Guo, P. Li and A. Ridell, A

Probabilistic Programming Language, 2017.

[28] T. Hastie and R. Tibshirani, Generalized additive models:

some applications, Journal of the American Statistical

Association, 1987.

[29] R. H. Byrd, P. Lu and J. Nocedal, A limited memory

algorithm for bound, SIAM Journal on Scientific and Statistical

Computing, 1995.

[30] M. Gupta, D. Bahri, A. Cotter and K. Canini, Diminishing

Returns Shape Constraints for Interpretability and

Regularization, Advances in Neural Information Processing

Systems 31, 2018.

D

Image References

Fig 2.1 https://pythontic.com/AutoCorrelation.jpg

Fig 2.2

https://upload.wikimedia.org/wikipedia/commons/thumb/3

/30/FFT_of_Cosine_Summation_Function.svg/1024px-

FFT_of_Cosine_Summation_Function.svg.png

Fig 3.3.1 Forecasting at scale [10], page 3

Fig 3.3.3
https://upload.wikimedia.org/wikipedia/commons/thumb/5

/58/Jenkincurves.gif/1024px-Jenkincurves.gif

Fig 3.3.5

https://upload.wikimedia.org/wikipedia/commons/thumb/7

/74/Normal_Distribution_PDF.svg/720px-

Normal_Distribution_PDF.svg.png

Fig 3.3.6
https://upload.wikimedia.org/wikipedia/commons/thumb/0

/0a/Laplace_pdf_mod.svg/1024px-Laplace_pdf_mod.svg.png

Fig 3.3.7
https://upload.wikimedia.org/wikipedia/commons/thumb/8

/8c/Cauchy_pdf.svg/1024px-Cauchy_pdf.svg.png

	Abstract
	Contents Index
	Image Index
	Table Index
	Introduction
	Business time series
	Market as Complex System
	Problem definition
	Approaches

	1 Related Works
	1.1 Recurrent Neural Networks in time series
	1.2 Forecasting at scale: Facebook Prophet
	1.3 Painting the future
	1.4 PSO in time series forecasting

	2 Data and Feature Extraction
	2.1 Harvesting
	2.2 Validation
	2.3 Pre-processing
	2.4 Seasonality extraction
	2.5 Dataset modularity
	2.6 Intra-product validation

	3 Methods and Models
	3.1 Methods
	3.1.1 Polynomial regression model
	3.1.2 Mean model

	3.2 Neural Models
	3.2.1 Multi-layer Perceptron
	3.2.2 Recurrent Neural Network

	3.3 Prophet
	3.3.1 Structure
	3.3.2 Stochastic regression
	3.3.3 Declarative model
	3.3.4 Non-positive constraint
	3.3.5 Piece-wise linear regression
	3.3.6 Modularity

	4 Experiments
	4.1 Synthetic test
	4.2 Price regression test
	4.3 Real-case scenario

	5 Results
	5.1 Synthetic test
	5.2 Price regression test
	5.3 Real-case scenario

	6 Discussion and Remarks
	6.1 Limitations

	7 Conclusions
	7.1 Future Work

	Bibliography
	Image References

