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Abstract 

Nowadays artificial intelligence algorithms are capable to achieve 

impressive results with a reduced amount of physical and time resources. 

They cover many different topics with a discrete success, but one of the most 

challenging subject to model is the prediction of future trends in complex and 

mutable environments, such as market sales. 

From a deterministic point of view, the knowledge of the exact state 

and the rules of a system in a certain period intrinsically brings the faculty 

to forecast any future state. This perspective yields an exact prediction, but 

it lays its foundation on the assumption that its possible to model every aspect 

of the system, a premise that is usually satisfied only in simple cases. 

The difficulty of predicting time-series is amenable to many factors, one 

of the most important is the drastically instable and mutable domain 

subjected to the competitiveness of its constituents, vendors and buyers, as 

described by the principles of the game theory; in such system, the rules are 

constantly changing, hardening the predictions of future states. 

Furthermore, financial studies produced a variety of economic models 

which help to understand the market behaviour. By applying specific 

constraints to the prediction, it is possible to exploit these models to reach 

better and more explainable results and relate their components to the 

relative sources. 

The aim of this work is to propose a procedure capable of inject domain 

constraints in the prediction in a declarative fashion, addressing different 

economic models. This procedure helps the analysts to better express their 

domain expertise while keeping a completely explainable approach to 

describe their outcomes. 
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Introduction 

Forecasting business time series is nowadays still a hard task and 

requires analysts specialized in this field. Many researchers recently invested 

their efforts to study the best procedures which produce high quality 

forecasts, but the practice of prediction is usually intrinsically hard to be 

explained and, even in the case of a simple domain, it particularly needs 

specialized analysts to make intelligible the results. Furthermore, modern 

data-oriented approaches are often treated as black box models which are 

hard to tune as well as difficult to properly be explained and usually inflexible 

to human observation and domain expertise. 

The proposed procedure brings the two realities of interpretability and 

domain knowledge injection within the reach of specialists as well as people 

who may possess domain knowledge but unexperienced in time series 

methods or without any forecast modelling proficiency. 

Business time series 

Market sales are in constant movement because they are affected by 

an immeasurable number of agents, becoming sometimes very hard to 

understand even for an expert. Indeed, trading is one of the activities which 

most touches the human social behaviour, and its complexity keeps growing 

as more studies are experienced in this field, leading to an expansion of the 

rules that regulates the market. 

In control theory, to precisely predict a future state (and its relative 

output) of a system1 it is needed that this one satisfies the controllability 

principle [1], which states that it is possible to modify the system internal 

state by interacting with one or more inputs. In open world and very complex 

environments, it is practically impossible to deterministically model inputs 

and state dimension beforehand knowing the market developments: 

introducing more agents (vendors or buyers) lead to a change in terms of 

internal rules and states of the modelled system. So, changing rules means 

 
1 Controllability is usually described in linear systems, but it is proven that can be 

extended to non-linear systems [1] 
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changing models and so the predictability of a deterministic result become 

impossible. 

When it could not be possible to deterministically model in detail a 

system, because of the many variables to take in account but also for being 

able to observe the inputs and the outputs of the system, it is always possible 

to stochastically model the same system by assuming that the model is 

responsible to introduce an uncertainness in the process. This duality in the 

way of seeing the same system is well visible in the famous “coin toss” 

problem: we can describe the physical laws underneath the toss of the coin, 

needing the initial state, and predict exactly the output [2], or we can describe 

the randomness introduced by the unknown initial state in a stochastic 

fashion. 

Considering the variability of the environment, business time series 

are usually analysed, treated and forecasted by leveraging of uncertainty of 

unknown or non-modellable factors with the use of stochastic models. 

Mahmudov proved that is possible to describe a stochastic systems in terms 

of controllability [3], which means that in principle it is possible to predict, 

with a certain degree of confidence, the output of a liquid system such as the 

market.  

Market as Complex System 

Even though we could treat the uncertainty with stochasticity, we can’t 

exclude that the market is a reactive system composed by agents. Business 

analyses are always performed in order to make an action in the sales 

environment. Each action is responsible to a slight change of the system 

behaviour, given the fact that the agents can adapt and modify their conduct 

with the respect to that action or to the system change. 

The market can be briefly described as a collection of two kinds of 

entities: vendors and sellers. From the 19th century many studies were 

conducted in the attempt to model the relations between the agents. One of 

the most famous result of these studies, regarding in particular the relation 

in between vendor and seller, is the economic model of “supply and demand” 

described by Cournot in 1838 [4]. Cournot described a linear proportion 

between the price of the product and the sold quantity, which was then 

expanded by Jenkin in 1870 [5] with a diminishing return economic model. 

Other studies, instead, better describes the relation between different 
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vendors. These are centred on the game theory, well represented by the 

famous “Two prisoner’s dilemma” exposed by Poundstone [6]. Two agents 

indeed maximize their expectations by assuming a competitive attitude, 

especially if they cannot rely on each other. Inspired by the mean-field 

physical theory, Caines has widen and explained what can happen in the case 

the agents are a minimal part of the system, constituting a sub-environment 

by their own [7]. 

Other researchers tried to view the market as an undirected graph, 

trying to map the relations and transactions between vendor and buyer nodes 

to achieve a predictable model for the field. 

One last important source of discrepancy between model and reality to 

keep in consideration is the human bias, reflected in its models, to learn from 

past experiences, which can result into ineffective predictions of the future in 

systems which constantly and repeatedly change, even more if the experience 

is part of the system change itself. 

Many attempts to understand and regulate the market were made, but 

the attempt itself is representable as an action of an agent which produces 

effects in the system, perturbating the behaviour of the other agents. Still the 

prediction of business time series through economical and sociological models 

struggle to completely describe the complexity of such a sophisticated and 

dynamic environment. These reasons are sufficient to restrict the analytics to 

a narrower perspective and draw strict assumptions (such as the Cournot’s 

supply and demand relation) in order to simplify the modelling process. 

Problem definition 

Many modern methods offer the possibility to deal with stochasticity 

during the modelling of business time series, but almost all of them lack a 

procedure capable to inject domain constraints (discussed in the previous 

sections) with ease. Usually, the insertion of such constraints is demanded to 

experts who often have no expertise in the market sales domain, creating a 

divergence between the implementation and the usage of the model. 

This observation inspired this work to focus on the creation of a 

procedure capable to respond to different needs: the prediction of a business 

time series; the large scale, as amount of data, of the prediction; the easy 

usability of the model even for non-experts who may have domain knowledge 

about the process; the modularity of the method to be employed multiple 
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times in the same problem but also the capacity of generalization to reach the 

largest variety of forecasting problems (not only related to market sales 

domain); the possibility to inject constraints with ease just by exploiting the 

owned domain knowledge. 

Approaches 

The development of the procedure was bound to a real case scenario, 

thanks to the work proposal by the MindIt company. The constraint injection 

property of the model was initially aimed to prevent unexplainable and 

unoptimizable behaviours in the company pipeline, but then it was expanded 

to include a more generic approach, imitating the same generalization 

approach used by previous models. 

The work revolved around the analysis of the data available for a 

supermarket chain. For a retailer it is useful to make a distinction between 

two different period of the sale: sell-in, when the retailer buys the product 

from the manufacturer, and sell-out, when it sells to the single customer. This 

distinction is also present in the way the data is collected. Indeed, the sell-in 

data is almost always available because it is the retailer itself that manage 

the transaction with the manufacturer, furthermore it is also possible to 

check the correctness of the data because the source is very reliable. On the 

other hand, the sell-out data is harvested by crowd-mining methods, which 

sometimes could be unreliable in terms of presence and trustiness of each 

single sample, or by assuming companies responsible to collect and process 

the data coming from each single store cash desk. This second method is way 

more reliable, but it comes with an economic cost that could not be worth 

enough to spend. 

The taken approaches firstly aimed to ensure the domain constraints 

in the relationship between price and the number of units sold, subsequently 

expanding the procedure to involve the prediction of a projected 

comprehensive units sold baseline for the sell-out. The baseline would be 

affected by many components (e. g. leafleting or discounts), so we can simulate 

their removal such that we obtain a cleaned baseline, which can be used in 

subsequent analysis to understand the impact of certain decisions in the sales 

market, such as the appliance of a discount in a certain period of the year, 

like Christmas. 
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1    Related Works 

1.1    Recurrent Neural Networks in time series 

Hybrid approaches can be employed in the time series forecasting. We 

can inherit the robustness and explainability of the old fashion models, such 

as the autoregressive moving average model (ARMA), but exploiting the 

flexibility of neural models. In particular, the use of a recurrent neural 

network (RNN) in an extended neural ARMA model (NARMA), was employed 

to filter the outliers and improve the training of the hybrid model [8]. Other 

approaches benefit from the use of forward and feedback paths while using a 

bidirectional RNN directly on the data to make order and sense in the chaos 

of a time series [9], achieving better results than old fashion models. 

This work employs an unsophisticated recurrent neural network model 

to have a basic comparation between deterministic neural approaches and 

stochastic methods. 

1.2    Forecasting at scale: Facebook Prophet 

Meta (Facebook at the time of the paper) employees invested much 

effort in the time series forecasting related to the prediction of periods with 

overcrowding events [10]. The big company had the necessity to develop a web 

environment capable to anticipate event-congested periods to improve the 

service for the final user and keep the results as explainable as possible. The 

limitation of resources and the outcome clarity bring to the development of a 

robust infrastructure capable of predicting time series also in fields unrelated 

to the application events. Indeed, different articles mention Prophet, the 

model invented by Taylor and Letham at Meta [10], as capable of predicting 

business time series. Furthermore, some researchers recently conducted 

some studies in this sector, showing that it is possible to build frameworks for 

real-world data belonging to sales domain employing Prophet [11]. 
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1.3    Painting the future 

Given the success of the deep convolutional networks and the fast 

spread and growth in the last years, the newer trend is to find a way to depict 

data as a coherent image and try to make a completely new sense from the 

rearranged features. For time series, the pioneers in this technique found 

successful to convert the data into images that intrinsically contain the time 

axis embedded in each pixel position. This encoding is produced by two 

different transformations employing transformations such as Gramian 

Angular Field (GAF) [12, 13, 14] and Markov Transition Field (MTF) [15]. 

The concept underneath these encodings is to convert the time 

proximity of a sample into a spatial proximity in an image. Then the usual 

procedures used in the image processing pipeline are employed to predict the 

expected result (e.g. classification, regression, etc.). 

By leveraging the experience already accumulated over years of 

research in convolutional networks, this approach seems to mine good results, 

but this promising approach is still in its infancy. 

1.4    PSO in time series forecasting 

All the methods described so far do not take in account or exploit the 

non-stationary property of the market sales. The financial system is so 

complex that even if we perform the same action in two different time periods, 

the outcomes could be drastically diverse. 

Recent studies discovered that neural models, which employ Particle 

Swarm Optimization (PSO) as learning techniques [16, 17], are able to extract 

patterns from non-stationary data, improving the performances of the model. 

Even if these researches are still experimental, because they just partially 

probed the reasons behind their success, their promising outcomes are 

attracting interest in the PSO employment for time series forecasting, and 

their growing number through the years is proving of this. 
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2    Data and Feature Extraction 

The dataset for the real case scenario was provided by the MindIt 

company and it was collected over a period of four years. The data contains 

sensible information, so every reference to it will be concealed or transformed 

for privacy reasons, while keeping the understandability of the discussion. 

As already mentioned, the dataset is collected in two different times 

and pre-processed to guarantee a unique relation between the two periods. 

The curves that were collected for the sell-out were also projected to be 

compatible with the curves at sell-in and merged by matching the dates. 

Below, we will summarize the process that led the data from the 

collection to the usage in the procedure. 

2.1    Harvesting 

The collection of the data was divided in two different periods: sell-in 

and sell-out. The first is easy to harvest, since each retailer has an internal 

balance sheet account that enumerates the invoices relative to each purchase 

from a specific manufacturer. 

In the case of the sell-out instead, the retailer has no information about 

the single transaction of each owned store, so it needs to directly collect the 

data from them. This usually can be done with crowd-mining techniques or 

by assuming companies which collect and process data from the stores. 

A generic approach to crowd-mining is to drive customers to record 

their receipts through incentives, like discounts and coupons, or by using 

loyalty cards. One of the advantages of crowd-mining techniques is the thin 

capillarity of the collection, since each person can describe its tiny situation, 

but on the other hand the reliability of each one of them is brought up. 

For our final dataset the retailers decided to have a reliable source by 

investing in other companies that harvested the data. This meant that crowd-

mining is not a viable option, so they have chosen to entrust the data 

harvesting to a third company, which grants for the dataset quality. By 

involving other companies, the retailer has to spend more money in the 

process, and sometimes could not be interested or it could have other reasons 

not to buy the data harvesting for a certain period, product or seller. Filling 
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the gaps introduced by the absence of sell-out data is part of the objective of 

this work. 

2.2    Validation 

The data can be a source of error, especially in the case it is harvested 

through unreliable processes. In this work two different datasets were used 

in different experiments. 

For what concern the price regression experiment (section 4.2), the 

used dataset was in part collected through a crowd-mining technique, 

requiring a more in-depth analysis and validation before proceeding with the 

usual process. 

In general, due to a possible partial unreliability of the harvesting 

method, or more broadly to a possible data inconsistency during any previous 

step, it is needed to perform a validation to ensure the coherence of the 

process. The crowd-mined collected material indeed was intrigued by 

insertion errors and corrections (e.g. invalid dates, negative or invalid 

number of units sold or paid amount, etc.) but also by behaviour anomalies in 

the data recording (e.g. users that accumulate receipts for weeks or months 

and record them in a single day). 

Another important aspect that was taken in account was the effect of 

the lockdown due to the pandemic 2019 COVID. In this period indeed the 

data, where present and collected, drastically changed because of the forced 

modification in the shopping behaviour of the people. For this reason, the data 

during this period was briefly analysed to understand the causes and the 

effects derived by this period and subsequently was discarded by the process 

pipeline to assess more consistently the whole procedure. 

In the real-case scenario (section 4.3) was employed a dataset collected 

by a third company, which processed and validated the data in advance, 

relieving the needing of such operation. 
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2.3    Pre-processing 

After the validation, the data needs to be pre-processed to obtain 

coherent results. The first step is to aggregate the sell-in transaction dataset 

into coarser grained sets, which can contain daily, weekly or monthly 

information. The daily dataset is responsible for the forecasting, while the 

others are useful for a broader inspective analysis (i.e. finding anomalies in 

the insertion behaviour for the harvesting phase). Subsequently the sell-out 

dataset, which has already a daily granularity, is merged into the aggregated 

sell-in dataset, obtaining a unique set. 
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The outcoming set is primarily composed by the following columns: 

Column Description 

Date Time of transaction (with daily granularity) 

Product Code representing a product 

Retailer Code representing a retailer 

Store Code representing a store owned by a retailer 

Units sold SO Units sold in sell-out (retailer to store) 

Units sold SO 

PROMO 

Units sold in sell-out (retailer to store) 

during a retailer promotional event 

Amount SO Total income in sell-out (retailer to store) 

Units sold SI Quantity of units sold in sell-in (store to shopper) 

Units sold SI 

PROMO 

Units sold in sell-in (store to shopper) 

during a retailer promotional event 

Amount SI Total income in sell-in (store to shopper) 

Brand Informative code of the product brand 

  

Pair Tuple describing Product and Store 

Price SO Amount SO / Units sold SO 

Units SO NP 

(No Promo) 
Units sold SO – Units sold SO PROMO 

Price SI Amount SI / Units sold SI 

Units SI NP 

(No Promo) 
Units sold SI – Units sold SI PROMO 

Table 2.1 – Dataset Description 

We can compute the price columns (SI and SO) by dividing the amount 

by the relative units sold column. The promotional event columns will be later 

useful to understand the impact of a retailer investment during different 

periods of the year. 

Every prediction regards a single product and a single store, so we can 

namely index the dataset by the product code and the store code, which we 

will call pair. 

2.4    Seasonality extraction 

A peculiar part of the analysis and pre-processing of a business time 

series is the possibility to observe a periodicity in the behaviour of the vendors 

selling attitude. This periodicity can have a different time scale. For example, 

there are seasonal products which are sold just in a part of the year, indeed 

we expect ice-creams to sell more in the summertime while hot chocolate to 
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be more purchased during the wintertime; recreative or party related 

products, such as beverages and finger food, have a selling increasing just 

before or at the start of the weekend. 

The seasonality of a product is the description of the recurrence of a 

selling curve (as a one-dimensional signal) and is composed by two factors: 

cadence (or phase), which is the time interval between the peaks of the curve, 

and strength (or amplitude), which describe the general intensity of the 

recurrence event. The position of each peak represents the time of the selling 

concentration, while its height represents how likely is to sell the product in 

that time. For example, seasonal (ice-creams) and event-bound (Christmas 

decorations) products both share an annual cadence, given the fact that they 

will be always sold in certain months of the year, but the latter have a huger 

strength then the first. This is because the period of the events is usually fixed 

and has a shorter duration than a season, concentrating the selling in well-

defined periods. 

The usual way to discover the most qualitatively intense seasonality 

cadences is to use the autocorrelation method. It computes, for increasing 

lags, the auto-covariance of the signal, or the covariance between a signal and 

its time-translated version. The single auto-covariance for the lag L describes 

how much the curve match with the same curve but translated for a L period.  

 

Fig. 2.1 – Example of an auto-correlation (normalized) plot 
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Once the scale of the most promising periods is extracted, we can 

proceed with a selective fast Fourier transform (FFT) to decompose the 

original signal in a sinusoidal series, including the ranges extrapolated by the 

auto-correlation.  

 

Fig 2.2 – Example of a fast Fourier transform (FFT) plot 

The seasonality can be useful when employed in the procedure because 

it can well explain the measure of the impact in the units sold quantity due 

to the period of the year, leading to a better understanding of the best time to 

apply a discount. For a trivial example, we can understand that an ice-cream 

promotion is ineffective during the wintertime just because the population is 

not available to buy that product in that period. Obviously, other cases are 

not so trivial to be observed just by looking at data, even for expert analysts, 

so this procedure helps to bring out this feature but also allows to 

quantitatively compare the intensity between two distinct products. 
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2.5    Dataset modularity 

The whole data came in different chunks, from different kind of sources 

and at different times. It was decided to proceed the analysis with a modular 

approach, starting by selecting a manageable portion of the dataset, which 

was restricted to a part of a chosen target product category, and then more 

and more quantities and categories were introduced to work with. This slowly 

insertion of increasing chunks of data allowed to better separate which of the 

effects were bounded to smaller parts and their categories and which instead 

were more broadly describing the whole dataset. The future selection of which 

features must be included in the process was also influenced by this procedure 

step. 

2.6    Intra-product validation 

The last aspect that the framework needs to take in account is the 

capacity to assess the predictions in a coherent way. The evaluation method 

must be equal for all the models but also for all their training conditions. 

It is a good practice to analyse the data under different aspects, one 

that resulted important is the distinction of the behaviour observed between 

different products with respect to the conduct observed in the sellers which 

share the same product. We can describe the first perspective as inter-

product, which compare the dissimilarities of different products, while the 

second is called intra-product, which instead focusses on the diversity found 

in the pairs that shares the same product, but their sellers differ one each 

other. 

The curves shown a discordant variation in the units sold column, 

higher for inter-product and lower for intra-product. This was enough to 

create a model validation system which train and validate the model in a 

product-seller pair rotation. 

This rotation enhances the distinction of different products, in this way 

we can create a model specialized in the prediction of a single product, 

improving the performances and highlighting product specific features, which 

are very valuable for an output backtracking and in subsequent analysis. 
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Coming to practice, the inter-product validation algorithm for each 

train step: 

1. Selects a single product from the training set 

2. Selects a single target seller from the pairs containing the 

selected product 

3. Trains the model for all the pairs containing the product and not 

containing the target seller 

4. Validates the model by computing the metrics on the target pair 

predictions 

At the end of the training, the model parameters are stored for the 

subsequent test phase. This kind of validation better highlights the 

possibility of a model overfitting with a specific product, and it also allows to 

understand which inter-product features are better represented from 

different models. 
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3    Methods and Models 

In this chapter we will discuss about the methods and the models used 

to assess the overall performances of the forecasting procedure. The final 

evaluation of each model and method was assessed with a regression metric 

between the target column, which is the reconstruction of the sell-in units 

sold curve, and the predicted column. 

3.1    Methods 

Before using modern approaches, the work started by considering the 

history of business time series forecasting. The first approaches studied came 

from the research of mathematician in the regression field, with a special 

focus over the market sales domain.  

3.1.1  Polynomial regression model 

This model employs a polynomial regression in order to predict the 

units sold at sell-in. This model was the first to be employed since it was 

already used as a control step in the reference company analysis pipeline. 

There are different grades and approaches to fit a polynomial over a dataset. 

The most widespread used approach is the least square method, which was 

attributed by both Legendre and Gauss at the beginning of the 19th century. 

Gergonne in 1815 then published a first application of this method [18], 

making the studies of the two mathematicians practicable. With the advent 

of the information technologies, more and more machine learning 

techniques involved this method of regression in order to train an algorithm 

to infer polynomial curves from a point cloud. The most recent and effective 

employment is the LS-SVM (Least Squares Support Vector Machine). It 

reformulates the usual SVM classifier in order to include the least squares 

method by reinterpreting the classification as a binary regression [19]. 

Parallelly with the machine learning development, in the second half 

of the 20th century, computer graphic also was a hot topic for the research. 

Another point of view in the polynomial description was found by Pierre 

Bézier, which pointed out a way to draw a polynomial curve from a set of 

control points. This method was borrowed from Paul de Casteljau, which 

invented an algorithm capable of describe a polynomial curve of grade n 

through a summatory of basis polynomial (a linear combination of different 
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polynomial of different grades). Years later, De Boor improved and 

generalized the Casteljau’s algorithm revisiting the form of the basis 

polynomial, exploiting the Bézier finding, reforming it in the B-spline form. 

De Boor stated that a curve is decomposable into a piece-wise concatenation 

of curves that can be expressed by a single control point. Theoretically, this 

algorithm should be able to describe any polynomial (or any curve locally 

expressible through polynomials) of any grade, but practically its complexity 

narrows down the possibilities for higher grades. Modern programming 

libraries includes implementations of the mentioned algorithm in many 

different forms [20], not only for computer graphics fields. 

From these two historical branches the choice fell to the Bézier 

regression. The reasons we opted for this alternative were the huge 

expressiveness and application speed for lower grades, the capacity of the 

algorithm to take in account the derivatives during the regression of the 

control points and also the intrinsic smoothness of the outcomes. 

The polynomial regression model was bound to the piece-wise 

prediction of a Bézier curve chain. The advantages presented by this choice 

are the non-compliance to the intra-product validation needing and the 

possibility to make a prediction without any history or training. Indeed, this 

model was useful to have an advanced windowed smoothing of the sell-out 

data. This behaviour exploits the fact that sell-in sales are a diluted and 

noisy version of their sell-out counterparts, giving the possibility to lay down 

an understandable curve that maps the two domains to each other. This 

approach led to a better view over the possible problems in the subsequent 

models. 

At the end, a simple seasonality extraction (FFT) was introduced to 

partially inject domain knowledge in the curve trend and give more context 

to the actual outcome.  

3.1.2  Mean model 

The mean model is the most basic and simple model taken in account. 

It is based on the assumption that each product has a very strong yearly 

seasonality, which means that every year the same store will sell almost the 

same number of units in the same periods. This strong assumption is very 

effective in non-occasional and seasonal products; indeed it was so efficient in 

the real-world dataset and also so simple and explainable that was taken as 

a baseline approach for this work. It simply computes the average of the past 
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eq. 3.1.1 

eq. 3.1.2 

eq. 3.1.3 

years for each needed curve, rescaling it by the average of units sold. The 

rescaling is a very important step because it reduces the effect due to the 

seller size. Logically and just by giving a simple glad to the data, it is very 

visible that a huge metropolitan shopping centre will have a number of units 

sold way bigger than a small shop of a little town. The observation also shows 

that the selling behaviour, and the relative seasonality, of a certain product 

will be almost the same for both, just with a different magnitude. The 

rescaling allows to make comparable the sellers in the context of a product. 

Since we are using the intra-product validation (as explained in section 

2.6) this will traduce in computing a rescaled average of the target curve over 

all the train pairs for a product and then multiplying the result by the test 

factor, which is the mean of the units sold for the target pair. 

The model is described by the following formulas: 

𝑎𝑝(𝑡) =
𝑥𝑝(𝑡)

𝑤𝑝
,   𝑤𝑝 = 𝑚𝑒𝑎𝑛𝑡(𝑈𝑝(𝑡)) 

𝐴(𝑡) = 𝑚𝑒𝑎𝑛𝑝(𝑎𝑝(𝑡)) 

𝑦(𝑡) = 𝑤𝑣𝑎𝑙 ∙ 𝐴(𝑡),   𝑤𝑣𝑎𝑙 = 𝑚𝑒𝑎𝑛𝑡(𝑈𝑣𝑎𝑙(𝑡)) 

Where 𝑈𝑝(𝑡) is the curve of the units sold for the product p; 𝑤𝑝(𝑡) is the 

product weight factor; 𝑥𝑝(𝑡) is the input curve selected for the product p; 𝐴(𝑡) 

is the average curve, representing the parameters underneath this model; 

then 𝑤𝑣𝑎𝑙 and y are respectively the weight factor and the prediction for the 

validation pair. 

The generalization of the input curve allows to better explore the 

landscape of the interactions between different columns. The input curve 

should be the target column or a (usually linear) combination of columns 

(including the target one). In our experiments we measured the performances 

of a tiny set of combinations, the units sold in sell-out was the target column 

which was enriched by other components, like its seasonality or trend. 

For training the model it is possible to use any combination of the 

columns brought from the dataset. It was firstly used the target column, but 

also other combinations were explored. Indeed, the MindIt proprietary 

algorithm extracts a baseline reconstructed curve composed primarily by a 

trend and a seasonality. The mean model was capable to explore both each 

single component of the reconstructed curve and a linear composition of them, 

finding out that this last option was the most promising. 
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For the simplicity of this approach and its understandability, it was 

taken as a baseline model to compare the efficiency of the other models. 

3.2    Neural Models 

Recently many studies focused the attention over the possibility to 

forecast time series with neural models, which are nowadays the most 

successful approaches to mimicking the human expertise for complex 

environments. Neural methods introduce the possibility to employ machine 

learning algorithms to tune a set of function parameters such that is possible 

to reproduce the outcomes of an unknown function. In particular the training 

phase of the machine is usually driven by gradient-based learning, making 

use of techniques based on gradient descent and backpropagation. 

We will explore some of these modern approaches to compare the 

outcomes and discuss about the pros and cons with respect to the other 

methods. 

3.2.1  Multi-layer Perceptron 

The most widespread class of artificial neural networks (ANN) 

employed in many fields is the so called Multi-layer perceptron (MLP), more 

precisely a generic feed forward ANN. 

The term perceptron is historically confusing in this case because it 

refers to a single artificial neuron with a threshold function (used in binary 

classification) [21] that was inspired by the natural neurons of the human 

brain. While the strict term of perceptron explicitly refers to this activation, 

it became popular when many algorithms employed a collection of 

perceptrons stacked in layers (single or multiple layer perceptron) [22]. The 

studies deepened through the years the concept of activation function of a 

neuron, but the term of layered perceptron became more popular for binary 

classificators that employ a group of neurons that shares the same activation. 

So, the term of perceptron passed from representing a single neuron to 

representing a complete collection of classificators. Nowadays a multi-layer 

perceptron can be intended in the literature as a collection of many layers of 

threshold-activated neurons but also as any feed forward artificial neural 

network, usually represented by a set of fully connected layers. 

The research over the time series analysis and prediction through deep 

learning models is still active and debated. Gamboa summarized the latest 
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most explored techniques in its work [23] by showing that some works could 

be promising and mined some good results in the appliance of deep learning 

technique in this challenging field. 

The oldest and simplest (but not simplistic) model employed in the time 

series analysis is the multi-layer perceptron (intended as a feed forward 

ANN). Since the latest 20th century, many researchers started to be interested 

in the application of this model in the business time series forecasting. 

Hoptroff shown in its work the practical feasibility of this task with the 

employment of traditional neural networks approaches [24], such as the MLP. 

Many papers of this subject were published until now, meaning that the more 

performant approaches are still discussed in the scientific community. 

In our case, we decided to implement a fully connected model capable 

to analyse an entire year of data and simulate the relative sell-out curve. The 

yearly seasonality choice was selected because the human social behaviour is 

intrinsically imbued of such periodicity, and also the seasonality extraction 

(see section 2.4) from the dataset confirmed this attitude. 

The model is composed by a stack of fully connected layers with varying 

dimensions. As a good measure, the number of layers and their relative 

amount of neurons, are treated as model hyperparameters and were tuned by 

an extensive grid search. The search was executed over the full dataset for a 

reduced amount of iterations, and then the metrics were compared in order 

to declare the baseline model for this class. The most promising models were 

then trained for a longer period and their results were compared once again. 

After this competitive selection, the best model was stored for the comparison 

between the other approaches. 

3.2.2  Recurrent Neural Network 

With the success of deep learning in the natural language processing 

(NLP) field, the recurrent neural network (RNN) became more popular for its 

capacity to encapsulate temporal dynamic features in the network weights. 

This property comes in handy also when forecasting time series. We can see 

a RNN as a peculiar linear2 time-invariant system which has an impulse 

response that does not ground to zero after a certain period (infinite impulse 

response property) [25]. This means that a portion of the input effects on the 

 
2 It can also be expanded as a non-linear system by using non-linear activations 
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system are retained in a sort of internal memory, condition the outputs at 

different time steps. 

The innovative discovery about the system temporal dynamic 

behaviour allowed to create dedicated network that is responsible to works as 

independent memory cell (exploiting feedback loops), surrounding it with 

another part which is dedicated to a sort of management of the memory. This 

principle is used in the long short-term memory (LSTM) and gated recurrent 

units (GRU) networks. These are common and performant expansions for the 

RNN network, broadly used in NLP tasks. 

Borrowing the experience from the language models, RNN were 

employed to assimilate, analyse and predict samples in the time domain, 

including the business time series forecasting field. Connor et al. work shown 

the promising efficiency of RNN in the cleaning of the data [8]. Later others 

were inspired and interested in the deepening of this approach, trying also to 

apply it to the market sales domain [9, 25]. 

The mode employed is a tiny stack of recurrent layers with a decreasing 

encoding, which makes use of lookback technique [26]. In practice the 

network takes in input more than just one sample but predicts the output 

relative to the last item of the input sequence. This gives more context to the 

network to work with and it better prevents overfitting, but on the other hand 

requires more data to train. Conceptually, it is easier to sees a period (such 

as a month or a year) and decide from that context what value should come 

next instead of looking at just one sample. The RNN memory is indeed 

influenced from a wider period, being able to generalize better the data 

behaviour over different time scales. 

As for the MLP model, the depth and size of the network layers, as well 

as the lookback period, were considered as hyperparameters to tune, by using 

a grid search for a reduced amount of iterations. Given the unexpected poor 

results, we decided to just keep the best model instead of running another 

performance test over the most performant ones. 
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3.3    Prophet 

The procedure, final outcome of this work, was inspired and based on 

the model developed by Meta (Facebook at time of the paper) employees, 

called Prophet [10]. 

Prophet is a stochastic forecasting framework employed for the 

prediction of event-congested periods in the Facebook application. The aim of 

this model is to define a framework capable to forecast, through regression 

methods, a time series just by declaring the domain knowledge. This is done 

by automatizing some procedures that the developers were used to follow 

during their data analysis tasks at Facebook. The principle is to involve the 

human analyst expertise in the forecasting system by building a solid 

framework which takes care of the knowledge needed in the time series 

domain. 

 

Fig 3.3.1 – Prophet forecasting loop 
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eq. 3.3.1 

3.3.1  Structure 

The Prophet model is mainly composed by two elements: 

• Pre-processor, responsible to pack and prepare data for 

subsequent steps 

• Analyst, a stochastic inference model 

 

Fig 3.3.2 – Prophet components summary 

 

The pre-processor works interleaved with the analyst, forming a 

communication interface with the analyst, making the process more usable.  

The analyst is the core of the Prophet forecasting model and uses a 

decomposable time series model that combines a baseline trend with the 

effects of each regressors: 

𝑦(𝑡) = 𝑔(𝑡) ∙ 𝑟𝑚(𝑡) + 𝑟𝑎(𝑡) + 𝜖𝑡 

Where 𝑔(𝑡)  is the trend component, responsible of non-periodic 

changes; 𝑟𝑚(𝑡) and 𝑟𝑎(𝑡) are the overall effect of, respectively, multiplicative 

and additive regressors; 𝜖𝑡  is the (usually) normal distributed error of the 
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eq. 3.3.2 

eq. 3.3.3 

eq. 3.3.4 

regression. Seasonalities in this model are converted and treated as 

regressors of the respective type.  

It is possible to describe this kind of regression model in two principal 

factors: trend and regressors. 

The trend is predicted through two different models: 

1. Nonlinear, saturating growth - 𝑔𝑁𝐿(𝑡) =
𝐶

1+𝑒−𝑘(𝑡−𝑚) 

2. Linear - 𝑔𝐿(𝑡) = 𝑘𝑡 + 𝑚 

With C is the carrying capacity, k the growing rate and m the offset. 

Such models are not so flexible to changes in a very wide time period, so it 

was introduced a series of changepoints that breaks the regression in a piece-

wise fashion. Each changepoint is responsible to perturbate the trend 

behaviour at a specific time. 

This modification is implemented by adding to k and m the vector of 

changes 𝑎(𝑡), which holds just zeros in the position before the changepoint 

date and just ones otherwise, rescaled by the intensity vector (𝛿 and 𝛾):  

𝑎𝑖(𝑡) = {
1, 𝑖𝑓 𝑡 ≥  𝑠𝑖

   0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

�̂� = 𝑘 + 𝑎(𝑡)𝑇𝛿,                  �̂� = 𝑚 + 𝑎(𝑡)𝑇𝛾 

 �̂�𝑁𝐿(𝑡) =
𝐶

1 + 𝑒−�̂�(𝑡−�̂�)
,              �̂�𝐿(𝑡) =  �̂�𝑡 +  �̂� 

Where 𝑠 represents the vector of changepoint times. We can describe 

then 𝛿 as the vector of delta changes, which are strictly related (exactly in the 

linear case) to the slope change at the time described by s. The same applies 

for 𝛾 which is just an offset adjustment in both cases. This approach allows to 

break the problem of the prediction in smaller, consecutive and dependent 

regressions, giving much more flexibility to the process. 

The second factor in the regression is the contribution of extra-

regressors described by the user in the model instantiation. A regressor can 

be intended as multiplicative (scaling the trend), or additive. Each regressor 

is computed punctually, so in the model output we can retrieve the single 

component effect in the total prediction. 

For what concerning the pre-processor, it formulates the problem 

starting by the description of the user and encapsulate the data forwarded to 

the analyst. The first step of the pre-processing is the seasonality extraction 
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eq. 3.3.5 

eq. 3.3.6 

eq. 3.3.7 

eq. 3.3.8 

eq. 3.3.9 

eq. 3.3.10 

eq. 3.3.11 

made possible with a fast Fourier transform (FFT). Since in the event 

forecasting domain there are common repeating seasonalities, the model, by 

default, understands and extracts daily, weekly, monthly and annual 

seasonalities automatically. Since the analyst can work just with regressors, 

the extrapolated seasonalities are converted into a regressor form. Next, if 

the user had not explicitly selected a set of changepoints, we have the 

computation of the changepoints which are extracted by selecting at regular 

intervals from a portion of the dataset (usually 80%). 

At the end of the cycle, when the internal analyst produces the results 

of the stochastic inference, the pre-processor comes in act again by 

rearranging the outputs in a way understandable by the chosen language 

interface and, consequently, comprehensible by the final user. 

3.3.2  Stochastic regression 

As we discussed in the introductory chapter, deterministically 

forecasting time series for market sales domain is not viable. In this case a 

stochastic regression would come in hand for many reasons. First, we can’t 

describe a deterministic model for the system; we have domain knowledge 

about the flexibility of the model parameters and last, we have practically 

small or no control at all over the extra regressors, we can just make 

observations from them. 

Prophet employs the Stan platform [27] to build the analyst internal 

engine, which is accessed and interfaced with python or R programming 

languages. 

Now that the principal model steps are described, we can rewrite the 

general Prophet trend linear regression into the general stochastic regression 

formula: 

𝑦(𝑡) = 𝑔(𝑡) ∙ 𝑟𝑚(𝑡) + 𝑟𝑎(𝑡) +  𝜖𝑡,    𝜖𝑡 ~𝑁(0, 𝜎) 

𝑔 = 𝑔𝐿(𝑡) =  𝑘𝑡 + 𝑚 

𝑃(𝑔|𝑡, 𝑚, 𝑘, 𝜎) = 𝑁(𝑔|𝑚 + 𝑘𝑡, 𝜎) 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∙ 𝑃𝑟𝑖𝑜𝑟 

𝑃(𝑚, 𝑘, 𝜎|𝑔, 𝑡) ∝ 𝑃(𝑔|𝑡, 𝑚, 𝑘, 𝜎) ∙ 𝑃(𝑚, 𝑘, 𝜎, 𝑡) 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = 𝑃(𝑔|𝑡, 𝑚, 𝑘, 𝜎),    𝑦~𝑁(𝑚 + 𝑘𝑡, 𝜎) 

𝑃𝑟𝑖𝑜𝑟 = 𝑃(𝑚, 𝑘, 𝜎, 𝑡) =  𝑃(𝑚) ∙ 𝑃(𝑘) ∙ 𝑃(𝜎) ∙ 𝑃(𝑡) 
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The stochastic model can be then plugged into the general model 

formula (eq. 3.3.5) assuming a normally distributed error. The result is a 

model comparable to the description of a generalized additive model (GAM) 

proposed by Hastie and Tibshirani [28]. This formulation fit quickly with 

LBFGS [29], backfitting or Newton methods. The Stan platform is then 

responsible to estimate the maximum likelihood given the set of priors 

imposed by the user. 

3.3.3  Declarative model 

One of the targets of the Prophet model is to drive the responsibility of 

the final user toward the modelling instead of designing a time series 

regressor. What really makes this possible, is the Prophet declarative 

interface. Indeed, the human analyst will describe the problem, defining a set 

of variables for the model (such as the priors, the chosen seasonalities, etc.) 

as well as a set of extra-regressors and their variables. 

3.3.4  Non-positive constraint 

Prophet is an event domain related model, indeed the default 

regressors available include one that is responsible to weight the effect of the 

holydays on the event number trend. While such a constraint would be 

effective in this domain, would not be the case for the market sales domain. 

Here we are more interested to follow the knowledge that we borrow 

from the “supply and demand” law, for example.  

The first expansion of this work over the Prophet model born from the 

necessity to constraint the relation of a regressor, which could be represented 

by the price, with respect to the target column, the sell-out units sold in our 

case. Following the economic model, the units sold should be inversely 

proportional to the price. Controversially, this relation does not hold many 

times during the fit of the Prophet model; often the inferred coefficient of the 

regressor is negative, meaning that increasing the price induces an augment 

of units sold. This is a deleterious effect, for example it could demolish any 

subsequent optimization. To prevent that an optimizer, situated after our 

model in the pipeline, would diverge toward an infinite price, breaking any 

expected outcome, we can inject a non-positive constraint in the model to 

enforce the inference to limit the search toward positive values. 
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eq. 3.3.12 

By working on the Stan model, exploiting some of the language 

constructs, we can constrain a variable to be sampled over a half normal 

distribution and cut the search for negative values. 

 Unluckily, Stan does not allow the direct sampling of a model 

parameter from a distribution, but it is possible to use an intermediate 

backing parameter which is sampled from the half normal, and then constrain 

the first to be equal to the latter. 

We can dissect a regressor, from the Stan point of view, in order to 

understand which impact has this modification to the global model: 

𝑟(𝑡) = 𝛽𝑟𝑡 + 𝜖𝑟,𝑡, 𝜖𝑟,𝑡~𝑁(0, 𝜎𝑟)   

Where 𝑟(𝑡)  can be an additive or multiplicative regressor; 𝛽𝑟  is the 

regressor coefficient and 𝜖𝑟,𝑡 its normally distributed error; 𝜎𝑟 is the regressor 

prior scale. From the equation we can see that imposing the constraint 𝛽𝑟 ≥ 0 

actually affects only the constrained regressor, leaving the other regressors 

(including seasonalities) and the trend intact. As a side effect, limiting the 

inference to positive coefficients can introduce a slight variation in the trend 

due to the inference iterative methods. 

A possible drawback of this constraint is the possibility to infer 

constrained regressor coefficients close to but not zero. While from an analysis 

point of view, non-zero coefficients can help to understand the effect and the 

grade of impact of different regressors, for some post-operations (e.g. 

multiplications) could be necessary to apply a threshold for the process to be 

numerically computable. 

3.3.5  Piece-wise linear regression 

Another important aspect that Prophet does not provide, is the 

flexibility of a regressor to change its effect over the time. 

The 𝛽𝑟  coefficient (eq. 3.3.12) is inferred over the complete period of 

observation, resulting in an average of a punctual distribution. The linear 

model indeed was though for seasonalities and holydays in the event domain, 

which are not expected to change their effect over time. In market sales 

domain instead, we have not only the possibility of a regressor to change over 

time, but also the economic model of “supply and demand”, refined by Jenkin 

in 1870 [5], introduce the effect of diminishing returns in the relation between 

price and units sold.  
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Fig 3.3.3 – Saturating market law, “supply and demand”, Jenkin 1870 

The most natural way to proceed would be the separation of the 

problem into smaller piece, leading to a piece-wise forecasting. But, 

partitioning the dataset for the prediction, such as each part has a different 

regressor coefficient, would be a mistake because first mess up the 

seasonalities, which in this way would not be inferred in the whole period 

anymore, but also it would produce discontinuities in the outcome prediction. 

Prophet already overcame to this problem by evaluating the linear 

trend with a piece-wise linear (PWL) regression. It partitions the dataset 

through changepoints, which marks certain times for the trend regression 

where to change (eq. 3.3.4). We can exploit the same changepoints in order to 

change the regression not only for the trend, but also for a regressor. 

A PWL regression can fit a regressor over a part of the dataset, includes 

a benefit effect in the case of diminishing returns [30] and also allows to inject 

domain constraints with ease (e.g. monotonicity, convexity and non-positive 

constraints).  

Another benefit of this approach, in a stochastic model, is the 

possibility to use different uncertainties, or prior scales, for different periods. 

Indeed, we could have parts of the dataset with different variations that we 

can use to improve the prediction. High variation parts, which could be 

relative to smaller sellers for example, can be taken in account with a higher 

prior scale, while regions with a lower variation, such as metropolitan 

supermarkets, can benefit from a smaller prior scale. 
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eq. 3.3.13 

eq. 3.3.14 

 

Fig 3.3.4 – Regression over a cloud, comparison 

The last problem to take in consideration is the discontinuities in the 

prediction, which is solvable by better modelling the regression around the 

changepoints. Instead of “starting from scratch” a new regression at each 

changepoint, that could introduce the discontinuity, we can model the 

variation of the 𝛽𝑟 coefficient (as 𝛿𝛽𝑟
, eq. 3.3.13) such that at each changepoint 

we have a variation of the slope of the linear regressor, ensuring the 

continuity in the change interface.  

The regression, at the end of all these considerations, takes the shape 

of this formula: 

𝑟(𝑡) = (𝛽𝑟 + 𝑎(𝑡)𝑇𝛿𝛽𝑟
)𝑡 + 𝑎(𝑡)𝑇𝛾𝛽𝑟

+ 𝜖𝑟,𝑡   

𝜖𝑟,𝑡~𝑄(0, 𝜎𝛽𝑟
) 

The error component 𝜖𝑟,𝑡  was chosen to sample from different 

distributions to give more flexibility during the regression for the final user.  
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The distribution 𝑄  can be one of the followings, some experimental 

considerations are given for each distribution: 

 

 

1. Gaussian distribution (normal) – large and high bell, produces 

smooth changes at the interface 

 
Fig 3.3.5 – Gaussian distribution – 𝜇 = 0, σβr = 𝜎 

 

 

 

2. Laplace distribution (double exponential) – low and narrow 

peak, drastic changes at the interface 

 
Fig 3.3.6 – Laplace distribution – 𝜇 = 0, σβr = b 
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3. Cauchy distribution (Lorentz, Breit–Wigner) – high narrow 

peak, better for distributions with marked variation, observed 

performance improvement for datasets with strong seasonalities. 

 
Fig 3.3.7 – Cauchy distribution – x0 = 0, σβr = 𝛾 

3.3.6  Modularity 

When editing the Prophet Stan backend model, it was followed the 

modularity principle by stacking the regression constraints over the already 

established model. This permitted to keep the declarative behaviour of the 

procedure. Indeed, it is possible to describe the constraints by declaring and 

adding the appropriate regressor, removing the responsibility of the 

constraint implementation from the final user. 

In this way, following the original Prophet conduct, an analyst with 

domain expertise can inject non-positive constraints and describe a PWL 

regressor without worry about the implementation of the framework. Since 

the additions are modular, during the procedure the framework automatically 

detects the use of constraints or PWL regressions and act consequently by 

employing the right regression model for the declared problem. 

The modularity is implemented through a selective (usually binary) 

multiplication which considers just the selected components. The way the 

selection is performed allows to express an amount n in the range 𝑛 ∈ [0, 1] 

that indicates the component strength of incidence in the global model.
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eq. 4.1 

eq. 4.2 

4    Experiments 

The evaluation of the procedure stability and robustness was 

conducted through a set of experiments. 

Usually, the regression metric taken in consideration is the Mean 

Squared Error (MSE), but in the market sales domain we are not interested 

in punishing too much farther errors. An error in this field means an effective 

economical loss, so a more precise indicator of the model performance, also 

considerable in terms of money, is the Mean Absolute Error (MAE): 

𝑀𝐴𝐸(𝑦, 𝑥) =
1

𝑛
∑|𝑦𝑖 − 𝑥𝑖|

𝑛

𝑖

 

This metric indeed represents the average loss in volume that the 

model introduces; this was used in all the experiments to strictly evaluate the 

best procedure in term of performances and also during the search of the 

baseline model for each discussed class. 

Another employed metric is the coefficient of determination (R2 or “R 

squared”) as an indicative statistic of the quality of the fitting. This coefficient 

is an index of how well the model can approximate the real data, but in 

stochastic or non-linear multivariable problems could be inefficient. For this 

reason, it will be reported just as a qualitative result of our experiments. 

𝑅2(𝑦, 𝑥) = 1 −
∑ (𝑦𝑖 − 𝑥𝑖)2

𝑖

∑ (𝑦𝑖 − �̅�)2
𝑖

= 1 −  
∑ (𝑦𝑖 − 𝑥𝑖)2

𝑖

𝜎2
 

4.1    Synthetic test 

A first experiment regards the Prophet PWL model testing. A tiny 

dataset was generated by sampling the units sold from a composition of a 

linear trend, weekly seasonality and a noise (sampled from normal 

distribution); the price regressor was sampled by a relation with the units 

sold, with respectively a positive linear coefficient (a), a negative linear 

coefficient (b), a periodical alternating coefficient (c). The choice was made to 

test that the new procedure can forecast exactly the same value of the old one 

in the same conditions (a); introducing the non-positive constraint induces 

the price beta coefficient to be negative and close to zero (b) and the trend 

outcome differs from the old procedure, but not the seasonality; lastly that 
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the addition of the PWL regression for the price can improve the 

performances of the procedure at least within a simple scenario (c). 

4.2    Price regression test 

After proving that the proposed procedure is capable of improving the 

performances in a toy environment, we proceeded to test it over a specific 

dataset. The old procedure, executed over this dataset, produced many 

incongruences with the economic model of “supply and demand” [5], starting 

from the incoherent relation between price and units sold. 

The price regression test was performed with the aim of assessing the 

quality of the new procedure over those cases which do not follow the 

economic model, so it would be possible to employ an optimizer in the process 

pipeline. The dataset was provided by the MindIt company, which already 

faced the optimization problem in the process. The availability of a procedure 

capable to exclude the risk of diverging results, thanks to the possibility of 

taking in account the non-positive domain constraint, resulted ideal. 

The target of this experiment was to test and regulate the non-positive 

constraint over the price regressor, forgetting about the prediction of the sell-

out curve. The investigation then was expanded to include the effects of the 

appliance of the PWL for the price regressor, to better understand the 

response of the theorized model with real data. 

4.3    Real-case scenario 

The real benchmark for the Prophet model was the assessment of the 

procedure over a dataset coming from a production environment and then we 

compared the results with the old procedure.  

A framework was built in order to evaluate each discussed model and 

compare their outputs. The framework includes the possibility for a process 

to use the intra-product validation, and all the models (except for the 

polynomial regressor, section 3.1.1) make use of this feature. The framework 

provides a division for test and train set, ensuring that the number of sellers 

is sufficient for the intra-product validation and dropping those pairs which 

do not respect this property. 
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The experiment was conducted by selecting the best model for each 

class, excluding the Prophet model. The procedure used to select which would 

be the most performant model, including seasonalities and regressors, in the 

case of the Prophet class, was found by running an extensive grid search for 

each pair in the dataset. The grid search includes 2’160 combinations of which 

approximately 1200 uses a combination of non-positive constraint and PWL 

regression. During the search the frequency of each combination were stored, 

and those that were selected less than 1% of the times were discarded to 

improve the speed of the process. The dataset contains almost 1800 valid 

pairs, and the combinations survived to the pruning process of the grid search 

are 113 and 97 (85.8%) of them make use of non-positive constraint or of PWL 

regression. 

Furthermore, with the proposed approach, we were able to predict 

better the sell-out curve by assuming that each regressor (price excluded), 

after the training, would have a value of zero, completely removing its effect. 

In practice, this separation between training and test prediction is asking to 

the model to predict the curve, from the past experience, as the only present 

effect to impact the number of units sold is the price; the rest would produce 

a variation of the baseline, which we are not interested in. 

Once the best model of each class was selected it was trained over the 

whole test set, composed by a selection of the 80% of all the pairs of each 

product, ensuring that the number of remaining pairs is greater than 3 

(minimal amount for intra-product validation). After the training, the 

remaining pairs (20% for each product) were used to evaluate the metrics of 

each model. 

Thanks to the intra-product validation mechanism, we can now restart 

the training process by selecting a different permutation of the train and test 

set, reinitializing the model parameters. At the end of all the test runs, an 

informative aggregation of the stored metrics is elaborated to compare the 

methods and models. The descriptive aggregation includes average, standard 

deviation, minimum and maximum value of each metric.  
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5    Results 

This chapter will show and describe the results, in terms of metrics 

(MAE and R2), obtained in each experiment. 

Where possible, it will be reported a comparison between the described 

models and a briefly description which presents the considerations taken in 

account during the assessment and after its outcome. 

The values written in bold will point out the best performant model or 

result. 

5.1    Synthetic test 

The synthetic test produced the expected results: by using a regressor 

which can be positive the base and PWL models’ outcome is the same because 

we are not involving any type of constraints; in the case where we have the 

necessity of a negative regressor the performances are slightly improved; in 

the last case, where the regressor keep changing the relation coefficient, the 

improvement is less marked but still present. 

Here are reported the obtained results: 

Benchmark 
MAE R2 

Base PWL Base PWL 

Positive Linear Coefficient 312.5 312.5 0.977 0.977 

Negative Linear Coefficient 373.1 358.2 0.963 0.971 

Alternating Coefficient 512.4 501.8 0.961 0.965 
Fig 5.1.1 – Prophet synthetic test results 
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5.2    Price regression test 

For the price regression test, the first target was to assess the response 

of the model to a non-positive constraint. As the results show, the constraint 

is working as expected, the 𝛽𝑟 becomes negative as soon as the constraint is 

applied. 

Here there are two plots showing one of the inversion cases: 

 

Fig 5.2.1 – Prophet, example of a price regression, base model 

 

 

Fig 5.2.2 – Prophet, example of a constrained price regression, proposed model 

 

 

Fig 5.2.3 – Prophet, example of a price PWL regression, proposed model 

On the right are reported the results of different distributions: 

Cauchy (grey), Gaussian (red), Laplace (green) 

𝛽𝑟 = −12.5 

𝛽𝑟 = +20.7 
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Here is shown an in-depth analysis of the precedent case, showing how 

the different models behave on the same data: 

 

 
Fig 5.2.4 – Comparison of base (Stan v1), non-positive (Stan v2), constrained and 

unconstrained PWL (Stan v3) Prophet models 
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Below, the table of the metrics shows how the proposed procedure 

performs twice as better as the base Prophet model. The introduction of the 

PWL slightly reduces the performances, which are still improved with respect 

of the base model. The reduction is probably due to the peculiarity of the price 

regression task or a non-optimal choice of the changepoints used to partition 

the dataset, which subsequently introduces discrepancies between the 

seasonalities and the price regressor, slightly degrading the performances. 

 

 

Prophet Model MAE R2 

Base 6366 0.4675 

Non-positive constraint 3867 0.5642 

PWL – Gaussian 4284 0.4717 

PWL – Laplace 4193 0.4952 

PWL – Cauchy 4195 0.4935 

Table 5.2.1 – Prophet models performance comparison 
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5.3    Real-case scenario 

The last and most important experiment is conducted over the real 

dataset provided by the MindIt company. 

Even in this experiment, we found an improvement of the proposed 

procedure with respect of the base Prophet model. The improvement is not so 

considerable as the precedent experiments but still noticeable. The proposed 

approach performs similar to the most effective model, the Mean model, 

which is one of the most both reliable and explainable techniques employed 

in the market sales domain. Furthermore, it is the only approach which 

decomposes the output in a composition of effects, making easier to 

understand and analyse the causes of the output. 

The following tables show the results obtained in this experiment:  

 

Model 
MAE 

Mean STD Min Max 

Prophet PWL 1483.73 5412.47 4.85 77424.48 

Prophet (base) 2788.22 5859.11 17.21 101774.12 

Mean 1486.48 4362.16 5.48 65981.98 

Mean windowed 1488.29 4411.57 5.46 67571.30 

Polynomial (Bézier) 2171.97 6727.76 10.08 99410.46 

MLP 1980.00 7754.54 9.25 147643.40 

RNN 4267.92 12550.98 28.11 200329.50 
Table 5.3.1 – Real case model MAE comparisons 

 

 

Model 
R2 

Mean STD Min Max 

Prophet PWL 0.553 0.790 0.980 4.58e-08 

Prophet (base) 0.511 0.512 0.981 1.12e-08 

Mean 0.597 0.303 0.996 6.34e-07 

Mean windowed 0.598 0.303 0.996 1.42e-09 

Polynomial (Bézier) 0.438 0.303 0.988 1.75e-08 

MLP 0.411 0.292 0.985 6.98e-09 

RNN 0.127 0.224 0.935 2.43e-07 
Table 5.3.2 – Real case model R2 comparisons 
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6    Discussion and Remarks 

While it may seem not enough to reach, with the proposed approach, a 

result comparable to the Mean model, with this work we succeeded to reach 

different objectives. 

The first and most important is the explainability of the result. The 

customers of data analysis companies are usually interested to understand 

which process the machine followed because they have a strong need of 

reliability and they want a certain degree of control in their operations. There 

are also other minor or more specific necessities, sometimes related also to 

domain experts which need details for further analysis. The decomposition of 

the effects is a very important feature for the market sales domain. Thanks 

to the modularity of the Prophet model and the declarative way to describe 

regressors, it is possible to go back to the regressor which is the source of a 

certain result. 

Another target was the success in the improvement of the Prophet base 

model. The implementation of a non-positive constraint was a debated and 

discussed topic in the Prophet GitHub community. The proposed solution 

successfully addressed the problem and expanded to the implementation of a 

PWL regression. 

One last impressive advantage of this procedure, with respect of the 

Mean model, is the capacity to work with an arbitrary number of pairs. The 

procedure, indeed, could predict a sell-in baseline by looking at just one pair 

of product-seller, while the other models need a huger amount of data. 

So, summarizing the evaluation, the success of this procedure does not 

lay only in the performances, but in the enhancement that provides to the 

already consolidated procedures. 

The Mean model, even if worse in absolute terms, still yield more 

compact results, gifting to us a suggestion: a point to be taken in consideration 

in a future deepening could be an extensive analysis of the worst cases 

predicted by our procedure. The proposed model indeed got a discretely higher 

MAE standard deviation, meaning that there is a more evident difference 

between good and bad predictions. 
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6.1    Limitations 

The proposed procedure comes with some limitations. Below, we will 

discuss about some known limitations and their overcomes, where possible. 

The first and most known is due to a lack of interest in the developing 

process toward undesired complexities. The work revolved around practical 

problems and use cases, so it was decided not to expand the logistic regression 

already present in the precedent model. The piece-wise regression is actually 

available only for linear regressors, while it could be possible to extend the 

concept also to the logistic regression already implemented for the trend. 

Such a feature could be interesting only in very specific domains and could 

also be achieved by simulating it with a dense number of changepoints, 

distributed with a symmetrical logistic decay (increasing density toward the 

start and the end of a time period). 

Another limitation comes from the modular declarative setting of the 

procedure. To maintain the simplicity of the work, the model is able to accept 

non-positive constraints for simple as well as piece-wise linear regressors, but 

it can’t apply directly any constraint to both monotonicity and 

convexity/concavity of the regression. We can address the monotonicity with 

the non-positive constraint, which can be intended as a restriction to the first 

derivative sign, resulting into a non-strict monotonicity constraint by 

propagating it to each chunk of the piece-wise regression; on the other hand, 

we have no control over the regressor second derivative, so a chunk could 

change the convexity (or concavity) of the global function. In theory, we could 

predict a logistic shape with a constrained piece-wise linear regression, even 

for those cases we are interested to maintain a certain concavity. A restriction 

over the second derivative would be more effective in diminishing returns 

scenarios, exactly what we could expect from the “supply and demand” 

economic model. 
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7    Conclusions 

At the end of this work, the proposed approach led to promising results 

in the business time series analysis and forecasting. The advantages offered 

by the proposed model are the possibility to describe the problem in a 

declarative fashion; more than decent performances; huge flexibility with 

regressors and periodicity analysis with seasonalities; last, and very 

important, the decomposition of the effects involved in the computation which 

means an impressive degree of explainability. The model also comes with 

some limitations, such as the unimplemented piece-wise logistic regression 

for peculiar function shapes, that are also found in the market sales domain. 

The work proceeded with a modularity of increasing complexity, 

starting from the resolution of simpler or synthetic problems, expanding then 

to more complex and real ones. Each experiment of the work was also driven 

by concrete necessity in actual and common problems found in company 

process pipelines. We started by solving the problems related to the 

optimization divergence due to “supply and demand” economic model 

inconsistencies, then we added more complexity by expanding the concept of 

PWL regression over the already present extra regressors. 

The final results show also that there are further margins of improving 

in this field, this work could open different fronts toward the distinction of 

stochastic and deterministic methods, inferential and neural models. 

7.1    Future Work 

A natural expansion of this work could be the employment of hybrid 

and/or ensembled regressor. We could for example use a collection of Prophet 

models, with a special initialization and a specific construction, in order to lay 

a variety of results that take in account different type of errors, hoping that 

they can compensate one each other. Another approach would be the 

establishment of a chain of models that refine the output in different ways; 

we could design a MLP or RNN network which takes the proposed procedure 

output and corrects those parts which are more likely to be incongruent 

within a certain context. 

Another point of possible improvements is the development of a piece-

wise polynomial (or spline, PWS) regression which would allow the possibility 
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to inject a concavity/convexity constraint, given that a PWS (of grade greater 

than 1) belongs to the second order differentiable functions (PDIFF). 

This essay also touched other approaches that are worthy to a further 

deepening. 

A particular attention was recently put toward the time series analysis 

and forecasting as an image processing task. Future works may include an 

in-depth comparison of the advantages given by a fully convolutional network 

employed with the Gramian Angular Field method. This technique is being 

more and more used in market trading and exchange fields, which are very 

unpredictable environments, even for human experts, yielding promising 

results. 

Another interesting approach to explore, firstly appeared in the 

computer vision area and then expanded to other fields, is the study of time 

envelops through non-local operators, which can simulate and implement a 

behaviour similar to the self-attention used in natural language processing. 
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