Apprendimento non supervisionato di rappresentazioni e legami di similarità tra eventi menzionati nella letteratura biomedica

Bertoni, Eleonora (2021) Apprendimento non supervisionato di rappresentazioni e legami di similarità tra eventi menzionati nella letteratura biomedica. [Laurea], Università di Bologna, Corso di Studio in Ingegneria e scienze informatiche [L-DM270] - Cesena
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Disponibile con Licenza: Creative Commons: Attribuzione - Non commerciale - Non opere derivate 4.0 (CC BY-NC-ND 4.0)

Download (3MB)

Abstract

L'estrazione automatica degli eventi biomedici dalla letteratura scientifica ha catturato un forte interesse nel corso degli ultimi anni, dimostrandosi in grado di riconoscere interazioni complesse e semanticamente ricche espresse all'interno del testo. Purtroppo però, esistono davvero pochi lavori focalizzati sull'apprendimento di embedding o di metriche di similarità per i grafi evento. Questa lacuna lascia le relazioni biologiche scollegate, impedendo l'applicazione di tecniche di machine learning che potrebbero dare un importante contributo al progresso scientifico. Approfittando dei vantaggi delle recenti soluzioni di deep graph kernel e dei language model preaddestrati, proponiamo Deep Divergence Event Graph Kernels (DDEGK), un metodo non supervisionato e induttivo in grado di mappare gli eventi all'interno di uno spazio vettoriale, preservando le loro similarità semantiche e strutturali. Diversamente da molti altri sistemi, DDEGK lavora a livello di grafo e non richiede nè etichette e feature specifiche per un determinato task, nè corrispondenze note tra i nodi. A questo scopo, la nostra soluzione mette a confronto gli eventi con un piccolo gruppo di eventi prototipo, addestra delle reti di cross-graph attention per andare a individuare i legami di similarità tra le coppie di nodi (rafforzando l'interpretabilità), e impiega dei modelli basati su transformer per la codifica degli attributi continui. Sono stati fatti ampi esperimenti su dieci dataset biomedici. Mostriamo che le nostre rappresentazioni possono essere utilizzate in modo efficace in task quali la classificazione di grafi, clustering e visualizzazione e che, allo stesso tempo, sono in grado di semplificare il task di semantic textual similarity. Risultati empirici dimostrano che DDEGK supera significativamente gli altri modelli che attualmente detengono lo stato dell'arte.

Abstract
Tipologia del documento
Tesi di laurea (Laurea)
Autore della tesi
Bertoni, Eleonora
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Event Embedding,Graph Representation Learning,Graph Similarity Learning,Graph Kernels,Biomedical Text Mining
Data di discussione della Tesi
2 Dicembre 2021
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^