Machine Learning Unsupervised Methods in the Design of an On-board Health Monitoring System for Satellite Applications

Manovi, Livia (2021) Machine Learning Unsupervised Methods in the Design of an On-board Health Monitoring System for Satellite Applications. [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria elettronica [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

The dissertation starts by providing a description of the phenomena related to the increasing importance recently acquired by satellite applications. The spread of such technology comes with implications, such as an increase in maintenance cost, from which derives the interest in developing advanced techniques that favor an augmented autonomy of spacecrafts in health monitoring. Machine learning techniques are widely employed to lay a foundation for effective systems specialized in fault detection by examining telemetry data. Telemetry consists of a considerable amount of information; therefore, the adopted algorithms must be able to handle multivariate data while facing the limitations imposed by on-board hardware features. In the framework of outlier detection, the dissertation addresses the topic of unsupervised machine learning methods. In the unsupervised scenario, lack of prior knowledge of the data behavior is assumed. In the specific, two models are brought to attention, namely Local Outlier Factor and One-Class Support Vector Machines. Their performances are compared in terms of both the achieved prediction accuracy and the equivalent computational cost. Both models are trained and tested upon the same sets of time series data in a variety of settings, finalized at gaining insights on the effect of the increase in dimensionality. The obtained results allow to claim that both models, combined with a proper tuning of their characteristic parameters, successfully comply with the role of outlier detectors in multivariate time series data. Nevertheless, under this specific context, Local Outlier Factor results to be outperforming One-Class SVM, in that it proves to be more stable over a wider range of input parameter values. This property is especially valuable in unsupervised learning since it suggests that the model is keen to adapting to unforeseen patterns.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Manovi, Livia
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
ELECTRONIC TECHNOLOGIES FOR BIG-DATA AND INTERNET OF THINGS
Ordinamento Cds
DM270
Parole chiave
anomaly detection,unsupervised machine learning,satellite applications,autonomous health monitoring,telemetry
Data di discussione della Tesi
2 Dicembre 2021
URI

Altri metadati

Gestione del documento: Visualizza il documento

^