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Sommario

Twitter è un social network diffuso che consente la trasmissione di informazioni in tempo
reale e viceversa costituisce una fonte di dati testuali ad accesso libero e omogenei in
lunghezza. Proponiamo l’analisi di un database di tweet italiani contenenti i più comuni
sintomi di COVID-19 autoriferiti, per indagare l’evoluzione della pandemia in Italia dalla
fine di settembre 2020 alla fine di gennaio 2021. Disponendo di un database che contiene
parole legate a febbre, tosse e mal di gola, filtriamo manualmente i tweet che descrivono
realmente sintomi attribuibili al COVID e discutiamo l’utilità di tale selezione manuale.
Successivamente confrontiamo le nostre serie temporali con i dati giornalieri dei nuovi
ricoveri in Italia, con l’obiettivo di costruire un semplice modello di regressione lineare, che
incorpori il ritardo osservato dalla pubblicazione dei tweet menzionanti i singoli sintomi
ai nuovi ricoveri. Discutiamo sia i risultati che i limiti della regressione lineare, poiché i
nostri dati suggeriscono che la relazione tra le serie temporali di tweet con sintomi e i
nuovi ricoveri varia verso la fine dell’acquisizione.



Abstract

Twitter is a highly popular social media which on one hand allows information transmission
in real time and on the other hand represents a source of open access homogeneous text
data. We propose an analysis of the most common self-reported COVID symptoms from
a dataset of Italian tweets to investigate the evolution of the pandemic in Italy from
the end of September 2020 to the end of January 2021. After manually filtering tweets
actually describing COVID symptoms from the database - which contains words related
to fever, cough and sore throat - we discuss usefulness of such filtering. We then compare
our time series with the daily data of new hospitalisations in Italy, with the aim of
building a simple linear regression model that accounts for the delay which is observed
from the tweets mentioning individual symptoms to new hospitalisations. We discuss
both the results and limitations of linear regression given that our data suggests that the
relationship between time series of symptoms tweets and of new hospitalisations changes
towards the end of the acquisition.
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Chapter 1

Introduction

In a connected world where social media use is part of daily life, the field of social
media analysis is in full expansion, one of its branches being studying the evolution of
users response to an emergency, which exploits their rapid reaction on instant messaging
platforms such as Twitter. Compared to previous studies in this field, such as the
characterisation of the information network for the outbreak of Zika in the US in 2015-16,
COVID-19 represents an unprecedented phenomenon in terms of time duration and global
impact, being the most severe global crisis to date whose public conversation can be
studied in real time.

The direct, spontaneous expression of users is an invaluable source of information
for analysis of immediate social impact. A recent work studied the complex network
structure of retweets related to the current pandemic in the English twittersphere [4].
Super-communities were identified according to the prevalent user categories and the
degree of internationality (international sci-health, national elite, political actors and
other); their evolution in terms of growth and activity as well as their interaction patterns
over time were assessed. The above work highlighted the key role of sci-health experts
as a trusted source of information at the outbreak of the largely unknown pandemic, as
well as the increase in communities size and activity and attention shift towards national
elite and politics, simultaneously with the explosion of cases. It was found that this
attention shift intensified as time passed and the pandemic changed from an external
news event to a local reality that had important health and social effects. This trend
highlighted the growing politicisation of the debate in parallel with the imposition of
lockdown in several countries. This suggests it is important that scientists and health
institutions maintain a regular tweeting activity and reshape their content to involve
themselves in local discussions, targeting and merging with the stable national Twitter
communities. Otherwise, an exclusively scientific discussion risks losing audience when
the health crisis starts to heavily impact society and to feed country-specific debates. We
note how there are possible implications for information dissemination along the unfolding
of long-term events like epidemic diseases on a world-wide scale. Another work conducted
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Chapter 1. Introduction

sentiment analysis on Australian COVID related tweets regarding vaccines and identified
the prevalent topics (attitudes toward COVID-19 and its vaccination, advocating infection
control measures against COVID-19, and misconceptions and complaints about COVID-19
control) and emotions (trust and anticipation on the positive side, fear on the negative)[7].
This approach may have implications for an efficient campaign to spread awareness and
trusted information on COVID vaccine focused on discussing and solving doubts and
fears of the population.

These analyses, as well as ours, are possible thanks to the Twitter API, a service to
retrieve public tweets (i.e. those published by public accounts) filtering them by date,
language, location and keywords. We chose Twitter because it provides open data, in
that free access can be requested by anyone for research purposes in view of free and
reproducible science. Moreover, with its 280 characters limit per post, the dimension of
the signal is comparable for all samples, which permits a targeted retrieval of information,
as well as constituting an advantage in machine learning analysis. Thus, with 12.8 million
Italian users (as of 2020), Twitter is a powerful, innovative tool that we chose to use to
investigate the evolution of the pandemic in Italy. Our thesis analysed a dataset of tweets
previously selected from the Twitter API according to the presence of keywords related to
fever, cough and sore throat, from the end of September 2020 to the end of January 2021.
We first performed manual annotation, which was necessary to filter according to context
tweets (1) actually mentioning users or other people experiencing symptoms associated to
COVID within 3 days from the publication date and (2) mentioning taking COVID tests,
which were classified according to the outcome if mentioned. After pre-processing of the
tweets, we compared the occurrence of the most frequent words and pair of words for
symptoms tweets with respect to the rest of the tweets and we visualised the co-occurrence
network in both cases. We applied Latent Dirichlet Allocation to all our tweets and
discussed if it highlights differences in terms of document topic probabilities for true and
fake symptoms.

We chose as time series for further investigation our total volume of pre-selected
tweets, any symptom, individual symptoms, COVID tests with symptoms. We investigated
whether descriptive statistics aggregated on the whole temporal extension of our study
were stable in time, by computing them in a monthly window. Furthermore, since the
direct information from the users is a complementary approach to the official data provided
by health authorities, we decided to compare our time series with data of new daily
hospitalisations. Since differences in the respective time development were to be expected
(tweets mentioning symptoms preceding hospitalisations), we measured similarity via
Pearson’s linear correlation 𝜌 with lag 𝑙. We found the following optimal values, where
the lag 𝑙 is the delay (in days) of new hospitalisations with respect to our time series:
(𝜌∗ = 0.93, 𝑙∗ = 17) for cough, (𝜌∗ = 0.91, 𝑙∗ = 17) for fever, (𝜌∗ = 0.97, 𝑙∗ = 22) for
sore throat; globally, true symptoms have (𝜌∗ = 0.95, 𝑙∗ = 20). The behaviour of the
correlation coefficient near the maximum allowed us to estimate the propagation of time
uncertainty on the optimal lag. In fact, by associating symptoms to the publication
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Chapter 1. Introduction

date within a time interval of 3 days, we inevitably introduced time uncertainty in the
daily series. Finally, we performed linear regression using individual symptoms tweets
as predictors to estimate the new daily hospitalisations ̂𝑦, after randomly dividing the
dataset into a training and validation set. Multivariate regression suggests sore throat
tweets lagged of 22 days are the most predictive symptom for our dataset, as it dominates
among coefficients. For this reason, we report as result the univariate regression with
sore throat tweets as predictor: ̂𝑦 = (808 ± 25) + (42.9 ± 1.1)𝑥𝑠, with RMSE= 120. We
assessed that performing univariate regression with each filtered symptom decreased the
RMSE compared to not filtered symptoms, which supports the usefulness of manual
annotation, especially for cough and fever tweets. We stress that this model has a limited
validity in time due to the non stationarity of the pandemic evolution.
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Chapter 2

Statistical methods

2.1 Dataset and rules for manual selection of tweets

Keywords
ho temperatura 38/39/40/41
ho febbre 38/39/40/41
mi febbre 38/39/40/41
ho tosse
ho mal di gola
ho tossire
tossendo

Table 2.1: Keywords used to collect
tweets potentially describing symptoms
from Twitter API.

Our database is composed of 7618 public tweets
acquired from September 30th 2020 to January
26th 2021 (inclusive) for a total of 119 days.
The tweets of our database had been previously
selected through the public Twitter API accord-
ing to the presence of words describing COVID
symptoms. The keywords (not necessarily con-
secutive words) are found in Tab. 2.1. We
analysed only the columns containing text and
time of publication. Tweets were acquired in
real time after a single initial request; the only
time frame when no tweets were collected was
from 2020-12-17 17:30 to 2020-12-18 08:00 due
to a disconnection of the server.

Symptoms The self-reported symptoms of COVID-19 analysed in this thesis are cough
(”tosse”), fever (”febbre”) of or above 38°C and sore throat (”mal di gola”). Their
mention was not considered in case of a clear non infectious origin, such as chronic cough
(ex. due to smoking or reflux) or sore throat due to prolonged speaking or screaming.
These cases will be referred to as ”fake symptoms” to distinguish them from tweets that
have been recognised as actually reporting symptoms, which will be referred to as ”true
symptoms” or simply ”symptoms”. Cold has not been considered as a symptom on its
own, consistently with the fact that it had not been included in the keywords to create
the data set; however, its occurrence was then analysed in combination with sore throat
and cough. A second categorisation is the self-reported performing of tests, which has
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Chapter 2. Statistical methods 2.2. Preprocessing

been divided in positive, negative or unknown outcome.

People It is to be noted that in case a tweet mentioned symptoms and/or tests regarding
more than one person, it was counted as a single occurrence. The people mentioned
in the tweet were not necessarily traceable through the user (ex. sick person in public
transportation or sick customer in a shop the user had visited in the last 3 days). Tweets
referring to self-report of symptoms by public figures (ex. politicians, athletes, influencers,
TV people) have been disregarded, as this was usually mentioned in several tweets
containing links to news articles or general comments. Twitter search has been used
where needed (and when possible) to solve doubts regarding the context of the tweet,
especially to exclude the sarcastic report of symptoms.

Time Since the objective is to study the time evolution of present self-reported symp-
toms, a time constraint of 3 days has been chosen with respect to the date of publication
of the tweets (i.e. symptoms experienced up to 3 days earlier). Therefore, references
to confirmed infections or death in an undefined past have been disregarded. For the
same reason, lack of smell or taste has not been counted as symptoms nor positivity to
serological tests has been considered, as their occurrence can extend through a much
longer period of time compared to the duration of the infection.

2.2 Preprocessing
Before performing text analysis, cleaning tweets was needed to reduce the dimensionality
of the problem. We converted the tweets to lower case and removed mentions and
punctuation (this included emojis). We tokenised the tweets and performed stop words
removal using a list of Italian articles, pronouns, prepositions and filler words. After stop
words removal, we were left with 75% of the initial tokens. We made sure neither words
containing negation nor time references were included in the stop words, as we were
interested in capturing the negation of symptoms and in time indicators within 3 days of
the publication date, respectively. We then performed lemmatisation, which is the process
of grouping together the inflected forms of a word so they can be analysed as a single
item, identified by the word’s lemma, or dictionary form. While most of our analysis
was performed in MATLAB, since MATLAB does not include Italian among supported
languages, we used the lemmatiser ”Treetaggerwrapper” in Python. We preferred a
lemmatiser to an aggressive stemmer (i.e. a tool which would reduce inflected words to
their word stem, base or root form) for better preservation of the meaning.
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Chapter 2. Statistical methods 2.3. Pointwise mutual information (PMI)

2.3 Pointwise mutual information (PMI)
The mutual information (MI) of two discrete random variables 𝑋 and 𝑌 is defined as

I(𝑋;𝑌 ) = ∑
𝑦∈𝒴

∑
𝑥∈𝒳

𝑝(𝑋,𝑌 )(𝑥,𝑦) log(
𝑝(𝑋,𝑌 )(𝑥,𝑦)
𝑝𝑋(𝑥)𝑝𝑌(𝑦)

) (2.3.1)

where 𝑝(𝑋,𝑌 ) is the joint probability mass function of 𝑋 and 𝑌, and 𝑝𝑋 and 𝑝𝑌 are the
marginal probability mass functions of 𝑋 and 𝑌 respectively. It quantifies the ”amount
of information” which can be obtained about one random variable by observing the other
random variable; more precisely, the reduction on the uncertainty of one due to the
observation of the other. If the logarithm is in base 2, mutual entropy is measured in
bits. In order to understand its interpretation, we first define entropy and conditional
entropy within information theory.

Entropy 𝐻(𝑋) of a random variable 𝑋 is a measure of its uncertainty, in other words
a measure of how much ”choice” is involved in the selection of an outcome given the
probability distribution of the event. As Shannon observed [11], if there is such a measure,
say 𝐻(𝑝1,𝑝2, ⋅,𝑝𝑛), it is reasonable to require of it the following properties:

1. 𝐻 should be continuous in the probability distribution 𝑝𝑖.

2. If all the 𝑝𝑖 are equal, 𝑝𝑖 = 1/𝑛, then 𝐻 should be a monotonic increasing function
of 𝑛. In fact, with equally likely events there is more choice, or uncertainty, when
there are more possible events.

3. If a choice is broken down into two successive choices, the original 𝐻 should be
the weighted sum of the individual values of 𝐻. For example, assume there are
three possibilities with 𝑝1 = 1

2 , 𝑝2 = 1
3 , 𝑝3 = 1

6 . The final results have the same
probabilities if we first choose between two possibilities each with probability 1

2 ,
and if the second possibility occurs we make another choice with probabilities 2

3 , 1
3 .

In this special case, we require 𝐻(1
2 , 1

3 , 1
6) = 𝐻(1

2 , 1
2)+ 1

2 𝐻(2
3 , 1

3)·

It can be proven that the only 𝐻 satisfying the three above assumptions is of the form:

𝐻(𝑋) = −∑
𝑋

𝑃𝑋(𝑥) log𝑃𝑋(𝑥) (2.3.2)

To understand the concrete interpretation of 𝐻(𝑋), we suppose 𝑥 is chosen randomly
from the distribution 𝑃𝑋(𝑥) and someone who knows the distribution 𝑃𝑋(𝑥) is asked to
guess which 𝑥 was chosen by asking only yes/no questions. It can be proved that if the
guesser uses the optimal question-asking strategy, which is to divide the probability in
half on each guess by asking questions like ”is 𝑥 greater than 𝑥0 ?”, then the average
number of yes/no questions it takes to guess 𝑥 lies between 𝐻(𝑋) and 𝐻(𝑋)+1. This
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Chapter 2. Statistical methods 2.4. Latent Dirichlet allocation (LDA)

gives quantitative meaning to ”uncertainty”: it is the number of yes/no questions it takes
to guess a random variable, given knowledge of the underlying distribution and taking
the optimal question-asking strategy.

The conditional entropy 𝐻(𝑋|𝑌 ) is the average uncertainty about 𝑋 after observing
a second random variable 𝑌, and is given by

𝐻(𝑋|𝑌 ) = ∑
𝑦

𝑃𝑌(𝑦)[−∑
𝑥

𝑝𝑋|𝑌(𝑥|𝑦) log(𝑝𝑋|𝑌(𝑥|𝑦))] (2.3.3)

where 𝑃𝑋|𝑌(𝑥|𝑦) = 𝑃𝑋𝑌(𝑥,𝑦)/𝑃𝑌(𝑦) is the conditional probability of 𝑥 given 𝑦.
From the definitions of 𝐻(𝑋) and 𝐻(𝑋|𝑌 ), it follows from Eq. 2.3.1 that

𝐼(𝑋;𝑌 ) = 𝐻(𝑋)−𝐻(𝑋|𝑌 ) (2.3.4)

Mutual information is therefore the reduction in uncertainty about variable 𝑋, or the
expected reduction in the number of yes/no questions needed to guess 𝑋 after observing
𝑌. It is equal to 0 when 𝑋 and 𝑌 are independent; it reduces to the uncertainty associated
to 𝑋 (or equivalently 𝑌) if the two variables are connected by a functional relationship.

Mutual information is the expected value of pointwise mutual information (PMI),
which refers to single events:

PMI(𝑋;𝑌 ) = log(
𝑝(𝑋,𝑌 )(𝑥,𝑦)
𝑝𝑋(𝑥)𝑝𝑌(𝑦)

) (2.3.5)

In the case of words occurrences and co-occurrences, it is clear that if two words are
independent, then PMI is 0. If PMI is greater (less) than 0, the two words are more (less)
likely to co-occur than if they were independent. When either one of the words (or even
both of them) has a low probability of occurrence if singularly considered but its joint
probability together with the other word is high, the two are likely to express a unique
concept.

2.4 Latent Dirichlet allocation (LDA)
Latent Dirichlet allocation (LDA) is a model-based clustering method which was originally
proposed in evolutionary biology and bio-medicine to detect the presence of structured
genetic variation among a group of individuals. It assumes there are K populations,
each of which is characterised by a set of allele frequencies at each locus. By analysing
multilocus genotype data, it allows to infer population structure and probabilistically
assign individuals to populations [10]. From 2003, LDA was applied to the field of
machine learning as a document topic modelling method[3], to discover underlying topics
(populations) in a collection of documents (individuals) and infer word probabilities
(allele distribution) in topics, thus assigning documents to a topic. It is an unsupervised
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Chapter 2. Statistical methods 2.4. Latent Dirichlet allocation (LDA)

learning method, in that the possible topics are not known a priori (only their number
is chosen), i.e. they are hidden (latent). Thus, it differs from topic classification, in
which the algorithm learns from a dataset that has been previously annotated with topics
(supervised learning).

Mixture representation and exchangeability LDA models a collection of 𝐷 doc-
uments as topic mixtures 𝜃1,⋯𝜃𝐷 over 𝐾 topics (i.e. probability vectors of length 𝐾),
which are in turn mixtures 𝜙1 ⋯𝜙𝐾 of 𝑉 words (i.e. probability vectors of length 𝑉), 𝑉
being the number of words in the vocabulary.

The intuition for the LDA model stems from De Finetti representation theorem, for
which it is necessary to introduce the concept of exchangeability. A finite set of random
variables is said to be exchangeable if the joint distribution is invariant to permutation. An
infinite sequence of random variables is infinitely exchangeable if every finite subsequence
is exchangeable. De Finetti’s representation theorem states that the joint distribution
of an infinitely exchangeable sequence of random variables is as if a random parameter
were drawn from some distribution and then the random variables in question were
independent and identically distributed, conditioned on that parameter.
A document is a sequence of 𝑁 words denoted by w = (𝑤1,𝑤2,⋯,𝑤𝑁), where 𝑤𝑛 is the
𝑛th word in the sequence. In LDA, we assume that words are generated by topics (by
fixed conditional distributions) and that those topics are infinitely exchangeable within a
document. By de Finetti’s theorem, the probability of a sequence of words and topics
must therefore have the form:

𝑝(w,z) = ∫𝑝(𝜃)(
𝑁

∏
𝑛=1

𝑝(𝑧𝑛|𝜃)𝑝(𝑤𝑛|𝑧𝑛))𝑑𝜃 (2.4.1)

where 𝜃 is the random parameter of a multinomial over topics. Since by this theorem any
collection of exchangeable random variables has a representation as a mixture distribution,
the word mixture and topic mixture representation can now be understood, provided we
assume that we can neglect the order of words (”bag of words” assumption) and the order
of topics. While exchangeability is a major simplifying assumption in the domain of text
modelling, its principal justification is that it leads to methods that are computationally
efficient. Moreover, intuitively, we are able to discern the topics of a document reading
its words independently of their order.

Dirichlet distribution After understanding the concept of ”latent” in the name of
LDA, ”Dirichlet” derives from the fact that the model assumes that the topic mixtures
𝜃1 ⋯𝜃𝐷 and the topics 𝜙1 ⋯𝜙𝐾 follow a prior distribution which is a Dirichlet distribu-
tion, with concentration parameters 𝛼 and 𝛽 respectively. We recall the definition of
Dirichlet distribution, choosing the distribution 𝜃 of topics in each document which is
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Chapter 2. Statistical methods 2.4. Latent Dirichlet allocation (LDA)

a 𝐾 dimensional Dirichlet (the same applies to the distribution of words in each topic,
which is a 𝑉 dimensional Dirichlet):

𝑝(𝜃|𝛼) =
Γ(∑𝑘

𝑖=1 𝛼𝑖)

∏𝑘
𝑖=1 Γ(𝛼𝑖)

𝑘
∏
𝑗=1

𝜃𝛼𝑗−1
𝑗 (2.4.2)

{𝜃𝑖}𝑘=𝐾
𝑖=1 belong to the standard 𝐾 −1 simplex (i.e. the multi-dimensional extension of

the triangle), or equivalently ∑𝐾
𝑖=1 𝜃𝑖 = 1 and 𝜃𝑖 ≥ 0 for all 𝑖 ∈ {1,…,𝐾}, which means

that each realisation of a Dirichlet distribution is again a distribution.
The Dirichlet distribution is frequently used in the Bayesian statistics for its important
property of being conjugate to the multinomial, meaning that given a multinomial
observation, the posterior distribution of a Dirichlet distribution (here 𝜃) is still a
Dirichlet distribution. The parameter 𝛼 controls the mean shape and sparsity of 𝜃. Its
effect has an immediate visual interpretation in a 3-dimensional problem, where the
simplex is simply a triangle. Small 𝛼𝑖 indicate sparsity, in that they make the distribution
significantly different from zero only near the 𝑖th vertex of the triangle. On the contrary,
for large 𝛼𝑖 the distribution collapses near the centre. In LDA, using a small 𝛼 means
that a document usually contains a small number of topics.

Generative process LDA assumes the following generative process whereby documents
are generated:

1. For each document w, sample a topic mixture 𝜃 ∼ Dirichlet(𝛼).

2. For each topic, sample 𝜙 ∼ Dirichlet(𝛽)

3. For each document, for each word position in the document:

- Sample a topic index 𝑧𝑛|𝜃 ∼ Categorical(𝜃)1, where the random variable 𝑧𝑛 is
an integer from 1 through 𝐾.

- Sample a word 𝑤𝑛|𝑧𝑛,𝜙 ∼ Categorical(𝜙𝑧), where the random variable 𝑤𝑛 is
an integer from 1 through 𝑉 and it represents the corresponding word in the
vocabulary. Since 𝜙 is determined by 𝛽, we will use the following notation
𝑤𝑛 ∼ 𝑝(𝑤𝑛|𝑧𝑛,𝛽).

Under this generative process, the joint distribution of a document w (i.e. with words
𝑤1,⋯𝑤𝑛) with topic mixture 𝜃 and with topic indices 𝑧1,⋯𝑧𝑛 is given by

𝑝(𝜃,z,w|𝛼,𝛽) = 𝑝(𝜃|𝛼)
𝑁

∏
𝑛=1

𝑝(𝑧𝑛|𝜃)𝑝(𝑤𝑛|𝑧𝑛,𝛽) (2.4.3)

1We recall that the categorical distribution is the particular case of a multinomial distribution for one
trial.
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where 𝑁 is the number of words in the document. Summing the joint distribution over 𝑧
and then integrating over 𝜃 yields the marginal distribution of a document w:

𝑝(w|𝛼,𝛽) = ∫
𝜃
𝑝(𝜃|𝛼)

𝑁
∏
𝑛=1

∑
𝑧𝑛

𝑝(𝑧𝑛|𝜃)𝑝(𝑤𝑛|𝑧𝑛,𝛽)𝑑𝜃 (2.4.4)

Finally, taking the product of the marginal probabilities of single documents, we obtain
the probability of a corpus 𝐷:

𝑝(𝐷|𝛼,𝛽) =
𝑀
∏
𝑑=1

∫
𝜃𝑑

𝑝(𝜃𝑑|𝛼)(
𝑁𝑑

∏
𝑛=1

∑
𝑧𝑑𝑛

𝑝(𝑧𝑑𝑛|𝜃𝑑)𝑝(𝑤𝑑𝑛|𝑧𝑑𝑛,𝛽))𝑑𝜃𝑑 (2.4.5)

There are three levels to the LDA representation. The parameters 𝛼 and 𝛽 are corpus-level
parameters, assumed to be sampled once in the process of generating a corpus. The
variables 𝜃𝑑 are document-level variables, sampled once per document. Finally, the
variables 𝑧𝑑𝑛 and 𝑤𝑑𝑛 are word-level variables and are sampled once for each word in
each document.

Inference While identifying the topics in the documents, LDA does the opposite of
the generation process by asking what is the hidden structure that likely generated the
observed collection. Since the exact evaluation of the posterior distribution is intractable,
LDA begins with random assignment of topics to each word and iteratively improves the
assignment of topics to words through the so called Gibbs sampling2. Gibbs sampling does
not explicitly represents 𝜙 or 𝜃 as parameters to be estimated, but instead considers the
posterior distribution over the assignments of words to topics, 𝑃(z|w). Then estimates
of 𝜃 and 𝜙 can be obtained by examining this posterior distribution.

The steps of the first iteration are:

1. Randomly assign the 𝐾 topics to all the words in each document

2. Create a document-wise topic count (a local statistic to each document), resulting
in a document-topic matrix.

3. Create a topic-wise assignment of word count from all documents (a global statistic
for the whole vocabulary), resulting in a topic-word matrix.

After the first iteration, we wish to optimise the initial document-topic and topic-word
matrices obtained by iterating over all the documents and all the words.

4. Resample a word and remove the topic assignment (i.e. we assume the current word
has been incorrectly assigned while all the others have been correctly assigned).

2Gibbs sampling iteratively draws an instance from the distribution of each variable, conditional on
the current values of the other variables, with the aim of estimating complex joint distributions.
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5. Decrement the count for the respective topic allocated from the document-topic
matrix.

6. Decrement the count for the respective topic allocated from the topic-word matrix.

7. The probability for topic assignment 𝑗 knowing all the other assignments and the
observed words is given by [5]:

𝑃(𝑧𝑖 = 𝑗|z−i,w) ∝
𝑛(𝑤𝑖)

−𝑖,𝑗 +𝛽

𝑛(.)
−𝑖,𝑗 +𝑉 𝛽

𝑛(𝑑𝑖)
−𝑖,𝑗 +𝛼

𝑛(𝑑𝑖)
−𝑖 +𝐾𝛼

(2.4.6)

where 𝑛(𝑑)
𝑗 is the number of times a word from document 𝑑 has been assigned to

topic 𝑗, 𝑛(𝑤)
𝑗 is the number of times word 𝑤 has been assigned to topic 𝑗 in the

vector of assignments z, and the subscript −𝑖 indicates that the current assignment
𝑧𝑖 is excluded from the count. The first ratio gives the probability of word 𝑖 under
topic 𝑗, while the second gives the probability of topic 𝑗 under document 𝑖. (Here
we have assumed for simplicity that the parameters 𝛼 and 𝛽 have a single value
instead of being vector-valued).

8. For a given word 𝑤𝑖 in a document 𝑑𝑖 find the topic 𝑗 for which this probability is
maximum and reassign the word to topic 𝑗. In other words, through this product
probability, LDA identifies the new topic, which is the most relevant topic for the
current word.

LDA (steps 2-8) is performed for a large number of iterations for the step of choosing
the new topic 𝑗 until a steady-state is obtained.

2.5 t-distributed stochastic neighbour embedding (t-
SNE)

t-SNE is a method of dimensionality reduction which converts a high-dimensional data
set 𝑋 of datapoints 𝑥1,𝑥2, ...,𝑥𝑛 into a two or three-dimensional set 𝑌 of map points
𝑦1,𝑦2, ...,𝑦𝑛 that can be displayed in a scatterplot. The advantage of t-SNE is that it is
capable of capturing much of the local structure of the high-dimensional data very well,
while also revealing global structure such as the presence of clusters at several scales.
It finds applications in natural language processing to visualise topics of a text corpus
and in medicine such as in RNA single-cell sequencing to visualise clusters of cells of
the same type. The main idea is to convert distances into probability distributions, for
both the high and low dimensional spaces, and find iteratively a low-dimensional data
representation that minimises the mismatch between the two distributions.
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Data points joint probability Firstly, t-SNE converts the high-dimensional Euclidean
distances between datapoints into conditional probabilities that represent similarities.
The similarity of datapoint 𝑥𝑗 to datapoint 𝑥𝑖 is defined as the conditional probability
𝑝𝑗|𝑖 that 𝑥𝑖 would pick 𝑥𝑗 as its neighbour if neighbours were chosen in proportion to
their probability density under a Gaussian centred at 𝑥𝑖 [12]:

𝑝𝑗|𝑖 =
exp−||𝑥𝑖 −𝑥𝑗||2/2𝜎2

𝑖

∑𝑘≠𝑖 exp−||𝑥𝑖 −𝑥𝑘||2/2𝜎2
𝑖

(2.5.1)

where 𝜎𝑖 is the variance of the Gaussian that is centred on datapoint 𝑥𝑖 and 𝑝𝑗|𝑖 is
normalised over all pairs of points involving 𝑥𝑖. We define a symmetrised joint probability
of finding datapoints 𝑖 and 𝑗 together

𝑝𝑖𝑗 =
𝑝𝑗|𝑖 +𝑝𝑖|𝑗

2𝑛
(2.5.2)

Because the density of the data is likely to vary, in general 𝜎𝑖 does not have a global
value but it should vary with the datapoint: in dense regions a smaller value of 𝜎𝑖 is
usually more appropriate than in sparser regions. Any particular value of 𝜎𝑖 induces a
conditional probability distribution over all the other datapoints given datapoint 𝑥𝑖, 𝑃𝑖,
whose entropy increases with 𝜎𝑖. To understand how 𝜎𝑖 is determined, we introduce the
notion of perplexity.

Perplexity The perplexity of a probability distribution 𝑝(𝑥) is given by
𝑃𝑒𝑟𝑝(𝑝) = 2𝐻(𝑝) (2.5.3)

where 𝐻(𝑝) is the Shannon entropy of 𝑝 measured in bits. It is independent of the basis
provided the basis of the exponentiation and of the logarithm is the same, as it can be
seen by rewriting the definition as

𝑃𝑒𝑟𝑝(𝑝) = 2−∑𝑥 𝑝(𝑥) log2 𝑝(𝑥) = 1
∏𝑥 𝑝(𝑥)𝑝(𝑥) (2.5.4)

From this, if we consider an 𝑁-sided fair dice, the entropy is maximum and the perplexity
is 𝑁

1

( 1
𝑁

1
𝑁 )

𝑁 = 𝑁 (2.5.5)

Thus, perplexity can be interpreted as the number of sides of a fair die that when rolled
produces a sequence with the same entropy as the given probability distribution.
t-SNE sets 𝜎𝑖 in such a way that 𝑃𝑖 has a fixed perplexity 𝑃𝑒𝑟𝑝(𝑃𝑖) that is specified by
the user. Perplexity provides a smooth measure of the number of effective neighbours,
thus this translates into scaling the variance of the gaussian so that a fixed number of
points fall in the mode of the gaussian, allowing the algorithm to adapt to the different
densities in space.
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Map points joint probability If we defined the joint probabilities in the low-
dimensional space, 𝑞𝑖𝑗, using the Gaussian distribution as we did for 𝑝𝑖𝑗, we would
encounter the so-called ”crowding problem”, which arises because all the pairwise dis-
tances cannot be preserved when embedding a high dimensional points into a lower
dimension. When trying to model local structure (neighbours) faithfully, dissimilar high
dimensional datapoints have to be mapped too far apart in the map. This hinders the
segregation of map points that should represent datapoints neighbours from moderately
distant points, with the consequence that gaps between natural clusters are lost. Mapping
dissimilar high dimensional datapoints too far apart in the map is instead allowed if we
use a heavy tailed distribution - compared to the gaussian - in the low dimensional space.
In fact, if two high dimensional points have a distance ||𝑥𝑖 − 𝑥𝑗||𝑋 = 𝑑∗ and 𝑝𝑖𝑗 = 𝑝∗,
in order to have the same probability density 𝑞𝑖𝑗 = 𝑝∗ the map points have to be more
distant ||𝑦𝑖 − 𝑦𝑗||𝑌 > 𝑑∗. For this reason, t-SNE employs Student’s t-distribution with
one degree of freedom in the low-dimensional map, which is a heavy-tailed distribution
compared to the gaussian, so that the joint probabilities are defined as

𝑞𝑖𝑗 =
(1+||𝑦𝑖 −𝑦𝑗||2)−1

∑𝑘 ∑𝑙≠𝑘(1+ ||𝑦𝑘 −𝑦𝑙||
2)−1

(2.5.6)

normalised by all pairs of points. This distribution is used because large clusters of points
that are far apart interact in just the same way as individual points, due to the fact that
the numerator approaches an inverse square law for large ||𝑦𝑖 −𝑦𝑗||.

Cost function A natural measure of the faithfulness with which a probability distri-
bution 𝑄 models a reference probability distribution 𝑃 is the Kullback-Leibler divergence.
The cost function 𝐶 is chosen to be a single Kullback-Leibler divergence between a
joint probability distribution, 𝑃, in the high-dimensional space and a joint probability
distribution, 𝑄, in the low-dimensional space, which is defined as

𝐶 = 𝐾𝐿(𝑃 ||𝑄) = ∑
𝑖

∑
𝑗≠𝑖

𝑝𝑖𝑗 log
𝑝𝑖𝑗

𝑞𝑖𝑗
(2.5.7)

KL divergence is asymmetric (therefore it is not a distance); this reflects the asymmetry
in Bayesian inference, which starts from a prior 𝑃 and updates to the posterior 𝑄. The
code theory intuition behind this fact is that if we are transmitting information that is
distributed according to 𝑄, then the optimal (lossless) compression will need to send
on average 𝐻(𝑄) bits. In case we expect 𝑄 (and design compression accordingly), but
the actual distribution is 𝑃, we will send on average 𝐻(𝑃) + 𝐾𝐿(𝑃 ||𝑄) bits; in short,
𝐾𝐿(𝑃 ||𝑄) is the ”penalty” for using wrong distribution. The asymmetry of the KL
divergence allows t-SNE to preserve local structure close, large 𝑝𝑖𝑗, then if they have
small 𝑞𝑖𝑗 there is a high penalty. Thus similar datapoints are modelled by similar map
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points.
The minimisation of the cost function is performed using gradient descent, where the
gradient is

𝜕𝐶
𝜕𝑦𝑖

= 4∑
𝑗

(𝑝𝑖𝑗 −𝑞𝑖𝑗)(𝑦𝑖 −𝑦𝑗)(1+ ||𝑦𝑖 −𝑦𝑗||2)−1 (2.5.8)

Physically, the gradient may be interpreted as the resultant force created by a set of
springs between the map point 𝑦𝑖 and all other map points 𝑦𝑗. All springs exert a force
along the direction (𝑦𝑖 − 𝑦𝑗). The spring between 𝑦𝑖 and 𝑦𝑗 repels or attracts the map
points depending on whether the distance between the two in the map is too small or
too large to represent the similarities between the two high-dimensional datapoints. The
force exerted by the spring between 𝑦𝑖 and 𝑦𝑗 is proportional both to its length and to
its stiffness, which is the mismatch (𝑝𝑖𝑗 −𝑞𝑖𝑗) between the joint probabilities of the data
points and the map points. We note that because 𝑞 is modelled by a Student distribution,
the t-SNE gradient strongly repels dissimilar datapoints that are modelled by a small
pairwise distance in the low-dimensional representation.
The gradient descent has a momentum term to ensure faster convergence and reduce
oscillation.

2.6 Linear regression
Linear regression is a simple widely used tool of which more advanced statistical learning
approaches can be seen as generalisations or extensions. It describes a linear relationship
between a set of 𝑑 predictors or explanatory variables x𝑘, 𝑘 = 1,⋯,𝑑 and a response
variable y, having made 𝑛 observations of x𝑘 and y. It allows to study the fraction of
variability of y explained by x𝑘 and to predict values of y for new values of x𝑘. Let

X = ⎛⎜
⎝

1 𝑥11 𝑥12 ⋯ 𝑥1𝑑
⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑑

⎞⎟
⎠

be the 𝑛×(𝑑+1) design matrix, y = (𝑦1,⋯,𝑦𝑛)𝑇 the 𝑛×1 response, and 𝛽𝛽𝛽 = (𝛽0,⋯,𝛽𝑑)𝑇

the (𝑑+1)×1 unknown model parameters. Let 𝜖𝜖𝜖 = (𝜖1 ⋯,𝜖𝑛)𝑇 be the random error term,
which represents what the model cannot describe (non-linearity, the existence of other
predictors that are not taken into account). Then

y = 𝑓(X)+𝜖𝜖𝜖 = X ⋅𝛽𝛽𝛽+𝜖𝜖𝜖 (2.6.1)

defines the population regression line, which is the best linear approximation to the true
relationship between X and y.
We assume that 𝜖𝜖𝜖 has mean 0, thus

𝐸(y) = X𝛽𝛽𝛽 (2.6.2)
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Moreover, we assume that the errors 𝜖𝑖 are distributed with the same variance 𝜎2 (a
condition known as homoscedasticity or homogeneity of variances) and uncorrelated with
each other. In a compact form, this is written as

𝑐𝑜𝑣(𝜖𝜖𝜖) = 𝜎2I𝑛 (2.6.3)

These assumptions are the hypotheses of the Gauss-Markov theorem, which guarantees
the validity of ordinary least squares for estimating regression coefficients (see below). If
the data suggests homoscedasticity does not hold, a weighted linear regression is more
appropriate. We usually also assume 𝜖𝑖 to be normally distributed: 𝜖𝑖 ∼ 𝑁(0,𝜎). While
this is not required for the computation of point estimates of the parameters, it allows
hypothesis testing and calculation of confidence and prediction intervals.
We define the 𝑖th residual as the difference between residual the 𝑖th observed response
value and the 𝑖th response value that is predicted by our linear model3:

𝑒𝑖 = 𝑦𝑖 − ̂𝑦𝑖 (2.6.4)

We use our training data to produce estimates for the parameters, which we denote with
̂𝛽𝛽𝛽, through the least squares approach, which minimises the residual sum of squares (RSS)

𝑅𝑆𝑆 =
𝑛

∑
𝑘=1

𝑒2
𝑘 (2.6.5)

The least squares regression coefficient estimates ̂𝛽𝛽𝛽 allow us to predict the value of the
response, thus characterising the least squares line

̂y = X ⋅ ̂𝛽𝛽𝛽 (2.6.6)

More explicitly, RSS can be written

𝐽(𝛽𝛽𝛽) = (y−X𝛽𝛽𝛽)𝑇(y−X𝛽𝛽𝛽) =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2 (2.6.7)

and direct calculation shows that the condition of minimisation

𝜕𝐽(𝛽𝛽𝛽)
𝜕𝛽𝛽𝛽

= 0

is satisfied by
̂𝛽𝛽𝛽 = (X𝑇X)−1X𝑇y (2.6.8)

3We note that the residuals express the departure of the observed values from the predicted ones,
while errors express the departure of the observed values from the real unknown ones. Therefore, the
error term is unobserved, contrary to the residuals which are its estimation, and assumptions on the
error term are tested on residuals.
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From Eq. 2.6.2 it follows directly that ̂𝛽𝛽𝛽 is an unbiased estimator of 𝛽𝛽𝛽:

𝐸( ̂𝛽𝛽𝛽) = ̂𝛽𝛽𝛽 (2.6.9)

This means that by repeating the regression on 𝑁 samples extracted from the same
population, the average of ̂𝛽𝑖 (least square line) tends to 𝛽𝑖 (population line). We see
that based on the concept of bias one can make an apt analogy between linear regression
and estimation of the mean of a random variable, in that the sample mean is an unbiased
estimator of the population mean. As in the case of the population mean, the error we
associate to a linear regression parameter estimation is the standard error, quantifying
how far away this estimation is on average from the true 𝛽𝑖. Using Eq. 2.6.3 we find

𝑐𝑜𝑣( ̂𝛽𝛽𝛽) = 𝜎2(X𝑇X)−1 (2.6.10)

where an unbiased estimator for 𝜎2 is

�̂�2 = yT[I𝑛 −X(X𝑇X)−1X𝑇]y/(𝑛−𝑑) (2.6.11)

We now briefly state Gauss-Markov theorem, for which the previous assumptions on the
errors are needed (see [9] for a proof). In many problems it is of interest to estimate linear
combinations of predictors 𝛽𝛽𝛽, say, t𝑇𝛽𝛽𝛽, where t is any nonzero 𝑑 × 1 vector of known
constants. We define the best linear unbiased estimator of t𝑇𝛽:

Definition 2.6.1 (Best Linear Unbiased Estimator (BLUE) of t𝑇𝛽𝛽𝛽). The best linear
unbiased estimator of t𝑇𝛽𝛽𝛽 is

i a linear function of the observed vector y, a𝑇y+𝑎0 where a is an 𝑛×1 vector of
constants and 𝑎0 a scalar, and

ii the unbiased estimator of t𝑇𝛽𝛽𝛽 with the smallest variance.

Theorem 2.6.1 (Gauss-Markov). Let y = X𝛽𝛽𝛽 +𝜖𝜖𝜖 where 𝐸(𝜖𝜖𝜖) = 0 and 𝑐𝑜𝑣(𝜖𝜖𝜖) = 𝜎2I𝑛.
Then the least-squares estimator of t𝑇 is given by t𝑇 ̂𝛽𝛽𝛽 = t𝑇(X𝑇X)−1X𝑇y and t𝑇 ̂𝛽𝛽𝛽 is the
BLUE of t𝑇𝛽𝛽𝛽.

Finally, we mention the evaluation metrics we will use on the validation set to compare
models with different predictors. These are mean absolute error (MAE)

MAE = 1
𝑛

𝑛
∑
𝑗=1

|𝑦𝑗 − ̂𝑦𝑗| (2.6.12)
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and root mean square error (RMSE) 4

RMSE = √
1
𝑛

𝑛
∑
𝑗=1

(𝑦𝑗 − ̂𝑦𝑗)2 (2.6.14)

which are both measured with the same scale as 𝑌.

4If 𝑛 indicates the total number of observations (without division into training and validation set)
the unbiased estimator of the variance of 𝜖 is the residual standard error (RSE)

RSE = √
1

𝑛−𝑑 −1

𝑛

∑
𝑗=1

(𝑦𝑗 − ̂𝑦𝑗)2 (2.6.13)

as 𝑑 parameters have been estimated from the data. However, when evaluating our model on the
validation set we use RMSE, as by definition the parameters have been estimated from the training set
and not the validation set.
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Chapter 3

Text Processing and Analysis

3.1 Descriptive statistics
Bag of words We recall that an 𝑛-gram is a contiguous sequence of 𝑛 items from a given
sample of text or speech; in our case, items are tokens of one or two words. We built bags of
words in the unigram and bigram models and visualised them as wordclouds. We note that
we aggregated in a single token ”male gola|testa|pancia” 1, as well as the most frequent
expressions to negate symptoms: ”niente|nessuno|neanche|non|senza|nemmeno|nè|né” +
”male gola|febbre|raffreddore|tosse” 2, by means of regular expressions. More generally,
”non” (”not”) was aggregated with the following word. This was decided because otherwise
the word ”non” alone would be so prevalent compared to the rest of the vocabulary that
statistics would be disturbed.
We note that since all tweets contained mentions of fever, cough or sore throat, due to the
keywords used in the Twitter API, the unigram does not enable us to observe significant
differences between true symptoms (Fig. 3.1.1a) and fake symptoms (Fig. 3.1.1b). The
prevalent words - apart from symptoms and cold - were COVID test, positive, negative,
mask, school, as well as time indicators (now, yesterday, day...) and words indicating
anxiety.
As for the bag of bigrams, the most frequent one among symptoms tweets (Fig. 3.1.2a)
was ”take COVID test”, followed by the pairs of symptoms (including cold and headache),
a symptom with an additional temporal detail (38/39 C fever, today sore throat, start
coughing, still sore throat) or an adjective (mild/strong sore throat, dry cough, high
fever...), feeling unwell or, to a lesser extent, feeling better. There are mentions of staying
home, going/not going to school. From the manual selection we recall that ”staying home”
was often linked to surprise of how the symptoms could have been caught considering the
user had been staying at home, or to staying home/ not going to school for precaution once

1”sore throat/headache/stomachache”
2These are variations of ”no|not even|neither|nor” + ”sore throat|fever|cold| cough”
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(a) (b)

Figure 3.1.1: Unigram wordcloud for true symptoms (a) and fake symptoms (b).

(a) (b)

Figure 3.1.2: Bigram wordcloud for true symptoms (a) and fake symptoms (b).

the symptoms had been observed. Mention of school were at times related to discovering
schoolmates were experiencing symptoms and hoping not to be infected, or to pondering
whether or not to go to school with mild symptoms, which could however be dangerous
considering the pandemic. Finally, there are mentions of calling the doctor/taking the
temperature/ taking a medicine for temperature/ negative COVID test /not wearing
masks. Compared to true symptoms tweets, the most prevalent bigram for fake symptoms
tweets was ”coughing fit” (166), followed by combination of symptoms and ”take COVID
test” (102), as it can be seen from (Fig. 3.1.2b). They contain some temporal references
outside the range of 3 days from the publication date: ”last week”, ”10 day”, ”this year”,
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”last year”, ”year ago”. We observe ”without mask” (32) and ”do vaccine” (31), the latter
mostly related to mentions of symptoms when doing past vaccines such as the flu. To
a lesser extent there were words indicating something going down the wrong pipe and
mention of public figures that were discussing COVID.

Co-occurrence matrix Since the bag of words stores vocabulary tokens and their
counts 𝐶, the co-occurrence matrix 𝑀, whose entries are the number of times that two
words appear in the same tweet, is simply computed as 𝑀 = 𝐶𝑇𝐶.
We calculated pointwise mutual information to observe if a certain (unordered) pair of
words was more or less frequent compared to what would be expected for independent
words. For this purpose, only words co-occurring more than 20 times were considered.
The pairs with higher PMI can be found in Tab. 3.1; reported values are above 3 bits, in
decreasing order.

true symptoms fake symptoms
olfatto + gusto sapore + odore
naso + colare de + girolamo
non riuscire + respirare perdita + olfatto
chiuso + naso traverso + saliva
positivo + contatto gusto + olfatto
medico + chiamare perdita + gusto
ora + mezz male testa + macron
prendere + tachipirina positivo + sabato
senza + mascherina bene + macron
sentire + odore male testa + video
risultato + positivo positivo + giannini

positivo + risultare
andare + traverso
stare + macron

Table 3.1: Pairs of tokens with highest pointwise mutual information for true and fake
symptoms. Reported values are above 3 bits and in decreasing order.

We observe that fake symptoms comprised retweets of (the same) online news articles
mentioning famous people that were experiencing symptoms (Macron, De Girolamo,
Giannini...). This explains the high PMI of pairs of tokens which individually are not the
most frequent ones.
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Figure 3.1.3: Relative position of chosen
pairs of words related to symptoms

The relative position of chosen pairs
of words related to symptoms is shown in
Fig.3.1.3, which shows that the absolute dis-
tance of these words in tweets is mostly 1-2
words (thus allowing their appearance in bi-
grams).
Moreover, we created an unordered graph
from the co-occurrence matrix, where each
node represented a word and edges were
weighted by the co-occurrence of the two
words linked, as shown in Fig. 3.1.4 for true
symptoms and Fig. 3.1.5 for fake symptoms.
Diagonal entries have been set to 0 to avoid
self-loops, which would simply represent the
total occurrences of a given word. For this
purpose we used Gephi [1], an open-source
software for network visualisation and analysis. The network has a small diameter of only
4, as expected because all the selected tweets contained mentions of fever, sore throat or
cough. For better readability, we filtered out nodes with a degree less than 15 and edges
with a weight less than 10 for symptoms and 12 for fake symptoms (the nodes with a
degree of only 1 or 2 were often misspelled words.) The spacial distribution is the result
of the original Yifan Hu’s attraction-repulsion algorithm followed by additional node
repulsions, especially at the centre, to avoid label overlapping. The statistics used for
colour, label size and node size (modularity, closeness centrality and degree, respectively),
were computed before filtering the network.

21



Chapter 3. Text Processing and Analysis 3.1. Descriptive statistics

non sapere

parlare

male golavolere

raffreddore

prendere
stare

caldo

sapere

sentire

tossire

minuto

settimana

no

tosse

uscita ora
tampone

casa

senza

mascherina

madre

iniziare

leggere

giorno
passare

merda

febbre

venire

fare

covid

ok
secondo

freddo

assurdo

sorella

uscire

volta

risultato
male

sperare

dovere

andare

vedere

anno

40

naso

medico test

39

male testa
ieri

oggi

chiedere
stanco

questo

svegliare

adesso

meglio

non febbre

stamattina

positivo

lavoro

niente

mattina

tipo

testa

gola

temperaturapiangere

dolore

forte

morirenon riuscire

bene

ansia

negativo

dormire

appena

cazzo amico

385

mese

domenica

lunedì

chiamare

mettere

secco

sintomo
sempre

fratello

non potere
non volere

arrivare

olfatto

non sentire

colpo

aspettare

sabato

pensare

dire

famiglia

38

sera

paura

potere

leggero

mamma

persona

essere

domani

dare

provare

scuola

scorso

preso

padre

amare

influenza

misurare

figlio

credere

tempo

tachipirina
unico

salire

tenere

virus

chiuso

classe

nulla

ultimo

contatto

tornare

10

antibiotico

mio

rimanere

covid19

gusto

dottoressa

non andare

grazie

alto

tre

buongiorno

notte

sereno

tanto

fortuna

Figure 3.1.4: Co-occurrence network for true symptoms; only nodes with degree above 15
and edges with weight above 10 are shown. Colour represents modularity class, node size
represents degree, label size represents closeness centrality.
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Figure 3.1.5: Co-occurrence network for fake symptoms; only nodes with degree above 15
and edges with weight above 12 are shown. Colour represents modularity class, node size
represents degree, label size represents closeness centrality.
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3.2 Topic modelling
We searched for groups of words (topics) in all tweets using LDA [2]. We wished to
investigate whether this allowed to highlight differences between (already labelled) true
symptoms and fake symptoms.

Figure 3.2.1: Topics mixture for all tweets
visualised via t-SNE. The optimal number of
topics was found to be 16. The perplexity has
been set to 50.

Since the topics are learned by the model,
the topics (topic words probabilities) will
generally differ when LDA is applied to
different data (i.e. true vs fake symp-
toms). Therefore, applying LDA sepa-
rately to true and fake symptoms would
lead to results of difficult interpretation.
For this reason, we chose to perform it on
all tweets together and subsequently to in-
vestigate whether there were observable
differences in the collective documents
topic distribution of true and fake symp-
toms.
Since LDA requires the number of top-
ics as input, we performed a parametric
search and chose the number of topics
that minimised the validation perplexity,
finding an optimal value of 16 topics. We
then applied t-SNE, which is needed to
embed the document topic probabilities
in a lower dimension. In this way we
visualised clusters of tweets in a 2D scat-
ter plot, as shown in Fig. 3.2.1. Each
point represents a tweet, which has been
assigned to the topic with highest prob-
ability within the tweet.
We recall that since topics are learned by
the algorithm as a mixture of words that
occur together, they are not labelled a priori but their interpretation is left to human
eye. For our data, being that all tweets contained words related to symptoms, it is clear
how the clustering is soft (a word can belong to several topics). In our plots, topics are
labelled with their most frequent words; this is only for a compact visualisation, as it is
clear that the most common words are repeated and one should refer to the wordcloud or
co-occurrence network for each topic instead.
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Figure 3.2.2: Mean document topics probabili-
ties for true and fake symptoms, weighted with
the number of words in each document. The
error bar represents the standard error; for the
topics number label refer to Fig. 3.2.1.

Finally, we computed the mean and stan-
dard error of the document topic matrix,
for each topic (column), weighting on
the number of tokens in each document.
This was done separately for true and
fake symptoms, as shown in Fig. 3.2.2.
Keeping in mind that the outputs of LDA
are probability distributions, we found
the main discrepancy between true and
fake symptoms to be in the probability
assigned to topic 1, which is the topic
with highest corpus probability. Interest-
ingly, this contained the words ”anxiety”,
”panic”, ”terrible”, ”bad”, ”worse”, ”kill”,
”die”, as well as other words expressing
frustration, and was more frequently as-
signed to symptoms tweets.
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Chapter 4

Trends of tweets volume and
prediction of COVID-19
hospitalisations

4.1 Trends of tweets volume

Figure 4.1.1: Daily distribution of all col-
lected tweets.

Building time series Our database is
composed of 7618 public tweets, acquired
from September 30th 2020 to January 26th
2021 (inclusive) for a total of 119 days. The
daily tweets distribution is shown in Fig.
4.1.1. The manual classification led to 4164
out of the total 7618 tweets classified as
symptoms.

We remark that in order to select in-
dividual symptoms, we kept from the ta-
ble of symptoms tweets those that did
not contain negations, i.e. ”niente|nes-
suno|neanche|non|senza|nemmeno|né|nè” +
”febbre|tosse|male gola”, as well as ”pas-
sato” + ”febbre|tosse|male gola” and ”feb-
bre|tosse|male gola” + ”passato”. This simple filter to intercept the negation of symptoms
is needed to deal with users that ponder what to do after realising they have a certain
symptom but not another one. This allowed to filter out 21 negated mentions of sore
throat, 34 of cough and 113 of fever, leading to 2042 true mentions of sore throat, 1494
of cough and 982 of fever.
This allowed us to build daily time series of each symptom (Fig. 4.1.2) and each possible
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(a) (b)

(c) (d)

Figure 4.1.2: True symptoms (a). Total vs true occurrences for each symptom: cough
(𝜌 = 0.953) (b), fever (𝜌 = 0.939) (c) and sore throat (𝜌 = 0.997)(d).

pair of symptoms (Fig. 4.1.3, here we include cold). A moving mean with a window of
7 days was applied to all daily series that follow. We observe how the ratio of a true
symptom to total mentions of the symptom fluctuates over time, with the correlation
between true and total symptoms being 𝜌 = 0.953 for cough, 𝜌 = 0.939 for fever and
𝜌 = 0.997 for sore throat. The noise exhibits a decrease during the first and major peak,
as well as - to a lesser extent - during the second and minor peak, for fever and cough
tweets.

We built weekly time series of self-reported COVID tests, which are reported as area
plots, divided according to whether symptoms were present (Fig. 4.1.4a) or not (Fig.
4.1.4b). We found that, out of tests mentioning absence of symptoms, the outcome was
negative 8 times, unknown 15 and positive 23, while out of tests mentioning symptoms
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(a) (b)

Figure 4.1.3: Combined occurrences of pairs of total symptoms tweets (a) and of total
cold with other total symptoms tweets (b). Total co-occurrences are shown in brackets.
The markers indicate the maximum for each series.

(a) (b)

Figure 4.1.4: Weekly aggregated outcome of COVID tests, divided into positive, unknown
or negative outcome. The maximum is shown in red for tests with symptoms (a) and in
green for tests without symptoms (b).

there were 56 negatives, 101 unknown and 151 positives. For these time series the
maximum occurs near the beginning of November, which corresponds to a first and
major peak. The exception is positive outcomes of tests without symptoms, whose
maximum occurs during the second peak around the end of December. We remark that
the two categories (outcome of the test, presence of symptoms) were labelled separately,
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meaning that a minority of the tweets contains mentions of presence/absence of symptoms
experienced by one person, and at the same time mention of a different person taking a
COVID test. For example, a recently seen relative has just taken a COVID test and the
user reports not having symptoms at the moment. As expected, the main contribution
to the tweets mentioning taking a test with symptoms reported a positive outcome.
The presence of two peaks in the time series of tests with symptoms may be due to
the fact that the time period can also extend in the future from the publication date
(people mentioning having booked a test within the following 3 days), in contrast with
the symptoms time series.

Comparing time series We chose to focus on the following time series: all collected
tweets, true symptoms and individual symptoms. We compared them with the data of
new hospitalisations in Italy provided by INFN (Istituto Nazionale di Fisica Nucleare)
[8], which has a scientific collaboration agreement with ISS (Istituto Superiore Sanità).
INFN assures that these data are not affected by delays in communication between ASL
(Azienda Sanitaria Locale) and regions but are referred to the actual dates. We chose
new hospitalisations as a reference instead of official positive tests as the latter depends
on the number of total tests, which is not constant and is thus less reliable.
All series are shown z-standardised in Fig. 4.1.5. As it can be seen from it, the series
show a first marked peak, in which the delay of new hospitalisations with respect to
symptoms tweets is clear, and a second minor peak, for which it is reduced. While the
main peak corresponds to the second COVID wave, the beginning of the third wave might
be already suggested by the increase in true fever and true cough tweets in the last days
of our acquisition, after 20th January and 18th January respectively.
To compare the time series of tweets with the new hospitalisations series, we computed
Pearson’s linear correlation coefficient 𝜌 with lag, since it is reasonable to expect a delay
between the experience of symptoms and the increase in new hospitalisations. For each
possible lag 𝑙, the subseries of overlapping points was z-standardised and the quantity

𝜌 = 𝐸[𝑥𝑛+𝑙𝑦𝑛] =
𝑁−𝑙−1
∑
𝑛=0

(𝑥𝑛+𝑙𝑦𝑛)/(𝑁 −𝑙) (4.1.1)

was computed, where 𝑁 is the length of the time series. Maximising the correlation
coefficient allowed to find the optimal values (𝑙∗, 𝜌∗). The results are shown in Fig. 4.1.6
and Tab. 4.1.
We observe that sore throat tweets are the series with the highest correlation (0.97)
but also the highest lag (22 days). On the contrary, tests with symptoms are the series
with the smallest lag compared to new hospitalisations (9 days): they present a double
peak, whose second part - centred at the beginning of November - is overlapped with
the peak of new hospitalisations. It is clear that tests are booked after the experience
of symptoms (by the user or someone else), thus with a smaller lag compared to new
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Figure 4.1.5: z-standardised time series of new hospitalisations, all tweets, true symptoms
and individual true symptoms.

hospitalisations. However, for further analyses - namely the monthly correlation with
new hospitalisations (see below) and the regression model (Sec. 4.2) - we focused only on
the series of symptoms. This is because they provided a larger statistics compared to the
series of tests with symptoms and also because self-reported tests had not been acquired
independently of the symptoms tweet, but were a subset, labelled a posteriori.

The decrease in the delay between the first and the second peak is more clearly visible
in Fig.4.1.7, where the series have been shifted by the optimal lag, also showing that -
especially for fever - the steepness of descent in the first peak varies with time compared
to that of new hospitalisations. Since this suggests non linearity, we calculated the moving
correlation coefficient (Fig. 4.1.8a) and the lag (Fig. 4.1.8b) of new hospitalisations with
respect to individual symptoms, with a window of length 30 days. We constrained the lag
to values 𝑙 = 0,1, ...𝑁 −5 in order to keep at least 5 points for the computation of 𝜌. This
was needed to avoid lags that would discard the majority of data and keep only 2-3 points
for each series, causing a misleading 𝜌 ∼ 1. We observe that for windows starting after
day 65 𝜌 drops, as for lower tweets volume the signal to noise ratio decreases. This effect
is dominant for sore throat, for which there is no sign of a second peak. On the other
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Figure 4.1.6: (a)

𝜌∗ 𝑙∗ (days)
all tweets 0.91 20
true symptoms 0.95 20
true cough 0.93 17
true fever 0.91 17
true sore throat 0.97 22

Table 4.1: (b)

Comparison of our time series with new hospitalisations via linear correlation coefficient
𝜌 with lag. Fig. (a) shows the lag and 𝜌 for [−3,3] days from maximum 𝜌; the values are
written in Tab. (b).

Figure 4.1.7: z-standardised shifted time series of new hospitalisations, all tweets, true
symptoms and individual true symptoms. The symbol * indicates that they have been
shifted by the optimal lag. The time scale is that of new hospitalisations.

hand, sore throat has the most stable lag for windows starting up to day 25, i.e. windows
that span the first and major peak of symptoms. While this analysis provided insight
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(a) (b)

Figure 4.1.8: Moving linear correlation coefficient (a) and lag (b) of new hospitalisations
with respect to symptoms, with a window of length 30 days.

into the dynamics of the correlation between the series, it is clear that with lags higher
than 20 days only less than one third of monthly data is considered in the computation.

Asking ourselves if there could be a closer relationship (in terms of lag) between tweets
and news articles about COVID, a Google search was performed to count the number of
COVID-related articles published in the news section in Italian during the selected period.

Figure 4.1.9: Daily number of Italian articles
regarding COVID retrieved in the news section
using ”googlesearch”(a).

Using Python modules ”googlesearch”
and ”requests”, we retrieved the URLs
and titles of the web-pages written in Ital-
ian which contained at least one of the fol-
lowing words in the title: ”covid”, ”coro-
navirus”, ”tamponi” (i.e. Covid tests),
”positivi” (i.e. tested positive) or ”lock-
down”. The search was performed in the
news section and in the same period of
time spanned by our time series. As
shown in Fig. 4.1.9, from this we ob-
served that a peak formed in the same
period as our peak. However, a trough
was present - around the end of December
- which did not match with our tweets
series or new hospitalisations series. We
believe the collected data were affected
by noise due to a number of blocked re-
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quests when trying to connect to the web-pages. For a better analysis, paid plans of APIs
for Google scraping would be necessary.

4.2 Linear regression model
Univariate regression We wished to build a univariate linear regression model for
new hospitalisations. We used cough, sore throat and fever series (individually) lagged of
𝑛 days as predictor variable. Since the predicted values of new hospitalisations at time 𝑡
depend on the individual symptoms tweets at time 𝑡−𝑛, no predictions were made for the
first 𝑛 days. Using R[6], we first performed a simple partition of the dataframe in training
and validation set, assigning the first 100 points to the training set and the remaining
19 to the validation set (from January 8th to January 26th 2021). This did not allow a
meaningful prediction of the second peak due to the different temporal dynamics of the
two series. In fact, we recall that the lag between new hospitalisations and symptoms
significantly decreases from the first and major peak to the second and minor peak.
Adding the corresponding symptom series lagged of only a couple of days as predictor in
each model did not improve the fit, as the values of the coefficient are still determined by
the first and major peak, which thus gives a higher weight to the higher lag.

Thus, acknowledging that a linear model is not suitable to predict a non stationary
distribution, we decided to perform a random partition, assigning 75% of the data to
the training set. In this way, the model is trained with observations scattered around
the whole temporal extension, which constitutes our distribution as a whole. We chose
as optimal lag 𝑛 the value that minimised the root mean square error (RMSE) and the
mean absolute error (MAE) on the validation set. The results for univariate regression
are reported in Tab. 4.2 for true and total symptoms; the line has equation ̂𝑦 = ̂𝜃0 + ̂𝜃1𝑥𝑘,

̂𝑦 being the predicted values for new hospitalisations and 𝑥𝑘 being one of the symptoms.

𝑙∗(days) 𝜃0 𝜃1 RMSE MAE
true sore throat 22 808±25 42.9±1.1 121 104
true cough 15 810±46 58.5±2.9 178 146
true fever 17 796±50 91.3±4.9 205 161
total sore throat 22 716±31 36.0±1.1 138 124
total cough 15 593±80 34.3±2.5 237 191
total fever 14 748±94 37.7 ±3.8 271 204

Table 4.2: Results of univariate regression on symptoms, where the line has equation
̂𝑦 = ̂𝜃0 + ̂𝜃1𝑥𝑘. Parameters are reported with their standard errors; p-values are all under

10−9.

We notice a decrease in RMSE of models using true symptoms as predictors compared
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to total symptoms, namely 12% for sore throat, 25% for cough and 24% for fever. This
suggests the usefulness of manual filtering, particularly for cough and fever tweets.

(a) (b)

Figure 4.2.1: Univariate regression of new hospitalisations (𝑦) from 22 days lagged sore
throat tweets (𝑥𝑠). Figure (a) shows the predicted values (squares), which lie on the
regression line with equation ̂𝑦 = (808±25)+(42.9±1.1)𝑥𝑠. Circles represent the actual
values of new hospitalisations; they are coloured according to the absolute value of the
residuals, which is represented by the length the vertical segment. Figure (b) shows data
for new hospitalisations (black), fit on training set (blue) and prediction on validation set
(red) with 95% prediction intervals.

(a) (b)

Figure 4.2.2: Univariate regression of new hospitalisations (𝑦) from 15 days lagged cough
tweets (𝑥𝑐). The regression line has equation ̂𝑦 = (810±46)+(58.5±2.9)𝑥𝑐.
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(a) (b)

Figure 4.2.3: Univariate regression of new hospitalisations (𝑦) from 17 days lagged fever
tweets (𝑥𝑓). The regression line has equation ̂𝑦 = (796±50)+(91.3±4.9)𝑥𝑓.

We plotted the regression line, to which points ̂𝑦𝑗 belong, and the corresponding points 𝑦𝑗,
joined by vertical segments (the residuals), as it can be seen from Fig. 4.2.1a (sore throat),
Fig. 4.2.2a (cough) and Fig. 4.2.3a (fever). The partition of observations in training and
validation sets is shown in Fig. 4.2.1b, Fig. 4.2.2b and Fig. 4.2.3b respectively.
In order to assess homoscedasticity - one of the key assumptions in linear regression - we
performed the studentised Breusch-Pagan test, whose null hypothesis is that homoscedas-
ticity is verified. We were not able to reject it, having obtained a p-value of 0.45 for sore
throat, 0.68 for cough and 0.58 for fever.

Multivariate regression Finally, we performed multivariate linear regression with
sore throat (𝑥𝑠), cough (𝑥𝑐) and fever (𝑥𝑓) tweets as predictors for new hospitalisations,
using the previously found optimal lags for each symptom (see Fig. 4.2.4). We found
MAE= 103 and RMSE= 120; the equation of the regression line is

̂𝑦 = (809±26)+(42.2±4.8)𝑥𝑠 +(2.6±7.4)𝑥𝑐 +(−2.4±9.9)𝑥𝑓 (4.2.1)

Again, homoscedasticity cannot be rejected (p-value=0.27). Interestingly, we observe
that the weight of sore throat tweets is dominant, with cough and fever tweets coefficients
being almost 20 times smaller and affected by a larger relative error.
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Figure 4.2.4: Multivariate regression of new hospitalisations (𝑦) from 22 days lagged sore
throat tweets (𝑥𝑠), 15 days lagged cough tweets (𝑥𝑐) and 17 days lagged fever tweets (𝑥𝑓).
The regression line has equation ̂𝑦 = (809±26)+(42.2±4.8)𝑥𝑠 +(2.6±7.4)𝑥𝑐 +(−2.4±
9.9)𝑥𝑓.
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Conclusions

After manual selection of tweets actually describing self-reported COVID symptoms, by
comparing the series of each true symptom with its total symptom, we found that sore
throat tweets have the highest correlation (𝜌 = 0.997), followed by cough tweets (𝜌 = 0.953)
and finally fever tweets (𝜌 = 0.939). Total fever tweets show a more complicated structure
in the first peak and a more pronounced second peak compared to true fever tweets.
Firstly, we recall that during manual selection we discarded tweets mentioning a light
fever (under 38°𝐶). Secondly, it happened that fever was mentioned hypothetically or
sarcastically, such as when users expected to catch fever after realising they had sore
throat, or mentioned feeling as if they had a high temperature. In addition, it is true
that assessing fever requires a measurement, contrary to sore throat and cough, which
could lead to a difference between feeling fever and objectively experiencing it. The
above correlations suggest that if one wishes to build a model without manual selection
of tweets, the series of sore throat tweets would be more reliable than cough and fever
tweets, as we have later verified. In fact, we found a decrease in RMSE of models using
true symptoms as predictors compared to total symptoms, namely 12% for sore throat,
25% for cough and 24% for fever, which supports the importance of manual filtering,
especially for cough and fever tweets.

An evident feature of our time series is the diminishing in time of the lag between
symptoms and new hospitalisations, from the first major peak around November -
corresponding to the second COVID wave - to the second minor peak around January -
located between the second and third COVID wave (the third wave is not part of our study).
The second peak may not be well resolved due to noise: not only statistical fluctuations,
but also the overlap of what we labelled as true symptoms with symptoms of diseases
other than COVID. In fact, one should also investigate the time evolution of diseases
with the same symptoms as COVID, mostly flu but also bronchitis or streptococcus. On
the other hand, it is well known that obligation of mask wearing and restrictions on
gatherings reduced the incidence of flu compared to previous years. Moreover, the higher
number of hospitalisations in the first peak could have caused a longer waiting time from
the appearance of symptoms to new hospital admissions, compared to January when the
pressure on hospitals was lower, with new hospitalisations being half of those in the first
peak. More extensive investigation would be needed to test these hypotheses, possibly
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with a wider time scale to determine if the variation is only local or not. These could
start at least 20 days earlier to capture the start of the first peak in tweets and extend
until at least April to capture the third wave, whose beginning might be suggested by
the last days of our data.

Finally, through univariate linear regression with random train-validation split we
found that the optimal delay to predict new hospitalisations from self-reported symptoms
is 22 days for sore throat, 15 for cough and 17 for fever. Having found that multivariate
regression is dominated by true sore throat tweets, whose coefficient is higher than true
cough and fever tweets by a factor 20, we report as final result the regression line with
sore throat tweets as predictor: ̂𝑦 = (808±25)+(42.9±1.1)𝑥𝑠. By considering its RMSE,
we conclude our model has a resolution of ±120 counts in predicting new hospitalisations.
We stress that the analysis is limited in time due to the non stationarity of the relationship
between predictors and the dependent variable. In fact, while on one hand linear regression
suggests sore throat is the best predictor for new hospitalisations - in agreement with the
fact that it has the highest global correlation with new hospitalisations (𝜌 = 0.97) - on
the other hand it is the symptom with the lowest correlation in the final part of our data,
since it does not exhibit a second peak, contrary to new hospitalisations, fever and cough
tweets.

We stress that a straightforward linear regression model on COVID symptoms tweets
allowed us to predict new hospitalisations 22 days in advance and with high correlation
on our dataset extending from September 30th 2021 to January 26th 2021. This suggests
the practical usefulness of constantly monitoring social networks posts and possibly
performing manual annotation on them, in order to update such models and investigate
variations of the lag.
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