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Introduction 

Process mining [1] is a family of techniques aimed at facilitating the analysis of 

business models. There are two types of process models, imperative and declarative. 

Imperative process models describe step by step what is expected to happen in a 

process. Declarative process models are suitable to describe loosely structured 

processes. The discovery and analysis of business process models is based on data in 

a form of event logs. 

Overall, declarative models support the analysis on the control-flow of a business 

process, but not on other aspects such as quantitative time and data. These limitations 

are usually caused by the logic used to define the language, as well as the complexity 

of the task. 

The most widely used language to describe declarative process models is Declare 

[2], based on a set of templates which are defined using Linear Temporal Logic 

(LTL).  Considering time as a linear timeline, LTL is used to describe properties of a 

system that vary over it. Declare templates exploits the properties of LTL by defining 

constraints between actives of a business process in a qualitative time approach.  

This work aims to enhance declarative process models and enable quantitative 

temporal reasoning; and then it leverages on discovery algorithms to find the enriched 

model.  

The first part of this thesis consists of identifying the approach to enrich the 

Declare templates with the notion of quantitative time. This starts from the analysis 

of the structure and the semantics of the Declare templates, and the possible 

alternative paths to enrich them. Once the semantics of the enriched templates is 

defined, the focus shifts in defining how they are calculated during the discovery 

phase.  
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The algorithms used for the discovery of the declarative process model are 

presented by Palmieri in Learning Declarative Process Models from Positive and 

Negative Traces [3]. These algorithms have been inspired by the learning Disjunctive 

Normal Form (DNF) and the learning Conjunctive Normal Form algorithms 

presented by Mooney in Encouraging experimental results on learning CNF [4]. 

These algorithms are consequently adapted to support the discovery of the 

enriched models. These changes are discussed in chapter 4, along with the 

experimental results, describing the obtained enriched models.  

The last chapter of this work features a series of possible additions related to some 

of the Declare templates that were deemed out of the scope of this work. Performance 

improvements of the existing algorithms are also discussed in the final chapter.  



   

 

   

 

5 

1 Background 

This chapter contains an introduction to the technologies that are fundamental to 

the work explored in this thesis. First, it introduces the basic concepts of process 

mining and the differences between imperative and declarative process modelling. 

Second, it describes the Declare templates with an overview of Linear Temporal 

Logic. Finally, it gives an overview of the Prolog programming language. 

1.1 Process mining  

Process mining [1] can be defined as the automated art of deeply understanding a 

business process beginning with the analysis of transactional data in the form of logs. 

Process mining aims to shift from a confidence/observational-based approach to a 

reliable and unbiased evidence-based approach. It makes it possible to map, explore 

and understand all the possible paths within a business process. It highlights possible 

bottlenecks and addresses issues through non-compliance perspective.  

Process mining creates a fundamental bridge between data mining and business 

process modelling, with event data being the focus point. In fact, process mining 

assumes every process can be recorded as a series of events, with each event referring 

to an occurrence of an activity. Additional information can be logged in the events, 

such as the point in time at which the activity was executed. This is referred to as 

timestamp. Therefore, it is important to treat event data as first-class citizens, rather 

than something that is non-essential or decoration to the system. Events should have 

a well-defined structure and they should be logged automatically and reliably. A 

complete set of well-defined data, considering its structure and clear semantic, can be 

used to meaningfully model and analyse a process. 
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Figure 1.1: Positioning of the three main types of process mining [1]: (a) discovery, (b) 

conformance checking, and (c) enhancement. 

According to [1], there are three basic process mining techniques: Discovery, 

Conformance Checking and Enhancement which deal with the connections between 

data events and models. 

The Discovery technique creates a model based on event logs. The outcome of 

Discovery will be “actionable process knowledge” in the form of a model. The 

Conformance Checking technique checks if the logs are conforming with the model 

and vice versa. This validates the alignment between the model and the event data. 

The Enhancement technique aims to improve or modify the existing model, by 

comparing it to a set of new event data. 
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Figure 1.2 The three basic types of process mining explained in terms of input and output [1]:  

(a) discovery, (b) conformance checking, and (c) enhancement. 

1.1.1 Process mining guiding principles  

There are six guiding principles in process mining as described in the process mining 

manifesto [1].  

GP1:  Event logs should aim at the highest possible quality level 

The quality of all process mining activities starts with the collection of event logs 

and the quality of their results depend heavily on the quality of the input events. There 

are different criteria to evaluate the quality of event data: trustworthy, complete, safe 

and semantically well-defined - for example, that the recorded events actually 

happened, and their attributes are correct (trustworthy); no events are missing 

(complete); they have a well-defined semantic and privacy and security were 

respected when they were recorded (safe). Based on these criteria, it is possible to 
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score event log maturity levels from five stars indicating excellent quality to one star 

for poor quality. 

GP2: Event logs extraction should be guided by questions 

It is only possible to extract meaningful and relevant event data with concrete 

questions. Therefore, before applying any process mining technique, it is necessary 

to select the type of cases to be analysed. This should be driven by the questions that 

need to be answered. 

GP3:    Concurrency, choice and other basic control-flow constructs should be 

supported 

As described in [1], it is important to support at least the basic workflow patterns: 

concurrency, sequence, parallel routing (AND-splits/joins), choice (XOR- 

splits/joins), and loops. Otherwise, resulting models may be badly underfitted or 

extremely complex. Support for OR-splits/joins should also be considered, because 

they provide a representation of inclusive decisions and partial synchronizations. 

GP4: Events should be related to model elements 

Process mining is not only limited to control-flow discovery, but it also includes 

conformance checking and enhancement. The latter relies on the relationship between 

elements in the model and events in the log to make different types of 

analysis.                 

GP5: Models should be treated as purposeful abstractions of reality 

Models derived from event data represent a particular view of reality. Given an 

event log, there may be multiple views that are useful to a particular type of user. 

Moreover, these models may have different levels of granularity and abstraction 

depending on the needs of its users. Visualisation of process models should be 
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designed in such a way that the information represented is easy to interpret by its 

intended audience.                              

GP6: Process mining should be a continuous process 

Process mining should be seen as a continuous process based on historical and 

real-time data providing actionable information. Because processes change as they 

are being analysed, process mining should not be seen as a one-time activity. Instead, 

users should be encouraged to look at them regularly.     

1.2 Imperative vs Declarative process modelling  

There are two main approaches to process modelling: the imperative and the 

declarative. In imperative models, the succession of events is explicitly visible in the 

model and all the possible interactions between each activity are specified. This 

makes the models straightforward to understand. However, this also implies that for 

loosely structured processes the number of variants might make the model difficult to 

read. These differences are further explored in more detail using an example use case 

where a person is travelling by train. 

The Business Process Model and Notation1 [5] (BPMN) model in Figure 1.3 

represent a single variant2 model of a traveller arriving at a train station, purchasing 

the ticket at self-service ticket machine, scanning it at the ticket barrier, and then 

boarding a train.  

 

 

1 Workflow Net, which are the extension of Petri Net, and Business Process Model and Notation 
are used to describe imperative models in process mining.  

2 A variant is a possible path from the start to the end event. 
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Figure 1.3: Example of a BPMN model. 

The BPNM model, in Figure 1.4, has two possible variants at the purchase stage. 

The traveller can either purchase a ticket from a self-service ticket machine or from 

the ticket office.  

 

 

Figure 1.4: Example of a BPMN model. 

To include cases where the traveller has already purchased the ticket either via a 

website or a mobile application, either before or after arriving at the station, the model 

should be enriched with more variants. 

In contrast, Declarative models [6] specifies a set of constraints that will have to 

be fulfilled during the process execution. The order of events is implicitly specified 

by the constraints - this makes it more difficult to understand the different variants 

but allows for more flexibility. 
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Figure 1.5 Example of a Declare model. 

The Declare model in Figure 1.5 can determine if a traveller has arrived at a station 

and has eventually scanned the ticket but cannot answer the question “How much 

earlier does a traveller arrive at the station, before they scan their ticket?”. The 

quantitative information about how much time passes between the traveller arriving 

at the station and the ticket being scanned is currently missing. Although the 

information itself can be extracted from the timestamps in the logs, Declare does not 

support quantitative time modelling. 

1.3 Process modelling using Declare 

Declare is a constraints-based declarative process modelling language. It has two 

types of constraints, the unary constraints (also known as existence constraints) and 

the binary constraints (also known as relation constraints). The existence constraints 

deal with only one activity, while the relation constraints deal with two activities: the 

activation and the target activity. The activation represents an event that will constrain 

the subsequent events; it is eventually associated with fulfilment or failure, based on 

the constraint and the occurrence of the target event. 

In the example in Figure 1.5, there are two constraints represented: a relation 

constraint between “Arrive at station” as the activation activity, and “Scan ticket” as 

the target activity, and an existence constraint on “Scan ticket”. The existence 

constraint is asserting that the ticket can only be scanned exactly once. 
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1.3.1 Declare templates 

In her work [2], Pesic describes four main groups of templates: existence, relation, 

negation and choice templates; and formalises them using Linear Temporal Logic 

(LTL). In this work, the templates concerning the absence of activities are listed in 

the non-existence group. Table 1 lists the Declare templates divided per group. 

 

Template group Templates 

Existence templates init(A), last(A), existence(A), existence2(A), 

existence3(A), exactly1(A) and exatcly2(A). 

Non-existence templates absence(A), absence2(A) and absence3(A). 

Choice templates choice(A,B) and exclusive_choice(A,B). 

Relation templates 

 

responded_existence(A,B), co-existence(A,B), 

response(A,B), precedence(A,B), succession(A,B), 

alternate_response(A,B), 

alternate_precedence(A,B), 

alternate_succession(A,B), chain_response(A,B), 

chain_precedence(A,B) and chain_succession(A,B).  

Negation templates 

 

not_responded_existence(A,B),    

not_co-existence(A,B), not_response(A,B), 

not_precedence(A,B), not_succession(A,B), 

not_chain_response(A,B), 

not_chain_precedence(A,B) and 

not_chain_succession(A,B). 

Table 1: Groups of Declare templates.  
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Linear Temporal Logic (LTL) 

Given its declarative nature, Linear Temporal Logic [7] is used for the formal 

specification of constraint templates in declarative process models, as presented by 

Pesic in [2]. LTL is a logic, or formalism, used for specifying properties of a system 

that vary with time. Whilst propositional logic deals with statements that are true or 

false at a given state, LTL extends this concept over time as the system moves through 

a sequence of states. LTL considers time as a linear timeline in which a series of 

events occur one after the other at a specific point in time and there are no alternative 

timelines or branching time. 

Formulae of LTL are built from a set of finite propositional variables3, logical 

operators and temporal modal operators. A well-formed LTL formula, as described 

by Pesic in [2], is a function p over a subset E of all possible events, and it is defined 

as p:E*→{true, false}. Let 𝜎 ∈ E* be a trace, if p is a well-formed formula and it 

holds that p(𝜎) =	true then p satisfies 𝜎, denoted by 𝜎 ⊨ p. In addition, if p and q are 

well-defined formulas, then true, false, !p, p ⋀ q, p ⋁ q, àp, □p, ◯p, pUq and pWq are 

well-formed formulas as well. 

 

 

3 A propositional variable is a variable that can either assume a true or false value. 
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The semantics of LTL are defined as:  

proposition: 𝜎 ⊨ e if and only if e = 𝜎[1], for	e	 ∈ 	E. 

not (!): 𝜎 ⊨ !p if and only if not 𝜎 ⊨ p. 

and (⋀): 𝜎 ⊨ p ⋀ q if and only if 𝜎 ⊨ p and 𝜎 ⊨ q. 

or (⋁): 𝜎 ⊨ p ⋁ q if and only if 𝜎 ⊨ p or 𝜎 ⊨ q. 

next	(◯):	𝜎 ⊨ ◯p if and only if 𝜎!→ ⊨ p. 

until (U): 𝜎 ⊨ pUq if and only if (∃#$%$&:(𝜎%→ ⊨ q ∧ (∀#$'$% 	𝜎'→ ⊨ p)). 

It is also possible to use the following abbreviations:  

implication (p ⟹ q): for !p ⋁	q. 

equivalence (p ⟺ q): for (p ⋀ q) ∨ (!p ⋀ !q). 

true (true): for p ⋁ !p. 

false (false): !true 

eventually(à): for àp = trueUp 

always(□): for □p = !à	!p. 

weak until (W): for pWq = (pUq) ∨	(□p). 

Existence templates 

The existence templates express the cardinality, or the position of a given activity 

in a trace. The non-existence templates express the absence of a given activity in the 

trace. Table 2 lists LTL expression of existence and non-existence templates. 

The existence(A), existence2(A) and existence3(A) templates specify the fewest 

occurrences for activity A. These templates allow at least one, at least two and at least 

three activities in the trace respectively. 

The absence(A), absence2(A) and absence3(A) templates specify the greatest 

number of occurrences for activity A. These templates allow no activity, at most one 

and at most two activities in the trace respectively. 
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The exactly1(A) and exactly2(A) templates specify the exact number of 

occurrences for the activity A. These templates allow exactly one and exactly two 

activities in the trace respectively. 

The init(A) and last(A) specify the position of activity A within a trace. The 

position has to be the first or last in the trace respectively. 

 

 Table 2: LTL expression of existence and non-existence templates [2]. 

 

 

 

Template LTL expression 

existence(A) 

existence2(A) 

existence3(A) 

àA 

à(A ⋀ ◯(existence(A)) 

à(A ⋀ ◯(existence2(A)) 

absence(A) 

absence2(A) 

absence3(A) 

!existence(A) 

!existence2(A) 

!existence3(A) 

exactly1(A) 

exactly2(A) 

existence(A) ⋀ absence2(A) 

existence2(A) ⋀ absence3(A) 

init(A) 

last(A) 

A  

à(A ⋀ ◯!true) 
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Choice templates 

The choice templates express the presence of either both or one of the two 

activities in a trace. Table 3 lists LTL expression of choice templates. 

The choice(A,B) template states that either activity A or B has to occur, but they 

can both occur. The exclusive_choice(A,B) strengthens this condition by asserting that 

only one of the two activities has to happen within a trace. 

 

Table 3: LTL expression of choice templates [8]. 

Relation templates 

The relation templates express the desired relative position of an activity regarding 

another activity within the trace. Table 4 lists LTL expression of relation templates. 

The responded_existence(A,B) states that if an activity A occurs, then an activity 

B has to occur, either before or after the occurrence of activity A. The co-

existence(A,B) has two activation points, A and B. If activity A occurs then activity 

B has to occur, and if activity B occurs then activity A has to occur. 

The response(A,B) states that every time activity A occurs, then activity B has to 

occur after it. The precedence(A,B) states that every time activity B occurs then 

activity A has to occur before it. The succession(A,B) states that both response(A,B) 

and precedence(A,B) have to hold in order for it to hold. 

 The alternate_response(A,B) strengthens the condition relative to the position of 

the activation and target activities compared to response(A,B), stating that between 

Template LTL expression 

choice(A,B) àA ⋁ àB 

exclusive_choice(A,B) (àA ⋁ àB) ⋀ !(àA ⋀ àB) 



   

 

   

 

17 

the occurrences of the activities A and B, there cannot be another activity A. Likewise 

alternate_precedence(A,B) strengthens the condition relative to the position of the 

two activities stated in precedence(A,B). The alternate_succession(A,B) states that 

both alternate_response(A,B) and alternate_precedence(A,B) have to hold for it to 

hold. 

 

Template LTL expression 

responded_existence(A,B) 

co-existence(A,B) 

àA ⟹	àB 

àA	⟺ àB 

response(A,B) 

precedence(A,B) 

succession(A,B) 

□(A	⟹ àB) 

!B W A 

response(A,B) ⋀ precedence(A,B) 

alternate_response(A,B) 

alternate_precedence(A,B) 

alternate_succession(A,B) 

response(A,B) ⋀	□(A ⟹	◯(precedence(A,B))) 

precedence(A,B)	⋀	□(B ⟹	◯(precedence(A,B))) 

alternate_response(A,B) ⋀ 

alternate_precedence(A,B) 

chain_response(A,B) 

chain_precedence(A,B) 

chain_succession(A,B) 

response(A,B) ⋀	□(A	⟹	◯B) 

precedence(A,B) ⋀	□(◯B ⟹	A) 

chain_response(A,B) ⋀ chain_precedence(A,B) 

Table 4: LTL expression of relation templates [2]. 

The chain_response(A,B), chain_precedence(A,B) and chain_succession(A,B) 

further strengthens the condition relative to the position of the activation and target 
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activities, stating that there are not occurrences of any other activity between A and 

B. 

Negation templates 

The negation templates are the negated version of the relation templates. They verify 

that given the presence of the activation activity, the target activity is absent. For 

example, the not_responded_existence(A,B) states that if activity A occurs then 

activity B does not have to occur, either before or after the occurrence of activity A.  

Table 5 lists LTL expression of negation templates. 

 

Template LTL expression 

not_responded_existence(A,B) 

not_co-existence(A,B) 

àA ⟹ !(àB) 

not_responded_existence(A,B) ⋀	 

not_responded_existence(B,A) 

not_response(A,B) 

not_precedence(A,B) 

not_succession(A,B) 

□(A	⟹ !(àB)) 

□(àB ⟹ !A) 

not_response(A,B) ∧ 

not_precedence(A,B) 

not_chain_response(A,B) 

not_chain_precedence(A,B) 

not_chain_succession(A,B) 

□(A ⟹ ◯(!B)) 

□(◯B ⟹ !A) 

not_chain_response(A,B) ∧ 

not_chain_precedence(A,B) 

Table 5: LTL expression of negation templates [2]. 
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1.3.2 Prolog 

The programming language used in this thesis is Prolog. Exploiting its declarative 

nature to determine patterns, Prolog was deemed to be suitable to identify constraints 

within the traces[3]. Prolog, or PROgramming in LOGic, is a logic programming 

language designed by Colmerauer and Roussel in 19724, and it is based on the 

exploratory work, by Kowalski in [9], to use the properties of Horn clauses in the 

context of logic programming.  

A program in Prolog is defined as a set of Horn clauses represented as facts, rules 

and goals. Taking the 2020 UEFA European Football Championship as an example, 

a Prolog program might look as follow: 

 

team(italy).  /* Example of fact */ 

winner(italy, euro2020). /* Example of fact */ 

champion(X,Y) :- team(X), winner(X,Y). /* Example of rules */ 

:- champion(X, euro2020). /* Example of goal */ 

 

The execution of a Prolog program starts from a query. For further information on 

Prolog and the resolution strategy adopted by the Prolog engine, refer to [10] and 

[11]. 

 

 

4 In [12], Colmerauer and Roussel describe the evolution of Prolog. 
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Swi-Prolog[13] is used as developing tool as it offers a rich set of predefined 

features and libraries. The Constraint Logic Programming over Finite Domain library 

CLP(FD) [14], is used to reason over integers using declarative integer arithmetic. 
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2 Introduction to the DNF and CNF learning 

algorithms  

The algorithms used to discover quantitative time constraints are based on the 

work on learning declarative process models from positive and negative traces as 

discussed by Palmieri [3]. Her work expands on conjunctive normal form (CNF) and 

disjunctive normal form (DNF) algorithms from Mooney [4]. 

In this chapter, to give a general understanding of the evolution of the two 

algorithms, both Palmieri’s and Mooney’s algorithms are discussed. 

In [4], Mooney compared three inductive learning systems using different 

representations for concepts: conjunctive normal form, disjunctive normal form and 

decision tree. In the five natural datasets tested, the CNF learner consistently obtained 

greater or equal classification accuracy, ran faster and produced fewer complex 

concepts. 

For the purpose of this work, only CNF formulae and DNF formulae are 

presented. The two algorithms learn first-order Horn clauses; however, the basic 

algorithms are heuristic covering algorithms for learning DNF or CNF. 

2.1 Disjunctive Normal Form 

The algorithm comprises of two nested cycles. The outer loop takes in as input the 

list of positive and negative examples, removes the positive examples that it covers 

and ends when the list of positive examples is empty. Before calling the inner loop, a 

copy of the sets is made. The inner loop instead removes the negative examples that 

it covers and ends when the list is empty. Results are then returned as a disjunctive 

normal form. 
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DNF Learning Algorithm: PFoil [4] 

Let Pos be all the positive examples.  

Let DNF be empty. 

Until Pos is empty do: 

Let Neg be all the negative examples.  

Set Term to empty and Pos2 to Pos.  

Until Neg is empty do: 

Choose the feature-value pair, L, that maximizes DNF-gain(L, 

Pos2,Neg2)  

Add L to Term. 

Remove from Neg all examples that do not satisfy L. 

Remove from Pos2 all examples that do not satisfy L.     

Add Term as one term of DNF. 

Remove from Pos all examples that satisfy Term.  

Return DNF         

 

Function DNF-gain(L,Pos,Neg) 

Let P be the number of examples in Pos and N the number of examples in Neg  

Let p be the number of examples in Pos that satisfy L. 

Let n be the number of examples in Neg that satisfy L. 

Return p*(log(p/(p+n)) - log(P/(P+N))) 
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CNF Learning Algorithm: PFoil-CNF [4] 

 

Let Neg be all the negative examples.  

Let CNF be empty. 

Until Neg is empty de:                 

Let Pos be all the positive examples.  

Set Clause to empty and Neg2 to Neg,  

Until Pos is empty de:                     

Choose the feature-value pair, L, that maximizes CNF-

gain(L,Pos,Neg2)  

Add L to Clause. 

Remove from Pos all examples that satisfy L. 

Remove from Neg2 all examples that satisfy L.             

Add Clause as one clause of CNF.                     

Remove from Neg all examples that do not satisfy Clause.  

Return(CNF)                    

 

Function CNF-gain(L,Pos,Neg) 

Let P be the number of examples in Pos and N the number of examples in 

Neg. 

Let p be the number of examples in Pos that do not satisfy L. 

Let n be the number of examples in Neg that do not satisfy L. 

Return n*(log(n/(p+n)) - Iog(N/(P+N))) 
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2.2 Conjunctive Normal Form 

The main difference with the previous algorithm is that CNF returns results as 

conjunctive normal form. Whilst DNF learns terms until all positive examples are 

covered, CNF learns clauses until all the negatives are removed. Whilst DNF learns 

clauses one literal at a time until all negatives are removed, CNF learns clauses one 

literal at a time until all positives are covered.  

2.3 Learning Declarative Process Models from Positive and 

Negative Traces	

Starting from Mooney’s work [4], Palmieri [3] has adapted his DNF and CNF 

algorithms to process mining.  

2.3.1 Disjunctive Normal Form 

To avoid redundant terms, terms returned by the inner cycle are only added to it 

if they cover at least one positive trace. The list returned by remove_satisfying_traces 

is compared to the old one. If they are the same, then no positive traces have been 

removed and therefore no trace satisfies the new term. The term is then discarded. 
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Implementation of the Learning Declarative Process Models from Positive and 

Negative Traces Algorithm [3] 

 

start :-                  

get positive traces(Pos), 

get negative traces(Neg), 

outer cycle(Pos, Neg, Model, PosNotCovered, NegNotExcluded).                     

outer_cycle([ ], Neg, Model, PosNotCovered, NegNotExcluded).  

outer_cycle(Pos, Neg, Model, PosNotCovered, NegNotExcluded) :-         

inner_cycle(Pos, Neg, Term, NewNegNotExcluded), 

 remove_satisfying_traces(Pos, Term, PosLeft), 

(PosLeft == Pos → PosNotCovered is Pos; Pos is [ ]),  

outer_cycle(PosLeft, Neg, [Term|Model], PosNotCovered,  

   NewNegNotExcluded).                     

inner_cycle(Pos, [ ], Term, NewNegNotCovered).  

inner_cycle(Pos, Neg, Term, NewNegNotCovered) :-  

choose_constraint(Pos, Neg, Term, NewConstraint), 

remove_not_satisfying_traces(Pos, NewConstraint, PosLeft),  

remove_not_satisfying_traces (Neg, NewConstraint, NegLeft),  

inner_cycle(PosLeft, NegLeft, [NewConstraint|Term],     

   NewNegNotCovered).      

%Enters here if choose constraint fails  

inner_cycle(Pos, Neg, Term, NewNegNotCovered) :-         

   NewNegNotCovered is Neg, 

   Inner_cycle(Pos, [ ], Term, NewNegNotCovered). 
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Moreover, her algorithm allows for some traces not to be covered by the model to 

avoid having both positive and negative traces that are in contrast with the other ones. 

In Mooney’s algorithm, the same trace can be included in both sets of positive and 

negative examples. As a result, it would be impossible to create a model that includes 

the positive trace while at the same time excludes the negative one. To overcome this, 

if the choose_constraint fails because there are no more constraints to be added; the 

negative traces left are not possible to exclude, so these are removed and saved in a 

variable: NewNegNotCovered. Likewise, if there are no more terms that can cover the 

remaining positive trace, they are discarded and saved to a variable. Once the model 

is returned, the discarded traces are printed to screen to inform the user that the 

process model was discovered only with part of the logs. 

The choose_constraint function has three parameters: the current lists of positive 

examples, the current list of negative examples and the list of constraints already 

added to the term. It returns the constraint that will be added to the term by the inner 

cycle. The function searches for the best constraints based on the positive and 

negative traces. Starting from the first level of the hierarchy5, it combines the 

templates with all the possible activities found in the log.  

 

 

 

 

 

5 Certain templates strengthen the condition of other templates, forming a hierarchy of templates. 
For example: chain_response(A,B) template strengthens response(A,B) by specifying that B must 
immediately follow A. The hierarchy of templates can be found in [3]. In the paragraph 4.2, the 
enriched hierarchy of template is described in detail.  
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The DNF choose_constraint function [3] 

 

choose constraint(ListOfPositiveExamples, ListOfNegativeExamples, Term, 

   NewConstraint) :- 

  combine(FirstLevelOfHierarchy, Activities,  

   GroundedFirstLevelOfHierarchy),                 

  specialize_existing_constraints(GroundedFirstLevelOfHierarchy, Term, 

   ListOfPossibleCandidates), 

      get_best(ListOfPossibleCandidates, ListOfPositiveExamples,  

   ListOfNegativeExamples, NewConstraint). 

 

 

The algorithm starts from the same set of constraints, and not from the ones that 

are already in the term because some branches of the hierarchy might have not been 

explored yet, so it is faster to remove the ones already present than to add the ones 

that are not.  

Next, it checks which constraints are already in the term and descends the 

hierarchy to find the more specialized ones. It ends when the new set of constraints 

to choose from is complete. This set contains the first-level constraints that are not 

already present in the term and all the possible specializations of the ones that were 

chosen in previous iterations.  

If the first constraint in the list is already present in the term, then the findall 

function called on the hierarchy of templates returns all its possible specialisations. 

The constraint candidates and the ones already added to the set are divided into two 

variables.  
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Once it has the complete list of constraints to choose from, it removes the 

duplicates and assigns each constraint a score, calculated through the DNF gain 

function. It then selects the constraint that has the highest score.         

The DNF gain function from Mooney [4] calculates the gain of each constraint 

based on the numbers of positive P and negative N traces, and the number of positive 

p and negative n traces that satisfy the constraint. If the number of satisfied positive 

traces is 0, the function log#((p p + n⁄ ) results in −∞. This in Prolog generates an 

error. In [3], Palmieri overcome this by assigning a very low number to the gain; that 

assures the constraint will not be chosen. Instead, if the number of satisfied positive 

traces is bigger than 0, the higher the value of p is, the higher the gain. Considering 

two constraints that satisfy the same number of positive traces, then the gain is 

determined by the number of negative traces that satisfy each constraint. The higher 

the number of negative traces satisfied by the constraint, the lower the gain. 

 

The dnf_gain function [3] 

 

dnf_gain(Constraint, ListOfPositiveTraces, ListOfNegativeTraces) :- 

Let P be the number of examples in ListOfPositiveTraces, 

Let N be the number of examples in ListOfNegativeTraces, 

Let p be the number of examples in ListOfPositiveTraces that satisfy 

   Constraint, 

Let n be the number of examples in ListOfNegativeTraces that satisfy 

   Constraint,  

Return p × (log#((
)

)*+
) − log#((

,
,*-

)). 
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2.3.2 Conjunctive Normal Form 

The CNF algorithm from Palmieri [3] returns a model in the conjunctive normal 

form. As per the DNF, the CNF algorithm is an adaptation of Mooney’s work [4]. 

Here, the outer cycle ends when all negative traces are excluded by the model, while 

the inner cycle ends when all positive traces satisfy the clause.  

The inner cycle chooses the most convenient constraint, and it removes all traces 

that satisfy it from its local list of positive and negative examples. This is different 

from the DNF algorithm which removed all traces that did not satisfy the constraint. 

The main reason for this difference is that every clause needs to cover all positive 

traces, and as their constraints are in OR, the examples covered by one constraint are 

also covered by the whole clause too.  In later iterations the focus is on the ones that 

are not yet covered, so the clause will not have redundant constraints. As a result, the 

model is wider. 

The outer cycle removes the negative traces that do not satisfy the clause returned 

by the inner cycle. If any trace is removed, then the clause is added to the model in 

AND. As a result, the model is as restrictive as the most restrictive clause. If a clause 

does not cover a positive trace, then the model will not cover it. 

As for the DNF algorithm, traces are excluded from the model instead of failing, 

if it is not possible to produce a model that describes them. The inner cycle removes 

the positive ones, while the outer cycle removes the negative ones, if the inner cycle 

fails to produce a clause that covers them. 

The template hierarchy for the CNF algorithm is made of all the most specialized 

templates, since the constraints in the clauses are in OR. The hierarchy of templates 

is then scanned in reverse, starting from the templates that are the leaves of the tree 

and reaching the root nodes in later iterations.   
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The choose constraint function chooses the best constraint to add to the clause. It 

always starts from the most specialized constraints and then adds more general ones 

in later iterations. 

 

The CNF choose_constraint function [3] 

 

choose_constraint(ListOfPositiveExamples, ListOfNegativeExamples, Clause,  

   NewConstraint) :-             

combine(LastLevelOfHierarchy, Activities,  

   GroundedLastLevelOfHierarchy), 

generalize_existing_constraints(GroundedLastLevelOfHierarchy, Term,  

   ListOfPossibleCandidatesToCombine),         

combine(ListOfPossibleCandidatesToCombine, Activities, 

   ListOfPossibleCandidates),                 

get_best(ListOfPossibleCandidates, ListOfPositiveExamples, 

   ListOfNegativeExamples, NewConstraint). 

 

 

The CNF constraint function has an extra combine function. This is necessary 

because in some subtrees of the hierarchy the parent node is a template with two 

variables and the child node only has one. This step substitutes the value with every 

possible activity, creating all the different constraints. Note that in the case where the 

template given to the combine function is already grounded, the function will simply 

return the template. 

The CNF gain function from Mooney [4] calculates the gain of each constraint 

based on the numbers of positive P and negative N traces, and the number of positive 
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p and negative n traces that satisfy the constraint. If the number of satisfied negative 

traces is 0, the function log#((n p + n⁄ ) results in −∞. This in Prolog generates an 

error. In [3] Palmieri overcame this by assigning a very low number to the gain; that 

assures the constraint will not be chosen. Instead, if the number of satisfied negative 

traces is bigger than 0, the higher that value is, the higher the gain. Considering two 

constraints that satisfy the same number of negative traces, then the gain is determined 

by the number of positive traces that satisfy each constraint. The higher the number 

of positive traces satisfied by the constraint, the lower the gain. 

 

The cnf_gain function [3] 

 

cnf_gain(Constraint, ListOfPositiveTraces, ListOfNegativeTraces) :- 

Let P be the number of examples in ListOfPositiveTraces, 

Let N be the number of examples in ListOfNegativeTraces, 

Let p be the number of examples in ListOfPositiveTraces that do not                 

   satisfy Constraint, 

Let n be the number of examples in ListOfNegativeTraces that do not             

   satisfy Constraint, 

Return n × (log#((
+

)*+
) − log#((

-
,*-

)). 
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As described by Palmieri in [3], the algorithm is more efficient if more negative 

traces are excluded by a clause. In addition, the model will become simpler because 

the number of constraints will be lower.
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3 Time in process modelling 

In this chapter, the concept of time in process modelling is explored starting from 

understanding the differences between qualitative and quantitative time to defining 

the approach to enrich Declare templates with quantitative time metrics.  

In order to mine quantitative time, the main challenges to overcome are how to 

enrich the Declare templates with the concept of quantitative time metrics (Declare 

templates are formalised using propositional LTL over finite traces) and then how to 

adapt the DNF and CNF to accommodate the enriched templates definitions. 

So that the right approach is defined to enrich declare templates with quantitative 

time metrics, it has been useful to identify and explore the systems that already deal 

with the same challenge. In recent years the necessity to consider data-aware 

constraints for loosely structured processes has arisen. In particular, the introduction 

of quantitative time for monitoring systems has been a field of research. Several 

monitoring systems have been analysed, such as BPath [15], MONPOLY [16][17], 

Giblin [18] and MuboconEC [19]. They all adopt quantitative time metrics but with 

different approaches. BPath [15] is based on XPath to query logs, the quantitative 

time is considered as the differences between timestamps associated to events. 

MONPOLY [16][17]  and Giblin [18] both use extensions of the LTL. MONPOLY 

[16][17] is based on Metric first-order temporal logic to deal with quantitative time, 

while Giblin [18] is based on Timed Propositional Temporal Logic. MuboconEC [19] 

is a monitoring system defined using the Event Calculus. In MuboconEC [19] the 

quantitative time metrics are explicitly introduced using two variables, that are subject 

to arithmetic constraints.  
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3.1 Qualitative vs Quantitative time 

Time has two characteristics associated to it, qualitative and quantitative6. The 

qualitative character of time refers to the position that a given event occupies in a 

series of events or trace.  

Defining the system under analysis (the trace) is therefore essential to the definition 

of qualitative time itself. The position of the event is considered relative to the first 

or last event, or to any another event within the trace. To illustrate this, consider the 

sample events “buy the ticket” to book to visit a temporary exhibition at the Tate 

Modern in London, and the sample event “enter the exhibition” to show the ticket for 

entry the exhibition. It is clear that there is a qualitative time relation between the two 

sample events, since the “buy the ticket” event has to occur before the occurrence of 

the “enter the exhibition” event. Therefore, the qualitative aspect of time maps to 

“when” an event has to occur. 

There is also another aspect of qualitative time which refers to the cardinality of 

an event. This corresponds to “how many times” a specific event has to occur. For 

example, considering the current Covid-19 pandemic, to ensure social distancing 

measures are in place, each ticket can only be used once to enter the exhibition. This 

implies that the sample event “enter the exhibition” has to happen only once. 

The quantitative time character refers instead to the measurement of the duration 

of a time interval in which a specific event can or has to occur, corresponding to the 

 

 

6 Time has always been a subject of study in science, philosophy and religion. Time was referred 

by the ancient Greeks with two separate words: Chronos and Kairos. Chronos referring to the 

quantitative aspect of it, while Kairos referring to the qualitative part of it.  
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question “how long” do we need to wait to experience a certain event. Considering 

the validity of the ticket to be only four hours from the point of purchase, this implies 

that the “enter the exhibition” event has to happen within four hours of the “buy the 

ticket” event. The time interval in this case is four hours.  

Declare templates are formalised using propositional LTL over finite traces. In 

Linear(-time) Temporal Logic, time is considered as a linear timeline, having one 

single realization of it and the trace is considered as series of events occurring one 

after the other at a specific point in time. Based on these premises the semantic of 

Declare templates has been formalised in terms of LTL in [2]. LTL is a logic that 

reasons with propositions qualified in terms of qualitative time. Therefore, enriching 

the Declare templates with quantitative time metrics has been a challenge due to the 

expressiveness power of the underlying logic.  

3.2 Augmented Declare templates 

The approach adopted to enrich Declare templates with quantitative time metric 

constraints is inspired by the work proposed by Montali for compliance monitoring 

in [19]. The templates have been annotated with two numerical values, Delay and 

Deadline. Delay is defined as the minimum time before an activity occurs, while 

Deadline is defined as the maximum amount of time in which an event can occur. 

Delay and Deadline together define the time interval in which an event can occur. In 

[20], Montali also introduces a formal representation of timed binary data-aware 

constraints.  

To facilitate the reasoning in terms of duration of time associated to the occurrence 

of an event, Delay and Deadline values will predicate only on the existence of 

activities rather than on their absence. For this reason, the templates that are extended 

with quantitative time metrics are the existence and relation templates, and the choice 

template.  
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Existence, choice and relation templates come with a different set of problems 

when trying to calculate the quantitative timing metrics associated to them. Because 

the existence templates deal with only one activity, it is necessary to have a starting 

time. Using the example above of visiting an exhibition, if we wanted to know when 

the event “buy ticket” occurs, we would need to set a start time.  

The same concept applies to the choice template. The choice template deals with 

two activation activities, but there are no restrictions, or relation between the two. 

Instead, the relation templates deal with the relation between two activities; Delay 

and Deadline are calculated relative to the occurrences of activation and target 

activities within the traces. 

3.2.1 Common notations and definitions  

Before providing the definition of the enriched Declare template, we will define 

the following notation: 

• The set A contains all the activity names. 

Example: in the context of buying a ticket to enter an exhibition, A={“buy 

the ticket”, “enter the exhibition”}. 

• The set N contains all the timestamps. 

Example: considering activity “buy the ticket” happened at time instant 10, 

and activity “enter the exhibition” happened at time instant 12, N={10, 12}. 

• The execution of an activity is represented through an event in the form of 

e(activityName, timestamp) 

or 

(activityName, timestamp) 

where the activityName ∈ A represent the unique name of an activity, and 

timestamp ∈ N is the time instant relative to the execution of the activity. 
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Depending on the adopted metric reference, the timestamp could be, for 

example the number of milliseconds elapsed since the 1st of January 1970. 

Each form is used interchangeably throughout this work. 

• The execution of any activity is represented with Any 

e(Any, timestamp) 

• The trace T is a set of event executions. For example, the trace: 

T={(a,34), (b, 38), (c, 56)} 

represents the execution of the activities a, b, c respectively at time 34, 38 and 

56. The timestamps in the events induce a total ascending order between the 

events belonging to a trace. 

• Let Ts (start time) be the timestamp associated with the first event in trace  

Ts∈N such that ∀(t∈N and Ts≠t) → Ts<t.  

• Let Te (end time) be the timestamp associated with the last event in the trace 

Te∈N such that ∀(t∈N and Te≠t) → Te>t. 

• Delay∈ ℤ* and Deadline∈ ℤ*7  

3.2.2 Existence templates 

The existence templates deal with the presence of an occurrence or multiple 

occurrences of an activity. Delay and Deadline in general represent the time that 

passes between the actual occurrence of an activity and the start time. 

The init(A, Delay, Deadline) constraint template states that the first element of the 

trace has to start with activity A. In addition to the original template, Delay and 

 

 

7 ℤ!is the set of all positive integers. 
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Deadline are introduced to ensure uniformity in the syntax and will assume no 

semantical value.  

The last(A, Delay, Deadline) constraint template states that the last element of the 

trace has to end with activity A. In addition to the original template, Delay and 

Deadline are introduced to ensure uniformity in the syntax and will assume no 

semantical value. 

 

 

Figure 3.1: Graphical representation for the existence templates enriched with time 

quantitative metrics  

The existence(A,Delay,Deadline) constraint template states that activity A has to 

occur at least once in the trace. In addition to the original template, the Delay variable 

represents the minimum amount of time that has to pass after the start time, before an 

activity A is expected to occur. The Deadline variable represents the maximum 

amount of time that can pass, after the start time, before at least one activity A is 
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expected to occur. At least one activity A has to happen between the time interval 

delimited by Delay and Deadline. 

The semantics of existence(A,Delay,Deadline) is as follows: 

Either the trace starts with the event e(A, Ta): in this case the 

timestamp Ta coincides with the start timestamp Ts 

Or the trace starts with an event e(S, Ts) with activity name S different 

from A, and it holds that 

Ta≥Ts+Delay ⋀ Ta≤Ts+Deadline 

Example 3.1: Considering the constraint existence(A,3,5), trace [(A,1), (C,2), (B,8), 

(E,10)] satisfies the constraint. On the other hand, the trace [(S,1), (C,2), (A,8), 

(E,17)] does not satisfy the constraint because no activities with name A happen 

within the specified time interval. 

Example 3.2: Considering the constraint existence(A,3,6), the trace [(S,1), (A,4), 

(C,8), (E,10)] satisfies the constraint. On the other hand, the trace [(S,1), (A,2), (C,3), 

(A,8), (E,17)] does not satisfy the constraint because no activities with name A 

happen within the specified time interval. 

The existence2(A,Delay,Deadline) constraint template states that activity A has to 

occur at least twice in the trace. In addition to the original template, the Delay variable 

represents the minimum amount of time that has to pass, after the start time, before 

an activity A is expected to occur. The Deadline variable represents the maximum 

amount of time that can pass, after the start time, before at least two activities A are 

expected to occur. At least two activities A have to happen between the time interval 

delimited by Delay and Deadline. 
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The semantics of existence2(A,Delay,Deadline) is as follows: 

Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …, Tan)∈Ta 

and |TA| ≥2 

Either the trace starts with the event e(A, Ta1), the timestamp Ta1 

coincides with the start timestamp Ts, and there must be at least one 

more Taj with 1<j≤n such that 

  Taj≥Ts+Delay ⋀  Taj≤Ts+Deadline 

Or the trace starts with an event e(S, Ts) with activity name S different 

from A, and it holds that ∃ Ta1, Ta2 such that 

Ta1≥Ts+Delay ⋀ Ta1≤Ts+Deadline 

Ta2≥Ts+Delay ⋀ Ta2≤Ts+Deadline 

Example 3.3: Considering the constraint: existence2(A,1,10), trace [(S,1), (A,3), 

(A,8), (E,10)] satisfies the constraint. On the other hand, the trace [(S,1), (C,2), (A,8), 

(A,17)] does not satisfy the constraint because only one activity with name A happen 

within the specified time interval. 

The existence3(A,Delay,Deadline) constraint template states that activity A has to 

occur at least three times in the trace. In addition to the original template, the Delay 

variable represents the minimum amount of time that has to pass, after the start time, 

before an activity A is expected to occur. The Deadline variable represents the 

maximum amount of time that can pass, after the start time, before at least three 

activities A are expected to occur. At least three activities A have to happen between 

the time interval delimited by Delay and Deadline. 
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The semantics of existence3(A,Delay,Deadline) is as follows: 

Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …, Tan)∈Ta 

and |TA| ≥3 

If the trace starts with the event e(A, Ta1), the timestamp Ta1 coincides 

with the start timestamp Ts, and there must be at least two more Taj and 

Tak with 1<j≤n, 1<k≤n and j≠k such that 

  Taj≥Ts+Delay ⋀ Taj≤Ts+Deadline 

Tak≥Ts+Delay ⋀ Tak≤Ts+Deadline 

Or the trace starts with an event e(S, Ts) with activity name S different 

from A, and it holds that ∃ Ta1, Ta2, Ta3 such that 

Ta1≥Ts+Delay ⋀ Ta1≤Ts+Deadline 

Ta2≥Ts+Delay ⋀ Ta2≤Ts+Deadline 

Ta3≥Ts+Delay ⋀ Ta3≤Ts+Deadline 

Example 3.4: Considering the constraint: existence3(A,1,10), the trace [(S,1), (A,2), 

(A,8), (A,10), (E,12)] satisfies the constraint. On the other hand, the trace [(S,1), 

(A,2), (A,8), (A,17)] does not satisfy the constraint because only two activities with 

name A happen within the specified time interval. 

The exactly1(A,Delay,Deadline) constraint template states that activity A has to 

occur exactly one time in the trace. In addition to the original template, the Delay 

variable represents the minimum amount of time that has to pass, after the start time, 

before an activity A is expected to occur. The Deadline variable represents the 

maximum amount of time that can pass, after the start time, before exactly one 

activities A is expected to occur. Exactly one activity A have to happen between the 

time interval delimited by Delay and Deadline. 
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The semantics of exactly1(A,Delay,Deadline) is as follows:  

Either the trace starts with the event e(A,Ta): in this case the timestamp 

Ta coincides with the start timestamp Ts  
Or the trace starts with an event e(S, Ts) with activity name S different 

from A, and it holds that Given TA={(A,Ta)}⊆T,  (Ta)∈Ta and   

|TA| = 1 such that 

Ta≥Ts+Delay ⋀ Ta≤Ts+Deadline 

Example 3.5: Considering the constraint: exactly1(A,3,10), the trace [(S,1), (A,5), 

(C,8), (A,12)] satisfies the constraint. On the other hand, the trace [(S,1), (A,2), (A,8), 

(E,17)] does not satisfy the constraint because more than one activity with name A 

happen within the specified time interval. 

The exactly2(A,Delay,Deadline) constraint template states that activity A has to 

occur exactly twice in the trace. In addition to the original template, the Delay variable 

represents the minimum amount of time that has to pass, after the start time, before 

an activity A is expected to occur. The Deadline variable represents the maximum 

amount of time that can pass, after the start time, before two activities A are expected 

to occur. Exactly two activities A have to happen between the time interval delimited 

by Delay and Deadline. 
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The semantics of exactly2(A,Delay,Deadline) are as follows:  

Given TA={(A,Ta1), (A,Ta2)}⊆T,  (Ta1, Ta2)∈Ta and   |TA| = 2 

Either the trace starts with the event e(A,Ta): in this case the timestamp 

Ta coincides with the start timestamp Ta2, and it holds that  

  Ta2≥Ts+Delay ⋀  Ta2≤Ts+Deadline 

Or the trace starts with an event e(S, Ts) with activity name S different 

from A, and it holds that 

Ta1≥Ts+Delay ⋀ Ta1≤Ts+Deadline 

Ta2≥Ts+Delay ⋀ Ta2≤Ts+Deadline 

Example 3.6: Considering the constraint exactly2(A, 3, 10), the trace [(S,1), (A,5), 

(A,8), (E,11)] satisfies the constraint. On the other hand, the trace [(S,1), (A,2), (A,8), 

(A,9), (E,13)] does not satisfy the constraint because more than two activities with 

name A happen within the specified time interval.  

Table 6 lists existence constraint templates enriched with quantitative time metrics. 

 

Template Template with quantitative time 

init(A) 

 

init(A,Delay,Deadline) 

Requires that activity A has to occur as first 

element of the trace. Delay and Deadline have 

no semantic value. 

last(A) 

 

last(A,Delay,Deadline) 

Requires that activity A has to occur as last 

element of the trace. Delay and Deadline have 

no semantic value. 
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existence(A) 

 

existence(A,Delay,Deadline) 

Requires that the cardinality of activity A has to 

be at least one, and the timestamp associated to 

the occurrence of activity A has to be between 

start time + Delay and start time + Deadline. 

existence2(A) 

 

existence2(A,Delay,Deadline) 

Requires that the cardinality of activity A has to 

be at least two, and the timestamps associated to 

the occurrences of activity A have to be between 

start time + Delay and start time + Deadline. 

existence3(A) 

 

existence3(A,Delay,Deadline) 

Requires that the cardinality of activity A has to 

be at least three, and the timestamps associated 

to the occurrences of activity A have to be 

between start time + Delay and start time + 

Deadline. 

exaclty1(A) 

 

exaclty1(A,Delay,Deadline) 

Requires that the cardinality of activity A has to 

be one, and the timestamp associated to the 

occurrence of activity A has to be between start 

time + Delay and start time + Deadline. 
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exaclty2(A) 

 

exaclty2(A,Delay,Deadline) 

Requires that the cardinality of activity A has to 

be two, and the timestamps associated to the two  

occurrences of activity A have to be between 

start time + Delay and start time + Deadline. 

Table 6: Existence constraint templates enriched with quantitative time metrics. 

3.2.3 Choice templates 

The choice templates deal with the presence and absence of activities, they require 

one activity to be present. The choice(A,B) template deals with the existence of at 

least one of the two activities, but it does not specify any constrains in terms of 

absence of the other activity. Therefore, although the constraint is verified in a 

specific interval of time, it remains an assertion made using existential quantification. 

The exclusive_choice(A,B) asserts that one of the two activity is present, but also 

given the presence of the first activity then the second one is absent or vice versa. The 

absence of the first or second activity has to be verified universally, across the entire 

trace, regardless of the time interval taken into consideration. The challenge of 

defining quantitative temporal variables for constraints dealing with the absence of 

activities is not in scope for this work. Therefore, only the choice(A,B) has been 

extended to contain quantitative time metrics. 

 

 

Figure 3.2 Graphical representation for the choice template enriched with time quantitative 

metrics 
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The choice(A,B,Delay,Deadline) constraint template states that activity A or 

activity B have to eventually be executed. In addition to the original template, the 

Delay variable represents the minimum amount of time that has to pass, after the start 

time, before either an activity A, or an activity B occurs. The Deadline variable 

represents the maximum amount of time that can pass, after the start time, before 

either an activity A, or an activity B occurs. 

The semantics of choice(A,B,Delay,Deadline) are as follows: 

Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …, Tan)∈Ta, 

TB={(B,Tb1), (B,Tb2), …, (B,Tbn)}⊆T,  (Tb1, Tb2, …,Tbn)∈Tb, the 

constraint is satisfied: 

If the trace starts with the event e(A, Ta1) the timestamp Ta1 coincides 

with the start timestamp Ts 

Or if trace starts with the event e(B, Tb1) the timestamp Tb1 coincides 

with the start timestamp Ts 

Or if the trace starts with an event e(S, Ts) with activity name S 

different from A or B, ∃ta∈Ta, and it holds that 

ta≥Ts+Delay ⋀ ta≤Ts+Deadline 

Or if the trace starts with an event e(S, Ts) with activity name S 

different from A or B, ∃tb∈Tb, and it holds that  

tb≥Ts+Delay ⋀ tb≤Ts+Deadline 

Example 3.7: Considering the constraint choice(A,B,3,9), the traces [(S,1), (A,5), 

(A,8), (E,11)], [(S,1), (C,5), (B,7), (E,11)] and [(S,1), (B,6), (A,7), (E,11)] satisfy the 

constraint. On the other hand, the trace [(S,1), (A,2), (C,8), (C,9), (E,13)] does not 

satisfy the constraint because neither the activity A nor the activity B happen within 

the specified time interval. 

Table 8 lists choice constraint templates enriched with quantitative time metrics. 
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Template Template with quantitative time 

choice(A,B) 

 

choice(A,B,Delay,Deadline) 

Requires that activity A or B will eventually 

occur, and the timestamps associated to either 

the occurrence of activities A or B have to be 

between start time + Delay and start time + 

Deadline. 

Table 7: Choice constraint templates enriched with quantitative time metrics. 

3.2.4 Relation templates 

The positive relation templates deal with the presence of two activities, the 

activation and target activity. Delay and Deadline represent the minimum and 

maximum time that passes between the timestamps associated with the activation and 

the target activities.  

 
Figure 3.3: Graphical representation for the relation templates enriched with time quantitative 

metrics 
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The responded_existence(A,B,Delay,Deadline) template states that if activity A is 

executed then activity B has to be executed either before or after activity A. In 

addition to the original template, the Delay variable represents the minimum amount 

of time that has to pass, or has passed, from the occurrence of activity A, for the 

activity B to occur, or have occurred. The Deadline variable represents the maximum 

amount of time that can pass, or should have passed, from the occurrence of the 

activity A, for the activity B to occur, or should have occurred. 

The semantics of responded_existence(A,B,Delay,Deadline) are as follows: 

Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …, Tan)∈Ta 

and  TB={(B,Tb1), (B,Tb2), …, (B,Tbm)}⊆T,  (Tb1, Tb2, …, Tbm)∈Tb, it 

holds that ∀tai∈Ta ∃tbj∈Tb such that 

abs(tbj−tai)≥Delay ⋀ abs(tbj−tai)≤Deadline 

Example 3.8: Considering the constraint responded_existence(A,B,2,6), the 

trace [(S,1), (B,2), (A,4), (A,5), (B,10)] satisfies the constraint. On the other hand, the 

trace [(S,1), (A,2), (C,8), (B,11), (E,13)] does not satisfy the constraint because the 

activity B, in relation to the activity A, happens after the specified time interval. 

The co-existence(A,B,Delay,Deadline)  template states that if activity A is 

executed then activity B is executed and if activity B is executed then activity A is 

executed. In addition to the original template, the Delay variable represents the 

minimum amount of time that has to pass, or has passed, from the occurrence of the 

activity A/B, for the activity B/A to occur. The Deadline variable represents the 

maximum amount of time that can pass, or should have passed, from the occurrence 

of the activity A/B, for the activity B/A to occur.  
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The semantics of co-existence(A,B,Delay,Deadline) are as follows: 

Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …, Tan)∈Ta 

and  TB={(B,Tb1), (B,Tb2), …, (B,Tbm)}⊆T,  (Tb1, Tb2, …, Tbm)∈Tb, it 

holds that ∀tai∈Ta ∃tbj∈Tb and  ∀tbj∈Tb ∃tai∈Ta such that  

abs(tbj−tai)≥Delay ⋀ abs(tbj−tai)≤Deadline 

Example 3.9: Considering the constraint co-existence(A,B,1,6), the trace [(S,1), (C,2), 

(A,5), (A,9), (B,10)] satisfies the constraint. On the other hand, the trace [(S,1), (B,2), 

(A,13), (E,14)] does not satisfy the constraint because the activity A, in relation to the 

activity B, happens after the specified time interval. 

The response(A,B,Delay,Deadline) template states that whenever activity A is 

executed, activity B has to eventually be executed after it. In addition to the original 

template, the Delay variable represents the minimum amount of time that has to pass, 

after the activity A has occurred, for the activity B to occur. The Deadline variable 

represents the maximum amount of time that can pass, after the activity A has 

occurred, for the activity B to occur. 

The semantics of response(A,B,Delay,Deadline) are as follows: 

Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …, Tan)∈Ta 

and  TB={(B,Tb1), (B,Tb2), …, (B,Tbm)}⊆T,  (Tb1, Tb2, …, Tbm)∈Tb, it 

holds that ∀tai∈Ta ∃tbj∈Tb tbj>tai such that 

tbj−tai≥Delay ⋀ tbj−tai≤Deadline 

Example 3.10: Considering the constraint response(A,B,3,5), the trace [(S,1), (A,2), 

(A,4), (B,7), (E,11)] satisfies the constraint. On the other hand, the trace [(S,1), (A,2), 

(A,5), (A,6), (B,10)] does not satisfy the constraint because the time that passes 

between the first execution of activity A, and activity B, is higher than the specified 

Deadline value. 
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The precedence(A,B,Delay,Deadline) template states that whenever activity B is 

executed, activity A has to be executed at some point before it. In addition to the 

original template, the Delay variable represents the minimum amount of time that 

should have passed, before activity B can occur, from the occurrence of activity A. 

The Deadline variable represents the maximum amount of time that could have 

passed, before activity B has to occur, from the occurrence of activity A. 

The semantics of precedence(A,B,Delay,Deadline) are as follows: 

Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …, Tan)∈Ta 

and  TB={(B,Tb1), (B,Tb2), …, (B,Tbm)}⊆T,  (Tb1, Tb2, …, Tbm)∈Tb, it 

holds that ∀tbj∈Tb ∃tai∈Ta tbj>tai such that 

tbj−tai≥Delay ⋀ tbj−tai≤Deadline 

Example 3.11: Considering the constraint precedence(A,B,3,6), the trace [(S,1), 

(A,2), (B,5), (B,6), (E,11)] satisfies the constraint. On the other hand, the trace [(S,1), 

(A,2), (C,5), (B,10), (E,11)] does not satisfy the constraint because there is no activity 

A executed, within the specified time interval, before the occurrence of activity B, 

The succession(A,B,Delay,Deadline) is defined as a combination of the 

response(A,B,Delay,Deadline) constraint and the precedence(A,B,Delay,Deadline) 

one, both constraints have to be verified for the succession constraint to be verified. 

In addition to the original template, the Delay variable expresses the least amount of 

time that has to pass between an occurrence of activity A and the occurrence of 

activity B. The Deadline variable expresses the most amount of time that can pass 

between an occurrence of activity A and the occurrence of activity B. 
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The semantics of succession(A,B,Delay,Deadline) are as follows: 

Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …, Tan)∈Ta 

and  TB={(B,Tb1), (B,Tb2), …, (B,Tbm)}⊆T,  (Tb1, Tb2, …, Tbm)∈Tb, it 

holds that ∀tai∈Ta ∃tbj∈Tb and ∀tbj∈Tb ∃tai∈Ta tbj>tai such that 

tbj−tai≥Delay ⋀ tbj−tai≤Deadline 

Example 3.12: Considering the constraint succession(A,B,2,6), the trace [(S,1), (A,2), 

(A,5), (B,7), (B,8), (E,11)] satisfies the constraint. On the other hand, the trace [(S,1), 

(A,2), (C,5), (B,9), (E,11)] does not satisfy the constraint because there is no activity 

B executed, in relation to the occurrence of activity A, within the specified time 

interval. In this case the response(A,B,2,6) constraint is not verified leading to the 

trace not being satisfied. 

The alternate_response(A,B,Delay,Deadline) template states that whenever 

activity A is executed, activity B has to eventually be executed, and between the 

executions of two activities A, at least one activity B must be executed. In addition to 

the original template, the Delay variable represents the minimum amount of time that 

has to pass, after activity A has occurred, for activity B to occur. The Deadline 

variable represents the maximum amount of time that can pass, after activity A has 

occurred, for activity B to occur. 

The semantics of alternate_response(A,B,Delay,Deadline) are as follows: 

Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …, Tan)∈Ta 

and  TB={(B,Tb1), (B,Tb2), …, (B,Tbm)}⊆T,  (Tb1, Tb2, …, Tbm)∈Tb, it 

holds that ∀tai∈Ta ∃tbj∈Tb, tai<tbj such that 

tbj−tai≥Delay ⋀ tbj−tai≤Deadline 

and ∄ta(i+1)∈Ta with tai<ta(i+1)<tbj 
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Example 3.13: Considering the constraint alternate_response(A,B,3,6), the 

trace [(B,1), (A,2), (C,4), (B,5), (A,7), (B,11), (E,12)] satisfies the constraint. On the 

other hand, the trace [(S,1), (B,2), (A,5), (C,6), (B,13), (E,15)] does not satisfy the 

constraint because there is no activity B executed, in relation to the occurrence of 

activity A, within the specified time interval. There are no occurrences of activity B 

in the time interval [8, 11]. 

The alternate_precedence(A,B,Delay,Deadline) template states that whenever 

activity B is executed, activity A has to be executed before it, and between the 

executions of two activities B, at least one activity A must be executed. In addition to 

the original template, the Delay variable represents the minimum amount of time that 

should have passed, before activity B can occur, from the occurrence of activity A. 

The Deadline variable represents the maximum amount of time that could have 

passed, before activity B has to occur, from the occurrence of activity A. 

The semantics of alternate_ precedence(A,B,Delay,Deadline) are as follows: 

Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …, Tan)∈Ta 

and  TB={(B,Tb1), (B,Tb2), …, (B,Tbm)}⊆T,  (Tb1, Tb2, …, Tbm)∈Tb, it 

holds that ∀tbj∈Tb ∃tai∈Ta tbj>tai such that 

tbj−tai≥Delay ⋀ tbj−tai≤Deadline 

and ∄ta(i+1)∈Ta with tai<ta(i+1)<tbj 

Example 3.14: Considering the constraint alternate_precedence(A,B,2,7), the 

trace [(S,1), (A,2), (B,5), (A,5), (B,11), (A,12), (E,13)] satisfies the constraint. On the 

other hand, the trace [(S,1), (A,2), (B,3), (A,5), (B,10), (E,11)] does not satisfy the 

constraint because there is no activity A executed, in relation to the occurrence of the 

first occurrence of activity B, within the specified time interval. 

The alternate_succession(A,B,Delay,Deadline) is defined as a combination of the 

alternate_response(A,B,Delay,Deadline) and alternate_precedence(A,B,Delay, 
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Deadline), both constraints have to be verified for the alternate succession to be 

verified. In addition to the original template, the Delay variable expresses the least 

amount of time that has to pass between an occurrence of activity A and the 

occurrence of activity B. The Deadline variable expresses the most amount of time 

that can pass between occurrence of an activity A and the occurrence of activity B. 

The semantics of alternate_ succession(A,B,Delay,Deadline) are as follows: 

Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …, Tan)∈Ta 

and  TB={(B,Tb1), (B,Tb2), …, (B,Tbm)}⊆T,  (Tb1, Tb2, …, Tbm)∈Tb, it 

holds that ∀tai∈Ta ∃tbj∈Tb and ∀tbj∈Tb ∃tai∈Ta tbj>tai such that  

tbj−tai≥Delay ⋀ tbj−tai≤Deadline 

and ∄ta(i+1)∈Ta with tai<ta(i+1)<tbj 

and ∄tb(j+1)∈Tb with tbi<tb(j+1)<ta(i+1) 

Example 3.15: Considering the constraint alternate_succession(A,B,2,9), the 

trace [(S,1), (A,2), (C,3), (B,5), (A,7), (B,9), (A,11), (B,18), (E,12)] satisfies the 

constraint. On the other hand, the trace [(S,1), (A,2), (B,3), (A,5), (B,6), (E,11)] does 

not satisfy the constraint because for both occurrences of activity A, there is no 

activity B executed within the specified time intervals. 

The chain_response(A,B,Delay,Deadline) constraint template states that 

whenever activity A is executed, activity B has to be executed immediately after it. 

In addition to the original template, the Delay variable represents the minimum 

amount of time that has to pass, after activity A has occurred, for activity B to occur. 

The Deadline variable represents the maximum amount of time that can pass, after 

the activity A has occurred, for the activity B to occur. 
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The semantics of chain_response(A,B,Delay,Deadline) are as follows: 

Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …, Tan)∈Ta, 

TB={(B,Tb1), (B,Tb2), …, (B,Tbm)}⊆T,  (Tb1, Tb2, …, Tbm)∈Tb, and it 

holds that ∀tai∈Ta ∃tbj∈Tb  

tbj−tai≥Delay ⋀ tbj−tai≤Deadline 

and ∄(Any, Tc)∈T with tai<tc<tbj and Any≠B 

Example 3.16: Considering the constraint chain_response(A,B,2,5), the trace [(S,1), 

(A,2), (B,5), (A,7), (B,9), (B,10), (E,12)] satisfies the constraint. On the other hand, 

the trace [(S,1), (A,2), (B,8), (E,11)] does not satisfy the constraint because for both 

occurrences of activity A, there is no activity B executed within the specified time 

intervals. 

The chain_precedence(A,B,Delay,Deadline) constraint template states that 

whenever activity B is executed, activity B has to be executed immediately before it. 

In addition to the original template, the Delay variable represents the minimum 

amount of time that should have passed, before activity B can occur, from the 

occurrence of activity A. The Deadline variable represents the maximum amount of 

time that could have passed, before activity B has to occur, from the occurrence of 

activity A. 

The semantics of chain_ precedence(A,B,Delay,Deadline) are as follows: 

Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …, Tan)∈Ta, 

TB={(B,Tb1), (B,Tb2), …, (B,Tbm)}⊆T,  (Tb1, Tb2, …,Tbm)∈Tb, and it 

holds that ∀tbj∈Tb ∃tai∈Ta such that 

tbj−tai≥Delay ⋀ tbj−tai≤Deadline 

and ∄(Any, Tc)∈T with tai<tc<tbj and Any≠B 
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Example 3.17: Considering the constraint chain_precedence(A,B,1,4), the 

trace [(S,1), (A,2), (B,5), (A,7), (B,8), (A,10), (E,12)] satisfies the constraint. On the 

other hand, the trace [(S,1), (A,2), (B,8), (A,9), (E,11)] does not satisfy the constraint 

because for both occurrences of activity A, there is no activity B executed within the 

specified time intervals. 

The chain_succession(A,B,Delay,Deadline) is defined as a combination of the 

template chain_response(A,B,Delay,Deadline) and the template chain_precedence(A 

,B,Delay,Deadline), both constraints have to be verified for the alternate succession 

to be verified. In addition to the original template, the Delay variable expresses the 

least amount of time that has to pass between an occurrence of activity A and the 

occurrence of activity B. The Deadline variable expresses the maximum amount of 

time that can pass between an occurrence of activity A and the occurrence of activity 

B. 

The semantics of chain_ succession(A,B,Delay,Deadline) are as follows: 

Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …, Tan)∈Ta, 

TB={(B,Tb1), (B,Tb2), …, (B,Tbm)}⊆T,  (Tb1, Tb2, …, Tbm)∈Tb, and it 

holds that ∀tai∈Ta ∀tbj∈Tb and ∀tbj∈Tb ∃tai∈Ta such that 

tbj−tai≥Delay ⋀ tbj−tai≤Deadline 

and ∄(Any, Tc)∈T with tai<tc<tbj and Any≠B 

Example 3.18: Considering the constraint: chain_precedence(A,B,1,6), the 

trace [(S,1), (A,2), (B,5), (A,7), (B,8), (E,12)] satisfies the constraint. On the other 

hand, the trace [(S,1), (A,2), (B,8), (E,11)] does not satisfy the constraint because for 

both occurrences of activity A, there is no activity B executed within the specified 

time intervals. 

Table 8 lists relation constraint templates enriched with quantitative time metrics. 
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Template Template with quantitative time 

responded_existence(A,B) responded_existence(A,B,Delay,Deadline) 

Requires that every time activity A executes, activity B has 

to be executed either before or after A. The difference, in 

absolute value, between the timestamp associated to the 

occurrence of activity A, and the timestamp associated to 

the occurrence of activity B, has to be between Delay and 

Deadline. 

co-existence(A,B) co-existence(A,B,Delay,Deadline) 

Requires that every time activity A executes, activity B has 

to be executed as well and vice versa. The difference, in 

absolute value, between the timestamp associated to the 

occurrence of activity A, and the timestamp associated to 

the occurrence of activity B, has to be between Delay and 

Deadline. 

response(A,B) response(A,B,Delay,Deadline) 

Requires that every time activity A executes, activity B has 

to be executed after it. The difference between the 

timestamp associated to the occurrence of activity A, and 

the timestamp associated to the occurrence of activity B, 

has to be between Delay and Deadline. 

precedence(A,B) precedence(A,B,Delay,Deadline) 

Requires activity B to be preceded by activity A. The 

difference between the timestamp associated to the 

occurrence of activity A, and the timestamp associated to 
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the occurrence of activity B, has to be between Delay and 

Deadline. 

succession(A,B) succession(A,B,Delay,Deadline) 

Requires that both response and precedence templates have 

to hold between activities A and B. The difference between 

the timestamp associated to the occurrence of activity A, 

and the timestamp associated to the occurrence of activity 

B, has to be between Delay and Deadline. 

alternate_response(A,B) alternate_response(A,B,Delay,Deadline) 

Requires that after the execution of activity A, activity B 

has to be executed and between the execution of each two 

activities A at least one activity B has to be executed. The 

difference between the timestamp associated to the 

occurrence of activity A, and the timestamp associated to 

the occurrence of activity B, has to be between Delay and 

Deadline. 

alternate_precedence(A,B) 

 

alternate_precedence(A,B,Delay,Deadline) 

Requires that every instance of activity B has to be 

preceded by an instance of activity A and next instance of 

Activity B cannot be executed before the next instance of 

activity A is executed. The difference between the 

timestamp associated to the occurrence of activity A, and 

the timestamp associated to the occurrence of activity B, 

has to be between Delay and Deadline. 

alternate_succession(A,B) alternate_succession(A,B,Delay,Deadline) 
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 Requires that both alternate_response and 

alternate_precedence templates have to hold between 

activities A and B. The difference between the timestamp 

associated to the occurrence of activity A, and the 

timestamp associated to the occurrence of activity B, has 

to be between Delay and Deadline. 

chain_response(A,B) chain_response(A,B,Delay,Deadline) 

Requires that next activity after activity A has to be activity 

B. The difference between the timestamp associated to the 

occurrence of activity A, and the timestamp associated to 

the occurrence of activity B, has to be between Delay and 

Deadline. 

chain_precedence(A,B) 

 

chain_precedence(A,B,Delay,Deadline) 

Requires that the activity A is the first preceding activity 

before B. The difference between the timestamp associated 

to the occurrence of activity A, and the timestamp 

associated to the occurrence of activity B, has to be 

between Delay and Deadline. 

chain_succession(A,B) chain_succession(A,B,Delay,Deadline) 

Requires that both chain_response and chain_precedence 

templates have to hold between activities A and B. The 

difference between the timestamp associated to the 

occurrence of activity A, and the timestamp associated to 

the occurrence of activity B, has to be between Delay and 

Deadline. 

Table 8: Relation constraint templates enriched with quantitative time metrics 
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4 Discovering augmented Declare templates  

This chapter discusses how the Delay and Deadline variables are calculated for 

each enriched template and the adaptation made to the existing algorithm, presented 

in chapter 2, to support the discovery of quantitative time metrics. 

The Delay and Deadline variables are introduced in the specialization phase for 

the DNF mining algorithm and in the generalization phase for the CNF mining 

algorithm. Both the specialization and generalization phases occur within the 

choose_constraint function. Each enriched constraint is then verified against the 

positive and negative traces independently. The output of the outer cycle is a model 

containing the mined quantitative time for each constraint. 

4.1 How to determine the constraints 

The following outlines how the Delay and Deadline variables are calculated for 

each enriched template. The templates are discovered over the entire trace.  

4.1.1 Existence templates 

The variables Delay and Deadline, for the existence(A,Delay,Deadline), are 

calculated as the difference between the timestamps associated, respectively, with the 

first and last occurrence of activity A in the trace, and the start time: 
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If the trace starts with the event e(A, Ta1), the timestamp Ta1 coincides 

with the start timestamp Ts, and it holds that 

∀tai∈Ta	|	tai>Ta1 

Delay = arg min( tai−Ts )  

Deadline = arg max( tai−Ts ) 

Or the trace starts with an event e(S, Ts) with activity name S different 

from A, and it holds that ∀tai∈Ta such that  

Delay = arg min( tai−Ts )  

Deadline = arg max( tai−Ts ) 

Example 4.1: Considering the trace [(S,1), (A,2), (A,5), (B,8), (A,9)] Delay will 

assume value of 1, while Deadline will assume value of 8.  

The variables Delay and Deadline, for the existence2(A,Delay,Deadline), are 

calculated as the difference between the timestamps associated, respectively, with the 

first and last occurrence of activity A in the trace, and the start time: 

Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …, Tan)∈Ta 

and |TA| ≥ 2 

If the trace starts with the event e(A, Ta1), the timestamp Ta1 coincides 

with the start timestamp Ts, and it holds that 

∀tai∈Ta|t>Ta1 

Delay = arg min( tai−Ts )  

Deadline = arg max( tai−Ts ) 

Or the trace starts with an event e(S, Ts) with activity name S different 

from A, and it holds that ∀tai∈Ta such that  

Delay = arg min( tai−Ts )  

Deadline = arg max( tai−Ts ) 
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Example 4.2: Considering the trace [(A,1), (A,2), (B,5), (A,8), (C,9)] Delay will 

assume value 1, while Deadline will assume value 7. 

Example 4.3: Considering the trace [(S,1), (A,2), (B,5), (C,8), (A,9)] Delay will 

assume value of 1, while Deadline will assume value of 8. If there are only two 

occurrences of activity A, then Delay will represent the difference between the 

timestamp associated with the first occurrence of activity A and the start time. 

Deadline will represent the difference between the timestamp associated with the 

second occurrence of activity A and the start time.  

The variables Delay and Deadline, for the existence3(A,Delay,Deadline), are 

calculated as the difference between the timestamps associated, respectively, with the 

first and last occurrence of activity A in the trace, and the start time: 

Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …, Tan)∈Ta 

and |TA| ≥ 3 

If the trace starts with the event e(A, Ta1), the timestamp Ta1 coincides 

with the start timestamp Ts, and it holds that 

∀tai∈Ta|t>Ta1 

Delay = arg min( tai−Ts )  

Deadline = arg max( tai−Ts ) 

Or the trace starts with an event e(S, Ts) with activity name S different 

from A, and it holds that ∀tai∈Ta such that  

Delay = arg min( tai−Ts )  

Deadline = arg max( tai−Ts ) 

Example 4.4: Considering the trace [(C,1), (A,2), (A,8), (A,10)] Delay will assume 

value of 1, while Deadline will assume value of 9. 
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The variables Delay and Deadline, for exactly1(A,Delay,Deadline), are calculated 

as the difference between the timestamp associated with the only occurrence of 

activity A in the trace and the start time: 

If the trace starts with an event e(S, Ts) with activity name S different 

from A, and it holds that Given TA={(A,Ta)}⊆T,  (Ta)∈Ta and   

|TA| = 1 such that 

Delay= Ta−Ts  

Deadline= Ta−Ts 

Example 4.5: Considering the trace [(S,1), (B,3), (A,5), (C,8)] Delay and Deadline 

will both assume the same value of 4. 

The variables Delay and Deadline, for the exactly2(A,Delay,Deadline), are 

calculated as the difference between the timestamps associated, respectively, with the 

first and second occurrence of activity A in the trace, and the start time: 

If the trace starts with an event e(S, Ts) with activity name S different 

from A, and it holds that Given TA={(A,Ta1), (A,Ta2)}⊆T,  (Ta1, 

Ta2)∈Ta and |TA| = 2  such that 

Delay= Ta1−Ts  

Deadline= Ta2−Ts 

Example 4.6: Considering the trace [(C,1), (A,3), (A,5), (C,8)] Delay will assume 

value of 2, while Deadline will assume value of 4. 

4.1.2 Choice templates 

The variables Delay and Deadline, for the choice(A,B,Delay,Deadline), are 

calculated as the difference between the timestamps associated, respectively, with the 

first and last occurrence of either activity A or B in the trace, and the start time. 
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Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …,Tan)∈Ta, 

TB={(B,Tb1), (B,Tb2), … ,(B,Tbn)}⊆T,  (Tb1, Tb2, …, Tbn)∈Tb 

If the trace starts with the event e(A, Ta1): in this case the timestamp 

Ta1 coincides with the start timestamp Ts, and it holds that 

∀tai∈Ta |	t>Ta1 

Delay = arg min( tai−Ts )  

Deadline = arg max( tai−Ts ) 

Or if trace starts with the event e(B, Tb1) : in this case the timestamp 

Tb1 coincides with the start timestamp Ts, and it holds that 

∀tbj∈Tb | t>Tb1 

Delay = arg min( tbj−Ts )  

Deadline = arg max( tbi−Ts ) 

Or if the trace starts with an event e(S, Ts) with activity name S 

different from A or B, ∀tai ∈ Ta, and it holds that 

Delay = arg min( tai−Ts )  

Deadline = arg max( tai−Ts ) 

Or if the trace starts with an event e(S, Ts) with activity name S 

different from A or B, ∀tbj ∈ Tb, and it holds that  

Delay = arg min( tbj−Ts )  

Deadline = arg max( tbi−Ts ) 

Example 4.7: Considering the trace [(S,1), (A,5), (C,7), (A,19)] Delay will assume 

value of 4, while Deadline will assume value of 18. 

Example 4.8: Considering the trace [(S,1), (B,5), (B,7), (E,19)] Delay will assume 

value of 4, while Deadline will assume value of 6. 
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4.1.3 Relation templates 

The variables Delay and Deadline, for responded_existence(A,B,Delay,Deadline), 

are calculated, respectively, as the minimum and maximum time difference between 

the occurrence of activity A and activity B. Both times are considered with an absolute 

value: 

Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …, Tan)∈Ta 

and  TB={(B,Tb1), (B,Tb2), …, (B,Tbm)}⊆T,  (Tb1, Tb2, …, Tbm)∈Tb, it 

holds that ∀tai∈Ta and ∀tbj∈Tb  

Delay = arg min( abs(tbj−tai) )  

Deadline = arg max( abs(tbj−tai) ) 

Example 4.9: Considering the trace [(B,1), (A,3), (A,4), (B,9)] Delay represents the 

difference between the timestamp associated to the first occurrence of activity A and 

the timestamp associated to the first occurrence of activity B, the absolute value is 2. 

While Deadline represents the difference between the timestamp associated to the 

second occurrence of activity A and the timestamp associated to the second 

occurrence of activity B, the value is 5. 

The variables Delay and Deadline, for co-existence(A,B,Delay,Deadline), are 

calculated, respectively, as the minimum and maximum time difference between the 

occurrences of activities A and B. Both times are considered with an absolute value: 

Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …, Tan)∈Ta 

and  TB={(B,Tb1), (B,Tb2), …, ( B,Tbm)}⊆T,  (Tb1, Tb2, …, Tbm)∈Tb, 

it holds that ∀tai∈Ta ∀tbj∈Tb  

Delay = arg min( abs(tbj−tai) )  

Deadline = arg max( abs(tbj−tai) ) 
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Example 4.10: Considering the trace [(B,1), (A,5), (A,10), (B,11)] Delay will assume 

the value of 1, Deadline will assume the value of 4.  

The variables Delay and Deadline, for response(A,B,Delay,Deadline), are 

calculated, respectively, as the minimum and maximum time difference between the 

occurrence of any activity A and any subsequent activity B: 

Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …, Tan)∈Ta 

and  TB={(B,Tb1), (B,Tb2), …, (B,Tbm)}⊆T,  (Tb1, Tb2, …,Tbm)∈Tb, it 

holds that ∀tai∈Ta ∀tbj∈Tb tbj>tai  

Delay = arg min( tbj−tai )  

Deadline = arg max( tbj−tai ) 

Example 4.11: Considering the trace [(A,1), (A,2), (A,5) ,(B,8) ,(B,9)] Delay will 

assume the value of 3, while the Deadline value will assume the value 7. 

The variables Delay and Deadline, for precedence(A,B,Delay,Deadline), are 

calculated, respectively, as the minimum and maximum time difference between the 

occurrence of any activity A and any subsequent activity B: 

Given TA={(A,Ta1), (A,Ta2), …,(A,Tan)}⊆T,  (Ta1, Ta2, …,Tan)∈Ta 

and  TB={(B,Tb1), (B,Tb2), …,(B,Tbm)}⊆T,  (Tb1, Tb2, …,Tbm)∈Tb, it 

holds that ∀tbj∈Tb ∀tai∈Ta tbj>tai  

Delay = arg min( tbj−tai )  

Deadline = arg max( tbj−tai ) 

Example 4.12: Considering the trace [(A,1), (C,5), (B,6), (B,10), (A,11)] Delay will 

assume the value of 5, while the Deadline value will assume the value of 9. 

The variables Delay and Deadline, for succession(A,B,Delay,Deadline)  are 

calculated by verifying first response(A,B,Delay,Deadline) and then 

precedence(A,B,Delay,Deadline). 
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Example 4.13: Considering the trace [(A,1), (C,2), (A,5), (B,7), (B,8)] Delay will 

assume the value of 2, while the Deadline value will assume the value of 6. 

The variables Delay and Deadline, for alternate_response(A,B,Delay,Deadline), 

are calculated, respectively, as the minimum and maximum time difference between 

the occurrences of activities A and B: 

Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …, Tan)∈Ta 

and  TB={(B,Tb1), (B,Tb2), …, (B,Tbm)}⊆T,  (Tb1, Tb2, …, Tbm)∈Tb, it 

holds that ∀tai∈Ta ∀tbj∈Tb, tai<tbj  

Delay = arg min( tbj−tai )  

Deadline = arg max( tbj−tai ) 

and ∄ta(i+1)∈Ta with tai<ta(i+1)<tbj 

Example 4.14: Considering the trace [(B,1), (A,2), (C,5), (B,6), (B,8), (A,11), (B,18)] 

Delay will assume the value of 4, while the Deadline value will assume the value of 

7. 

The variables Delay and Deadline, for alternate_precedence(A,B,Delay, 

Deadline), are calculated, respectively, as the minimum and maximum time 

difference between the occurrences of activities A and B: 

Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …, Tan)∈Ta 

and  TB={(B,Tb1), (B,Tb2), …, (B,Tbm)}⊆T,  (Tb1, Tb2, …, Tbm)∈Tb, it 

holds that ∀tbj∈Tb ∀tai∈Ta tbj>tai  

Delay = arg min( tbj−tai )  

Deadline = arg max( tbj−tai ) 

and ∄ta(i+1)∈Ta with tai<ta(i+1)<tbj 

Example 4.15: Considering the trace [(A,1), (C,2), (B,5), (A,7), (B,8), (A,11)] Delay 

will assume the value of 1, while the Deadline value will assume the value of 4. 
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The variables Delay and Deadline, for alternate_succession (A,B,Delay,Deadline)  

are calculated by verifying first alternate_response(A,B,Delay,Deadline) and then 

alternate_precedence(A,B,Delay,Deadline). 

Example 4.16: Considering the trace [(A,1), (C,2), (B,5), (A,7), (B,8), (A,11), (B,18)] 

Delay will assume the value of 1, while the Deadline value will assume the value of 

7. 

The variables Delay and Deadline, for chain_response(A,B,Delay,Deadline), are 

calculated, respectively, as the minimum and maximum time difference between the 

occurrences of activities A and B: 

Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …, Tan)∈Ta, 

TB={(B,Tb1), (B,Tb2), …, (B,Tbm)}⊆T,  (Tb1, Tb2, …, Tbm)∈Tb, and it 

holds that ∀tai∈Ta ∃tbj∈Tb  

Delay = arg min( tbj−tai )  

Deadline = arg max( tbj−tai ) 

and ∄(Any, Tc)∈T with tai<tc<tbj and Any≠B 

Example 4.17: Considering the trace [(B,1), (A,2), (B,5), (C,7), (A,8), (B,14)] Delay 

will assume the value of 3, while the Deadline value will assume the value of 6. 

The variables Delay and Deadline, for chain_precedence(A,B,Delay,Deadline), 

are calculated, respectively, as the minimum and maximum time difference between 

the occurrences of activities A and B: 

Given TA={(A,Ta1), (A,Ta2), …, (A,Tan)}⊆T,  (Ta1, Ta2, …, Tan)∈Ta, 

TB={(B,Tb1), (B,Tb2), …, (B,Tbm)}⊆T,  (Tb1, Tb2, …, Tbm)∈Tb, and it 

holds that ∀tbj∈Tb ∃tai∈Ta  

Delay = arg min( tbj−tai )  

Deadline = arg max( tbj−tai ) 

and ∄(Any, Tc)∈T with tai<tc<tbj and Any≠B 



   

 

   

 

68 

Example 4.18: Considering the trace [(A,1), (B,2), (C,5), (A,7), (B,13), (A,14)] Delay 

will assume the value of 1, while the Deadline value will assume the value of 6. 

The variables Delay and Deadline, for chain_succession (A,B,Delay,Deadline)  

are calculated by verifying first chain_response(A,B,Delay,Deadline) and then 

precedence chain_precedence(A,B,Delay,Deadline). 

Example 4.19: Considering the trace [(A,1), (B,3), (C,5), (A,7), (B,12), (A,14), 

(B,19)] Delay will assume the value of 2, while the Deadline value will assume the 

value 5. 

To summarise, the learning strategy adopted for each template is to discover the 

greatest and the smallest time intervals within which the constraint is verified over 

the entire trace. The discovery does not stop at the first occurrence of the template. 

As a result, knowledge of the logs is general and not specific. 

Example 4.20: Let us take in consideration the trace [(A,1), (B,3), (C,5), (A,7), (B,12), 

(A,14), (B,15)] and the constraint chain_succession(A,B,Delay,Deadline). If a 

specific learning strategy is adopted, the discovery process can stop after the first time 

the constraint is verified over the trace. In this case the value of the variables Delay, 

and Deadline is 2. This may limit the analysis of the business process, restricting it to 

a specific occurrence of a constraint in a trace. Instead, if a generalised learning 

strategy is adopted, the discovery process continues over the entire trace, giving a 

more complete and holistic analysis. In this case the value of the Delay variable is 1 

and the value of the Deadline variable is 5. 
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4.1.4 Leaning the temporal constraints over a finite set of traces 

In the current implementation, Delay and Deadline are evaluated using constraint 

logic programming over a finite domain. This makes it possible to reason and solve 

complex computation with minimal code.  

Each template is verified over every trace in the logs. This verification step 

happens in the get_number_of_satisfied_traces function. The recursive function takes 

two inputs: the constraint to verify and a list of traces and returns the number of 

verified traces. Each time a constraint is verified over a trace the CLP constraints are 

updated. 

Let us consider a list of two traces: trace([event(A,1), event(B,2), event(A,5), 

event(B, 8), event(B, 9)]) and trace([event(A,1), event(B,4), event(A,5), event(B, 

20)]). Let us also consider response(A,B,Delay,Deadline) as the constraint to verify. 

The constraint is verified in sequence over the first and second trace. The Delay 

variable assumes the value of one, and the Deadline variable assumes the value of 15. 

The Delay value is determined by verifying the constraint over the first trace, while 

the Deadline value is determined by verifying the constraint over the second trace.  

To summarise, using CLP, arithmetic constraints are added to the temporal 

variables, and every time a template is verified over a trace, more generalised/specific 

constraints are discovered.  

4.2 Enriched hierarchy of templates  

The specialization phase for DNF algorithm and the generalization phase for the 

CNF algorithm are based upon the hierarchy of templates. Therefore, the subsumption 

maps, as described by Elena Palmieri in [3], are enriched with the two variables Delay 

and Deadline representing the quantitative time metrics. 
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Delay and Deadline variables assume different meanings for the different template 

groups. Delay and Deadline in relation to the existence template groups represent the 

time between one or more occurrences of the specified activity and the start time, 

while for the relation templates group, they represent the minimum and the maximum 

time that passes between the activation and target activities. In the case of templates 

that deal with the absence of activities, Delay and Deadline are not defined. The 

different semantics associated with Delay and Deadline for the different groups of 

templates lead to restricting the inheritance only to templates belonging to the same 

group. 

 

Figure 4.1: Subsumption map of the co-existence(X,Y,Delay,Deadline) template with 

quantitative time metrics. 

 

Figure 4.2: Subsumption map of the co-existence(X,Y,Delay,Deadline) template with 

quantitative time metrics. 
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Figure 4.3: Subsumption map of the co-existence(X,Y,Delay,Deadline) template with 

quantitative time metrics. 

Considering the subsumption map for the co-existence template shown in Figure 

4.1, Figure 4.2 and Figure 4.3, the alternate_succession(X,Y,Delay,Deadline), 

chain_succession(X,Y,Delay, Deadline), succession(X,Y,Delay,Deadline) and the 

conjunction of responded_existence(X,Y,Delay,Deadline)  and responded_existence 

(Y,X,Delay,Deadline), all strengthen the condition stated by the co-

existence(X,Y,Delay,Deadline)  template. The condition is strengthened by specifying 

that not only the activation and target activities have to occur but also the relative 

position between the two activities within the trace. The Delay and Deadline variables 

are inherited, since the time range that passes between the activities does not change, 

given the constraints are verified.  

The trace T=[(A,1), (B,3), (C,5), (A,7), (B,12), (A,14), (B,19)] satisfies the co-

existence(X,Y,Delay,Deadline) constraint, and Delay and Deadline variables assume 

the values 2 and 5 respectively. Taking into consideration the first branch of the co-

existence(X,Y,Delay,Deadline) subsumption map in Figure 4.1, the 

alternate_succession(X,Y,Delay,Deadline), chain_succession(X,Y,Delay,Deadline) 

and succession(X,Y,Delay,Deadline) are verified over trace T, and Delay and 

Deadline variables assume the values 2 and 5 respectively for the three specialised 

constraints.
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Figure 4.4: Subsumption map of the responded_existence(X,Y,Delay,Deadline) template with 

quantitative time metrics. 

 

 

Figure 4.5: Subsumption map of the responded_existence(X,Y,Delay,Deadline) template with 

quantitative time metrics. 

 

 

Figure 4.6: Subsumption map of the responded_existence(X,Y,Delay,Deadline) template with 

quantitative time metrics. 
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Figure 4.7: Subsumption map of the responded_existence(X,Y,Delay,Deadline) template with 

quantitative time metrics. 

 

 

Figure 4.8: Subsumption map of the responded_existence(X,Y,Delay,Deadline) template with 

quantitative time metrics. 

 

 

Figure 4.9: Subsumption map of the responded_existence(X,Y,Delay,Deadline) template with 

quantitative time metrics. 
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Figure 4.10: Subsumption map of the responded_existence(X,Y,Delay,Deadline) template 

with quantitative time metric

Considering the responded_existence(X,Y,Delay,Deadline)  subsumption map as 

shown in Figure 4.4, Figure 4.5, Figure 4.6, Figure 4.7, Figure 4.8, Figure 4.9 and 

Figure 4.10, all the specialised relation constraints inherit Delay and Deadline. This 

is because they strengthen the condition, relative to the position of the activation and 

target activities occurrences. Delay and Deadline, for the init template, are added for 

syntactic completeness, and therefore are not inherited as shown in Figure 4.10. 

 

 

Figure 4.11: Subsumption map of the response(X,Y,Delay,Deadline) template with 

quantitative time metrics. 
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Figure 4.12: Subsumption map of the response(X,Y,Delay,Deadline) template with 

quantitative time metrics. 

 

Figure 4.13: Subsumption map of the response(X,Y,Delay,Deadline) template with 

quantitative time metrics. 

In the response(X,Y,Delay,Deadline) subsumption map, all the specialised 

relation constraints inherit Delay and Deadline as shown in Figure 4.11, Figure 4.12 

and Figure 4.13. Delay and Deadline are not inherited by the absence(X) template as 

the quantitative time metrics for non-existence templates have not been defined as 

shown in Figure 4.11. 

 

Figure 4.14: Subsumption map of the precedence(X,Y,Delay,Deadline) template with 

quantitative time metrics. 
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Figure 4.15: Subsumption map of the 

precedence(X,Y,Delay,Deadline) template 

with quantitative time metrics. 

 

Figure 4.16: Subsumption map of the 

precedence(X,Y,Delay,Deadline) template 

with quantitative time metrics.

 

 

Figure 4.17: Subsumption map of the succession(X,Y,Delay,Deadline) template with 

quantitative time metrics. 

 

Figure 4.18: Subsumption map of the alternate_response(X,Y,Delay,Deadline) template with 

quantitative time metrics. 
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Figure 4.19: Subsumption map of the 

alternate_precedence(X,Y,Delay,Deadline) 

template with quantitative time metrics. 

 

Figure 4.20: Subsumption map of the 

alternate_succession(X,Y,Delay,Deadline) 

template with quantitative time metrics.

 

Figure 4.21: Subsumption map of the 

chain_response(X,Y,Delay,Deadline) 

template with quantitative time metrics. 

 

Figure 4.22: Subsumption map of the 

chain_precedence(X,Y,Delay,Deadline) 

template with quantitative time metrics.

 

 

Figure 4.23: Subsumption map of the 

chain_succession(X,Y,Delay,Deadline) 

template with quantitative time metrics. 

 

 

Figure 4.24: Subsumption map of the 

existence2(X,Y,Delay,Deadline) template 

with quantitative time metric.
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Figure 4.25: Subsumption map of the existence2(X,Y,Delay,Deadline) template with 

quantitative time metrics. 

None of the specialised constraints in the subsumptions map of the 

choice(X,Y,Delay,Deadline) inherit Delay and Deadline, as the quantitative time 

variables have different semantics.  

The subsumptions maps of the non-existence templates absence2(X) and 

absence3(X); and the subsumptions maps of negation templates 

not_chain_succession(X,Y), not_co-existence(X,Y), not_succession(X,Y),  do not deal 

with quantitative time metrics as they are not defined. Same applies to the 

subsumption map of the exclusive_choice(X,Y) template. 

Currently the algorithm calculates Delay and Deadline when verifying each 

constraint. This was a necessity to ensure a consistent approach to how the entire set 

of constraints was verified.  

4.3 Disjunctive Normal Form 

The specialization phase for the DNF algorithm is executed in the 

choose_constraint function. 

The choose_constraint always starts with retrieving the same set of constraints. In 

the case of the DNF algorithm, this is the first level of hierarchy of the subsumption 

maps. 
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The first level of hierarchy is comprised of the constraints: existence(_), 

responded_existence(_,_), absence3(_), not_chain_succession(_,_) and choice(_,_). 

There are then passed to the combine function, which combines each template with 

every possible combination of activities found in the traces8. The variables 

representing the quantitative time are then added to the first level of hierarchy 

templates before the specialization phase in the add_time_to_first_level_of_hierarchy 

function. 

The output of the add_time_to_first_level_of_hierarchy function is the first level 

of hierarchy template enriched with Delay and Deadline. The enriched constraints are 

then verified against the positive and negative traces to determine the DNF gain.  

Example 4.21: if the set of the activities found in the logs is {a, b, c} then the list of 

constraint that would be verified is: [responded_existence(a, b, Delay, Deadline), 

responded_existence(a, c, Delay, Deadline), responded_existence(b, a, Delay, 

Deadline), responded_existence(b, c, Delay, Deadline), responded_existence(c, a, 

Delay, Deadline), responded_existence(c, b, Delay, Deadline), existence(a), 

existence(b), existence(c), absence3(a), absence3(b), absence3(c), choice(a, b, Delay, 

Deadline), choice(a, c, Delay, Deadline), choice(b, a, Delay, Deadline), choice(b, c, 

Delay, Deadline), choice(c, a, Delay, Deadline), choice(c, b, Delay, Deadline), 

not_chain_succession(a, b), not_chain_succession(a, c), not_chain_succession(b, a), 

not_chain_succession(b, c), not_chain_succession(c, a), not_chain_succession(c, b)] 

 

 

 

8 The constraints are not enriched yet with the two quantitative time variables, this decision has 
been made to reduce the complexity of the combine function. 
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enhanced DNF choose_constraint function 

 

choose_constraint(ListOfPositiveExamples, ListOfNegativeExamples, Term,  

   NewConstraint) :-  

get_list_of_activities(ListOfPositiveExamples, ListOfNegativeExamples, 

   Activities),   

get_first_level_of_hierarchy(FirstLevelHierarchy)  

combine(FirstLevelOfHierarchy, Activities, 

   GroundedFirstLevelOfHierarchy),  

add_time_to_first_level_of_hierarchy(GroundedFirstLevelOfHierarchy,  

   GroundedFirstLevelOfHierarchyWithTime), 

specialize_existing_constraints( 

GroundedFirstLevelOfHierarchyWithTime, Term,  

ListOfPossibleCandidates),  

get_best(ListOfPossibleCandidates, ListOfPositiveExamples, 

   ListOfNegativeExamples, NewConstraint).  

 

 

 

 

Figure 4.26: add_time_to_first_level_of_hierarchy function explained in terms of input and 

output. 
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The verified constraints are added in AND to the term. In later iterations the 

subsumptions maps are used to specialise the constraints in the term.  

Example 4.22: if the term contains the constraint [responded_existence(b, c, Delay, 

Deadline)], then the output of the specialization phase would be: 

[alternate_response(b, c, Delay, Deadline), alternate_succession(b, c, Delay, 

Deadline), chain_response(b, c, Delay, Deadline), chain_succession(b, c, Delay, 

Deadline), co-existence(b, c, Delay, Deadline), response(b, c, Delay, Deadline), 

succession(b, c, Delay, Deadline), alternate_precedence(c, b, Delay, Deadline), 

alternate_succession(c, b, Delay, Deadline), chain_precedence(c, b, Delay, 

Deadline), chain_succession(c, b, Delay, Deadline), co-existence(c, b, Delay, 

Deadline), init(c, Delay, Deadline), precedence(c, b, Delay, Deadline), succession(c, 

b, Delay, Deadline)] 

The specialised list of constraints is then verified against the positive and negative 

traces. The final step of the algorithm binds the Delay and Deadline variables 

associated with each constraint in the list of constraints in AND. 

The model containing the quantitative time metrics is then printed to screen. 

4.4 Conjunctive Normal Form 

The CNF starts from the most specialized set of templates comprised of the 

constraints: absence(_), init(_), end(_), exclusive_choice(_,_), existence3(_), 

exactly2(_), chain_succession(_,_) and not_responded_existence(_,_); these are then 

passed to the combine function. The variables representing the quantitative time are 

added to the last level of hierarchy templates before the generalization phase in the 

add_time_to_last_level_of_hierarchy function. 
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Figure 4.27: add_time_to_last_level_of_hierarchy function explained in terms of input and 

output. 

Going through the hierarchy in reverse order leads to generalization steps that 

involve the child nodes having one activity and the parent nodes having two activities. 

As a result, an extra combination step is needed. The addition of an extra combination 

step implies that Delay and Deadline variables are removed and then added back 

before and after the second combination step. The removal of Delay and Deadline 

does not affect the quality of the mined model as both variables are currently 

calculated every time a constraint is verified. 

4.5 Experimental results 

This section reports experimental results on the correctness of the produced 

process model. The evaluation is performed using a set of controlled event logs9, 

relative to a cervical screening, to determine the presence of the papillomavirus 

infection in women over the age of 25. The logs contain 55 positive traces and 102 

 

 

9 The events in the logs are formatted using the eXtendable Event Stream (XES) standard. XES is 
an XML-based standard for event logs [21].  
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negative traces. The low number of traces facilitates the verification of the correctness 

of the process model. 

There are 19 activities in the traces: 

- execute_biopsy_exam 

- execute_colposcopy_exam 

- execute_papTest_exam 

- send_biopsy_sample 

- send_papTest_sample 

- send_letter_negative_biopsy 

- send_letter_negative_colposcopy 

- send_letter_negative_papTest 

- send_result_doubt_colposcopy 

- send_result_inadequate_papTest 

- send_result_negativebiopsy 

- send_result_negative_colposcopy 

- send_result_negative_papTest 

- send_result_positive_biopsy 

- send_result_positive_papTest 

- invite 

- refuse 

- phone_call_positive_biopsy 

- phone_call_positive_papTest. 
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The model resulting from the execution of the DNF algorithm is:  

choice(refuse, send_result_inadequate_papTest,1,3)  

OR  

(exactly1(send_letter_negative_papTest,4,4)  

AND  

choice(send_letter_negative_papTest,execute_colposcopy_exam,4,11)) 

The reported model states that either the send_result_inadequate_papTest or the 

refuse activities can occur between one and three units of time after the start time of 

the process, or that the send_letter_negative_papTest has to occur exactly after 4 units 

of time after the start time of the process and, either send_letter_negative_papTest or 

execute_colposcopy_exam can occur within four units and 11 units of time after the 

start time of the process. 

The model, in terms of constraints found, coincided with the model reported in 

the experimental section in Palmieri’s work [3]. The correctness of reported time 

intervals was verified against the logs.   
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5 Conclusion  

In this work, an approach to discover declarative process models with quantitative 

temporal constraint has been presented. The Declare templates are enriched with two 

variables, Delay and Deadline, with the focus on constraints dealing with the presence 

of activities. The Delay and Deadline variables are defined for the Declare templates 

belonging to the existence and relation groups, and the choice template. The two 

temporal variables for the existence templates and the choice template depend on the 

definition of the starting point, which is identified as the timestamp associated to the 

first event in the trace. For the relation templates, the Delay and Deadline variables 

depend on the timestamps associated to the activation and target events. The 

activation and target events contain the activation activity and the target activity 

respectively. The Declare templates dealing with the absence of activity have not been 

enriched with quantitative temporal variables. 

The DNF and CFN algorithms that learn declarative process models from positive 

and negative traces are modified to return a model containing information about 

quantitative time measurements. In case of the DNF algorithm, the two variables are 

introduced during the specialization phase, while for the CNF, they are introduced in 

the generalization phase. When the model is discovered, it will contain quantitative 

temporal constraints. 

The experimental results, obtained by running the DNF algorithm against the 

cervical screening logs, have confirmed its correctness. The test was performed to 

validate the correctness of the model and not the performance of the algorithm. 

Further testing should be carried out to validate the correctness of the discovered 

models, using the CNF.  



   

 

   

 

86 

5.1 Future works 

5.1.1 Choosing a different start time 

The decision to identify a starting point for existence templates and the choice 

template has been a key point of analysis.  

An alternative path to the proposed solution adopted in this work would be the 

addition of a fictitious event in every trace with a given timestamp. The timestamp 

needs to be the same for all the traces. Having a common starting time could lead to 

addressing questions such as “How much time has passed since the opening of the 

office at 9am to when the first employee has checked in?”. This approach introduces 

two additional steps before the discovery can be performed. A preliminary analysis 

of all the traces is needed in order to define the value of such timestamp. 

5.1.2 Enrich non-existence Declare templates with quantitative time 

Quantifying time, in terms of absences of activities, is an interesting point of 

discussion and can be explored from different angles. When defining Delay and 

Deadline, if constraints are checking the presence of activities, we are reasoning over 

a specific time interval and therefore the model is more specific. In contrast, when 

dealing with the non-existence of constraints, we are reasoning over the entire trace, 

hence the model is more generalised. 

The absence(A) constraint template states that activity A should never been 

executed in the trace. In the absence(A,Delay,Deadline) template, Delay and Deadline 

could delimit the time interval in which activity A does not have to occur. Delay and 

Deadline will have to be defined considering a start time.  

Let us consider a fraud prevention mechanism that seeks to stop a customer scanning 

and travelling with a train ticket that they have bought but have requested a refund 

for. 
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absence(“scan”,Delay,Deadline) 

The analysis could identify if a customer tries to scan the ticket within the time 

validity of the ticket itself, given the refund was requested. The Delay variable 

represents the difference between the start time validity and the purchase time, and 

the Deadline variable represents the difference between the end time validity and the 

purchase time 

The absence2(A) template states that activity A has to occur at most once in the 

trace.  The absence2(A,Delay,Deadline) template, Delay and Deadline could delimit 

the time interval in which the activity A occurs at most once. Delay and Deadline will 

have to be defined with respect to a defined start time.  

Let us consider a fraud prevention mechanism that seeks to stop a customer that has 

purchased a single train ticket to scan it more than once. The ticket has a time validity 

associate to it. The customer also has the possibility to have their ticket refunded.  

This means the customer could scan the ticket at most once within the time validity 

of the ticket, and zero times in case where the ticket is refunded.  

absence2(“scan”,Delay,Deadline) 

The Delay variable represents the difference between the start time validity and the 

purchase time, and the Deadline variable represents the difference between the end 

time validity and the purchase time 

The absence3(A) template states that the activity A has to occur at most twice in 

the trace. The absence3(A, Delay,Deadline) template could state that the occurrence 

of the activity A has to occur, at most twice, within the time interval delimited by the 

variables Delay and Deadline with respect to a defined start time. 

Let us consider a return train ticket. The ticket can be scanned twice, once for the 

outbound journey and once for the inbound one. The validity of the ticket defines the 
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time interval, considering the purchase time as starting point. The scan activity should 

be executed at most twice, and zero times in case where the ticket is refunded. 

absence3(“scan”,Delay,Deadline) 

The Delay variable represents the difference between the start time validity and the 

purchase time, and the Deadline variable represents the difference between the end 

time validity and the purchase time 

The exclusive_choice(A,B) constraint template states that either one of the two 

activities A or B has to eventually be executed. The exclusive_choice(A,B,Delay, 

Deadline) template could state that either the activity A or activity B occurs within 

time interval delimited by Delay and Deadline.  

Let us consider a customer that has purchased a train ticket. The customer can either 

scan the ticket or refund it, either can be performed within the time validity of the 

ticket.   

exclusive_choice(“scan”,”refund”, Delay,Deadline)  

The Delay variable represents the difference between the start time validity and the 

purchase time, and the Deadline variable represents the difference between the end 

time validity and the purchase time. 

5.1.3 Optimisation of the algorithm  

In the current implementations of the discovery algorithms, the two temporal 

variables are calculated every time a constraint is verified. This computational step 

could be avoided when the Delay Deadline variables are inherited by templates 

belonging to the same groups.  

The branch of the response(A,B,Delay,Deadline) subsumptions map in Figure 

4.13 shows chain_response(A,B,Delay,Deadline) inheriting Delay and Deadline from 

the response(A,B,Delay,Deadline). This is possible because the three templates 
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belong to the relation template group and how the three templates are calculated, 

described in paragraph 4.1.3. This implies that the temporal meaning of Delay and 

Deadline is the same; moreover, if the specialising constraint is verified over the trace, 

then Delay and Deadline variables would not change in value. 

Let us consider the trace [(S,1), (A,1), (B,4), (C,5), (A,7), (B,12), (A,14), (B,19)], 

when verifying the response(A,B,Delay,Deadline) template, Delay and Deadline 

assume the values of two and five respectively. After the possible specialisation 

phase, the chain_response(A,B,Delay, Deadline) constraint is eventually verified 

over the trace. The values of Delay and Deadline remains two and five respectively. 

This example shows that Delay and Deadline can be inherited by templates belonging 

to the same groups as the values of the variables do not change. 

5.1.4 Data-aware constraints 

The events considered for this work are in the form of  

e(ActivityName, Timestamp) 

The information contained for each event are the ActivityName, which is used to 

define the control-flow of a business process and the Timestamp, which is used to 

determine the temporal time interval. 

It is possible to enrich the model with additional data related to an activity, using 

a similar approach to the one used for the quantitative temporal variables. The events 

could be expressed in the form:  

e(ActivityName, Data, Timestamp) 

Let us consider a model representing the maritime traffic in the gulf of Naples. 

The position of a ship is determined by using Automatic Identification system 

messages. It is possible to use the logic proposed in this work to analyse how much 

time passes between the arrival of a ship at the docks and when it departs. However, 
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it would not be possible to know the type of maritime ship, or it is not possible to 

determine how long a cargo ship spends docked in the port of Naples.  

5.2 Final thoughts 

The approach explored in this work to enrich process models with quantitative 

time constraints has proven viable and reliable. The same approach as discussed in 

paragraph 5.1.4 can be extended to support data aware constraints in process models. 

This will allow for more complex analysis of business processes, shifting more 

towards an automated understanding of them. Discovering data-aware constraints is 

computationally more costly, therefore addressing the performances of the algorithms 

will be necessary. 
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