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Introduzione

Questa trattazione affronta il problema della cybersecurity nel settore

automotive dal punto di vista dell’analisi delle minacce e la valutazione del

rischio (TARA, dall’inglese ‘Threat Analysis and Risk Assessment’). La que-

stione centrale che motiva la tesi è quella dell’accettabilità dei rischi, fonda-

mentale per prendere una decisione sulle soluzioni di sicurezza da implemen-

tare. A tal fine, sviluppiamo un framework quantitativo nel quale prendiamo

in input i risultati della valutazione del rischio e definiamo delle misure di di-

versi aspetti di una possibile risposta al rischio; sfruttiamo quindi la naturale

presenza di trade-off (costo contro efficacia) per formulare il problema come

un’ottimizzazione multi-obiettivo. Infine, sviluppiamo un modello stocastico

dell’evoluzione futura dei fattori di rischio mediante il potente strumento di

modellazione rappresentato dalle catene di Markov; adattiamo le formulazio-

ni dei problemi di ottimizzazione a questo contesto non deterministico.

La tesi è il frutto di una collaborazione con la Vehicle Electrification division

di Marelli (in particolare con il Cybersecurity Team di Bologna) e ciò ha

permesso durante l’intero lavoro di considerare una particolare istanza del

problema, derivante da una vera TARA, in modo da testare sia il framework

deterministico che quello stocastico in un’applicazione del mondo reale. La

collaborazione spiega anche il motivo per cui spesso nella tesi si assume il

punto di vista di un tier-1 supplier; tuttavia, le analisi svolte si possono

adattare ad un qualsiasi altro livello della supply chain.

Nel Capitolo 1, introduciamo brevemente le motivazioni alla base del

problema della cybersecurity in ambito automotive ed esempi di possibili
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ii INTRODUZIONE

attacchi e minacce per gli utenti della strada. Presentiamo alcune delle nor-

me e normative emerse negli ultimi anni in questo campo con particolare

riguardo alla ISO/SAE 21434 [7], che è la più recente e rappresenta una base

importante per tutta la tesi. Chiudiamo con un elenco e una possibile clas-

sificazione allo stato attuale delle soluzioni di cybersecurity.

Nel capitolo 2, riassumiamo due tecniche di valutazione del rischio, contenute

in EVITA [8] e ISO/SAE 21434: mostriamo somiglianze e differenze e, so-

prattutto, stabiliamo una serie di definizioni e termini che vengono utilizzati

in tutto tutto il lavoro. Si passa quindi alle idee principali della tesi: il punto

di vista dell’analisi costo-efficacia, la formulazione matematica del problema,

la definizione della riduzione del rischio, della soddisfazione del cliente e delle

funzioni obiettivo che si vogliono ottimizzare; finalmente applichiamo queste

idee nella suddetta applicazione del mondo reale, dove siamo in grado di va-

lidare alcune delle intuizioni che il decisore già aveva.

Nel capitolo 3, riconosciamo che i rischi sono soggetti al cambiamento e cer-

chiamo di modellare la loro evoluzione nel tempo con l’aiuto delle catene

di Markov. Le quantità introdotte nel Capitolo 2 diventano quindi processi

stocastici di cui siamo in grado di calcolare i valori attesi mediante simula-

zione delle catene di Markov. Dobbiamo tener conto della stocasticità; in

particolare, modelliamo l’avversione del decisore verso l’incertezza mediante

funzioni di utilità e analisi di eventi estremi; ciò porta a nuove formulazio-

ni del problema di ottimizzazione. Alla fine, torniamo all’applicazione del

mondo reale e vediamo che tipo di conclusioni possiamo trarre dai risultati

ottenuti.



Introduction

This work addresses the problem of automotive cybersecurity from the

point of view of Threat Analysis and Risk Assessment (TARA). The central

question that motivates the thesis is the one about the acceptability of risk,

which is vital in taking a decision about the implementation of cybersecurity

solutions. For this purpose, we develop a quantitative framework in which

we take in input the results of risk assessment and define measures of vari-

ous facets of a possible risk response; we then exploit the natural presence

of trade-offs (cost versus effectiveness) to formulate the problem as a multi-

objective optimization. Finally, we develop a stochastic model of the future

evolution of the risk factors, by means of Markov chains; we adapt the for-

mulations of the optimization problems to this non-deterministic context.

The thesis is the result of a collaboration with the Vehicle Electrification divi-

sion of Marelli, in particular with the Cybersecurity team based in Bologna;

this allowed us to consider a particular instance of the problem, deriving

from a real TARA, in order to test both the deterministic and the stochastic

framework in a real world application. The collaboration also explains why

in the work we often assume the point of view of a tier-1 supplier; however,

the analyses performed can be adapted to any other level of the supply chain.

In Chapter 1, we briefly introduce the motivations behind the cyberse-

curity problem in the automotive field and examples of possible attacks and

threats for road users. We present then some of the standards and regula-

tions that emerged in the last few years in this field with particular regard

of ISO/SAE 21434 [7], which is the most recent and represents an important
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iv INTRODUCTION

foundation for all the thesis. We close with a list and a possible classification

of cybersecurity solutions to the present day.

In Chapter 2, we summarize two risk assessment techniques, contained in

EVITA [8] and ISO/SAE 21434: we show similiraties and differences and

most importantly establish a series of definitions and terms which are used

throughout all the work. We then move on to the main ideas of this work:

the cost-effectiveness point of view, the mathematical formulation of the

problem, the definition of risk reduction and customer satisfaction and the

objective functions we want to optimize; we finally apply these ideas in the

aforementioned real world application, where we are able to validate some of

the insights that decision maker already had.

In Chapter 3, we acknowledge that risks are subject to change and try to

model their evolution with the aid of Markov chains. The quantities intro-

duced in Chapter 2 then become stochastic processes whose expected values

we are able to compute by simulation of the Markov chains. We need to

take into account stochasticity; in particular, we enforce the decision maker

aversion towards uncertainty by means of utility functions and analysis of

extreme events; this leads to new formulations of the optimization problem.

In the end, we return to the real world application and see what kind of

conclusions we can draw from the results obtained.
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Chapter 1

Introduction to security in the

automotive industry

1.1 Security in modern vehicles

A modern vehicle is equipped with approximately 50/80 independent

computers, called Electronic Control Units (ECUs).

Electronics has been a key part of the functioning of vehicles for a while and

it has increasingly controlled many useful operations. For example, the phys-

ical inputs, as those triggered when the driver pushes on the brake pedal, are

not mechanically transformed to their result, rather some ECUs mediate this

operation. ECUs are also used to enforce helpful safety relevant features: for

example Advanced Driver-Assistance Systems (ADAS), which are groups of

electronic technologies that assist drivers in driving and parking functions.

Other than safety, the presence of ECUs on a vehicle allows for more ‘he-

donistic’ features, for example the infotainment system that can be found

nowadays in many cars.

ECUs are highly interconnected: they receive inputs from sensors, ex-

change data with actuators and communicate over one or more internal net-

work buses, namely Local Interconnect Network (LIN) bus, Controller Area

Network (CAN) bus, FlexRay and only recently Ethernet.

1



2 1. Introduction to security in the automotive industry

For many years, these networks were isolated from the outside. Over the

last years this situation suddenly changed: modern vehicles offer broad at-

tack surfaces and access points, both wired and wireless (for example Wi-Fi,

Bluetooth, cellular). Furthermore, there is always the possibility that the

user modifies the conditions of the vehicle after it has been produced. The

so-called automotive aftermarket is the secondary market of the automotive

industry, concerned with the manufacturing, remanufacturing, distribution,

retailing, and installation of all vehicle parts, chemicals, equipment, and ac-

cessories, after the sale. The parts, accessories, etc. for sale may not come

from the OEM (Original Equipment Manufacturer). Important, and also

potentially dangerous, examples are Bluetooth or WiFi OBD adapter and

scan tools, but in general the variety of parts for nearly all vehicle makes and

models is almost unlimited.

The automotive industry was not really prepared: the architecture of

these systems was never designed having in mind the possibility of connection

to the outside. On the CAN-bus, for example, ECUs send CAN packets,

broadcast to all components on the bus; each component decides whether a

given message is intended for itself or not. Furthermore, the CAN-bus, unlike

Ethernet, is not meant to be equipped with any authentication protocol.

This means that a malicious attacker who finds a way to breach and gains

control of just a single ECU can then control many other functions and

components across the vehicle. Along with architecture limits, a general lack

of cybersecurity culture caused the emergence of many vulnerabilities. As

reported in [2], most of the components of the network may become target of

attacks: in-vehicle devices, ECUs, sensors and actuators, safety critical and

non-safety critical applications running on in-vehicle devices, communication

links between all these components.

The emergence of these kind of threats has sparked the introduction of

cybersecurity in the automotive field. Cybersecurity will be even more vital

if we consider the direction of technological progress: according to a report

from Juniper Research published in 2018, connected cars (via telematics or
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by in-vehicle apps) are expected to increase to 775 million by 2023, rising

from 330 million vehicles in 2018. As we are inevitably going towards more

and more connections between vehicles, connections with the environment

outside vehicles, all operating in the context of intelligent transportation

systems and smart cities, cybersecurity is a more and more stringent need.

We now give a brief perspective on some of the groundbreaking events

in the young history of automotive hacking. Our main source is [3], which

appears on the website of Miller and Valasek (the authors of the notorious

2015 Jeep Cherokee hack described below). Among the earliest research in

this field, in 2010 a group of security researchers demonstrated that they were

able to gain control of an entire car system under the condition of having

prior physical access to the ECU [4]; for example, they were able to control

the display on the speedometer, kill the engine, affect braking functions. The

article was widely criticized because the threat model with prior physical ac-

cess was considered unrealistic.

In a follow-up paper [5], they showed how physical access is not necessary

and documented the possibilities of both short and long range wireless access.

They were able to get code execution on the vehicle through Bluetooth or the

telematics unit and consequently to inject CAN messages and compromise

functionalities as in the previous article.

In 2015, Miller and Valasek [3] were able compromise the head unit of a Jeep

Cherokee model by exploiting a vulnerability accessible through the Inter-

net. They were able to get code running on the head unit and to reprogram

the firmware of another processor of that unit. At this point, in the same

way as above, they were able to inject CAN messages. The interesting fact

is that no user interaction was required and the attack could be extended,

much like a common computer virus, to all the fleet of Jeep Cherokee in the

US; FCA had to issue a safety recall to update the software in almost 1.4

million vulnerable vehicles, with a huge cost for the company and bother for

customers.

Other attacks have been documented in the last years and they all show a
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similar chain of exploits as the hack recounted above. The first step in the

chain is the remote attack, which can differ on the distance, the need of any

user interaction and required equipment. After executing code on some in-

ternal component, the second step is to send messages to the vehicle’s critical

ECUs and this requires additional work: the components connected to the

outside are often isolated from the safety critical ones and the attacker has

to reprogram a device that acts as a gateway. In the final step, the attacker

send CAN messages to control operative functionalities of the vehicle.

In 2015/2016, attacks of this nature conducted on the Tesla Model S resulted

in the first proactive mass Over The Air (OTA) security update of vulnerable

vehicles; the ability to safely perform this kind of software update is consid-

ered one of the key challenges in the future of automotive cybersecurity.

1.2 New regulations and activities

The introduction of new technologies and functionalities in modern vehi-

cles has determined an increasing need in security, as for example safety and

privacy rise when the right security measures are applied. New regulations

have appeared in order to ensure cybersecurity in this field.

The most recent example of this kind of regulation is UN R155 [6], which

came into force in January 2021 and whose requirements must be fulfilled

for the homologation of any vehicle produced starting from July 2024. The

recipients of the regulation are carmakers (who are responsible for the ho-

mologation of vehicles), however the regulation indirectly affects suppliers

because it clearly states that carmakers need to deal with risks related to

the suppliers. The requirements in UN R155 are commonly overturned to

suppliers in the form of specifications about processes that involve product

development and post-development. In this sense, cybersecurity risk man-

agement involves the whole automotive supply chain.

OEMs must establish and certify a Cybersecurity Management System (CSMS),

which ensures security is adequately considered during development, produc-
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tion and post production phases. For each vehicle type, then, OEMs must

prove that they are able to manage vehicle cyber risks including supplier re-

lated risks, secure vehicles by design to mitigate risks along the value chain,

detect and respond to security incidents across the whole vehicle fleet.

Risk management comprises risk assessment, which consists in identify-

ing the threats and vulnerabilities to which the vehicle is subject, and its

treatment through the identification of appropriate mitigations. One of the

most recent contribution in this regard is ISO/SAE 21434 standard. The

reader is referenced to Section 2.2 for details. OEMs typically require suppli-

ers to implement ISO/SAE 21434 in order to demonstrate compliance with

UN R155 requirement about the management of supplier-related risk.

The cybersecurity risk management of an organization described in

ISO/SAE 21434 applies throughout all lifecycle phases as illustrated in Fig-

ure 1.1.

Figure 1.1: Overall cybersecurity risk management in [7]

In particular, in the product development phase, cybersecurity activities

are performed iteratively until no further refinements of cybersecurity con-

trols are needed. The cybersecurity specifications are defined and confirmed

through verification activities for the fulfilment of the cybersecurity concept.

Figure 1.2 illustrates an example of how a V-model-based workflow can be

iteratively applied at three levels, i. e. item, component and sub-component
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Figure 1.2: Example of product development V-model in [7]

level. This means that, at each level, the entire V-cycle must be applied,

starting with the requirements analysis and architectural design of the left-

hand side and going on with the integration and verification of the right-hand

side. Horizontal bi-directional arrows depict verifications of the implemented

and integrated component against its cybersecurity specifications while ver-

tical bi-directional arrows depict verifications against the cybersecurity spec-

ification from a higher level of architectural abstraction during design.

1.3 Examples of cybersecurity solutions

In this section, we briefly report and categorize some automotive cyber-

security solutions that can be implemented in vehicles. We present them at

a high level of abstraction, knowing that during product development the

solutions are refined into detailed technical requirements. These solutions

appear at three levels: vehicle, ECU and infrastructure level.

At vehicle level, the introduction of the central gateway ECU is the fun-

damental architectural evolution: this ECU separates trusted domain from

untrusted and is equipped to be attack resistant, with dedicated hardware

(HSMs, Hardware Security Modules), cryptographic functions and firewall



1.3 Examples of cybersecurity solutions 7

policies.

At ECU level, specific on-board functions have been adopted, both hardware

and software, to enforce secure communication, integrity of ECU software

and data, access control on the network. We give a possible classification:

• access regulation, functions regulating accesses from external entities

and their associated roles (Secure Diagnostics granted through authen-

tication of the diagnostic tool (via OEM server), Secure Debug Access

through password securely stored;

• intrusion detection, functions inspecting communications in order

to detect anomalies or intrusions (firewall to filter messages according

to whitelist/blacklist or rule-based techniques and Intrusion Detection

Systems);

• logging, functions providing secure log of sensitive data preserving

confidentiality and authenticity;

• network security, protocols providing reliable communications (Se-

cure On-Board Communication) in order to prevent from spoofing on

CAN network;

• software authentication, functions that ascertain reliable and au-

thentic software running on the ECU, during updates (Authenticated

Software Update) and even at each boot via hash functions for example

(Authenticated Boot);

• services, like memory protection or certificate and key managers.

Finally, at infrastructure level, we have some off-board measures that

permit the functioning of on-board solutions:

• Public Key Infrastructure (PKI) consists of hardware, software,

policies and standards that manage creation, administration, distri-

bution and revocation of digital certificates and private keys used for

ECUs communications;
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• Firmware Over The Air (FOTA) infrastructure manages soft-

ware packages installations and updates, which are dangerous opera-

tions and must be carefully performed;

• security on cloud infrastructure absorbs the task of collecting all

the data coming from vehicles, concerning cybersecurity events in order

to analyze them with statistical and machine learning strategies to

detect intrusions, incidents, attacks.



Chapter 2

Risk assessment and treatment

A valid framework for risk assessment in automotive is contained in the

EVITA project. Here we report a brief summary of the main aspects, the

reader is referred to [8] for details. There are other methodologies (in [2] it is

possible to find examples, analyses and comparisons) but in terms of style and

contents the techniques used in available examples closely resemble EVITA.

EVITA is an old project (dating back to 2009) which is freely available online

and we will introduce for its undoubted historical meaning. ISO/SAE 21434

is a more recent standard (see [7]); our choice is to introduce EVITA, which

shares important traits with ISO/SAE 21434 in terms of risk analysis and

highlight some of the differences in Section 2.2. ISO/SAE 21434 will then be

the reference model in all the examples.

2.1 Risk assessment: EVITA framework

In EVITA, threat identification and modeling is conducted using the ap-

proach of attack trees, which are related to fault trees commonly used for

safety hazards. The root of an attack tree (Level 0) is an abstract attack

goal that gives the attacker a benefit of some kind. Its child nodes (Level

1) represent different attack objectives that could satisfy this attack goal.

The attack objectives may be further decomposed into a number of attack

9
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methods that could be employed to achieve the attack objective. Each attack

method will in turn be based on a logical combination (AND/OR) of attacks

against one or more assets populating the lowest levels of the attack tree.

These are described here as asset attacks, and are the terminal nodes of the

tree.

Figure 2.1: General attack tree structure in EVITA

Having established a threat model, EVITA defines the risk of an attack

as a function of the possible severity of the attack for the stakeholders and

the estimated probability of occurrence of a successful attack.

Severity is estimated at Level 1 (attack objective) of the attack tree and

is a vector of four components (see [8, Table 4]):

• safety: physical injuries that might be sustained by persons;

• privacy: identification and tracking of vehicles or individuals;

• financial: financial losses that may be experienced by individuals or

ITS operators;

• operational: interference with vehicle systems and functions that do

not impact on functional safety.
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Likelihood of occurrence is estimated at terminal nodes of the attack tree

and then combined following the logic (AND/OR) of the attack tree. It is

defined through the estimation of attack potential, a measure of the minimum

effort to be expended in an attack to be successful. The following factors are

considered:

• Elapsed Time: total amount of time taken by an attacker to identify

that a particular potential vulnerability may exist, to develop an attack

method and to sustain effort required mounting the attack.

• Specialist Expertise: required level of general knowledge of the un-

derlying principles, product types or attack methods.

• Knowledge of the system under investigation: specific expertise

in relation to the system under investigation. Though it is related to

general expertise, it is distinct from that.

• Window of opportunity: amounts of access to a system required

to identify and exploit vulnerabilities, it may increase the likelihood of

detection of the attack.

• IT hardware/software or other equipment: equipment required

to identify and exploit vulnerability.

For each asset attack all these factor are given a value according to a scale

(see [8, Table 5]) and then summed to get attack potential, which is trans-

formed into attack probability (integer on a scale from 1 to 5). If an attack

method can be implemented using any one of a number of asset attacks (OR

relationship) the combined attack probability is taken to be the highest of

the attack probabilities. Where the attack method requires a conjunction of

asset attacks (AND relationship), the combined attack probability is taken

to be the lowest of the attack probabilities associated with the contributing

asset attacks.
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The risk level (a vector of four integer components, one for every severity

aspect) is determined from the severity associated with the attack objec-

tive and the combined attack probability associated with a particular attack

method. These are mapped to the risk using a risk graph approach (see [8,

Table 9, Table 11]). In particular, for safety-related attack objective (non-

zero safety component in severity), there is an additional parameter deter-

mined at Level 1, controllability : it represents the potential for the driver to

influence the severity of the outcome. Safety related risk behaves differently

according to this value (less controllable threats have higher risk outcomes).

2.2 Risk assessment: ISO/SAE 21434

ISO/SAE 21434 specifies engineering requirements for cybersecurity risk

management regarding concept, product development, production, opera-

tion, maintenance and decommissioning of electrical and electronic systems

in road vehicles, including their components and interfaces. This standard

describes cybersecurity engineering from the perspective of a single item: an

item comprises all electronic equipment and software (i.e. its components) on

a vehicle that is involved in the realization of a specific functionality at vehi-

cle level and it interacts with its operational environment. This is one of the

most evident difference with EVITA, where the system under investigation

is the whole automotive on-board network. In this sense, ISO/SAE 21434

provides a more flexible framework which can be tailored to accommodate

the needs of a specific situation.

In the phase of Threat Analysis and Risk Assessment (TARA), the main

differences between [7] and [8] are in the terms and definitions (attack proba-

bility and severity in [8] become respectively feasibility and impact in [7], for

example), in the way the attack potential and risk values are discretized and

in the use of different risk matrices in the risk graph approach. The reader

is referred to Section 2.1 and to Clause 15, Annex F, Annex G of [7] for a

comparison.
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Figure 2.2: Relationship between terms and definitions in [7]

Following this standard, TARA comprises the following steps:

• asset identification: it is the identification of the assets, that is, the

components of the system which, losing a property of cybersecurity,

such as integrity, confidentiality and availability, generate a condition

of the vehicle or one of its functionality that can damage a road user;

• threat identification: it is the identification of threats, that is, the

causes of impairment of the asset that allow the realization of the con-

dition of damage to the road user;

• impact estimate: similarly to EVITA, it is the evaluation of the con-

sequences on the road user that would occur following the realization

of the damage condition with regard to safety, privacy, the financial

aspect and the operational aspect;

• attack tree analysis: is the description of the steps that allow the im-

plementation of the attack, that is the condition of damage to the road

user;

• vulnerability identification: it is the identification of system vulnera-

bilities that can be exploited to traverse an attack tree and then carry

out an attack;

• feasibility estimate: it is the assessment of the effort required to carry

out the attack, taking into account aspects such as the expertise or
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equipment required, the distance from the vehicle, the availability of

the necessary information;

• risk calculation: ISO/SAE 21434 gives an example where feasibility

is obtained by aggregating attack potential and discretized through

[7, Table G.7] into 4 levels (in EVITA there were 5); the maximum

value of impact among the safety, privacy, financial, operational fields

is retained; impact and feasibility are combined through [7, Table H.8]

to obtain risk on a 5 level scale (in EVITA there were 7/8 levels).

ISO/SAE 21434 still gives organizations the possibility of tailoring this

procedure.

Risk treatment provides that for each risk associated with a threat, a

treatment option is chosen from the following possibilities:

• risk avoidance: for example by eliminating the source that generates

the threats;

• risk reduction: defining controls that lower the feasibility of the attack

associated with the threat;

• risk sharing or transfer: for example through the stipulation of an

insurance;

• risk acceptance: its value is deemed acceptable.

2.3 Cost-effective risk treatment

2.3.1 General ideas

Taking as input the results of risk assessment, during risk treatment de-

cision makers are faced with the problem of allocating a finite amount of

resources in order to identify an adequate risk response. It is useful (and not

unrealistic) to assume that an organization has developed a general risk man-

agement strategy. This strategy makes explicit the assumptions, constraints,
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risk tolerances and priorities/trade-offs used within organizations for making

investment and operational decisions.

The scope of this work is to develop a quantitative structure for integrat-

ing the results of risk assessment in the decision making process. The idea

is to define quantities that measure various facets of a possible risk response

and optimize some criteria based on these quantities. Since the structure of

the problem naturally determines the presence of trade-offs and constraints,

the spontaneous formulation is a multi-objective optimization.

In this way, we think we are able to address the question of risk acceptance

and inform decisions about it. In a general scenario, an organization can

respond to risk in different ways: acceptance, avoidance, mitigation, sharing,

transfer or a combination of the above. However, in our application, we take

decisions only for what concerns mitigation and acceptance, as these are the

options that truly affect risks. A standard idea, in this situation, is to look

at the risk assessment results and define a threshold: all the risks under the

threshold are accepted, all the others must be mitigated. The appropriate

course of action is determined according to a unique global criterion applied

to one threat (and related risks) at a time. While it is easy to understand

and apply in practice, the definition of the threshold can sometimes be arbi-

trary or follow criteria that are not system-specific; this kind of method does

not really consider all the information we have on the system as a whole and

ignores further aspects of the problem, for example costs of implementation.

Facing a difficult decision with only one parameter, one degree of freedom,

can be limiting.

Conversely, in our setting a single risk deriving from a single threat is deemed

acceptable if the optimum solution tells us that we do not have to do any-

thing against it. We are just assuming to have some criteria of optimality.

One could argue that these criteria are as arbitrary as the one above, and

this is the truth; still, it is certain that we are capturing more about the com-

plex behaviour of risks and we are betting that this can be more informative

for decision makers than just fixing an acceptance threshold. We face the
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problem providing more flexibility to the decision maker, more room to play

with different parameters.

2.3.2 Use cases

ISO/SAE 21434 defines requirements in a generic manner such that it

can be applied to a variety of items and components, with the possibility of

carrying out a reuse analysis or integrating out-of-context and off-the-shelf

components. The standard applies to all tiers of the supply chain and pre-

scribes that if a product is developed (at any tier), the organization must

go through a cybersecurtity concept phase, described in [7], Clause 9. This

phase involves consideration of vehicle level functionality, as implemented in

items. The item and its operational environment are identified as an “Item

definition”, which forms the basis for the subsequent activities. This clause

also specifies cybersecurity goals for the item which are the highest level of

requirements. The cybersecurity concept consists of cybersecurity require-

ments and requirements on the operational environment, both of which are

derived from the cybersecurity goals and based on a comprehensive view of

the item. In this phase, threats are defined, related risks are evaluated and

appropriate cybersecurity controls are identified.

The optimization framework is thought to have a similar degree of adapt-

ability as ISO/SAE 21434, so that many possible use cases can be addressed.

In this work, we had in mind three use cases:

1. product development: OEM or supplier analyzes possible choices of

cybersecurity controls from the point of view of cost-effectiveness;

2. supplier out-of-context product development: an organization

develops a product prior to engagement or commercial agreement with

a customer; additional information on cybersecurity requirements by

customers for previously required and similar products can be used to

create a measure of customer satisfaction (see Section 2.4).
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3. supplier product development with customer requirements:

security controls specified by the customer are assumed to be already in

the risk treatment, decisions are made on additional controls. Customer

satisfaction can be tailored to fit this use case: we can either eliminate

it or use requirements made only by other customers to weigh how they

might be interested in the product.

However, adaptability is really the essence of the multi-objective optimization

method: for example, if another use case arises it is possible to introduce new

objective functions that measure new facets of that use case. Furthermore,

this modus operandi could be adapted to help decision making in other phases

of the product development cycle, other than concept phase (for example,

the weakness and vulnerability analysis during design and testing phases).

2.4 Mathematical formulation

In this section we introduce definitions and objects that are intended for

a static analysis, but in Chapter 3, where we develop a dynamic analysis,

these same objects become the initial values of stochastic processes. For this

reason, some of the notations include a subscript 0 to indicate the initial

time.

2.4.1 Inputs

Adopting definitions and terms from ISO/SAE 21434, we have a finite

number of threat scenarios and security controls against these threat scenar-

ios. The respective sets are TS and SC; we indicate the generic element

of TS with i and the generic element of SC with j, so that we often write

i ∈ TS and j ∈ SC.

There is a map from threat scenarios to security controls that mitigate them,

i.e. M : TS → P(SC):

M(i) := {j ∈ SC | j mitigates i}.
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From the output of risk assessment, conducted for example via ISO/SAE

21434, we retain the following data:

• for each i in TS, I i is the maximum value among the fields that compose

the impact vector (safety, financial, operational, privacy);

• for each i in TS, Fi
0 = (f i,10 , f i,20 , f i,30 , f i,40 , f i,50 ) is the feasibility vector

composed of expertise, knowledge of the item, equipment, window of

opportunity and elapsed time required to realize threat scenario i ;

• for each j in SC, Gj
0 = (gj,10 , gj,20 , gj,30 , gj,40 , gj,50 ) is the feasibility vector

composed of expertise, knowledge of the item, equipment, window of

opportunity and elapsed time required for the step of the attack path

that bypasses the security control j .

ISO/SAE 21434 describes the procedure to obtain risk from impact scalar

I and feasibility vector F. This function r = r(I,F) is briefly described in

Table 2.1 with its thresholds and cutoffs, while the reader is referred to [7]

for all the explanations. ∑5
h=1 f

h

[0, 13] [14, 19] [20, 24] [25, 57]

I=0 1 1 1 1

I=1 3 2 2 1

I=2 4 3 2 1

I=3 5 4 3 2

Table 2.1: ISO/SAE 21434 risk function

According to ISO/SAE 21434, however, risk values may also be deter-

mined by a risk formula defined by the organization. A customized formula

we will adopt is the following:

r(I,F) = round

(
1 + I ·

(
57−

∑5
h=1 f

h

57

)2
)

(2.4.1)
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where F = (f 1, f 2, f 3, f 4, f 5) is the feasibility vector, 57 is the maximum

possible sum of the components of F according to ISO/SAE 21434 (so that

(57−
∑5

h=1 f
h)/57 is a normalized value between 0 and 1) and the operator

round rounds a real number to the nearest integer.

These two risk function share two features: they take values on integers from

1 to 5 and they are increasing in I and decreasing in each component of

F. The motivation for the introduction of this new function can be seen in

(a) ISO/SAE 21434 (b) Customized

Figure 2.3: Risk functions comparison

Figure 2.3: customized risk function is more varied in the region where the

sum of feasibility components is higher than 25; thus, it differentiates risks

more than ISO/SAE 21434 risk function, which has a flatter profile in that

region.

Whatever the risk function r we decide to adopt, we now give some defini-

tions. For each i ∈ TS, we define

Ri := r(I i,Fi
0)

to be the risk of threat scenario i.

For each i ∈ TS, j ∈ SC we can compute Ri←j as the risk of threat scenario

i after the implementation of the security control j. In our application,

security controls influence feasibility of the attack paths and have no effect

on the impact of the damage scenario; the new feasibility is obtained by the

analysis of the attack paths: we consider the feasibility of the attack path
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plus a step that bypasses the security control by taking the feasibility vector

between Fi
0 and Gj

0 that maximizes the sum of its components:

Ri←j :=

r(I i, arg maxX∈{Fi0,G
j
0}
∑5

h=1 x
h) if j ∈M(i)

Ri = r(I i,Fi
0) if j /∈M(i)

(2.4.2)

By definition, Ri and Ri←j are integer from 1 to 5. We will clearly have that

1 ≤ Ri←j ≤ Ri, so that security measures never increase risk and in general

they do not eliminate it completely.

For each j ∈ SC, the cost of implementation is wj ∈ R, measured in

hours of effort required for the implementation.

In the use cases 1 and 2 from Subsection 2.3.2, we consider the prob-

lem from the eye of the supplier and we assume to have data on security

requirements made by OEMs in order to construct a measure of customer

satisfaction. We have a mapping that links each customer with their secu-

rity requirements. We can translate this map into a map from customers to

security controls that match requests CustReq : Cust→ P(SC):

CustReq(k) := {j ∈ SC | j matches k’s requests}

for each customer k ∈ Cust, where Cust is a set composed of OEMs and k

is the symbol for the generic element in Cust.

A decision is a choice of a subset sca of SC (an element of P(SC)), which

we will refer to as a security control alternative.

2.4.2 Objective functions

We present here the objective functions that we intend to optimize.

Definition 2.1. The average risk reduction (we will often refer to it simply

as risk reduction) after implementation of sca is:

∆Risk(sca) :=
1

|TS|
∑
i∈TS

(
Ri − min

j∈sca
Ri←j)
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It is a global measure of the performance of the sca on the whole system.

This formula comes from the assumption that the risk of a threat scenario i

after the implementation of a security control alternative sca is determined

by the most effective of the security controls in sca. We take the average

over the n threat scenarios so that the resulting value is normalized and is

on the scale prescribed by ISO/SAE 21434. If a decision maker considers

some threat scenarios more important than others, it is possible to introduce

non-uniform weights in the sum over TS. We consider the simpler uniform

case, but all the properties we show next generalize to all choices.

Clearly this objective function is meant to be maximized.

It is straightforward to see that we have the following monotonicity property.

Theorem 2.4.1 (monotonicity). Assume sca1, sca2 ∈ P(SC), sca1 ⊆ sca2.

Then

∆Risk(sca1) ≤ ∆Risk(sca2)

Another property is the subadditivity.

Theorem 2.4.2 (subadditivity). For all sca1, sca2 ∈ P(SC)

∆Risk(sca1 ∪ sca2) ≤ ∆Risk(sca1) + ∆Risk(sca2).

Proof. We can fix a threat scenario i and compare the i-th term of the sum

in ∆Risk(sca1∪sca2) with the i-th in ∆Risk(sca1)+∆Risk(sca2): we show

that

Ri − min
j∈sca1∪sca2

Ri←j ≤ (Ri − min
j∈sca1

Ri←j) + (Ri − min
j∈sca2

Ri←j).

We need to focus on the set of security controls that realize the minimum:

ArgMin(i) := {j ∈ sca1 ∪ sca2 |Ri←j = min
j∈sca1∪sca2

Ri←j}.

Let j be an element of ArgMin(i), j must be in sca1 or in sca2: suppose

j ∈ sca1, for example. Then

Ri − min
j∈sca1∪sca2

Ri←j = Ri←j = Ri − min
j∈sca1

Ri←j
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and the fact that Ri−minj∈sca2 R
i←j ≥ 0 gives us the result. If j ∈ sca2, we

proceed in the same way.

The interesting fact here is that, even for sca1, sca2 such that sca1∩sca2 =

Ø, it can happen that

∆Risk(sca1 ∪ sca2) < ∆Risk(sca1) + ∆Risk(sca2)

because the same threat scenario can be mitigated by a control in sca1 and

one in sca2 and there is no benefit from this cooperation in ∆Risk. This

situation is frequent in any application, as in ours (see Section 2.5).

Taking a closer look at the proof above, we notice that it is possible to

strengthen the result: ∆Risk satisfies the so called submodularity property.

Theorem 2.4.3 (submodularity). For all sca1, sca2 ∈ P(SC)

∆Risk(sca1 ∪ sca2) + ∆Risk(sca1 ∩ sca2) ≤ ∆Risk(sca1) + ∆Risk(sca2).

Proof. For each i ∈ TS, we show that:

(Ri − min
j∈sca1∪sca2

Ri←j) + (Ri − min
j∈sca1∩sca2

Ri←j)

≤ (Ri − min
j∈sca1

Ri←j) + (Ri − min
j∈sca2

Ri←j).

As above, let j be an element of ArgMin(i): suppose j ∈ sca1, for example.

Then

Ri − min
j∈sca1∪sca2

Ri←j = Ri←j = Ri − min
j∈sca1

Ri←j

and in general

Ri − min
j∈sca1∩sca2

Ri←j ≤ Ri − min
j∈sca2

Ri←j

because of monotonicity (sca1 ∩ sca2 ⊂ sca2).

Submodularity is an interesting property, which deserves a little digres-

sion. We introduce a more general framework in the next definition.
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Definition 2.2 (submodular set function). Let X be a set and v : P(X)→ R
a function. This kind of function is often referred as set function. v is said

to be submodular if

∀S, T ⊆ X, v(S) + v(T ) ≥ v(S ∪ T ) + v(S ∩ T ).

Notice that a non-negative submodular function is also a subadditive

function, but a subadditive function need not be submodular. Submodu-

lar functions have a natural characterization which makes them suitable for

many applications, as stated by the following result.

Theorem 2.4.4 (characterization of submodularity). Let X be a finite set

and v : P(X)→ R a function. These conditions are equivalent:

1. v is submodular;

2. ∀S, T ⊆ X with S ⊆ T and ∀x ∈ X \ T we have that

v(T ∪ {x})− v(T ) ≤ v(S ∪ {x})− v(S);

3. ∀S ⊆ T ⊆ X and U ⊆ X \ T we have that

v(T ∪ U)− v(T ) ≤ v(S ∪ U)− v(S).

Proof. 1 =⇒ 2) Condition 2 is an immediate instantiation of Condition 1.

2 =⇒ 3) Let U = {u1, . . . , un}.

v(T ∪ U)− v(T )

= v(T ∪ U)−
n∑
i=1

(
v(T ∪ {u1, . . . , ui})− v(T ∪ {u1, . . . , ui})

)
− v(T )

=
n∑
i=1

(
v(T ∪ {u1, . . . , ui})− v(T ∪ {u1, . . . , ui−1}

)
(2)

≤
n∑
i=1

(
v(S ∪ {u1, . . . , ui})− v(S ∪ {u1, . . . , ui−1}

)
= v(S ∪ U)− v(S)

where clearly v(T ∪ {u1, . . . , ui−1}) = v(T ) for i = 1.

3 =⇒ 1) Let S, T ⊆ X where we assume S 6= T . We define S ′ = S ∩ T ,
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U = S \ T , T ′ = T . Then by Condition 3

v(S ′ ∪ U)− v(S ′) ≥ v(T ′ ∪ U)− v(T ′)

def. S′,T ′,U⇐⇒ v((S ∩ T ) ∪ (S \ T ))− v(S ∩ T ) ≥ v(T ∪ (S \ T ))− v(T )

⇐⇒ v(S)− v(S ∩ T ) ≥ v(S ∪ T )− v(T );

by rearranging terms we obtain

v(S) + v(T ) ≥ v(S ∪ T ) + v(S ∩ T )

Condition 2 is the so called diminishing returns property: the difference

in the incremental value of the function that a single element makes when

added to an input set decreases as the size of the input set increases. In

our application, this condition informally states that it gets more difficult to

have a gain in ∆Risk by adding controls as the number of already present

controls increases.

Condition 3 is the group diminishing returns property, it does not add any

particular meaning but it is useful in the proof.

Notice that if X is not assumed to be finite, the conditions are not equiv-

alent. As a counterexample, let v(S) = 1 if S is finite and v(S) = 0 if S is not

finite: v satisfies the diminishing return condition 2, but is not submodular

(take S, T infinite sets, with finite intersection).

Returning to the mathematical formulation of our optimization problem,

we define another quantity that is involved in the objective functions.

Definition 2.3. The average customer satisfaction (we will often refer to it

simply as customer satisfaction) for sca is:

CustSat(sca) :=
1

|Cust|

( ∑
k∈Cust

∆Risk(sca ∩ CustReq(k))

)

where we have ∆Risk(J) = 0 if J = Ø.
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The formula looks involved but it can be interpreted as a projection of the

risk reduction onto the customer requirements. The main advantage of this

formula is that the defined quantity is comparable to the risk reduction, so

the two can be summed to have a single objective function. By comparable

we mean that average risk reduction and average customer satisfaction are on

the same scale (as one is defined through the other) and that they are in the

following relation, which is an immediate consequence of the monotonicity

property in Theorem 2.4.1:

CustSat(sca) ≤ ∆Risk(sca), ∀sca. (2.4.3)

CustSat inherits all the properties of ∆Risk, as they are preserved under

linear combinations and under the projection onto CustReq(k). In particu-

lar, CustSat is monotone and submodular.

Obviously, the customer satisfaction objective function is meant to be max-

imized.

Definition 2.4. The cost of an sca is:

Cost(sca) :=
∑
j∈sca

wj

Clearly, cost is intended to be minimized.

2.4.3 Optimization problems

With these definitions, we have defined a flexible framework where we

can formulate different problems. A multi-objective optimization problem

can be formulated as

min(u1(~x), . . . , uk(~x)) s.t. ~x ∈ X

where k ≥ 1 is the number of objectives (k ≥ 2 when the problem is truly

multi-objective), ~u : X → Rk, ~u(~x) = (u1(~x), . . . , uk(~x)) is the vector-valued

objective function and X is the feasible set. This is without loss of generality

as maximizing ui(~x) is equivalent to minimizing −ui(~x).
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In multi-objective optimization, there does not typically exist a feasible so-

lution that optimizes all objective functions simultaneously. Therefore, we

are interested in solutions that can not be improved in any of the objec-

tives without degrading at least one of the other objectives, Pareto optimal

solutions.

Definition 2.5. A feasible solution ~x1 ∈ X is said to Pareto dominate an-

other solution ~x2 ∈ X if ui(~x1) ≤ ui(~x2), ∀i and there exists j such that

uj(~x1) < uj(~x2).

A solution ~x ∈ X is called Pareto optimal if there does not exist another so-

lution that dominates it. The set of Pareto optimal outcomes is often called

the Pareto front or Pareto boundary.

In our application, here are some possible formulations.

Problem 2.1 (unconstrained multi-objective). We want to maximize the

sum of risk reduction and customer satisfaction while minimizing cost:

max
sca∈P(SC)

∆Risk(sca) + CustSat(sca), min
sca∈P(SC)

Cost(sca).

This can be generalized to include a multiplicative constant α that regulates

the importance that decision maker gives to customer satisfaction:

max
sca∈P(SC)

∆Risk + αCustSat(sca), min
sca∈P(SC)

Cost(sca).

α = 1 is the choice we will usually adopt.

α = 0 can be adopted for the third use case in Subsection 2.3.2, when the

supplier is developing the product for a single customer, in order to eliminate

the contribution of customer satisfaction.

A decision maker that wants to approximately put the same weight on risk

reduction and customer satisfaction can fix α = ∆Risk(SC)
CustSat(SC)

, which is greater

than 1 because of (2.4.3). This value of α is precisely intended to balance

the inequality in (2.4.3), at least in the case of a full decision sca = SC.

Because of (2.4.3), the objective function given by the sum of risk reduction

and customer satisfaction can be interpreted as a perturbation of the risk

reduction that takes into account the presence of customers.
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We can then lay out a constrained version.

Problem 2.2 (constrained). Let C be a determined budgetary capacity. We

want to maximize the sum of risk reduction and customer satisfaction under

the budget constraint:

max
sca∈P(SC)

∆Risk + αCustSat(sca) s.t. Cost(sca) ≤ C

We impose a constraint on cost and avoid a constraint on risk reduction

for two reasons: first, it is reasonable to assume that an organization has a

good estimate on the amount of money that can be allocated to risk treat-

ment; on the other hand, as we explained in Subsection 2.3.1, we want to

face the risk acceptance problem providing more flexibility and a constraint

on risk reduction would decrease it.

2.5 Example of application: static version

The use case under analysis in the example is the second use case of

Subsection 2.3.2: a tier 1 supplier is developing an out-of-context product

for its market composed of various customers. As the example arises from a

real threat analysis and risk assessment, we do not give all the information

at TARA level. In particular, we omit the details of the attack paths (which

would also be too long to report) and threat scenarios; we refer to threat

scenarios simply with their IDs (‘TS001’,‘TS002’,etc.). We omit names of

customers when reporting their requirements.

We outline the main aspects of this use-case adopting both ISO/SAE 21434

and 2.4.1 risk functions.

All computations are performed using MATLAB.

2.5.1 Inputs

In this example, we have a set TS composed of 9 threat scenarios, a set

SC composed of 6 security controls and a set Cust composed of 5 customers.
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There are 2|SC| − 1 = 26 − 1 = 64 − 1 = 63 possible decisions sca. Clearly,

decisions such that |sca| < 4 are not really effective against risk and can not

be considered in a serious decision making process, but we report results for

them anyway. With reference to the security solutions examples introduced

in Section 1.3, the available security controls in this example are: Secure

On-Board Communication, Secure Diagnostics, Secure Debug Access, Au-

thenticated Boot, Authenticated Software Update, Firewall.

In Table 2.2 and Table 2.3, we can see how security controls affect risk value

(through feasibility) of each threat scenario summarized by the Ri←j matrix,

obtained through formula 2.4.2 respectively with ISO/SAE 21434 risk func-

tion and (2.4.1) risk function. We only report the Ri←j matrices without

giving the details of the function M , the impacts and feasibility vectors that

determine this result.

In this example, costs of implementation are in Table 2.4 while customers’

requests are given by the CustReq function summarized in Table 2.5, where

‘x’ indicates that the customer on the row requires the security solution on

the column.

sec oc sec diag sec debug acc auth boot auth sw update firewall

TS004 1 4 4 4 4 4

TS005 4 1 4 4 4 4

TS006 3 3 2 2 3 3

TS007 5 2 5 5 5 5

TS008 4 2 4 2 2 4

TS009 4 4 4 4 4 3

TS010 3 3 3 2 3 3

TS011 4 2 4 2 2 4

TS014 3 3 2 3 3 3

Table 2.2: Ri←j with ISO/SAE 21434 risk function
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sec oc sec diag sec debug acc auth boot auth sw update firewall

TS004 1 3 3 3 3 3

TS005 3 2 3 3 3 3

TS006 2 2 2 1 2 2

TS007 4 2 4 4 4 4

TS008 4 2 4 2 2 3

TS009 3 3 3 3 3 2

TS010 2 2 2 2 1 2

TS011 3 2 3 1 1 3

TS014 3 3 2 3 3 3

Table 2.3: Ri←j with customized risk function

security control cost (hrs of effort)

Secure On-Board Communication 840

Secure Diagnostics 200

Secure Debug Access 280

Authenticated Boot 680

Authenticated Software Update 920

Firewall 160

Table 2.4: Estimated costs of implementation measured in hours of effort

sec oc sec diag sec debug acc auth boot auth sw update firewall

Cust 1 x x x x x

Cust 2 x x

Cust 3 x x x x x

Cust 4 x x x

Cust 5 x x

Table 2.5: Customers’ requests
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2.5.2 Optimization results: static version

As in the example there are not too many threat scenarios or security

controls, the unconstrained multi-objective formulation in Problem 2.1 is

sufficient: maximizing the combination of risk reduction and customer satis-

faction while minimizing cost. A constraint on cost would fit better the case

of a more wide range of decisions.

Here we explain details and legend of the figures, valid hereafter in this

work:

• ‘1’ denotes that the sca contains Secure On-Board Communication, ‘2’

Secure Diagnostics, ‘3’ Secure Debug Access, ‘4’ Authenticated Boot,

‘5’ Authenticated Software Update, ‘6’ Firewall;

• yellow line connects data points on the Pareto Front, where any of the

two objective functions can not be improved without degrading the

other;

• data points highlighted with cyan squares are four ‘special’ security

control alternatives: {2, 3, 5} is the sca which contains the most re-

quested security controls according to Table 2.5 (Secure Diagnostics,

Secure Debug Access and Authenticated Software Update); starting

from this one we have {2, 3, 4, 5}, {2, 3, 5, 6} and {2, 3, 4, 5, 6} which

respectively add Authenticated Boot, Firewall and both; the decision

maker knows in advance that these are practical and suitable to be

implemented in this use case, so that we could seek to validate their

goodness;

• ‘max risk left’ is an interesting discrete value that is not among the

objective functions involved in the optimization but still is reported in

the figure; for each sca, we assign a different colour according to this

value:

max
i∈TS

min
j∈sca

Ri←j.
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We report in Figure 2.4 the results for α = 1 and in Figure 2.5 for

α = ∆Risk(SC)
CustSat(SC)

= 1.8889
1.2444

= 1.5179, obtained adopting ISO/SAE 21434 risk

function.

In Figure 2.6, we report the results for α = 1 and in Figure 2.7 for α =
∆Risk(SC)
CustSat(SC)

= 1.4444
0.9333

= 1.5179, obtained adopting customized risk function.

We begin our analysis with some remarks on single security solution.

Secure On-Board Communication has an ambivalent nature. No customer

requires this solution yet (see Table 2.5) because it is known that it is really

difficult to implement it in practice: it involves more than one ECU (at

least the one transmitting the authenticated and/or encrypted message and

all the the ECUs receiving that message); on top of that, it relies upon

the complex mechanisms of key negotiation and update between all involved

ECUs. However, despite its high cost (see Table 2.4), in this experiment

Secure On-Board Communication is often present on the Pareto frontier (as

it can be seen in the Figures). This is due to the fact that Secure On-

Board Communication is the only solution that mitigates threat scenario

‘TS004’; its risk before mitigation is 4 for ISO/SAE 21434 risk function

and 3 for customized risk function and after the implementation of Secure

On-Board Communication it becomes respectively 2 and 1 (see Tables 2.2,

2.3), which represents an important risk reduction. What we want to prove,

both with quantitative and qualitative arguments, is that we can avoid the

implementation of Secure On-Board Communication and still achieve a good

performance of the risk response; in a certain sense this means that the risk

of threat scenario ‘TS004’ is acceptable, and risk acceptability is the central

question we are addressing in this work.

All the the decisions that do not include Secure Diagnostics (numbered

as ‘2’ in the figures) have the higher ‘max risk left’ (5 for ISO/SAE 21434,

4 for customized risk function); that is because Secure Diagnostics is the

only solution that mitigates ‘TS007’ which has maximum risk. Then, Secure

Diagnostics is one of the most required solution by customers (see Table 2.5)

and has a low cost (200 hrs of effort). In general, the absence of Secure
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Diagnostics determines a worst result in ∆Risk + α · CustSat (it is more

evident with ISO/SAE 21434 than with customized risk function, but true

for both). All this evidence states that Secure Diagnostic must be present in

any meaningful decision sca.

As mentioned before, sca = {2, 3, 5} has a special role because it is com-

posed by the most requested security controls in Table 2.5. Assuming {2, 3, 5}
as a starting point, we analyze possible courses of action that do not include

Secure On-Board Communication (1). We introduce the following metric,

which will guide us in the analysis.

For compactness, we introduce this notation:

Σα(sca) := ∆Risk(sca) + α · CustSat(sca).

Definition 2.6 (cost-effectiveness). Let sca1, sca2 ∈ P(SC) be decisions

such that sca1 ∩ sca2 = Ø. Then the cost-effectiveness Γ of adding sca2 to

sca1 is

Γ(sca1 ← sca2) :=
Cost(sca1 ∪ sca2)− Cost(sca1)

(Σα(sca1 ∪ sca2)− Σα(sca1)) · 10

=
Cost(sca2)

(Σα(sca1 ∪ sca2)− Σα(sca1)) · 10

Γ(sca1 ← sca2) measures the hours of effort required to obtain a 0.1 gain

in ∆Risk + α · CustSat by implementing sca2 in addition to sca1. In this

sense, lower values of Γ are to be preferred.

Proposition 2.5.1. Γ is increasing in the first argument, meaning that for

sca1, sca2, sca3 such that sca1 ⊂ sca2, sca3 ∩ sca2 =Ø we have

Γ(sca1 ← sca3) ≤ Γ(sca2 ← sca3).

Proof. Σα is submodular because it is a linear combination of ∆Risk, which

is submodular (Theorem 2.4.3). Then Σα satisfies the diminishing return

condition from Theorem 2.4.4 and it means that

Σα(sca1 ∪ sca3)− Σα(sca1) ≥ Σα(sca2 ∪ sca3)− Σα(sca2).
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These gains are in the denominator of Γ(sca1 ← sca3),Γ(sca2 ← sca3), hence

the result.

In Figures 2.4, 2.5, 2.6, 2.7, the quantity Γ(sca1 ← sca2) represents the

slope (divided by 10) of the line that connects the data points

(Cost(sca1),Σα(sca1)) ; (Cost(sca1 ∪ sca2),Σα(sca1 ∪ sca2)).

In Table 2.6 we report the cost-effectiveness of adding {4}, {6}, {4, 6} to

{2, 3, 5} (the possible courses of action starting from {2, 3, 5}).

ISO/SAE 21434 customized

α = 1 α = 1.5179 α = 1 α = 1.5476

Γ({2, 3, 5} ← {4}) 437 381 219 189

Γ({2, 3, 5} ← {6}) 103 90 103 89

Γ({2, 3, 5} ← {4, 6}) 270 235 180 156

Γ({2, 3, 5, 6} ← {4}) 437 381 219 189

Table 2.6: Cost-effectiveness analysis

From the table we observe that

Γ({2, 3, 5} ← {4}) > Γ({2, 3, 5} ← {4, 6}) > Γ({2, 3, 5} ← {6})

whatever the risk function and α we choose. Therefore, adding Firewall (6) to

{2, 3, 5} looks like the most cost-effective course of action. However, at least

qualitatively, we have to account the fact that Σα has the diminishing return

property; it informally means that it gets more difficult to have a gain in Σα

as the value of Σα increases. In this sense, the results for Γ({2, 3, 5} ← {4, 6})
do not look so bad, considering Σα(sca = {2, 3, 4, 5, 6}) is sensibly greater

than Σα(sca = {2, 3, 5, 6}) (as it can be seen in the Figures). Observing that

Γ({2, 3, 5} ← {4}) = Γ({2, 3, 5, 6} ← {4})

whatever the risk function and α we choose, we highlight that Authenticated

Boot (4) and Firewall (6) have no overlap in their effect on our objective Σα:
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when added to {2, 3, 5}, the gains that they bring are complementary. We

conclude that Authenticated Boot (4) and Firewall (6) can be implemented

together on top of the most requested solutions with a good cost-effectiveness.

We observe in conclusion that the considerations above are true whatever

the risk function and α, but their validity is amplified when we choose α =
∆Risk(SC)
CustSat(SC)

and customized risk function. As we can see in Figure 2.7, sca =

{2, 3, 4, 5, 6} reaches the Pareto optimality with these choices.
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Figure 2.4: Results with ISO risk function, α = 1
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Figure 2.5: Results with ISO risk function, α = 1.5179
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Figure 2.6: Results with customized risk function, α = 1
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Figure 2.7: Results with customized risk function, α = 1.5476



Chapter 3

Dynamic evolution of risk

3.1 Practical observations on risk evolution

Risk assessment is conducted considering available information on threats

and security solutions at the time of development. However, the average

lifespan of a vehicle is 10/15 years during which many aspects considered into

the assessment can, and in fact will, change: technology improves, malicious

attackers gain expertise about the system they are attacking, vulnerabilities

are discovered, attack methods become well known, knowledge under non-

disclosure agreement may become less secret due to data leakage and all the

other infinite possibilities.

The aim of this chapter, clearly, is not predicting future. The idea is to

introduce a non-deterministic model that takes into consideration that risk

evolves and tries to capture some basic intuitions that experts have on how

this evolution looks like. Estimations of future risk through this dynamic

model and other derived quantities can then be plugged in the optimization

framework introduced in Section 2.4 or in other types of analysis.

Risk of a threat scenario is obtained from the impact of the associated

damage scenarios and the attack feasibility of the associated attack paths,

as we detailed in Sections 2.1 and 2.2. It is reasonable to assume that the

impact value stays constant, as the effects produced by the realization of an

39
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attack are always the same. Conversely, we want to model the evolution of

the fields determining the feasibility, as they are the ones that are clearly

influenced by ever-changing external factors like the ones mentioned before.

The mathematical tool we have decided to adopt for this purpose is a

well-known and deeply studied object: discrete-time Markov chains. We

give a brief presentation of the first simple definitions, results and formalism

for Markov chains in Appendix A.

One could ask the rationale of this particular modeling tool in this particular

application. After all, we could have modeled just the distribution of the

random variable of interest at final time, without needing to introduce pro-

cesses and Markov dynamics. The motivations of this choice are to be found

in the use case examples. In the first place, when it came to estimating the

distributions according to which feasibility values evolved, it has immediately

become clear that it was easier and more solid to estimate a 5 years transi-

tion rather than a 15 years one, so that we needed to model entire processes

rather than just final random variables. This choice offers also the advantage

of letting us compute interesting quantities at intermediate times, which is

not possible if we model only a random variable. It could be interesting con-

sidering that common contracts in the automotive industry (between parties

at different levels of the supply chain) are structured with an initial period

of maintenance and an optional period to be renegotiated after 3/5/6 years.

After these considerations, a Markov type dynamic is the most natural choice

in absence of further information.

3.2 Markov chains and expected values

3.2.1 Definitions

We adopt definitions, terms and formalism from Appendix A.

For k ∈ {1, . . . , 5}, Pk = ((pk)h,l)
|Sk|−1
h,l=0 is the transition matrix for the k-th

field of feasibility and its dimension is |Sk|×|Sk|. Pk is the same for all threat

scenarios and security controls.
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δ(f i,k0 ) is the initial distribution of the k-th field for a given threat scenario

i ∈ TS ( δ(gj,k0 ) for a given security control j ∈ SC): it is a row vector

all centered in the initial estimate given by the risk assessment (so it is a

Dirac δ). This assumption is natural and simple but can be debated: one

of the advantages of the setup is that it is possible to introduce some degree

of uncertainty by changing the initial distribution if one thinks that the

estimation of the initial value has some margin of error.

As we will detail in the example, the transition matrices Pk are not full

because we assume that the processes have a decreasing direction and some

transitions are not allowed. In particular the transition matrices have a

diagonal block structure (resulting from transitions that are not allowed) and

are lower triangular (resulting from the decreasing direction). Consequently,

in the application many of the transition probabilities involved are null and

we will use this sparsity to simplify computations.

For each i ∈ TS, we define five stochastic processes on a probability space

(Ω,F ,P). These represent the five feasibility fields for threat scenario i from

initial time n = 0 to final time N > 0, N ∈ N. With the notation introduced

after Theorem A.2.1, we give the following definitions:

• (F i,1
n )Nn=0 is the specialist expertise, takes integer values in S1 = [0, 8]

and is a Markov(δ(f i,10 ), P1) chain;

• (F i,2
n )Nn=0 is the knowledge of the item, takes integer values in

S2 = [0, 11] and is a Markov(δ(f i,20 ), P2) chain;

• (F i,3
n )Nn=0 is the equipment, takes integer values in S3 = [0, 9] and is a

Markov(δ(f i,30 ), P3) chain;

• (F i,4
n )Nn=0 is the window of opportunity, takes integer values in

S4 = [0, 10] and is a Markov(δ(f 4,1
0 ), P4) chain;

• (F i,5
n )Nn=0 is the elapsed time, takes integer values in S5 = [0, 19] and is

a Markov(δ(f i,50 ), P5) chain;
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where (f i,10 , f i,20 , f i,30 , f i,40 , f i,50 ) is the output of the risk assessment as in

Subsection 2.4.1. We use the notation Fi
n = (F i,1

n , F i,2
n , F i,3

n , F i,4
n , F i,5

n ) for the

whole random vector.

Similarly, for each j ∈ SC, we define five stochastic processes on the

probability space (Ω,F ,P). These represent the five feasibility fields for the

step of the attack path that bypasses security control j from initial time

n = 0 to final time N > 0:

• (Gj,1
n )Nn=0 is the specialist expertise and takes integer values in S1 = [0, 8]

and is a Markov(δ(gj,10 ), P1) chain;

• (Gj,2
n )Nn=0 is the knowledge of the item, takes integer values in

S2 = [0, 11] and is a Markov(δ(gj,20 ), P2) chain;

• (Gj,3
n )Nn=0 is the equipment, takes integer values in S3 = [0, 9] and is a

Markov(δ(gj,30 ), P3) chain;

• (Gj,4
n )Nn=0 is the window of opportunity, takes integer values in

S4 = [0, 10] and is a Markov(δ(gj,40 ), P4) chain;

• (Gj,5
n )Nn=0 is the elapsed time, takes integer values in S5 = [0, 19] and is

a Markov(δ(gj,50 ), P5) chain;

where (gj,10 , gj,20 , f j,30 , f j,40 , f j,50 ) is the output of the risk assessment, as in Sub-

section 2.4.1. We use the notation Gi
n = (Gi,1

n , G
i,2
n , G

i,3
n , G

i,4
n , G

i,5
n ) for the

whole random vector.

We assume the following independence property.

Proposition 3.2.1. For all i ∈ TS, j ∈ SC, the defined processes are as-

sumed to be independent in (Ω,F ,P).

3.2.2 Expected values and risk aversion

In this new setup, for each i ∈ TS, j ∈ SC, Ri and Ri←j become the initial

values of stochastic processes (Ri
n)Nn=0 and (Ri←j

n )Nn=0, as they are functions
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of feasibility vectors, which we now modeled as random. We directly obtain

expected values of these quantities, for example E
[
Ri
n

]
= E

[
r(I i,Fi

n)
]

(we

drop for a moment the superscript i ∈ TS for simplicity, i is fixed):

E
[
Rn

]
= E

[
r(I,Fn)

]
=

∑
~f=(f1,f2,f3,f4,f5)

r(I, ~f)P(Fn = ~f)

(3.2.1)
=

∑
~f

r(I, ~f)P(F 1
n = f 1)P(F 2

n = f 2)P(F 3
n = f 3)P(F 4

n = f 4)P(F 5
n = f 5)

=
∑
~f

r(I, ~f)(δ(f 1
0 )P n

1 )f1(δ(f
2
0 )P n

2 )f2(δ(f
3
0 )P n

3 )f3(δ(f
4
0 )P n

4 )f4(δ(f
5
0 )P n

5 )f5

=
∑
~f

r(I, ~f)pnf10 f1
pnf20 f2

pnf30 f3
pnf40 f4

pnf50 f5
(3.2.1)

where pn
fk0 f

k is the element on the fk0 -th row and fk-th column of P n
k . In

the third line we used the n-step probability result in A.2.2; in the fourth

line the definition of Dirac’s δ.

Aforementioned sparsity of transition matrices luckily simplifies this compu-

tation as many of the transition probabilities in the last line are null.

Proceeding in a similar way by exploiting independence in Proposition 3.2.1,

we are able compute E
[
Ri←j
n

]
. However, calculations get more complicated

as Ri←j
n is a function of both Fi

n and Gj
n, so that the number of possible

realizations we need to include in the sum squares.

More importantly, for each sca ∈ P(SC) and n ∈ [1, N ] ∩ N, we are

interested in the quantities

∆Riskn(sca), CustSatn(sca)

where, in the same way as above for Ri and Ri←j, ∆Risk(sca), CustSat(sca)

from Definition 2.1 and Definition 2.3 become initial values for the stochastic

process (∆Riskn(sca))Nn=0, (CustSatn(sca))Nn=0.

As we have introduced a non-deterministic framework, we have to establish

an attitude towards risk, where risk is intended in the sense of the stochastic-

ity of the quantity of interest. We have to consider that the simple expected
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value is not representative enough of a distribution. We want to model a

risk adverse decision maker. In economics and finance, risk aversion explains

the inclination of people to prefer an outcome with low uncertainty to an

outcome with high uncertainty, even if the expected return of the latter is

equal to or higher than the expected return of the more certain outcome. For

example, a risk adverse investor, faced with the choice of putting money into

a bank account with a low but almost certain interest rate or buying a stock

which could have high or null returns, prefers the first option. In our case, re-

turns are represented by a combination of ∆Riskn(sca) and CustSatn(sca).

In this kind of setting we employ two techniques (mutually exclusive in their

application) in order to enforce risk aversion:

• we model a utility function of the quantity of interest;

• we account for extreme events in the tail of the distribution of the

quantity of interest.

These concepts and the related choices we make in our application deserve a

little digression.

Expected utility theory

Utility functions are a tool for modeling risk attitudes. These functions

are defined are only up to positive affine transformation: adding a constant

or multiplying by a positive constant do not affect the conclusions we draw

with our analysis.

Definition 3.1 (utility function). A utility function of a risk adverse decision

maker is a function u : R≥0 → R which is non decreasing and concave.

Utility functions are only non decreasing, concavity characterizes risk

aversion.

In our application, we opt for the isoelastic utility function:

u(c) :=

 c1−η

1−η for η ≥ 0, η 6= 1

log(c) for η = 1.
(3.2.2)
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Affine transformations do not affect decision making and the term −1 in the

numerator is included just to establish the limit

lim
η→1

c1−η

1− η
= log(c).

This class of utility functions has the following property, referred as constant

relative risk aversion: for all c ≥ 0

−c · u
′′(c)

u′(c)
= η.

This intuitively means that the risk aversion of the isoelastic utility takes

into account the scale of c.

In the applied example of Section 3.3, we choose η = 1
2

and η = 1 (which

implies u = log).
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Figure 3.1: Plot of isoelastic utility for η = 1
2

In our analysis we are then led to the following multi-objective optimiza-

tion problem.

Problem 3.1 (expected utility). We fix a time n ∈ [1, N ] ∩ N and a utility

function u. We want to maximize the expected utility of the sum of risk

reduction and customer satisfaction at time n while minimizing cost:

max
sca∈P(SC)

E
[
u(∆Riskn(sca) + CustSatn(sca))], min

sca∈P(SC)
Cost(sca).
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While we have addressed the issue of attitude towards uncertainty, this

formulation has its downfalls; the most evident is that the utility u takes

an input with a precise meaning (in our case the sum of risk reduction and

customer satisfaction) and produces an output which could take any value

in R. We are accounting for uncertainty but we are losing in capacity of

interpretation of results: expected utility can be used only to identify optimal

decision, but we can not use these expected values in a quantitative cost-

effectiveness analysis as we did in Subsection 2.5.2.

Evaluation of extreme events

In financial risk management, a quite old and simple idea is Roy’s safety-

first criterion. It is a criterion of selection of a portfolio based on minimizing

the probability of the portfolio’s return falling below a minimum desired

threshold. With a slight variation of this idea, we can think of maximizing

expected return subject to the constraint that the probability of the return

falling below the threshold must be less that a certain safety level.

We mimic these techniques in our context. We consider the probability of

the sum of risk reduction and customer satisfaction falling below a threshold:

P(∆Riskn(sca) + CustSatn(sca) ≤ λ).

The threshold λ must be in some way dependent of the sca under consider-

ation. We choose

λ := C · E
[
∆Riskn(sca) + CustSatn(sca)]

where C ∈ (0, 1] represents the kind of deviation from the expected value

that the decision maker is worried about. In the applied case we set for

example C = 0.9 which means that the decision maker considers a 10% de-

viation from the expected value as an undesired outcome.

We reach a formulation of the problem where we avoid setting a safety level

(as suggested by the aforementioned criterion) and we just include the prob-

ability as an objective function that we want to minimize.
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Problem 3.2 (evaluation of extreme events). Consider the following multi

objective optimization problem:

• maxsca∈P(SC) E
[
∆Riskn(sca) + CustSatn(sca)];

• minsca∈P(SC) Cost(sca);

• minsca∈P(SC) P(∆Riskn(sca) + CustSatn(sca) ≤ λ)

The advantage of this formulation is that the expected value remains an

interpretable quantity, there is no transformation as in the expected utility

method. The disadvantage can be found in the fact that the conclusions

drawn from this method highly depend on the parameter λ (so in our case

C); the decision maker must have a good idea of what kind of deviations are

considered undesirable.

3.2.3 Monte Carlo simulation and details

In both methods introduced above, we need to compute the expected

values

E
[
u(∆Riskn(sca) + CustSatn(sca))]

E
[
∆Riskn(sca) + CustSatn(sca)]

P(∆Riskn(sca) + CustSatn(sca) ≤ λ) = E
[
1(∆Riskn(sca)+CustSatn(sca)≤λ)]

and this task presents some challenges. We can not simply reduce ourselves

to the computation of E[Ri
n] and E[Ri←j

n ], because of the presence of the util-

ity function u or simply the minimization minj∈sca in Definition 2.1: any hope

of exploiting linearity of the E operator is disrupted. An exact calculation

would be more difficult than the one in (3.2.1), as there are too many un-

derlying processes to consider that generate too many possible realizations:

∆Riskn(sca) and CustSatn(sca) are function of the whole set of random

variables {Fi
n}i∈TS, {Gj

n}j∈SC . Even sparsity is not really of any help.

We opt for a Monte Carlo simulation of the Markov chains. For each process
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(there are 5 · (|SC|+ |TS|) of them), we sample trajectories from their distri-

bution and compute ∆Riskn(sca)+CustSatn(sca) on those trajectories. By

iterating this simulation we estimate the expected value, computing averages

and invoking the strong law of large numbers . We remark how the indepen-

dence assumption in Proposition 3.2.1 simplifies sampling because we only

need the distributions of each Markov chain (entirely described by initial

distributions and transition matrices in the definitions above, see Theorem

A.2.1) and do not have to model a joint distribution.

One can generate an N -step path of a Markov chain with given transition

probabilities and initial distribution as in the end of Appendix A. We put

into practice this idea in MATLAB through a function that samples from

the appropriate distribution the next state x of a Markov chain given its

actual state x0 and its transition matrix P . We use a simple counter to im-

plement the sampling, following the pseudo-code in Algorithm 1. Iterating

this procedure N times, we simulate an N -step path.

Algorithm 1 sampling next state from the chain distribution

procedure nextstate(P, x0)

cdf ← cumsum(P (x0 + 1, :)); . cumsum computes the CDF

ctr ← 1;

u← rand; . rand samples a number from U [0, 1]

while u > cdf(ctr) do

ctr ← ctr + 1;

end while

x← ctr − 1; . ctr initialized as 1, space state starts from 0

return x

end procedure

With the same simulation strategy, we are able to expected values of any

function involving the quantity

∆Riskn(sca) + α · CustSatn(sca), α =
∆Riskn(SC)

CustSatn(SC)
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and repeat the analyses proposed in the previous Section for this choice of

α.

A feature of the Monte Carlo method is that the sample size of the simu-

lation can be chosen via the theory of confidence intervals in order to attain

a given accuracy. Here we give a brief presentation of the results we need.

In probability theory the central limit theorem (CLT) establishes that, un-

der the right assumptions, when i.i.d. random variables are averaged, their

properly normalized average tends toward a normal distribution even if the

original variables themselves are not normally distributed. More formally:

Theorem 3.2.2 (Central limit). If (Xn)n∈N is a sequence of i.i.d. random

variables in L2(Ω,P) with E
[
Xi

]
= µ and V ar

[
Xi

]
= σ2, then as n→∞

Mn − µ
σ√
n

d−→ Z ∼ N (0, 1)

where Mn := 1
n

∑n
k=1 Xk

Proof. It follows directly from Lévy’s continuity theorem and analysis of the

characteristic function. We refer to [11] for all the details of the proof.

The central limit theorem can be formulated in this way:

Mn ' µ+
σ√
n
Z ∼ N

(
µ,
σ2

n

)
, for n� 1

as a detail of the convergence result in the law of the large numbers (' means

that the two variables have approximately the same distribution).

An average of the kind of Mn naturally appears in the Monte Carlo method,

as the approximation is obtained by averaging all simulations. Under the

hypotheses of central limit theorem, we have that

P(|Mn − µ| ≤ λ
σ√
n

) = P(|Z| ≤ λ) = 2F (λ)− 1

where F is the CDF of the standard normal distribution

F (x) =

∫ x

−∞

1√
2π
e−

y2

2
dy.
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If we want to approximate µ with Mn, we fix a confidence of p = 99% (for

example) and we get λ = F−1(p+1
2

) ≈ 2.57 so that

P(|Mn − µ| ≤ 2.57
σ√
n

) ' 99%.

r99 := 2.57 σ√
n

is the radius of the 99% confidence interval for µ: it means

that the unknown expected value µ belongs to [Mn − 2.57 σ√
n
,Mn + 2.57 σ√

n
]

with 99% probability. It is important to notice that in this computation we

cannot use true variance σ2 and true mean µ (which defines σ2 and is the

unknown). We have to resort to the approximation given by the (corrected)

sample standard deviation

σn =

√√√√ 1

n− 1

n∑
k=1

(Xk −Mn)2.

In the end it is possible to choose the sample size n in order to shrink the

estimated numerical error r99 towards the desired accuracy. In some cases,

we also monitor the relative numerical error

r99

|
∑n

k=1Xk|
.

3.3 Example of application: dynamic version

We take the inputs from the static application (Subsection 2.5.1) as ini-

tial states of our simulation.

Among the five fields that define feasibility, we assume that specialist exper-

tise and window of opportunity are deterministic, because they are in a cer-

tain sense an intrinsic feature of an attack method. Elapsed time, knowledge

of the system under investigation and equipment are the non-deterministic

quantities. This assumption can be debated, but if one has another opinion

it is easy to make a change within such a flexible framework. Following the

scale in [8, Table 5] we assume that these non-deterministic quantities are

decreasing, so that the sum of the feasibility components decreases and risk
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increases in time.

In the example we consider a horizon of 15 years and a transition time of 5

years. Translating to the formalism introduced in the previous Section we

have n ∈ {0, 1, 2, 3}, so that n = 0 is initial time, n = 1 is 5 years, n = 2 is

10 years, n = 3 is 15 years.

Here is an example of a transition matrix (in this case the matrix P4 for the

equipment field). We remark the diagonal block, lower triangular structure,

whose meaning has already been explained.

((p4)h,l)
9
h,l=0 =



1 0 0 0 0

0.2 0.8 0 0 0

0.1 0.3 0.6 0 0

0.05 0.15 0.25 0.55 0

0.05 0.1 0.15 0.2 0.5

0

0

1 0 0 0 0

0.3 0.7 0 0 0

0.2 0.2 0.6 0 0

0 0 0.2 0.8 0

0 0 0.05 0.15 0.8


Transition matrices for knowledge of the item and elapsed time have the same

structure, we do not report them here. We notice the diagonal dominance

and the increasing probabilities along the rows: that is intended to model a

process which tends to stay on its current state and if it moves from it has a

higher probability of moving towards near lower states.

We now show results obtained through simulation of the Markov chains

(see Subsection 3.2.3) in the 10 years projection (n = 2) adopting cus-

tomized risk function and with particular choices for the parameters of Prob-

lem 3.1 (η = 1
2
) and Problem 3.2 (C = 0.9). Similar conclusions can be

drawn for other choices of time (in particular for n = 3) and parameters

(η = 1 =⇒ u = log for example); we just want to highlight an example of

the kind of comments and insights that can be developed within this frame-

work, avoiding too many repetitions.
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For this application, we keep results only for sca such that |sca| ≥ 4 and for

sca = {2, 3, 5} which is composed of the security controls most requested by

customers.

The number of simulations has been chosen following the theory of confi-

dence intervals (see Subsection 3.2.3). If we denote with X(sca) the random

variable whose expected value we want to approximate and with r99[X(sca)]

the radius of the 99% confidence interval for that expected value, the num-

ber of simulations has been set in order to shrink the maximum absolute and

relative radius among all sca considered:

Rabs
99 [X] := max

{sca:|sca|≥4}∪{2,3,5}
r99[X(sca)]

Rrel
99 [X] := max

{sca:|sca|≥4}∪{2,3,5}

r99[X(sca)]

|E[X(sca)]|
;

the accuracy obtained with 2000 iterations has been deemed to be good

enough and in the next sections we discuss all the details.

Results obtained with ISO/SAE 21434 risk function go in the same direction

and we do not report them here.

3.3.1 Remarks on expected utility

We report results for Problem 3.1 with n = 2, η = 1
2
: in Figure 3.2 α is

set to 1, in Figure 3.3 we set α as the random variable ∆Risk2(SC)
CustSat2(SC)

.

Overall, the scenario is evidently different from the one in the static version.

{2, 3, 4, 5, 6} is stably present on the Pareto frontier together with {2, 3, 4, 5}.
This is more evident when α = ∆Risk2(SC)

CustSat2(SC)
. We can not go deeper in this

analysis because, as explained before, the presence of the transformation u

does not allow any quantitative analysis and expected utility method can be

used only to identify a preference order among security control alternatives.

For compactness, we reintroduce the notation

Σα
2 (sca) := ∆Risk2(sca) + α · CustSat2(sca).

In Table 3.1, we observe the accuracy in the approximation of E[u(Σα
2 (sca))]

obtained after 2000 simulation samples, in terms of radius and relative radius
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of the confidence. This type of accuracy certifies that computational error

does not affect the insights provided above.

α = 1 α = ∆Risk2(SC)
CustSat2(SC)

Rabs
99 [u(Σα

2 )] 0.0157 0.0170

Rrel
99 [u(Σα

2 )] 0.0068 0.0067

Table 3.1: 99% confidence intervals for expected utility with 2000 simulations
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Figure 3.2: Results for expected utility: 10 years projection, customized risk

function, α = 1, η = 1
2
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Figure 3.3: Results for expected utility: 10 years projection, customized risk

function, α = ∆Risk2(SC)
CustSat2(SC)

, η = 1
2

3.3.2 Remarks on evaluation of extreme events

We report results for Problem 3.2 with n = 2, C = 0.9: in Figure 3.4

α is set to 1, in Figure 3.5 we set α as the random variable ∆Risk2(SC)
CustSat2(SC)

.

We used a gradient of colour in order to visualize P(Σα
2 (sca)) ≤ λ), where

λ = C ·E[Σα
2 (sca)]: from blue (10% of going below threshold) to yellow (over

30%).

The choice C = 0.9 is motivated by decision maker preference: for C = 0.75

the probabilities tend to become trivial (almost no outcome is under the

threshold) and C > 1 does not really make sense in representing ‘extreme

events’; C = 0.9 seems like a good compromise.

With regard to the error in the approximation of expected values, we need

to make a distinction. Looking at Table 3.2, the maximum radius of the

99% confidence intervals, both absolute and relative, for the expected value

of Σα
2 (sca) show that 2000 simulation samples ensure a good approximation.

In contrast, as it is possible to see in Table 3.3, the error in estimating

P(Σα
2 (sca)) ≤ λ) is more impactful: a spread of almost ±3% in a quantity

that ranges from 10% to 35% can not be ignored. As we would need a huge
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number of iterations to shrink these values (about 10000 to achieve a ±1%

spread), we opt for just accounting for this error and being cautious in our

analysis when this probability is involved.

Again, even with the measure of the simple expected value without utility,

{2, 3, 4, 5, 6} is present on the Pareto frontier. We notice that {2, 3, 4, 5}
achieves a much better performance than {2, 3, 5, 6} in terms of Σα

2 . These

facts strengthen in a future projection what we already said in Section 2.5.

In Table 3.4, we compare the three sca composed of 5 security controls that

have the best Σα
2 . We argue that {2, 3, 4, 5, 6} is the most cost-effective:

only {1, 2, 3, 4, 5} has a better Σα
2 , but it also costs about 700 hours of effort

more; {2, 3, 4, 5, 6} furthermore proves to always be among the sca with small

P(Σα
2 (sca)) ≤ λ), with for example a mere 8.75% of going under the threshold

when α = ∆Risk2(SC)
CustSat2(SC)

.

α = 1 α = ∆Risk2(SC)
CustSat2(SC)

Rabs
99 [Σα

2 ] 0.0182 0.0217

Rrel
99 [Σα

2 ] 0.0136 0.0134

Table 3.2: 99% confidence intervals for E[Σα
2 (sca))] with 2000 simulations

α = 1 α = ∆Risk2(SC)
CustSat2(SC)

Rabs
99 [1Σα2≤λ] 0.0270 0.0268

Table 3.3: 99% confidence intervals for P(Σα
2 (sca)) ≤ λ) with 2000 simula-

tions, λ = 0.9 · E[Σα
2 (sca)]
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P(Σα
2 (sca)) ≤ λ) E[Σα

2 (sca)]

α = 1 α = ∆Risk2(SC)
CustSat2(SC)

α = 1 α = ∆Risk2(SC)
CustSat2(SC)

sca = {1, 2, 3, 4, 5} 14.7% 10.5% 2.169 2.634

sca = {1, 2, 4, 5, 6} 18.4% 16.7% 2.046 2.466

sca = {2, 3, 4, 5, 6} 14.9% 8.75% 2.098 2.575

Table 3.4: P(Σα
2 (sca)) ≤ λ) and E[Σα

2 (sca)] for some interesting sca, λ =

0.9 · E[Σα
2 (sca)]
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Figure 3.4: Results for extreme events analysis: 10 years projection, cus-

tomized risk function, α = 1, C = 0.9
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Figure 3.5: Results for extreme events analysis: 10 years projection, cus-

tomized risk function, α = ∆Risk2(SC)
CustSat2(SC)

, C = 0.9





Conclusions

At the end of this work, we can draw some final insights about what has

been done and what can be done in the future.

We have formalized the problem of decision making in cybersecurity and

built a framework for the evaluation of possible courses of action. The tool

can be useful in different moments of the product development process: from

concept phase, where the security controls to be implemented are selected

according to the results of risk analysis; through vulnerability analysis during

design and testing, where further solutions may be added in order to fulfil

the defined cybersecurity specifications; to the post-production phase, in

the renegotiation of the maintenance contracts with suppliers for example.

Throughout the thesis, we applied all this theory in a particular instance

placed in the concept phase, a small instance with 9 threat scenarios and

6 security controls; in this situation, our tool was mainly valuable in the

direction of validating some intuitions that the decision maker already had

on that instance. In a larger instance in terms of threat scenarios (large |TS|)
or in terms of security controls (large |SC|) or in both, we think that with

some tweaks the framework remains effectual and crucially it could be used

also for the identification of the right decision. In the case of large |SC|,
however, we would have to address two needs:

• a more efficient calculation of the objective function ∆Risk(sca) for all

sca, as at the moment O(2|SC|) operations are required;

• the employment of parallel computing in the simulation of Markov

chains, to avoid long running times due to the computational burden.
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This kind of instance is not unrealistic, considering that one could define the

set of security controls SC with more and more refinement, from abstract

macro categories of security controls like in our example to concrete specific

requirements, and this would cause the number of security controls |SC| to

grow considerably.

On the stochastic modelling of the risk evolution, in the end, it is evident

that there is still a lot of room for improvement. Markov chains have been

regarded as the right tool also considering the available level of evidence on

the phenomenon. It is a quite basic and off-the-shelf model, but the degree

of sophistication can be increased ad libitum to fit new evidence, only if and

when new evidence arrives.



Appendix A

Discrete-time Markov chains

In this chapter, we give some basic definitions, notations and results on

discrete-time Markov chains, a tool we applied in modeling the evolution

of risk. We do not develop a detailed treatment of this subject, which is

infinitely vast, but we present the simple material that we strictly need in

Chapter 3.

The references for this chapter are [12, ch. 2] and [13, ch. 1].

A.1 Markov property

Sequences of independent and identically distributed random variables

are not always interesting as stochastic models because they have a pre-

dictable and simple behavior. In order to introduce more variability, one can

allow for some probabilistic dependence on the past. A limited amount of

memory (only up to the previous state) suffices to produce a great diversity

of behaviors.

Definition A.1. A sequence (Xn)n∈N of random variables on (Ω,F ,P) with

values in a set E is called a discrete-time stochastic process with state space

E. We assume the state space to be countable and denote its elements with

i, j, k. When Xn = i the process is said to visit state i at time n.

61



62 Appendix A

Definition A.2. Let (Xn)n∈N be a discrete-time stochastic process with state

space E. If for all integers n ≥ 0 and all states i0, i1, . . . , in−1, i, j such that

P(Xn = i,Xn−1 = in−1, . . . , X0 = i0) > 0

we have that

P(Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = P(Xn+1 = j|Xn = i)

P(Xn+1 = j|Xn = i) = pij

the stochastic process is called a homogeneous Markov chain.

First equation is the Markov property, which is a loss of memory property

that indicates a dependence on the past only through the previous state.

The second equation is the time-homogeneity condition, which states that

transitions are independent of time n. The term ‘homogeneous’ is often

dropped and we simply say Markov chain.

Definition A.3. The matrix P = (pij)i,j∈E where

pij = P(Xn+1 = j|Xn = i)

is the transition matrix of the Markov chain.

Because its entries are probabilities, the transition matrix is a stochastic

matrix in the sense that for all i, j ∈ E

pij ≥ 0,
∑
k∈E

pik = 1.

A.2 Distribution of a Markov chain

The random variable X0 is called the initial state and its probability

distribution λ ∈ [0, 1]n (conventionally a row vector)

λ(i) := P(X0 = i), i ∈ E

is the intial distribution. From the chain rule we have
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P(X0 = i0, X1 = i1, . . . , Xk = ik)

= P(X0 = i0)P(X1 = i1|X0 = i0) · · ·P(Xk = ik|Xk−1 = ik−1, . . . , X0 = i0)

(A.2.1)

With the Markov property in Definition A.2, we obtain the distribution

of the Markov chain

P(X0 = i0, X1 = i1, . . . , Xk = ik) = λ(i0)pi0i1 · · · pik−1ik

and we get the following result.

Theorem A.2.1. The distribution of a Markov chain is determined by its

initial distribution and its transition matrix.

We denote a Markov chain with initial distribution λ and transition ma-

trix P with Markov(λ, P ). We discuss the existence and the construction of

a Markov chain given an initial distribution and a transition matrix in the

next Section.

Many probabilities for the Markov chain can be expressed conveniently in

terms of the transition matrix P and its n-th product P n, n ≥ 0. Let pnij

denote the (i, j)-th entry of P n. By the definition of matrix multiplication

and the law of total probability

pnij =
∑

i1,...,in−1∈En−1

pii1pi1i2 . . . pin−1j = P(Xn = j|X0 = i);

P(Xn = j) = (λP n)j. (A.2.2)

The property of multiplication of matrices Pm+n = PmP n yields the

Champman-Kolmogorov equation

pm+n
ij =

∑
k∈E

pmikp
n
kj,

which states that the probability the chain moves from i to j in m + n

steps is equal to the probability that it moves from i to any k ∈ E in m

steps, and then it moves from k to j in n more steps.
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A.3 Markov recurrences

Many Markov chains receive a natural description in terms of a recurrence

equation driven by white noise.

Proposition A.3.1. Let (Xn)n∈N be a stochastic process with state space E

of the form

Xn+1 = f(Xn, Yn+1)

where (Yn)n∈N are i.i.d. random variables on a general space E ′ that are

independent of X0 and f : E × E ′ → E.

Then Xn is a Markov chain with transition probabilities pij = P(f(i, Y1) = j)

Proof. By the recursive definition of the process we have that

P(Xn+1 = i|Xn = i,Xn−1, . . . , X0) = P(f(i, Yn+1) = j|Xn = i,Xn−1, . . . , X0).

Then Yn+1 is independent of (X0, . . . , Xn) because this vector is a function

of (X0, Y1, . . . , Yn) through f , which implies:

P(f(i, Yn+1) = j|Xn = i,Xn−1, . . . , X0) = P(f(i, Yn+1) = j).

In the end, Y1 and Yn+1 have the same distribution:

P(f(i, Yn+1) = j) = P(f(i, Y1) = j) = pij.

This result is useful for identifying stochastic processes that are Markov

chains. We now establish that any Markov chain can be constructed as in

Proposition A.3.1. We need this fact

Remark 1 (Uniform representation of a random variable). Let λ be a prob-

ability measure on E = {0, 1, . . . }, let U be a random variable uniformly

distributed on [0, 1] and X = h(U) where

h(u) = j if u ∈ Ij for some j ∈ E

and Ij = [
∑j−1

k=0 λk,
∑j

k=0 λk). Then

P(X = j) = P(h(U) = j) = P(U ∈ Ij) = λj



A.3 Markov recurrences 65

Theorem A.3.2 (Construction of Markov chains). Let P = (pij)i,j∈E be

a stochastic matrix and λ a probability measure on E = {0, 1, . . . }. Let

U0, U1, . . . i.i.d. random variables, Ui ' U [0, 1]. Define X0 = h(U0) (where

h is as in Remark 1) and Xn+1 = f(Xn, Un+1) where for each i ∈ E

f(i, u) = j if u ∈ Ij for some j ∈ E

and Iij = [
∑j−1

k=0 pik,
∑j

k=0 pik). Then (Xn)n∈N is a Markov chain with initial

distribution λ and transition matrix P .

Proof. By Remark 1, X0 has distribution λ. By Proposition A.3.1, (Xn)n∈N

is a Markov chain with transition probabilities

P(f(i, U1) = j) = P(U1 ∈ Iij) = pij.

An immediate consequence is that there exists a Markov chain associated

with any stochastic matrix.

This artificial representation is useful for simulating small Markov chains and

we will exploit it in the Monte Carlo method, presented in Section 3.2 and

applied in the dynamic use case in Section 3.3. The procedure is contained

in Algorithm 2 below.

Algorithm 1 in Section 3.2 is an implementation of the artificial recurrence

function f with a counter, adapted to our use case. In the application, the

initial state of the chain is deterministic (initial distribution is a Dirac’s δ)

so we do not need the sample u0 and the function h.
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Algorithm 2 N -path sampling

procedure n-pathsampler(f, h) . f, h defined above

uo, . . . , uN ← rand(N + 1) . rand(N + 1) samples from U([0, 1]N+1)

i0 ← h(u0)

m← 1

while m < N + 1 do

im ← f(im−1, um)

m← m+ 1

end while

return i0, . . . , iN

end procedure
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