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Introduzione

L'obiettivo di questa tesi è quello di fornire una descrizione completa del
modello del semispazio dello spazio pseudo-iperbolico, che è una generaliz-
zazione del noto modello del semispazio di Poincaré per lo spazio iperbolico.
Da questo lavoro è stato estratto l'articolo [ST21], che riassume i principali
risultati dello studio.

Il modello del semispazio per lo spazio Anti-de Sitter H2,1 è stato in-
trodotto da Danciger in [Dan11], ed è stato utilizzato ad esempio in [Tam21].
Il caso di Hn,1, in dimensione arbitraria, è presente in [BS20]. È possibile
de�nire lo spazio pseudo-sferico Sp,q, che è anti-isometrico rispetto a Hq,p.
Un modello del semispazio si può de�nire in modo del tutto analogo per Sp,q,
assumendo q ≥ 1. In particolare, il modello del semispazio per lo spazio de
Sitter Sp,1 è stato studiato in [Nom82]. Abbiamo deciso di concentrarci sul
caso pseudo-iperbolico Hp,q per �ssare le notazioni: basta cambiare segno
alla pseudo-metrica per renderlo un modello di Sq,p, per p ≥ 1.

La trattazione si compone di due parti. La prima è un compendio di
geometria pseudo-Riemanniana, dove abbiamo presentato i principali stru-
menti della teoria: la connessione di Levi-Civita (sezione 1.2), il tensore di
curvatura di Riemann e la curvatura sezionale (sezione 1.3) e le geodetiche
(sezione 1.4). Abbiamo cercato in questo capitolo di mettere in risalto le dif-
�coltà tecniche che rendono non triviale l'estensione dei suddetti strumenti
dall'ambiente Riemanniano a quello pseudo-Riemanniano.

Vengono presentati Rp,q, ovvero lo spazio pseudo-Euclideo di segnatura
(p, q), e Hp,q, cioè lo spazio iperbolico della medesima segnatura, per mezzo
di esempi utili a capire gli strumenti descritti. Per approfondimenti circa
lo spazio iperbolico, si faccia riferimento a [BP92]; per Hp,q in segnatura e
dimensione qualunque rimandiamo a [O'N, CTT19, DGK18].

Nella seconda parte, vengono utizzati gli strumenti di cui sopra per stu-
diare la geometria del modello del semispazio, de�nito come il semispazio
aperto {z > 0} in Rp+q, dotato della pseudo-metrica

dx2
1 + . . .+ dx2

p−1 − dy2
1 − . . .− dy2

q + dz2

z2
,

e denotato comeHp,q. Se q = 0, ci troviamo alla presenza del classico modello
del semispazio di Hn. Per q ≥ 1, il modello non è globalmente isometrico
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ad Hp,q. Quest'ultimo infatti non è semplicemente connesso, e quindi non
è neppure omeomorfo al semispazio. Nella sottosezione 2.1.2 forniremo un
embedding isometrico di Hp,q in Hp,q, la cui immagine è il complementare di
un iperpiano totalmente geodetico degenere. Ne consegue che Hp,q non sia
una varietà pseudo-Riemanniana geodeticamente completa.

Viene data una classi�cazione per i sottospazi totalmente geodetici di
ogni dimensione (sezione 2.4) e successivamente una descrizione più det-
tagliata per il caso 1-dimensionale (sezione 2.5).

Nella sezione 2.6 viene presentato il bordo all'in�nito ∂∞Hp,q, visto dal
punto di vista del modello del semispazio. In particolare il bordo ∂Hp,q in
Rp+q, che è una copia dello spazio pseudo-Euclideo Rp−1,q, si embedda in
maniera conforme in ∂∞Hp,q; viene inoltre costruita la sua compatti�cazione
topologica ∂∞Hp,q, i cui punti sono limiti di ipersuper�ci totalemente geode-
tiche degeneri. Questa descrizione è utile per dare un'ulteriore presentazione
delle geodetiche di tipo spazio e luce, in funzione dei loro estremi.

Nella sezione 2.7 vengono presentate le orosfere del modello.
In�ne, nella sezione 2.8, l'analisi delle geodetiche ci permette di dedurre

il gruppo di isometrie Isom(Hp,q). Osserviamo che questo non corrisponde al
gruppo di isometrie di Hp,q, ma solo al sottogruppo che preserva l'iperpiano
degenere che non compare nel modello. Ciononostante, nella sezione 2.8,
siamo in grado di studiare l'azione di Isom(Hp,q) sul semispazio in funzione di
Isom(Hp,q) e di trasformazioni che sono l'analogo delle inversioni in geometria
iperbolica.

Ringraziamenti

Un ringraziamento particolare va ad Andrea Seppi, che ha dato un con-
tributo fondamentale allo sviluppo di questa tesi e alla mia crescita come
matematico.
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Introduction

The aim of this thesis is to give a complete description of the half-space
model of pseudo-hyperbolic space, which is a generalization of the well-known
Poincaré half-space model of hyperbolic space. The main results of this study
have been summarized in [ST21].

We remark that the half-space model for the Anti-de Sitter space H2,1

has been introduced by Danciger in [Dan11], and has been used for instance
in [Tam21]; in any dimension, the half-space model of Hn,1 also appears
in [BS20]. Of course one analogously de�nes the pseudo-spherical space
Sp,q. The space obtained in this way is anti-isometric to Hq,p. A half-space
model of Sp,q is de�ned similarly, provided q ≥ 1. As a particular case, the
half-space model of the de Sitter space Sp,1 has been studied in [Nom82].
We decided to focus on the case of Hp,q for the sake of de�niteness: up to
changing a sign to the pseudo-Riemannian metric, one recovers the half-space
model for Sq,p if p ≥ 1.

The discussion is divided in two parts: the �rst one is a summary of
pseudo-Riemannian geometry, where we develop the main tools of the theory,
namely Levi-Civita connection (Section 1.2), Riemann curvature tensor and
sectional curvature (Section 1.3) and geodesics (Section 1.4). In this part, we
have tried to emphasize the technical problem that make not trivial the ex-
tension of these tools from the Riemannian realm to the pseudo-Riemannian
one.

In the �rst part we also describe Rp,q, namely the pseudo-Euclidean space
of signature (p, q), and Hp,q, namely the pseudo-hyperbolic space of signature
(p, q), as example to explain the tools introduced. For more details on the
hyprbolic space, see for instance [BP92]; for Hp,q in arbitrary signature and
dimension we recommend [O'N, CTT19, DGK18].

In the second part, the tools mentioned above are used to study the
geometry of the half-space model. This is de�ned as the open half-space
{z > 0} in Rp+q endowed with the pseudo-Riemannian metric

dx2
1 + . . .+ dx2

p−1 − dy2
1 − . . .− dy2

q + dz2

z2
,

and denoted Hp,q. When q = 0, this is the usual half-space model of Hn.
When q ≥ 1, this space is not globally isometric to Hp,q (which is indeed
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not simply connected, hence not even homeomorphic to the half-space). In
Subection 2.1.2 we show thatHp,q embeds isometrically into Hp,q, with image
the complement of a totally geodesic degenerate hyperplane. In other words,
Hp,q is not a geodesically complete pseudo-Riemannian manifold.

We give a classi�cation result for the totally geodesic subspaces of any
dimension (Section 2.4) and then a more re�ned classi�cation of the geodesics
(Section 2.5).

In Section 2.6 we provide a description of the boundary at in�nity ∂∞Hp,q,
seen from the half-space model. Of course the boundary ∂Hp,q in Rp+q, which
is a copy of the pseudo-Euclidean space Rp−1,q, is conformally embedded in
∂∞Hp,q; we describe topologically its compacti�cation ∂∞Hp,q in terms of
divergence of totally geodesic degenerate hypersurfaces. We use the descrip-
tion of the boundary to give a further description of spacelike and lightlike
geodesic in terms of endpoints.

In Section 2.7 we describe the horospheres in the half-space model.
Finally, in Section 2.8, we compute the isometry group Isom(Hp,q), as a

result of the analysis of geodesics. We remark that this does not correspond
to the isometry group of Hp,q, but only to a subgroup that preserves the
complement of a degenerate hyperplane. Nevertheless, in Section 2.8, we
study the action of Isom(Hp,q) on the half-space model in terms of Isom(Hp,q)
and some transformations which are the analogue of inversions in hyperbolic
geometry.

Requirements

The reader is supposed to have a basic knowledge of di�erential geometry.
Nevertheless, except from the de�nition of (smooth) manifold, smooth map,
tangent space and di�erential of a map, every tool that is used is de�ned
along the text. We suggest to use [Laf96] as support.

A familiarity with Rimannian geometry is useful and allows to appreciate
the technical di�culties of the pseudo-Riemannian case, but is not necessary.
We based our study of it on [GHL04, DoC92]. Finally, the main reference
for pseudo-Riemannian geometry is [O'N].

As for Riemannian geometry, a basic knowledge of hyperbolic and pseudo-
hyperbolic geoemtry is not needed but recommended. Consider [BP92] to
the Riemannian case and the �rst chapter of [RS19] for the Lorentzian case.
The latter is highly recommended because is shorter and contains basically
all the topics one will encounter in the following, namely pseudo-Riemannian
geometry and pseudo-hyperbolic geometry.
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Chapter 1

Pseudo-Riemannian Geometry

In this chapter we will study the basis of pseudo-Riemannian geometry. We
will extend some foundamental tools of the Riemannian realm, such as co-
variant derivative (Section 1.2), curvature tensor (Section 1.3) and geodesics
(Section 1.4), to the pseudo-Riemannian case.

The examples are chosen to introduce pseudo-Euclidean spaces and pseudo-
hyperbolic spaces, in order to approach the second chapter with a su�cient
knowledge of both spaces, on which is based the study of the half-space
model.

1.1 Basic de�nitions

In the following, we will always suppose manifolds to be smooth.

De�nition 1.1.0.1 (Pseudo-Riemannian metric). Let M be a smooth man-
ifold. A collection g = (gm)m∈M of bilinear symmetric 2-forms on TmM
de�nes a pseudo-metric over M if

P1. gm is non-degenerate ∀m ∈M ;

P2. the signature is constant, i.e. (n+(m), n−(m)) = (n+, n−), ∀m ∈M ;

P3. the map m 7→ gm is smooth.

A manifold endowed with a pseudo-metric is called pseudo-Riemannian.

Remark 1.1.0.2. (P2) is only a technical request, in fact, due to the symmetry
of the form, it follows from (P1) if the manifold is connected (see Lemma
1.1.1.5).

Equivalently, g is a smooth and non-degenerate section of S2T ∗M , namely
the bundle of the symmetric 2-forms on M . In the language of tensors, g is
a symmetric, non-degenerate (0, 2)-tensor �eld on M .

Let (U, x) be a local chart, we will write gij = g(∂i, ∂j), namely the
coe�cients of the matrix of g in the basis induced by the local chart.
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Moreover, as g is non-degenerate, it admits inverse g−1, which will be
denoted gij = g−1(∂i, ∂j) in local coordinates.

Example 1.1.0.3. A Riemannian metric is a pseudo-metric. Indeed, if gm is
positive-de�nite, (P1) and (P2) are automatically satis�ed.

De�nition 1.1.0.4 (Lorentzian manifold). A pseudo-Riemannian manifold
(M, g) is called Lorentzian if the signature of the pseudo-metric is (dimM− 1, 1).

Example 1.1.0.5. (Pseudo-Euclidean space) The pseudo-Euclidean space Rp,q
is obtained endowing Rp+q = Rpx ⊕ Rqy with the pseudo-metric

〈·, ·〉p,q := dx2
1 + . . .+ dx2

p − dy2
1 − . . .− dy2

q ,

which clearly is non-degenerate and with signature (p, q).
Particularly, Rp,0 is the Euclidean space Rp, and Rp,1 the (p+1)-dimensional

Minkowski space, which is a Lorentzian manifold.

As the form over the tangent is not positive-de�nite, vectors can be
divided in three characters, based on the value of g(v, v), which is abusively
called squared norm of v in analogy to the Riemannian case.

De�nition 1.1.0.6 (Character). A vector v ∈ TmM is

• timelike if g(v, v) < 0;

• spacelike if g(v, v) > 0;

• lightlike (or null) if g(v, v) = 0.

The terminology comes from relativistic physics: consider for semplicity
R1,1, the X-axis represents the space and the Y -axis the time. The physical
meaning of a point (x, y) is to be at the place x at the time y, hence the
origin is here and now.

Denote (∂s, ∂t) = (e1, e2) the basis of the tangent space. Let γ be a curve
and (s, t) its tangent vector. The speed of γ, i.e. the ratio between space
and time, is |s|/|t|. Up to scaling the space axis as 1∂s = 299.792.458 m
and time axis as 1∂t = 1 s, |s|/|t| = 1 when the speed is equal to the speed
of light. Therefore, timelike vectors satisfy |s|/|t| < 1 while spacelike ones
|s|/|t| > 1 (see Figure 1.1).

In literature, curves with either timelike or lightlike tangent vector are
called them causal : they are the only path "physically possible" in our uni-
verse, since special relativity predicts that nothing can exceed the speed of
light. In particular, the interior of a lightcone emanating from a point (x, y)
represents the points that can be reached starting from (x, y) and moving
less rapidly than the light.

The isometries preserve lightlike vectors, that is the speed of light does
not depend on the observator, suggesting this is a good model for relativistic
physic. In particular, the isometries of R1,1 are Lorentz transformations.
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Figure 1.1: R1,1 with lightcone (yellow), some timelike vectors (blue) and
spacelike ones (red).

1.1.1 Submanifolds

A submanifold of a Riemannian manifold inherits automatically the struc-
ture of Riemannian manifold, as the restriction of a positive-de�nite form is
positive-de�nite, too. That is not true for a non-degenerate form.

De�nition 1.1.1.1 (Pseudo-Riemannian submanifold). Let (M, g) be a pseudo-
Riemannian manifold. A smooth submanifoldN ⊆M is a pseudo-Riemannian
submanifold if the restriction of g on TN is still a pseudo-metric.

Example 1.1.1.2 (Degenerate planes). In R2,1, consider the vectors v = (1, 0, 0)
and w = (0, 1, 1).

〈v, v〉2,1 = 1, 〈v, w〉2,1 = 0, 〈w,w〉2,1 = 0.

The restriction of the pseudo-metric induced on the smooth submanifold
α = Span(v, w), with respect to the basis {v, w}, is

〈·, ·〉2,1|α =

(
〈v, v〉2,1 〈v, w〉2,1
〈w, v〉2,1 〈w,w〉2,1

)
=

(
1 0
0 0

)
,

which is degenerate, that is 〈·, ·〉2,1|α is not a pseudo-metric.

Example 1.1.1.3 (Sphere). Consider the sphere S2 = {x2
1 + x2

2 + y2
1 = 1} in

the 3-dimensional Minkowski space R2,1.
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Let's study the restriction of the pseudo-metric using the local parame-
terization

R× (−π, π)→ S2 ⊆ R2,1

(φ, θ) 7→ (cosφ sin θ, sinφ sin θ, cos θ).

A basis of TmS2 is (∂φ, ∂θ), where{
∂φ = (− sinφ sin θ, cosφ sin θ, 0),

∂θ = (cosφ cos θ, sinφ cos θ,− sin θ).

Then, the matrix of the restriction of the pseudo-metric is

〈·, ·〉2,1|TmS2 =

(
〈∂φ, ∂φ〉2,1 〈∂φ, ∂θ〉2,1
〈∂θ, ∂φ〉2,1 〈∂θ, ∂θ〉2,1

)
=

(
sin2 θ 0

0 cos2 θ − sin2 θ

)
.

The matrix is degenerate if θ = ±π
4 , namely when it intersects the lightcont,

so it does not represent a pseudometric on the sphere. Moreover, the induced
metric is Riemannian if |θ| < ±π

4 and Lorentzian if |θ| > ±π
4 (see Figure

1.2).

Figure 1.2: Restriction of 〈·, ·〉2,1 on S2.

These examples prove that not every submanifold of a pseudo-Riemannian
manifold is a pseudo-Riemannian manifold itself. In the latter it can be no-
ticed that the signature of the restricted form depends on the character of
the vector (TmS2)⊥: when it is lightlike the form is degenerate, when it is
timelike the form is Riemannian and when it is spacelike the signature is
Lorentzian. This is not an isolated case, as we will show in the following
results.

Lemma 1.1.1.4. Let (M, g) be a pseudo-Riemannian manifold. Let N ⊆M
be a smooth submanifold of codimension 1, m ∈ N , v ∈ TmN⊥ \ {0}, i.e. a
generator of the normal space to N at m. Denote (n+, n−) the signature of
g. The signature of g|TmM only depends on the character of v:
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• if v timelike, g|TmN has signature (n+, n− − 1);

• if v spacelike, g|TmN has signature (n+ − 1, n−);

• if v lightlike, g|TmN is degenerate.

Proof. In the �rst cases v is not isotrophic whith respect to the form gm, so
TmM = v ⊕ TmN , then

g =


0

g|TmN
...
0

0 · · · 0 g(v, v)

 .

g is non-degenerate by hypothesis, hence Sylvester's criterion provides us a
way to compute the signature (n′+, n

′
−) of g|TmN :

(n+, n−) =

{
(n′+, n

′
− + 1) if v timelike;

(n′+ + 1, n′−) if v spacelike.

If v is lightlike, v ∈ (TmN
⊥)⊥ = TmN , hence v ∈ TmN ∩ TmN⊥. Then

g(v, w) = 0, ∀w ∈ TmN , namely g|TmN is degenerate.

Lemma 1.1.1.5. Let M be a connected manifold. If A : M → Mn(R) is
a continuous function such that Am is a non-degenerate, symmetric matrix,
∀m ∈M , the signature of Am is constant over M .

In other words, in order to change signature, Am has to be degenerate
at least at one point.

Proof. Let Im = (i+, i−, i0) the signature of Am.
As Am is symmetric, it is diagonalizable. Denote λ1, . . . , λn its eigenval-

ues, counted with multiplicities, then

i+ = |{λj > 0}|;
i− = |{λj < 0}|;
i0 = |{λj = 0}| = n− i+ − i−.

The eigenvalues depend continuously on m: indeed, they depend contin-
uously on the coe�cients of the characteristic polynomial, as they are its
zeros, and the coe�cients depend continuously on the matrix Am, as they
are found by computing the determinant of Am − t · Id.

Assume the signature changes, hence at least one eigenvalue has to change
sign. This implies that it vanishes at one point m̄, i.e. Am̄ is degenerate,
which contradicts the hypothesis.
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Proposition 1.1.1.6. Let (M, g) a pseudo-Riemannian manifold. For a
smooth connected submanifold N ⊆M , the following statements are equiva-
lent:

i. N is a pseudo-Riemannian submanifold of M ;

ii. g|TmN is non-degenerate ∀m ∈ N ;

iii. TmN ∩ TmN⊥ = {0}, that is TmN ⊕ TmN⊥ = TmM , ∀m ∈ N ;

iv. g|TmN⊥ is non-degenerate ∀m ∈ N .

Proof. (i) ⇒ (ii) comes straight from the de�nition of pseudo-Riemannian
submanifold, as a pseudo-metric is non-degenerate everywhere.

(i)⇐ (ii) is a direct corollary of Lemma 1.1.1.5: in local coordinates the
restriction of the pseudo-metric can be seen as a smooth functionN → Mk(R),
k = dimN . By hypothesis, g|TmN is non-degenerate and N is connected,
hence the lemma states that the signature is constant over N , i.e. N is a
pseudo-Riemannian submanifold of M .

(ii) ⇐⇒ (iii) is a trivial exercise of linear algebra, as

TmN ∩ TmN⊥ = {w ∈ TmN |g(w, v) = 0, ∀v ∈ TmN}.

(iii) ⇐⇒ (iv) is the same as above, due to the symmetry of the state-
ments.

1.1.2 Isometries

We are interested in maps preserving the pseudo-Riemannian structure.
They enable to study a pseudo-Riemannian manifold through another one, to
induce pseudo-Riemannian structures on other manifolds and to understand
symmetries of spaces.

De�nition 1.1.2.1 (Pullback and push-forward). Let (M, g), (N,h) be two
pseudo-Riemannian manifold, φ : M → N a smooth di�eomorphism. φ in-
duces two pseudo-Riemannian metric φ∗h on M and φ∗g N .

1. For v, w ∈ TmM , we de�ne the pullback of h as

(φ∗h)m := hφ(m)(dφmv, dφmw).

2. The push-forward of g is the pullback of the inverse map, namely φ∗g =
(φ−1)∗h.

De�nition 1.1.2.2 (Isometry). Let (M, g), (N,h) be two pseudo-Riemannian
manifolds and φ : M → N a di�eomorphism. φ is an isometry if φ∗h = g (or
equivalenetly φ∗g = h).
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The isometries ofM in itself form a group, with the composition as group
operation, noted Isom(M) and called isometry group of M .

Remark 1.1.2.3. Let (M, g), (N,h) be two pseudo-Riemannian manifolds,
φ : M → N a di�eomorphism. Consider a local chart (U, x) of M . Up to
restrain U , we can assume it exists a local chart (V, y) of N containing φ(U).

DenoteG = (gij) the matrix representing the pseudo-metric g in the basis
induced by x, H = (hij) the analogue for h, and Φ the basis representing
dφm in the basis induced by x in the domain and by y in the codomain.
φ : U → φ(U) is an isometry if and only if

tΦmHφ(m)Φm = Gm, ∀m ∈ U. (1.1)

As a consequence, φ : M → N is an isometry if and only if it exists an atlas
A = {(Ui, xi), i ∈ I} of M such that (1.1) holds for all charts (Ui, xi) ∈ A.
Example 1.1.2.4 (Isometries of Rp,q). Consider Rp+q in Cartesian coordi-
nates, which is a global chart for the manifold. In this chart, the pseudo-
metric can be written as

〈v, w〉p,q = tv

(
Ip
−Iq

)
w,

In being the identity matrix of dimension n.
The pseudo-orthogonal group of signature (p, q) is de�ned as

O(p, q) :=

{
A ∈ Mp+q(R), tA

(
Ip
−Iq

)
A =

(
Ip
−Iq

)}
.

By Remark 1.1.2.3, O(p, q) ⊆ Isom(Rp,q), and all the a�ne maps having
a pseudo-orthogonal matrix as linear part are isometries, too. Proposition
1.4.4.7 proves that they are the only isometries of Rp,q.

Most of the properties we deal with are local, so we are interested also
in maps preserving the pseudo-Riemannian structure only on portions of the
spaces.

De�nition 1.1.2.5 (Local isometry). Let (M, g), (N,h) be two pseudo-Riemannian
manifolds, U ⊆M an open set, φ : U → N a smooth function.

φ is a local isometry if ∀m ∈ U it exists an open neighbourhood Um of
m such that φ|Um : Um → φ(Um) is an isometry.

We recall an important result about group action, whose proof can be
found in [GHL04, Thm 49b, p.49].

Theorem 1.1.2.6. LetM be a di�erentiable manifold, G ≤ Diff(M) a group
acting properly and freely, then p : M →M/G is a smooth covering map.

Corollary 1.1.2.7. Let (M, g) be a pseudo-Riemannian manifold, G ≤ Isom(M)
a group with the same properties as above, then p : M → M/G induces a
structure of pseudo-Riemannian manifold over M/G, which is locally iso-
morphic to M .
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Proof. Let U ⊆ M be a sheet of the covering space, then p|U : U → p(U) is
a di�eomorphism. Hence, it is well de�ned (p|U )∗g, which is a pseudo-metric
over U , and p : (U, g)→ (p(U), (p|U )∗g) is an isometry.

Let V ⊆ M another sheet, such that p(V ) = p(U). By de�nition, up
to restrain U and V , there is an isometry φ ∈ G such that φ(V ) = U .
Remarking that p ◦ φ = p and that the composition of isometries is an
isometry, we have the following commutative diagram of isometries:

V U

p(V ) = p(U)

φ

p p ,

then (p(V ), (p|V )∗g) = (p(U), (p|U )∗g), that is p∗g is well de�ned over M/G.

Example 1.1.2.8 (Pseudo-hyperbolic space). The pseudo-hyperboloid H̃p,q

(see Figure 1.3) is the sphere of negative radius −1 in Rp,q+1, with respect
to the pseudo-metric, that is

H̃p,q := {v ∈ Rp,q+1, 〈v, v〉p,q+1 = −1}.

Figure 1.3: The Riemannian manifold H̃2,0 (left) and the Lorentzian manifold
S̃1,1 (right). Both are pseudo-Riemannian submanifold of R2,1.

We recall that TvH̃p,q is the kernel of df(v), f being the submersion such
that f−1(0) = H̃p,q, namely

f(v) = 1 + 〈v, v〉p,q+1 = 1 + x2
1 + . . .+ x2

p − y2
1 − . . .− y2

q+1.

Then df(v) = 2(x1, . . . , xp,−y1, . . . ,−yq+1), and then ker(df(v)) = v⊥,
where v⊥ = {w ∈ Rp,q+1, 〈v, w〉p,q+1 = 0}. By de�nition, v is timelike, so
H̃p,q is a pseudo-Riemannian submanifold of Rp,q+1, with signature (p, q).
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The pseudo-hyperbolic space is the projectivization of H̃p,q, via the local
isometry P : Rp,q+1 → P(Rp,q+1), namely

(Hp,q, h) :=
(
P(H̃p,q),P∗〈·, ·〉p,q+1|H̃p,q

)
.

In other words, Hp,q is the quotient of H̃p,q by the action of {±Id}.
{±Id} respects the hypothesis of Corollary 1.1.2.7, hence Hp,q inherits a
pseudo-Riemannian structure from H̃p,q. Remarking that H̃p,q is de�ned by
the equation g(v, v) = −1, which is bilinear, it is immediately checked that

Hp,q = P
(
{v ∈ Rp,q+1, 〈v, v〉p,q+1 < 0}

)
.

For the sake of completeness, we remark that H̃p,q ∼= Rp × Sq (see [O'N,
Lemma 25, pp.110-111]), which is (q − 1)-connected. In particular, this im-
plies that the half-space model Hp,q (see De�nition 2.1.1.1) is not a complete
model for the pseudo-hyperbolic space for q 6= 0: indeed, π1(Hp,1) = Z and
π1(Hp,q) = Z2 for q > 1, that is Hp,q is not simply connected for q 6= 0.

Example 1.1.2.9 (Pseudo-spheric space). The pseudo-sphere S̃p,q ⊆ Rp+1,q

positive counterpart of the pseudo-hyperboloid, that is

S̃p,q := {v ∈ Rp+1,q, 〈v, v〉p+1,q = 1}.

Remarking that Rp,q = −Rq,p, that is an abusively way to write

(Rp,q, 〈·, ·〉p,q) = (Rq,p,−〈·, ·〉q,p),

S̃p,q = −H̃q,p, so everything we wrote above extends to. The pseudo-spheric
space is then Sp,q := −Hq,p (see Figure 1.3).

Both spaces have been widely studied in Riemannian geometry and Lorentzian
geometry. In the latter setting, they are called de Sitter space, noted dSn+1 = Sn,1,
and Anti-de Sitter space, noted AdSn+1 = Hn,1.

Pseudo-Riemannian submanifolds can inherits isometries by the environ-
mental space, as explained in the following result.

Proposition 1.1.2.10. Let (M, g) be a pseudo-Riemannian manifold and
N ⊆ M be a pseudo-Riemannian submanifold. If φ ∈ Isom(M) is such that
φ(N) = N , then φ|N ∈ Isom(N).

Proof. By hypothesis φ|N is a smooth automorphism of N , then φ preserves
TN , namely φ∗(TN) = TN (see De�nition 1.1.2.1). The pseudometric on
N is de�ned as g|TN and φ∗g = g, hence φ∗(g|TN ) = (φ∗g)|TN = g|TN , i.e.
φ|N ∈ Isom(N).

Remark 1.1.2.11. Not all isometries of a submanifold can be obtained as
restriction of isometries of the environmental manifold.
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An easy counter-example is given by M = R2 \ {(0, 0), (2, 0), (0, 2)},
endowed with the Euclidean metric: Isom(M) = {IdM}, but S1 ⊆ M has
not trivial isometry group.

More generally, letM = Rn \{x0, . . . , xn}, xi in general position, so that
Isom(M) = {IdM}. Consider a submanifold N ⊆ Rn whose isometry group
is not trivial and N ∩ {x0, . . . , xn} 6= ∅. Then N is a submanifold of M but
its isometry group is not a subgroup of Isom(M).

Example 1.1.2.12 (Isometries of Hp,q). We showed in Example 1.1.2.4 that
O(p, q + 1) ⊆ Isom(Rp,q+1). By de�nition, it preserves H̃p,q, hence

O(p, q + 1)|H̃p,q ⊆ Isom(H̃p,q).

The converse inclusion follows from Proposition 1.4.4.7. Indeed, take
v ∈ H̃p,q, that is 〈v, v〉p,q+1 = −1, and remark that TvH̃p,q = v⊥, then if Bv is
an orthonormal basis of TvH̃p,q (with respect to the induced pseudo-metric),
B̄v := {v} ∪ Bv is an orthonormal basis of Rp,q+1 with respect to 〈·, ·〉p,q+1,
and it contains v. O(p, q + 1) is the space of orthogonal transformation of
Rp,q+1, namely it switches orthogonal basis, hence it exists a linear map in
O(p, q + 1) sending B̄v to B̄w, and in particular v to w. We remark that the
map depends on the basis chosen.

We claim that StabO(p,q+1)(v) = Stab
Isom(H̃p,q)

(v) (see De�nition 2.1.3.8):

it follows by transitivity that O(p, q + 1) = Isom(H̃p,q). To show the claim,
consider the linear parameterization of Rp,q+1 induced by the basis B̄v. Noted
g the metric of H̃p,q, it is clear that the matrix associated to 〈·, ·〉p,q+1 in this
setting is, up to permutation,

(〈·, ·〉p,q+1)v =

−1
Ip
−Iq

 =

(
−1

gv

)
.

So if φ ∈ Stab
Isom(H̃p,q)

(v), then dφv ∈ O(p, q). Note A the matrix of dφv
with respect to Bv and de�ne the linear map

Φ :=

(
−1

A

)
.

Clearly, Φ ∈ O(p, q+ 1). Hence, by Proposition 1.4.4.7, φ = Φ, which proves
the claim. Then PO(p, q + 1) = O(p, q + 1)/{±Id} is the isometry group of
Hp,q and it acts transitively.

1.2 Levi-Civita connection

One powerful tool in Riemannian geometry is Levi-Civita connection, namely
the only connection torsion-free and compatible with the metric. In fact, it
allows to de�ne curvature and geodesics, so we would gladly extend it.
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1.2.1 Vector �elds

De�nition 1.2.1.1 (Vector �eld). A vector �eld on a smooth manifold M is
a smooth map X : M → TM such that Xm ∈ TmM , ∀m ∈ M . We denote
Γ(TM) the space of vector �elds of M .

A vector �eld is then a smooth section of the bundle TM , i.e the canon-
ical projection TM →M , so Γ(TM) is both a R-vector space and C∞(M)-
module, where sum and product are de�ned punctually.

We recall that a vector �eldX ∈ Γ(TM) induces a derivative on C∞(M,N):
indeed, at a point m, it is the directional derivative along the vector Xm.
For a smooth map f : M → N , we will write X(f)(m) = dfmXm.

De�nition 1.2.1.2 (Push-forward). Let M , N be two smooth manifolds. A
di�eomorphism φ : M → N induces a bundle map φ∗ : Γ(TM) → Γ(TN),
called push-forward, de�ned as

φ∗ : Γ(TM)→ Γ(TN)

X = (Xm)m∈M 7→ φ∗X =
(
dφφ−1(n)Xφ−1(n)

)
n∈N .

Remark 1.2.1.3. An equivalent de�nition it is the following: for f ∈ C∞(N),

φ∗X(f) = X(f ◦ φ) ◦ φ−1. (1.2)

In fact, by de�nition,(
X(f ◦ φ) ◦ φ−1

)
n

= d(f ◦ φ)φ−1(n)Xφ−1(n) =

= dfφ(φ−1(n))dφφ−1(n)Xφ−1(n) =

= dfndφφ−1(n)Xφ−1(n) = φ∗X(f)n.

De�nition 1.2.1.4 (Pull-back). Let M , N be two smooth manifolds. A
smooth map φ : M → N induces a bundle map φ∗ : Γ(TN) → Γ(TM),
called pull-back, de�ned as

φ∗ : Γ(TN)→ Γ(TM)

Y = (Yn)n∈N 7→ φ∗Y =
(
dφmYφ(m)

)
m∈M .

De�nition 1.2.1.5 (Lie brackets). Let X,Y ∈ Γ(TM), we de�ne their Lie
bracket as [X,Y ] := X(Y )− Y (X).

Proposition 1.2.1.6. Lie brackets commutes with push-forward, namely is
φ : M → N is a di�emorphism, φ∗[X,Y ] = [φ∗X,φ∗Y ], ∀X,Y ∈ Γ(TM),

Proof. The thesis comes directly using the de�nition of push-forward as in
(1.2): take f ∈ C∞(N), X,Y ∈ Γ(TM). Remarking that φ∗Y (f) belongs to
C∞(N), one has

φ∗X(φ∗Y (f)) = X(φ∗Y (f) ◦ φ) ◦ φ−1 = X
(
Y (f ◦ φ) ◦ φ−1 ◦ φ

)
◦ φ−1 =

= X(Y (f ◦ φ)) ◦ φ−1 = X(Y )(f ◦ φ) ◦ φ−1 = φ∗(X(Y )),

which ends the proof.
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1.2.2 Connections and Levi-Civita theorem

De�nition 1.2.2.1 (Connection). A (a�ne) connection on a manifold M is a
function

∇ : Γ(TM)× Γ(TM)→ Γ(TM)

(X,Y ) 7→ ∇XY

which satis�es the following properties:

1. C∞(M)-linear on the �rst argument, that is

∇(fX+Z)Y = f∇XY +∇ZY,
∀f ∈ C∞(M)
∀X,Y, Z ∈ Γ(TM)

;

2. a derivative on the second argument, that is

∇X(fY + Z) = f∇XY +X(f)Y +∇XZ,
∀f ∈ C∞(M)
∀X,Y, Z ∈ Γ(TM)

.

This de�nition only depends on the di�erential structure on the manifold,
so it is well de�ned in the pseudo-Riemannian domain, too.

De�nition 1.2.2.2 (Torsion-free). A connection ∇ is torsion-free if

∇XY −∇YX = [X,Y ], ∀X,Y ∈ Γ(TM).

De�nition 1.2.2.3 (Compatible). A connection ∇ is compatible with the met-
ric if

Z(g(X,Y )) = g(∇ZX,Y ) + g(X,∇ZY ), ∀X,Y, Z ∈ Γ(TM).

Theorem 1.2.2.4 (Levi-Civita). Let (M, g) be a pseudo-Riemannian man-
ifold. It exists a unique connection torsion-free and compatible with the
pseudo-metric, called Levi-Civita connection.

Proof. First, we prove that it exists at most one torsion-free connection
compatible with the metric over the same pseudo-Riemannian manifold.

Lemma 1.2.2.5. Let (M, g) be a pseudo-Riemannian manifold, ∇ be a
torsion-free connection compatible with the metric, then

g(∇XY,Z) = Kos(X,Y, Z), ∀X,Y, Z ∈ Γ(TM),

where Kos: Γ(TM)3 → R is de�ned by Koszul formula, that is

Kos(X,Y, Z) :=
1

2

(
X(g(Y, Z)) + Y (g(X,Z))− Z(g(Y,X))

− g([Y,X], Z)− g([X,Z], Y )− g([Y,Z], X)
)
. (1.3)
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Proof. As ∇ is compatible with the metric, ∀X,Y, Z ∈ Γ(TM) we can write

Xg(Y,Z) =g(∇XY,Z) + g(Y,∇XZ) (1.4)

Y g(X,Z) =g(∇YX,Z) + g(X,∇Y Z) (1.5)

Zg(Y,X) =g(∇ZY,X) + g(Y,∇ZX) (1.6)

Computing (1.4) + (1.5)− (1.6), since ∇ is torsion-free, we obtain

Xg(Y,Z) + Y g(X,Z)− Zg(Y,X) =

= g(∇XY + ∇YX︸ ︷︷ ︸
=∇XY+[Y,X]

, Z) + g(∇XZ −∇ZX︸ ︷︷ ︸
[X,Z]

, Y ) + g(∇Y Z −∇ZY︸ ︷︷ ︸
[Y,Z]

, X) =

= 2g(∇XY,Z) + g([Y,X], Z) + g([X,Z], Y ) + g([Y,Z], X).

Rearranging terms we obtain g(∇XY, Z) = Kos(X,Y, Z).

The proof comes straight from Lemma 1.2.2.5: g being non-degenerate,
that scripture de�nes uniquely the vector �eld ∇XY , so ∇ is unique.

Before starting with the second part of the proof, we report some result
useful for the following.

Lemma 1.2.2.6. The Lie bracket is a bilinear map Γ(TM)×Γ(TM)→ Γ(TM).

Proof. Let X,Y, Z be vector �elds on M , a ∈ R,

[aX + Z, Y ] =(aX + Z)(Y )− Y (aX + Z) =

=aX(Y ) + Z(Y )− aY (X)− Y (Z) = a[X,Y ] + [Z, Y ].

As Lie bracket is anti-symmetric, that ends the proof.

Lemma 1.2.2.7. Let f ∈ C∞(M), X,Y ∈ Γ(TM), then

[fX, Y ] = f [X,Y ]− Y (f)X.

Proof. [fX, Y ] = fX(Y )− Y (fX) =

= fX(Y )− fY (X)− Y (f)X = f [X,Y ]− Y (f)X.

Lemma 1.2.2.8. Let f ∈ C∞(M), X,Y, Z ∈ Γ(TM), then

Y g(fX,Z) = Y (f)g(X,Z) + fY g(X,Z).

Proof. Y g(fX,Z) = Y (fg(X,Z)) = Y (f)g(X,Z) + fY g(X,Z).
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Proposition 1.2.2.9. Let M be a smooth manifold, let

P : Γ(TM)× Γ(TM)k → Γ(TM)h

a smooth R-linear map. If P is C∞(M)-linear on the �rst argument, then
P only depends on the punctual value with respect to the �rst argument.

In other words, set m ∈ M , if X,Z ∈ Γ(TM) are two vector �elds such
that Xm = Zm, then P (X,Y )m = P (Z, Y )m, ∀Y ∈ Γ(TM)k.

Remark 1.2.2.10. This is a speci�c case of a more general result, that can
be found for instance [GHL04, Thm 1.114, p.40]. The original statement
involves tensors, which have not been introducted in these notes. For this
reason we present the theorem in this way.

Proof. It su�ces to prove that P (X,Y )|m = 0 for any vector �eld X such
that Xm = 0.

Let X be such a vector �eld. In a local chart it can be written as

X =
n∑
i=1

Xi∂i.

Using R-linearity and C∞(M)-linearity on the �rst argument, one has

P (X,Y ) =

n∑
i=1

P (Xi∂i, Y ) =

n∑
i=1

XiP (∂i, Y ).

Since Xm = 0, Xi(m) = 0, ∀i = 1, . . . , n, hence

P (X,Y )m =
n∑
i=1

Xi(m)P (∂i, Y )m = 0,

.

Remark 1.2.2.11. The statement of the proposition can be reformulated,
saying that ∀Y ∈ Γ(TM)k, P induces a collection of linear maps

P (·, Y )m : TmM → TmM

Zm 7→ P (Z, Y )m,

smoothly depending on m.

Now we can return to the proof.

Proof. We need to �nd a connection satis�ng the properties of symmetry
and compatibility with the pseudo-metric. We proved that if the connection
exists, it must satisfy Koszul formula (1.3), so we want to build a connec-
tion such that g(∇XY,Z) = Kos(X,Y, Z), and then prove that it de�nes a
torsion-free connection compatible with the pseudo-metric.
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It is clear that Kos: Γ(TM)3 → C∞(M) is a R-multilinear function:
indeed, every term of the sum is trivially R-linear in every argument. More-
over, the maps Kos(·, Y, Z) and Kos(X,Y, ·) are C∞(M)-linear, ∀X,Y, Z ∈
Γ(TM).

Let's prove the former case, i.e. Kos(fX, Y, Z) = fKos(X,Y, Z).

2Kos(fX, Y, Z) =fX(g(Y,Z))+Y (g(fX,Z))−Z(g(Y, fX))

−g([Y, fX], Z)−g([fX,Z], Y )−g([Y,Z], fX).

Green terms are clearly C∞(M)-linear. The sum of red ones is, too:

Y (g(fX,Z))− g([Y, fX], Z) =

= Y (f)g(X,Z) + fY g(X,Z)− g(Y (f)X,Z)− fg([Y,X], Z) =

= fY g(X,Z)− fg([Y,X], Z).

The same calculation holds for blue terms, hence Kos(·, Y, Z) is C∞(M)-
linear.

The latter case is proved alike, with a suitable choice of the couples, i.e.

2Kos(X,Y, fZ) =X(g(Y, fZ))+Y (g(X, fZ))−fZ(g(Y,X))

−g([Y,X], fZ)−g([X, fZ], Y )−g([Y, fZ], X).

Set X,Y ∈ Γ(TM), since the map Z 7→ Kos(X,Y, Z) is C∞(M)-linear,
by Remark 1.2.2.11 it exists a smooth map Φ(X,Y ) : Γ(TM)→ C∞(M) such
that

• Φ(X,Y )|TmM : TmM → R is R-linear, ∀m ∈M ;

• Φ(X,Y )(Z) = Kos(X,Y, Z), ∀Z ∈ TmM .

g being non-degenerate, ∀m ∈ M , it exists a unique vector V (X,Y )
m ∈ TmM

such that

Φ(X,Y )|TmM (Zm) = g(V (X,Y )
m , Zm), ∀Z ∈ TmM.

Φ(X,Y ) smoothly depends on m, hence V (X,Y ) is a vector �eld. We de�ne
then ∇XY := V (X,Y ).

Since g is non-degenerate, the fact that X 7→ Kos(X,Y, Z) = g(∇XY, Z)
is C∞(M)-linear ∀Z ∈ Γ(TM) suggests that X 7→ ∇XY is C∞(M)-linear,
too. Indeed, let f ∈ C∞(M), X,Y, Z ∈ Γ(TM),

g(∇fXY, Z) = Kos(fX, Y, Z) = fKos(X,Y, Z) = fg(∇XY,Z).

The same argument will be used repeatedly to prove properties of ∇ via Kos.
Indeed, Y 7→ Kos(X,Y, Z) is R-linear, and so is Y 7→ ∇XY .
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In order to prove this map to be a connection, one must check Liebniz
rule on the second one, i.e. ∇X(fY ) = f∇XY + X(f)Y . Once again, it
su�ces to show Kos(X, fY, Z) = fKos(X,Y, Z) +X(f)g(Y,Z).

2Kos(X, fY, Z) =X(g(fY, Z))+fY (g(X,Z))−Z(g(fY,X))

−g([fY,X], Z)−g([X,Z], fY )−g([fY, Z], X).

As above, green terms are C∞-linear. The blue ones are the same as above,
up to switch X and Y , so their sum is C∞-linear, too. On the other hand,
the sum of red ones becomes

Xg(fY, Z)− g([fY,X], Z) =

= X(f)g(Y,Z) + fXg(Y,Z) + g(X(f)Y, Z)− fg([Y,X], Z) =

= fXg(Y,Z)− fg([Y,X], Z) + 2g(X(f)Y, Z),

which proves that ∇ is a connection.
The connection is torsion-free: indeed, using Koszul formula (1.3), one

easily computes

g(∇XY,Z)− g(∇YX,Z) = −1

2
g([Y,X], Z) +

1

2
g([X,Y ], Z).

By de�nition [Y,X] = −[X,Y ], so g(∇XY −∇YX,Z) = g([X,Y ], Z).
Finally, a direct computation shows that∇ is compatible with the pseudo-

metric.

Remark 1.2.2.12. A direct consequence of Koszul formula is that (M, g) and
(M,λg), λ 6= 0, have the same Levi-Civita connection.

There is another interesting corollary due to Koszul formula, that is that
Levi-Civita connection commutes with the push-forward.

Corollary 1.2.2.13. Let (M, g), (N,h) be two pseudo-Riemannian mani-
fold, ∇M , ∇N their Levi-Civita connections. If φ : M → N is an isometry,

∇Nφ∗Xφ∗Y = φ∗∇MX Y, ∀X,Y ∈ Γ(TM).

Proof. h is non-degenerate, hence it su�ces to show that, ∀Z̃ ∈ Γ(TN),

h(∇Nφ∗Xφ∗Y, Z̃) = h(φ∗∇MX Y, Z̃). (1.7)

φ is a di�eomorphism, so we can write Z̃ = φ∗Z, Z ∈ Γ(TM). Hence, the
right term of (1.7) becomes

h(φ∗∇MX Y, Z̃) = h(φ∗∇MX Y, φ∗Z) = g(∇MX Y, Z) = KosM (X,Y, Z).

The left term is in fact KosN (φ∗X,φ∗Y, φ∗Z). In Formula (1.3), up to switch
the vector �elds, there are two kind of terms:

• φ∗X(h(φ∗Y, φ∗Z)) = φ∗Xg(Y, Z), as φ is an isometry;

• h([φ∗Y, φ∗X], φ∗Z) = h(φ∗[Y,X], φ∗Z) = g([Y,X], Z), using Proposi-
tion 1.2.1.6 and again the fact that φ is an isometry.

Hence KosN (φ∗X,φ∗Y, φ∗Z) = KosM (X,Y, Z), which ends the proof.
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1.2.3 Christo�el symbols

We need a way to write Levi-Civita connection explicitely, using Koszul
formula on the local basis of TM induced by a local parameterization.

De�nition 1.2.3.1 (Christo�el symbols). Let (U, x) be a local chart, (∂1, . . . , ∂n)
the induced basis on TU . Christo�el symbols are the smooth functions
(Γkij)

n
i,j,k=1 such that

∇∂i∂j =

n∑
k=1

Γkij∂k. (1.8)

Lemma 1.2.3.2. Γkji = Γkij k = 1, . . . , n.

Proof. ∇∂j∂i = ∇∂i∂j + [∂i, ∂j ] and, thanks to Schwarz theorem,

[∂i, ∂j ] =
∂2

∂i∂j
− ∂2

∂j∂i
= 0.

Hence ∇∂j∂i = ∇∂i∂j , and it follows that their coe�cients are equal.

Christo�el symbols permit to have an explicit formula for the connection.

Proposition 1.2.3.3. Let (M, g) be a pseudo-Riemannian manifold, ∇ its
Levi-Civita connection. Let (U, x) be a local chart, and take X,Y ∈ Γ(TM).

∇XY = X(Y ) +
n∑

i,j,k=1

XiYjΓ
k
ij∂k,

over U , where Xi, Yj ∈ C∞(U) are the coe�cients of X,Y with respect to
the basis induced by the chart, namely X =

∑
Xi∂i, Y =

∑
Yj∂j.

Proof. It su�ces to compute the connection using the local parameterization:

∇XY =
n∑
i=1

Xi∇∂iY =
n∑
i=1

Xi

n∑
j=1

∇∂i(Yj∂j) =

=
n∑
i=1

Xi

n∑
j=1

(Yj∇∂i∂j + ∂i(Yj)∂j) =

=
n∑

i,j=1

XiYj ∇∂i∂j︸ ︷︷ ︸∑n
k=1 Γk

ij∂k

+
n∑

i,j=1

Xi∂i(Yj)∂j︸ ︷︷ ︸
=X(Y )
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Proposition 1.2.3.4. There is an explicit formula to compute Christo�el
symbols, that is

Γlij =

n∑
k=1

1

2

( ∂
∂i
gjk +

∂

∂j
gik −

∂

∂k
gij

)
glk, (1.9)

(gij) = g−1(∂i, ∂j) being the inverse of the matrix which represents the
pseudo-metric in the basis induced by the local parameterization.

Proof. An easy algebraic manipulation gives

Γlij =

n∑
h=1

Γhij

( n∑
k=1

ghkg
kl

︸ ︷︷ ︸
δhl

)
=

n∑
k=1

( n∑
h=1

Γhijghk

)
gkl. (1.10)

Developing g(∇∂i∂j , ∂k), one obtains

g(∇∂i∂j , ∂k) =
n∑
h=1

Γhijg(∂h, ∂k) =
n∑
h=1

Γhijghk,

which is the term in bracket in Formula (1.10).
Recalling that [∂i, ∂j ] = 0, Koszul formula (1.3), applied to (∂i)

n
i=1, ends

the proof:

Γlij =
n∑
k=1

(
g(∇∂i∂j , ∂k)

)
gkl =

n∑
k=1

1

2

( ∂
∂i
gjk +

∂

∂j
gik −

∂

∂k
gij

)
glk.

Example 1.2.3.5 (Levi-Civita connection of Rp,q). Consider the parameter-
ization given by Cartesian coordinates of Rp+q. The pseudo-metric matrix
induced is gij ≡ ±δij , that is the functions m 7→ (gij)m are constant with
respect to the parameterization. In other words, the derivative of these func-
tions vanish identically, then substituting in Equation (1.9), one �nds

Γlij = 0, ∀i, j, k = 1, . . . , n.

It follows by Proposition 1.2.3.3 that ∇XY = X(Y ), that is in Rp,q the
Levi-Civita connection is the usual derivative.

One can compute the Levi-Civita connection of a submanifold intrinse-
cally, considering the submanifold as a manifold itself, or as induced from
the enviromental one.

Lemma 1.2.3.6. Let M be a smooth manifold and N a submanifold. Let
m ∈ M , it exists an open set U ⊆ M containing m such that ∀X ∈ Γ(TN)
it exists a vector �eld X̃ ∈ Γ(TU) which locally extends X, that is X̃l = Xl,
∀l ∈ N ∩ U .
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Proof. Assume n = dimN and k its codimension as submanifold, that is
dimM = n+k. By de�nition of submanifold, it exists an open neighborhood
U of m and a di�eomorphism φ : U → Rn+k such that φ(N ∩U) ⊆ Rn×{0}.

For (x, 0) ∈ Rnx × {0}, denote m′ = φ−1(x, 0) ∈ N ∩U . Let X ∈ Γ(TN),
hence

Xm′ = Xφ−1(x,0) =
n∑
i=1

Xi(φ
−1(x, 0))∂i.

For (x, y) ∈ Rnx ×Rky , denote m′ = φ−1(x, y) ∈ U . De�ne X̃ ∈ Γ(TN) as

X̃m′ = X̃φ−1(x,y) :=

n∑
i=1

Xi(φ
−1(x, y))∂i.

Hence X̃ is a vector �eld in Γ(TU) and X̃ = X on N ∩ U .

Proposition 1.2.3.7. Let (M, g) be a pseudo-Riemannian manifold, D its
Levi-Civita connection. Let N ⊆ M be a pseudo-Riemannian submanifold
and ∇ its Levi-Civita connection, then ∇ is the orthogonal projection of D
over Γ(TN).

Proof. Levi-Civita connection can be computed locally, so set m ∈ N and
let U be an open neighborhood as in Lemma 1.2.3.6.

Taken X,Y ∈ Γ(TN), denote X̃, Ỹ ∈ Γ(TU) their extensions on U .
Remark that, over N ∩ U , g(X,Y ) = g(X̃, Ỹ ), [X,Y ] = [X̃, Ỹ ] and X(f) =
X̃(f), ∀f ∈ C∞(N ∪ U).

For m′ ∈ N ∩ U , Z ∈ Γ(TN), comparing with (1.3), one �nds

Kos(X̃, Ỹ , Z̃)m′ = Kos(X,Y, Z)m′ .

This implies, since Z = Z̃ on N ∩ U ,

g((DX̃ Ỹ )m′ , Zm′) = g((∇XY )m′ , Zm′),

namely (DX̃ Ỹ −∇XY )m′ is orthogonal to Zm′ .
Z ∈ Γ(TN) is arbitrary, hence

(DX̃ Ỹ −∇XY )m′ ∈ (Tm′N)⊥, ∀m′ ∈ N ∩ U.

Since N is a pseudo-Riemannian submanifold, Tm′N ∩ (Tm′N)⊥ = {0} (see
Proposition 1.1.1.6 (iii)). (∇XY )m′ ∈ Tm′N that is ∇XY = (DX̃ Ỹ )⊥ on
N ∩ U , which ends the proof.

Example 1.2.3.8 (Levi-Civita connection of Hp,q). First, we recall that the
Levi-Civita connection is a local property and Hp,q is locally isometric to
H̃p,q. H̃p,q is a pseudo-Riemannian submanifold of Rp,q+1, hence we need to
describe the orthogonal projection of D := ∇Rp,q+1

over Γ(T H̃p,q).
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TvH̃p,q = v⊥, hence TvRp,q+1 = v ⊕ TvH̃p,q. In other words, any vector
x ∈ TvRp,q+1 = Rp,q+1 can be written as x = λv + w, λ ∈ R, w ∈ TvH̃p,q,
i.e. w is the orthogonal projection of x over TvH̃p,q. In particular,

〈x, v〉p,q+1 = λ〈v, v〉p,q+1 + 〈w, v〉p,q+1 = −λ,

hence w = x+ 〈x, v〉p,q+1v.
In Example 1.2.3.5, we showed DXY = X(Y ), so we conclude that

(∇XY )v = X(Y )v + 〈X(Y )v, v〉p,q+1v. (1.11)

One can re�ne the formula above: let I ∈ Γ(TRp,q+1) be the vector �eld
such that Iv = v, hence X(I)v = dIvXv = Xv. D is compatible with the
pseudo-metric 〈·, ·〉p,q+1 of Rp,q+1, hence

X〈Y, I〉p,q+1 = 〈X(Y ), I〉p,q+1 + 〈Y,X(I)〉p,q+1.

Recalling that Y ∈ Γ(TvH̃p,q) = v⊥, 〈Y, I〉p,q+1 ≡ 0, and so is any of its
derivative, i.e. 〈X(Y ), I〉p,q+1 = −〈Y,X〉p,q+1. Substituting in Formula
1.11, one obtains

∇XY = X(Y )− 〈X,Y 〉p,q+1I. (1.12)

The Levi-Civita connection of Hp,q is then obtained as the push-forward of
the one of H̃p,q with respect to the quotient projection.

1.3 Curvature

De�nition 1.3.0.1 (Curvature tensor). Let (M, g) a pseudo-Riemannian man-
ifold, ∇ its the Levi-Civita connection. The curvature tensor R associates
to each pair X,Y ∈ Γ(TM) the operator R(X,Y ), de�ned by

R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ].

We will write R(X,Y )(Z) = R(X,Y )Z.

Remark 1.3.0.2. The de�nition of the curvature tensor is up to sign: some
authors de�ne it as above, others, for example [DoC92], as

R(X,Y ) = ∇Y∇X −∇X∇Y +∇[X,Y ].

Example 1.3.0.3 (Pseudo-Euclidean spaces). We saw in Example 1.2.3.5 that
the classical derivative is the Levi-Civita connection of Rp,q.

Let X,Y be two vector spaces on Rp,q, then

R(X,Y ) =∇X∇Y −∇Y∇X −∇[X,Y ] =

=X(Y )− Y (X)− (X(Y )− Y (X)) = 0.
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Another way to see it is remarking that the coe�cents of the matrix of
pseudo-metric with respect to the canonical basis are constant. Since the
elements gij are derived in order to compute Christo�el symbols (see Formula
(1.9)), they are null. We will prove in Proposition 1.3.1.10 that R can be
obtained from Christo�el symbols, so R is null, too.

Example 1.3.0.4 (Pseudo-hyperbolic space). As in Example 1.2.3.8, we will
compute the Riemann tensor of H̃p,q and then its push-forward will be the
actual tensor of H(p,q).

To compute it, we want to exploit the fact to be in a submanifold of
Rp,q+1. We recall that 〈·, ·〉p,q+1 is the exterior pseudo-metric, DXY = X(Y )
is the covariant derivative of Rp,q+1 and I ∈ Rp,q+1 is the vector �eld such
that Iv = v. Then ∀X,Y ∈ Γ(T H̃p,q) ⊆ Γ(TRp,q+1), 〈X, I〉p,q+1 = 0 and

∇XY = DXY − 〈X,Y 〉p,q+1I.

With these elements, we are ready to compute the Riemann tensor of H̃p,q:

∇X∇Y Z =DX(∇Y Z)− 〈∇Y Z,X〉p,q+1I =

=DX [DY Z − 〈Z, Y 〉p,q+1I]− 〈DY Z − 〈Z, Y 〉p,q+1I,X〉p,q+1I =

=DXDY Z −X (〈Z, Y 〉p,q+1) I − 〈Z, Y 〉p,q+1X − 〈DY Z,X〉p,q+1I+

+ 〈X,Z〉p,q+1 〈I,X〉p,q+1︸ ︷︷ ︸
=0

I =

=DXDY Z−〈DXZ, Y 〉p,q+1I−〈Z,DXY 〉p,q+1I − 〈Z, Y 〉p,q+1X−
−〈DY Z,X〉p,q+1I.

−∇Y∇XZ is obtained switchingX and Y in the previous formula and chang-
ing the sign, that is

−∇Y∇XZ =−DYDXZ+〈DY Z,X〉p,q+1I+〈Z,DYX〉p,q+1I+

+ 〈Z,X〉p,q+1Y+〈DXZ, Y 〉p,q+1I.

so the red terms cancel eachother, and the green ones become−〈[X,Y ], Z〉p,q+1I.
Finally,

−∇[X,Y ]Z = −D[X,Y ](Z)+〈Z,DXY 〉p,q+1I.

The green terms cancel, while the blue ones constitute the Riemann tensor
of Rp,q+1, which is 0, hence

R(X,Y )Z = 〈Z,X〉p,q+1Y − 〈Z, Y 〉p,q+1X.

Proposition 1.3.0.5. The properties of R hold in the pseudo-Riemannian
realm:

1. The application (X,Y ) 7→ R(X,Y ) is bilinear;
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2. the operator R(X,Y ) : Γ(TM) → Γ(TM) is C∞(M)-linear ∀X,Y ∈
Γ(TM);

3. R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0 (�rst Bianchi identity);

Proposition 1.3.0.6. Denote R(X,Y, Z,W ) := g(R(X,Y )Z,W ), the fol-
lowing properties hold in the pseudo-Riemannian realm:

1. R(·, ·, Z,W ) is anti-symmetric ∀Z,W ∈ Γ(TM);

2. R(X,Y, ·, ·) is anti-symmetric ∀X,Y ∈ Γ(TM);

3. R(X,Y, Z,W ) = R(Z,W,X, Y ), ∀X,Y, Z,W (symmetric on the cou-
ples).

We won't give the proofs, as they don't di�er from the classical case. The
reference for this part are [DoC92] and [O'N].

1.3.1 Sectional curvature

The Riemann tensor is a heavy tool to handle, so we want to de�ne another
object that contains the same informations. In order to make a parallel
with the Riemannian realm, we consider a Riemannian metric 〈·, ·〉 and a
pseudo-Riemannian metric g(·, ·) on M .

In the Riemannian domain, the tool containing all the informations is
the sectional curvature, i.e.

K(m,σ) =
〈R(X,Y )Y,X〉
|X ∧ Y |2

,

where X,Y is a basis of the 2-plane σ ⊆ TmM and

|X ∧ Y | =
√
〈X,X〉 〈Y, Y 〉 − 〈X,Y 〉2.

If we try to substitute 〈·, ·〉 with g(·, ·), there are two problems: the
denominator can be a complex number or 0.

The �rst problem can be easily avoided using the quadric form

Q(X,Y ) = g(X,X) + g(Y, Y )− g(X,Y )2,

which is the determinant of the pseudo-metric induced on the plane σ, in-
stead of |X ∧ Y |2. Unfortunately, the form can be degenerate on σ, and
there is no way to �x it, so we de�ne the sectional curvature in the pseudo-
Riemannian domain as it follows.

De�nition 1.3.1.1 (Sectional curvature). Let σ ⊆ TmM a non-degenerate
2-plane and {X,Y } a basis of σ.

K(m,σ) :=
g(R(X,Y )Y,X)

Q(X,Y )
.
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We need to prove that de�nition is well posed, that is it does not depend
on the choice of the basis {X,Y }.

Lemma 1.3.1.2. Let B a bilinear anti-symmetric form over a vector space,
then B(aX + bY, cX + dY ) = (ad− bc)B(X,Y ).

Proof. B(aX + bY, cX + dY ) = aB(X, cX + dY ) + bB(Y, cX + dY ) =

= acB(X,X)︸ ︷︷ ︸
=0

+adB(X,Y ) + bcB(Y,X) + bdB(Y, Y )︸ ︷︷ ︸
=0

=

= (ad− bc)B(X,Y ).

Corollary 1.3.1.3. K(p, σ) does not depend on the basis of σ chosen to
compute it.

Proof. Let GX,Y be the matrix of the pseudo-metric in the basis {X,Y }, so
Q(X,Y ) = detGX,Y .

Consider a change of basis{
W = aX + bY

Z = cX + dY
,

the matrix GW,Z of the pseudo-metric in the basis is

GW,Z =

(
a b
c d

)
GX,Y

(
a b
c d

)T
Then Q(W,Z) = detGW,Z = (ad− bc)2 detGX,Y = (ad− bc)2Q(X,Y ).

For all vector �elds U, V ∈ Γ(TM), R(·, ·, U, V ) and R(U, V, ·, ·) are bi-
linear and anti-symmetric forms. Hence, applying Lemma 1.3.1.2 twice, we
obtain

R(aX + bY , cX + dY, cX + dY, aX + bY ) =

= (ad− bc)R(X,Y, cX + dY, aX + bY ) =

= (ad− bc)2R(X,Y, Y,X).

Computing the quotient concludes the proof.

Example 1.3.1.4 (Pseudo-Euclidean space). R(X,Y ) = 0 (see Example 1.3.0.3),
so K(m,σ) = 0, ∀m ∈ Rp,q, σ ⊆ TmRp,q non-degenerate plane.
Example 1.3.1.5 (Pseudo-hyperbolic space). A more interesting example is
given by Hp,q. We computed in Example 1.3.0.4 the Riemann tensor

R(X,Y )Z = 〈Z,X〉p,q+1Y − 〈Z, Y 〉p,q+1X,
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so computing R(X,Y, Y,X) gives

R(X,Y, Y,X) = 〈R(X,Y )Y,X〉p,q+1 =

= 〈〈Y,X〉p,q+1Y − 〈Y, Y 〉p,q+1X,X〉p,q+1 =

= 〈Y,X〉p,q+1〈Y,X〉p,q+1 − 〈Y, Y 〉p,q+1〈X,X〉p,q+1 =

= −Q(X,Y ),

that is K(m,σ) = −1, ∀m ∈ H̃p,q, ∀σ ⊆ TmH̃p,q non-degenerate plane, and
so does for Hp,q.

Hp,q is a space with constant negative sectional curvature. Spaces with
this property are called hyperbolic in the Riemannian realm, Anti-de Sitter
in the Minkowskian one and pseudo-hyperbolic in the most general context.

Proposition 1.3.1.6. Let (M, g) be a pseudo-Riemannian manifold. h = λg,
is another pseudo-metric on M , λ ∈ R \ {0}.

1. Rh(X,Y )Z = Rg(X,Y )Z, ∀X,Y, Z ∈ Γ(TM);

2. Rh(X,Y, Z,W ) = λRg(X,Y, Z,W ), ∀X,Y, Z,W ∈ Γ(TM);

3. Kh(m,σ) = λ−1Kg(m,σ), ∀m ∈ M , ∀σ non-degenerate 2-plane of
TmM .

Proof. This result is a corollary of Remark 1.2.2.12. Indeed,

1. R only depends on ∇.

2. Rh(X,Y, Z,W ) = h(Rh(X,Y )Z,W ) = λg(Rg(X,Y )Z,W ).

3. Kh(m,σ) = Rh(X,Y,Y,X)
Qh(X,Y ) =

λRg(X,Y,Y,X)
λ2Qg(X,Y )

=
Kg(m,σ)

λ .

Remark 1.3.1.7. If λ > 0 we are not changing signature, on the contrary if
λ < 0 and n+ 6= n−, we are. Hence, when we focus on one speci�c geometry
(e.g. Riemannian, Lorentzian, etc.), we are not allowed to scale the pseudo-
metric by a negative value, except for the case n+ = n−.

A form F : Γ(TM)4 → C∞(M) that respects the same symmetries showns
in Proposition 1.3.0.6 is called curvaturelike. The following statement shows
that there are not a lot of curvaturelike tensors.

Theorem 1.3.1.8. Let E,F be a curvaturelike tensors on TM . If

E(X,Y, Y,X) = F (X,Y, Y,X),

for every X,Y spanning a non-degenerate plane, then E = F .
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The proof, which can be found in [O'N, pp. 77-80], is based on the fact
that vectors couples spanning a non-degenerate plane form a dense subset of
TM × TM and tensors are continuous functions.

Corollary 1.3.1.9. The sectional curvature, together with the pseudo-metric,
de�ne univocally the curvature tensor.

Proof. By de�nition, K(p, σ)Q(X,Y ) = R(X,Y, Y,X), ∀X,Y spanning a
non-degenerate plane. Hence, thanks to Theorem 1.3.1.8, R is the only
tensor that satis�es that condition.

Once again, g being non-degenerate, R(X,Y )Z is univocally de�ned by
R(X,Y, Z, ·), and so is the operator Z 7→ R(X,Y )Z, that is the image of the
curvature tensor.

From this result, we can collect all the informations of the curvature
tensor by computing it on the basis (∂1, . . . , ∂n), thanks to the linearity of
the tensor.

Proposition 1.3.1.10 (Curvature tensor coe�cients). Let Rlijk the l-th co-

e�cient of R(∂i, ∂j)∂k, i.e. R(∂i, ∂j)∂k =
∑
Rlijk∂l, then

Rlijk =
∂

∂xi
Γljk −

∂

∂xj
Γlik +

n∑
m=1

(
ΓmjkΓ

l
im − ΓmikΓ

l
jm

)
. (1.13)

Proof. [∂i, ∂j ] = 0, so R(∂i, ∂j) = ∇∂i∇∂j −∇∂j∇∂i . ∇∂j∂k =
∑n

l=1 Γljk∂l by
de�nition, then

∇∂i∇∂j∂k =
n∑
l=1

∇∂iΓ
l
jk∂l =

n∑
l=1

(
Γljk∇∂i∂l + ∂i(Γ

l
jk)∂l

)
=

=
n∑
l=1

Γljk

( n∑
m=1

Γmil ∂m

)
+

n∑
l=1

∂i(Γ
l
jk)∂l =

=
n∑

l,m=1

(
ΓmjkΓ

l
im∂l

)
+

n∑
l=1

∂i(Γ
l
jk)∂l =

=

n∑
l=1

( n∑
m=1

ΓmjkΓ
l
im + ∂i(Γ

l
jk)︸ ︷︷ ︸

l-th coordinate of ∇∂i
∇∂j

∂k

)
∂l

We obtain the l-th coordinate of ∇∂i∇∂j∂k by switching the index i and
j, and that concludes the proof.

Corollary 1.3.1.11. Christo�el symbols completely determine the curvature
tensor.
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Example 1.3.1.12 (Cylinder). C = {x2 + y2 = 1} ⊆ R2,1 is a Lorentzian
submanifold. Indeed, consider the parameterization

(0, 2π)× R : → C ⊆ R2,1

(φ, z) 7→ (cosφ, sinφ, z),

the basis of the tangent space induced by the parametrization is{
∂φ = (− sinφ, cosφ, 0)

∂z = (0, 0, 1)
.

Hence the the restriction of 〈·, ·〉2,1 to C is

G = (gij) =

(
〈∂φ, ∂φ〉2,1 〈∂φ, ∂z〉2,1
〈∂z, ∂φ〉2,1 〈∂z, ∂z〉2,1

)
=

(
1 0
0 −1

)
,

which is clearly Lorentzian. Moreover, it means that the parameterization
is a loca isometry from R1,1 to the cylinder. The curvature is invariant by
local isometry, hence the curvature is 0.

Example 1.3.1.13 (Hyperboloid of one sheet). S̃1,1 = {x2 + y2 − z2 = 1} is a
Lorentzian submanifold of Minkowski 3-dimensional space (see Figure 1.3).
We proved in Example 1.3.1.5 that it has constant curvature K = 1, namely
it is a de Sitter space. Nevertheless, we give the explicit computation with
Christo�el symbols in low dimension as an example.

A global parametrization of the surface is

R2 → S̃1,1R2,1

(φ, z) 7→ (
√

1 + z2 cosφ,
√

1 + z2 sinφ, z).

In every point p = p(φ, z), the parametrization induces a basis on TpH:{
∂φ = (−

√
1 + z2 sinφ,

√
1 + z2 cosφ, 0)

∂z = ( z√
1+z2

cosφ, z√
1+z2

sinφ, 1)
.

The G = (gij) of the induced pseudo-metric in the basis (∂φ, ∂z) is

G =

(
gφφ gφz
gzφ gzz

)
=

(
1 + z2 0

0 − 1
1+z2

)
.

It follows that its inverse G−1 = (gij) is

G−1 =

(
gφφ gφz

gzφ gzz

)
=

( 1
1+z2

0

0 −(1 + z2)

)
.

Let's compute Christo�el symbols by means of Equation (1.9). As G−1 is
diagonal, the formula becomes Γkij = 1

2(∂igjk + ∂jgik − ∂kgij)gkk.
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Γφφφ = 0, Γφφz = Γφzφ =
z

1 + z2
, Γφzz = 0,

Γzφφ = z(1 + z2), Γzφz = Γzzφ = 0, Γzzz = − z

1 + z2
.

Since detG ≡ −1, the sectional curvature is

K(φ, z) =
g(R(∂1, ∂2)∂2, ∂1)

detG
= −g(R(∂1, ∂2)∂2, ∂1) = g(R(∂1, ∂2)∂1, ∂2).

By means of Equation (1.13),

g(R(∂1, ∂2)∂1, ∂2) = R1
121g12 +R2

121g22.

g12 = 0, hence we only need to compute R2
121g22.

R2
121 =

∂

∂1
Γ2

12︸ ︷︷ ︸
=0

− ∂

∂2
Γ2

11 + Γ1
21Γ2

11 − Γ1
11Γ2

21︸ ︷︷ ︸
=0

+ Γ2
21Γ2

12︸ ︷︷ ︸
=0

−Γ2
11Γ2

22+ =

=− ((1 + z2) + 2z2) + z2 + z2 = −(1 + z2)

Then the sectional curvature is K(φ, z) = R2
121g22 = 1.

1.4 Geodesics

In Riemannian geometry, geodesics are curves locally minimizing distances.
The distance is induced by the metric, and cannot be extended to the pseudo-
Riemannian realm. Indeed, in the more general setting, curves can have
negative or null length, so the notion of minimize distances is meaningless:
any pair of points lying on the same lightlike curve has distance zero.

However, geodesics can be also de�ned as straight lines of the space, that
is curves with no acceleration. This notion can be extended, involving only
the Levi-Civita connection.

1.4.1 Curves

Let c : I → M , I ⊆ R, be a smooth connected curve on (M, g) pseudo-
Riemannian manifold. We will call the curve spacelike, timelike or lightlike
if its tangent vector is constant in character.

De�nition 1.4.1.1 (Pseudo-length). The pseudo-length of a curve c ∈ C1(I,M)
is de�ned as

L(c) :=

∣∣∣∣∫
I

√
|g (c′(t), c′(t))|dt

∣∣∣∣ .
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A Riemannian manifold M has a natural structure of metric space, in-
duced by the metric. The distance from x to y is

d(x, y) = inf{L(c), c : [0, 1]→M, piecewise C1, c(0) = x, c(1) = y}.

It is not possible to extend this de�nition on a pseudo-Riemannian manifold:
the distance between points on the same lightlike curve is 0, that contradicts
the axioms of distance.

1.4.2 Vector �elds along curves

De�nition 1.4.2.1 (Vector �eld along a curve). Let c : I → M be a smooth
curve, a vector �eld along c is a smooth map X : I → TM such that
Xt ∈ Tc(t)M , ∀t ∈ I.

Remark 1.4.2.2. Given a vector �eld X̃ ∈ Γ(TM) and a curve c : I → M ,
the restriction of X̃ to c, i.e. Xt := X̃c(t), is a vector �eld along the curve c.

One could think that it is also possible to extend a vector �eld along a
curve Y to a vector �eld Ỹ on M , that is �nding Ỹ ∈ Γ(TM) such that
Ỹc(t) = Yt. This is not true, and the following exemples will explain what
kind of obstacles can occur.

Example 1.4.2.3 (Injectivity). If c : I →M is not injective, it exists t̄ 6= s̄ ∈ I
such that c(t̄) = c(s̄) = m, i.e. the curve self-intersects. Let X be a �eld
along c such that Xt̄ 6= Xs̄. Suppose it exists a vector �eld X̃ ∈ Γ(TM) that
extends X, hence

X̃t̄ = X̃γ(t̄) = Xm = X̃γ(s̄) = Xs̄,

which contradicts the hypothesis on X.
For an explicit example, take Xt = c′(t), which is a vector �eld along c(t)

(see Figure 1.4).

In the previous example the vector �eld could not be extend due to
punctual properties of the curve, suggesting that in a local chartX admits an
extention. The next example shows that there are cases more pathological:
the idea is to take a dense curve onM and a vector �eld which is continuous
with respect to the topology of the curve but not to the manifold's one.

Example 1.4.2.4 (Density). Consider the torus M = R2/Z2 and the projec-
tion p : R2 →M , which is a local di�eomorphism.

Consider the curve c̄ : R→ R2 such that c̄(t) = (πt, t), which is a straight
line with irrational slope. Hence the image of c := p ◦ c̄ is dense in M .

De�ne X̄t = (cosπt, sinπt) ∈ R2 = Tc̄(t)R2, and X := p∗X̄. c(Z) is a
dense subset of p(R× {0}), and X̄t = ((−1)t, 0) for t ∈ Z. Since p is a local
di�emorphism, X2t = −X2t+1, ∀t ∈ Z, hence it cannot be extended to a
smooth vector �eld (see Figure 1.5).
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Figure 1.4: Vector �eld Xt = c′(t) along a self-intersecting curve c(t)
.

Both examples suggest that, locally in I and in M , one can extend any
vector �eld along a curve to a vector �eld on the manifold. The next example
shows that we need additional assuptions on the derivative of the curve.

Example 1.4.2.5 (Regularity). Consider a point m0 ∈M of a manifold. Let
c : I →M be the curve c(t) = m0. A �eld along c is a choice of in�nite many
vectors (Xt)t∈I ⊆ Tm0M , which clearly can not be extended even locally.

Nevertheless, it is possible to extend the Levi-Civita connection to vector
�elds de�ned along curves.

Theorem 1.4.2.6. Let (M, g) be a pseudo-Riemannian manifold and c : I → M
a smooth curve. It exists a unique operator ∇/dt from the space of vector
�elds along c to itself, such that ∀t ∈ I

i.
(∇
dt(fX)

)
t

= f ′(t)Xt + f(t)(∇dtX)t, ∀f : I → R;

ii. if X can be (locally) extended to a vector �eld X̃ ∈ Γ(TM), then(
∇
dt
X

)
t

=
(
∇c′(t)X̃

)
c(t)

.

Proof. We will check �rst the unicity part of the statement. Suppose ∇/dt
exists, set X a vector �eld along c. In a local chart, we can write

c(t) = (c1(t), . . . , cn(t)), ci ∈ C∞(I,R);

Xt =
n∑
i=1

Xi(t)(∂i)c(t), Xi ∈ C∞(I,R).
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Figure 1.5: The vector �eld X along c(t) restricted to the circle p(R× {0})
in R2/Z2 cannot be extended to a vector �eld along the circle, hence neither
to a vector �eld on R2/Z2.

Using (i), one obtains

∇
dt
Xt =

n∑
i=1

∇
dt

(Xi(t)∂i) =
n∑
i=1

X ′i(t)(∂i)c(t) +Xi(t)
∇
dt

(∂i)c(t). (1.14)

Clearly (∂i)c(t) can be extended to a vector �eld on an open neighborhood
of c. By the means of (ii) one computes

∇
dt

(∂i)c(t) = ∇c′(t)(∂i)c(t) =
n∑
j=1

c′j(t)∇(∂j)c(t)(∂i)c(t) =

=
n∑

j,k=1

c′j(t)Γ
k
ij(c(t))(∂k)c(t).

Substituting in (1.14), we �nds(
∇
dt
X

)
t

=
n∑

i,j,k=1

X ′i(t)(∂i)c(t) +Xi(t)c
′
j(t)Γ

k
ij(c(t))(∂k)c(t) =

=

n∑
i,j,k=1

[
X ′k(t) +Xi(t)c

′
j(t)Γ

k
ij(c(t))

]
(∂k)c(t). (1.15)

which proves the unicity of such operator.
To prove that it exists, we de�ne it as in (1.15) and show it satis�es the

properties (i),(ii).
For (i), set f : I → R and replace X = fY in Equation (1.15):(
∇
dt

(fY )

)
t

=
n∑

i,j,k=1

[
(fYk)

′(t)(∂k)c(t) + f(t)Yk(t)c
′
j(t)Γ

k
ij(c(t))

]
(∂k)c(t).
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Figure 1.6: Vector �eld along a constant curve.

Since (fYk)
′ = f ′Yk + fY ′k,(
∇
dt

(fY )

)
t

=

n∑
i,j,k=1

[
f ′(t)Yk(t)(∂k)c(t) + f(t)Y ′k(t)(∂k)c(t)+

+ f(t)Yk(t)c
′
j(t)Γ

k
ij(c(t))

]
(∂k)c(t) =

=(f ′Y )t + f(t)

(
∇
dt
Y

)
t

.

For (ii), let t0 ∈ I, It0 ⊆ I be an open neighborhood of t0 and X̃ ∈ Γ(TM)
such that X̃c(t) = Xt, ∀t ∈ It0 . In a local chart, X̃ = X̃i∂i, and X̃i(c(t)) =
Xi(t). Its derivative along c′(t) is

c′(t)
(
X̃i(c(s))

)
=

d

ds
X̃i(c(s))|s=t = X ′i(t).

Hence, replacing in (1.15) and using Proposition 1.2.3.3, one �nds(
∇
dt
X

)
t

=

n∑
i,j,k=1

[
c′(t)

(
X̃k(c(t))

)
+ X̃i(c(t))c

′
j(t)Γ

k
ij(c(t))

]
(∂k)c(t) =

= c′(X̃)c(t) +

n∑
i,j,k=1

X̃i(c(t))c
′
j(t)Γ

k
ij(c(t))(∂k)c(t) =

(
∇c′X̃

)
c(t)

.

Lemma 1.4.2.7. Let M be a smooth manifold, c : I → M a regular curve
and t0 ∈ I. It exists ε > 0 and U ⊆M open neighborhood of c(t0) such that
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∀X vector �eld along c|(t0−ε,t0+ε), it exists a vector �eld X̃ ∈ Γ(TU) which
extends X.

Proof. It is a corollary of Proposition 1.2.3.7: indeed a regular curve is a
parameterization for a smooth 1-submanifold of M .

Corollary 1.4.2.8. If c : I → M is a regular or a constant curve, the op-
erator ∇/dt coincide with the Levi-Civita operator restricted along c, so we
will abusively write

∇
dt
X = ∇c′X.

Proof. ∇ can be computed locally, so Lemma 1.4.2.7 and Theorem 1.4.2.6
(ii) conclude the proof.

1.4.3 Geodesics

De�nition 1.4.3.1 (Geodesic). A curve γ : (a, b)→M is a geodesic if

∇γ′(t)γ′(t) = 0, ∀t ∈ (a, b). (1.16)

Remark 1.4.3.2. We wrote∇γ′γ′ instead of (∇/dt)(γ′) because, as a corollary
of Theorem 1.4.3.4, geodesic are either regular curves or constants.

It comes straight from the de�nition that a geodesic's tangent vectors
have the same character, in fact

d

dt
g
(
γ′(t), γ′(t)

)
= 2g

(
∇γ′(t)γ′(t), γ′(t)

)
≡ 0, (1.17)

that means the norm of γ′ is constant.
Locally, geodesics can be described as solution of ODEs, tied to Christof-

fel symbols.

Proposition 1.4.3.3. Let (M, g) be a pseudo-Rieamnnian manifold and ∇
its Levi-Civita connection. Let c : I → M be a smooth curve, (U, x) a local
chart, c(t) = (c1(t), . . . , cn(t)) in the local chart. c is a geodesic if and only
if it satis�es the di�erential system

c′′k(t) +

n∑
i,j=1

Γkij(c(t))c
′
i(t)c

′
j(t) = 0, ∀k = 1, . . . , n, (1.18)

where Γkij are the Christo�el symbols with respect to the local basis {∂1, . . . , ∂n}
induced by the local chart.

Proof. The proof is direct corollary of Theorem 1.4.2.6: in fact, substituting
Xt = c′(t) in (1.15), one obtains

∇
dt
c′(t) =

n∑
k=1

c′′k(t) +

n∑
i,j=1

c′i(t)c
′
j(t)Γ

k
ij(c(t))

 (∂k)c(t).
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(∇/dt)γ′ = 0 if and only if all its coe�cents with respect to the basis vanish,
which is exactly the statement.

Theorem 1.4.3.4 (Existence and unicity of geodesics). Let (M, g) be a
pseudo-Riemannian manifold, m0 ∈ M , v0 ∈ Tm0M . There exist an open
neighborhood U ×V of (m0, v0) ∈ TM and ε > 0 such that ∀(m, v) ∈ U ×V ,
it exists a unique geodesic c(m,v) : (−ε, ε) → M such that c(m,v)(0) = m,
c′(m,v)(0) = v.

Moreover, the map C : U×V×(−ε, ε)→M such that C(m, v, t) = c(m,v)(t)
is smooth.

Proof. Let A be an local chart of M containing m0. The di�erential system
(1.18) can be rearranged in a �rst order di�erential system

{
x′k = yk k = 1, . . . , n

y′k = −
∑n

i,j=1 Γkijyiyj k = 1, . . . , n
,

where (x1, . . . , xn, y1, . . . , yn) are the coordinates of (c(t), c′(t)) in the local
chart TA. The result is then a direct application of the fact that, given
initial values (m, v), it exists a unique solution of an ODEs. The solutions
of an ODE smoothly depend on the initial values, hence C is smooth.

Corollary 1.4.3.5. Let γ1 : (a1, b1)→M , γ2 : (a2, b2)→M be two geodesics
such that ∃t1 ∈ (a1, b1), t2 ∈ (a2, b2) such that{

γ1(t1) = γ2(t2),

γ′1(t1) = γ′2(t2).

It exists a geodesic γ : (a1 − t1, b1 − t1) ∪ (a2 − t2, b2 − t2)→M such that

γ(t) =

{
γ1(t+ t1) if t ∈ (a1 − t1, b1 − t1)

γ2(t+ t2) if t ∈ (a2 − t2, b2 − t2)

Proof. The uniqueness of a local solution, proved in Theorem 1.4.3.4, implies
that γ1 = γ2 over (a1− t1, b1− t1)∩ (a2− t2, b2− t2), hence γ is well de�ned.
By hypothesis, γ is a geodesic over three open sets which cover its domain,
so it is a geodesic over all its domain.

This result allows to glue geodesics coinciding over an open set, so it
exists a maximal interval of de�nition for any geodesic, which bring to the
following de�nition:

De�nition 1.4.3.6. For m ∈M and v ∈ TmM , the geodesic with initial point
m and initial velocity v is the curve γ(m,v) : I(m,v) →M such that

i. γ(m,v) is a geodesic,
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ii. γ(m,v)(0) = m, γ′(m,v)(0) = v,

iii. if a curve c : J → M satis�es the two previous points, J ⊆ I(m,v) and
c(t) = γ(m,v)(t), ∀t ∈ J , that is c is a portion of γ(m,v).

De�nition 1.4.3.7 (Completeness). A geodesic is complete if its maximal
interval of de�nition is R. It is complete on one side if its maximal interval
of de�nition is an unlimited open subset of R.
De�nition 1.4.3.8 (Geodesically complete). A pseudo-Riemannian manifold
is geodesically complete if every geodesic is complete.

Example 1.4.3.9 (Geodesics of Rp,q). Consider a point m ∈ Rp,q and a vector
v ∈ TmRp,q = Rp,q. The a�ne line c(t) = m+ tv, de�ned on the whole real
line, is the geodesic γ(m,v). Indeed, c

′(t) = v, ∀t ∈ R, that is the vector �eld
c′(t) is constant. Hence, recalling that Levi-Civita connection is the usual
derivative in Rp,q, we have

∇c′(t)c′(t) = ∇vv = 0.

Theorem 1.4.3.4 concludes that a�ne lines are all and only geodesics of
Rp,q, hence the pseudo-Euclidean space is geodesically complete.

Incidentally, the example shows that, for λ ∈ R{0}, γ(m,v) and γ(m,λv)

share the same image. This is in fact the statement of the following result.

Proposition 1.4.3.10. Let m ∈M , v ∈ TmM and λ ∈ R, then

γ(m,λv)(t) = γ(m,v)(λt).

Moreover, I(m,λv) = I(m,v)/λ, where (a, b)/λ = (a/λ, b/λ) for λ 6= 0 and R,
otherwise.

Proof. Let c(t) := γ(m,v)(λt), Proposition 1.4.3.3 states that a geodesic sat-
is�es a linear system of ODEs, so if γ(m,v)(t) is a solution, c(t) is a solution,
too. By de�nition,

c(0) = γ(m,v)(λ0) = γ(m,v)(0) = m,

c′(0) =
(
γ(m,v)(λt)

)′ |t=0 = λγ′(m,v)(t)|t=0 = λv,

so c(t) is a geodesic with initial values (m,λv).
c(t) is de�ned on I(m,v)/λ, hence I(m,v)/λ ⊆ I(m,λv). We need to check

that c can not be extended, i.e. the interval is maximal.
If λ = 0, I(m,v)/λ = R, which cannot be extended. Otherwise, assume

I(m,v)/λ ( I(m,λv). This implies that γ(m,λv)(t/λ) is a geodesic with initial
values (m, v) de�ned on λI(m,λv) ) I(m,v), which contradicts the de�nition
of I(m,v).
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In general, it could be di�cult to derive the geodesic equation from the
di�erential system described in Proposition 1.4.3.3. The following result
permits to check more easily if a smooth curve is a geodesic.

Proposition 1.4.3.11. Let I ⊆ R be an open interval, c : I → M be a
regular curve. c is an unparameterized geodesic ⇐⇒ it exists f ∈ C∞(I,R)
such that ∇c′(t)c′(t) = f(t)c′(t), ∀t ∈ I.

Typically, in Riemannian geometry, this statement is proved by reparam-
eterizing c by its arc-length parameterization and checking that it makes c
a geodesic. This approach fails in the pseudo-Riemannian case: the "arc-
length parameterization" for lightlike geodesics is the constant one, since
the length of the tangent vector is identically 0. It can still be used to prove
the statement for non-degerate geodesics. However, the following approach
permits to check directly both cases.

Proof. Take a reparameterization γ of c, that is c(t) := γ(φ(t)), where
φ : I → J is a di�eomorphis between open intervals of R, namely φ′ never
vanishes. Hence γ′(t) = φ′(t)c′(φ(t)) and

∇c′(t)c′(t) = φ′(t)∇γ′(φ(t))

(
φ′(t)γ′(φ(t))

)
=

= φ′(t)φ′′(t)γ′(φ(t)) + φ′(t)2∇γ′(φ(t))γ
′(φ(t)) =

= φ′′(t)c′(t) + φ′(t)2∇γ′(φ(t))γ
′(φ(t)).

If c is an unparameterized geodesic, let φ be a reparameterization that makes
γ a geodesic. The formula above becomes

∇c′(t)c′(t) = φ′′(t)c′(t) + φ′(t)2∇γ′(φ(t))γ
′(φ(t))︸ ︷︷ ︸

=0

.

that is ∇c′(t)c′(t) = f(t)c′(t), f = φ′′ ∈ C∞(M).
Conversely, let ∇c′(t)c′(t) = f(t)c′(t). From the formula above,

φ′(t)2∇γ′(φ(t))γ
′(φ(t)) =

(
f(t)− φ′′(t)

)
c′(t).

It follows that if a reparameterization φ solves the ODE φ′′(t) = f(t),
∇γ′(s)γ′(s) ≡ 0, i.e. γ is a geodesic.

Set t0 ∈ I and impose the initial value φ′0 > 0. It exists a local solution
such that φ′ never vanishes. Hence we can build an open covering {Ix}x∈I
of I such that for all x ∈ I it exists a parameterization φx and a geodesic
γx : Ix → M such that c(t) = γx(φx(t)). We want to glue the pieces in a
single geodesic de�ned on I.

We claim that given two geodesic c(φi(t)) de�ned on Ii, i = x, y, such
that Ix ∩ Iy 6= ∅, we can �nd another parameterization ψy and a geodesic
γ(s) such that

γ(s) =

{
γx(s) if s ∈ Ix,
γ̃y(s) if s ∈ Iy,
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where γ̃y(s) is the geodesic such that c(t) = γ̃y(ψy(t)). The claim clearly
implies the statement.

To prove it, set x, y as above and take t0 ∈ Ix∩Iy. Up to substitute φi(t)
with φi(t)− φi(t0), i = x, y, we can assume φx(t0) = φy(t0) = 0, then

γx(0) = γx(φx(t0)) = c(t0) = γy(φy(t0)) = γy(0),

i.e. the two geodesics intersect in s = 0.
We study the tangent vectors of γx in 0 using their implicite de�nition:

c′(t0) =
d

dt
γx(φx(t))|t=t0 = φ′x(t0)γx(φx(t))|t=t0 = φ′x(t0)γ′x(0).

For the same reason c′(t0) = φ′y(t0)γ′y(0), and both φ′x, φ
′
y never vanishs, so

γ′y(0) =
φ′y(t0)

φ′x(t0)
γ′x(0) = λγ′x(0), λ ∈ R \ {0}.

Set ψy(t) := λφy(t), and γ̃y(s) such that c(t) = γ̃y(ψy(t)). By Proposition
1.4.3.10, γ̃y(s) is a geodesic such that

γ̃y(0) = γy(0) = γx(0),

γ̃′y(0) =
1

λ
γ′y(0) = γ′x(0),

hence, for Corollary 1.4.3.5, it exists a geodesic γ that satis�es the claim,
which ends the proof.

Incidentally, the proposition allows to check completeness of non-degenerate
geodesic from any of its parameterization.

Lemma 1.4.3.12. Let c : (a, b)→M , a, b ∈ R∪{±∞}, an unparameterized
non-degenerate geodesic, i.e ∇c′c′ = fc′. Let γ be the geodesic such that
c(t) = γ(φ(t)). γ is complete if and only if

L(c|(t0, b)) = L(c|(a, t0)) = +∞, ∀t0 ∈ (a, b).

If only one among L(c|(t0, b)) and L(c|(a, t0)) is in�nite, the geodesic is
complete on one side.

Proof. Let φ be the parameterization such that c(t) = γ(φ(t)) and γ(s) is a
geodesic. We proved in (1.17) that tangent vectors of a geodesic are constant
in norm: let ` := |g(γ′(s), γ′(s))|, then for s0, s1 ∈ φ−1([a, b]) ⊆ R ∪ {±∞},

L (γ|(s1, s2)) =

∫ s2

s1

√
|g(γ′(s), γ′(s))|dt =

√
` |s1 − s0|.

For s2 = φ−1(b), s1 6= φ−1(a), L(c|(t0, b)) = +∞ if and only if φ−1(b) =
+∞, and analogously for s1 = φ−1(a), hence we proved the statement for a
parameterized geodesic.
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To conclude the proof it su�ces to notice that the length of a curve
does not depend on the parameterization, but only on its support. Indeed,
let t1, t2 ∈ (a, b), si := φ(ti), and remark that c′(t) = φ′(t)γ′(φ(t)) and
sgn(φ′(t)) is constant.

L (γ|(s1, s2)) =

∣∣∣∣∫ s2

s1

√
g(γ′(s), γ′(s))dt

∣∣∣∣ =

=

∣∣∣∣∫ t2

t1

√
g(γ′(φ(t)), γ′(φ(t)))φ′(t)dt

∣∣∣∣ =

=

∣∣∣∣sgn(φ′)

∫ t2

t1

√
g(γ′(φ(t)), γ′(φ(t))) |φ′(t)|dt

∣∣∣∣
=

∣∣∣∣∫ t2

t1

√
φ′(t)2g(γ′(φ(t)), γ′(φ(t)))dt

∣∣∣∣ =

=

∣∣∣∣∫ t2

t1

√
g(φ′(t)γ′(φ(t)), φ′(t)γ′(φ(t)))dt

∣∣∣∣
=

∣∣∣∣∫ t2

t1

√
g(c′(t), c′(t))dt

∣∣∣∣ = L (c|(t1, t2)) .

Physically speaking, geodesics are paths that an object follows if not sub-
ject to external forces. Their mathematical interest comes from the fact that
they and their maximal intervals of de�nition are invariant by isometries.

Proposition 1.4.3.13. Let (M, g) be a pseudo-Riemannian manifold and
φ ∈ Isom(M). Let γ(m,v) be a geodesic, then φ(γ(m,v)) = γ(φ(m),dφmv) and
I(φ(m),dφmv) = I(m,v).

Proof. Consider the curve c(t) = (φ ◦ γ(m,v))(t), so c(0) = φ(m).

c′(t) =
d

dt
(φ ◦ γ(m,v))(t) = dφγ(m,v)(t)γ

′
(m,v)(t) = (φ∗γ

′
(m,v))t,

then c′(0) = dφmv, i.e c satis�es the initial condition of γ(φ(m),dφmv). Corol-
lary 1.2.2.13 shows that c is a geodesic:

∇(φ∗γ′(m,v)
)t(φ∗γ

′
(m,v))t = φ∗∇γ′

(m,v)
(t)γ
′
(m,v)(t) = φ∗0 = 0.

We still have to check that c is maximal: by de�nition, c is de�ned over
I(m,v), that is I(m,v) ⊆ I(φ(m),dφmv). Suppose I(m,v) ( I(φ(m),dφmv), that is c
can be extended. Then, φ−1(γ(φ(m),dφmv)) is a geodesic whit initial values
(m, v) and de�ned on an interval which strictly contains I(m,v), which is an
absurd by de�nition of I(m,v).
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1.4.4 Exponential map

The exponential map connects a pseudo-Riemannian manifold (M, g) and
its tangent space TM using the notion of geodesic. Roughly speaking, it
projects a subset of tangent space TmM onto a neighborhood of m in M .

In Theorem 1.4.3.4, we built a smooth map C(m, v, t), which associate
at any point (m, v) ∈ TM a geodesic t 7→ C(m, v, t) = c(m,v)(t). However,
we want the domain of our map to be a subset of TM , so the naïve approach
is to �x the time t = 1 and de�ne the exponential map as C(·, ·, 1).

Remark 1.4.4.1. One could think that C is not well de�ned, since a priori
C = CU×V×(−ε,ε), namely is a di�erent function depending on the domain.
However, Corollary 1.4.3.5 implies that it is not the case.

We remark that the geodesic t 7→ C(m, v, t) can be extended at most to
γ(m,v) (see Corollary 1.4.3.5). In general 1 /∈ I(m,v) which means C(·, ·, 1) is
not well de�ned on all TM .

De�nition 1.4.4.2 (Exponential map). Let (M, g) be a pseudo-Riemannian
manifold, the exponential map of M is de�ned as

exp: Ω→M

(m, v) 7→ γ(m,v)(1),

where Ω := {(m, v) ∈ TM, 1 ∈ I(m,v)}.
We denote expm : Ωm →M the restriction of exp to TmM , i.e. Ωm := Ω|TmM .

Proposition 1.4.4.3. Let (M, g) be a pseudo-Riemannian manifold, Ωm is
a connected open neighborhood of 0 ∈ TmM , ∀m ∈M .

Proof. γ(m,0) ≡ m, that is I(m,0) = R, hence 0 ∈ Ωm.
Set (m, v0) ∈ Ωm, consider V , ε as in Theorem 1.4.3.4; γ(m,v) is de�ned at

least over (−ε, ε), ∀v ∈ V |TmM . De�ne W := {λv, v ∈ Vm}, λ := ε/2. W is
an open neighborhood of v0 in TmM , since the topology on TmM ∼= Rn is the
Euclidean one. For w ∈W , γ(m,w) is de�ned at least on (−ε, ε)/λ = (−2, 2)
(see Proposition 1.4.3.10), that is W ⊆ Ωm.

Finally, Ωm is path-connected and so connected: indeed, let v ∈ Ωm,
that is 1 ∈ I(m,v). Since I(m,λv) = I(m,v)/λ, I(m,v) ⊆ I(m,λv), ∀λ ∈ [0, 1], that
is the segment [0, v] ⊆ Ωm.

Now that we have showed that the domain is open, we have a function
between open subsets of smooth manifolds, then we can check its smoothness.

Proposition 1.4.4.4. The exponential map is smooth.

Proof. Set (m0, v0) ∈ TmM , by de�nition exp(m, v) = C(m, v, 1) over U×W ,
which is smooth by Theorem 1.4.3.4.
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Corollary 1.4.4.5. Let (M, g) be a pseudo-Riemannian manifold, m ∈M .
It exists U open neighborhood of 0 ∈ TmM such that expm : U → M is a
local di�eomorphism.

Proof. We claim that d(expm)0 = IdTmM , hence the di�erential of expm
is invertible in v = 0, i.e. expm is a local di�eomorphism from an open
neighborhood U of 0 ∈ TmM to M .

To prove the claim, it su�ce to remark that

expm(tv) = γ(m,tv)(1) = γ(m,v)(t),

and that γ′(m,v)(0) = v, hence

d(expm)0v =
d

dt
expm(tv)|t=0 =

d

dt
γ(m,v)(t)|t=0 = v.

Corollary 1.4.4.6. Let (M, g) be a pseudo-Riemannian manifold, m ∈M ,
φ ∈ Isom(M), then

i. φ ◦ expm = expφ(m) ◦ dφm,

ii. Ωφ(m) = Ωm.

Proof. It comes straight from Proposition 1.4.3.13.

Proposition 1.4.4.7. Let (M, g) be a connected pseudo-Riemannian man-
ifold, φ, ψ ∈ Isom(M). If there exists m̄ ∈ M such that φ(m̄) = ψ(m̄) and
dφm̄ = dψm̄, then φ = ψ.

Proof. The set A := {m ∈ M |φ(m) = ψ(m), dφm = dψm} is not empty by
hypothesis and closed, since φ, ψ and dφ, dψ are continuous functions.

We claim that A is open. If this is the case, then A = M because M is
connected, that is φ = ψ.

Choose m ∈ A, by Proposition 1.4.4.6

φ ◦ expm = expφ(m) dφm = expψ(m) dψm = ψ ◦ expm .

By Proposition 1.4.4.5, expm is a local di�eomorphism on an open neigh-
borhood U of 0 ∈ TmM , hence φ and ψ coincide over expm(U), and so do
their di�erentials, that is expm(U) ⊆ A. expm(U) is open, so the claim is
proved.
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1.4.5 Totally geodesic submanifolds

De�nition 1.4.5.1 (Totally geodesic submanifold). Let (M, g) be a pseudo-
Riemannian manifold, a smooth submanifold N ⊆ M is totally geodesic if
all geodesics of N are geodesics of M , too.

Equivalentely, a smooth submanifold N ⊆ M is totally geodesic if ∀m ∈
N , ∀v ∈ TmN , it exists δ > 0 such that the geodesic γ(m,v) ofM is contained
in N , ∀t ∈ (−δ, δ).

When we talk about totally geodesic submanifold, we will assume they
are maximal, i.e not properly included in any other totally geodesic subman-
ifold of the same dimension.

Example 1.4.5.2. Geodesics are totally geodesic 1-submanifold. Particularly,
lightlike geodesics are not pseudo-Riemannian submanifold, and we will call
them degenerate totally geodesic submanifold.

Corollary 1.4.5.3. Let (M, g) be a pseudo-Riemannian manifold, φ ∈ Isom(M)
and N ⊆M a totally geodesic submanifold. Then φ(N) is a totally geodesic
submanifold. Moreover, N is maximal if and only if φ(N) is maximal.

Proof. It comes straight from Proposition 1.4.3.13.

Example 1.4.5.4 (Pseudo-Euclidean space). In Rp,q totally geodesic subman-
ifold are a�ne subspaces.

Proposition 1.4.5.5. Let (M, g) be a pseudo-Riemannian submanifold,
φ ∈ Isom(M), then Fix(φ) is a totally geodesic submanifold.

Proof. It is clear that �xed points of a di�eomorphism form a smooth sub-
manifold: they are the zeros of the submersion x(φ(m)) − x(m), x being a
local chart.

Note F := Fix(φ), since φ|F = IdF , dφ|TF = IdTF . Letm ∈ F , v ∈ TmF ,
γ(m,v) the geodesic with initial values (m, v). From Proposition 1.4.3.13,

φ(γ(m,v)(t)) = γ(φ(m),dφmv)(t),

but φ(m) = m and dφmv = v, hence

φ(γ(m,v)(t)) = γ(m,v)(t),

that is γ(m,v)(t) ∈ Fix(φ) = F , ∀t.

Example 1.4.5.6 (Pseudo-hyperbolic space). As stated in Example 1.1.2.12,
O(p, q + 1) induces the isometry group of H̃p,q, and it is an easy exercise to
prove that is generated by re�ections. This proves that any non-degenerate
hyperplane is �xed by an isometry, and so is its intersection with H̃p,q is
a totally geodesic submanifold. The same holds in higher codimension: by
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composing re�ections, one can build an isometry �xing any non-degenerate
vector subspace of Rp,q+1.

A continuity argument or a direct computation using the di�erential
system de�ned in Proposition 1.4.3.3 shows that degenerate totally geodesic
subspace can be described in the same way, that is as intersection of H̃p,q

and degenerate vector subspaces of Rp,q+1.
Let V be a vector subspace of Rp,q+1 with signature (n+, n−, n0). Hence

S̃ = H̃p,q ∩ V is a totally geodesic submanifold of H̃p,q with signature
(n+, n− − 1, n0). To see that, it su�ces to remark that

TmV = TmS̃ ⊕ (TmH̃p,q)⊥,

is an orthogonal decomposition of TmV , so the result follows from Sylvester's
criterion. We add two remarks to this computation: if n− = 0 the formula
above makes no sense: that proves that the intersection is empty in such
case (consider for example degenerates hyperplanes for H̃n). Moreover, S̃ is
degenerate if and only if V is degenerate.

Recalling that Hp,q = P(H̃p,q), totally geodesic subspaces of pseudo-
hyperbolic space are the intersection of P{〈v, v〉p,q < 0} with projections
of vector subspaces of Rp,q+1. In particular, any geodesic of Hp,q is the pro-
jection via P of a vector 2-plane of Rp,q+1, and it is lightlike if and only if
the 2-plane is degenerate (to be precise, a 2-plane of signature (0, 1, 1)).

Totally geodesic submanifold are �at from the point of view of an inhab-
itant of the manifold, that is the intrinsical curvature tensor is the same as
the extrinsical. In fact, this property characterizes non-degenerate totally
geodesic submanifolds.

Proposition 1.4.5.7. Let (M, g) be a pseudo-Riemannian manifold and
N ⊆M be a pseudo-Riemannian submanifold. Denote D,∇ their Levi-Civita
connection, respectively. N is totally geodesic if and only if D|Γ(TN) = ∇.

Proof. The implication (⇐) is trivial: indeed, assume γ : I → N is a geodesic
of N , namely it satis�es ∇γ′γ′ = 0. Since γ′(t) ∈ Γ(TN), ∀t ∈ I, one has

Dγ′γ
′ = (D|Γ(TN))γ′γ

′ = ∇γ′γ′ = 0,

that is γ is a geodesic of M , too.
Conversely, we need to prove that DXY ∈ Γ(TN), ∀X,Y ∈ Γ(TN),

which is equivalent to check g(DXY,Z) = 0, ∀X,Y ∈ Γ(TN), ∀Z ∈ Γ(TN⊥).
We claim it su�ce to prove the equation for Y = X: indeed, if it is the

case, let X,Y ∈ Γ(TN), Z ∈ Γ(TN⊥),

0 = g(DX+Y (X + Y ), Z) =

= g(DXX,Z)︸ ︷︷ ︸
=0

+g(DXY, Z) + g(DYX,Z) + g(DY Y,Z)︸ ︷︷ ︸
=0

=

= 2g(DXY,Z) + g([X,Y ], Z). (1.19)
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[X,Y ] ∈ Γ(TN), so it is orthogonal to Z, too, i.e. g([X,Y ], Z) = 0. Equa-
tion (1.19) above becomes g(DXY,Z) = 0, which proves the claim.

g(DXX,Z) = X(g(X,Z)︸ ︷︷ ︸
≡0

)− g(X,DXZ) = −g(X,DXZ),

hence it su�ces to prove g(X,DXZ) = 0, ∀X ∈ Γ(TN), Z ∈ Γ(TN⊥).
By the absurd, assume there exist m ∈ N , X ∈ Γ(TN), Z ∈ Γ(TN⊥)

such that
gm (Xm, (DXZ)m) 6= 0.

Since the equation is C∞(M)-linear with respect to X, one can substitute
X with any vector �eld Y such that Ym = Xm.

Choosing Y := γ′(m,Xm), which belongs to TN by hypothesis, one obtains

g(X,DXZ) = g
(
γ′, (Dγ′Z)

)
= γ′(g(γ′, Z)︸ ︷︷ ︸

≡0

)− g(Dγ′γ
′︸ ︷︷ ︸

≡0

, Z) = 0.

then it is 0 even at m, which is a contradiction.
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Chapter 2

The half-space model

In this chapter, we will study the half space model. First we will introduce
the model, justify the title model of the pseudo-hyperbolic space, and study
some isometries.

After that we will study intrinsecally its geometry. The main results are
the classi�cation of totally geodesic subspace (Section 2.4) and the descrip-
tion of geodesics (Section 2.4). From the classi�cation, it arises a way to
describe the boundary of Hp,q and to extend it. The extended boundary
∂∞Hp,q will be proved to be homeomorphic to ∂∞Hp,q (Section 2.6). We will
also described horospheres of the model in Section 2.7.

Finally, we will describe the isometries of Hp,q. In Subection 2.8.1 we
will present the actual isometry group, and in Section 2.8.2 the action of
Isom(Hp,q) on Hp,q by local isometries, which are the analogue of inversions
in the Riemannian case.

2.1 Introduction to the model

In this section we will introduce the half-space model Hp,q and justify the
name of model of the pseudo-hyperbolic space by exhibiting an isometric em-
bedding ιp,q : Hp,q ↪→ Hp,q. Then we will provide a �rst attempt to discover
the isometries of the model.

2.1.1 The half-space model

De�nition 2.1.1.1 (Half-space). Let p, q ∈ N, p ≥ 1, the half-space of signa-
ture (p, q) is de�ned as

Hp,q := {(x, y, z) ∈ Rp−1
x ⊕ Rqy ⊕ Rz|z > 0},

endowed with the pseudo-Riemannian metric

gp,q =
dx2

1 + . . .+ dx2
p−1 − dy2

1 − . . .− dy2
q + dz2

z2
. (2.1)
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Example 2.1.1.2. When q = 0, one recovers Poincaré half-space, which is
well known to be isomorphic to Hp,0 = Hp. For references, see [BP92].

Example 2.1.1.3. For q = 1, Hp,1 is the half-space model for the Anti-de
Sitter space, namely AdSp+1 = Hp,1. This model is not complete and has
been studied in [RS19].

Example 2.1.1.4. Finally, if p = 1 and q ≥ 1, H1,q is an anti-model for
the de Sitter space dSq+1, that is (H1,q,−gp,q) is a model for the unitary
pseudo-spheric space Sq,1. This case has been studied with the name of
Lorentz-Poincaré half-space in [Nom82].

2.1.2 An isometric embedding

The next proposition proves that Hp,q can be seen as an open subset of Hp,q,
so it inherits all its local properties, such as the sectional curvature, that is
then constant K = −1. Nevertheless, we will check it directly in Section 2.3.

The image of ιp,q is dense in Hp,q. This result permits to extend Hp,q
to a complete model of the pseudo-hyperbolic space, in a sense that we will
explore in Subsection 2.6.4.

Remark 2.1.2.1 (Notation). By a small abuse of notation, from now on we
will use ‖ ·‖ for the usual norm and 〈·, ·〉 for the usual scalar product of Rp−1

x

and Rqy.

Proposition 2.1.2.2. There exists an isometric embedding

ιp,q : Hp,q → Hp,q .

If q = 0, ιp,q is surjective. Otherwise, its image is the complement of a totally
geodesic degenerate hyperplane in Hp,q.

Proof. We will �rst de�ne an embedding ι̃p,q : Hp,q → H̃p,q ⊂ Rp,q+1. Then
de�ne ι̃p,q(x, y, z) = (X1, . . . , Xp+q+1) where:

Xi =
xi
z

i = 1, . . . , p− 1,

Xp =
1− ‖x‖2 + ‖y‖2 − z2

2z

Xj+p =
yj
z

j = 1, . . . , q,

Xp+q+1 =
1 + ‖x‖2 − ‖y‖2 + z2

2z
.
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Since (a−b)2−(a+b)2 = −4ab, one checks immediately that ∀(x, y, z) ∈ Hp,q

X2
p −X2

p+q+1 =

(
1− ‖x‖2 + ‖y‖2 − z2

2z

)2

−
(

1 + ‖x‖2 − ‖y‖2 + z2

2z

)2

=

= −‖x‖
2 − ‖y‖2 + z2

z2
= −

p−1∑
i=1

X2
i −

q∑
j=1

X2
j+p

− 1,

hence 〈ι̃p,q(x, y, z), ι̃p,q(x, y, z)〉p,q+1 = −1, i.e. ι̃ takes values in H̃p,q.
To prove that ι̃p,q is an isometry, one can easily compute the di�erential:

dι̃p,q

(
∂

∂xi

)
=

1

z

∂

∂Xi
− xi
z

∂

∂Xp
+
xi
z

∂

∂Xp+q+1
,

dι̃p,q

(
∂

∂yj

)
=
yj
z

∂

∂Xp
+

1

z

∂

∂Xj+p
− yj
z

∂

∂Xp+q+1
,

dι̃p,q

(
∂

∂z

)
=−

p−1∑
i=1

xi
z2

∂

∂Xi
− 1− ‖x‖2 + ‖y‖2 + z2

2z2

∂

∂Xp
−

−
q∑
j=1

yj
z2

∂

∂Xj+p
− 1 + ‖x‖2 − ‖y‖2 − z2

2z2

∂

∂Xp+q+1
.

Above, we wrote the push-forward of the basis {∂x1 , . . . , ∂xp−1 , ∂y1 , . . . , ∂yq , ∂z}
of THp,q with respect to the orthogonal basis {∂X1 , . . . , ∂Xp+q+1} of TRp,q+1.

〈dι̃p,q(∂xi), dι̃p,q(∂xj )〉p,q+1 =
1

z2
〈 ∂

∂Xi
,
∂

∂Xj
〉p,q+1︸ ︷︷ ︸

=δij

+
xixj
z2
〈 ∂

∂Xp
,
∂

∂Xp
〉p,q+1︸ ︷︷ ︸

=1

+
xixj
z2
〈 ∂

∂Xp+q+1
,

∂

∂Xp+q+1
〉p,q+1︸ ︷︷ ︸

=−1

=

=
δij
z2

= gp,q(∂xi , ∂xj ), ∀i, j = 1, . . . , p− 1.

Similar calculations show

〈dι̃p,q(∂xi), dι̃p,q(∂yj )〉p,q+1 = 0 = gp,q(∂xi , ∂yj ),
∀i = 1, . . . , p− 1,
∀j = 1, . . . , q,

〈dι̃p,q(∂yi), dι̃p,q(∂yj )〉p,q+1 = −δij
z2

= gp,q(∂yi , ∂yj ), ∀i, j = 1, . . . , q.
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Now we compute it for ∂z:

〈dι̃p,q(∂xi), dι̃p,q(∂z)〉p,q+1 = −xi
z3
〈 ∂

∂Xi
,
∂

∂Xi
〉p,q+1︸ ︷︷ ︸

=1

+

+
xi(1− ‖x‖2 + ‖y‖2 + z2)

2z3
〈 ∂

∂Xp
,
∂

∂Xp
〉p,q+1︸ ︷︷ ︸

=1

−

− xi(1 + ‖x‖2 − ‖y‖2 − z2)

2z3
〈 ∂

∂Xp+q+1
,

∂

∂Xp+q+1
〉p,q+1︸ ︷︷ ︸

=−1

=

= −xi
z3

+ 2
xi

2z3
= 0 = gp,q(∂xi , ∂z), ∀i = 1, . . . , p− 1,

and analogously

〈dι̃p,q(∂yj ), dι̃p,q(∂z)〉p,q+1 = 0 = gp,q(∂yj , ∂z), j = 1, . . . , q.

Finally, one �nds

〈dι̃p,q(∂z), dι̃p,q(∂z)〉p,q+1 =

=
‖x‖2

z4
+

(1− ‖x‖2 + ‖y‖2 + z2)2

4z4
− ‖y‖

2

z4
− (1 + ‖x‖2 − ‖y‖2 − z2)2

4z4
=

=
‖x‖2

z4
− ‖y‖

2

z4
− 4
‖x‖2 − ‖y‖2 − z2

4z4
=

1

z2
= gp,q(∂z, ∂z).

Hence we proved that ι̃∗p,q〈·, ·〉p,q+1 = gp,q(·, ·), that is ι̃p,q : Hp,q → H̃p,q is a
local isometry.

Let us now show that

ι̃p,q(Hp,q) = H̃p,q ∩ {Xp +Xp+q+1 > 0}. (2.2)

The inclusion ⊆ is trivial as Xp+Xp+q+1 = 1/z > 0. For the other inclusion,
given (X1, . . . , Xp+q+1) such that 〈X,X〉p,q+1 = −1 and Xp + Xp+q+1 > 0,
de�ne

xi =
Xi

Xp +Xp+q+1
i = 1, . . . , p− 1,

yj =
Xj+p

Xp +Xp+q+1
j = 1, . . . , q,

z =
1

Xp +Xp+q+1
.

Let Y = (Y1, . . . , Yp+q+1) := ι̃(x, y, z), we will check that Y = X:

Yi =
xi
z

=
Xi

Xp +Xp+q+1
/

1

Xp +Xp+q+1
= Xi i = 1, . . . , p− 1,

Yp+j =
yj
z

=
Xp+j

Xp +Xp+q+1
/

1

Xp +Xp+q+1
= Xp+j j = 1, . . . , q.
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Finally, 〈X,X〉p,q+1 = −1, hence

X2
p −X2

p+q+1 = −

p−1∑
i=1

X2
i −

q∑
j=1

X2
p+j + 1

 =

= −

p−1∑
i=1

x2
i

z2
−

q∑
j=1

y2
j

z2
+ 1

 =

− 1

z2
(‖x‖2 − ‖y‖2 + z2),

which leads to

Yp =
1− ‖x‖2 + ‖y‖2 − z2

2z
=

1

2

(
1

z
+ z(X2

p −X2
p+q+1)

)
=

=
1

2

(
Xp +Xp+q+1 +

X2
p −X2

p+q+1

Xp +Xp+q+1

)
= Xp,

Yp+q+1 =
1 + ‖x‖2 − ‖y‖2 + z2

2z
=

1

2

(
1

z
− z(X2

p −X2
p+q+1)

)
=

=
1

2

(
Xp +Xp+q+1 −

X2
p −X2

p+q+1

Xp +Xp+q+1

)
= Xp+q+1.

Incidentally, in the above argument we constructed an inverse of ι̃p,q over
its image, which implies that ι̃p,q is injective, so an isometric embedding. It
also follows from (2.2) that the restriction of P to the image of ι̃p,q is injective,
where P is the projection from H̃p,q to Hp,q. Indeed, P is a 2-sheets covering,
and P−1([X]) = {±X}, so the condition Xp + Xp+q+1 > 0 is satis�ed at
most by one point of the preimage.

Hence, de�ning ιp,q = P ◦ ι̃p,q, ιp,q is an isometric embedding whose
image is the complement of P ∩Hp,q, where P is the hyperplane de�ned by
the condition Xp +Xp+q+1 = 0.

Observe that for q = 0, the intersection P ∩Hp,0 is empty: indeed Xp+0+1

is the only negative contribute to the norm, hence 〈X,X〉p,1 ≥ 0 if if X2
p =

X2
p+0+1. As a consequence, we recover that ιp,0 is a global isometry between

the half-space model and the hyperboloid model of the hyperbolic space.
Otherwise, when q ≥ 1, P is a totally geodesic hyperplane in Hp,q (see

Example 1.4.5.6), which is degenerate because P is degenerate in Rp,q+1,
being the orthogonal complement of the line spanned by the isotropic vector
∂Xp − ∂Xp+q+1 .

2.1.3 Symmetries

Here, we introduce the �rst isometries of Hp,q.
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De�nition 2.1.3.1 (Group action). Let X be a topological space and G a
group. An action of G on X is a homomorphism G→ Homeo(X).

De�nition 2.1.3.2 (Faithful action). A group G acts faithfully on a space X
if the homomorphism G→ Isom(X) is injective.

We remark that any slice {z = c}, c ∈ R+, is conformal to Rp−1,q: indeed,
the induced pseudo-metric is

g|{z=c} =
1

c2
(dx2

1 + . . .+ dx2
p−1 − dy2

1 − . . .− dy2
q ).

From this observation comes the following result:

Lemma 2.1.3.3. Isom(Rp−1,q) acts faithfully on Hp,q by isometries of the
form

(x, y, z) 7→ (A(x, y) + (x0, y0), z),

A ∈ O(p− 1, q), (x0, y0) ∈ Rp−1
x ⊕ Rqy = Rp−1,q.

Proof. Maps of that form preserve the slices {z = c} and, as they are confor-
mal to Rp−1,q, are isometries on them. It is clear that the action is faithful:
indeed, it is so on the slices by de�nition, and does not a�ect the last coor-
dinate.

Proposition 2.1.3.4. R+ acts faithfully by homotheties on Rp+q, which are
isometries of Hp,q.

Proof. Let λ > 0, de�ne Λ(x, y, z) = λ(x, y, z) the homothety with ratio λ.
As λ > 0, λz is positive, too. Hence, it is well de�ned Λ|Hp,q : Hp,q → Hp,q,
which is clearly bijective. Moreover,

(Λ∗gp,q)Λ(x,y,z) =
d(λx1)2 + . . .+ d(λxp−1)2 − d(λy1)2 − . . .− d(λyq)

2 + d(λz)2

(λz)2
=

= (gp,q)(x,y,z), ∀(x, y, z) ∈ Hp,q,

then Λ is an isometry of Hp,q.

The representations of R+ and Isom(Rp−1,q) as subgroups of Isom(Hp,q)
are injective, so we will abusively write R+ and Isom(Rp−1,q) for their isomor-
phic images in Isom(Hp,q). Now we are ready to give the following de�nition:

De�nition 2.1.3.5. Let G is the set of maps de�ned as

(x, y, z) 7→ λ (A(x, y) + (x0, y0), z) ,

λ ∈ R+, A ∈ O(p− 1, q) and (x0, y0) ∈ Rp−1
x ⊕ Rqy.

Proposition 2.1.3.6. G ≤ Isom(Hp,q).
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Proof. G = R+ ⊕ Isom(Rp−1,q), which is a subgroup Isom(Hp,q).
Indeed, every application in G can be obtained by composing two isome-

tries of the two groups. Moreover,

R+ ∩ Isom(Rp−1,q) = IdHp,q ,

since the only homothety preserving the slices {z = c} is IdHp,q .

Corollary 2.1.3.7. G acts transitively on Hp,q.

Proof. One can bring a point to any height by the means of an homothety,
and then change the other coordinates using an horizontal translation.

More precisely, given (x, y, z), (v, w, t) ∈ Hp,q, we seek an isometry such
that (x, y, z) 7→ (v, w, t).

Both z and t are positive, so λ := t/z is positive, too. Hence

(x, y, z) 7→ λ(x, y, z) = (λx, λy, t).

Then, taking x0 = v − λx, y0 = w − λy, one obtainsλxλy
t

 λx+ x0

λy + y0

t

 =

λx+ (v − λx)
λy + (w − λy)

t

 =

vw
t

 .

The map (x, y, z) 7→ λ(x + x0, y + y0, z) belongs to G, so it is the searched
isometry.

De�nition 2.1.3.8 (Stabilizer). Let X be a set and G a group acting on X.
For x ∈ X, the stabilizer subgroup of G with respect to x is

StabG(x) := {g ∈ G, g(x) = x}.

Lemma 2.1.3.9. The stabilizer of a point in G is isomorphic to O(p−1, q).

Proof. Since G acts transitively, the proof does not depend on the point
chosen. An isometry g(x, y, z) = λ(A(x, y) + (x0, y0), z) of G sends (0, 0, 1)
to (x0, y0, λ), so g ∈ StabG(0, 0, 1) if and only if λ = 1, x0 = y0 = 0, then is
uniquely de�ned by A ∈ O(p− 1, q).

We will see in Theorem 2.8.1.1 that G is actually the full isometry group
Isom(Hp,q) when q ≥ 1. Since every local isometry between open neigh-
bourhoods of Hp,q extends to a global isometry, the isometric embedding
ιp,q induces a group monomorphism from G to Isom(Hp,q), which is clearly
not surjective because in Isom(Hp,q) there are isometries that do not pre-
serve the totally geodesic hyperplane whose complement is the image of ιp,q.
(Indeed if n = p + q, then G is a Lie group of dimension (n2 − n + 2)/2,
while Isom(Hp,q), which is isomorphic to a double quotient of O(p, q + 1),
has dimension n(n+ 1)/2 = dimG+ n− 1).
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2.2 Levi-Civita connection of Hp,q

From now on, when we work in charts, we will always refer to the one induced
by the inclusion (as smooth manifold) of Hp,q ⊆ Rp+q, and we will note the
basis induced on the tangent as {∂x1 , . . . , ∂xp−1 , . . . , ∂y1 , . . . , ∂yq , ∂z}.

We start by calculating Christo�el symbols of Hp,q.

Proposition 2.2.0.1. The only non-vanishing Christo�el symbols of Hp,q
are

Γxixi,z = Γxiz,xi = −1/z i = 1, . . . , p− 1,

Γ
yj
yj ,z = Γ

yj
z,yj = −1/z j = 1, . . . , q,

Γzxi,xi = 1/z i = 1, . . . , p− 1,

Γzyj ,yj = −1/z j = 1, . . . , q,

Γzz,z = −1/z.

Proof. The basis is orthogonal with respect to the pseudo-metric, hence the
matrix (gij)

n
i,j=1 is diagonal. Equation (1.9) becomes

Γkij =
1

2
(∂igjk + ∂jgik − ∂kgij)gkk.

Moreover, it suggests that Γkij = 0 for i 6= j 6= k.
Let δhl := sgn(gp,q(∂h, ∂l)), that is ghl = δhl/z

2. Since gij only depends
on z, if z /∈ {i, j, k}, Γkij = 0.

The only non-vanishing candidates are then, for i 6= z:

1. Γiiz = Γizi = 1
2(∂zgii + ∂igiz − ∂igzi)gii = 1

2(−δii 2
z3

+ 0− 0)δiiz
2 = −1

z ;

2. Γzii = 1
2(∂igiz + ∂igiz − ∂zgii)gzz = 1

2(0 + 0 + δii
2
z3

)z2 = δii
1
z ;

3. Γziz = Γzzi = 1
2(∂zgiz + ∂igzz − ∂zgzi)gzz = 0;

4. Γizz = 1
2(∂zgzi + ∂zgzi − ∂igzz)gii = 0;

5. Γzzz = 1
2(∂zgzz + ∂zgzz − ∂zgzz)gzz = 1

2(− 2
z3

)z2 = −1
z .

Corollary 2.2.0.2. The Levi-Civita connection computed on the basis is not
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zero in the following cases:

∇∂xi∂z = ∇∂z∂xi = −1

z
∂xi i = 1, . . . , p− 1;

∇∂yj ∂z = ∇∂z∂yj = −1

z
∂yj j = 1, . . . , q;

∇∂xi∂xi =
1

z
∂z =

δxixi
z

∂z i = 1, . . . , p− 1;

∇∂yj ∂yj = −1

z
∂z =

δyjyj
z

∂z j = 1, . . . , q;

∇∂z∂z = −1

z
∂z

Proof. It su�ces to substitute Christo�el symbols found in Proposition 2.2.0.1
in Equation (1.8).

2.3 Curvature of Hp,q

In this section we will compute the Riemann tensor and deduce from that
the sectional curvature of Hp,q.

Theorem 2.3.0.1. Let R be the Riemann tensor ofHp,q, X,Y, Z ∈ Γ(THp,q),
then

R(X,Y )Z = gp,q(X,Z)Y − gp,q(Y,Z)X. (2.3)

Before starting the proof, we recall that it follows directly that Hp,q is
a pseudo-Riemannian manifold with constant sectional curvature K = −1.
Indeed,

R(X,Y, Y,X) =gp,q (R(X,Y )Y,X) =

=gp,q (gp,q(X,Y )Y − gp,q(Y, Y )X,X) =

=gp,q(X,Y )2 − gp,q(X,X)gp,q(X,Y ) = −Q(X,Y ).

Lemma 2.3.0.2. The Riemann tensor computed on the basis does not van-
ishes only in the following cases:

R(∂a, ∂b)∂b = −δbb
z2
∂a, a 6= b,

R(∂b, ∂a)∂b =
δbb
z2
∂a, a 6= b.

Proof. Consider R(∂a, ∂b)∂c = ∇∂a∇∂b∂c −∇∂b∇∂a∂c, for Corollary 2.2.0.2,
∇∂b∂c 6= 0 if and only if c = b or one among b, c is equal to z. We split
the problem in three parts, namely c = b 6= z, c = b = z and c 6= b = z.
Moreover, in the proof we will always suppose a 6= b: otherwise for anti-
simmetry R(∂a, ∂b) = 0.
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If c = b 6= z,

∇∂b∂b =
δbb
z
∂z.

Suppose �rst a 6= z, so that δbb/z is a constant with respect to ∂a, then

∇∂a∇∂b∂b =
δbb
z
∇∂a∂z = −δbb

z2
∂a.

Since a 6= b, ∇∂a∂b = 0, hence ∇∂b∇∂a∂b = 0. Then

R(∂a, ∂b)∂b = −δbb
z2
∂a − 0 = −δbb

z2
∂a, ∀a, b, a 6= b 6= z,

Otherwise, if a = z, b 6= z, so

∇∂z∇∂b∂b =
δbb
z
∇∂z∂z −

δbb
z2
∂z = −2δbb

z2
∂z,

∇∂b∇∂z∂b = −1

z
∇∂b∂b = −δbb

z2
∂z,

so R(∂z, ∂b)∂b satis�es the statement.
Suppose now c = b = z, then

∇∂z∂z = −1

z
∂z.

a 6= b means a 6= z, so −1/z is a constant with respect to ∂a, then

∇∂a∇∂z∂z = −1

z
∇∂a∂z = −δbb

z2
∂a.

The equations of the second type follow by anti-symmetry of Riemann tensor.

We are ready to prove Theorem 2.3.0.1:

Proof. Let X,Y, Z ∈ Γ(THp,q). To lighten the notation, the indexes i, j, k
of the sum will be supposed to lie in the set I = {x1, . . . , xp−1, y1, . . . , yq, z},
that is X =

∑
i∈I Xi∂i, and the same for Y,Z. The Riemann tensor is

C∞(Hp,q)-linear, so

R(X,Y, Z) =
∑
i,j,k∈I

XiYjZkR(∂i, ∂j)∂k =

=
∑

i,j∈I,i 6=j
(XjYiZj −XiYjZj)R(∂j , ∂i)∂j =

=
∑
i∈I

∑
j 6=i

δjj
z2
XjZj

Yi∂i −
∑
i∈I

∑
j 6=i

δjj
z2
YjZj

Xi∂i.
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Remarking that∑
j 6=i

δjj
z2
XjZj = gp,q(X,Z)− ∂ii

z2
XiZi,

we �nd

R(X,Y, Z) = gp,q(X,Z)Y −
∑
i

∂ii
z2
XiZiYi∂i − gp,q(Y, Z)X +

∑
i

∂ii
z2
YiZiXi∂i =

= gp,q(X,Z)Y − gp,q(Y,Z)X.

2.4 Totally geodesic subspaces of Hp,q

In this section we will �rst derive the di�erential system characterizing
geodesics, then describe totally geodesic hypersurfaces. After that, we will
be able to �nd every totally geodesic subspace of Hp,q. It will follow a more
precise description of geodesic, namely the 1-dimensional case.

2.4.1 Geodesic ODEs system

In Proposition 1.4.3.3 we stated that geodesic must satisfy a system of ODEs
involving Christo�el symbols, which we computed in Proposition 2.2.0.1. So
the di�erential system is

x′′ − 2
zx
′z′ = 0

y′′ − 2
zy
′z′ = 0

z′′ + 1
z

(
‖x′‖2 − ‖y′‖2 − |z′|2

)
= 0

. (2.4)

As a consequence of this expression of the geodesic equations, we show
here that vertical a�ne subspaces of any dimension are totally geodesic.

Remark 2.4.1.1. We will describe accurately the boundary of Hp,q in Section
2.6, for now it su�ce to remark that the topological boundary ∂Hp,q coincides
with the hyperplane {z = 0} which can be see as a copy of Rp−1,q via the
inclusion of Hp,q in Rp,q. When we want to emphasize that we are talking
about the boundary, we will omitt the last coordinate, which is identically
0, while we will refer to ∂Hp,q as Rp−1,q when we want to emphasize the
pseudo-metric or the vector structure.

Proposition 2.4.1.2. Every submanifold of the form

V` := {(x, y, z) ∈ Rp−1 ⊕ Rq ⊕ R | (x, y) ∈ `, z > 0} ,

for ` an a�ne subspace of ∂Hp,q, is totally geodesic.
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Proof. Let us de�ne ` as the set of solutions of a �nite number of a�ne
conditions of the form

p−1∑
i=1

aixi +

q∑
j=1

bjyj = c . (2.5)

We remark that the same conditions de�ne V`, since the parameter z is free.
We claim that if γ(t) = (x(t), y(t), z(t)) is a geodesic such that γ′(0) is

tangent to the subspace V`, namely

p−1∑
i=1

aix
′
i(0) +

q∑
j=1

bjy
′
j(0) = 0 , (2.6)

then γ(t) satis�es (2.5) for all times of de�nition. This clearly implies that
γ ⊆ V` and then that V` is totally geodesic.

To show the claim, de�ne the function

χ(t) =

p−1∑
i=1

aix
′
i(t) +

q∑
j=1

bjy
′
j(t) .

Taking a linear combination of the equations (2.4), χ satis�es the following
ODE:

χ′(t) = −2
z′(t)

z(t)
χ(t).

By our hypothesis (2.6), χ(0) = 0, hence χ ≡ 0 solve the ODE. This proves
our claim and concludes the proof.

2.4.2 Totally geodesic hypersurfaces

First we give the classi�cation of totally geodesic hypersurfaces, namely the
ones of codimension one. The general case will follow in Theorem 2.4.3.1.

Proposition 2.4.2.1. The totally geodesic hypersurfaces of Hp,q are pre-
cisely:

1. the vertical hyperplanes VL, for L an a�ne hyperplane in ∂Hp,q;

2. the quadric hypersurfaces of the form

‖x− x0‖2 − ‖y − y0‖2 + z2 = c, c ∈ R (Q)

for some (x0, y0) ∈ ∂Hp,q. The hypersurfaces of the former type are degener-
ate if and only if L is degenerate in Rp−1,q, and have signature (n+ + 1, n−)
where (n+ + 1, n−) is the signature of L. Those of the latter type are degen-
erate if and only if c = 0, and have signature (p−1, q−1) if c = 0, (p, q−1)
if c < 0, and (p− 1, q) if c > 0.

60



Figure 2.1: The totally geodesic quadric hypersurfaces inH2,1 (left) andH1,2

(right).

See also Figure 2.1 for some pictures in dimension 3.

Proof. It has been proved in Proposition 2.4.1.2 that vertical hyperplanes
are totally geodesic. To prove that the quadric hypersurfaces as in the state-
ment are totally geodesic, we will show that the intersection of the quadric
hypersurface with any vertical 2-plane V` (for ` a line) is a geodesic of Hp,q.
This clearly implies that the hypersurface is totally geodesic, since any am-
bient geodesic that is tangent to the hypersurface at time zero remains in
the hypersurface for all times.

To see this, set (x0, y0) ∈ ∂Hp,q, c ∈ R as parameters for Equation (Q).
Pick a 2-vertical vector space, i.e. set a line

` = Span((u, v)) + (u0, v0) ⊆ Rp−1,q,

such that it intersects the hyperquadric in a curve. This curve can be pa-
rameterized as

γ(t) = (u0 + tu, v0 + tv, f(t)),

where the function f is determined by the quadric Equation (Q), namely

f(t) =
√
c− ‖x(t)− x0‖2 + ‖y(t)− y0‖2 .

f is well-de�ned over an interval I and f(t) > 0, ∀t ∈ I.
Substituting in (2.4) one can compute

∇γ′γ′ =
(
−2f ′

f
u,−2f ′

f
v, f ′′ +

‖u‖2 − ‖v‖2 − |f ′|2

f

)
. (2.7)

Remarking that f(t)2 = c−‖tu+u0−x0‖2 + ‖tv+ v0− y0‖2, di�erentiating
with respect to t one obtains

2f(t)f ′(t) = −2t‖u‖2 − 2〈u, u0 − x0〉+ 2t‖v‖2 + C,
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C = −2〈u, u0 − x0〉+ 2〈v, v0 − y0〉. Di�erentiating again one has

f ′(t)2 + f(t)f ′′(t) = −‖u‖2 + ‖v‖2,

that is equivalent to

f ′′(t) = −‖u‖
2 − ‖v‖2 + f ′(t)2

f(t)
.

Then the last term in (2.7) becomes−(2f ′/f)f ′, that means∇γ′γ′ = −(2f ′/f)γ′,
i.e. γ in an unparameterized geodesic by Proposition 1.4.3.11.

It only remains to show that these are all the totally geodesic hypersur-
faces. For this purpose, we choose any vector (u, v, w) tangent to Hp,q at a
point (x, y, z) and we show that there exists a totally geodesic hypersurface
(which is necessarily unique) of the above two forms containing the point
(x, y, z) and whose tangent space is orthogonal to (u, v, w) at (x, y, z). The
key observation is that the orthogonality can be computed with respect to
the �at metric

gp,q = dx2
1 + . . .+ dx2

p−1 − dy2
1 − . . .− dy2

q + dz2 , (2.8)

namely by seeing the half-space as a subset of a pseudo-Euclidean space of
signature (p, q), since gp,q is conformal to the metric gp,q.

If w = 0, then clearly the hypersurface we are looking for is VL, for L
the a�ne hyperplane of Rp−1 ⊕ Rq containing the point (x, y) and whose
underlying vector space is the orthogonal of (u, v).

So let us now assume w 6= 0. Let (x0, y0, 0) be the point of intersection of
the line through (x, y, z) having direction (u, v, w) with ∂Hp,q. The quadric
hypersurfaces of the form (Q) are precisely the sets of points at constant
squared distance from (x0, y0, 0) for the conformal pseudo-Euclidean metric
gp,q. Hence there is one quadric hypersurface that contains the point (x, y, z),
and it is orthogonal to the position vector (x, y, z) − (x0, y0, 0), which is
proportional to (u, v, w) by construction.

The statement about the signature is easily checked: we just proved that
(x, y, z) − (x0, y0, 0) is a generator of the normal space to the hypersurface
in the point (x, y, z). The equation (2.1) states that

gp,q ((x, y, z)− (x0, y0, 0), (x, y, z)− (x0, y0, 0)) = z2c,

whose sign only depends on c. Then we can conclude by using Lemma 1.1.1.4.

Remark 2.4.2.2. If the metric is positive de�nite, namely q = 0, (Q) describe
a half-sphere with center in ∂Hp,0 for c > 0, a point for c = 0 and the
empty set for c < 0, so we recover exactely that totally geodesic manifolds
in the half-space model of hyperbolic space are vertical vector spaces and
half-spheres with the center on the hyperplane {z = 0}.
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2.4.3 The general classi�cation

We can �nally state the classi�cation result for totally geodesic submanifolds.

Theorem 2.4.3.1. The totally geodesic submanifolds of Hp,q are precisely:

1. the vertical subspaces,

2. the intersections of quadric hypersurfaces of the form (Q) with a ver-
tical subspace.

Proof. The submanifolds in the statement are totally geodesic: for the �rst
item this follows from Proposition 2.4.1.2, while for the second item from
Proposition 2.4.2.1 and the fact that the intersection of totally geodesic sub-
manifolds is totally geodesic. To show that they exhaust the totally geodesic
submanifolds, we remark that for a point (x, y, z) and a linear subspace W
of T(x,y,z)Hp,q, it exists at most one maximal totally geodesic submanifolds
of the same dimension as W , which is tangent to W at (x, y, z). We will
show that that submanifold exists and belongs to the ones described above.

If W contains the vertical direction, then we can write W = W0 ⊕ ∂z,
for W0 the orthogonal complement of ∂z in W . Denoting by ` the a�ne
subspace through the point (x, y) with underlying vector space W0, V` is a
totally geodesic subspace tangent to W at (x, y, z).

Now suppose that W does not contain ∂z, and extend W to a subspace
W1 of codimension one which is still transverse to the vertical direction. By
the proof of Proposition 2.4.2.1, there exists a quadric hypersurface Q which
is tangent to W1 at (x, y, z). Also, as in the �rst part of this proof, we �nd
a vertical subspace V` which is tangent to W ⊕ ∂z at (x, y, z). Then Q ∩ V`
is tangent to W at (x, y, z). This concludes the proof.

2.5 Geodesics of Hp,q

The next step in our analysis is the study of the geodesics of Hp,q. We will
divide our analysis in three cases, namely lightlike, timelike and spacelike
geodesics.

To simplify the statements of the following propositions, we refer to
geodesics as unparametrized, i.e. our statements are actually about the
image of the parametrized curves.

2.5.1 Lightlike geodesics

We start by lightlike geodesics, namely those for which the tangent vector is
isotropic for the metric tensor (2.1).

Proposition 2.5.1.1. Lightlike geodesics in Hp,q are precisely the straight
lines spanned by a lightlike vector. These are incomplete as they escape from
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compact sets of Hp,q ∪ ∂Hp,q, unless they are contained in a horizontal hy-
perplane {z = c}.

Proof. Let (u, v, w) be a lightlike vector, that is, ‖u‖2−‖v‖2 + |w|2 = 0. Up
to changing the sign, we can assume w ≥ 0. We claim that, if w > 0, then

γ(t) = (x0, y0, 0) + (1/t)(u, v, w)

is a parameterized geodesic; if instead w = 0, then

γ(t) = (x0, y0, z0) + t(u, v, 0)

is a parameterized geodesic. This clearly implies the statement: these are all
the lightlike geodesics because, up to choosing the parameter t suitably, one
�nds such a geodesic with tangent vector a multiple of (u, v, w) through any
point of Hp,q. Moreover, geodesics of the former type are de�ned on (0,∞),
hence they are complete only when they approach ∂Hp,q, while those of the
latter type are de�ned on R.

The claim is an easy computation from Equations (1.16). Indeed, since
γ′ is lightlike, we have ‖x′‖2 − ‖y′‖2 = −|z′|2. Hence the equation becomes

(x′′, y′′, z′′) = (2z′/z)(x′, y′, z′) , (2.9)

and one immediately checks that both expressions above for γ satisfy (2.9):
in the �rst case we have

γ′(t) = − 1

t2
(u, v, w); γ′′(t) =

2

t3
(u, v, w).

It follows that

γ′′(t)− 2z′(t)

z(t)
γ′(t) =

(
2

t3
− 2

w/t2

w/t

1

t2

)
(u, v, w) = 0.

The case w = 0 is trivial: the parameterization is linear and z(t) is constant,
hence both γ′′ and 2z′/z vanish identically.

See Figure 2.2 to visualize the cone of lightlike geodesics emanating from
a point in H2,1 and H1,2.

Remark 2.5.1.2. The fact that unparameterized lightlike geodesics are straight
lines can also be proved by observing that Hp,q is conformal to the upper
half-space in Rp,q endowed with the restriction of the pseudo-Euclidean met-
ric, and applying the fact that two conformal pseudo-Riemannian metrics
have the same unparameterized lightlike geodesics (see [GHL04, Proposition
2.131]).
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Figure 2.2: The lightcone from a point in H2,1 (left) and H1,2 (right).

2.5.2 A preliminary computation

As a consequence of the classi�cation in Theorem 2.4.3.1, geodesics are either
straight vertical lines or conics. We will give here a more precise classi�cation
in terms of the eccentricity, computed with respect to the Euclidean distances
in Hp,q ⊂ Rp+q. We start by a general computation that we will apply
repeatedly.

Lemma 2.5.2.1. Geodesics of Hp,q are precisely:

1. vertical lines;

2. conics of equation

‖u‖2 − ‖v‖2

‖u‖2 + ‖v‖2
s2 + z2 +As = C , A,C ∈ R (Q')

with respect to Euclidean coordinates (s, z) on a vertical 2-plane V`,
where the underlying vector space of ` is spanned by (u, v).

Proof. By Theorem 2.4.3.1, geodesics are either vertical lines or obtained
intersecting (Q) with the a 2-plane V`. Up to a horizontal translation, we
can assume that the line ` contains the origin, hence it can be parameterized
as

(x, y) =
s√

‖u‖2 + ‖v‖2
(u, v) . (2.10)

Substite the above formula in (Q):∥∥∥∥∥ s√
‖u‖2 + ‖v‖2

u− x0

∥∥∥∥∥
2

−

∥∥∥∥∥ s√
‖u‖2 + ‖v‖2

v − x0

∥∥∥∥∥
2

+ z2 = c

⇐⇒ ‖u‖2 − ‖v‖2

‖u‖2 + ‖v‖2
s2 − 2

(〈u, x0〉 − 〈v, y0〉)√
‖u‖2 + ‖v‖2

s+ ‖x0‖2 − ‖y0‖2 = c,
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which is Equation (Q') with the constants

A = −2
u · x0 − v · y0√
‖u‖2 + ‖v‖2

, C = c− ‖x0‖2 + ‖y0‖2.

Observe that if ‖u‖2−‖v‖2 6= 0, then replacing the coordinate s by s−s0,
for a suitable choice of s0, and relabeling the constant C, one then obtains
the following equation:

‖u‖2 − ‖v‖2

‖u‖2 + ‖v‖2
s2 + z2 = C , C ∈ R . (Q�)

In fact, the form of Equation (Q') is Bs2 +As−C = 0; substituting s with
s− s0 we �nd

0 = B(s− s0)2 +A(s− s0)− C = Bs2 + (A− 2Bs0)s+ (Bs2
0 − C).

The linear term vanishes when s0 = A/2B, which is possible only if B 6= 0,
that is ‖u‖2 − ‖v‖2 6= 0.

Remark 2.5.2.2. Lemma 2.5.2.1 provides yet another method to obtain the
straight lines as lightlike geodesics. Consider Equation (Q�) for C = 0,
namely

‖u‖2 − ‖v‖2

‖u‖2 + ‖v‖2
s2 + z2 = 0

which is indeed a double line through the origin if ‖u‖2 − ‖v‖2 < 0. An
immediate computation shows that these lines are indeed lightlike: indeed

x(t) =
u√

‖u‖2 + ‖v‖2
(s− s0),

y(t) =
v√

‖u‖2 + ‖v‖2
(s− s0),

z(t) =

√
−‖u‖

2 − ‖v‖2
‖u‖2 + ‖v‖2

s.

Similarly, considering (Q') with C > 0, A = 0 and ‖u‖2 − ‖v‖2 = 0, we
obtain z2 = C and then z = ±

√
C. Since Hp,q only contains positive values

of z, this is the equation a horizontal line with lightlike direction. A similar
approach will be used in the next sections for the analysis of spacelike and
timelike geodesics.
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2.5.3 Timelike geodesics

We now move on to the study of timelike geodesics. Let us remark that if a
vector (u, v, w) is tangent to a timelike curve at any point, then necessarily
‖u‖ < ‖v‖ by the expression of the metric (2.1).

Proposition 2.5.3.1. Timelike geodesics in Hp,q are exactly the branches
of hyperbola with center on ∂Hp,q, which do not meet ∂Hp,q, of eccentricity

eT (u, v) =

√
1 +
‖u‖2 + ‖v‖2
‖v‖2 − ‖u‖2

,

where (u, v, w) is a vector tangent to the geodesic at any point. These are
incomplete on both sides.

See also Figure 2.3.

Proof. We will consider timelike geodesics as the intersections of quadric
hypersurfaces with a vertical plane, as in Equation (Q'). In order to get a
timelike geodesic, the vertical plane is necessarily of signature (1, 1), hence
‖u‖ < ‖v‖, in which case we can reduce to Equation (Q�). Indeed, the
tangent space of a vertical 2-plane contains ∂z, which is spacelike, so the
signature can be either (1, 1), (2, 0) or degenerate of signature (1, 0, 1). In
the latter two cases the tangent space does not contain timelike vectors, and
so the space cannot contain timelike curves.

As we observed in Remark 2.5.2.2, if C = 0 then Equation (Q�) gives a
pair of lightlike lines with the same endpoint on ∂Hp,q. If C < 0, we obtain a
pair of hyperbolas meeting ∂Hp,q orthogonally. Since the half-space metric is
conformal to the pseudo-Euclidean metric on Rp+q, these are spacelike (they
tend to be vertical as they approach ∂Hp,q).

We are left with the case of C > 0, which gives indeed a hyperbola that
does not meet ∂Hp,q. These are easily seen to be timelike, since the tangent
vector at the minimum point of the z-coordinate along the hyperbola is pro-
portional to (u, v, 0), which is timelike by our initial assumption ‖u‖ < ‖v‖.
The eccentricity is eT (u, v).

It only remains to show that these are incomplete. First, observe that if
H andH ′ are two such hyperbolas (considered as a subset ofHp,q), then there
is an element of G that mapping H to H ′. Indeed, one can use a translation
and a dilatation to map the minimum of the z-coordinate on H to that on
H ′. Composing with an isometry of the form (x, y, z) 7→ (A(x, y), z), one
can then map the tangent vector to the tangent vector, and this concludes
the claim.

To show incompleteness, it thus su�ces to consider the hyperbola γ pa-
rameterized by y1(t) = sinh(t), z(t) = cosh(t), and all other coordinates
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Figure 2.3: A timelike geodesic (in red) and the four types of spacelike
geodesics (blue).

identically zero. Its length is

L(γ) =

∣∣∣∣∫ +∞

−∞

√
|gp,q(γ′(t), γ′(t))|dt

∣∣∣∣ =

∣∣∣∣∣
∫ +∞

−∞

√
− cosh(t)2 + sinh(t)2

cosh(t)2
dt

∣∣∣∣∣
=

∣∣∣∣∫ +∞

−∞

1

cosh(t)
dt

∣∣∣∣ =
[
2 arctan(et)

]+∞
−∞ = π .

Then all timelike geodesics are incomplete on both sides (see Lemma 1.4.3.12).

Remark 2.5.3.2. Timelike geodesic in Hp,q are periodic curves of length π.
The fact that timelike geodesic of Hp,q have the same length prove that they
are the complement (via ιp,q) of a set of Lebesgue measure null in Hp,q. In
fact we will see in Remark 2.6.6.3 that they are the complement of a single
point.

2.5.4 Spacelike geodesics

Finally, we conclude by the analysis of spacelike geodesics. See again Figure
2.3.

Proposition 2.5.4.1. Spacelike geodesics in Hp,q are exactly of one of the
following types:

1. A vertical straight line;

2. A half-ellipse with foci on ∂Hp,q, of eccentricity eS(u, v) for ‖u‖ > ‖v‖;

3. A parabola with vertex and focus on ∂Hp,q, for ‖u‖ = ‖v‖;
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4. Half of a branch of hyperbola with foci on ∂Hp,q, meeting ∂Hp,q, of
eccentricity eS(u, v), for ‖u‖ < ‖v‖;

where

eS(u, v) =

√
1 +
‖v‖2 − ‖u‖2
‖u‖2 + ‖v‖2

and (u, v, w) is a vector tangent to the geodesic at any point. The �rst three
types are complete, while the fourth type is incomplete as it escapes from
compact sets of Hp,q ∪ ∂Hp,q.

Before the proof, we observe that in particular all spacelike geodesics
meet ∂Hp,q at right angles with respect to the conformal metric

gp,q = dx2
1 + . . .+ dx2

p−1 − dy2
1 − . . .− dy2

q + dz2,

which extends over the horizontal hyperplane.

Proof. The �rst type follows from the �rst point of Lemma 2.5.2.1. The
arc-length parameterization is γ(t) = (x0, y0, z0e

wt/z0), which is de�ned for
all times. Indeed, if x(t) and y(t) are constant, the last equation of (2.7)
becomes

z′′(t) =
z′(t)2

z(t)
,

whose solution is z(t) = z0e
wt/z0 , while the others become trivial.

Let us now consider the second point in Lemma 2.5.2.1, by distinguishing
three cases according to the sign of ‖u‖2 − ‖v‖2.

If ‖u‖ < ‖v‖, we have already seen in the proof of Proposition 2.5.3.1
that Equation (Q�) gives a spacelike geodesic if and only if C < 0. From the
equation, in this case the geodesic is a branch of hyperbola that meets ∂Hp,q
orthogonally, of eccentricity eS(u, v). To show that it has in�nite length
when approaching ∂Hp,q and �nite length at the other end, we can assume
that (u, v) = (0, ∂y1), up to isometry. Up to a translation, we can assume
that the curve is parameterized by y1(t) = cosh(t), z(t) = sinh(t), and all
the other coordinates are identically zero. A direct computation shows that
its length is

L(γ|[t0, t1]) =

∣∣∣∣∫ t1

t0

√
g(γ′(t), γ′(t))dt

∣∣∣∣ =

∣∣∣∣∫ t1

t0

1

sinh(t)
dt

∣∣∣∣ =

=
∣∣[log(tanh(t/2))]t1t0

∣∣ .
Therefore it is complete as t0 → 0+, and incomplete as t1 → +∞.

If ‖u‖ > ‖v‖, then (Q�) is the equation of an ellipse (for C > 0) that
meets ∂Hp,q orthogonally, with eccentricity eS(u, v). We remark that it lies
in a positive de�nite vertical 2-plane: the tangent space at the maximum of
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the ellipse is (ũ, ṽ, 0), which is both spacelike and orthogonal to ∂z. So the
plane containing γ is isometric to H2,0 ∼= H2, which is complete, hence γ is
complete, too. Otherwise, one can compute the length as in the previous
case, and �nd that it is in�nite in both sides.

Finally, when ‖u‖ = ‖v‖, (Q') becomes z2 + As = C. We remark that
necessarily A 6= 0, because otherwise we would obtain a lightlike line as
observed in Remark 2.5.2.2. Namely, we obtained a parabola with vertex and
focus both on ∂Hp,q. To see that it is complete, observe that the last equation
of (2.7) becomes the ODE z′′ = (z′)2/z, whose solution z(t) = z0e

wt/z0 is
de�ned for all times. The parameterized geodesic is obtained by setting
s(t) = (1/A)(C − z2); then (x(t), y(t)) is expressed from s(t) as a function
of t by Equation (2.10). Hence, the arc-length parameterization is

x(t) =
u√

‖u‖2 + ‖v‖2
s(t) =

u√
‖u‖2 + ‖v‖2

C − z(t)2

A
,

y(t) =
v√

‖u‖2 + ‖v‖2
s(t) =

v√
‖u‖2 + ‖v‖2

C − z(t)2

A
,

z(t) = z0e
wt/z0 ,

which is de�ned on R, i.e. γ is complete.

As a consequence of this analysis of geodesics, we now have all the tools to
prove that the group G (see De�nition 2.1.3.5) is actually the full isometry
group of the half-space model Hp,q, if q 6= 0. However, we postpone the
proof to Section 2.8 (see Theorem 2.8.1.1), where isometries are discussed in
greater detail.

2.6 The boundary at in�nity

In this section we will study the boundary at in�nity of the pseudo-hyperbolic
space Hp,q in the half-space model. We �rst show that the embedding ιp,q,
introduced in Proposition 2.1.2.2, extends to a non-surjective embedding of
∂Hp,q into ∂∞Hp,q; we then describe the missing points and the topology of
the boundary in terms of lightlike cones and hyperplanes.

2.6.1 The conformal boundary

It is possible to endow the pseudo-hyperbolic space with a conformal bound-
ary, which is a generalization of the visual boundary in Riemannian geome-
try, in order to study its asymptotic properties.

Since in the case of Hp,q this construction is trivial, we will give only
the basic de�nitions and consider in the following the topological boundary.
For details on the conformal boundary, we recommend [Fra02, Fra05, BS20,
BCD+08].
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De�nition 2.6.1.1. (Conformal metric) Let (M, g) be a pseudo-Riemannian
manifold. Another pseudo-metric h on M is conformal to g if it exists a
smooth function f ∈ C∞(M) such that h = efg, namely h is punctually a
positive multiple of g.

Conformal metrics preserves angles and non parameterized lightlike geodesic,
hence we can endow a manifold with di�erent conformal metrics, in order to
study these properties.

De�nition 2.6.1.2. (Conformal class of metrics) Let (M, g) a pseudo-Riemannian
manifold. The conformal class of g is the set of pseudo-metrics

[g] := {efg, f ∈ C∞(M)}.

We can endow a manifold with a conformal class of pseudo-metrics, so
we are interested in maps preserving this structure.

De�nition 2.6.1.3. (Conformal map) Let (M, g) and (N,h) be two pseudo-
Riemannian manifolds, a (local) di�eomorphism φ : M → N is a conformal
map if it exists a smooth function f ∈ C∞(M) such that φ∗h = efg.

Equivalentely, a conformal map φ : (M, g)→ (N,h) is a (local) isometry
between (M, g′) and (N,h), where g′ is a pseudo-metric conformal to g.

If we endowed two manifolds with conformal structures, namely (M, [g])
and (N, [h]), they are conformally di�eomorphic if it exists a di�eomorphism
φ : M → N , which is a conformal map for some g′ ∈ [g] and h′ ∈ [h]. We
remark that if it is the case, φ is a conformal map (M, g′′)→ (N,h′′), for all
g′′ ∈ [g], h′′ ∈ [h].

De�nition 2.6.1.4. (Conformal completion) A conformal boundary comple-
tion of a pseudo-Riemannian manifold (M, g) is a manifoldM with boundary
∂M , endowed with a conformal structure [g] such that

i. the interior of (M, [g]) is conformally di�eomorphic to (M, g);

ii. it exists a metric h ∈ [g] and a smooth function ρ ∈ C∞(M) such that

a) ρ−1({0}) = ∂M ,

b) dρ 6= 0 on ∂M ,

c) h = ρ2g on the interior of M , that is on M (up to scale ρ).

Remark 2.6.1.5. Again, if (c) holds for a single couple h ∈ [g], ρ ∈ C∞(M),
then for all h′ ∈ [g], it exists ρ′ ∈ C∞(M) which satis�es the same requests.

Clearly the conformal completion of (Hp,q, gp,q) is

(Hp,q ∪ {z = 0}, [gp,q]),

where gp,q is the �at metric of Rp,q de�ned as in (2.8). This implies that
the conformal boundary is the same as the topological one. Indeed, gp,q
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is conformal to the Euclidean metric of Rp,q and one can easily check that
ρ(x, y, z) := z satis�es (c).

It is not trivial to show that even Hp,q admits a conformal boundary, and
that it coincides with the topological boundary, namely the projectivization
of the lightcone. For this construction in Hn,1 = AdSn+1, see for example
[Fra05, BS20].

2.6.2 The extended embedding

Recall that Proposition 2.1.2.2 provided an isometric embedding ιp,q of Hp,q
into Hp,q.

Proposition 2.6.2.1. The isometric embedding ιp,q : Hp,q ↪→ Hp,q de�ned
in Proposition 2.1.2.2 extends to an embedding ∂Hp,q ↪→ ∂∞Hp,q.

Proof. Consider the embedding ιp,q as a map from Hp,q to the projective
space RPp+q. From Proposition 2.1.2.2, it has the expression

ιp,q(x, y, z) =

[
x

z
:

1− ‖x‖2 + ‖y‖2 − z2

2z
:
y

z
:

1 + ‖x‖2 − ‖y‖2 + z2

2z

]
=

=

[
x :

1− ‖x‖2 + ‖y‖2 − z2

2
: y :

1 + ‖x‖2 − ‖y‖2 + z2

2

]
,

hence it extends to ∂Hp,q = {z = 0} by the above formula.
One can easily check that 〈ιp,q(x, y, 0), ιp,q(x, y, 0)〉p,q+1 = 0, i.e. ιp,q(∂Hp,q)

is contained in ∂∞Hp,q. Indeed

X2
p +X2

p+q+1 = −‖x‖2 + ‖y‖2 = −
p−1∑
i=1

X2
i +

q∑
j=1

X2
p+j .

In particular ιp,q(Hp,q) ∩ ιp,q(∂Hp,q) = ∅. To show that ιp,q is injective, it
therefore su�ces to show that it is injective when restricted to ∂Hp,q, since
we already showed in Proposition 2.1.2.2 the injectivity of ιp,q on Hp,q.

For this purpose, suppose there exist two points (x, y, 0), (t, w, 0) ∈ ∂Hp,q
such that ιp,q(x, y, 0) = ιp,q(t, w, 0), that is[
t :

1− ‖t‖2 + ‖w‖2

2
: w :

1 + ‖t‖2 − ‖w‖2

2

]
=

[
x :

1− ‖x‖2 + ‖y‖2

2
: y :

1 + ‖x‖2 − ‖y‖2

2

]
.

It follows from the expression above that (t, w) = λ(x, y) for some λ 6= 0 and{
λ
(
1− ‖x‖2 + ‖y‖2

)
= 1− ‖t‖2 + ‖w‖2 = 1− λ2‖x‖2 + λ2‖y‖2

λ
(
1 + ‖x‖2 − ‖y‖2

)
= 1 + ‖t‖2 − ‖w‖2 = 1 + λ2‖x‖2 − λ2‖y‖2

,

which can be rewritten equivalently as{
(‖x‖2 − ‖y‖2)λ(1− λ) = λ− 1

(‖x‖2 − ‖y‖2)λ(1− λ) = 1− λ
,
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whose only solution is λ = 1. Indeed, if λ 6= 1, we the system can be
rearranged: dividing by 1− λ and summing the �rst eqation to the second,
one obtains {

(‖x‖2 − ‖y‖2)λ = −1

(‖x‖2 − ‖y‖2) = 0
,

which is impossible. This concludes that (t, w, 0) = (x, y, 0).
Moreover, using the same notation as in Proposition 2.1.2.2, clearly

Xp + Xp+q+1 = 1, i.e. ιp,q(x, y, 0) ∈ P{Xp + Xp+q+1 6= 0}. In fact, one
immediately checks that

ιp,q(∂Hp,q) = ∂∞Hp,q ∩ P{Xp +Xp+q+1 6= 0} ⊂ RPp+q .

Indeed, given a null vector (X1, . . . , Xp+q+1), up to rescaling we can as-
sume Xp + Xp+q+1 = 1; a direct computation shows that, for xi = Xi and
yj = Xj+p, ι(x, y, 0) = [X1, . . . , Xp+q+1], since (Xp, Xp+q+1) is the unique
couple solving{

Xp +Xp+q+1 = 1

X2
p −X2

p+q+1 = −
∑p−1

i=1 X
2
i +

∑q
j=1X

2
p+j

.

Corollary 2.6.2.2. ιp,q embeds conformally ∂Hp,q into ∂∞Hp,q.

Proof. De�ne the map

ιp,q : Hp,q ∪ ∂Hp,q → Rp,q+1

(x, y, z) 7→
(
x,

1− ‖x‖2 + ‖y‖2

2
, y,

1 + ‖x‖2 − ‖y‖2

2

)
.

ιp,q is a conformal map: one can easily compute it or remark that morally
ιp,q(x, y, z) = z2 ι̃p,q(x, y, z). P is a local isometry, hence a conformal map.
This implies that P ◦ ιp,q is a conformal map Hp,q ∪ ∂Hp,q → Hp,q ∪ ∂∞Hp,q.
One concludes the proof by remarking that P ◦ ιp,q = P ◦ ι̃p,q = ιp,q.

2.6.3 Hausdor� pseudo-metric

Our next goal is to describe the entire boundary ∂∞Hp,q, seen in the half-
space model. The starting observation is that ∂∞Hp,q is in bijection with
the space of degenerate totally geodesic hyperplanes in Hp,q. Indeed, to any
X ∈ Rp,q+1 such that 〈X,X〉 = 0, one associates the intersection of the or-
thogonal subspace of X with Hp,q, more precisely (X⊥∩ H̃p,q)/{±Id}, which
is a totally geodesic hyperplane in Hp,q of degenerate type (see Example
1.4.5.6). We will simply denote it with X⊥, by a small abuse of notation.
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Example 2.6.3.1. The hyperplane �at in�nity�, which is the complement
of the embedding ιp,q in Proposition 2.1.2.2, is de�ned by the equation
Xp + Xp+q+1 = 0, hence it is the orthogonal of any nonzero vector pro-
portional to ∂Xp − ∂Xp+q+1 in Rp,q+1.

Clearly two hyperplanes X⊥ and Y ⊥ coincide if and only if X and Y are
proportional, and every degenerate totally geodesic hyperplane is obtained
in this way.

To formalize the idea of convergence of subset, we introduct a topology on
the power set of a metric space. We remark that Hp,q is not a metric space,
nevertheless, we could use the Euclidean metric induced by the inclusion
in Rp+q.
De�nition 2.6.3.2 (Hausdor� pseudo-metric). Let (X, d) be a metric space.
Let A ⊆ X, x ∈ X, the distance between a point and a set is de�ned as

d(x,A) = inf
a∈A

d(x, a).

Then the pseudo-distance between two subset A,B ⊆ X is

dH(A,B) := max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
.

Lemma 2.6.3.3. Let (X, d) be a metric space, EH ⊆ P(X) the set of closed
bounded subspaces of X, then (EH, dH) is a metric space.

Proof. The closed hypothesis is needed to distinguish points: otherwise if
x ∈ Ā \ A, then d(x,A) = 0, and so dH({x}, A). We ask the set to be
bounded to assure that dH < +∞.

It is clear that dH ≥ 0, we show that di�erent subset have positive dis-
tance. Let A,B ∈ EH, A 6= B. Up to switch names, we can assume A ⊆ Bc,
that is an open subset of a metric space: then it exists x ∈ A, ε > 0 such
that B(x, ε) ⊆ Bc, that is d(x,B) > ε. Hence

dH(A,B) ≥ sup
a∈A

d(a,B) ≥ d(x,B) ≥ ε.

The symmetry is obvius by de�nition. We have to check triangular inequality.
Set A,B,C ∈ EH; d is a distance, hence d(a, b) ≤ d(a, c)+d(c, b) for all a ∈ A,
b ∈ B and c ∈ C. It holds for all b in B, then

d(a,B) = inf
b∈B

d(a, b) ≤ d(a, c) + inf
b∈B

d(c, b) = d(a, c) + d(c,B).

This is true for any c ∈ C, hence

d(a,B) ≤ d(a, c) + sup
c∈C

d(c,B) ≤ d(a, c) + dH(C,B).
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Again, since a was arbitrary

sup
a∈A

d(a,B) ≤ sup
a∈A

d(a, c) + dH(C,B) ≤ dH(A,C) + dH(C,B).

One can prove the same inequality for supb∈B d(A, b), which ends the proof.

It is clear that the topology of ∂∞Hp,q is homeomorphic, under this cor-
respondence, to the Hausdor� topology on closed subsets of ∂∞Hp,q. Indeed,
a sequence of vectors Xn converges projectively to X if and only if the or-
thogonal subspace of Xn converges to the orthogonal subspace of X. Our
aim is to study the space of degenerate subspaces, which is a visible copy of
the boundary ∂∞Hp,q in the half space model Hp,q, but these space are not
bounded with respect to the Euclidean metric. Nevertheless, we are inter-
ested only in topology, so we endow Hp,q with the metric of a bounded ball
B(0, r) ⊆ Rp+q, so that dH induces a metric over it. We will consider the
topology induced by this metric when we refer to the Hausdor� topology.

2.6.4 The full boundary in the half-space model

We are now ready to give the following de�nition.

De�nition 2.6.4.1 (Extended boundary). We de�ne

∂∞Hp,q = {degenerate totally geodesic hypersurfaces in Hp,q} ∪ {∞} ,

where we endow the space of degenerate totally geodesic hypersurfaces with
the Hausdor� topology described above, and ∂∞Hp,q with its one-point com-
pacti�cation, ∞ be the added point.

That de�nition permits to extend ιp,q to an homeomorphism between the
boundaries. The proof of that will be given through several lemmas, which
explains the topology of the boundary. Recall from Proposition 2.4.2.1 that
degenerate totally geodesic hypersurfaces in Hp,q are of the following two
types:

• Vertical hyperplanes VL, where L is a degenerate a�ne hyperplane in
Rp−1,q;

• Quadric hypersurfaces Q(x0,y0) of equation

‖x− x0‖2 − ‖y − y0‖2 + z2 = 0 (2.11)

We have already seen in Proposition 2.6.2.1 that ιp,q mapsQ(x0,y0) to ιp,q(x0, y0, 0)
and ∞ to the projective class of ∂Xp − ∂Xp+q+1 in RPp+q, now we are inter-
ested in its behaviour over degenerate hyperplanes.
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Lemma 2.6.4.2. Let VL be degenerate vertical hyperplane de�ned by the
equation 〈x, u〉 − 〈y, v〉 = a, for (u, v) lightlike vector of Rp−1,q and a ∈ R.
ιp,q(VL) is the projective class of (u,−a, v, a)⊥ .

Proof. Let X ∈ (u,−a, v, a)⊥ ∩ Im ι̃p,q, X = (X1, . . . , Xp+q+1), then

〈(X1, . . . , Xp−1), u〉 − aXp − 〈(Xp+1, . . . , Xp+q), v〉 − aXp+q+1 = 0.

Im ι̃p,q = {Xp +Xp+1 > 0}, hence we can divide by Xp +Xp+1, obtaining

〈
(

X1

Xp +Xp+1
, . . . ,

Xp−1

Xp +Xp+1

)
, u〉 − 〈

(
Xp+1

Xp +Xp+1
, . . . ,

Xp+q

Xp +Xp+1

)
, v〉 = a.

We built the inverse of ι̃p,q (on its image) in Proposition 2.1.2.2, by de�ning

xi =
Xi

Xp +Xp+q+1
, i = 1, . . . , p− 1

yj =
Xj+p

Xp +Xp+q+1
, j = 1, . . . , q

z =
1

Xp +Xp+q+1
.

Hence the equation becomes 〈x, u〉 − 〈y, v〉 = a, which ends the proof.

Proposition 2.6.4.3. ιp,q : ∂∞Hp,q → ∂∞Hp,q is bijective.

Proof. We proved in Proposition 2.6.2.1 that

ιp,q : ∂Hp,q → ∂∞Hp,q ∩ {Xp +Xp+q+1 6= 0}

is bijective and ιp,q(∞) = [0 : 1 : 0 : −1].
Lemma 2.6.4.2 states that ιp,q is a bijection from the set of degenerate

hyperplanes of Hp,q, namely ∂∞Hp,q \ (∂Hp,q ∪ {∞}), to the set of the pro-
jective classes of degenerate vectors of Rp,q+1 such that Xp + Xp+q+1 = 0,
except for [0 : 1 : 0 : −1], since (u, v) 6= 0, which ends the proof.

We want now to study the topology of ∂∞Hp,q to prove that ιp,q is con-
tinuous, therefore we are interested in convergence of sequences in ∂∞Hp,q.
Remark 2.6.4.4. Consider a sequence (An)n∈N ⊆ ∂∞Hp,q such that An is
described by the equation fn(x, y, z) = 0. The sequence converges to A∞ =
{f∞(x, y, z) = 0} if and only if fn → f∞ in L∞(Rp+q).

Moreover, we remark that any point in the boundary is represented by
a degenerate maximal totally geodesic hypersurfaces of Hp,q. Two maximal
totally geodesic subspaces of the same dimension that coincide over an open
set are equal. Since ours set are de�ned by smooth equations, this implies
that An → A∞ if and only is fn → f∞ in L∞(U), for U an open set.
Particularly, we will take an open set having a compact neighborhood.
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Let us describe more concretely the convergence of a sequence of elements
in ∂Hp,q, seen as a subset of ∂∞Hp,q. The statements that we will give are
modulo extraction of subsequences.

Lemma 2.6.4.5. Consider a sequence (xn, yn) in ∂Hp,q, we have the fol-
lowing possibilities:

i. if (xn, yn) converges to (x∞, y∞), then Q(xn,yn) converges to Q(x∞,y∞),
which still gives an element of ∂Hp,q;

ii. if ‖xn‖−‖yn‖ is bounded, Q(xn,yn) converges to the degenerate vertical
hyperplane of equation x ·u−y ·v = a , where u, v and a are respectively
the limits of xn/‖xn‖,yn/‖yn‖ and ‖xn‖ − ‖yn‖;

iii. otherwise, (xn, yn) converges to the point ∞ ∈ ∂∞Hp,q.

Proof. For (i), it su�ces to compute the limit with respect to Equation (2.11):

‖x− xn‖2 − ‖y − yn‖2 + z2 = 0 ‖x− x∞‖2 − ‖y − y∞‖2 + z2 = 0.

For (ii), assume (xn, yn) diverges in Rp−1,q and ‖xn‖ − ‖yn‖ is bounded.
Up to extracting a subsequence, ‖xn‖ − ‖yn‖ has a �nite limit a ∈ R, so
both ‖xn‖, ‖yn‖ 6= 0 for n big enough. Hence, up to extract a second sub-
sequence, xn/‖xn‖ → u and yn/‖yn‖ → v, for (u, v) ∈ Sp−2 × Sq−1, namely
‖u‖2 = ‖v‖2 = 1, so (u, v) is lightlike. Remark that

‖xn‖
‖yn‖

=
‖xn‖ − ‖yn‖
‖yn‖︸ ︷︷ ︸
≈a/‖yn‖

+1→ 1.

By expanding Equation (2.11) and dividing it by ‖yn‖, one obtains

‖x‖2 − ‖y‖2 + z2

‖yn‖
− 2〈x, xn

‖yn‖
〉+ 2〈y, yn

‖yn‖
〉+
‖xn‖2 − ‖yn‖2

‖yn‖
= 0.

Using Remark 2.6.4.4, we can restrain the function to a compact neighbor-
hood of an open set, so that the variables x, y, z are bounded. Hence

‖x‖2−‖y‖2+z2

‖yn‖ − 2〈x, xn
‖yn‖〉+ 2〈y, yn

‖yn‖〉 + ‖xn‖+‖yn‖
‖yn‖ (‖xn‖ − ‖yn‖) = 0

0 − 2〈x, u〉+ 2〈x, v〉 + 2a = 0

namely Q(xn,yn) converges to VL, L ⊆ Rp−1,q being an a�ne subspace whose
underlying vector space is (u, v)⊥, so it is a degenerate hyperplane of Rp−1,q.
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Finally, for (iii), we remark that (xn, yn) in ∂Hp,q converges to the point
∞ ∈ ∂∞Hp,q if and only if Q(xn,yn) escapes from all compact sets of the
half-space. Write (2.11) as

‖x‖2 + z2 − 2〈x, xn〉+ ‖xn‖2 − ‖yn‖2 = ‖y‖2 − 2〈y, yn〉.

Assume ‖xn‖/‖yn‖ → 0. Dividing by ‖yn‖ we obtain∣∣∣∣‖y‖2‖yn‖
− 2〈y, yn

‖yn‖
〉
∣∣∣∣ ≤ ‖y‖2‖yn‖

+ 2
‖y‖ ‖yn‖
‖yn‖

≤
(
‖y‖2 + 1

)( 1

‖yn‖
+ 2

)
.

Since ‖yn‖ diverges, (2 + 1/‖yn‖) ≤ 3 for n big enough. It follows that a
point (x, y, z) ∈ Q(xn,yn) satis�es the following inequalities:

3(‖y‖2 + 1) ≥
∣∣∣∣‖x‖2 + z2

‖yn‖
− 2〈x, xn

‖yn‖
〉+
‖xn‖2 − ‖yn‖2

‖yn‖

∣∣∣∣ ≥
≥
∣∣∣∣‖xn‖2 − ‖yn‖2‖yn‖

∣∣∣∣− ∣∣∣∣‖x‖2 + z2

‖yn‖
− 2〈x, xn

‖yn‖
〉
∣∣∣∣ ≥

≥
∣∣∣∣‖xn‖2 − ‖yn‖2‖yn‖

∣∣∣∣− ‖x‖2 + z2

‖yn‖
− 2‖x‖2 ‖xn‖

2

‖yn‖2
. (2.12)

Let K ⊆ Hp,q be a compact subset of Rp+q. The coordinates of its points
are limited, namely it exists C ∈ R such that

‖x‖2 + ‖y‖2 + z2 ≤ C, ∀(x, y, z) ∈ K. (2.13)

Combining (2.12) with (2.13), a point (x, y, z) ∈ Q(xn,yn) ∩K satis�es

3C ≥ ‖y‖2 ≥
∣∣∣∣‖xn‖2 − ‖yn‖2‖yn‖

∣∣∣∣− C

‖yn‖
− ‖xn‖

2

‖yn‖2
C − 3 =: F (xn, yn).

By hypothesis, F (xn, yn) → +∞ as n → ∞, that is for n big enough
F (xn, yn) > 3C, which means Q(xn,yn) ∩ K = ∅. K is arbitrary, hence
Q(xn,yn) escapes from all compact sets, that is (xn, yn)→∞.

Finally we can show that ιp,q is an homeomorphism between the bound-
aries.

Proposition 2.6.4.6. The embedding ιp,q induces a homeomorphism be-
tween ∂∞Hp,q and ∂∞Hp,q.

Proof. It su�ces to prove that ιp,q is continuous, i.e. it commutes with limits.
Let (xn, yn)→ VL = {〈x, u〉−〈y, v〉 = a} in ∂∞Hp,q. For Lemma 2.6.4.5,

xn
‖xn‖

→ u,
yn
‖yn‖

→ v, ‖xn‖ − ‖yn‖ → a.
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Applying ιp,q to the sequence, one has

ιp,q(xn, yn, 0) =

[
xn :

1− ‖xn‖2 + ‖yn‖2

2
: yn :

1− ‖xn‖2 + ‖yn‖2

2

]
=

=

[
xn
‖yn‖

:
1− ‖xn‖2 + ‖yn‖2

2‖yn‖
:
yn
‖yn‖

:
1− ‖xn‖2 + ‖yn‖2

2‖yn‖

]
.

Recalling that ‖xn‖/‖yn‖ → 1,

1− ‖xn‖2 + ‖yn‖2

2‖yn‖
=

1

2‖yn‖
− ‖xn‖+ ‖yn‖

2‖yn‖︸ ︷︷ ︸
=1

(‖xn‖ − ‖yn‖)→ −a.

Hence we proved

lim
n→∞

(ιp,q(xn, yn, 0)) = [u : −a : v : a] = ιp,q

(
lim
n→∞

(xn, yn, 0)
)
.

We should check also that a sequence (xn, yn) → ∞ commutes with ιp,q.
This can be checked using the same computation as above, dividing by ‖yn‖2
instead of ‖yn‖, if ‖xn‖/‖yn‖ → 0, and by ‖xn‖2 otherwise.

To show that a sequence VLn → VL∞ commutes with ιp,q one can either
compute it explicitely or take a family of sequences (xnk , y

n
k )k∈N, such that

(xnk , y
n
k )→ VLn for k →∞, and use a diagonal argument to build a sequence

(xnk
k , y

nk
k )→ VL∞ .

One concludes by unicity of the limit.

2.6.5 Examples

Let us now describe the topology of ∂∞Hp,q in two de�nite examples.

Example 2.6.5.1. Let us �rst consider H1,n, namely the half-space model
of minus the de Sitter space. In this case ∂H1,n is conformal to R0,n,
hence is negative de�nite, therefore there are no degenerate a�ne hyper-
planes in ∂H1,n. In other words, ∂∞H1,n is the one-point compacti�cation
of ∂H1,n ∼= Rn, and therefore is homeomorphic to the sphere Sn. This is not
surprising indeed, as the (n+1)-dimensional de Sitter space shares the same
boundary at in�nity as the hyperbolic space Hn+1 of the same dimension.

From the point of view of H1,n, this corresponds to the fact that a se-
quence of degenerate totally geodesic hypersurfaces Qyn de�ned by the equa-
tion ‖y − yn‖2 − z2 = 0, which is a cone over (yn, 0) (see Figure 2.1 on the
right), escapes from compact sets in the half-space if the sequence yn is
diverging in Rn.
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Figure 2.4: The compacti�cation of ∂H2,1, which is a copy of R1,1 represented
by the interior of the diamond, inside ∂∞H2,1. The lines at ±45◦ represent
the degenerate a�ne subspaces in R1,1, and each of them is compacti�ed
to a di�erent point. The point ∞ then corresponds to the vertices of the
diamond. The identi�cations of the sides clearly give the topology of a torus
on ∂∞H2,1.

Example 2.6.5.2. Let us now consider a more interesting situation, namely
the Anti-de Sitter half-space Hn,1. In this case ∂∞Hn,1 decomposes as the
disjoint union of ∂Hn,1, which is a copy of the n-dimensional Minkowski
space Rn−1,1, the singleton {∞}, and the space of vertical hyperplanes VL.
The latter is in bijection with the space of degenerate hyperplanes in Rn−1,1,
which is a trivial bundle Sn−2 × R, where the Sn−2 factor determines the
orthogonal direction (i.e. the projectivization of the cone {‖x‖2−y2 = 0} of
null directions), and the R factor the intercept on the y axis. The complement
∂∞Hn,1 \ ∂Hn,1 is therefore the one-point compacti�cation of Sn−2 × R.

When n = 2, S0 × R is the disjoint union of two lines, and its one-point
compacti�cation is homeomorphic to a wedge sum of two circles. Hence we
directly recover the fact that ∂∞H2,1 is homeomorphic to a torus S1 × S1.
Indeed, from Remark 2.6.4.5 we see that R1,1 is compacti�ed by adding a
point to compactify every line of the form y = x+ a (this is the �rst copy of
R in S0 ×R), and a point for every line of the form y = −x+ a (the second
copy of R). By adding the point ∞, we then see that the obtained topology
is that of a torus, see Figure 2.4. Compare also ([Dan11, Appendix]) for a
more algebraic approach to this compacti�cation.

2.6.6 Geodesics revisited

To conclude this section, we discuss again the geodesics in Hp,q, now in terms
of their endpoints in ∂∞Hp,q. Indeed, in Hp,q the geodesics have the following
topological behaviour:

80



• Spacelike geodesics converge to two di�erent points in ∂∞Hp,q at the
two ends.

• Lightlike geodesics converge to the same point in ∂∞Hp,q at the two
ends.

• Timelike geodesics are closed, hence do not intersect ∂∞Hp,q.

We will classify geodesics, distinguishing their type as usual, in relation with
their endpoints.

Remark 2.6.6.1. Before stating the results, we give a preliminary observation
that will be used repeatedly. It will be important to understand when a
sequence of points (xn, yn, zn) ∈ Hp,q converges to a point of ∂∞Hp,q. In
Section 2.6.4 we explained this for a sequence in ∂Hp,q, i.e. for zn ≡ 0 (see
Lemma 2.6.4.5).

When the points are in the interior, we can apply a similar consideration,
namely the fact that a sequence of points Xn ∈ Hp,q converges (projectively)
to X ∈ ∂∞Hp,q if and only if the lightcone emanating from Xn converges
to the totally geodesic degenerate hypersurface which corresponds to the
orthogonal complement ofX. Hence to check if a sequence (xn, yn, zn) ∈ Hp,q
converges to a point of ∂∞Hp,q, which we recall is identi�ed to the space of
totally geodesic degenerate hypersurfaces, it su�ces to check the convergence
of the lightcones from (xn, yn, zn) ∈ Hp,q (as in Figure 2.2).

In particular, it is clear that the topology on Hp,q ∪ ∂Hp,q coincides with
that of the closed half-space, because if (xn, yn, zn) → (x0, y0, 0), then the
lightcones ‖x − xn‖2 − ‖y − yn‖2 + |z − zn|2 = 0 converge to the totally
geodesic degenerate hypersurface ‖x− x0‖2 − ‖y − y0‖2 + |z|2 = 0.

Let us �rst consider spacelike geodesics, beginning with the case where
the two endpoints are both in ∂Hp,q ⊂ ∂∞Hp,q.

Proposition 2.6.6.2. Let (x0, y0), (x′0, y
′
0) ∈ ∂Hp,q and de�ne

(u, v) := (x′0 − x0, y
′
0 − y0), (xm, ym) := ((x0 + x′0)/2, (y0 + y′0)/2).

Then:

• If ‖u‖ > ‖v‖, then the unique geodesic of Hp,q with endpoints ιp,q(x0, y0, 0)
and ιp,q(x

′
0, y
′
0, 0) is contained in Hp,q, and is the ellipse of eccentricity

eS(u, v) with center (xm, ym).

• If ‖u‖ < ‖v‖, then the unique geodesic of Hp,q with endpoints ιp,q(x0, y0)
and ιp,q(x

′
0, y
′
0) is contained in Hp,q except for one point, and its inter-

section with Hp,q consists of the two upper half-branches of the hyper-
bola of eccentricity eS(u, v) with center (xm, ym).

• If ‖u‖ = ‖v‖, there is no geodesic with endpoints ιp,q(x0, y0) and
ιp,q(x

′
0, y
′
0).
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We remark that (u, v) is the vector joining the two points on the bound-
ary, while (xm, ym) is the midpoint, and recall that the value eS(u, v) of the
eccentricity appears in Proposition 2.5.4.1.

Proof. There is not much left to prove here. The �rst point follows from
Proposition 2.5.4.1. For the third point, it is known that if two points in
∂∞Hp,q are connected by a lightlike segment in the boundary, then they are
not connected by a spacelike geodesic; however the non-existence also follows
from Proposition 2.5.4.1. For the second point, using again Proposition
2.5.4.1, the only thing left to prove is that the two half-branches of the same
hyperbola are parts of the same spacelike geodesic in Hp,q, and are separated
by a single point. (We have showed that these branches are incomplete on
the upper end, so they certainly converge to the interior of Hp,q, since Hp,q

is geodesically complete.)
To prove this statement, we can apply the isometry group of Hp,q and

reduce to the curve parameterized by y1(t) = ± cosh(t), z(t) = sinh(t), and
all the other coordinates identically zero (exactly as we did in the proof of
Proposition 2.5.4.1). A direct computation shows that

ιp,q(γ(t)) =
[
0 : 1 + cosh(t)2 − sinh(t)2 : ±2 cosh(t) : 1− cosh(t)2 + sinh(t)2

]
=

= [0 : 2 : ±2 cosh(t) : 0] =

[
0 :

1

± cosh(t)
: 1 : 0

]
.

Clearly these points all lie on the same geodesic, because they are con-
tained in a unique 2-plane in Rp,q+1, and the limit as t→ +∞ is [0 : 0 : 1 : 0]
regardless of the sign ± in front of y1(t). This concludes the proof.

Remark 2.6.6.3. A very similar computation shows that timelike geodesics of
Hp,q are mapped to the complement of a point on a (closed) timelike geodesic
of Hp,q. Indeed, up to isometry, we can reduce to the branch of hyperbola
γ(t) given by y1(t) = sinh(t), z(t) = cosh(t) and all the other coordinates
identically zero. One can then show that the limit of the image under the
embedding ιp,q is the same point in Hp,q as t→ ±∞:

ιp,q(γ(t)) =
[
0 : 1 + sinh(t)2 − cosh(t)2 : 2 sinh(t) : 1− sinh(t)2 + cosh(t)2

]
=

= [0 : 0 : 2 sinh(t) : 2] =

[
0 : 0 : 1 :

1

sinh(t)

]
,

which tends to [0 : 0 : 1 : 0] for t→ ±∞.

The case where one point is on ∂Hp,q and the other is ∞ is very easy to
deal with.

Proposition 2.6.6.4. Let (x0, y0) ∈ ∂Hp,q. The unique geodesic with end-
points (x0, y0) and ∞ is the vertical line over (x0, y0).
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Proof. Applying Remark 2.6.6.1, the endpoints of the vertical line over (x0, y0)
are clearly (x0, y0) and ∞, for the lightcone over (x0, y0, z) converges to the
totally geodesic hypersurface ‖x− x0‖2−‖y− y0‖2 + |z|2 = 0 as z → 0, and
escapes from compact sets as z → +∞.

We are only left with the case where one point is on ∂Hp,q, and the other
is represented by a totally geodesic hypersurface VL. Indeed, after proving
the next proposition, and comparing with Proposition 2.5.4.1, we see that a
posteriori there are no geodesics in Hp,q connecting two points of the form
VL or ∞.

Proposition 2.6.6.5. Let (x0, y0) ∈ ∂Hp,q, a ∈ R, (u, v) ∈ Rp−1,q such that
‖u‖ = ‖v‖ and ‖u‖2 + ‖v‖2 = 1 and La(u,v) the degenerate a�ne hyperplane

in ∂Hp,q of equation 〈(x−x0), u〉−〈(y−y0)v〉 = a . Then the unique geodesic
with endpoints (x0, y0) and VLa

(u,v)
is the parabola

x(t) = x0 +
t2

2a
u, y(t) = y0 +

t2

2a
v, z(t) = t . (2.14)

Proof. Up to a horizontal translation, which does not a�ect the conclusion of
the statement, we can assume (x0, y0) = (0, 0). Set α = 1/4a. The lightcones
over (x(t), y(t), z(t)) satisfy the equation

‖x− 2αt2u‖2 − ‖y − 2αt2v‖2 + |z − t|2 = 0 .

Dividing by t2 and using ‖u‖2 = ‖v‖2,

‖x‖2 − ‖y‖2

t2
+ 2α(〈x, u〉 − 〈y, v〉) + 4α2t2(‖u‖2 − ‖v‖2︸ ︷︷ ︸

=0

) +
z2 − 2zt+ t2

t2
= 0,

which converges as t→ +∞ to the vertical hyperplane of equation

〈x, u〉 − 〈y, v〉 = 1/4α = a.

Clearly (x(t), y(t), z(t)) converges to (x0, y0, 0) ∈ ∂Hp,q as t → 0. This
concludes the proof.

Remark 2.6.6.6. One might wonder what is the geometric interpretation of
the parameter a, which encodes the relation between the parabola and its
endpoint at in�nity, seen as a vertical hyperplane that does not contain the
parabola itself. Let us describe the geometric intuition behind this relation.
Given a parabola as in Equation (2.14), contained in a degenerate 2-plane
V`, where ` is an a�ne line directed by (u, v), one can uniquely express this
parabola as the intersection of V` and a totally geodesic degenerate hyper-
surface, which is a lightcone over a point (x̂, ŷ, 0). The vertical hyperplane to
which the parabola is asymtoptic to is then the unique vertical hyperplane
VL such that the underlying vector space of L is the orthogonal of (u, v) and
contains (x̂, ŷ, 0).
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Let us now move on to lightlike geodesics.

Proposition 2.6.6.7. Given (x0, y0) ∈ ∂Hp,q, the lightlike geodesics of Hp,q

with endpoint ιp,q(x0, y0) are contained in Hp,q except for one point, and
their intersection with Hp,q consists of two straight half-lines contained in
the same vertical 2-plane.

Proof. Up to a horizontal translation, it su�ces to show that the half-lines
t 7→ t(u, v, w) and t 7→ t(−u,−v, w), composed with the embedding ιp,q, con-
verge to the same point in Hp,q at t→ +∞, which can be checked similarly
to Proposition 2.6.6.2 and Lemma 2.6.6.3.

We now conclude our analysis by the only case left.

Proposition 2.6.6.8. Given a degenerate a�ne hyperplane L in ∂Hp,q, the
lightlike geodesics of Hp,q with endpoint VL are the horizontal straight lines
contained in the vertical hyperplane VL itself.

Proof. By Remark 2.6.6.1, one has to check that the lightcones emanating
from (x0 +tu, y0 +tv, z0) converge to the vertical hyperplane through (x0, y0)
whose underlying vector space is the orthogonal of (u, v). The computation
is done exactly as in Remark 2.6.4.5.

2.7 Horospheres

We now brie�y turn the attention to the study of the horospheres, in the
half-space model. Let us recall the de�nition of horosphere in Hp,q.

De�nition 2.7.0.1 (Horospheres). An horosphere in Hp,q is a smooth hyper-
surface Sa which is obtained as the projection in Hp,q of

S̃a = {X ∈ H̃p,q, 〈X,V 〉p,q+1 = a} , (2.15)

for some null vector V ∈ Rp,q+1 (i.e. 〈V, V 〉p,q+1 = 0) and some constant
a 6= 0. We say that the horosphere S̃a has point at in�nity [V ] ∈ ∂∞Hp,q.

Namely, a horosphere is the intersection between the projective class of
an a�ne degenerate hyperplane of Rp,q and H̃p,q.

Observe that, when V = ∂Xp − ∂Xp+q+1 , the corresponding horosphere
Sa is precisely the image of z = |a| ⊂ Hp,q by the embedding ιp,q. We will
prove this observation in the proof of Theorem 2.7.0.5 below.

For the sake of completeness, we provide a well-known characterization
of horospheres in Hp,q, that generalizes a classical description in hyperbolic
space.

Lemma 2.7.0.2. The horospheres Sa with point at in�nity [V ] are precisely
the smooth hypersurfaces orthogonal to all the spacelike geodesics having [V ]
as an endpoint at in�nity.
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Proof. To check the statement, since orthogonality can be computed locally,
we will work in the double cover H̃p,q. Let S̃a = {X ∈ H̃p,q, 〈X,V 〉p,q+1 = a}
and X ∈ S̃a. Then S̃a = H̃p,q ∩ (V ⊥ +X) and

TX S̃a = TXH̃p,q ∩ TX(V ⊥ +X) = X⊥ ∩ V ⊥. (2.16)

Now, every geodesic of H̃p,q is contained in the intersection of H̃p,q with
a linear 2-dimensional subspace. In particular, the unique spacelike geodesic
γ such that γ(0) = X and having [V ] as an endpoint at in�nity is contained
in Span(X,V ). So γ′(0) ∈ Span(X,V ). Comparing with (2.16), we showed
that γ′(0) intersects S̃a orthogonally.

Finally, observe that every spacelike geodesic in Hp,q with endpoint at
in�nity [V ] intersects Sa. Indeed, working again in the double cover, the
preimages of spacelike geodesics of Hp,q are the intersection of H̃p,q with
linear 2-dimensional subspaces. Given such a subspace containing the vector
V , pick X such that 〈X,V 〉p,q+1 = a. Then for every λ ∈ R we have
〈X − λV, V 〉p,q+1 = a. Choosing λ = (〈X,X〉+ 1)/2a, we obtain

〈X − λV,X − λV 〉p,q+1 = 〈X,X〉p,q+1 − 2λa = −1,

hence X − λV ∈ H̃p,q, and therefore X − λV ∈ S̃a. This concludes the
proof.

Despite the term horospheres, which is borrowed from classical hyperbolic
geometry, horospheres are not topologically spheres for q 6= 0. The boundary
at in�nity ∂∞Sa of a horosphere Sa, namely its frontier in ∂∞Hp,q, is precisely
the lightcone in ∂∞Hp,q from [V ], hence Sa ∪ ∂∞Sa is homeomorphic to
∂∞Hp,q.

Lemma 2.7.0.3. ∂∞Sa is the lightcone in ∂∞Hp,q from [V ], [V ] being the
endpoint of Sa at in�nity.

Proof. Assume [W ] ∈ ∂∞Sa does not belong to the lightcone from [V ], i.e.
[V ] and [W ] do not lie on a lightlike line. This implies that it exists a spacelike
geodesic γ joining [V ] and [W ] (see Proposition 2.6.6.2). By Lemma 2.7.0.2,
γ meets Sa transversally at a point [X] ∈ Hp,q. γ is the projection of the
2-plane of Rp,q+1 containing V,W,X. The three vectors are contained in
{Y ∈ Rp,q+1, 〈Y, V 〉p,q+1 = a} by construction, and none of them is colinear,
hence the a�ne hyperplane contains the 2-plane Span(V,W,X), i.e. it is a
vector hyperplane, which is an absurd.

Conversely, we recall that the lightlike geodesic of H̃p,q are the ligthlike
lines Rp,q+1 contained in the submanifold. We claim that for anyW ∈ ∂∞V

⊥,
the geodesic γ(t) = X + tW is all contained in the a�ne hyperplane de�ned
by the equation 〈Y, V 〉p,q+1 = a, where a = 〈X,V 〉p,q+1. Indeed,

〈γ(t), V 〉p,q+1 = 〈X,V 〉p,q+1 + t〈W,V 〉p,q+1 = a+ 0, ∀t ∈ R.
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Hence [W ] ∈ P{Y ∈ Rp,q+1, 〈Y, V 〉p,q+1 = a} ∩ ∂∞Hp,q, that is [W ] ∈ ∂∞Sa.

Proposition 2.7.0.4. Sa ∪ ∂∞Sa is homeomorphic to ∂∞Hp,q.

Proof. Consider the endpoint [V ] ∈ ∂∞Hp,q of Sa at in�nity. By Lemma
2.7.0.2, we can associate to any point [X] ∈ Sa a point of the boundary,
namely the other endpoint of the unique spacelike geodesic with endpoint
in [V ] and intersecting Sa in [X]. This de�nes a injective continuous map
Sa → ∂∞Hp,q. Its image is the complement of the cone from [V ], which
coincides with ∂∞Sa by Lemma 2.7.0.3.

In this section we will describe the horospheres in the half-space model
Hp,q.

Theorem 2.7.0.5. The horospheres of Hp,q are, for a parameter c > 0:

1. horizontals hyperplanes {z = c}, if the point at in�nity is ∞;

2. wedges of hyperplanes of the form

z = c|〈x, u〉 − 〈y, v〉+ d|

if the point at in�nity corresponds to the vertical hyperplane VL, for L
the hyperplane of equation 〈x, u〉 − 〈y, v〉+ d = 0 (for (u, v) ∈ Rp−1,q a
lightlike vector and d ∈ R);

3. piecewise quadric hypersurfaces of the form

‖x− x0‖2 − ‖y − y0‖2 + (z ± c)2 = c2

if the point at in�nity is (x0, y0, 0) ∈ ∂Hp,q.

See Figures 2.5 and 2.6.

Figure 2.5: Horizontal horospheres, and wedges of hyperplanes.
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Figure 2.6: Horospheres in H2,1 corresponding to a point in ∂H2,1.

Proof. Recall that we introduced the embedding ι̃p,q : Hp,q → H̃p,q in the
proof Proposition 2.1.2.2, that induces the embedding ιp,q : Hp,q → H̃p,q in
the quotient. Also observe that every point in a horosphere Sa has two
preimages X in H̃p,q, which satisfy either 〈X,V 〉 = a or 〈X,V 〉 = −a.
Hence to determine the horospheres in Hp,q (or more precisely, the portion of
horospheres contained in Hp,q) it su�ces to �nd the preimage of |〈X,V 〉| = a
under ι̃p,q, for a > 0.

In the �rst case, the point at in�nity is ∞ and corresponds to [V ] =
[0 : 1 : 0 : −1] in ∂∞Hp,q. In Proposition 2.1.2.2 we showed that, via ι̃p,q,
Xp +Xp+q+1 = 1/z. This shows that the level sets {z = c} are precisely the
preimages of 〈X, (0, 1, 0,−1)〉 = a, where a = 1/c.

Consider now the case where the point at in�nity is VL. In Lemma
2.6.4.2 we computed the preimage of a degenerate vector space intersecting
the boundary in the complement of Im ιp,q. To do it in the a�ne case,
it su�ce to remark that the equation starts as 〈X,V 〉p,q+1 = a instead
of 〈X,V 〉p,q+1 = 0. Hence, taking [V ] = [u : d : v : −d], dividing by
Xp +Xp+q+1 = 1/z we obtain

〈x, u〉 − 〈y, v〉+ d = az.

As we stated above, the horosphere is the preimage of both 〈X,V 〉p,q+1 = ±a,
so the equation above prove the statement for c = 1/a.

Finally, we consider the case where the point at in�nity is (x0, y0, 0) ∈ ∂Hp,q.
Up to translation, we can assume (x0, y0) = (0, 0). The corresponding point
in ∂∞Hp,q is [V ], where Vp = Vp+q+1 = 1 and the other coordinates of V are
zero. Hence we need to determine the preimage of those X satisfying

|〈X, (0, 1, 0, 1)〉| = |Xp −Xp+q+1| = a.
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Observe that Xp − Xp+q+1 = −(‖x‖2 − ‖y‖2 + z2)/z, hence we obtain the
equation |‖x‖2−‖y‖2 +z2| = az. A simple manipulation gives the equivalent
expression

‖x‖2 − ‖y‖2 +
(
z ± a

2

)2
=
a2

4
,

which is the desired formula, for c = a/2.

Remark 2.7.0.6. We conclude by remarking that the proof of Theorem 2.7.0.5
could have been done by checking directly that the hypersurfaces of the three
types are orthogonal to all the spacelike geodesics in Hp,q which share an
endpoint in ∂∞Hp,q. This is evident for the horizontal horospheres {z = c},
which are orthogonal to all vertical geodesics, i.e. with endpoint ∞.

For the wedges of hyperplanes, one can show directly, using Proposition
2.6.6.5 and Remark 2.6.6.6, that the union of the hyperplanes

z = ±(〈x, u〉 − 〈y, v〉)

is orthogonal to all the parabolas whose endpoint corresponds to the vertical
hyperplane VL, L = {〈x, u〉 − 〈y, v〉 = 0}, namely those parabolas which are
obtained as the intersection of a vertical 2-plane projecting to an a�ne line
directed by (u, v), and a lightcone based on a point of L.

Finally, for the horospheres of the third type, one could check that these
are orthogonal to the geodesics with endpoint in (x0, y0, 0) in the following
way. Up to an isometry of Hp,q, assume (x0, y0) = (0, 0) and c = 1. Then
one �sweeps� the hypersurface by curves of four types. The �rst case is that
of a curve contained in a vertical 2-plane which is positive de�nite. Up to
an isometry of the form (x, y, z) 7→ (A(x, y), z), which leaves the horosphere
invariant, it su�ces to consider the curve x1(t) = sin(t), z(t) = cos(t) + 1,
and all the other coordinates identically zero. Then one shows that this curve
is orthogonal to all the geodesics with endpoint (0, 0) that it intersects, which
are ellipses (circles, in this speci�c situation). This is exactly analogous to
the half-space model of Hn. Second, one consider curves in a vertical 2-
plane which is inde�nite. Again up to isometry, one reduces to two curves,
de�ned by y1(t) = sinh(t), and z(t) = cosh(t) + 1 or z(t) = cosh(t) − 1.
These are orthogonal to all the spacelike geodesics which are hyperbolas
and have (0, 0) as an endpoint. In the former case, the curve intersects
the branch containing (0, 0); in the latter, the other branch. Finally, the
horizontal planar curves contained in the horosphere are trivially ortogonal
to all parabolas with endpoint (0, 0), because they are lightlike and contained
in a degenerate vertical 2-plane.

2.8 Isometries of Hp,q

Let us conclude by describing the isometries of Hp,q, and the action of those
of Hp,q, in the half-space model.
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2.8.1 The isometry group Isom(Hp,q)

We remarked in Subection 2.1.3 that the embedding ιp,q induces a monomor-
phism G → Isom(Hp,q), as a consequence of the fact that local isometries
between open neighbourhoods of Hp,q uniquely extend to global isometries.
From our study of geodesics in Section 2.5, we can deduce that the group
G introduced in Subsection 2.1.3 (see De�nition 2.1.3.5) is the full isometry
group of the half-space model.

Theorem 2.8.1.1. When q ≥ 1, the group G coincides with the isom-
etry group Isom(Hp,q). Moreover, G corresponds precisely to the isome-
tries of Isom(Hp,q) that preserve the totally geodesic degenerate hyperplane
Hp,q \ ιp,q(Hp,q).

Proof. Since G < Isom(Hp,q) acts transitively by Proposition 2.1.3.6, it suf-
�ces to prove that StabG(0, 0, 1) = StabIsom(Hp,q)(0, 0, 1). Observe that
StabG(0, 0, 1) is the subgroup of StabIsom(Hp,q)(0, 0, 1) preserving oriented
vertical lines, i.e. it consists of those isometries f such that df(0,0,1)(∂z) = ∂z.
We claim that all isometries f in StabIsom(Hp,q)(0, 0, 1) have this property.

By contradiction, assume df(0,0,1)(∂z) 6= ∂z. First, if df(0,0,1)(∂z) = −∂z,
then a lightlike geodesic starting at (0, 0, 1) and parameterized in such a way
that the z-coordinate is increasing along the geodesic (hence incomplete)
would be sent to another lightlike geodesic parameterized in such a way that
the z-coordinate is decreasing (hence complete) which is an absurd since
isometries preserve completeness of geodesics. Otherwise,

df(0,0,1)(∂z)
⊥ 6= (∂z)

⊥.

The horizontal hyperplane (∂z)
⊥ ∼= Rp−1,q is generated by lightlike vectors,

hence there exists a horizontal lightlike vector v such that df(0,0,1)(v) is not
horizontal. This is an absurd as lightlike geodesics are complete (in both
directions) if and only if the initial velocity is horizontal (Lemma 2.5.1.1),
and again isometries preserve completeness.

The second part of the statement is clear, because every isometry of Hp,q
extends to an isometry of Hp,q which preserves the image of ιp,q, hence also
its complement. Conversely, every isometry of Hp,q that preserves the image
of ιp,q induces an isometry of Hp,q, and therefore is in G.

2.8.2 Inversions

In order to describe the action of the isometry group Isom(Hp,q) on the
half-space model, we now introduce a new type of isometries, that are the
analogous of inversions in hyperbolic geometry. Recall that, given a point
(x0, y0) ∈ ∂Hp,q, Q(x0,y0) denotes the totally geodesic hypersurface made of
lightlike geodesics with endpoint (x0, y0), as in (2.11).
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Proposition 2.8.2.1. The involution J : Hp,q\Q(0,0) → Hp,q\Q(0,0) de�ned
by

(x, y, z) 7→ (µ(x, y, z)x, µ(x, y, z)y, |µ(x, y, z)|z) ,

where µ(x, y, z) := (‖x‖2 − ‖y‖2 + z2)−1, is an isometry which extends to a
global isometry of Hp,q via ιp,q.

We remark that if q = 0, Q(0,0) = ∅ and µ > 0, hence we recover the fact
that J is a global isometry of the hyperbolic space.

Proof. Let φ ∈ Isom(Hp,q) be the isometry induced by the re�ection in the
hyperplane Xp = 0. To prove the statement, we show that the following
diagram commutes:

Hp,q \Q(0,0) Hp,q

Hp,q \Q(0,0) Hp,q

ιp,q

J φ

ιp,q

.

We �rst remark that

µ(J (x, y, z)) = µ(x, y, z)−2(‖x‖2 − ‖y‖2 + z2)−1 = µ(x, y, z)−1 , (2.17)

which also immediately implies that J is an involution. Observe that J is
de�ned precisely on the complement of {µ = 0}, which is Q(0,0). Suppose
�rst µ > 0. Denote ι̃p,q(x, y, z) = (X1, . . . , Xp+q+1) (these are de�ned in
the proof of Proposition 2.1.2.2) and ι̃p,q ◦J (x, y, z) = (Y1, . . . , Yp+q+1). We
have:

Yi =
µx

µz
=
x

z
= Xi i = 1, . . . , p− 1

Yp =
1− µ
2µz

= −1− ‖x‖2 + ‖y‖2 − z2

2z
= −Xp

Yj+p =
µy

µz
=
y

z
= Xj+p j = 1, . . . , q

Yp+q+1 =
1 + µ

2µz
=

1 + ‖x‖2 − ‖y‖2 + z2

2z
= Xp+q+1

where in the second and fourth line we have used (2.17). This shows that
ι̃p,q ◦J = φ̃◦ ι̃p,q, where φ̃ ∈ O(p, q+1) is the re�ection �xing the hyperplane
Xp = 0. One immediately checks that ι̃p,q ◦J = −φ̃ ◦ ι̃p,q when µ < 0. Since
φ̃ and −φ̃ induce the same isometry on Hp,q, the claim is proved.

Incidentally, this proves also that J is a local isometry with respect to
the metric gp,q: indeed φ ◦ ιp,q(Hp,q \ Q(0,0)) ⊆ Im ιp,q, and ιp,q is bijective
over its image. Hence, J = ι−1

p,q ◦ φ ◦ ιp,q over Hp,q \ Q(0,0), namely J is a
composition of isometries.
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Remark 2.8.2.2. We saw that the involution J corresponds to a re�ection in
Isom(Hp,q). In fact its �xed point set is the totally geodesic hypersurface

‖x‖2 − ‖y‖2 + z2 = 1 .

The other inversions, �xing the general totally geodesic hypersurface of the
form (Q) for c > 0, can be easily found conjugating J by elements of G.

In the following, we describe the action of J on totally geodesic hyper-
surfaces. We will denote Q(x0,y0,c) a quadric de�ned by Equation (Q) and
∂Q(x0,y0,c) its boundary, namely its intersection with the hyperplane {z = 0}.
We remark that for an hyperplane VL, ∂VL = L.

Recalling that a totally geodesic submanifold is de�ned by its local be-
haviour (see Remark 2.6.4.4), we will abusively talk about the whole totally
geodesic hypersurface instead of its restriction to the domain of J .

Proposition 2.8.2.3. The action of J on the totally geodesic hypersurfaces
of Hp,q, except for Q(0,0,0) is the following:

i. a quadric Q(x0,y0,c) such that (0, 0, 0) ∈ ∂Q(x0,y0,c) is sent to the vertical
hyperplane VL de�ned by the equation 〈x, x0〉−〈y, y0〉 = 1/2, which does
not contain the origin, and conversely;

ii. a quadric Q(x0,y0,c) such that (0, 0, 0) /∈ ∂Q(x0,y0,c) is sent to the quadric
Q(x1,y1,C), where x1 = x0/c1, y1 = y0/c1 and C = −(1 + ‖x0‖2 −
‖y0‖2)/c1, for c1 := (‖x0‖2 − ‖y0‖2) − c. The image also does not
contain the origin;

iii. vertical hyperplanes VL whose boundary contains the origin are (not
punctually) preserved.

From a geometrical point of view, this is trivial: indeed vertical hyper-
plains are the only totally geodesic hypersurfaces containing ∞, hence a
hypersurface can be send to a vertical hyperplain if and only if it contains
the origin.

Proof. Since J is an involution, the image the quadric Q(x0,y0,c) satis�es

‖µx− x0‖2 − ‖µy − y0‖2 + µ2z2 = c.

A simple algebraic manipulation, together with the fact that µ(x, y, z) =
(‖x‖2 − ‖y‖2 + z2)−1 gives then

µ (1− 2(〈x, x0〉 − 〈y, y0〉)) = c− (‖x0‖2 − ‖y0‖2).

Remarking that c − (‖x0‖2 − ‖y0‖2) = 0 if and only if (0, 0, 0) ∈ Q(x0,y0,c),
(i) is proved.
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On the other hand, if c1 := c− (‖x0‖2−‖y0‖2)− c 6= 0, the equation can
be rewritten as

1− 2(〈x, x0〉 − 〈y, y0〉) = −c1(‖x‖2 − ‖y‖2 + z2).

A simple algebraic manipulation shows that J (Q(x0,y0,c)) = Q(x1,y1,C), with
x1, y1, C as in (ii).

Finally, if L contains the origin, then the equation that de�nes VL is
〈x, x0〉−〈y, y0〉 = 0. As above, its image satis�es 〈µx, x0〉−〈µy, y0〉 = 0, i.e.
J (VL) = VL, which ends the proof.

As a direct consequence of this result, we can describe the action of J
on the boundary.

Corollary 2.8.2.4. J : ∂∞Hp,q → ∂∞Hp,q is an homeomorphism which

i. switches lightcones Q(x0,y0), such that ‖x0‖2 = ‖y0‖2, with vertical
hyperplanes VL, L = {〈x, x0〉 − 〈y, y0〉 = 1/2};

ii. switches lightcones Q(x0,y0), ‖x0‖2 6= ‖y0‖2, with lightcones Q(x1,y1),
where

(x1, y1) =
(x0, y0)

‖x0‖2 − ‖y0‖2
;

iii. preserves vertical hyperplanes VL, L vector hyperplane;

iv. switches the degenerate hyperplane Q(0,0) and ∞.

Proof. The �rst points follow directly from the proposition remarking that
Q(x0,y0) = Q(x0,y0,0). The last one is trivial since ιp,q(0, 0) = [0 : 1 : 0 : 1]
and ιp,q(∞) = [0 : −1 : 0 : 1], and we have just showed that J induces on
Hp,q the re�ection in the hyperplane Xp = 0.

2.8.3 Action of Isom(Hp,q)

We conclude by describing the action of the full isometry group Isom(Hp,q)
on Hp,q. Roughly speaking, the subgroup G and the inversion J (or more
precisely, their extensions to Hp,q) generate Isom(Hp,q).

Theorem 2.8.3.1. Any isometry of Hp,q can be written in Hp,q as the com-
position of elements of G and J .

Proof. Since G corresponds precisely to the stabilizer of a point in ∂∞Hp,q by
Theorem 2.8.1.1, it su�ces to show that the elements of G, together with J ,
induce a transitive action on ∂∞Hp,q. Clearly G acts transitively on ∂Hp,q,
while J maps (0, 0) ∈ ∂Hp,q to ∞ by Corollary 2.8.2.4.

Also, G acts transitively on the degenerate vertical hyperplanes of the
form VL. Indeed it acts transitively on ∂Hp,q ∼= Rp−1,q and VL is uniquly
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de�ned by L ⊆ Rp−1,q. Hence it remains to show that in the subgroup
generated by G and J , there is an element that maps some point in ∂Hp,q to
some point in ∂∞Hp,q that corresponds to a vertical hyperplane VL. But this
clear because by Proposition 2.8.2.1 J extends to an element φ ∈ Isom(Hp,q),
whose action on ∂∞Hp,q is a homeomorphism, hence it maps a neighbourhood
of ∞ (which contains elements of the form VL) to a neighborhood of (0, 0)
(which only contains points in ∂Hp,q).
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