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Abstract

We developed a new version of a C++ code, Get the Halo 2021, that implements the
optimal linear matched filter presented in Maturi et al. (2005).

Our aim is to detect dark matter haloes of clusters of galaxies through their weak
gravitational lensing signatures applying the filter to a catalogue of simulated galaxy
ellipticities. The dataset represents typical data that will be available thanks to the
Euclid mission, thus we are able to forecast the filter performances on weak lensing data
obtained by Euclid. The linear matched filter is optimised to maximise the signal-to-noise
ratio (S/N) of the detections and minimise the number of spurious detections caused
by superposition of large-scale structures; this is achieved by suppressing those spatial
frequencies dominated by the large-scale structure contamination.

We compared our detections with the true population of dark matter haloes used to
produce the catalogue of ellipticities. We were able to confirm the expectations on the
filter performance raised by Maturi et al. (2005) and Pace et al. (2007). We found that
S/N ≈ 7 can be considered as a reliable threshold to detect haloes through weak lensing
as ' 83% of our detections with S/N> 7 were matched to the haloes; this is consistent
with Pace et al. (2007). The purity of our catalogues of detections increases as a function
of S/N and reaches 100% at S/N ≈ 10.5 ÷ 11. We were also able to confirm that the
filter selects preferentially the haloes with redshift between 0.2 and 0.5, that have an
intermediate distance between observer and nearby background sources, condition that
maximises the lensing effects. The completeness of our catalogues is a steadily growing
function of the mass until (4÷ 5) M� h−1, where it reaches values ≈ 58÷ 68%.

Our algorithm might be used to enhance the reliability of the detections of the AMICO
code (Bellagamba et al. 2018), the optimal linear matched filter implemented in the
Euclid data analysis pipeline to identify galaxy clusters in photometric data (Euclid
Collaboration et al. 2019).
Keywords— cosmology:theory, dark matter, gravitational lensing



Abstract

In questo lavoro di tesi abbiamo sviluppato una nuova versione di un codice C++ che
implementa il filtro adattivo lineare ottimale presentato da Maturi et al. (2005).

Il nostro obiettivo principale è rilevare aloni di materia oscura di ammassi di galassie
dalle loro tracce nei dati di lensing debole, applicando il filtro a un catalogo di ellitticità
di galassie simulate. Esso rappresenta dati tipici che saranno disponibili grazie alla
missione Euclid, e siamo pertanto in grado di effettuare previsioni sulla performance del
filtro sui dati di lensing deboli che saranno ottenuti da Euclid. Il filtro è costruito per
massimizzare il rapporto segnale-rumore (S/N) delle rilevazioni di aloni e minimizzare il
numero di rilevazioni spurie causate dalla sovrapposizione di strutture su grande scala;
ciò è effettuato sopprimendo le frequenze spaziali dominate dalla contaminazione della
struttura a larga scala.

Abbiamo confrontato le nostre rilevazioni con il reale insieme di aloni di materia oscura
usati per produrre il catalogo delle ellitticità. Abbiamo potuto confermare le previsioni
sulle prestazioni del filtro di Maturi et al. (2005) e Pace et al. (2007). Abbiamo trovato
che un S/N ≈ 7 può essere considerato come una soglia affidabile per la rilevazione di
aloni tramite lensing debole in quanto ' 83% delle nostre rilevazioni con S/N> 7 sono
state associate ad aloni; questo è in accordo con le previsioni di Pace et al. (2007). La
purezza dei nostri cataloghi di rilevazioni aumenta con il S/N e raggiunge il 100% a S/N
≈ 10.5÷ 11. Abbiamo confermato che il filtro trova aloni preferibilmente con redshift tra
0.2 e 0.5, che hanno una distanza intermedia fra l’osservatore e le sorgenti di background
vicine, condizione che massimizza gli effetti di lensing. La completezza dei nostri cataloghi
è una funzione crescente della massa fino a (4÷ 5) M� h−1, dove vale ≈ 58÷ 68%.

Il nostro algoritmo potrebbe essere usato per migliorare l’affidabilità delle rilevazioni del
codice AMICO (Bellagamba et al. 2018), il filtro adattivo lineare ottimale implementato
nella pipeline di analisi dati di Euclid per identificare ammassi di galassie nei dati
fotometrici (Euclid Collaboration et al. 2019).
Keywords— cosmologia:teoria, materia oscura, lensing gravitazionale
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Introduction

The detection of dark matter haloes is a crucial task in Astrophysics and Cosmology in
order to understand how our Universe works. Measuring their number and distribution
can put constraints on the cosmological models and the structure formation theory used
to describe the Universe and how galaxies and clusters of galaxies were made. Detecting
dark matter haloes is also important because it is possible that dark haloes might exist
in the Universe, i.e. dark matter haloes of substantial mass that for unknown reasons fail
to produce light. Claims have been made in the literature that dark mass concentrations
were significantly detected through their weak-lensing signal (Erben et al. 2003). If
confirmed, those detections would be extremely interesting because they would show that
large, dark haloes could exist while for some reason failing to emit light, either as stellar
light from galaxies or X-ray emission from hot intracluster plasma. Since the baryon
fraction in clusters should faithfully reflect the cosmic mixture of baryonic and dark mass
(Ettori et al. 2006), detections of truly dark cluster-sized haloes could shed doubt on our
understanding of the formation of non-linear cosmic structures. The only way to measure
their presence is by measuring the gravitational distortion effect they would have on light,
i.e. through their gravitational lensing signal.

One of the main sources of error in these measurements is due to the fact that the
dark matter distribution in the Universe is not a discrete distribution that contains only
the haloes, but it can be thought as a continuous distribution where the haloes are peaks
of mass density embedded into a lower density large-scale structure, the cosmic web
that connects them. When someone measures the inhomogeneities of projected mass
distribution through lensing observations the signal of haloes is overlaid by the lensing
signal of the large-scale structure in front of and behind the haloes. Being approximately
a Gaussian random field, lensing by large-scale structure adds peaks and troughs to the
signal which can be mistaken for haloes, so part of the claimed dark-halo detections
can actually be peaks in the random weak gravitational lensing signal of the large-scale
structure.

It is not possible to strictly separate these two types of signal because of the unsharp
boundary between the haloes and the large-scale structure, but it is possible to define
a typical scale that helps to discriminate between their lensing signals. The large-scale
structure can be considered as composed by dark-matter haloes of a broad and continuous
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INTRODUCTION

mass range. At each cosmological epoch there is a characteristic scale length, the nonlinear
scale, at which the variance of the dark matter density contrast becomes unity. This
scale length separates the small-scale regime where the dark matter power spectrum
is dominated by the contributions of presumably virialised haloes from the large-scale
regime where the dark-matter density can be considered as a linear superposition of
linearly evolved perturbation modes.

This scale suggests the operational definition of the lensing signal due to the haloes
as the signal contributed by non-linear, gravitationally bound, virialised structures; the
lensing signal due to the large scale structure is instead the signal contributed by the
linearly evolved matter distribution beyond the non-linear scale. It was first shown
in Maturi et al. (2005) and Maturi et al. (2007) that these definitions can be used to
construct a linear matched filter capable to detect the weak lensing signal of dark matter
haloes of galaxy clusters while also suppressing the signal of the large scale structure,
thus reducing the spurious detections attributed to random peaks in the projected mass
density of the large scale structure. The underlying assumption of this approach is that
the filter is searching for those haloes that do create the non-linear power spectrum, while
the linearly evolved structures are treated as a noise component influencing the shape of
the matched filter.

This thesis is structured as follows. In chapter 1 we review those aspects of Cosmology
that are needed to properly understand the rest of the thesis, and the same is done in
chapter 2 for the theory of Gravitational lensing, with a particular emphasis on the weak
lensing regime. In chapter 3 we describe the theoretical construction of the optimal linear
matched filter to detect dark matter haloes and the program used to implement it, called
Get the Halo 2021 (GtH21). In chapter 4 we apply it to a set of simulated data (a
catalogue of galaxy ellipticities) and compare the detections found with the haloes of the
simulation. We end this thesis with a final chapter, Conclusion and future perspectives,
where we review and summarise the main results of this thesis. We also discuss why they
are relevant, how they might impact future works and even some of the results of the
Euclid mission.
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Chapter 1

An introduction to cosmology

This chapter contains an introduction to the general aspects of the standard model of
Cosmology that are relevant for the following chapters. The standard model consists of
a modelization for the cosmological background, which is a homogeneous and isotropic
solution of the field equations of General Relativity, and a theory for structure forma-
tion. The background model is described by the Robertson - Walker metric, in which
hypersurfaces of constant time are homogeneous and isotropic three-dimensional spaces,
either flat or curved, and change with time according to a scale factor which depends on
time only. The dynamics of the scale factor is determined by two equations, Friedmann’s
equations, which follow from Einstein’s field equations given the highly symmetric form
of the metric. Current theories of structure formation assume that structures grow via
gravitational instability from initial seed perturbations: their origin is yet unclear, but
is a possible result of a cosmological inflation. Most common hypotheses lead to the
prediction that the statistics of the seed fluctuations is Gaussian. Their amplitude is low
for most of their evolution so that linear perturbation theory is sufficient to describe their
growth until late stages.

In this chapter we are going to review in section 1.1 how Friedmann cosmological
models are built, and we shall introduce the LambdaCDM model that describes our
Universe (section 1.1.2). In section 1.2 we are going to describe the concept of density
perturbations, structures that will ultimately grow into the cosmic structures we observe
today, such as galaxies and clusters of galaxies, presented in section 1.3. Section 1.4
describes the main quantities of clustering studies that will be relevant in the following
chapters. The main references for this chapter are Bartelmann et al. (2001), Schneider
(2015) and Carroll (2004).
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CHAPTER 1. AN INTRODUCTION TO COSMOLOGY

1.1 On the Friedmann cosmological models
Modern cosmological models assume gravitation is described by Einstein’s General Theory
of Relativity. General Relativity describes space-time as a four-dimensional manifold
whose metric tensor gµν is considered as a dynamical field. The four spacetime coordinates
are generally expressed as (xµ) = (c t,x) =

(
c t, x1, x2, x3

)
. Two events in spacetime with

coordinates differing by dxµ are separated by ds, with ds2 = gµν dxµdxν . The dynamics
of the metric is governed by Einstein’s field equations, which relate the Einstein tensor to
the stress-energy tensor of the matter contained in spacetime (Carroll 2004):

Gµν = 8πG
c4 Tµν + Λgµν . (1.1)

The quantities that appear in the equations are:

• Metric tensor gµν . Symmetric tensor used to compute the distance between two
points of the spacetime manifold.

• Einstein’s tensor Gµν = Rµν −
1
2 R gµν . Symmetric tensor, it is a function of the

Ricci-Curbastro curvature tensor Rµν that describes the curvature of the spacetime
manifold. It also uses its trace, the Ricci scalar or curvature scalar :

R = Rµ
µ = gµνRµν . (1.2)

• Stress-energy-momentum tensor Tµν . Symmetric tensor that describes the distribu-
tion in spacetime of mass and energy, that are the sources of the gravitational field
in General Relativity.

• Universal gravitational constant G, with G ≈ 6.67× 10−11N m2 kg−2.

• Speed of light in vacuum c, with c ≈ 2.99× 105 km s−1.

• Cosmological constant Λ. It describes the “dark energy” component of the Universe
that is causing the acceleration of its expansion.

Modern cosmological models are based on the following two principles:

• Copernican principle: Earth is not in a privileged position to observe the
Universe.

• Cosmological principle: The Universe is spatially homogeneous and isotropic.
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1.1. On the Friedmann cosmological models

While these principles are not true on a local scale, several cosmological observations
(such as the isotropy of the Cosmic Microwave Background Radiation) suggest that they
are valid on scales larger than hundreds of Mpch−1 (Schneider 2015). The cosmological
principle considerably constrains the admissible form of the metric tensor. Spatial
coordinates which are constant for fundamental observers are called comoving coordinates.
In these coordinates, the mean motion is described by dxi = 0, and hence ds2 = g00dt2.
Greek indexes run over 0 . . . 3 and Latin indexes run over the spatial indexes 1 . . . 3
only. If we require that the proper time of fundamental observers equals the cosmic
time, this implies g00 = c2. Isotropy requires that clocks can be synchronized such
that the space-time components of the metric tensor vanish, g0i = 0, otherwise these
components would identify one particular direction in spacetime. The spatial metric can
only isotropically contract or expand with a scale factor a(t) which must be a function of
time only, because otherwise the expansion would be different at different places, violating
homogeneity. Homogeneity also implies that all quantities describing the matter content
of the Universe, e.g. density and pressure, can be functions of time only. The metric can
be written as

ds2 = c2dt2 − a2(t)dl2, (1.3)
where dl is the line element of the three-dimensional space, that must be spherically
symmetric because of isotropy. Homogeneity permits us to choose an arbitrary point as
coordinate origin. It is possible to prove (Bartelmann et al. 2001) that the cosmological
principle constrains the metric into a form known as Friedmann-Lemâıtre-Robertson-
Walker (FLRW):

ds2 = c2dt2 − a2 (t)
[ 1
1−Kr2 dr2 + r2

(
dθ2 + sin2 θ dφ2

)]
, (1.4)

where (r, θ, φ) are the spatial spherical coordinates. We can assume them to be adi-
mensional and the scale factor to have the dimension of a length (but this is not the
only prescription that can be used). The constant K ∈ R is the curvature constant: if
K = 0 the Universe has a flat geometry; if K > 0 the Universe is closed with a spherical
geometry; if K < 0 the Universe is open with a hyperbolic geometry. One could always
redefine the radial coordinate so that the curvature constant can only assume 3 possible
integer values according to its sign: K = 0 for a flat Universe; K = +1 for a closed
spherical Universe; K = −1 for an open hyperbolic Universe. Unless we state otherwise,
we use here the conventional choice according to which K ∈ R, but we must mention that
this is not the only possible choice. The line element can be written as

dl2 = dχ2 + f 2
K(χ)dΩ2, (1.5)

where Ω is the solid angle and χ is a radial coordinate that makes the radial term inde-
pendent of the curvature. The function fK is equal to the radial coordinate (r = fK(χ)),
but expressed as a function that homogeneity requires being either a trigonometric, linear,
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CHAPTER 1. AN INTRODUCTION TO COSMOLOGY

or hyperbolic function of χ, depending on whether the curvature K is positive, null or
negative:

r = fK(χ) =


K−

1
2 sin

(
K

1
2 χ
)

K > 0
χ K = 0
(−K)− 1

2 sinh
(
(−K) 1

2 χ
)

K < 0
. (1.6)

The inverse function can be written as:

χ = SK(r) =


K−

1
2 arcsin

(
K

1
2 r
)

K > 0
r K = 0
(−K)− 1

2 arcsinh
(
(−K) 1

2 r
)

K < 0
. (1.7)

The FLRW metric is not static: the proper distance between two points with fixed spatial
coordinates (that differ from r) is a function of time and can be computed as

dp(t, r) =
∫ r

0

√
g11 dr′ = a(t)SK(r) = a(t)χ. (1.8)

The current epoch is usually referred with the subscript 0, so t0 is the current time and
a0 is the current scale factor. They can be used to define the comoving distance dc as
the current proper distance; the reference frame of the comoving coordinates has the
property of being independent of the time evolution of the scale factor, so two points
with fixed spatial coordinates do not change their comoving distance:

dc(r) = dp(t0) = a0 SK(r) = a0 χ = a0

a(t) a(t)χ = a0

a(t) dp(t, r). (1.9)

The time derivative of the logarithm of the scale factor is called the Hubble parameter
and it is the relative expansion rate of the Universe:

H(t) ≡ d ln a(t)
dt = ȧ

a
. (1.10)

All measurements confirm that it is a positive quantity, so the Universe is expanding; see
Schneider (2015) for a discussion about cosmological observations. Due to the expansion
of space, photons are redshifted while they propagate from the source to the observer; this
effect is known as cosmological redshift. The redshift of a photon emitted with wavelength
λem and observed with wavelength λobs is defined as:

z ≡ λobs − λem
λem

= ∆λ
λem

. (1.11)

The redshift of a photon emitted at a cosmological time t and received at the current
time t0 can be expressed as a function of the scale factor by using only the FLRW metric
(1.4) (Bartelmann et al. 2001):

1 + z = a0

a(t) . (1.12)
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1.1. On the Friedmann cosmological models

Measuring z > 0 confirms that a0 > a and that the Universe is expanding. The redshift
is also an observational proxy for the distance in space and time of the sources.

1.1.1 On the Friedmann-Lemâıtre equations
To complete the construction of the Friedmann cosmological models we need a set of
equations that would describe how physical quantities of the Universe evolve with time.
The content of the Universe is described as made up by uniform “cosmic fluids” that
have an energy-momentum tensor given by:

Tµν = −p gµν +
(
p+ ρ c2

)
uµuν , (1.13)

where p is the fluid pressure, ρ the density, uµ = ẋµ the time derivative of the comoving
coordinates. If we solve Einstein’s equations (1.1) with this definition for the energy-
momentum tensor and the FLRW metric (1.4) the Friedmann-Lemâıtre equations can be
obtained: (

ȧ

a

)2
= 8πG

3 ρ− Kc2

a2 + Λ
3 , (1.14)

ä

a
= −4πG

3

(
ρ+ 3p

c2

)
+ Λ

3 . (1.15)

Equation (1.14) is also known as Friedmann’s equation, while equation (1.15) as the
acceleration equation. They can be combined to yield the adiabatic equation:

d
dt
[
a3(t)ρ(t)c2

]
+ p(t) d

dt
[
a3(t)

]
= 0. (1.16)

This can be interpreted as the first law of thermodynamics in the cosmological context:
the first term a3ρ is proportional to the energy contained in a fixed comoving volume,
and hence the equation states that the change in “internal” energy equals the pressure
times the change in proper volume. It can be also written as the fluid equation:

ρ̇+ 3H(ρ+ p) = 0. (1.17)

To build a cosmological model we need to express ρ, p and a as functions of time; we need
a third equation other than equations (1.14) and (1.17). We assume that the equation of
state that expresses pressure as a function of density is linear:

p = wρc2. (1.18)

If we insert equation (1.18) into equation (1.17) we solve the fluid equation and obtain:

ρ(a) = ρ0 a
−3(1+w). (1.19)

The constant w is the state parameter and describes the properties of the cosmic fluid.
There are three main different kinds of cosmic fluids:

7



CHAPTER 1. AN INTRODUCTION TO COSMOLOGY

• Matter or dust: they are massive non relativistic particles at rest in the comoving
frame. The pressure of matter is thus 0, w = 0, ρ ∝ a−3. This slope tells us that
density decreases only because the volume increases.

• Radiation: cosmic fluid made up by photons or relativistic particles. Neutrinos
can be considered a radiative cosmic fluid if they are assumed to be massless or
relativistic. The trace of their energy-momentum tensor must be null, and this
constraint yields p = 1

3ρc
2, w = 1/3 and ρ ∝ a−4. Density decreases more steeply

than matter because not only the volume increases, but the photons also lose energy
because of the cosmological redshift.

• Dark energy: it is defined as a cosmic fluid with w < −1
3 . An ordinary cosmic

fluid made up by matter and radiation has 0 ≤ w < 1 and can only decelerate
the expansion of the Universe, as can be seen from equation (1.15). In order to
explain the acceleration of the Universe that can be observed today, one needs a
cosmic fluid with w < −1

3 . The Cosmological constant is the most basic form of
dark energy; it is a cosmic fluid with w = −1 and constant density and pressure.

A cosmological model is also defined by its cosmological parameters. One of the most
relevant is the Hubble constant, that is defined as the value of the Hubble parameter
defined in equation (1.10) at the present time

H0 ≡ H(t0) = 100h km s−1 Mpc−1. (1.20)

The value of H0 is still uncertain, so it is common practice to express it through h; this
is an open problem in Cosmology that we address in the following section 1.1.2. Current
estimates are around h ≈ 0.7 (Schneider 2015). The time scale for the expansion of the
Universe is the inverse Hubble constant or Hubble time H−1

0 ≈ 1010 yrh−1. It can be seen
as an order-of-magnitude estimate for the age of the Universe.

Another important quantity is the critical density of the Universe

ρc(t) ≡
3H2(t)

8πG . (1.21)

Its current value is ρc,0 ≈ 1.9× 10−29 h 2g cm−3. The density of a cosmic fluid in units of
ρc is known as the density parameter of the cosmic fluid:

Ω(t) = ρ(t)
ρc(t)

= 8πG
3H2 ρ. (1.22)

The density parameter of the cosmological constant is

ΩΛ = Λc2

3H2
0
. (1.23)
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1.1. On the Friedmann cosmological models

Friedmann’s equation (1.14) can be written as:

(Ωord + ΩΛ)− 1 = K

H2a2 , (1.24)

where Ωord is the sum of the density parameters of the ordinary cosmic fluids of the
Universe (matter and radiation). The total density parameter of the Universe today is
Ωtot,0 = Ωord,0 + ΩΛ. This is an extremely important cosmological parameter, since it is
directly tied to the geometry of the Universe:

• If Ω0 < 1 then ρ < ρc and K < 0, the Universe is open, its geometry hyperbolic.

• If Ω0 = 1 then ρ = ρc and K = 0, the Universe is flat. The observations today
suggest that the Universe is indeed flat. The critical density is then the density
necessary to make the Universe flat.

• If Ω0 > 1 then ρ > ρc and K > 0, the Universe is closed, its geometry spherical.

Another cosmological parameter is the deceleration parameter q0:

q0 ≡ −
a ä

ȧ2 . (1.25)

Current measures suggest that is it negative, so the Universe is accelerating its expansion.

1.1.2 On the ΛCDM model
The standard cosmological model that describes our Universe is also known as ΛCDM
model. It contains matter, radiation and dark energy described through the Cosmological
constant. The value of the main cosmological parameters, as derived from the most recent
analysis of the Cosmic Microwave Background Radiation data of the Planck mission
(Aghanim et al. 2020), can be found in table 1.1. The Hubble constant is value is yet
uncertain, but it is around h ≈ 0.70. One of the main problems in Cosmology today is
the tension in the measurements of the Hubble constant: independent measurements
yield different and not consistent values. The Planck analysis, based on cosmological
data, yields H0 = (67.4± 0.5) km s−1 Mpc−1. Local measurements based on the period-
luminosity relation of the Cepheids yield H0 = (74 ± 3) km s−1 Mpc−1, giving rise to
a discrepancy at the ∼ 2σ level. Strong lensing measurements that use the time delay
of multiple images yield different values up to H0 = (79 ± 4) km s−1 Mpc−1. These
estimates are discussed in Schneider (2015). This is still an open problem.

Today we have evidence of two kinds of matter: ordinary or baryonic matter, made
up by the particles of the Standard Model of Particle Physics (such as protons, neutrons
and electrons); dark matter made up by unidentified yet particles that interact only
gravitationally with each other and the baryons. There is a lot of observational and
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theoretical evidence for the existence of dark matter, like the rotation curves of neutral
gas in spiral galaxies, the mass estimate of clusters of galaxies thanks to optical, X and
lensing observations, theory of cosmic structure formation and so on. Studies of the
large scale structure of the Universe suggest that the dark matter needed is Cold Dark
Matter, not relativistic and consistent with a bottom-up scenario for cosmic structure
formation, where small halos were the first to be born and then merged into bigger halos
by hierarchical aggregation. The content of matter in the Universe is ≈ 85% dark matter
and ≈ 15% baryonic matter.

The Universe contains two candidates for radiation today, photons and neutrinos (if
massless as predicted by the standard model of Particle Physics). The energy density
contained in photons today is determined by the temperature of the Cosmic Microwave
Background, a black-body radiation with temperature TCMB,0 = 2.73 K. The density
parameter of the radiation is Ωrad,0 = 2.4× 10−5 h−2. Like photons, neutrinos were
produced in thermal equilibrium in the hot early phase of the Universe. Interacting
weakly, they decoupled from the cosmic plasma when the temperature of the Universe
was KBT ≈ 1M eV. When the temperature of the Universe dropped to KBT ≈ 0.5 M eV,
electron-positron pairs annihilated to produce gamma rays. The annihilation heated
up the photons but not the neutrinos which had decoupled earlier. Hence the neutrino
temperature is lower than the photon temperature by an amount determined by entropy

conservation. It can be shown Tν,0 =
( 4

11

) 1
3
TCMB,0 = 1.95 K. The density parameter

of one neutrino species (a total of three exist) is Ων,0 = 2.8× 10−6 h−2. The radiation
energy content of the Universe today is negligible with respect to the other components.

Measurements from the CMBR indicate that the total density parameter of the
Universe is consistent with being Ωtot,0 = 1. These measurements and the evidence for
the acceleration of the Universe led to theorize the existence of a Cosmological constant
with Ω0,Λ ≈ 0.7.

1.2 On density perturbations and their evolution
The distribution of galaxies on the sky is not uniform or random, rather they form
clusters and groups of galaxies. Also clusters of galaxies are not distributed uniformly, but
their positions are correlated, grouped together in superclusters. The three-dimensional
distribution of galaxies is also known as large-scale structure. It is sometimes referred to
as the cosmic web since matter tends to aggregate into structures made up by massive
filaments of matter separated by giant voids; clusters are found at the intersections
of these filaments. It proves that the Universe is inhomogeneous on small scales, so
Friedmann models are an approximation valid on large scales.

The standard model for the formation of structures in the Universe assumes that
there were small fluctuations at some very early initial time, which grew by gravitational
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Table 1.1: Cosmological parameters from Planck 2018 (Aghanim et al. 2020). We report the
density parameters of baryons, dark matter, Hubble constant, age of the Universe, matter
density parameter, dark energy density parameter.

Parameter Value

Ω0,barh
2 0.0224± 0.0001

Ω0,DMh
2 0.120± 0.001

H0[km s−1 Mpc−1] 67.4± 0.5
t0[Gyr] 13.801± 0.024
Ω0,m 0.3111± 0.0056
Ω0,Λ 0.6889± 0.0056

instability. To be more accurate, those were fluctuations in the metric tensor field in
the Universe, that caused fluctuations also in the gravitational potential field and in the
density field. Although the origin of the seed fluctuations is yet unclear, they possibly
originated from quantum fluctuations in the very early Universe, which were blown up
during a later inflationary phase. The fluctuations in this case are uncorrelated and the
distribution of their amplitudes is Gaussian. Gravitational instability leads to a growth of
the amplitudes of the relative density fluctuations, described by the density contrast field

δ(x, t) ≡ ρ(x, t)− ρ̄(t)
ρ̄(t) , (1.26)

where ρ̄(t) denotes the mean cosmic matter density at time t. The CMB anisotropy
suggests that at z ∼ 1000, |δ| � 1, while galaxies today have |δ| � 1. As long as the
relative density contrast of the matter fluctuations is much smaller than unity, they
can be considered as small perturbations of the otherwise homogeneous and isotropic
background density, and linear perturbation theory suffices for their description. The
general consensus is that the density of the Universe was first dominated by radiation in
its early times; at an epoch known as the equivalence (aeq) the contribution of matter
and radiation is equal. After the equivalence the density of the Universe was dominated
by weakly interacting dark matter (when a� aeq). Today the density of the Universe
has two similar contributions from the matter and the Cosmological constant, which is
slightly more dominant, as described in section 1.1.2.

A relevant scale length in the evolution of the perturbations is the horizon scale, that
is the scale of the causally connected regions in the Universe:

λH(t) = a(t)
∫ t

0

c

a(t′) dt′. (1.27)
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Its exact value is a function of the cosmological model and parameters, but in general it is
inversely proportional to the Hubble parameter λH ∝ cH−1. A perturbation of (comoving)
wavelength λ is said to “enter the horizon” when λ = λH(a). This is a relevant scale
for structure growth. Perturbation theory shows that linear density fluctuations, i.e.
perturbations with δ � 1, that have not entered the horizon at a cosmic epoch with scale
factor a (λ > λH(a)) grow like:

δ(a) ∝ aq =
a2 if a < aeq

a if a > aeq
. (1.28)

The cosmic microwave background reveals temperature fluctuations of order δT
T
≈ 10−5 on

large scales. By the Sachs-Wolfe effect (Sachs et al. 1967), these temperature fluctuations
reflect density fluctuations δ of the same order of magnitude. The cosmic microwave
background originated at a ≈ 10−3 � aeq, well after the Universe became matter-
dominated. Equation (1.28) then implies that the density fluctuations today, expected
from the fluctuations δ ≈ 10−5 at a ≈ 10−3, should only reach a level of 10−2. They
should not have been able to enter the non-linear regime at δ ∼ 1 and form structures
with δ � 1 like the galaxies and clusters we see today. This discrepancy is resolved
thanks to dark matter. The cosmic microwave background displays fluctuations in the
baryonic matter component only. If there is an additional matter component that only
couples through weak interactions, fluctuations in that component could grow as soon as
it decoupled from the cosmic plasma, well before photons decoupled from baryons to set
the cosmic microwave background free. Such fluctuations could therefore easily reach
the amplitudes observed today, and thereby resolve the apparent mismatch between the
amplitudes of the temperature fluctuations in the cosmic microwave background and the
present cosmic structures. Baryons could then form structures more quickly because they
would collapse not in a uniform background potential, but in a potential characterized
by the existence of dark matter halos (baryon catch-up). This is one of the strongest
arguments for the existence of a dark matter component in the Universe.

Equation (1.28) describe the growth of perturbations in a flat Universe. It cannot be
analytically generalised to curved universes, but numerical simulations show the effect of
curvature for a > aeq (it is negligible in the early universe, for a < aeq). When Ωtot,0 < 1
the gravitational pull of the density fluctuations is weaker and the expansion of the
universe is stronger with respect to a flat Universe and perturbations for a > aeq grow as
δ(a) ∝ aq with q < 1. When Ωtot,0 > 1 the gravitational pull of the density fluctuations
is stronger and the expansion of the universe is weaker with respect to a flat Universe
and perturbations for a > aeq grow as δ(a) ∝ aq with q > 1.

Equation (1.28) shows that perturbations outside the horizon always grow. When
they enter the horizon this is not true in general because gravity is not the only relevant
interaction between particles and other physical interactions must be considered too. If
λ < λH(aeq), the perturbation enters the horizon while radiation is still dominating the
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expansion. Until aeq, the expansion time-scale, the Hubble time τH = H−1, is determined
by the radiation density ρrad. In this case it is shorter than the collapse time-scale of
the dark matter, because (Gρrad)−1/2 < (GρDM)−1/2. The radiation-driven expansion
is “faster” than the dark-matter collapse and prevents dark-matter perturbations from
collapsing. Since light can only cross regions that are smaller than the horizon, the
suppression of growth due to radiation is restricted to scales smaller than the horizon;
larger-scale perturbations remain unaffected. This explains why the horizon size at the
equivalence epoch λH(aeq) sets an important scale for structure growth.

The epoch aent at which a density perturbation with comoving wavelength λ enters
the horizon is found by solving λ = λH(aent). This is:

λ ∝

aent aent � aeq

a
1/2
ent aeq � aent � a0

. (1.29)

It is convenient to decompose the density contrast δ into Fourier modes, because in linear
perturbation theory individual Fourier components evolve independently. The Fourier
transform of δ(x) is:

δ̃(k) = 1
(2π)3

∫
R3
δ(x) e−ik·x d3k. (1.30)

Let us note that the dimensions of δ̃(k) are the ones of a volume and that, since δ ∈ R
we must have δ̃(k)∗ = δ̃(−k). Let us also introduce the Dirac’s delta distribution and its
effect when applied to a generic function f :

δ
(3)
D (k) = 1

(2π)3

∫
R3
eik·x d3x, (1.31)

f(x) =
∫
R3
f(k) δ(3)

D (x− k) d3k. (1.32)

The assumed Gaussian density fluctuations δ(x) at the comoving position x can completely
be characterized by their Power Spectrum P(k), that will be properly defined later in
section 1.4:

〈δ̃(k) δ̃∗(k′)〉 = (2π)3P(k) δ(3)
D (k − k′), (1.33)

where the asterisk denotes complex conjugation. Strictly speaking, the Fourier decompos-
ition is valid only in flat space, but it can be applied here because at early times space
is flat in any cosmological model, and at late times the interesting scales λ = 2π

k
of the

density perturbations are much smaller than the curvature radius of the Universe. The
power spectrum is proportional to the average square amplitude of a perturbation with
wave vector k, P(k) ∝ 〈|δ(k)|2〉. Averaging in the Fourier space means averaging every
wave vector k whose wave number is |k| = k.

Let us consider now the primordial perturbation spectrum at some very early time, i.e.
when it was formed at the end of the inflation: Pi(k) ∝ |δ(k)|2. Since the density contrast
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grows as in equation (1.28), the spectrum grows as P(k; a) ∝ a2q. At aent, equation (1.29)
and k ∝ λ−1 show that the spectrum has changed to

P(k; aent) ∝ a2q
entPi(k) ∝

k−4Pi(k) aent(k) < aeq

Pi(k) aent(k) > aeq
, (1.34)

where aent(k) < aeq describes the scales that enter the horizon before the equivalence
(and thus have their growth suppressed), and aent(k) > aeq are the large scales (small k)
not reached by the horizon before the equivalence.

It is commonly assumed that the total power of the density fluctuations at aent
should be scale-invariant. This implies k3P(k) = const or P(k) ∝ k−3. Accordingly, the
primordial spectrum has to scale with k as Pi(k) ∝ k. This scale-invariant spectrum is
called the Harrison-Zel’dovich spectrum. We can rewrite (1.34) as

P(k; aent) ∝
k−3 aent(k) < aeq

k aent(k) > aeq
. (1.35)

An additional complication arises when the dark matter consists of particles moving
with a velocity comparable to the speed of light. In order to keep them gravitationally
bound, density perturbations then have to have a certain minimum mass, or equivalently
a certain minimum size. All perturbations smaller than that size are damped away by
free streaming of particles. Consequently, the density perturbation spectrum of such
particles has an exponential cut-off at large k. This clarifies the distinction between hot
and cold dark matter: Hot dark matter (HDM) consists of fast particles that damp away
small-scale perturbations, while Cold dark matter (CDM) particles are slow enough to
cause no significant damping.

The normalization of the power spectrum is not fixed by theoretical models and must
be measured from observations. One way to do it is to measure the normalization of
the anisotropies of the cosmic microwave background radiation (CMBR). Another is
by the local variance of galaxy counts: galaxies are supposed to be biased tracers of
underlying dark-matter fluctuations. By measuring the local variance of galaxy counts
within certain volumes, and assuming an expression for the bias, the amplitude of dark-
matter fluctuations can be inferred. Conventionally, the variance of galaxy counts σ8,gal
is measured within spheres of radius 8h−1 Mpc, and the result is σ8,gal ≈ 1 at the present
time. The corresponding variance σ8 of matter density fluctuations can be found by
assuming a bias mechanism that allows to pass from galaxy counts to matter density; the
bias is a prediction of galaxy formation theories still unknown and under debate. A third
way to get the normalization is by the local abundance of galaxy clusters: they form by
gravitational instability from dark-matter density perturbations. Their spatial number
density reflects the amplitude of appropriate dark-matter fluctuations in a very sensitive
manner. It is therefore possible to determine the amplitude of the power spectrum by
demanding that the local spatial number density of galaxy clusters be reproduced.
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At late stages of the evolution and on small scales, the growth of density fluctuations
begins to depart from the linear regime. When density fluctuations grow in a non-
linear way, fluctuations of different size interact and the evolution of P(k) becomes
so complicated it needs to be evaluated numerically. The non-linear evolution of the
density fluctuations is crucial for accurately calculating weak lensing effects by large-scale
structures. Non-linearly evolved density fluctuations are no longer fully characterized by
the power spectrum only because non-Gaussian features develop. A perturbation becomes
non-linear when δ ∼ 1; this happens first to the small scale perturbations (large k) and
then to the large scale perturbations (small k). It can be shown that σ2 ∼ δ2, so when
δ ∼ 1 then σ2 ∼ 1. At each cosmological epoch it is possible to define a characteristic
scale length, the non-linear scale, at which the variance of the matter density contrast
becomes 1. This scale length separates the small-scale regime where the dark matter power
spectrum is dominated by the contributions of presumably virialized halos (non-linear
evolution is much faster than linear, the collapse of a structure can be considered as
almost instantaneous after reaching the non-linear scale) from the large-scale regime
where the dark-matter density can be considered as a linear superposition of linearly
evolved perturbation modes.

1.3 On clusters of galaxies
Galaxies are not randomly distributed in the sky. Their positions are correlated, and
there are areas in the sky where the galaxy density is noticeably higher or lower than
average. There are groups consisting of a few galaxies, and there are clusters of galaxies
in which some hundred up to a thousand galaxies appear very close together. Clusters of
galaxies are the largest gravitationally bound objects today in the Universe and represent
the high-mass end of collapsed structures. They are of particular interest for cosmology
because their number density, individual properties and spatial distribution constrain
the power spectrum of the density fluctuations. Their formation history is sensitive
to the cosmological parameters of the Universe: if the matter density in the universe
is high, clusters tend to form later in cosmic history than if the matter density is low.
Compactness and morphology of clusters then reflect the cosmic matter density, and this
fact has various observable implications.

Clusters are also interesting structures on their own. Zwicky noted in 1933 that the
galaxies in the Coma cluster and other rich clusters move so fast that the clusters required
about 10 to 100 times more mass to keep the galaxies bound than could be accounted
for by the luminous galaxies themselves. This was the earliest indication that there is
invisible mass, or dark matter, in at least some objects in the Universe.

When X–ray telescopes became available after 1966, it was discovered that clusters emit
≈ 1043÷45erg s−1. The source of this powerful X-ray emission (thermal bremsstrahlung,
free-free radiation) is a hot, dilute plasma with temperatures in the range 107÷8K and
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densities of 10−3cm−3. Based on the assumption that this intra-cluster gas is in hydrostatic
equilibrium with a spherically symmetric gravitational potential of the total cluster matter,
the X–ray temperature and flux can be used to estimate the cluster mass. Typical results
approximately agree with the mass estimates from the kinematics of cluster galaxies
employing the virial theorem. Today we know that about 80% of the cluster mass is dark
matter, and about 15% is the intra-cluster medium (the hot gas). The X–ray emission
thus independently confirms the existence of dark matter in galaxy clusters. Typical
cluster masses are about 1014÷15M�, typical sizes are of order several Mpc.

Later, luminous arc-like features were discovered in galaxy clusters. Their light is
typically bluer than that from the cluster galaxies, and their length is comparable to the
size of the central cluster region. These arcs are images of galaxies in the background
of the clusters which are strongly distorted by the gravitational tidal field close to the
cluster centers. Galaxy clusters thus can show strong lensing signatures near their cores,
but at larger distances from the center they can only weakly deform images of background
galaxies. The high number density of weakly distorted background images allows one to
measure the coherent distortion caused by the tidal gravitational field of the cluster out
to fairly large radii. This means that clusters of galaxies can also be used for weak lensing
studies. One of the main applications of weak gravitational lensing is to reconstruct
the (projected) mass distribution of galaxy clusters from their measurable tidal fields.
Another application is to look for coherent distortions of galaxy images to detect the
presence of a galaxy cluster. This is the idea behind the approach used in this thesis to
detect cluster halos.

1.4 On correlation functions, power spectra and clus-
tering studies

Let us consider a random field g(x) whose expectation value is zero everywhere.
If we have a field whose average is not zero than we can just consider the difference

between the field and its expectation value. Spatial positions x have in general n
dimensions, and the field can be either real or complex. A random field g(x) is called
homogeneous if it cannot statistically be distinguished from the field g(x+ r), where r
is an arbitrary translation vector. Similarly, a random field g(x) is called isotropic if it
has the same statistical properties as the random field g(Rx), where R is an arbitrary
rotation matrix in n dimensions.

The correlation function of a random field is a measurement of the level of order of a
system; it describes how microscopic variables are connected and measures how the field
co-varies in average over space. It is defined as

ξ(r) = Cgg(|x− x′|) = 〈g(x) g∗(x′)〉, (1.36)

16



1.4. On correlation functions, power spectra and clustering studies

and for a homogeneous and isotropic random field it depends only on the absolute value of
the difference vector between the two points x and x′ = x+ r. The correlation function
is averaged twice. First, we fix x, we compute g(x) g∗(x′) for every point x′ = x + r
that is distant r = |r| from x and average all these values. Then, we repeat for every x
and average these values.

When the function g is the density contrast field δ(x) defined in (1.26) the correlation
function is the observable used in clustering studies. The correlation function is real,
even when the field g is complex. This can be seen by taking the complex conjugate of
equation (1.36), which is equivalent to interchanging x and x′, leaving the right-hand-side
unaffected. We define the Fourier-transform pair of g as

g̃(k) =
∫
Rn
g(x) e−ik·x dnx. (1.37)

g(x) = 1
(2π)n

∫
Rn
δ(x) eik·x dnk. (1.38)

The correlation function can be computed in the Fourier space as:

〈g̃(k) g̃∗(k′)〉 =
∫
Rn
e−ik·x

∫
Rn
〈g(x)g∗(x′)〉 eik′·x′ dnx dnx′. (1.39)

Using equation (1.36) and by using x′ = x+ r, this becomes

〈g̃(k) g̃∗(k′)〉 =
∫
Rn
e−ik·x

∫
Rn
Cgg(|r|) eik

′·(x+r) dnx dnx′ =

= (2π)n δ(n)
D (k− k′)

∫
Rn
Cgg(|r|) e−ik·r dnr =

= (2π)n δ(n)
D (k− k′)Pg(k).

(1.40)

In the final step, we defined the power spectrum of the homogeneous and isotropic random
field g as

Pg(k) =
∫
Rn
Cgg(|r|) e−ik·r dnr, (1.41)

which is the Fourier transform of the two-point correlation function. Isotropy of the
random field implies that Pg can only depend on the modulus of k.

Gaussian random fields are characterized by the property that the probability distribu-
tion of any linear combination of the random field g(x) is Gaussian. The joint probability
distribution of a number M of linear combinations of the random variable g(xi) is a
multivariate Gaussian. This is equivalent to requiring that the Fourier components g̃(k)
are mutually statistically independent, and that the probability densities for the g̃(k) are
Gaussian with dispersion Pg(k). Thus, a Gaussian random field is fully characterized by
its power spectrum.
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1.4.1 On the power spectrum used in Cosmology
In Cosmology and clustering studies, the statistical approach to perturbation theory is
based on the ergodic hypothesis: the mean value of a given quantity when averaged on a
large number of volumes (each one representing a realization of the Universe) is equal
to the average of the mean values of the quantity averaged on many sub-volumes of a
single realization of the Universe. For Gaussian probability distributions the ergodic
hypothesis is always verified, and this is why the Gaussian distribution can easily be used
in clustering studies. The sub-volumes over which mean values are computed must be
large, independent, must be a good representation of the Universe (homogeneous and
isotropic) and must be a fair sample. The probability distribution of δ is then normal
with zero mean; it is described only by its variance σ2:

P (δ) = 1√
2πσ2

exp
(
− δ2

2σ2

)
. (1.42)

This is an approximation, since for δ > −1 the distribution must be truncated. The
correlation function of the density contrast field δ(x) defined in equation (1.26) can be
expressed as:

ξ(r) = 1
(2π)3

∫
R3
P(k) eik·r d3k. (1.43)

Its Power spectrum is then:

〈δ̃(k) δ̃∗(k′)〉 = (2π)3 δ
(3)
D (k − k′)P(k), (1.44)

it has the dimensions of a volume. The power spectrum is proportional to the average
square amplitude of a perturbation with wave vector k. To be more accurate P(k) is a
power density and P d3k is the actual “power” i.e. the amplitude of the mode k of the
correlation function. Dirac’s delta is not zero only when k = k′, and in that case

P(k) ∝ 〈δ̃(k) δ̃∗(k)〉 = 〈|δ̃(k)|2〉. (1.45)

The proportionality constant is a normalization factor known as volume of the Universe
V∞. It is given expanding Dirac’s delta, equation (1.31), as an integral when k = k′:

δ
(3)
D (k − k′) = δ

(3)
D (0) = 1

(2π)3

∫
R3

d3x ≡ V∞
(2π)3 . (1.46)

The power spectrum can be written as P(k) = 〈|δ̃(k)|2〉
V∞

. Let us also note that an average
in the Fourier space means averaging every wave vector k whose wave number is |k| = k.

The power spectrum is an extremely important quantity because it can give the
variance of the probability distribution of δ, determining the only parameter of that
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Gaussian distribution. In fact, thanks to the ergodic hypothesis, the variance of δ can be
expressed as an average of the values computed in a large number of universe sub-volumes:

σ2 = 〈δ2(x)〉 = 1
V∞

∫
R3
〈δ2(x)〉 d3x = 1

V∞

∫
R3
〈δ(x) δ∗(x)〉 d3x =

= 1
V∞(2π)3

∫
R3
〈δ̃(k) δ̃∗(k)〉 d3k = 1

(2π)3

∫
R3

〈|δ̃(k)|2〉
V∞

d3k =

= 1
(2π)3

∫
R3
P(k) d3k = 1

2π2

∫ ∞
0
P(k)k2 dk.

Parseval’s theorem was used in this demonstration. The variance is then the second
momentum of the power spectrum:

σ2 = 1
2π2

∫ ∞
0
P(k)k2 dk. (1.47)

As it was discussed in section 1.2, the initial power spectrum given by the inflationary
expansion phase of the Universe is a power law, that has no privileged scale (scale-free):

P(k) = Akn (1.48)

The amplitude A is not predicted by models and must be constrained by observations. The
inflation theory suggests n = 1, that is a scale-invariant spectrum known as Zel’dovich
Spectrum. The evolution of the perturbations modifies the power spectrum in scale-
dependent way, so that it can be usually described as a local power law with local index
neff(k), defined as

neff(k) = d lnP(k)
dk . (1.49)

According to equation (1.34) the power spectrum evolves with time as

P(k, t) = Pi(k) δ2
+(t),

where the function δ+(t) describes the time evolution and is equivalent to aqent used in
equation (1.34).

Since the variance found in equation (1.47) is an integral of the power spectrum it
also has a time evolution, that is given by:

σ2 ∝ δ2
+(t) kn+3 ∝ δ2

+(t)λ−(n+3) ∝ δ2
+(t)M−n+3

3 . (1.50)

This can be obtained by using the power law power spectrum of equation (1.48) in equation
(1.47) and solving the integral. The variable λ is the scale length of the perturbation
that has wave vector k = 2π

λ
, and M is the scale mass of the perturbation, given by
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M ∝ λ3 ∝ k−3. As it was discussed above at page 14, when σ2 ∼ 1 the evolution of the
perturbations changes from a linear regime into a non-linear regime. This happens when

M ∼ δ
6

n+3
+ (t). (1.51)

This is the non-linear scale expressed as a mass scale.
The Zel’dovich spectrum can be obtained by considering that the inflation causes

perturbations in the spacetime metric, that become perturbations in the potential, that
have no privileged scale and are constant (scale-invariant). For a fixed R the fluctuations
of the potential are:

δΦ ∝ GδM

R
∝ GδρR3

R
∝ δρR2 ∝ σR2

δΦ ∝ σM
2
3 ∝M−n+3

6 + 2
3 ∝M

1−n
6

To have a constant amplitude it must be n = 1.
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Chapter 2

An introduction to gravitational
lensing

This chapter briefly reviews the main aspects of the theory of Gravitational lensing, with
a particular emphasis on the weak-lensing regime. In this introduction to the chapter we
are going to discuss what gravitational lensing is as a branch of Astrophysics. In section
2.1 we are going to discuss several quantities used in lensing studies and relevant for
this thesis, such as the lens equation, convergence, shear, magnification, the E/B mode
decomposition. In section 2.2 we focus on the description of a statistics known as the
Aperture mass. The main references for this chapter are Bartelmann et al. (2001) and
Umetsu (2020).

It is a prediction of Einstein’s theory of General Relativity that light rays are deflected
when they propagate through an inhomogeneous gravitational field. Several researchers
before Einstein had speculated about such an effect, and assuming light behaves like
a stream of particles, its deflection can be calculated even within Newton’s theory of
gravitation; General Relativity predicts deflections twice larger than they are in classical
gravitation. A measure of the deflection of a Sun’s light ray by 1.75′′, as predicted
by General Relativity, was one of the most important step towards accepting General
Relativity as the correct theory of gravity. The interest in gravitational lensing increased
after the discovery of the first multiple-image system in 1979: distant and massive bodies
can bend light rays from a source so strongly that multiple light rays can reach the
observer (there may exist more than one null geodesic connecting the world-line of a
source with the observation event). Another relevant lensing effect is magnification:
gravitational lensing does not change the surface brightness of a source, but it bends the
effective solid angle under which its light can be seen and increase its flux. This allows
to use massive cosmic bodies (mainly clusters of galaxies) as “cosmic telescopes” to see
very distant and faint sources. The images of resolved sources can also be deformed by
lensing effects; this deformation can either be strong, as for gravitational arcs and Einstein
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rings, or weak, like a change in the source’s ellipticity. Although weak distortions in
individual images can hardly be recognised, the net distortion averaged over an ensemble
of images can still be detected. These different effects suggest the division of gravitational
lensing into two regimes: strong lensing and weak lensing. Although there are not exact
definitions, strong lensing deals with lensing effects produced by a mass distribution
(the lens) over one or more background sources, so that their light is strongly distorted.
Gravitational arcs and multiple images are common in strong lensing. Weak lensing has
no such evident effects and in general cannot be attributed to a single lens (although
there are exceptions); measurements of its effects are statistical in nature and show up
only across ensembles of sources. Magnification and distortion effects due to weak lensing
can be used to probe the statistical properties of the matter distribution between us and
an ensemble of distant sources, provided some assumptions on the source properties can
be made.

Another relevant property of gravitational lensing is that the deflection angle of a
light ray is determined only by the gravitational field of the matter distribution along
its path, regardless of the nature or physical state of the matter: light deflection probes
the total matter density, without distinguishing between ordinary (baryonic) matter or
dark matter. In contrast to other dynamical methods for probing gravitational fields, no
assumption needs to be made on the dynamical state of the matter. For example, the
interpretation of radial velocity measurements in terms of the gravitating mass requires
the applicability of the virial theorem (i.e., the physical system is assumed to be in virial
equilibrium), or knowledge of the orbits (such as the circular orbits in disk galaxies).
However, lensing measures only the mass distribution projected along the line-of-sight,
and is therefore insensitive to the extent of the mass distribution along the light rays,
as long as this extent is small compared to the distances from the observer and the
source to the deflecting mass. The possibility to directly investigate the dark-matter
distribution led to substantial results over the years. Constraints on the size of the
dark-matter haloes of spiral galaxies were derived, the presence of dark-matter haloes in
elliptical galaxies was demonstrated, and the projected total mass distribution in many
clusters of galaxies was mapped. These results directly impact on our understanding
of structure formation, supporting hierarchical structure formation in cold dark matter
(CDM) models. Constraints on the nature of dark matter were also obtained. Compact
dark-matter objects, such as black holes or brown dwarfs, cannot be very abundant in
the Universe, because otherwise they would lead to observable lensing effects. Galactic
microlensing experiments constrained the density and typical mass scale of massive
compact halo objects in our Galaxy. See Bartelmann et al. (2001) and Umetsu (2020) for
more references.
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2.1 On the basics of gravitational lensing
The presence of a point-like mass M in position ξ′ can deflect a ray of light (Bartelmann
et al. 2001) by an angle

α̂(ξ) = 4GM
c2

ξ − ξ′

|ξ − ξ′|2
. (2.1)

The vector ξ is the bidimensional position on a plane perpendicular to the line of sight.
If we have a mass distribution whose surface density on the sky plane is Σ(ξ′) then the
deflection angle that a ray of light passing in position ξ in the plane is given by

α̂(ξ) = 4G
c2

∫
R2

Σ (ξ′) ξ − ξ′

|ξ − ξ′|2
d2ξ′. (2.2)

This expression is valid as long as the deviation of the actual light ray from a straight
(undeflected) line within the mass distribution is small compared to the scale on which
the mass distribution changes significantly. This condition is satisfied in virtually all
astrophysically relevant situations (i.e. lensing by galaxies and clusters of galaxies), unless
the deflecting mass extends all the way from the source to the observer. A notable
exception, in particular for this thesis, is the deflection by the large scale structure.

A very important tool in lensing is the lens equation. Let us suppose we have a light
source in position η in the source plane, that we would see at angular position β if there
was no lens. Let us also suppose that we have a lens in the origin of the lens plane (it
is possible to generalise). It deviates the light rays coming from the source, so that the
observer gets to see the light ray passing through the lens plane in position ξ at angular
position θ. Its position in the source plane is η′.
This is shown in figure 2.1. We can define:

η̂ ≡ η′ − η. (2.3)

We can define the angular diameter distances of the lens DL, of the source DS, the
lens-source angular distance DLS as

ξ ≡ DL θ, (2.4)
η ≡ DS β, (2.5)
η̂ ≡ DLS α̂, (2.6)

and note that
η′ = DS θ. (2.7)

In general DS 6= DL +DLS, and the equality holds only in the local Universe, where we
can ignore the expansion of the Universe and the geometry is Euclidean. Putting the
definitions (2.5),(2.6), (2.7) in (2.3) we have:

DLS α̂ = DS θ −DS β,
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Figure 2.1: Graphical description of the observer-lens-source system assumed to derive the lens
equation. The source and lens planes are projected.

from which we can obtain the lens equation

β = θ −α(θ), (2.8)

where we have defined the Reduced deflection angle

α(θ) ≡ DLS

DS

α̂(θ). (2.9)

A useful lensing quantity is the lensing potential of the gravitational lens. If we consider
that the three-dimensional position of the lens ξ+xlos is the sum of a vector ξ = DLθ on
the lens plane plus a vector xlos on the line of sight, we can define the lensing potential
as a scaled integral of the gravitational potential φ of the lens on the line of sight:

ψ(θ) ≡ DLS

DLDS

2
c2

∫
R

φ (DL θ, xlos) dxlos. (2.10)

The lensing potential is adimensional. It can be shown that:

α(θ) = ∇θ ψ(θ). (2.11)

If we define the critical surface density of a source-lens system

Σcrit ≡
c2

4πG
DS

DLDLS

(2.12)

we can define the convergence κ of the system as an adimensional surface density:

κ(θ) ≡ Σ(θ)
Σcrit

. (2.13)
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It can be shown that:
∇2
θψ(θ) = 2κ(θ). (2.14)

This is the Poisson equation projected on the lens plane.
Another way to express the reduced deflection angle is the following:

α(θ) = 1
π

∫
R2
κ(θ′) θ − θ

′

|θ − θ′|2
d2θ′. (2.15)

This expression can be obtained by rewriting equation (2.9) with equations (2.2), (2.4)
and (2.12). If we use equation (2.15) in equation (2.11) and integrate the equation we
can express the lensing potential as a convolution:

ψ(θ) = 1
π

∫
R2
κ(θ′) ln|θ − θ′| d2θ′. (2.16)

2.1.1 On the first-order lens mapping
Gravitational lensing causes a displacement of the apparent position of the source as
described by the lens equation (2.8). If a source is much smaller than the angular scale
on which the lens properties change, the lens mapping can be locally linearised. Let us
suppose we have a source in position β, an image with position θ and deflection α, and
let us suppose we move the source by a little, so that we now have θ′, β′ and α′. Then
we can consider a first order approximation of the lens mapping:

dβ = β′ − β = θ′ −α′ − θ +α ' dθ +α+ ∂α

∂θ
dθ −α′ =

[
1− ∂α

∂θ

]
dθ, (2.17)

where we have done a first-order Taylor expansion on α′. A similar expansion on β′
would bring us to write

dβ = ∂β

∂θ
dθ. (2.18)

This allows us to define the Lensing Jacobian Matrix

A ≡ ∂β

∂θ
=
[
1− ∂α

∂θ

]
. (2.19)

By using equation (2.11) its elements can be expressed as second derivatives of the lensing
potential:

Aij(θ) = δij −
∂2ψ(θ)
∂θi ∂θj

= δij − ψij(θ), (2.20)

where ψij ≡
∂2ψ(θ)
∂θi ∂θj

.
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The lensing Jacobian is a symmetric tensor, so it can be decomposed as the sum of an
isotropic part and an anisotropic one. The isotropic part, using the Poisson equation
(2.14) can be expressed as a function of the convergence only:

Aisoij (θ) = 1
2 TrA(θ) δij = 1

2 [2− (ψ11 + ψ22)] δij = [1− κ(θ)]δij. (2.21)

The effect of an isotropic deflection is then to scale vectors in the source plane by a factor
1− κ(θ). Let us also note that the convergence is

κ(θ) = 1
2[ψ11(θ) + ψ22(θ)]. (2.22)

The anisotropic part of the lensing Jacobian is:

Aanisoij (θ) = Aij −
1
2 TrA δij = δij − ψij − (1− κ)δij. (2.23)

The opposite of this matrix is known as shear tensor Γ:

Γij(θ) = −Aanisoij (θ) =
[

1
2(ψ11 − ψ22) ψ12

ψ12 −1
2(ψ11 − ψ22)

]
=
[
γ1 γ2
γ2 −γ1

]
. (2.24)

It is a symmetric tensor with null trace with two independent shear components γ1 and
γ2:

γ1(θ) = 1
2 [ψ11(θ)− ψ22(θ)] , (2.25)

γ2(θ) = ψ12(θ). (2.26)

We can define the shear as the complex number γ = γ1 + i γ2, its shear modulus
|γ| =

√
γ2

1 + γ2
2 , then det Γ = −|γ|2 and the eigenvalues of the shear tensor are ±|γ|. This

decomposition of the lensing Jacobian into a convergence-dependent, isotropic part and a
shear-dependent, anisotropic part allows us to write:

Aij = Aisoij +Aanisoij = [1− κ(θ)]δij − Γij =
[
1− κ− γ1 −γ2
−γ2 1− κ+ γ1

]
. (2.27)

This tensor is real and symmetric, so it can be diagonalised. Its determinant is:

detA (θ) = [1− κ(θ)− |γ|(θ)] [1− κ(θ) + |γ|(θ)] . (2.28)

Its eigenvalues are:

Λ+(θ) = 1− κ(θ) + |γ(θ)|, (2.29)
Λ−(θ) = 1− κ(θ)− |γ(θ)|. (2.30)
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The first-order lens mapping formalism here described allows us to write the lens equation
as:

β = A(θ)θ. (2.31)

The position of the source and the position of the image are connected by a linear map.
The linear map describes the deflection of light rays when they pass from the source plane
to the lens plane. The total deflection is the sum of the deflections on the eigenvectors of
A (and Γ), with different amplitudes given by the eigenvalues of A.

2.1.2 On magnification and lensing regimes
The solutions θ of the lens equation (2.8) yield the angular positions of the images of a
source at β. The shapes of the images will differ from the shape of the source because
light bundles are deflected differentially. The most visible consequence of this distortion
is the occurrence of giant luminous arcs in galaxy clusters. In general, the shapes of the
images must be determined by solving the lens equation for all points within an extended
source. Liouville’s theorem and the absence of emission and absorption of photons in
gravitational light deflection imply that lensing conserves surface brightness (or specific
intensity). Hence, if I(s)(β) is the surface brightness distribution in the source plane, the
observed surface brightness distribution in the lens plane is

I(θ) = I(s)(β). (2.32)

When it is possible to use the linear approximation of the lens equation (2.31) if we have
a point θ0 within an image, corresponding to the point β0 = β(θ0) within the source, we
find from equation (2.32) using equation (2.31)

I(θ) = I(s) [β0 +A(θ0) (θ − θ0)] . (2.33)

According to this equation, the images of a circular source are ellipses. The ratios of the
semi-axes of such an ellipse to the radius of the source are given by the inverse of the
eigenvalues of A(θ0), and the ratio of the solid angles subtended by an image and the
unlensed source is the inverse of the determinant of A. The fluxes observed from the
image and from the unlensed source are given as integrals over the brightness distributions
I(θ) and I(s)(β), respectively, and their ratio is called the magnification µ(θ0). From
equation (2.28) we obtain:

µ(θ) = 1
detA(θ) = 1

[1− κ(θ)− |γ|(θ)] [1− κ(θ) + |γ|(θ)] . (2.34)

The images are thus distorted in shape and size. The shape distortion is due to the tidal
gravitational field, described by the shear γ, whereas the magnification is caused by both
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isotropic focusing caused by the local matter density κ and anisotropic focusing caused
by shear.

Points in the lens plane where the Jacobian A is singular, i.e. where det(A) = 0,
form closed curves called critical curves. Those are the curves where the eigenvalues
(2.29) and (2.30) of the Jacobian become 0. The inner critical curve is the one where
the eigenvalue Λ+(θ) = 0; it is called the radial critical curve because images forming
along it are stretched in the direction perpendicular to the curve. The outer critical
curve is the one where the eigenvalue Λ−(θ) = 0; it is called the tangential critical curve
because images forming along it are distorted tangentially to the curve. The image curves
of the critical lines in the source plane are called caustics. Equation (2.34) predicts
that sources on caustics are infinitely magnified; however, infinite magnification does
not occur in reality, for two reasons. First, each astrophysical source is extended, and
its magnification (given by the surface brightness-weighted point-source magnification
across its solid angle) remains finite. Second, even point sources would be magnified by a
finite value since for them, the geometrical-optics approximation fails near critical curves,
and a wave-optics description leads to a finite magnification (the finite-size effect always
dominates). Nevertheless, images near critical curves can be magnified and distorted
substantially, as is demonstrated by the giant luminous arcs which are formed from source
galaxies close to caustics. When a source moves across a caustic its number of images, i.e.
solutions of the lens equation (2.8), changes by 2, and the two additional images appear
or disappear at the corresponding critical curve in the lens plane. Hence, only sources
inside a caustic have multiple images.

A lens system that has a region with κ(θ) > 1 can produce multiple images for certain
source positions β, and such a system is referred to as being supercritical, because the
surface density is greater than the critical density. Being supercritical is a sufficient but
not a necessary condition for a general lens to produce multiple images, because the shear
can also contribute to multiple imaging. Nevertheless, this provides us with a simple
criterion to broadly distinguish the regimes of multiple and single imaging. Keeping this
in mind, we refer to the region where κ(θ) & 1 as the strong-lensing regime and the
region where κ(θ)� 1 as the weak-lensing regime.

2.1.3 On the properties of the shear tensor
The shear tensor (2.24) is symmetric and trace-less. It can be expressed in terms of the
Pauli matrices as

Γ(θ) = γ1(θ)σ3 + γ2(θ)σ1. (2.35)

It can also be expressed in index notation as:

Γij(θ) =
(
∂i∂j − δij

1
2 ∇

2
)
ψ(θ), (2.36)
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where ∂i = ∂

∂θi
, ∇2 = ∂2

i + ∂2
j , δij is Kronecker’s delta.

If we rotate our coordinate system by an angle ϕ thanks to a rotation matrix R(ϕ) it
can be shown that the rotation has no effect on the isotropic part of the matrix, the shear
matrix is modified according to Γ′ = RT (ϕ) ΓR(ϕ) and the shear components change as
follows: [

γ′1
γ′2

]
= RT (2ϕ)

[
γ1
γ2

]
, (2.37)

or, in a more explicit way:γ′1 = +γ1 cos(2ϕ) + γ2 sin(2ϕ)
γ′2 = −γ1 sin(2ϕ) + γ2 cos(2ϕ)

. (2.38)

The shear components are mapped on themselves after a π rotation, so the shear is not a
vector field, but a spin-2 field1. The Jacobian matrix can be diagonalised with a rotation
that makes γ′1 = γ and γ′2 = 0, which can be obtained if ϕ = 1

2 arctan
(
γ2
γ1

)
.

Let us suppose we have a circular source centered in β = 0 with radius β. This means
that β2 = β2

1 + β2
2 . Let us also suppose that our coordinate axes are the eigenvectors.

Equation (2.31) allows us to express β1 and β2 as a function of θ1 and θ2:[
β1
β2

]
=
[
1− κ− |γ| 0

0 1− κ+ |γ|

] [
θ1
θ2

]
=
[
(1− κ− |γ|) θ1 0

0 (1− κ+ |γ|) θ2

]
.

This means that the circularity relation becomes:

β2 = β2
1 + β2

2 = (1− κ− |γ|)2 θ2
1 + (1− κ+ |γ|)2 θ2

2,

from which we find out the image of the source is not circular, but an ellipse:

θ2
1(
β

1−κ−|γ|

)2 + θ2
2(
β

1−κ+|γ|

)2 = 1.

The circular source is mapped in an elliptical map whose axes are directed along the
eigenvectors and their semiaxis lengths are different because of the shear. If a and b are
the semiaxis lengths, the ellipticity e of this ellipse is:

e = a+ b

a− b
=

β
1−κ−|γ| + β

1−κ+|γ|
β

1−κ−|γ| −
β

1−κ+|γ|
= 1− κ+ |γ| − 1 + κ+ |γ|

1− κ+ |γ|+ 1− κ− |γ| = |γ|
1− κ. (2.39)

This is equal to a quantity called reduced shear modulus:

|g| = |γ|
1− κ. (2.40)

1A quantity is said to have spin N if it has the same value after rotation by 2π
N .
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In general we can define the Reduced shear tensor as a scaled version of the shear tensor:

g(θ) = 1
1− κ(θ) Γ(θ), (2.41)

and by analogy its components g1 and g2 and the complex reduced shear g = g1 + i g2.
The reduced shear is a fundamental quantity because if we measure the ellipticity of an
intrinsic circular source then the observed ellipticity is a direct measure of the reduced
shear and is an effect of the gravitational lensing only. Real galaxies have also intrinsic
ellipticities, that makes everything more complex. Let us note that in the weak lensing
limit κ� 1 we have g ' γ.

Another property of the complex shear is that it can be expressed as a convolution of
the convergence just like the potential and the deflection angle by using (2.16):

γ = γ1 + i γ2 = 1
2[ψ11 − ψ22] + i ψ12 =

[
1
2
∂2

∂θ2
1
− 1

2
∂2

∂θ2
2

+ i
∂2

∂θ1∂θ2

]
ψ =

= 1
π

∫
R2
κ(θ′)

[
1
2
∂2

∂θ2
1
− 1

2
∂2

∂θ2
2

+ i
∂2

∂θ1∂θ2

]
ln|θ − θ′| d2θ′.

Let us note that, with i = 1, 2:

∂

∂θi
ln|θ − θ′| = 1

|θ − θ′|
∂

∂θi
|θ − θ′| = θi − θ′i

|θ − θ′|2
,

∂2

∂θ2
i

ln|θ − θ′| = |θ − θ
′|2 − 2(θi − θ′i)2

|θ − θ′|4
,

∂2

∂θi∂θj
ln|θ − θ′| = −2

(θi − θ′i)(θj − θ′j)
|θ − θ′|4

.

This brings us to:
γ(θ) = 1

π

∫
R2
κ(θ′)D(θ − θ′) d2θ′, (2.42)

with
D(θ) = θ2

2 − θ2
1 − 2 i θ1θ2

|θ|4
= − 1

(θ1 − i θ2)2 . (2.43)

Its complex conjugate is

D∗(θ) = θ2
2 − θ2

1 + 2 i θ1θ2

|θ|4
= − 1

(θ1 + i θ2)2 . (2.44)

Another relation between shear and convergence can be found if we consider that they
are both linear combinations of the second derivatives of the potential. In particular, if
we introduce the complex spin raising operator

∂ = ∂1 + i ∂2 (2.45)
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and the complex spin lowering operator

∂∗ = ∂1 − i ∂2 (2.46)

then ∇2 = ∂2
1 + ∂2

2 = ∂ ∂∗. By using equations (2.22), (2.25) and (2.26) simple algebric
calculations show that

κ = 1
2 ∂ ∂

∗ψ(θ) (2.47)

γ = 1
2 ∂ ∂ψ(θ) (2.48)

∇2κ(θ) = ∂∗ ∂∗γ(θ) (2.49)

2.1.4 On the E and B mode decomposition
Equation (2.35) showed that the shear can be decomposed thanks to two Pauli matrices,
so it can be written as the sum of two linearly independent components. It is possible to
introduce two scalar fields ψE(θ) and ψB(θ) so that the shear matrix can be decomposed
into two independent modes E and B:

Γ(θ) = Γ(E)(θ) + Γ(B)(θ), (2.50)

with

Γ(E)
ij (θ) =

(
∂i∂j − δij∇2

)
ψE(θ), (2.51)

Γ(B)
ij (θ) = 1

2 (εkj∂i∂k + εki∂j∂k)ψB(θ), (2.52)

where ∂i = ∂

∂θi
, ∇2 = ∂2

i +∂2
j , δij is Kronecker’s delta, εij is the Levi-Civita symbol defined

in two dimensions such as ε11 = ε22 = 0, ε12 = ε21 = 1. The decomposition is possible
because, in general, any symmetric and trace-less bidimensional tensor field (such as the
shear and the radiation field of electromagnetism) can be written as the sum of a curl-free
term and a divergence-free term. In analogy to the radiation field of electromagnetism
those are referred to as the “electric” (E) curl-free component and the “magnetic” (B)
divergence-free component. The shear components (2.25) and (2.26) can be expressed as:

γ1 = 1
2(ψE,11 − ψE,22)− ψB,12, (2.53)

γ2 = ψE,12 + 1
2(ψB,11 − ψB,22). (2.54)

If we compare equations (2.51) with (2.36), (2.53) with (2.25) and (2.54) with (2.26),
we find that ψE = ψ and ψB = 0: for a lensing-induced signal the E-mode signal is
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related to the convergence κ while the B-mode signal is identically null. The E/B mode
decomposition was introduced (Crittenden et al. 2002) as a way to distinguish between
the lensing and intrinsic ellipticities contributions to the observed ellipticity of an image.
In fact equation (2.39) proved that the ellipticity of a circular source is the reduced
shear, but this is not true in general if the source is intrinsically elliptical. If we want
to use the measured ellipticity of an image as an estimate of its reduced shear we must
keep in mind that the measured value is a combination of the intrinsic ellipticity of the
source and the lensing effect. The lensing shear is curl-free, so its contribution to the
ellipticity has only E-modes. In general lensing by a point mass will create a tangential,
curl-free distortion pattern, so the most general distortion field produced by lensing will
be a linear superposition of such patterns and will also be a curl-free field. However, the
distortion field resulting from intrinsic spin alignments has E- and B-type modes of the
same order of magnitude. This provides a powerful discriminant between lensing and
intrinsic contributions to observed ellipticity correlations.

Umetsu (2020) shows that gravitational lensing can induce B modes, for example,
when multiple deflections of light are involved (there are several lenses on different lens
planes across the line of sight). However, these B modes can be generated at higher orders
and the B-mode contributions coming from multiple deflections are suppressed by a large
factor compared to the E-mode contributions. In real observations, intrinsic ellipticities
of background galaxies also contribute to weak-lensing shear estimates. Assuming that
intrinsic ellipticities have random orientations in projection space, such an isotropic
ellipticity distribution will yield statistically identical contributions to the E and B
modes. Therefore, the B-mode signal provides a useful null test for systematic effects in
weak-lensing observations.

In chapter 3 equations (3.11), continuous version, and (3.18), discrete version, are going
to introduce a statistics of galaxies ellipticities capable of extracting their E-mode. It will
be used as an estimator of the weak lensing signal produced by dark matter haloes, but
since real galaxies have intrinsic ellipticities it will evaluate also that contribution; the
signal we want to observe and use to detect haloes will then be affected by a noise that
comes from the intrinsic ellipticities (chapter 3 introduces other sources of noise too). A
way to evaluate the “noisiness” of the map will be described by using a statistics of the
B-mode only described in equation (3.19), that is not affected by the lensing signal but
only by the galaxy ellipticities, considered as noise.

2.2 On the aperture mass

Equation (2.42) proved that the shear can be obtained as a convolution of the convergence.
It can be inverted so that we can express the convergence as a convolution of the shear
(Bartelmann et al. 2001; Kaiser et al. 1993; Schneider 1996).
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Let us start by considering the Fourier transform of the convergence κ and the shear
convolution kernel D defined in (2.43):

κ̃(l) =
∫
R2
ei θ·l κ(θ) d2θ, (2.55)

D̃(l) = π
l21 − l22 + 2i l1l2

|l|2
, (2.56)

D̃∗(l) = π
l21 − l22 − 2i l1l2

|l|2
, (2.57)

let us note that D̃ D̃∗ = π2 where the asterisk denotes the complex conjugate.
It is a known result that the Fourier transform of a convolution of two functions is

the product of the Fourier transforms of the two functions, so γ̃(l) = π−1 κ̃(l) D̃(l), from
which we get κ̃(l) = 1

π
γ̃(l) D̃∗(l). In the real space this becomes:

κ(θ)− κ0 = 1
π

∫
R2
γ(θ′)D∗(θ − θ′) d2θ′ = 1

π

∫
R2
< [γ(θ′)D∗(θ − θ′)] d2θ′. (2.58)

The constant κ0 shows that the shear does not change if we add a sheet of constant
convergence. The symbol < refers to the real part of the complex number, and the
equality comes from the constraint that the convergence is a real function. In fact it can
be shown that the imaginary part is = [γ(θ′)D∗(θ − θ′)] = 0. One could think of using
this relation to estimate the convergence from the shear by using a dataset of measured
complex ellipticities εi = ε(θi) instead of the shear (equivalent to the reduced shear in
the weak-lensing limit), and the estimator:

κ(θ) = 1
N π

N∑
i=1
< [εiD∗(θ − θi)] . (2.59)

This is one of the most basic estimator to reconstruct mass surface density from shear
measurements and analyze it to detect mass concentrations, but the relations between
galaxy ellipticities and the resulting mass maps are generally complicated.

A more common estimator is the Aperture Mass

Map(θ) =
∫
R2
κ(θ′)U(θ − θ′) d2θ′. (2.60)

The aperture mass is the convolution of a convergence map with a weight function
U(θ − θ′); this can be chosen as an “aperture function” that tends to zero when the
distance |θ− θ′| increases. In this way the aperture mass becomes an average estimate of
the convergence weighted within the aperture with the weight function U . Let us assume
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that the aperture is symmetric U(θ − θ′) = U(|θ − θ′|). We can insert equation (2.58)
in equation (2.60) so it becomes:

Map(θ) =
∫
R2
U(|θ − θ′|)

[ 1
π

∫
R2
< [γ(θ′′)D∗(θ′ − θ′′)] d2θ′′ + κ0

]
d2θ′

= 1
π
<
∫
R2
γ(θ′′)

∫
R2
U(|θ − θ′|)D∗(θ′ − θ′′) d2θ′ d2θ′′ + κ0

∫
R2
U(|θ − θ′|) d2θ′.

The second integral can be written into polar coordinates as

κ0

∫
R2
U(|θ − θ′|) d2θ′ = κ0 2π

∫ ∞
0

U(x)x dx.

Let us suppose that the weight function U is compensated, that is∫ ∞
0

U(x)x dx = 0. (2.61)

In this way the aperture mass will not be dependent on κ0; it can be expressed as:

Map(θ) = 1
π
<
∫
R2
γ(θ′′)

∫
R2
U(|θ − θ′|)D∗(θ′ − θ′′) d2θ′ d2θ′′ =

= 1
π
<
∫
R2
γ(θ′′)

∫
R2
U(|θ′|)D∗(θ′ − θ′′ + θ) d2θ′ d2θ′′ =

= 1
π
<
∫
R2
γ(θ′′)

∫ ∞
0

U(x)x
∫ 2π

0
D∗(X − Y ) dϕ dx d2θ′′ =

= − 1
π
<
∫
R2
γ(θ′′)

∫ ∞
0

U(x)x
∫ 2π

0

1
(xei ϕ − Y )2 dϕ dx d2θ′′,

with the complex numbers X = θ′1 + i θ′2 = xei ϕ and Y = (θ′′1 − θ1) + i (θ′′2 − θ2). The
complex integral is solved by using dϕ = −i dX

X
, transforming it into a loop integral and

using the residual theorem:∫ 2π

0

1
(xei ϕ − Y )2 dϕ = π

Y 2 [2 Θ (|Y | − |X|)− |Y | δ (|X| − |Y |)] ,

where Θ is Heaviside’s step function and δ is Dirac’s delta. The aperture mass becomes:

Map(θ) = − 1
π
<
∫
R2
γ(θ′′)

∫ ∞
0

U(x)xπ
Y 2 [2Θ(|Y | − |X|)− |Y |δ(|X| − |Y |)] dx d2θ′′

= <
∫
R2

γ(θ′′)
Y 2

[
|Y |2U(|Y |)− 2

∫ |Y |
0

U(x)x dx
]

d2θ′′ =

= <
∫
R2

γ(θ+ θ′)
(θ′)2

[
|θ′|2U(|θ′|)− 2

∫ |θ′|

0
U(x)x dx

]
d2θ′ =

=
∫
R2

[
−|θ′|2<

(
γ(θ+ θ′)

(θ′)2

)] [
2
|θ′|2

∫ |θ′|

0
U(x)x dx− U(|θ′|)

]
d2θ′ =

=
∫
R2

[
−|θ′ − θ|2<

(
γ(θ′)

(θ′ − θ)2

)] [∫ |θ′−θ|

0

2U(x)x
|θ′ − θ|2

dx− U(|θ′ − θ|)
]

d2θ′,
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where we have introduced the complex numbers θ′ = θ′1+i θ′2 and θ = θ1+i θ2 corresponding
to the vectors θ′ and θ. The aperture mass can be written in a more immediate way if
we define the tangential shear component at position θ′ with respect to θ:

γt(θ′;θ) = −|θ′ − θ|2<
(

γ(θ′)
(θ′ − θ)2

)
= −<

(
γ(θ′) (θ′ − θ)∗

(θ′ − θ)

)
, (2.62)

and a filter function, a real function of a real variable t:

Q(t) = 2
t2

∫ t

0
U(t′) t′ dt′ − U(t). (2.63)

The aperture mass can thus be written as:

Map(θ) =
∫
R2
γt(θ′;θ)Q(|θ′ − θ|) d2θ′. (2.64)

This expression allows us to express the aperture mass, a U -weighted integral of the
convergence, as an integral over the tangential shear weighted by the filter function Q.
Different filters have different properties; generally they have a compact support, so that
Map(θ) can be expressed as an integral of the tangential shear over a finite area around
θ, and with a suppression in the aperture center so that the tangential shear does not
diverge and the weak lensing approximation (κ� 1, |γ| � 1) does not break down. It
is generally possible to create signal-to-noise ratio map of the mass aperture statistic
with a chosen filter Q, in which sufficiently strong lenses will appear as significant peaks.
This method has been tested on synthetically generated data, and it is shown in several
works that it lives up to the expectations (Maturi et al. 2005; Pace et al. 2007). The
signal-to-noise ratio map is not corrupted by small-scale deflectors (such as individual
galaxies), nor by larger-scale deflectors. This method can then be used to search for mass
concentrations (dark haloes of galaxy clusters) given wide-field images of ellipticities.

2.2.1 On the relation between aperture mass and shear
We have defined the tangential shear in equation (2.62) as the real part of a given complex
number. If we consider the imaginary part we can define the equivalent radial or cross
shear component at position θ′ with respect to θ:

γr(θ′;θ) = −|θ′ − θ|2=
(

γ(θ′)
(θ′ − θ)2

)
= −=

(
γ(θ′) (θ′ − θ)∗

(θ′ − θ)

)
. (2.65)

The tangential and radial shear components can also be expressed as explicit functions of
the cartesian components of ∆θ = θ′ − θ = ∆θ1 + i∆θ2 as:

γt(θ′; ∆θ) = − 1
∆θ2

1 + ∆θ2
2

[
γ1(θ′) (∆θ2

1 −∆θ2
2) + 2γ2(θ′) (∆θ1 ∆θ2)

]
(2.66)

γr(θ′; ∆θ) = − 1
∆θ2

1 + ∆θ2
2

[
γ2(θ′) (∆θ2

1 −∆θ2
2)− 2γ1(θ′) (∆θ1 ∆θ2)

]
(2.67)
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Let us note that the cross shear is equivalent to computing the tangential shear on a map
where each galaxy shear has been rotated by π/4, that according to (2.38) means using a
new shear γ′ whose components are:

γ′1 = γ2, γ′2 = −γ1. (2.68)

The tangential and radial shear can also be expressed as a function of the radial coordinates
of ∆θ = ϑ (cosϕ+ i sinϕ) as:

γt(θ′;ϕ) = −γ1(θ′) cos(2ϕ)− γ2(θ′) sin(2ϕ) (2.69)
γr(θ′;ϕ) = +γ1(θ′) sin(2ϕ)− γ2(θ′) cos(2ϕ) (2.70)

These quantities are directly observable in the weak-lensing limit where κ� 1, γ � 1.
Let us fix the reference point of the tangential and cross components θ and let us
compute their average value on a circle around θ that has a fixed radius ϑ. Using the
two-dimensional version of Gauss’ theorem, it is possible to show:

〈γt〉(ϑ;θ) = 1
2π

∮
γt(θ + ϑ ei ϕ) dϕ = Σ̄− Σ

Σcrit

= ∆Σ
Σcrit

(ϑ;θ) (2.71)

〈γr〉(ϑ;θ) = 1
2π

∮
γr(θ + ϑ ei ϕ) dϕ = 0 (2.72)

where ∆Σ(ϑ;θ) is the excess surface mass density around θ; it is the azimuthally averaged
surface density profile in a circle of radius ϑ around θ (Umetsu 2020). Equation (2.72)
shows that the cross shear component averaged around the loop extract the B-mode
distortion pattern, since it is expected to be statistically consistent with zero if the signal
is due to weak lensing. Therefore, a measurement of the B-mode signal provides a useful
null test against systematic errors. Equation (2.71) shows that, given an arbitrary circular
loop of radius around the chosen centre θ, the tangential shear component averaged
around the loop extracts a signal that is only due to the convergence; it thus extracts the
E-mode distortion pattern (see section 2.1.4). Another fact worth mentioning is that if
one rotates its shear map by π/4 the E-mode and B-mode are swapped.

2.2.2 On observable galaxy ellipticities

There is a link between the reduced shear g, the intrinsic complex ellipticity ε(s) of a
source and the complex ellipticity of its image ε. For an elliptical source with axis ratio
r ≤ 1 the complex ellipticity has modulus |ε(s)| = |1−r|

|1+r| and phase given by twice the
angle between the major axis and the positive θ1-direction. For sub-critical lenses:

ε = ε(s) + g

1 + g∗ ε(s)
. (2.73)
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Assuming that the intrinsic orientation of the sources is random, the expectation value of
the average ellipticity of a local sample of galaxy images becomes

〈ε〉 = g ≈ γ, (2.74)

where g ≈ γ holds in the weak lensing approximation κ� 1. Thus, the ellipticity of a
galaxy image is an unbiased estimate of the local shear in the case of weak lensing.

Let us suppose we have a dataset of complex galaxy ellipticities εi in position θi,
with a number density of galaxy images ng. We can define the observational version
of equation (2.62) as the complex tangential ellipticity of the image in position θi with
respect to θ as

εt(θi;θ) = εt i(θ) = −<
(
εi (θi − θ)∗

(θi − θ)

)
(2.75)

and the observational estimator of the mass aperture (2.64) as:

Map(θ) = 1
ng

∑
i

εt i(θ)Q(|θi − θ|), (2.76)

where the sum extends over all galaxy images within the aperture, i.e., within the support
of the filter Q (where Q 6= 0). It can be shown that the variance of this estimator is given
by:

σ2
Map

(θ) = 1
2ng

∑
i

|εt i(θ)|2Q2(|θi − θ|). (2.77)

The noise produced by the intrinsic galaxy ellipticities can be taken as the square root of
this variance, and the signal-to-noise ratio can then be computed; it is independent of
the normalization of the weight function.
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Chapter 3

The implementation of an optimal
filter: Get the Halo 2021

The main aim of this thesis is to construct a C++ code that applies an “optimal” linear
matched filter to weak-lensing data in order to detect dark-matter haloes corresponding to
galaxy clusters. The filter was first developed by Maturi et al. (2005) where it was applied
on simulated data, and then applied on real data in Maturi et al. (2007). The “matched
filter” technique is a method (Schneider 2015) to build catalogs of clusters of galaxies
based on the assumption that clusters are not just a collection of galaxies, but that their
galaxy overdensities possess certain given properties. For example one could assume that
the luminosity distribution of the galaxies follows a Schechter-type luminosity function if
optical data is available. The filter here implemented assumes a mean radial profile of
the halo shear pattern and a power spectrum for the noise; it is defined in the Fourier
domain as proportional to their ratio, so that the modes that can attributed to lensing by
the halo profile are amplified and the modes due to the noise are suppressed. In order to
separate dark matter haloes from spurious peaks caused by the large scale structure the
noise is composed by three contributions: Poisson noise from galaxy counts, noise from
intrinsic ellipticities and noise related to the weak lensing by large scale structure. The
assumptions of the optimal filter implemented will be explained in section 3.1. Section
3.2 will describe the numerical code that implements the filter, Get the Halo 2021. This
program is a new version of the original Get the Halo realised by Matteo Maturi more
than fifteen years ago and used in Maturi et al. (2005) and Maturi et al. (2007). The
main perks of this new version are that it is compatible with the 2017 standard of the C++
language and it replaces the astrocpp library with the CosmoBolognalib (Marulli et al.
2016).

The CosmoBolognaLib are a large set of Open Source C++ numerical libraries for
cosmological calculations, although they can also be used in other high-level scriptinh
languages through wrapping, for instance Python codes. It is a living project aimed
at defining a common numerical environment for cosmological investigations of the
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large-scale structure of the Universe. One of its primary focuses is to help in handling
astronomical catalogues, both real and simulated, measuring one-point, two-point and
three-point statistics in configuration space, performing cosmological analyses and deriving
cosmological constraints. They can be freely downloaded at the CosmoBolognalib website1.

3.1 On the theory of the optimal filter

The dark matter distribution in the Universe is not a discrete distribution that contains
only haloes, but it can be thought as a continuous distribution where the haloes are
peaks of mass density embedded into a lower density large-scale structure, the cosmic
web that connects them. When someone measures the inhomogeneities of projected mass
distribution through lensing observations, the signal of haloes is overlaid by the lensing
signal of the large-scale structure in front of and behind the haloes. Being approximately
a Gaussian random field, lensing by large-scale structure adds peaks and troughs to the
signal which can be mistaken for haloes, so part of the claimed dark-halo detections
can actually be peaks in the random weak gravitational lensing signal of the large-scale
structure. It is not possible to strictly separate these two types of signal because of the
unsharp boundary between the haloes and the large-scale structure, but it is possible
to define a typical scale that helps discriminate between their lensing signals. The
large-scale structure can be considered as composed by dark-matter haloes of a broad and
continuous mass range. At each cosmological epoch there is a characteristic scale length,
the nonlinear scale, at which the variance of the dark matter density contrast becomes
unity. This was the scale described throughout chapter 1 and given in equation (1.51). It
separates the small-scale regime where the dark matter power spectrum is dominated
by the contributions of presumably virialised haloes from the large-scale regime where
the dark-matter density can be considered as a linear superposition of linearly evolved
perturbation modes.

This scale suggests the operational definition of the lensing signal due to the haloes
as the signal contributed by non-linear, gravitationally bound, virialised structures; the
lensing signal due to the large-scale structure is instead the signal contributed by the
linearly evolved matter distribution beyond the non-linear scale. It was first shown
in Maturi et al. (2005) and Maturi et al. (2007) that these definitions can be used
to construct a linear matched filter capable to detect the weak lensing signal of dark
matter haloes corresponding to galaxy clusters while also suppressing the signal of the
large-scale structure, thus reducing the spurious detections attributed to random peaks
in the projected mass density of the large-scale structure. The underlying assumption of
this approach is that the filter is searching for those haloes that do create the non-linear
power spectrum, while the linearly evolved structures are treated as a noise component

1https://github.com/federicomarulli/CosmoBolognaLib
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that modifies the shape of the matched filter. The filter can also be chosen to maximise
the signal-to-noise ratio given a mass profile of the cluster halo. In particular we want to
choose an optimal filter that maximise the S/N ratio given a Navarro-Frenk-White (NFW)
profile and given that the noise is made up by the three above mentioned contributions:
shot noise from galaxy counts; white noise from intrinsic ellipticities of galaxies; noise from
the lensing effects produced by the random projected peaks of the large-scale structure.

Let us consider the weak gravitational lensing signal of dark matter halo as a function
S(θ) that can be factorised into its amplitude A and angular shape τ(θ); the data we
measure D(θ) are contaminated by some noise N(θ), so they can be written as:

D(θ) = S(θ) +N(θ) = Aτ(θ) +N(θ). (3.1)

In this application the signal will be the shear tangential components. The noise is made
up by several contributions, that we are going to describe in the following section 3.1.1.

3.1.1 On noise properties
The noise contributions are conveniently described in the Fourier space, where their
correlation functions allow us to define the noise power spectrum PN(k):

〈Ñ(k) Ñ∗(k′)〉 = (2π)2 δ
(2)
D (k′ − k)PN(k). (3.2)

It is possible to identify three main noise components:

• Poisson shot noise proportional to the number density of galaxies ng. This noise
arises because the galaxy ellipticities are measured at random positions. It is
constant in the Fourier domain (white noise).

• White noise due to the intrinsic ellipticities of the galaxies. This noise arises
because the determination of a single galaxy ellipticity is a very noisy measurement
of the shear; the added noise is proportional to the variance of the intrinsic galaxy
ellipticity σ2

εs and constant in the Fourier domain.

• Noise caused by the large-scale structure. When the matter distribution of the
large-scale structure is projected along the line of sight random peaks made up by
uncorrelated mass might arise. They contaminate the signal by adding spurious
peaks in the signal, unless they are considered as noise. This is done by modelling
this signal using the linear dark-matter power spectrum, according to the operational
separation between halo and large-scale structure lensing given in section 3.1.

These noise components are assumed to be random with zero mean and isotropic such that
their statistical properties are independent of the position on the sky. These assumptions
are well justified, since in first approximation the background galaxies are randomly
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positioned and oriented, and weak lensing by the large-scale structures is well described
by an isotropic Gaussian random field. Thus the noise given by the intrinsic ellipticity
of the sources combined with their finite number is modelled by its power spectrum Pε
(constant), and the noise caused by weak lensing of intervening large-scale structures is
modelled by the cosmic-shear power spectrum Pγ(k) derived from the linear dark-matter
power spectrum. The complete noise power spectrum is thus:

PN(k) = Pε + Pγ(k) = 1
2
σ2
εs

ng
+ 1

2Pκ(k). (3.3)

The cosmic shear power spectrum is equal to the power spectrum of the convergence
Pκ generated by the large scale structure, and the factor 1/2 arises because only one
component of the ellipticity (the tangential shear) contributes to the measurement, thus
Pγ = 1

2Pκ. This power spectrum is (Umetsu 2020):

Pκ(k) = 9H4
0 Ω2

m

4c4

∫ χs

0

W̄ (χ;χs)
a2(χ) Pδ

(
k

fK(χ) ;χs
)

dχ (3.4)

where χ is the comoving distance, χs the comoving distance of the sources (for the sake
of simplicity we assume that all our sources have the same comoving distance from the
observer, and the same redshift), a is the scale factor of the Universe, W̄ is a weight
function, Pδ is the power spectrum of the dark matter tridimensional density fluctuations,
K is the spatial curvature, fK(χ) is the comoving angular diameter distance described in
(1.6). The weight function W̄ is given, under the approximation of having all sources at
the same redshift by:

W̄ (χ;χs) = fK(χs − χ)
fK(χs)

. (3.5)

This power spectrum can be computed thanks to the CosmoBolognalib if a source redshift
is given; its value represents a typical redshift of the sources, for instance the mean or the
median redshift of the source galaxies. The C++ code that computes the cosmic shear power
spectrum inside the CosmoBolognalib uses the function cbl::cosmology::Cosmology::Pk DM
to compute Pδ, and it assumes a ΛCDM cosmology with the default cosmological para-
meters available in the CosmoBolognalib. The main cosmological parameters are the
normalised Hubble constant h = 0.7 and the density parameters of the matter Ωm,0 = 0.27,
of the cosmological constant ΩΛ,0 = 0.73, of the baryons Ωbar,0 = 0.046 and of the radiation
Ωrad,0 = 0.0.

3.1.2 On the model of the halo lensing signal
Theoretical assumptions on the spatial distribution of the signal are required to build
the filter. The first assumption is that galaxy clusters are on average axially symmetric,
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thus τ(θ) = τ(|θ|). The second is that the cluster halo (the lens) possesses a Navarro-
Frenk-White (NFW) density profile, since several works have shown that it is a good
analytic model to describe the density profile of the haloes (J. F. Navarro et al. 2004;
Julio F. Navarro et al. 1996). The profile is

ρ(r) = ρs(
r
rs

) (
1 + r

rs

)2 , (3.6)

where rs represents the characteristic scale radius, where the logarithmic slope d ln ρ
d ln r

equals −2. The normalization ρs = 4ρ(rs) is a characteristic density. When r � rs the
density decreases as ρ ∝ r−1, when r � rs as ρ ∝ r−3. The two parameters of the NFW
profile are not independent, this profile actually depends only on one parameter. The
overdensity mass M∆ is given by integrating equation (3.6) up to the overdensity radius
r∆ at which the mean internal density is ∆ times the critical density of the Universe at
halo redshift ρc(zh) as defined in equation (1.21). For a NFW halo the concentration
parameter can be defined as c∆ ≡

r∆

rs
; the typical density is then:

ρs = ∆
3

c3
∆

ln(1 + c∆)− c∆
1+c∆

ρc(zh). (3.7)

The NFW profile thus depends only on the concentration parameter c∆; ∆ is typically
chosen to be 200. The gravitational lensing properties of the NFW lens have been widely
explored (Meneghetti et al. 2003). Its lensing potential is:

ψ(x) = 4κsh(x), (3.8)

with x = r
rs

(projected distance from the lens center in units of the distance scale),

h(x) = 1
2 ln2 x

2 +


−2 arctanh2

√
1−x
1+x (x < 1)

0 (x = 1)
2 arctan2

√
x−1
x+1 (x > 1)

(3.9)

and κs = ρs rs Σ−1
crit. The shear profile can be computed from the potential by using

equations (2.25) and (2.26), the convergence using equation (2.22) and the reduced shear
profile with equations (2.41) (Wright et al. 2000). The Fourier transform of the reduced
shear profile g(x)

τ̃(k) = g̃(k) =
∫
R2
g(x) eix·k d2x (3.10)

is the halo signal necessary to compute the filter. The reduced shear of a NFW halo is
shown in figure 3.1, where panel 3.1a shows g(|x|) in the real space and panel 3.1b shows
g̃(|k|) in the Fourier space.
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(a) Real space (b) Fourier space

Figure 3.1: Reduced shear profile from a NFW halo in the real (panel 3.1a) and Fourier space
(panel 3.1b). The halo used to compute them has mass 1015 M� h−1, it is located at redshift
0.3 with background sources at redshift 1.0. Its scale radius projected on the sky is 4′.

3.1.3 On the definition of the optimal filter
Once the noise power spectrum and the expected halo signal have been computed they
can be used to define the filter. The linear filter Ψ is a function that, when convoluted
with the data D(θ) as defined in equation (3.1), yields an estimate of the amplitude of
the signal. We define the estimator for this amplitude as in Maturi et al. (2005):

Aest(θ) =
∫
R2
D(θ′)Ψ(θ− θ′)d2θ′. (3.11)

The estimator must satisfy two constraints. First, it must be unbiased: its average error
b has to vanish (b = 0):

b ≡ 〈Aest − A〉 = A
[∫
R2
τ(θ′)Ψ(θ′)d2θ′

]
. (3.12)

Second, the measurement noise σ, determined by the mean-squared deviation of the
estimate from its true value,

σ2 = 〈(Aest − A)2〉 = b2 + 1
(2π)2

∫
R2
|Ψ̃(k)|2PN(k) d2k

= b2 + 1
2π

∫ ∞
0
|Ψ̃(k)|2PN(k)k dk (3.13)

has to be minimal. To find a filter Ψ satisfying these two conditions, we combine them
by means of a Lagrangian multiplier λ, carry out the variation of L = σ2 + λ b with
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respect to Ψ and thus find the function Ψ minimizing L . The solution of this variational
minimization in the Fourier domain is given by:

Ψ̃(k) = 1
(2π)2

[∫
R2

|τ̃(k)|2
PN(k) d2k

]−1 |τ̃(k)|2
PN(k) , (3.14)

where τ is the expected shear profile of a NFW halo and PN is the noise power spectrum,
thus the filter is constructed to be most sensitive for those spatial frequencies where the
signal τ̃ is large and the noise PN is low. The convolution to compute the estimator is
done in the real domain, so an anti-Fourier transform must be applied to Ψ̃(k) to obtain
Ψ(θ).

Typical trends of the optimal filter are shown in figure 3.2 for both the real and
Fourier space. In the Fourier space the filter typically shows a peak at those frequencies
with a high ratio between the reduced shear of the NFW halo τ̃ and the noise power
spectrum PN . In the real space it shows a central peak, responsible for creating signal
spots in the output maps where there are haloes, and a negative region outside the peak,
responsible for creating troughs with lower signal outside the spots. When the signal
processed by the filter is the tangential shear, then a typical signature of a halo detection
on the output maps is a spot with high signal-to-noise ratio (S/N) surrounded by a trough
with lower S/N. These structures can be seen in figure 3.3, where we show a typical
output map processed with this filter.

When the signal is the tangential shear the estimator (3.11) is mathematically similar
to an Aperture mass as defined in equation (2.64):

Aest(θ) =
∫
R2
γt(θ′;θ)Ψ(|θ′− θ|)d2θ′. (3.15)

Their difference is that the optimal weak lensing filter is not defined from an arbitrary
compensated weight function according to equation (2.63), but defined so that it maximises
the signal-to-noise ratio and minimises the contamination induced by the large-scale
structure; its signal-to-noise ratio properties differs from that of the aperture mass.
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Figure 3.2: We show the optimal filter in the real domain, Ψ on the left, and in the Fourier
space, Ψ̃ on the right. This filter was built by taking as a model a NFW halo of virial mass
1015 M� h−1 at redshift 0.3. The scale radius of the NFW halo model projected on the sky is
4′. The background sources are at redshift 1.0, used to compute the noise power spectrum of
the large scale structure Pγ . The galaxy white noise is Pε = 1.28× 10−10. These quantities
allow us to compute the filter in the Fourier space Ψ̃ as described in equation (3.14). A Fourier
transform allows us to get the filter Ψ in the real space. It has a typical scale (average radius) of
2.2′. In the right panel we can see that the filter has a peak around those spatial frequencies
with a high ratio between the reduced shear of the NFW halo τ̃ and the noise power spectrum
PN as described in equation (3.14). In the left panel we can see the filter in the real space. It
has a central peak, responsible for creating signal spots in the output maps where there are
haloes, and a negative region outside the peak, responsible for creating troughs with lower signal
outside the spots. These structures can be seen in figure 3.3, where we show an output map of
tangential shear convoluted with this filter according to equation (3.11). A typical signature of
a halo detection on the output map is a spot with high signal-to-noise ratio (S/N) surrounded
by a trough with lower S/N.
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3.2 On Get the Halo 2021
Get the Halo 2021 (GtH21 for short) is a C++ program that, given a dataset of galaxy
positions and shear and the optimal linear matched filter for that dataset (they must be
prepared in appropriate input files) computes the weak lensing signal estimator (3.11) and
other quantities described in section 3.2.2. The output file is then analysed as described
in section 3.2.4 to get a catalogue of detected haloes.

3.2.1 On the necessary input files
The program requires three input files.

Weak lensing data file. The first input file necessary to execute GtH21 is an ASCII
file with the weak lensing data. This file must be structured as a table where each row is
an observed galaxy and each column is one of its measured quantities. There are four
mandatory columns: the two sky coordinates x and y of the galaxy, the two components
of its ellipticity g1 and g2 (expected values for the reduced shear). Then there are three
optional columns: the redshift of the galaxy zs, the weak lensing bias factor m and the
weak lensing weight w of the galaxy. The galaxies’ redshifts are used only to compute the
average source redshift; it is requested to compute the cosmic shear power spectrum given
in equation (3.4) that must be included as a source of noise according to equation (3.13).
If the redshift column is not given GtH21 will just require the user to insert a typical
source redshift from the terminal. The bias factor m is used to take into account several
observational and instrumental effects that affect the ellipticities measurements when
galaxies are observed. Some of them are described by Umetsu (2020): the impact of noise
on the galaxy shape measurement (both statistical and systematic uncertainties), the
isotropic smearing component of the PSF and the effect of instrumental PSF anisotropy.
The calibration of the signal response is considered through the bias factor

gtrue = (1 +m) gobs. (3.16)

The weights are generally the inverse-variance weights of the ellipticity. The galaxy
weights that GtH21 assigns to each galaxy in the ellipticity map are normalised to their
sum. The first input file must be prepared by converting the requested data, in general
given as a catalogue of galaxy ellipticities, into an ASCII file.

Optimal filter files. The second input file necessary to execute GtH21 is an ASCII
file structured as a table that contains the optimal filter Ψ in the real domain. A column
of this file must be the radial positions r in arcminutes at which the filter is evaluated.
Another column of the file must be the value of the filter Ψ(r) evaluated at the radial
position r contained in the same row. Those two columns are mandatory. The radial
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values must be ordered for ascending values and the r values must be equi-spaced: the
filter must be sampled regularly and linearly. This condition is necessary for a correct
linear interpolation of the filter function. It is then possible to add a third optional
column that contains the values of the reduced shear of the chosen NFW halo g(r)
evaluated at the radial position r. If this column is included GtH21 will also compute a
local normalization map for the weak lensing estimator (3.13), as it will be described in
equation (3.21).

In order to compute the correct noise given in equation (3.13) the code needs the filter in
the Fourier domain Ψ̃(k). It can be given in a third ASCII file where the first column is
the angular mode k and the second column is the filter Ψ̃ evaluated at the k contained in
the same row.

The second and third input file must be produced separately with a program that
implements equation (3.14) and its Fourier transform. We have used a specific program
to produce the weak lensing filter. This program requires the following input parameters:

• Lens mass. This is the mass of the NFW dark matter halo that acts as the typical
lens, in units of M� h−1. In Maturi et al. (2007) it is shown that the detected haloes
are not very sensitive on this parameter.

• Lens redshift. This is the redshift of the typical halo we want to detect.

• Average source redshift. The lens and source redshift are needed to set physical
quantities of any lensing system, such as the critical surface density defined in
equation (2.12).

• White noise amplitude. This is the noise contribution of the power spectrum
given by the galaxies, described as Pε in section 3.1.1.

• Instrumental beam FWHM. This is the resolution with which the filter is defined.
It should be approximately equal to the average galaxy separation, computed as
the inverse of the average surface number density of galaxies. It must be given in
arcminutes.

• Power noise spectrum file. File that contains the cosmic shear power spectrum
of the convergence Pγ.

• File with the cosmological parameters. Optional parameter, it allows one to
change the default cosmological parameters.

• Scale radius in arcminutes. Optional parameter that allows to set the halo
dimension not through the mass but through the projected scale radius.
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Setup file. All these input files are given to GtH21 through a single setup file. The
program must be executed from the terminal by giving the executable one argument that
contains the name of the setup file. It is a text file where each line is structured as:

PARAMETER = VALUE # Optional comment (3.17)

The parameters are read by GtH21 thanks to a class “initializer” we wrote to read data
formatted like in example (3.17). If # appears in a line the rest of the line is considered
a comment. A typical setup file contains several parameters describing the directory and
names of the input files, how they are structured, how to define the grid for the output
maps of GtH21 and other useful parameters. We report them all in appendix A.

Once the data file, filter files and the initialization file have all been prepared GtH21
can be executed from the terminal. The name of the executable must be followed by one
additional argument, the name of the initialization file. If it is missing or there are more
names than the program just prints some instructions on how it can be properly used.

3.2.2 On the output file written by Get the Halo 2021
If the program is executed correctly it produces a single FITS file with seven image frames
contained inside Header-Data-Units (HDU).

The first or primary HDU contains the weak lensing signal; it computes the estimator
(3.11) by using the tangential shear as data.

Emap(θ) ≡ Aest(θ) = 1
ng

∑
k

γt(θ;θk)wk Ψ(|θk − θ|) (3.18)

where the sum is extended to all the galaxies with position θk less distant from the
map point θ than an appropriate cut radius, the angular distance for which the filter
Ψ is consistent with 0. If the lensing weights wk are not used they are all set equal to
1. The normalization factor ng is the effective number density of galaxies. This is the
number density of perfectly measured galaxies that would contribute the same amount
of shear noise as the (imperfectly) measured ensemble of galaxies; it was introduced
(Albrecht et al. 2006) when considering the Fisher matrix for a weak lensing survey, and
it is computationally found by summing the lensing statistical weights divided by their
maximum. Because of its properties the effective number density of galaxies should be
used instead of the ordinary number density when a statistics requires it (Chang et al.
2013). This is done in order to enhance the reliability of the results from a weak lensing
survey, since their reliability depends on the total sky coverage and the number density
of galaxies with accurate shear measurements.

The tangential shear is computed by using equation (2.66). Equation (3.18) imple-
ments the aperture mass estimator defined in (2.76) when the filter function is the optimal
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linear filter in the real domain, defined by the Fourier transform of (3.14). In section
2.2.1 it was shown that tangential shear extracts the E-mode of the lensing shear, so the
weak lensing signal map Aest(θ) is also called E-mode map.
The second HDU in the output file is the B-mode map:

Bmap(θ) = 1
ng

∑
k

γr(θ;θk)wk Ψ(|θk − θ|). (3.19)

It is defined exactly as equation (3.18), the only difference is that is uses the radial shear
defined in equation (2.67), so it extracts the B-mode of lensing shear, that is expected to
be consistent with 0. This map is then used to check for systematic errors.
The third HDU is a map of the shear modulus variance:

σ2
g(θ) = 1

2n2
g

∑
k

|g(θk)|2w2
k Ψ2(|θk − θ|), (3.20)

that can be used as an alternative noise estimator when the local shear is comparable to
the intrinsic galaxy ellipticities (Maturi et al. 2007). It is not applied in the work of this
thesis.
The fourth HDU is the galaxy number density map on the output map.
The fifth HDU is a local normalization map, computed only if the expected weak lensing
signal from a halo is given to the program, that is the radial reduced shear profile τ(ϑ)
with ϑ angular radial distance from the halo center. The map is computed as:

Anorm(θ) = 1
ng

∑
k

τ(|θk − θ|)wk Ψ(|θk − θ|). (3.21)

To measure the correct signal and noise our estimators should be multiplied for this
normalization, but they would cancel out when computing the signal-to-noise ratio.
The sixth HDU is the noise estimate for the variance obtained as σ2 = 〈(Aest − A)2〉:

σ2
Aest(θ) = 1

2n2
g

∑
k

|γt(θ;θk)|2w2
k Ψ2(|θk − θ|). (3.22)

This noise estimate is only due to galaxy noise, to get the complete noise (with the LSS
component) we must add the constant:

CLSS = 1
2π

∫ ∞
0
|Ψ̃(k)|2Pγ(k)k dk (3.23)

The sum of equations (3.22) and (3.23) is the squared noise map. The Signal-to-noise
ratio map is defined as the signal map (3.18) divided by the square root of the squared
noise map, and it is the seventh and last HDU.
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If the calibration factors m are given then the calibration map is computed as:

cm(θ) =
∑
k(1 +mk)wk Ψ(|θk − θ|)∑

k wkΨ(|θk − θ|)
. (3.24)

The calibration is then included by dividing the equations (3.18) and (3.19) by the
calibration map and (3.20) and (3.22) by the square of the calibration map.

3.2.3 On the execution of Get the Halo 2021
A correct execution of Get the Halo 2021 from the command line requires the name
of the setup file that contains all the input parameters. If the program is executed
without it, it just prints a set of instructions on how perform a proper execution. If
the program is correctly executed then it defines an object of the class initializer that
reads the names and values of the input parameters from the setup file. Thanks to a
method initializer::get parameters those are stored in apposite variables defined in the
global namespace so they can be used by the program. A default value is given to the
optional parameters that have not been set.

After the initialization section, GtH21 must read the weak lensing data. This is done
thanks to two classes, galaxy and catalogue. The class galaxy stores the weak lensing
data of one galaxy, like its position, shear, redshift, weight and bias, and the methods
to compute the tangential and radial shear of a given point with respect to the galaxy
object. The class catalogue is instead used to hold a collection of galaxy objects, and
also to compute some useful quantities that characterise the dataset, such as the number
of galaxies, the field of view in the two sky directions, the average number density of
galaxies, the average galaxy separation, the field coverage fraction. If the lensing weights
are given then GtH21 also computes effective variants of the number of galaxies, number
density, average galaxy separation, shear modulus mean value, shear variance. If the
input parameter x is RA is set to 1 the program applies a flat sky approximation to the
sky coordinates read from the weak lensing data file. When GtH21 calls the method
catalogue::read galaxies the weak lensing data is read and stored into the galaxy objects
of the catalogue and its relevant quantities are computed.

The next step in the program execution is the setup of the filter. The filter is read
from its ASCII file by declaring and defining a CosmoBolognalib object cbl::data::Table,
that stores in vector objects the points of radial distance and filter values where the
filter is defined. When the output maps are computed the filter value used are linearly
interpolated from the values contained in the filter vector; the interpolation algorithm
requires that the radial points where the filter is sampled are all equidistant in order to
make the interpolation faster.

The filter is then stored inside apposite members of an instance of the filtering class.
This class was made to store the filter function and the halo shear profile, it contains the
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methods to compute the output maps and to interpolate the filter and the halo signal at
any radial position. When the filter is set and stored into members of the filtering object,
apposite methods compute the filter typical scale (the weighted average of the radius
with the filter) and the cut radius where the filter becomes consistent with 0. This cut
radius is always between 60′ and 120′.

A crucial step of the program is the setting of the output maps dimensions. If the input
parameters nx has been set to 0, the method filtering::optimal sampling computes nx and
ny so that the filter typical scale is sampled 5 times (this value could be changed). If nx
was not 0 it is left unchanged and ny is set to respect the field of view proportions. Once
the number of pixels of the output maps has been set, they are defined as bi-dimensional
pointers of double.

The galaxy number density map is the first to be computed thanks to a method
catalogue::make mask; it creates a grid where the number density of galaxies is defined.
This map is used as a mask, so that no computational time is spent into computing the
output maps where there are no galaxies.

Now that everything has been set, the output maps can be computed thanks to method
filtering::M ap (Aperture mass). This is the step that takes most of the computational
time.

After this step some output properties are computed, such as the mean values of the
square root of the variance map, the variance of the E-mode and B-mode maps and the
theoretical E-map variance from galaxies noise. Those and others will be saved into the
header of the primary HDU.

In the next step of the program the constant defined in equation (3.23) is computed
and added to the variance map and the signal to noise ratio map is produced.

The final step of the program is writing the output maps into the FITS file and saving
the relevant quantities about input parameters, catalogue properties and map features
into the header of the primary HDU, including WCS coordinates.

3.2.4 On the halo detection algorithm
Once the program is run, the FITS file described in section 3.2.2 is produced. A first
rapid check for detection can be done by looking at the E-map produced in the primary
HDU of the output file, or in the S/N map. The biggest haloes can be seen as spots of
high values of the E-mode estimator defined in equation (3.18) surrounded by a trough
of lower values, as can be seen in figure 3.3. This is the typical signature of the optimal
weak lensing filter, that is characterised by having a peak (that produces the peak spot)
and a slightly negative region just outside the peak (responsible for the trough). The
values of the estimator can either be positive or negative; as a general trend negative
regions tends to be more devoid of matter, while positive regions tends to contain more
matter. Of course, since the data always contain noise this is a description of a general
trend, not a fixed rule. The distribution of the E-mode values and the S/N that the
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pixels of an output map present is made up by two structures, as it is shown in figure
3.4. The first is an almost symmetrical distribution centered around 0 (if there are not
systematical errors), that is given by the pixels that contain only noise. The second is a
high-values tail that is made up by the pixels that contain the detected haloes.

Figure 3.3: Part of an output map from a set of simulated data that will be described in chapter
4. The picture shows in a grey scale the E-mode, and a large cluster shown inside a circle can
be seen as a white spot surrounded by a darker trough.

The algorithm we used relies on being able to observe the high value tail of the
detections and separate it from the noise in order to select the pixels that contain the
halo candidates. The pixels that contain noise are identified by evaluating the B-mode
on the map thanks to equation (3.19) that uses the cross shear. As described in sections
2.1.4 and 2.2.1, noise has both E and B modes, while true weak lensing signal contains
only E-mode. The distribution of the S/N of the B-mode of an output map contains the
pixel distribution around 0, but not the high values tail (the signal from the detected
haloes); it can thus define the range of signal values that can be produced just by noise.
The detection tail is found above those values.

Let us note that there are two possible operative definition of the cross shear. If we
rotate each galaxy shear by π/4 and evaluate on this data an estimator of lensing signal,
such as the one defined in equation(3.18), we get a result consistent with 0 since we
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Figure 3.4: Distribution of the values of the E-mode of an output map from simulated data
that will be described in chapter 4. Most of the pixels have values that belong to a symmetrical
distribution around zero: these are pixels corresponding to the noise. A tail at the highest
values can be seen, given by the pixels that contain the detections.

have exchanged E and B modes: after the rotation we are using the cross shear and not
the tangential shear. The rotation can either be counter-clockwise as it was computed
in equation (2.68), or clockwise, a rotation of −π/4, i.e. each galaxy is assigned a new
complex shear γ′ with components given by:

γ′1 = −γ2, γ′2 = +γ1. (3.25)

Both equations (2.68) and (3.25) can be used to define the cross shear. If we compute the
aperture mass estimators with shear catalogues rotated once by +π/4 and once by −π/4,
the two output maps will be perfectly opposites. Since the distribution of the signal we
expect from a cross shear is symmetric around zero, they can both be used to estimate
the B-mode, consistent with the noise of the E-mode. For instance, the estimator (3.19)
is defined considering the cross shear as a +π/4 rotation according to equation (2.68);
instead Umetsu (2020) acknowledges both definitions, but tends to use equation (3.25)
when talking about shear rotation and extraction of the B-mode from data.

We decided to be consistent with the convention of Umetsu (2020), hence after GtH21
produced its output, we run it again on the same set of data, with the only difference
that the shear components of each galaxy are modified according to equation (3.25). The
signal output map we get is of course perfectly opposite to the B-mode we got before,
but this new execution of the code is necessary to recompute the noise estimator (3.22)
for the cross shear map. The new S/N map we compute can be used as a noise estimator.

We define the pixels that are part of a halo candidate detection as those pixels whose
S/N is higher than a given threshold. We used two different thresholds and produced two
catalogues for each computed map. For the sake of clarity, we shall call T-map (“true”
map) the S/N map obtained using the correct shear, that extracts the E-mode described
by the tangential shear. We shall call R-map (“rotated” map) the S/N map obtained
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using the rotated shear according to equation (3.25), that extracts the B-mode described
by the cross shear. An example of the S/N distributions discussed is given in figure 3.5,
while a graphical example of the definition of the two thresholds can be seen in figure 3.6;
we defined the two thresholds as follows:

• The strong threshold is defined as the maximum of the S/N distribution of the
of the R-map. The R-map lacks the high values tail given by the haloes and it is
made up only by noise. For this reason we choose to define its maximum S/N as
the maximum S/N that can be produced by noise in a given set of data. Any pixel
above this threshold in the T-map has a S/N so high that it cannot be given by
noise and can be considered as a reliable detection.

• The weak threshold is defined to loosen up this definition. Figure 3.6 shows the
differences of the T-map minus the R-map normalised over their sum bin by bin.
When S/N increases the high values tail of the T-map makes sure that an increasing
fraction of the total number of occurrences is given by pixels in the T-map, until it
reaches 1 after the strong threshold. To define the weak threshold we consider the
bins above 0.9, we group them into contiguous bins and take the first bin of the
last group. This means that the weak threshold is the S/N value where the T-map
detections become the 90% of the total and their fraction never goes down 0.9 from
that point onward.

The pixels above the threshold are considered as the ones where there are the halo
candidates. Every area of contiguous pixels whose S/N is above the threshold is considered
as a detected candidate halo, or a detection for short. If a pixel is a square, contiguous
pixels have one side or a vertex in common. The position of the detection is the pixel
with the maximum S/N of the halo. This simple algorithm allows us to build a catalogue
of positions and S/N of candidate haloes detected through weak lensing.

55



CHAPTER 3. THE IMPLEMENTATION OF AN OPTIMAL FILTER: GET THE
HALO 2021

Figure 3.5: S/N distribution of the pixels from every region of the output maps of the simulated
catalogue discussed in chapter 4. The S/N distribution of the T-map is shown as a green
histogram, it is produced by the tangential shear. The S/N distribution of the R-map is shown
as a black histogram, it is produced by the cross shear. It is possible to see that the R-map is
approximately symmetrical around 0; that is all caused by the B-modes of the noise since there
is no lensing signal in the cross shear. The T-map shows a central distribution symmetrical
around 0 and with an extension comparable to the distribution of the R-map caused by the
E-modes of the noise plus a tail at high values that is not caused by noise but by the E-mode of
the lensing signal, i.e. by the detections. The red line is the strong threshold, the blue line is
the weak threshold.

Figure 3.6: S/N distribution of the pixels from every region of the output maps of the simulated
catalogue discussed in chapter 4, the same data shown in figure 3.5. It is shown the difference of
the counts in each bin of the T-map minus the counts in the same bin of the R-map normalised
over their sum bin by bin. The strong threshold (red line) is defined as the maximum S/N value
of the R-map, over which the S/N values are given by the lensing signal of the haloes. The
weak threshold (blue vertical line) is defined as the S/N where the T-map detections become
the 90% of the total (black horizontal line).
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Chapter 4

Forecasting the filter performances
with Euclid simulated data

In this chapter we describe the results of the application of the filter described in chapter
3 implemented through GtH21 to a simulated catalogue of ellipticities of galaxies weak-
lensed by an ensemble of dark matter haloes and the cosmic large-scale structure. They
were simulated to represent typical data that will be available thanks to the Euclid mission.
In section 4.1 we present the simulated catalogue describing how it was made, why it was
made and what are its main properties. In section 4.2 we report the results of applying
GtH21 on this catalogue when using an optimal filter initialised with a set of “standard”
parameters, used for instance in Maturi et al. (2007). We created two catalogues of
detections called catalogues A and B, that we describe in section 4.2.1. We then matched
our detections to the haloes of the simulation and we present the results of our matching
in section 4.2.2. In section 4.3 we describe the results of another application of GtH21 on
this catalogue, but with a different version of the optimal filter, initialised with a set of
“customised” parameters tailored on the properties of the simulated catalogue.

4.1 On the simulated catalogue for the Euclid test
challenge

We applied the program to a catalogue of galaxy ellipticities (shear) derived by a parent
cosmological simulation. The analysed dataset is a catalogue of galaxy ellipticities weak-
lensed by an ensemble of dark matter haloes and the cosmic large-scale structure, that was
realised to represent typical data that will be available thanks to the Euclid mission. The
simulations were produced by Carlo Giocoli, and the noise in the catalogue of ellipticities
was added by Sandrine Pires. These simulated data were produced as a part of a “test
challenge” organised inside the Euclid SWG Clusters of Galaxies and more specifically as

57



CHAPTER 4. FORECASTING THE FILTER PERFORMANCES WITH EUCLID
SIMULATED DATA

a part of the activities of its WP 10, “Weak Lensing Selected Clusters”. The goal of the
challenge is to select the best cluster detection algorithm that uses weak lensing data, by
testing several detection methods on the same dataset. It might be used to detect galaxy
clusters as a complementary algorithm to the main ones that are going to be implemented
in the Euclid data analysis pipeline. The main algorithms chosen to detect clusters in the
Euclid mission use photometric catalogues, so adding an algorithm that uses catalogues
of galaxy shear might increase the reliability of the detections if the same ones are found.
These algorithms are the Adaptive Matched Identifier of Clustered Objects (AMICO) code
based on matched filtering (Bellagamba et al. 2018) and the PZWav code based on an
adaptive wavelet approach (Euclid Collaboration et al. 2019).

The Euclid mission. Euclid (Scaramella et al. 2021) is a visible to near-infrared
space telescope currently under development by the European Space Agency (ESA) and
the Euclid Consortium; the launch is scheduled to occur at the end of 2022. See the
EUCLID website 1 for more information. The mission will investigate the distance-redshift
relationship and the evolution of cosmic structures by measuring shapes and redshifts of
galaxies and clusters of galaxies out to redshifts ∼ 2 (a look-back time of ≈ 10 Gyr). In
this way, Euclid will cover the entire period over which dark energy played a significant
role in accelerating the expansion of the Universe: the objective of the Euclid mission
is in fact to better understand dark energy and dark matter, that make up most of the
energy content of the Universe, as seen in chapter 1. In particular, Euclid is expected to
help answering questions such as:

• What is the distribution of dark matter in the Universe?

• What is the history of expansion of the Universe?

• What does this tell us about the nature of dark energy? Does the dark energy
equation of state evolve over time?

• How do large-scale structures form in the Universe?

Euclid is optimised for two primary cosmological probes:

• Weak gravitational Lensing by measuring distortions of galaxy images by mass
inhomogeneities along the line-of-sight, in order to map the dark matter distribution
and determine the effect of dark energy.

• Baryonic Acoustic Oscillations, wiggle patterns imprinted in the clustering of
galaxies on large scales, which provide a standard ruler to measure the expansion
of the Universe and the acceleration caused by dark energy.

1https://sci.esa.int/web/euclid
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Euclid will survey the sky in a “step and stare” mode: the telescope will point to a
position on the sky, with imaging and spectroscopic measurements performed on an area
of ∼ 0.5 deg2 around this position. The sensitivity is 25 mag for the visual imager and
24 mag for the near-infrared photometer. The sky coverage strategy is driven by the
wide-survey requirement to cover 15 000 deg2 of extragalactic sky (more than 35% percent
of the celestial sphere) during the mission lifetime of 6 years. Additionally, a deep survey
will be performed in three deep fields (40 deg2 in total), reaching two magnitudes deeper
than the wide survey.

The numerical simulations. The parent cosmological simulation used to produce
the simulated catalogue is the result of a dark-matter only N-body simulation, carried
out with the code GADGET-2 (Springel 2005; Springel et al. 2001a) by Carlo Giocoli.
The simulation assumes a Λ-CDM model with normalized Hubble constant h = 0.67,
dark matter density parameter ΩCDM = 0.27, baryon density parameter Ωbar = 0.05,
curvature density parameter ΩK = 0 (flat Universe), normalization of the power spectrum
of the initial density fluctuations As = 2.1265× 10−9 (used instead of σ8, the rms
density fluctuations in spheres of 8 Mpch−1), spectral index of the power spectrum of
the initial density fluctuations ns = 0.96, current temperature of the CMB radiation
TCMB = 2.7225 K, effective number of relativistic species (degrees of freedom) Neff =
3.046. The simulated box is a cube with a side length of 1 Gpch−1. It contains 10243 dark
matter particles that evolve from redshift 99 to 0. Haloes have been identified at each
redshift by using SUBFIND (Springel et al. 2001b). Aiming at studying light propagation
through an inhomogeneous universe, the authors have taken several snapshots of the
simulation at different redshifts; those snapshots have been stacked in order to construct
light-cones for the following ray-tracing analysis. The light cones of the simulations have
been built with MapSim (Giocoli et al. 2018, 2015); this method has been validated by
comparison with other programs (Hilbert et al. 2020). MapSim requires to set the desired
field of view, chosen to be a light cone with a 10 deg aperture, and the number of snapshots
ahead of time; the authors saved 43 snapshots from redshift 0 to 4. Redshift 4 was chosen
to better understand where the dynamical evolution of the matter-energy components
of the Universe starts to leave a mark in the weak lensing observables (Giocoli et al.
2015). Each snapshot consists of a cubic volume containing one realization of the matter
distribution at a given redshift. However, since they are all obtained from the same initial
conditions, these volumes contain the same cosmic structures at different stages of their
evolution, approximately at the same positions in each box. In order to avoid repetitions
of the same cosmic structures along one line-of-sight, the snapshots cannot simply be
stacked as a consecutive sequence, they need to be randomised. The randomization
process is described in Roncarelli et al. (2007). The snapshots are converted from being
three-dimensional volumes (containing one realization of the matter distribution at a given
redshift) into a two-dimensional mass distribution, by projecting the particle positions
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to the nearest pre-determined plane, maintaining their angular positions. Such planes
were used as 43 lens planes for the ray-tracing simulations. Those simulations used the
ray-tracing code GLAMER (Metcalf et al. 2014; Petkova et al. 2014). The light cone
has been populated with sources at random right ascension and declination, but with a
redshift distribution in the range [0, 3] and peaked at redshift ≈ 1, a typical distribution
that we expect to see with Euclid. The ray-tracing simulations produced as output maps
of convergence and shear. We use the shear catalogues produced by these simulations.

The simulated data. The simulated data we used consist of a catalogue of 10 801 552
galaxy positions and ellipticities, randomly distributed in one field of 10 deg × 10 deg,
with right ascension and declination both in the range [−55] deg. Their main properties
are shown in figure 4.1. The distributions of the two ellipticities components are Gaussian
with 0 mean and 0.26 standard deviation; they are shown in figure 4.1a. The redshift
distribution is shown in figure 4.1b; the median is 0.826, the quartiles are [1.207÷ 0.523],
the redshift range of the galaxies is [0, 3]. This catalogue simulates typical data that we
expect to be measured in a survey of Euclid mission. Let us note that there is a slight
difference: the wide survey of the Euclid mission is expected to detect galaxies up until
redshift ∼ 2; the simulated catalogue up until redshift 3.

The galaxies show ellipticity not only because of their own intrinsic ellipticity, but also
because of the optical deformation due to weak lensing by haloes of clusters of galaxies
simulated in the field. There are 1611 haloes in the field, their properties are shown in
figure 4.2. Their redshift distribution, shown in figure 4.2a, goes up to redshift 1. The
virial mass distribution of the haloes is shown in figure 4.2b. All the masses considered in
this chapter are M200. The haloes have masses in the range [7.4× 1013, 1.4× 1015] M� h−1,
with median 1.07× 1014 M� h−1 and quartiles at [0.86÷ 1.47]× 1014 M� h−1. There are
only 31 haloes (2% of the total) with mass > 4× 1014 M� h−1 and only 8 with mass
> 6× 1014 M� h−1. Most of the haloes have then intermediate mass; for instance, 1190
haloes (74% of the total) have mass in the range [0.75, 1.5]× 1014 M� h−1.

When GtH21 is applied on the shear catalogue it gives some extra information on the
data (before even reading the filter), such as:

• Galaxy number surface density: 30.0 arcmin−2;

• Average galaxy separation on the sky: 0.182′;

• Mean shear modulus: 0.33;

• Root mean square of the shear modulus: 0.36

• White noise from galaxies: Pε = 1
2
σ2
εs

ng
= 1.88× 10−10 rad2.

These quantities can be taken into account when setting the parameters to build the
optimal filters, as discussed in section 3.2.1.
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(a) Ellipticity distributions. (b) Sources redshift distribution.

Figure 4.1: Distributions of ellipticity and redshift of the simulated sources in the “Euclid test
challenge” shear catalogue. In figure 4.1a we show the distribution of the first (grey semi-filled
histogram) and second (black step histogram) ellipticity components. They are both gaussian
with average 0 and standard deviation 0.26, the two distribution are consistent with each other.
In figure 4.1b the redshift distribution of the simulated galaxies is shown. The first quartile,
median and third quartile of the distribution (0.523, 0.826, 1.207) are shown by the vertical
coloured lines.

(a) Haloes redshift distribution. (b) Virial mass distribution.

Figure 4.2: Distribution of redshift and virial mass (M200) of the 1611 simulated haloes in the
“Euclid test challenge” halo catalogue. The redshift distribution is shown in figure 4.2a, with
the first quartile, median and third quartile at 0.458, 0.621, 0.778 respectively as coloured lines.
The virial mass distribution is shown in figure 4.2b, with the median at 1.1× 1014 M� h−1

(green line).
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4.2 Application of a “standard” filter on the cata-
logue

We analysed the data by using an optimal filter with the following parameters:

• Lens mass: 1.0× 1015 M� h−1

• Lens redshift: 0.3

• Source redshift: 1.0.

• White galaxy noise: 1.28× 10−10 rad2.

• Beam FWHM: 0.3′.

This is a set of “standard” parameters, used for instance in Maturi et al. (2007), meant to
detect high-mass haloes that have intermediate distance between observer and sources, a
condition that increases lensing effects. This is due to the dependence of the geometrical
lensing strength on the angular-diameter distances between the observer and the lens,
the lens and the sources, and the observer and the sources (Pace et al. 2007). This
filter has cut radius 46.68′, that GtH21 extends to 60′: only galaxies closer than 60′
from a given pixel in the output maps are taken into account to compute the values
of the output statistics, as described in section 3.2.2. The average radius of this filter
is 2.2′, so each pixel is large 1/5 of this scale, i.e. 0.44′. Some information on the
numerical application on the data is given in figure 4.3. In particular, the filter used
is shown in figures 4.3a (real space) and 4.3b (Fourier space). In order to reduce the
execution time of GtH21 on the computer used for the analysis we divided the shear
catalogue into nine sub-catalogues, each one representing a different spatial region. The
division into sub-fields is shown in figures 4.3c and 4.3d. When we run the program on
each sub-catalogue we included galaxies from an extra amount of 60′ both in the right
ascension and declination to make sure that the division would not introduce border
effects in the maps. For instance, the central region of the field had RA ∈ [−1.5; 1.5] deg,
DEC ∈ [−1.5; 1.5] deg. In order to correctly compute all the estimators in every pixel of
the map, even the ones near the borders, we included in the input file all the galaxies
with RA ∈ [−2.5; 2.5] deg, DEC ∈ [−2.5; 2.5] deg. In this way we are certain that if we
processed the entire catalogue in one run we would get the same output maps.

After running the program we obtained nine output files. The E-mode and B-mode
of the output map of the central region is shown in figure 4.4 as an example of a typical
output. We then computed the strong and weak S/N thresholds above which a pixel is
assumed to contain a detection as described in section 3.2.4; this is shown in figure 4.5.
We computed the histogram of the S/N distribution of the pixels of each sub-field with
the same binning and we summed them to get the S/N distribution of the S/N of all the
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pixels of the entire field of the simulation; we did this for the T-maps and the R-maps.
The sums are then the distributions of the pixel S/N for all the regions of the simulation,
that we plot in figure 4.5a for both the T-map and the R-map. Let us remember that we
defined the strong threshold as the maximum S/N of the R-map; for our data and the
filter described in this section it is 6.871, as it is shown in panel 4.5a. In figure 4.5b we
use the same binning to plot, for each bin, the ratio between the counts of the T-map
divided by the total number of counts (T-map plus R-map). This is used to identify the
weak threshold, since we defined it as the S/N value above which the T-map detections
are always more than 90% of the total (T-map plus R-map). For our data and the filter
considered in this section it is 5.577 as it is shown in figure 4.5b.

Once the S/N thresholds were defined, we run the halo detection algorithm as described
in section 3.2.4. We defined the pixels that are part of a detected halo-candidate (detection
for short) as those pixels whose S/N is higher than a given threshold. Every group of
contiguous pixels (they must have a vertex or a side in common) whose S/N is above the
threshold is considered as a detection. The centre of the detection is assumed to be the
pixel with the maximum S/N of the group; that S/N is the S/N of the detection. With
this algorithm we have built two catalogues of detections; we included in a catalogue for
each detection its position, its S/N, the number of pixels covered by it, its area on the
sky in arcmin (computed as the number of pixels times the area of one pixel in arcmin).

Since we have two thresholds, we have built two catalogues. We shall refer to the
catalogue built with the strong threshold as catalogue A and the one built with the
weak threshold as catalogue B.
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(a) “Standard” optimal filter in real domain. (b) “Standard” optimal filter in the Fourier space.

(c) Field division: 4 sub-fields shown. (d) Field division: 5 sub-fields shown.

Figure 4.3: Application of GtH21 on the data. The “standard” optimal filter applied on the
data and discussed in section 4.2 is shown in the real space in panel 4.3a, and in the Fourier
space in panel 4.3b. The division into nine sub-fields necessary to reduce the computational
time on the machine we used is shown in panels 4.3c and 4.3d. The three ranges used are
[−5,−1.5] deg, [−1.5, 1.5] deg, [1.5, 5] deg as shown by the grey lines in both panels. They divide
the field into nine sub-fields with no superposition. When we run GtH21 on each sub-catalogue
we included galaxies from an extra amount of 1 deg to make sure that the division would not
introduce border effects in the maps. When we add the extra degree we obtain nine regions
with partial superposition, described by the nine coloured rectangles, four of which are shown
in figure 4.3c and five in figure 4.3d.
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Figure 4.4: Output maps of the central region of the simulation, the E-mode is on the left, the
B-mode on the right. They are plotted with the same colour scale. In the E-mode map it is
possible to see the typical signatures of the presence of haloes: high-value spots surrounded by
lower-value troughs. These are not present in the B-mode map, that only contains the noise
from galaxies and the large scale structure.
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(a) S/N Distribution

(b) Threshold identifier

Figure 4.5: Histograms used to define the strong and weak thresholds, as described in section
3.2.4. Panel 4.5a shows the distribution of the S/N of all the pixels of the entire field of the
simulation. The green histogram is the T-map (S/N of the E-mode, that uses the tangential
shear), the black histogram is the R-map (S/N of the B-mode, that uses the cross shear). It is
possible to see the high-S/N tail of the detections. The strong threshold is the maximum S/N
of the R-map. For our data and the filter considered in section 4.2 it is 6.871; it is shown as a
red line on both panels. In panel 4.5b we use the same binning as the upper panel to plot,
for each bin, the ratio between the counts of the T-map divided by the total number of counts
(T-map plus R-map). This is used to identify the weak threshold, since we defined it as the
S/N value above which the T-map detections are always more than 90% of the total (T-map
plus R-map). For our data and the filter considered in section 4.2 it is 5.577; it is shown as a
blue line on both panels.
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4.2.1 Catalogues A and B
Catalogue A is built with a S/N threshold of 6.871, it is made up by 122 detections.
Catalogue B is built with a S/N threshold of 5.577, it is made up by 449 detections.
Catalogue B can be thought as an extension of A at lower S/N, so we expect every
detection in A to also be found B, with the same position and S/N. The ID numbers
of the same detection in the two catalogues will in general be different, and the area of
a detection in cat. B will be larger than the area of the same detection in A, because
we are allowing pixels with S/N between the two thresholds to be considered as part of
a detection in B. It is mostly true that a detection of cat. A is also found in B, but
there are two exceptions: detections A#87 and A#97, i.e. the detections of cat. A with
ID equal to 87 and 97 respectively, are not in cat. B. This is because they are very
close to stronger S/N peaks, sources A#88 and A#96. These two sources are found in
cat. B as B#341 and B#355 respectively. Their area is so large in cat. B that they
include the pixels that produce, respectively, A#87 and A#97. Hence the pixels that
form detections A#87 and A#88 are both included in the set of pixels that make up
B#341, but the position of the detection is the one of the stronger peak, i.e. B#88. The
same goes for A#96, A#97 and B#355. We believe that detections A#87 and A#88
(same for A#96 and A#97) are probably one true detection that has been “fragmented”
by the noise and the more restrictive threshold. Our algorithm for halo detections counts
only connected pixels as a detection so it considers them to be separate, but a more
sophisticated algorithm, for instance a Friends-of-Friends, might count them as one single
source (Pace et al. 2007). We report these detections in table 4.1.

The S/N distribution of all the detections of catalogues A and B can be seen in
figure 4.6, where it becomes evident that catalogue B is an extension of A. The spatial
distribution of the detections of the two catalogues can be seen in figure 4.7, where we
also plot which detections have been matched to a simulated halo, as it is going to be
described in the following section 4.2.2.
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Table 4.1: Detection A#87, A#88, A#96, A#97 and B#341, B#355 discussed in section
4.2.1. We report the ID of the detections in their catalogues, their position, signal to noise ratio,
the area covered by each detection in pixels, their ID in the other catalogue (if they are found
in both of them). We also report if the detections have been matched with a simulated halo, as
discussed in the following section 4.2.2. The ID number of the halo in the simulated catalogue
is given as H# followed by the ID number.

(a) Catalogue B.

ID RA [deg] DEC [deg] S/N Area [pxl] ID[cat.A] Matched Halo

B#341 0.09262 2.89650 7.61784 19 A#88 -
B#355 -0.09159 3.92323 6.97951 7 A#96 H#194

(b) Catalogue A.

ID RA [deg] DEC [deg] S/N Area [pxl] ID[cat.B] Matched Halo

A#87 0.09264 2.85978 6.94219 1 - H#941
A#88 0.09262 2.89650 7.61784 3 B#341 -
A#96 -0.09159 3.92323 6.97951 1 B#355 -
A#97 -0.09160 3.93789 6.97606 1 - H#194
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Figure 4.6: Signal-to-Noise ratio distribution of all the detections in catalogues B (blue
histogram) and A (green histogram). Catalogue A has been superimposed onto B; this shows
graphically that from the S/N bin [7.0; 7.5] the two catalogues have the same detections, as we
expected from our discussion in section 4.2.1.

4.2.2 Matching catalogues A and B
For the sake of clarity, we shall refer to the dark matter haloes simulated and described
in section 4.1 as Haloes, and our candidate-halo detections in catalogues A and B as
Detections.

We matched our detections with the simulated haloes by using TOPCAT Sky algorithm
(Taylor 2005, 2006). TOPCAT matches detections of different catalogues by comparing
their position on the sky only, given a maximum distance allowed between the two. This
is the only parameter needed to match two different catalogues. In general we expect
the positions of haloes and their matched detections to be slightly different, because
GtH21 produces maps defined on a grid of points, that is different from the grid used
in the cosmological simulation to determine the position of the haloes. Thus there is a
mismatch between detections and haloes; we expect the distribution of their distance to
be approximately Gaussian. If we set a maximum distance too small then the distribution
of the distance between the haloes and their matched detections will appear abruptly
cut; if it is too large the distribution will have a peak (approximately Gaussian) plus a
small tail at high-distance values of spurious matches. The ideal value for the maximum
distance parameter is the one that allows us to see the whole peak in the distribution
without the tail of spurious matches.

We tried several values for the maximum mismatch distance of the haloes and our
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catalogues of detections on the scale of the arcmin (Pace et al. 2007), and we have chosen
the value 1.4′. When using this maximum mismatch distance TOPCAT managed to
match 100 out of 122 detections (82.0%) of catalogue A, while it matches 218 out of
449 detections (48.6%) of catalogue B. When a detection is matched to a halo it is
given the mass and redshift of the halo, while to the matched halo is given the S/N
of the detection. The distribution of the detected and matched sources can be seen
in figure 4.7. Figure 4.8 shows the detection-halo mismatch, i.e. the distance vector
between the matched detections and their halo. Figure 4.8a shows the Right ascension and
Declination components of the mismatch vectors, while figure 4.8b shows the modulus
of the vector, i.e. the distribution of the halo-detection distance. Figure 4.8a tells
us that GtH21, the detection and matching algorithms do not introduce systematic
errors in the position of the detections. In fact, the matched detections of cat. A have
average right ascension mismatch of 0.19′ ± 0.34′ (error is the standard deviation) and
average declination mismatch of −0.10′ ± 0.59′. The matched detections of cat. B have
average right ascension mismatch of 0.21′ ± 0.41′ and average declination mismatch of
−0.13′ ± 0.61′. These average shifts are all consistent with zero, so they can be neglected.
Figure 4.8b show that the distributions of the mismatch distance are peaked and without
tails, so 1.4′ is a good choice for the maximum mismatch distance allowed. The average
value (± the standard deviation) of the mismatch distance distribution is 0.64′ ± 0.31′
for catalogue A and 0.70′ ± 0.33′ for catalogue B. The distribution we see in figure 4.8b
for cat. B shows that the bin [0.6; 0.8] has less counts than [0.8; 1.0]; we expected them
to be more. This might be a fluctuation due to the poor statistics of the bins.

All the detections matched in catalogue A have been matched in catalogue B with
the same halo of the simulation, except for one detection: source A#87. We discussed
in section 4.2.1 that detections A#87, A#88 of cat. A are representative of one source
(detection B#341 of cat. B) that has been fragmented by noise, a more restrictive
threshold and our simple halo detection algorithm. These detections were described
in table 4.1. TOPCAT ’s matching algorithm does not take into account the S/N of a
detection in the matching process, but only the position of the haloes and the detections.
Halo H#941, i.e. the halo with ID number 941 in the simulated halo catalogue, is closer
to detection A#87 (distance 0.74 arcmin) than A#88 (distance 2.93 arcmin) of cat.A,
so it gets matched to A#87. In catalogue B detection B#341 has the same position
of A#88, so it can’t be matched to halo H#941 because their distance is larger than
the maximum mismatch allowed. The other set of “fragmented” sources discussed in
tables 4.1 were A#96 and A#97, B#355 (same position as A#96). Halo H#194 is closer
to detection A#97 (distance 0.36 arcmin) than A#96 (distance 0.57 arcmin), so it gets
matched to A#97. In catalogue B detection B#355 has the same position of A#96, so it
is matched to halo H#194 because their distance is smaller than the maximum mismatch
allowed. So, halo H#194 is matched to detections with different positions in cat.A and B,
while halo H#194 is matched only in cat. A. A more sophisticated matching algorithm
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that takes S/N and source extension into account would probably match them correctly.
Since these are the only “fragmented” sources and they only arise because of the simple
detection and matching algorithms we shall not consider them to be statistically relevant
for the rest of the chapter: all the other haloes matched with detections in A have been
matched with the detection in the same position in B, so we can definitively consider cat.
B as an extension of A at lower S/N.

Figure 4.7: Spatial distribution of the detections. Green circles are the detections of catalogue
A (S/N threshold 6.871). When the circle is empty the detection has not been matched, when
the circle is full it has been matched with a halo. These sources are also included in catalogue
B (S/N threshold 5.577), with the exception of the two red sources (#87 and #97) discussed
in section 4.2.1. Blue circles are the detections of catalogue B only, not found in catalogue A.
When the circle is empty the detection has not been matched, when the circle is full it has been
matched with a halo. We matched our detections with the haloes of the simulation, that have
mass in the range [0.74, 14.0]× 1014 M� h−1 and redshift in the range [0, 1].
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(a) Spatial distribution. (b) Distance distribution.

Figure 4.8: Distribution of the detection-halo mismatch. We matched our detections with the
haloes of the simulation, that have mass in the range [0.74, 14.0]× 1014 M� h−1 and redshift in
the range [0, 1]. In panel 4.8a we show the distribution of the right ascension and declination
components of the mismatch vector, defined as the position of the detection minus the position
of its matched halo. Green circles are the detections found in both catalogues A and B, blue
circles only in B, red only in A. We also plot circles of fixed radius around (0, 0) increasing
the radius by 0.2: the counts in each annulus are the heights of the bins shown in panel 4.8b.
There we show the distribution of the modulus of the mismatch, i.e. the detection-halo distance.
The green step-histogram is relative to cat. A, the blue step-histogram is for cat. B. Their
maximum value is 1.4′, the limit set for the matching algorithm. The average and standard
deviation of the distributions are 0.64′ ± 0.31′ for cat. A and 0.70′ ± 0.33′ for cat. B; we show
the Gaussian fit of each histogram.
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Signal-to-noise ratio

The distribution of the S/N can be seen in figure 4.9 for both catalogues A and B.
They show that most of the unmatched detections are introduced when we lower the
detection threshold from 6.871 to 5.577. To be more precise, 210 out of the 231 unmatched
detections in catalogue B have S/N < 6.871. Thus S/N' 7 can be considered as a reliable
threshold to detect haloes through weak lensing: 88 out of the 107 detections of catalogue
B with S/N > 7 are matched. This is consistent with the results of Pace et al. (2007) who
found that detections with S/N values greater than ≈ 5÷ 8 obtained with the optimal
linear matched filter of Maturi et al. (2005) can be considered as reliable detections.

We consider an unmatched detection as a spurious detection, while we consider a
matched detection as a “true” or “pure” detection. This is not the most rigorous definition,
since in general spurious detections are peaks caused by noise and true detections are
peaks caused by real haloes of the simulations. Since the matching algorithm we used
only compares the position of haloes and detections, it is not impossible that a random
peak caused by a noise fluctuation happens to arise near a halo and is matched to it.
We do not expect this to be a relevant problem because several works (Maturi et al.
2005, 2007; Pace et al. 2007) have extensively discussed this topic and shown that the
optimal filter discussed in section 3.1.3 is built to maximise the S/N ratio and minimise
the spurious detections caused by the large-scale structure, which is the main source
of spurious detections. A thorough method to investigate the purity of a catalogue is
described by Pace et al. (2007): when a detection is found and matched with a halo of a
simulation the authors removed that halo from their catalogue, produced new shear map
without the halo and run their program once again. If the detection disappeared it was
really caused by the halo (the detection was true), while if it remained then it was caused
by the noise (the detection was certainly spurious). We had no access to the simulations,
so we could not change them and apply this method.

The purity of catalogues A and B, i.e. the percentage of matched detections in our
catalogues, is shown in figure 4.10 where we plot the fraction of matched detections
with S/N above a given value. The S/N values at which we compute the points are the
lowest end of the bins used in figure 4.9. Above S/N' 7.0 the percentage of matched
detections is always above 83%, so this can be considered as a reliable S/N value for the
construction of a catalogue. This is consistent with the results of Pace et al. (2007) who
found that detections with S/N values greater than ≈ 5÷ 8 obtained with the optimal
linear matched filter of Maturi et al. (2005) can be considered as reliable detections.

The unmatched sources with high S/N are probably spurious detections caused by
the large scale structure. Although the optimal filter can minimise the contamination
from the large scale structure, as discussed throughout chapter 3, it is not possible to
completely eliminate the contamination from the large scale structure since the boundary
between it and the virialized haloes is not sharp. Roughly speaking, ≈ 17% of the
detected haloes with S/N > 7 might be spurious peaks caused by weak lensing from the
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large scale structure.
In figure 4.11 we show the S/N distribution of the matched detections as a function of

mass and redshift for catalogues A (figure 4.11a) and B (figure 4.11b). We have chosen a
not uniform binning in order to visualise the same mass and subsets that we are going to
use later in this section in figures 4.14a, 4.14b and 4.19. The bins are separated at masses
[1, 2, 4]× 1014 M� h−1 and redshifts [0.2, 0.4, 0.6]. Figures 4.11a and 4.11b show that we
find detections with higher S/N in bins of redshift ∈ [0.2; 0.4] and mass > 4× 1014 M� h−1.
This suggests that our linear filter is optimised to detect haloes with these redshifts and
masses. It selects preferentially the haloes around the lens redshift used to build the filter
(0.3 in this case) and those haloes with redshift between 0.2 and 0.4 ÷ 0.5, that have
an intermediate distance between observer and nearby background sources, condition
that maximises the lensing effects (Pace et al. 2007). This reflects the dependence of
the geometrical lensing strength on the angular-diameter distances between the observer
and the lens, the lens and the sources, and the observer and the sources. This result is
consistent with what we are going to find in the rest of the chapter.
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(a) Catalogue A. (b) Catalogue B.

(c) Catalogues A and B.

Figure 4.9: Distribution of the signal to noise ratio for all the detections and the matched
detections of the two catalogues. Catalogue A is shown in panel4.9a, catalogue B is shown in
panel 4.9b. They are both shown in panel 4.9c for a direct comparison. These histograms
show graphically that the two catalogues have the same detections and matches starting from
the S/N bin [7.0; 7.5]. We matched our detections with the haloes of the simulation, that have
mass in the range [0.74, 14.0]× 1014 M� h−1 and redshift in the range [0, 1].
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Figure 4.10: Percentage of matched detections above a given S/N. For instance, 90.4% of the
detections with S/N > 9.50 are matched in both catalogue A and B.

(a) Catalogue A. (b) Catalogue B.

Figure 4.11: S/N ratio distribution of the matched detections as a function of mass and redshift.
We plot the average S/N of the matched detections of catalogue A (panel 4.11a) and B (panel
4.11b) in each bidimensional bin. In both catalogues the average S/N is higher when the
redshift is ∈ [0.2; 0.4] and the mass is > 4× 1014 M� h−1.
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Redshift

The redshift distribution of the matched haloes with respect to that of all the simulated
haloes is shown in figure 4.12, while figure 4.13 shows the percentage of matched haloes
for each redshift bin of figure 4.12. The median redshift of the matched detections is
0.35 with quartiles 0.26 ÷ 0.48 for catalogue A and 0.32 with quartiles 0.25 ÷ 0.41 for
catalogue B, while the median redshift of all the simulated haloes is 0.62 with quartiles
0.46 ÷ 78. We find here further proof of a result we first saw during our discussion of
the S/N properties at page 74: the filter is not capable to detect the haloes with the
same efficiency at any redshift, it selects preferentially the haloes around the lens redshift
used to build the filter (0.3 in this case) and those haloes that have an intermediate
distance between observer and nearby background sources, condition that maximises
the lensing effects. This reflects the dependence of the geometrical lensing strength
on the angular-diameter distances between the observer and the lens, the lens and the
sources, and the observer and the sources (Pace et al. 2007). The completeness of our
catalogues, i.e. the percentage of matched haloes, has a peak extended from redshift
≈ 0.15 to ≈ 0.35, as it is shown in figure 4.13. Another observation from this figure is
that completeness systematically increases in catalogue B; this suggests that lowering
the threshold introduces a relevant fraction of reliable detections despite the matching
fraction of the overall catalogue decreases.

The filter does not just detect haloes with a privileged redshift, the mass of the
halo is also relevant. In particular, we expect the completeness to be related to the
mass: at a given redshift, more massive lenses are expected to produce stronger lensing
signal. We investigate the interplay between mass and redshift in figure 4.14, that plots
the catalogues completeness as a function of redshift, with different cuts in mass. In
particular in figure 4.14a we have plotted the completeness of catalogue A as a function
of redshift for 4 subset of haloes: haloes with virial mass < 1× 1014 M� h−1, haloes with
mass ∈ [1; 2]× 1014 M� h−1, haloes with mass ∈ [2; 4]× 1014 M� h−1 , haloes with mass
> 4× 1014 M� h−1. We do the same in figure 4.14b for catalogue B. Figure 4.14c shows
the completeness of catalogue A as a function of redshift for the haloes with 4 different
cuts in mass: haloes with mass > 4× 1014 M� h−1, haloes with mass > 2× 1014 M� h−1,
haloes with mass > 1× 1014 M� h−1, all the haloes. We do the same in figure 4.14d for
catalogue B. These plots also confirm the existence of a peak extended around redshift
≈ 0.15÷ 0.35 and that the completeness of catalogue B is higher than catalogue A, hence
using the weak threshold can actually improve the completeness of our catalogue. They
also show that, as a general trend, when the mass increases the matching percentage
increases too, although this is not always the case as there are some exceptions. Mainly,
the massive haloes > 4× 1014 M� h−1 show significant fluctuations due to their small
number: at z < 0.2 and z > 0.6 not every massive halo is detected; we might even detect
smaller percentages than the lower mass haloes. A possible explanation lies in the poor
statistics of these haloes: they are only 31, so a high background noise fluctuation that
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lowers the S/N might be responsible not detecting some massive haloes, with a resulting
strong loss of percentage. Let us also note that we match 18 haloes in cat. A and 21 in
B out of the 31. As an alternative, losing massive haloes at low and high redshift might
also be a suggestion that some of the lower mass matched detections might actually be
random matches between a halo and a spurious detection caused by noise. Figure 4.14
also shows that the peak of completeness around redshift ≈ 0.15÷ 0.35 is always found,
confirming that the efficiency of detecting haloes has a strong dependence on the halo
redshift.

The distribution of the matched haloes with respect to all the haloes as a function of
both mass and redshift is plotted in figure 4.15, where it becomes clear that most of the
matched detections have intermediate redshift ≈ 0.2÷ 0.4 and intermediate-high mass
> 2× 1014 M� h−1. The distribution in figure 4.15 is turned into maps of completeness in
figure 4.16. In order to realise them we divided, for each bidimensional bin, the number of
matched haloes in catalogues A (figure 4.16a) and B (figure 4.16b) by the total number
of simulated haloes. We have chosen a not uniform binning in order to visualise the
same mass subsets used in figures 4.14a and 4.14b and the same redshift subsets that
we are going to use in figure 4.19 later in this section. The bins are divided at masses
[1, 2, 4] × 1014 M� h−1 and redshifts [0.2, 0.4, 0.6]. These plots show that completeness
increases in the region of intermediate redshift ≈ 0.2÷ 0.4 and intermediate-high mass
> 2× 1014 M� h−1.

(a) Catalogue A (b) Catalogue B

Figure 4.12: Redshift distribution of the matched detections and total simulated haloes.
We matched our detections with the haloes of the simulation, that have mass in the range
[0.74, 14.0]× 1014 M� h−1 and redshift in the range [0, 1].
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Figure 4.13: Catalogue completeness (percentage of matched haloes) as a function of redshift
in catalogue A (green line) and B (blue line). This includes all the haloes of the simulation,
that have mass in the range [0.74, 14.0] × 1014 M� h−1. To get these points we divided the
number of matched haloes by the total number of haloes in each redshift bin used in figure 4.12,
and we placed the points at the center of their bin. There is a clear peak extended between
redshift ≈ 0.15 and ≈ 0.35 in both the catalogues: the filter does not detect the haloes with
the same efficiency at any redshift, but it selects preferentially the haloes around redshift 0.3.
The matching percentage increases in catalogue B; this suggests that lowering the threshold
introduces a relevant fraction of reliable detections.
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(a) Catalogue A, mass subsets. (b) Catalogue B, mass subsets.

(c) Catalogue A, mass cuts. (d) Catalogue B, mass cuts.

Figure 4.14: Catalogue completeness (percentage of matched haloes) as a function of redshift, by
virial mass. In Panels 4.14a (cat. A) and 4.14b (cat. B) we plot the catalogue completeness
as a function of redshift for 4 subsets of the halo catalogue according to their mass; in Panels
4.14c (cat. A) and 4.14d (cat. B) we do the same for 4 subsets with different cuts of mass. As
a general trend completeness increases with mass and it is higher in cat. B than A. The main
exceptions are the massive haloes > 4× 1014 M� h−1, that show significant fluctuations due to
their small number. These plots too show a peak extended around redshift ≈ 0.15÷ 0.35.
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Figure 4.15: Distribution of the haloes as a function of Mass and Redshift. Grey crosses are all
the simulated haloes. Blue circles are the matched detections of catalogue B, superimposed to
the cross of their halo. Green circles are the matched detections of catalogue A, superimposed to
their counterparts in catalogue B and halo. The grey crosses still visible are then the haloes not
matched with catalogue B. Most of the matched haloes have intermediate redshift ≈ 0.2÷ 0.4
and intermediate-high mass > 2× 1014 M� h−1.
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(a) Catalogue A. (b) Catalogue B.

Figure 4.16: Percentage of matched haloes (completeness) as a function of mass and redshift
for the two catalogues. Each bidimensional bin shows the percentage of matched detections
(over all the simulated haloes) in that bin, for cat. A in panels 4.16a and for cat. B in panels
4.16b. Most of the haloes with intermediate redshift ≈ 0.2÷ 0.4 and intermediate-high mass
> 2× 1014 M� h−1 are matched.

Virial Mass

The virial mass distribution of the matched detections is shown in figure 4.17, where it
is compared with the distribution of all the simulated haloes. These histograms show
that not every mass can be detected with the same efficiency: in units of 1014 M� h−1 the
median mass of the simulated haloes is 1.07 with quartiles 0.86÷ 1.47, while the median
mass of the matched detections is 2.07 with quartiles 1.44÷ 3.33 in catalogue A and 1.78
with quartiles 1.14÷ 2.46 in catalogue B. They also show that not every massive halo
produces a lensing signal so strong to be always detected: the second most massive haloes
of the simulation (halo H#12) is detected and matched only in catalogue B; the third
most massive (halo H#1) is not detected in either of them. They are described in table
4.2. This can be probably attributed to their high redshift: halo H#12 has redshift 0.55,
near the peak of completeness, halo H#1 has redshift 0.89, far away from the peak. The
detection of H#12 only in catalogue B is one example of the perks of using the weak
threshold: it introduces many spurious detections, but increases the number of detection
and matches at high redshift, as it was shown in figure 4.13.

Figure 4.18 describes catalogues A and B completeness, i.e. the percentage of matched
haloes, as a function of the virial mass of the haloes. The points shown in figure 4.18a
are found by dividing the number of matched haloes in the mass bins of figure 4.17 by
the number of all the simulated haloes in that bin. A “cumulative” version of figure
4.18a can be seen in figure 4.18b, showing the percentage of matched detections with
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Table 4.2: Second and third most massive haloes of the simulation. The second is detected
only in catalogue B, the third in neither of them. We report their ID in the simulated halo
catalogue, their position in it, mass, redshift and the ID and S/N of the detection of catalogue
B with which they have been matched.

ID [sim.] RA [deg] DEC [deg] Mass
[
M� h−1

]
Redshift ID [B] S/N

H#12 2.9990 0.2390 1.02× 1015 0.55 B#257 6.393
H#1 1.5005 -3.9082 8.71× 1014 0.89 - -

virial mass above a given value. At 4× 1014 M� h−1 we reach 68% of completeness for
catalogue B. The percentages are steadily growing functions of the mass until we get to
5× 1014 M� h−1; after that the poor statistics makes them subject to strong fluctuations.
Those are responsible for the dips in completeness that can be seen at (7÷8)×1014 M� h−1:
there are only 5 haloes in total with mass > 7× 1014 M� h−1; one of them, the second
most massive halo, is detected only in A. The other one, the third most massive halo,
is lost in both catalogues because of its high redshift. The completeness is lower for
catalogue A, another confirmation that using the weak threshold can in fact improve the
catalogue completeness.

We have already seen that the redshift is a crucial quantity in the detection process of
halo: we expect the completeness to be higher at intermediate redshift. For this reason
we have plotted in figure 4.19 the completeness of our catalogues as a function of mass or
above a given mass after we had divided the haloes in four subsets according to their
redshift: z < 0.2, 0.2 < z < 0.4, 0.4 < z < 0.6, z > 0.6. In particular we plot the
completeness as a function of mass in figures 4.19a (catalogue A) and 4.19b (catalogue B);
we have used the same binning of figure 4.18 since we are basically splitting its plots into
three redshift subsets. We plot completeness above a given virial mass in figures 4.19c
(cat. A) and 4.19d (cat. B). For z < 0.2 and z > 0.6 our filter does not find many haloes,
hence the completeness above a given mass never goes above 55%. On the contrary, for
haloes with 0.2 < z < 0.4 the matching percentage above a given mass increases when the
mass increases, is always above ≈ 20% for cat. A and ≈ 40% for cat. B and it reaches
100% completeness at mass 5× 1014 M� h−1 (cat. B) and 6× 1014 M� h−1 (cat. A). For
haloes with 0.4 < z < 0.6 the matching percentage above a given mass increases when the
mass increases, but at 4× 1014 M� h−1 its behaviour is different in the two catalogues: it
decreases in cat. A and it reaches and stays at 100% completeness in B. We thus once
again conclude that the filter is optimised for searching haloes at 0.2 < z < 0.4. The
filter can still detect the majority of haloes with 0.4 < z < 0.6, especially if they are not
too small (> 3× 1014 M� h−1). The filter becomes less effective in detecting haloes at
z > 0.6; fluctuations in the curves are mostly due to small statistics.
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(a) Catalogue A (b) Catalogue B

Figure 4.17: Distribution of the virial mass M200 for the matched haloes of catalogue A (panel
4.17a), B (panel 4.17b), and all the simulated haloes, that have redshift ∈ [0, 1]. Note that
the second most massive halo is detected and matched only in catalogue B, while the third is
lost in both catalogues. This can be probably attributed to their high redshift (0.55 and 0.89
respectively) that causes them to have a lower S/N.

(a) Percentage of matched haloes as a function of
the virial mass.

(b) Percentage of matched haloes above a given
virial mass.

Figure 4.18: Percentage of matched haloes as a function of the virial mass (panel 4.18a) and
above a given virial mass (panel 4.18b), for all the redshift of the haloes (z ∈ [0, 1]). The
points are placed at the lower end of the bin used to compute them, as discussed in section 4.2.2.
Both graphs show that the catalogue completeness increases when the mass increases. The
percentages at masses higher than > 7× 1014 M� h−1 are computed on a very small number of
haloes, hence they are subject to strong fluctuations and a dip in percentages due to losing the
third most massive halo of the simulation (and the second too in catalogue A).
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(a) Percentage of matched haloes as a function of
the virial mass, by redshift, catalogue A.

(b) Percentage of matched haloes as a function of
the virial mass, by redshift, catalogue B.

(c) Percentage of matched haloes above a given
virial mass, by redshift, catalogue A.

(d) Percentage of matched haloes above a given
virial mass, by redshift, catalogue B.

Figure 4.19: Percentage of matched haloes as a function of the virial mass, by redshift. These
graphs show how the completeness of the catalogues changes as a function of halo redshift. The
sources with redshift z ∈ [0.2; 0.6] have the highest matching percentages; this is caused by the
peak in detection efficiency of the filter as a function of redshift. Another notable trend is that
the matching percentage tends to increase as a function of the halo mass, although there are
fluctuations given by the poor statistics.
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4.3 Application of a “Customised” filter on the cata-
logue

We analysed again the data by using an optimal filter with the following parameters:

• Lens mass: 1.0× 1015 M� h−1

• Lens redshift: 0.60

• Source redshift: 0.83.

• White galaxy noise: 1.88× 10−10 rad2.

• Beam FWHM: 0.18′.

This is a set of parameters “customised” on the properties of our catalogue of simulated
ellipticities: the lens and source redshift are set exactly equal to the median values
respectively of the haloes and galaxies redshift distributions, the beam FWHM is the
average galaxy distance and the level of the white galaxy noise is exactly equal to the
one of the catalogue, as described in section 4.1. This filter has cut radius 45.33′, that
GtH21 once again extends to 60′. The average radius of this filter is similar to the one of
the “standard” filter, 2.19′, so each pixel is large 1/5 of this scale, i.e. 0.44′, as for the
“standard” filter. We show the customised filter used in figure 4.20, in the real space in
figure 4.20a and in the Fourier space in figure 4.20b; we also show the standard filter of
section 4.2 for comparison. The two filters are very similar, so we expect the results of
the customised filter to be similar to the ones of the standard filter. Their main difference
is the redshift of the lens: by using the customised filter we hope to improve the detection
of haloes with redshift ≈ 0.6. We decided to change the lens redshift because Maturi
et al. (2007) had already shown that the optimal filter was stable against changes of
the filter size given by the halo mass, due to the shape control of the filter imposed by
the noise power spectrum. We run GtH21 and analysed the results exactly as we did in
section 4.2. We report in this section the main difference with those results; full analysis
is reported in appendix B.

After running GtH21 we studied the distribution of the S/N of the T-map and R-map
and we computed the strong and weak S/N thresholds above which a pixel is assumed to
contain a detection as described in section 3.2.4 and as we already did in section 4.2. We
obtained 7.036 as the strong threshold and 5.614 as the weak threshold. We used them
to build two catalogues: catalogue C is the one built with the strong threshold and it is
made up by 96 detections; catalogue D the one built with the weak threshold and it is
made up by 426 detections. Every detection in C has an equivalent detection in D, with
the same position and S/N but a smaller area and a different ID number. We matched
our detections in catalogues C and D with the simulated haloes by using TOPCAT
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Sky algorithm once again, with a maximum mismatch distance of 1.5′. When using
this maximum mismatch distance TOPCAT matched 81 out of 96 detections (84.4%) of
catalogue C and 221 out of 426 detections (51.9%) of catalogue D. All the halos matched
with a detection in catalogue C have been matched with the equivalent detection in D,
except for one: halo H#861 has been matched to detections C#23 and D#99, despite
C#23 being the equivalent of D#100. We believe that D#99, a single-pixel detection, is
either a weaker part of detection D#100 that has been fragmented due to noise, or a
spurious peak that happens to arise between D#100 and H#861. See appendix B for a
more accurate discussion of these detections.

(a) “Customised” optimal filter in real domain. (b) “Customised” optimal filter in the Fourier space.

Figure 4.20: Application of GtH21 on the data. The “Customised” optimal filter applied on
the data and discussed in section 4.3 is shown in the real space in panel 4.20a, and in the
Fourier space in panel 4.20b, as red lines. The green dashed curves show the “Standard” filter
discussed in section 4.2 for comparison. The “Customised” optimal filter is very similar to the
Standard filter, their main difference is the higher central normalization in the real space. We
thus expect the results of the customised filter to be similar to the ones of the standard filter.

In figure 4.21 we show the percentage of matched detections with S/N above a given
value. In order to plot them we computed the total number of detections and number
of matched detections above a given S/N in each of our catalogues and divided them.
For S/N> 7.0 the percentage of matched detections is always above 85% for catalogue
C, so this can be considered as a reliable S/N value for the construction of a catalogue,
confirming the results of Pace et al. (2007). The curve of catalogue D is lower because of
source D#100, so we consider the curve of catalogue C to better represent our results
after S/N= 7.5. A purity of 100% is reached for sources with S/N > 10.5. There are no
strong differences between the results of the two filters: for both filters purity increases
as a function of S/N and reaches 100% at S/N≈ 10.5÷ 11.
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Figure 4.21: Percentage of matched detections with S/N above a given value. We computed
the total number of detections and number of matched detections above a given S/N in each
of our catalogues and divided them. Orange is cat. C, light blue is cat. D; we also plotted a
green line for cat. A and a dark blue line for cat. B for comparison. After S/N= 7.0 the dark
blue curve of cat. B is equal to the green curve of cat. A, superimposed onto it. The same is
true for catalogues C and D after S/N= 9.5.

We plot the completeness of our catalogues, i.e. the percentage of matched haloes, as
a function of redshift in figure 4.22. As we found for catalogues A and B in section
4.2.2 there is a clear peak of completeness extended from redshift ≈ 0.15 to ≈ 0.35,
and completeness systematically increases in the catalogue with lower threshold (cat.D).
The filter preferentially selects haloes at intermediate distances between the observer
and the sources, because of the dependence of the geometrical lensing strength on the
angular-diameter distances between the observer and the lens, the lens and the sources,
and the observer and the sources (Pace et al. 2007). This can also be seen if we look
at the median redshifts of the matched halos: for catalogue C it is 0.33 with quartiles
0.25 ÷ 0.40, for catalogue D it is 0.35 with quartiles 0.26 ÷ 0.49, for all the simulated
haloes is 0.62 with quartiles 0.46÷ 0.78. Although we expected the customised filter to
perform better than the standard one at redshift ≈ 0.6 this is not the case: there are no
strong differences between the results of the two filters. This can be attributed to the
fact that the weak lensing effects of haloes at z ' 0.6 on the background galaxies are
not intrinsically strong as they would be if they were at z ' 0.3, where we find most of
the haloes we detect. Let us note that the curve for cat. C is systematically lower than
the one for cat. A; this might be attributed to the fact that C was built with a more
restrictive threshold than A and it thus it is able to detect and consequently match less
haloes than A.
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Figure 4.22: Percentage of matched haloes as a function of redshift. In orange cat. C, in
light blue cat. D; we also plotted a green line for cat. A and a dark blue line for cat. B for
comparison. The most notable feature of the plot is the peak of completeness extended from
redshift ≈ 0.15 to ≈ 0.35.
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The completeness of the catalogues as a function of mass is shown in figure 4.23, where
we plot the percentage of matched detections with virial mass above a given value. The
percentages are steadily growing functions of the mass until 4× 1014 M� h−1, where
catalogue D reaches 65% completeness; after that they are subject to strong fluctuations
due to the small number of the high-mass haloes. There are in fact only 5 haloes in total
with mass > 7× 1014 M� h−1; catalogue C does not detect three of them (H#12, H#1,
H#194) while D does not detect H#1. These haloes are not matched probably because
of their high redshift, 0.55 for H#12 and 0.89 for H#1, and the more restrictive S/N
threshold of catalogue D for H#194. Those are responsible for the dips in completeness
that can be seen at high mass values. This prevents the completeness functions from
reaching 100% but in the last bin (due to the detection of the most massive halo of
the simulation in both catalogues). The completeness is lower for catalogue C, another
confirmation that lowering the threshold can in fact improve the catalogue completeness.
The curves of catalogues B and D do not show notable differences; the curve of catalogue
C is systematically lower than catalogue A. This might be attributed to the higher
threshold of cat. C.

Figure 4.23: Percentage of matched haloes with virial mass above a given virial mass. In orange
cat. C, in light blue cat. D; we also plotted a green line for cat. A and a dark blue line for cat.
B for comparison. The percentages at higher masses than > 7× 1014 M� h−1 are computed
on a very small number of haloes, hence they are subject to strong fluctuations and a dip in
percentages due to losing some of the most massive haloes of the simulation,

The analysis we carried out in the current section showed that, although we expected the
customised filter to perform better than the standard one at redshift ≥ 0.5 this is not
the case; we were not able to detect significant differences between the results of the two
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filters that could be attributed to changing the lens redshift. This probably happened
because the weak lensing effects of haloes at z ' 0.6 on the background galaxies are not
intrinsically strong as those of the haloes at z ' 0.3, where we find most of the haloes we
detect, even for a catalogue of ellipticities deep as ours and representative of the weak
lensing data that Euclid is going to measure.
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Conclusion and future perspectives

We developed a new version of the Get the Halo code realized more than fifteen years ago
by Matteo Maturi, Get the Halo 2021, that implements the “optimal” linear matched filter
defined by Maturi et al. (2005). Our code is compatible with the 2017 standard of the C++
language and it replaces the astrocpp library with the CosmoBolognalib libraries (Marulli
et al. 2016). We applied it to a catalogue of simulated galaxy ellipticities weak-lensed by
a catalogue of simulated halos. They were simulated to represent typical data that will
be available thanks to the Euclid mission, hence we our analysis can forecast the filter
performances on the weak lensing data that are going to be measured by Euclid.

We built two main catalogues of detections, catalogues A and B in section 4.3, that
we matched with the catalogue of simulated halos in order to evaluate their purity and
completeness. Our results confirms the expectations on the filter performance raised by
Maturi et al. (2005) and Pace et al. (2007).

The first prediction we were able to confirm is that a value of the S/N≈ 7 can be
considered as a reliable threshold to detect haloes through weak lensing. For instance,
we noted that ' 83% of our detections with S/N> 7 were matched. The remaining
17% might instead be spurious detections caused by weak lensing from the large-scale
structure. The purity of our catalogues increases as a function of S/N and reaches 100%
at S/N ≈ 10.5÷ 11.

Another relevant prediction that we were able to confirm is that the filter selects
preferentially the haloes with redshift between 0.2 and 0.5, that have an intermediate
distance between observer and nearby background sources, condition that maximises the
lensing effects. This reflects the dependence of the geometrical lensing strength on the
angular-diameter distances between the observer and the lens, the lens and the sources,
and the observer and the sources. We saw this several times during our analysis, for
instance when we noted that the average S/N of the matched detections is higher when
their redshift is ∈ [0.2, 0.4] and their mass is 2× 1014 M� h−1. A consequence of this
selection effect of the filter was that the completeness of our catalogues always showed
a peak for redshifts approximately between 0.2 and 0.4. The completeness function is
related to the mass of the matched haloes: we found that the percentage of matched
haloes above a given mass is a steadily growing function of the mass until we reach
(4÷ 5) M� h−1, where it reaches values ≈ 68% for catalogue B and ≈ 58% for catalogue
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A. After (4 ÷ 5) M� h−1 the small number of haloes in our simulations causes strong
fluctuations in the completeness.

We applied again the filter initialised with a different set of parameters (the main
parameter we changed was the lens redshift, increased from 0.3 to 0.6), and we built two
other catalogues of detections, catalogues C and D in section 4.3. Although we hoped to
improve the filter performances at z ≥ 0.5, we did not find relevant differences with the
first filter. This can be attributed to the fact that the weak lensing effects of haloes at
z ' 0.6 on the background galaxies are not intrinsically strong as those of the haloes at
z ' 0.3, even for data as deep as the ones we analysed, representative of the weak lensing
data that Euclid is going to measure. We were still able to confirm the expectations of
Maturi et al. (2005) and Pace et al. (2007).
Our work is part of the “test challenge” organised inside the Euclid SWG Clusters of
Galaxies and more specifically as a part of the activities of its WP 10, “Weak Lensing
Selected Clusters”. The goal of the challenge is to select the best cluster detection
algorithm that uses weak lensing data, by testing several detection methods on the
same dataset. The challenge is going to take place during the rest of 2021 and into
2022. We are still in the early phases of the challenge, hence we were allowed to match
our detections with the simulated haloes; this will not be allowed during later phases,
when the algorithms will be subject to blind testing. Our results are the very first to be
produced and presented, so the other participants of the challenge will need to compare
their algorithms and results to the ones shown in this thesis. The best algorithm might
be used to detect galaxy clusters as a complementary algorithm to AMICO and PZWav
in the Euclid data analysis pipeline, chosen to identify galaxy clusters in photometric
data (Euclid Collaboration et al. 2019). Our code has an intrinsic advantage over any
other: it is a optimal linear matched filter just like AMICO (Bellagamba et al. 2018);
their difference is that AMICO uses photometric data while GtH21 uses weak lensing
catalogues of galaxy ellipticities. Since they have the same properties they can be used
together when both photometric and weak lensing data are available: their likelihoods can
be summed (Bellagamba et al. 2018) so that the S/N of the common detections increases.
Using them together might then have two consequences: improving the significance of the
detections of AMICO and raise the total number of detections, because the S/N of some
detections might increase over the minimum threshold required. The final objective of
our algorithm GtH21 might then be to enhance the reliability of AMICO and the entire
Euclid data analysis pipeline.
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Desidero infine dedicare un ringraziamento e un pensiero ai miei familiari.
Devo loro tutto.
Ai miei genitori, Evelina e Carmelo, che hanno sempre posto me prima di ogni loro
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Appendix A

Setup parameters of Get the Halo
2021

We report here the full list of the parameters that must be given to GtH21 through a
single setup file, as described in section 3.2.1. The setup file must be a text file where
each line is structured according to example (3.17). A typical setup file contains the
following parameters:

• DATA FILE IN: directory and name of the file that contains the input data, it is
the first input file discussed above. It is an ASCII file with HEAD LINES lines of
header, and then a table of weak lensing data. This is mandatory, with no default
value.

• HEAD LINES: number of header lines to be skipped when reading the file. This
is required by the CosmoBolognalib libraries that read the data from the input file
and store them in an object of the class cbl::data::Table. This is mandatory, with
no default value.

• FLG X: number of the column that contains the first sky coordinate, in arbitrary
units. This is mandatory, with no default value.

• FLG Y: number of the column that contains the second sky coordinate, in arbitrary
units. This is mandatory, with no default value.

• FLG G1: number of the column that contains the first ellipticity component,
adimensional. This is mandatory, with no default value.

• FLG G2: number of the column that contains the second ellipticity component,
adimensional. This is mandatory, with no default value.

• FLG W: number of the column that contains the ellipticity weight. This is optional,
to ignore set to −1 (default) or remove the parameter line.
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• FLG ZS: number of the column that contains the redshift. This is optional, to
ignore set to −1 (default) or remove the parameter line.

• FLG M: number of the column that contains the shear correction bias. This is
optional, to ignore set to −1 (default) or remove the parameter line.

• X FAC: the program works in arcminutes, so this is the factor that converts the
first sky coordinate from the units used in the column FLG X into arcminutes (for
instance 60.0 if given in degrees). This is optional, to ignore set to 1.0 (default) or
remove the parameter line.

• Y FAC: The program works in arcminutes, so this is the factor that converts the
second sky coordinate from the units used in the column FLG Y into arcminutes
(for instance 60.0 if given in degrees). This is optional, to ignore set to 1.0 (default)
or remove the parameter line.

• X IS RA: Usually the first sky coordinate is the right ascension RA, the second is
the declination DEC. If the first is RA this must be set to 1, so that the program
converts RA into angular degrees on a flat sky approximation. This is optional, to
ignore set to 0 (default) or remove the parameter line.

• DIR OUT: Directory where we want to create the output maps file. This is
optional, to ignore set to “./” (default) or remove the parameter line.

• NAME OUT: name of the output file.

• NX: Number of x-pixels that compose the output map. This is optional, to ignore
set to 0 (default) or remove the parameter line; in this case it will be automatically
determined. The number of y-pixels will be determined by GtH21 so that the ratio
between the numbers of x and y pixels is equal to the ratio between the field of
view along x and y.

• KER FILE: directory and name of the file that contains the filter function in the
real domain. It is an ASCII file with HE LI KER lines of header, then a table of
data. Each row is a point where we evaluate the filter function; the column features
are the radial distance from zero at which the filter is evaluated and the value of
the function in that point. This is mandatory, with no default value.

• COL KER R: number of the column of the radial position, in arcminutes. This is
mandatory, with no default value.

• COL KER: number of column of the filter value. This is mandatory, with no
default value.
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• HE LI KER: number of header lines to be skipped when reading the file with the
CosmoBolognalib class cbl::data::Table. This is mandatory, with no default value.

• SIG FILE: directory and name of the file that contains the expected weak lensing
signal (shear profile) from a halo. It is an ASCII file with HE LI SIG lines of header,
then a table of data. Each row is a point where we evaluate the signal function, a
column is the radial distance from zero at which the profile is evaluated and another
is its values at that point. This is optional, to ignore set to “./” (default) or remove
the parameter line.

• COL SIG R: number of the column of the radial position, in arcminutes. This is
mandatory only if SIG FILE is given, default is −1.

• COL SIG: number of column of the signal value. This is mandatory only if
SIG-FILE is given, default is −1.

• HE LI SIG: number of header lines to be skipped when reading the file with the
CosmoBolognalib class cbl::data::Table. This is mandatory only if SIG FILE is given,
default is −1.

• FKER FILE: directory and name of the file that contains the filter function in
the Fourier domain. It is an ASCII file with FHE LI KER lines of header, then a
table of data. Each row is a point where we evaluate the filter function; the column
features are the mode k at which the filter is evaluated and the value of the function
in that point. This is mandatory, with no default value.

• FCOL KER R: number of the column of the mode k. This is mandatory, with no
default value.

• FCOL KER: number of column of the filter value. This is mandatory, with no
default value.

• FHE LI KER: number of header lines to be skipped when reading the file with
the CosmoBolognalib class cbl::data::Table. This is mandatory, with no default
value.
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Appendix B

Full analysis of catalogues C and D

We report here the full analysis of the results we obtained when running GtH21 on our
data with the “customised” filter described in section 4.3.

B.1 Application of the filter
When we run GtH21 we applied the same division into sub-fields discussed in section 4.2
and shown in figures 4.3c and 4.3d. We thus obtained nine output files. The E-mode
and B-mode of the output map of the upper-central region are shown in figure B.1 as an
example of a typical output. We then computed the strong and weak S/N thresholds
above which a pixel is assumed to contain a detection as described in section 3.2.4 and as
we show in figure B.2. We computed the histogram of the S/N distribution of the pixels
of each sub-field with the same binning and we summed them to get the S/N distribution
of all the pixels of simulation’s field, for both the T-maps and the R-maps, that we plot
in figure B.2a. The strong threshold is the maximum S/N of the R-map; for our data and
the filter described in this appendix it is 7.036. In figure B.2b we plot the ratio between
the counts of the T-map divided by the total number of counts (T-map plus R-map).
This is used to identify the weak threshold, since we defined it as the S/N value above
which the T-map detections are always more than 90% of the total (T-map plus R-map).
For our data and the filter considered in this section it is 5.614.
Once the S/N thresholds were defined, we run the halo detection algorithm as described
in section 3.2.4. Every group of contiguous pixels whose S/N is above the threshold is
considered as a detection. The position of the detection is the pixel with the maximum
S/N of the group, its S/N is the S/N of the detection. With this algorithm we have built
two catalogues of detections; we included in a catalogue for each detection its position, its
S/N, the number of pixels covered by it, its area on the sky in arcmin. As we discussed
in section 4.3 the catalogue built with the strong threshold is called catalogue C, the
one built with the weak threshold is called catalogue D.
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Figure B.1: Output maps of the upper-central region of the simulation, the E-mode is on the
left, the B-mode on the right. They are plotted with the same color scale. In the E-mode map
it is possible to see the typical signatures of a halo detection: high-values spots surrounded by
lower-values troughs. These are not present in the B-mode, that only contains the noise from
galaxies and the large scale structure.
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(a) S/N Distribution

(b) Threshold identifier

Figure B.2: Histograms used to define the strong and weak thresholds, as described in section
3.2.4. Panel B.2a shows the distribution of the S/N of all the pixels of the entire field of the
simulation. The green histogram is the T-map (S/N of the E-mode, that uses the tangential
shear), the black histogram is the R-map (S/N of the B-mode, that uses the cross shear). It is
possible to see the high-S/N tail of the detections. For our data and the filter considered in
section B.1 the strong threshold is 7.036; it is shown as a red line on both panels. In panel
B.2b we use the same binning as the upper panel to plot, for each bin, the ratio between the
counts of the T-map divided by the total number of counts (T-map plus R-map). This is used
to identify the weak threshold, that is 5.614; it is shown as a blue line on both panels.
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B.1.1 Catalogues C and D
Catalogue C is built with a S/N threshold of 7.036, it is made up by 96 detections.
Catalogue D is built with a S/N threshold of 5.614, it is made up by 426 detections.
Catalogue D can be thought as an extension of C at lower S/N, as every detection in C
can also be found in D, with the same position and S/N. The ID numbers of the same
detection in the two catalogues will in general be different, and the area of a detection in
cat. D will be larger than the area of the same detection in C, because we are allowing
pixels with S/N between the two thresholds to be considered as part of a detection in D.
In these catalogues there are no examples of “fragmented” detections by noise (detections
present in C but not in D) as in catalogues A and B, that we discussed in section 4.2.

The S/N distribution of all the detections of catalogues C and D can be seen in
figure B.3, where it becomes evident that catalogue D is an extension of C. The spatial
distribution of the detections of the two catalogues can be seen in figure B.4, where we
also plot which detections have been matched to a simulated halo, as it is going to be
described in the following section B.2.

Figure B.3: Signal-to-Noise ratio distribution of all the detections in catalogues D (light blue
histogram) and C (orange histogram). Each bin is 0.5. Catalogue C has been superimposed
onto D; this shows graphically that from the S/N bin [7.5; 8.0] the two catalogues have the
same detections, as we expected.

B.2 Matching catalogues C and D
We matched our detections in catalogues C and D with the simulated haloes by using
TOPCAT Sky algorithm once again, with a maximum mismatch distance of 1.5′. TOPCAT
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matched 81 out of 96 detections (84.4%) of catalogue C and 221 out of 426 detections
(51.9%) of catalogue B. The distribution of the detected and matched sources can be
seen in figure B.4.

Figure B.5 shows the detection-halo mismatch, i.e. the distance vector between
the matched detections and their halo. Figure B.5a shows the Right ascension and
Declination components of the mismatch vectors, while figure B.5b shows the modulus
of the vector, i.e. the distribution of the halo-detection distance. Figure B.5a tells
us that GtH21, the detection and matching algorithms do not introduce systematic
errors in the position of the detections. In fact, the matched detections of cat. C have
average right ascension mismatch of 0.19′ ± 0.36′ (error is the standard deviation) and
average declination mismatch of −0.14′ ± 0.66′. The matched detections of cat. D have
average right ascension mismatch of 0.18′ ± 0.38′ and average declination mismatch of
−0.12′ ± 0.62′. These average shifts are all consistent with zero, so they can be neglected.
Figure B.5b show that the distributions of the mismatch distance are peaked and without
tails, so 1.5′ is a good choice for the maximum mismatch distance allowed. The average
value (± the standard deviation) of the mismatch distance distribution is 0.70′± 0.37′ for
catalogue C and 0.68′ ± 0.34′ for catalogue D. The distributions we see in figure B.5b
are peaked as expected.

All the detections matched in catalogue C have been matched in catalogue D with
the same halo of the simulation, except for one detection: source C#23. This source is
matched with halo H#861. In catalogue D source C#23 is detected and registered as
source D#100, where it is not matched to any halo at all. This is because in catalogue
D one of the detections added because of the lower threshold is D#99, that is the one
matched with H#861. TOPCAT ’s matching algorithm does not take into account the
S/N of a detection in the matching process, but only the position of the haloes and
the detections. Halo #861 is then matched to detections with different positions in cat.
C and D because it is closer to detection D#99 (distance 0.52 arcmin) than D#100
(distance 0.89 arcmin), despite the lower S/N. These sources are described in table B.1,
where we see that D#99 has a lower S/N than D#100 (5.66 and 9.32 respectively) and
it is made up by a single pixel. These values lead us to believe that D#99 is either a
weaker part of detection D#100 that has been fragmented due to noise and our simple
algorithm to detect haloes, or a single-pixel spurious peak that happens to arise between
D#100 and H#861. A more sophisticated matching algorithm that takes S/N and source
extension into account would probably match H#861 with D#100. Since this is the only
“mismatched” source of the catalogues and it arises because of our simple detection and
matching algorithms we shall not consider it to be statistically relevant for the rest of the
chapter.
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Figure B.4: Spatial distribution of the detections. Orange circles are the detections of catalogue
C (S/N threshold 7.036). When the circle is empty the detection has not been matched, when
the circle is full it has been matched with a halo. These sources are also included in catalogue
D (S/N threshold 5.614). Light blue circles are the detections of catalogue D only, not found in
catalogue C. When the circle is empty the detection has not been matched, when the circle is
full it has been matched with a halo.
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(a) Spatial distribution. (b) Distance distribution.

Figure B.5: Distribution of the detection-halo mismatch. In panel B.5a we show the distri-
bution of the right ascension and declination components of the mismatch vector, defined as
the position of the detection minus the position of its matched halo. Orange circles are the
detections found in both catalogues C and D, light blue circles only in D. We also plot circles
of fixed radius around (0, 0) increasing the radius by 0.25: the counts in each annulus are the
height of the bins shown in panel B.5b. There we show the distribution of the modulus of
the mismatch, i.e. the detection-halo distance. The orange step-histogram is relative to cat.
C, the light blue step-histogram is for cat. D. Their maximum value is 1.5′, the limit set for
the matching algorithm. We expected these distribution to be approximately Gaussian. The
average and standard deviation of the distributions are 0.70′± 0.37′ for cat. C and 0.68′± 0.34′
for cat. D. We obtain a peaked distribution as expected.
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Table B.1: Detections C#23, D#99, D#100 and halo H#861. We report their main properties.
Halo H#861 has been matched to C#23 and D#99, despite the equivalent detection of C#23
in catalogue D is D#100. This is because TOPCAT ’s algorithm take only the position of the
sources into account to match them. We believe that D#99 is either a weaker part of detection
D#100 that has been fragmented due to noise and our simple algorithm to detect haloes, or a
single-pixel spurious peak that happens to arise between D#100 and H#861. See section B.1.1
for a more accurate discussion.

(a) Halo H#861.

ID RA [deg] DEC [deg] Mass [1014 M� h−1] Redshift

861 3.74678 -4.35485 4.14 0.343

(b) Detections C#23, D#99, D#100.

ID RA [deg] DEC [deg] S/N Area [pxl]

C#23 3.74025 -4.34152 9.3179 5
D#100 3.74025 -4.34152 9.3179 9
D#99 3.74753 -4.36344 5.6630 1

B.2.1 Signal-to-noise ratio

The distribution of the S/N can be seen in figure B.6 for both catalogues C and D.
They show that most of the unmatched detections are introduced when we lower the
detection threshold from 7.036 to 5.614. To be more precise, 189 out of the 205 unmatched
detections in catalogue D have S/N < 7.036. As we found in section 4.2.2, confirming
the results of Pace et al. (2007), a S/N threshold ' 7 can once again be considered as a
reliable threshold to detect haloes trough weak lensing: 80 out of the 96 detections of
catalogue D with S/N > 7 are matched. These histograms show graphically that the two
catalogues have the same detections and matches starting from the S/N bin [7.5; 8.0] as
expected, apart from one matched detection missing from cat.D in bin [9.0; 9.5]. This is
of course D#100, that has not been matched to H#861 as its counterpart C#23 because
TOPCAT assigned that halo to D#99, a detection with S/N 5.66. We believe that more
sophisticated halo detection and matching algorithms would probably detect only one
source centered in the same position of D#100 and match it correctly with H#861, just
as it is matched with C#23 in catalogue C.

We study once again the purity of our catalogues. In figure B.7 we show the percentage
of matched detections with S/N above a given value. In order to plot them we computed
the total number of detections and number of matched detections above a given S/N in
each of our catalogues and divided them. Above S/N= 7.0 the percentage of matched
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detections is always above 85% for catalogue C, so this can be considered as a reliable
S/N value for the construction of a catalogue; this is consistent with the results of Pace
et al. (2007). The curve of catalogue D is lower because of source D#100, so we consider
the curve of catalogue C to better represent our results after S/N= 7.5. A purity of 100%
is reached for sources with S/N > 10.5.

The unmatched sources with high S/N are probably spurious detections caused by
the large scale structure. Roughly speaking, ≈ 17% of the detected haloes with S/N > 7
might be spurious peaks caused by weak lensing from the large scale structure.

In figure B.8 we show the S/N distribution of the matched detections as a function of
mass and redshift for catalogues C (figure B.8a) and D (figure B.8b). They show that we
find detections with higher S/N in bins of redshift ∈ [0.2; 0.4] and mass > 4× 1014 M� h−1.
This suggests that our linear filter is optimized to detect haloes with these redshifts and
masses, despite the fact that we set the lens redshift parameter of the filter to be 0.6.
The filter might not properly detect haloes at redshift 0.6 because their lensing signal
is not as strong as the one of equally massive haloes at redshift 0.3. The filter detects
haloes more efficiently if these are at redshifts between 0.2 and 0.5, i.e. at intermediate
distances between the observer and the sources (Pace et al. 2007).
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(a) Catalogue C. (b) Catalogue D.

(c) Catalogues C and D.

Figure B.6: Distribution of the signal to noise ratio for all the detections and the matched
detections of the two catalogues. Catalogue C is shown in panel B.6a, catalogue D is shown
in panel B.6b. They are both shown in panel B.6c for comparison. These histograms show
graphically that the two catalogues have the same detections and matches starting from the
S/N bin [7.5; 8.0] as expected, apart from one matched detection missing from cat. D in bin
[9.0; 9.5]. We do not consider this to be statistically relevant for this work, see section B.2.
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Figure B.7: Percentage of matched detections above a given S/N. For instance, 92% of the
detections with S/N > 8.50 are matched in catalogue C. The light blue curve of cat. D has
slightly lower values than the orange curve of cat. C until S/N 9.5 because of source D#100.
We thus believe the curve of catalogue C is the most accurate representation of our results.

(a) Catalogue A. (b) Catalogue B.

Figure B.8: S/N ratio distribution of the matched detections as a function of mass and redshift.
We plot the average S/N of the matched detections of catalogue C (panel B.8a) and D (panel
B.8b) in each bidimensional bin (redshift bins ∆z = 0.1, mass bins ∆M = 1014 M� h−1). In
both catalogues the average S/N is higher when the redshift is ∈ [0.2; 0.5] and the mass is
> 4× 1014 M� h−1.

113



APPENDIX B. FULL ANALYSIS OF CATALOGUES C AND D

B.2.2 Redshift

The redshift distribution of the matched haloes with respect to all the simulated haloes
is shown in figure B.9, while figure B.10 shows the percentage of matched haloes for each
redshift bin of figure B.9. The median redshift of the matched detections is 0.33 with
quartiles 0.25÷ 0.40 for catalogue C and 0.35 with quartiles 0.26÷ 0.49 for catalogue
D, while the median redshift of all the simulated haloes is 0.62 with quartiles 0.46÷ 78.
The filter selects haloes at intermediate distances between the observer and the sources,
because of the dependence of the geometrical lensing strength on the angular-diameter
distances between the observer and the lens, the lens and the sources, and the observer
and the sources (Pace et al. 2007). The completeness of our catalogues, i.e. the percentage
of matched haloes, has a peak extended from redshift ≈ 0.15 to ≈ 0.35, as it is shown
in figure B.10. Another observation from this figure is that completeness systematically
increases in catalogue D; as we already found in section 4.2.2 for catalogues A and B
lowering the threshold introduces a relevant fraction of reliable detections despite the
matching fraction of the overall catalogue decreases.

We expect the completeness to be related to the mass: at a given redshift, more
massive lenses are expected to produce stronger lensing signal. We plot in figure B.11
the catalogue completeness as a function of redshift, with different cuts in mass. In
particular in figure B.11a we have plotted the completeness of catalogue C as a function
of redshift for 4 subset of haloes: haloes with virial mass < 1× 1014 M� h−1, haloes with
mass ∈ [1; 2]× 1014 M� h−1, haloes with mass ∈ [2; 4]× 1014 M� h−1 , haloes with mass
> 4× 1014 M� h−1. We do the same in figure B.11b for catalogue D. Figure B.11c shows
the completeness of catalogue C as a function of redshift for the haloes with 4 different
cuts in mass: haloes with mass > 4× 1014 M� h−1, haloes with mass > 2× 1014 M� h−1,
haloes with mass > 1× 1014 M� h−1, all the haloes. We do the same in figure B.11d for
catalogue D. These plots also confirm the existence of a peak extended around redshift
≈ 0.15÷ 0.35 and that the completeness of catalogue D is higher than catalogue C, hence
using the weak threshold can actually improve the completeness of our catalogue. They
also show that, as a general trend, when the mass increases the matching percentage
increases too, although this is not always the case as there are some exceptions. This
result is consistent with what we found in section 4.2.2. The massive haloes with mass
> 4× 1014 M� h−1 show significant fluctuations due to their small number: especially at
z < 0.2 and z > 0.6 not all of them are detected. Let us remember that these haloes have
poor statistics: there are 31 haloes in the simulation with mass > 4× 1014 M� h−1 and
we match 15 in cat. C and 21 in D out of them all. A high background noise fluctuation
that lowers the S/N might be responsible not detecting some massive haloes, with a
resulting strong loss of percentage. As we remarked in section 4.2.2 losing massive haloes
at low and high redshift might also be a suggestion that some of the lower mass matched
detections may be random matches between a halo and a spurious detection caused by
noise. Figure B.11 also shows that the peak of completeness around redshift ≈ 0.15÷0.35
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is always found.
We plot the distribution of the matched haloes with respect to all the haloes in figure

B.12, where it becomes clear that most of the matched detections have intermediate
redshift ≈ 0.2÷ 0.5 and intermediate-high mass > 2× 1014 M� h−1. The distribution in
figure B.12 is turned into maps of completeness in figure B.13. In order to realize them
we counted, for each bidimensional bin, the number of matched haloes in catalogues C
(figure B.13a) and D (figure B.13b) and divided by the total number of simulated haloes.
The haloes have been grouped into bins of mass ∆M = 1× 1014 M� h−1 and redshift
∆z = 0.1. These plots show that completeness increases in the region of intermediate
redshift ≈ 0.2÷ 0.5 and intermediate-high mass > 3× 1014 M� h−1, a result consistent
with what we found in section 4.2.2.

(a) Catalogue C (b) Catalogue D

Figure B.9: Redshift distribution of the matched detections and total simulated haloes.
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Figure B.10: Catalogue completeness (percentage of matched haloes) as a function of redshift
in catalogue C (orange line) and D (light blue line). This includes all the haloes with no mass
cut applied. To get these points we divided the number of matched haloes by the total number
of haloes in each redshift bin used in figure B.9, and we placed the points at the center of their
bin. There is a clear peak extended between redshift ≈ 0.15 and ≈ 0.35 in both the catalogues:
the filter does not detect the haloes with the same efficiency at any redshift. It selects the haloes
with intermediate distance between observer and nearby background sources. The matching
percentage increases in catalogue D; this suggests that lowering the threshold introduces a
relevant fraction of reliable detections.
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(a) Catalogue C, mass subsets. (b) Catalogue D, mass subsets.

(c) Catalogue C, mass cuts. (d) Catalogue D, mass cuts.

Figure B.11: Catalogue completeness (percentage of matched haloes) as a function of redshift, by
virial mass. In Panela B.11a (cat. C) and B.11b (cat. D) we plot the catalogue completeness
as a function of redshift for 4 subsets of the halo catalogue according to their mass. In Panels
B.11c (cat. C) and B.11d (cat. D) we plot the catalogue completeness as a function of redshift
for 4 subsets of the halo catalogue with different cuts of mass. As a general trend the four
plots show that completeness increases with mass and it is higher in cat. D than C. The main
exceptions are the massive haloes > 4× 1014 M� h−1, that show significant fluctuations: at
z < 0.2 and z > 0.6 not every halo is detected and we can detect lower percentages than the
lower mass haloes. This might be due to their poor statistics, or it might suggests that some of
the lower mass matched detections are actually random matches between a halo and a spurious
detection caused by noise. These plots show the peak extended around redshift ≈ 0.15÷ 0.35:
the efficiency of detecting haloes has a strong dependence on redshift.
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Figure B.12: Distribution of the haloes as a function of Mass and Redshift. Grey crosses
are all the simulated haloes. Light blue circles are the matched detections of catalogue D,
superimposed to the cross of their halo. Orange circles are the matched detections of catalogue
C, superimposed to their counterparts in catalogue D and halo. Most of the matched haloes
have intermediate redshift ≈ 0.2÷ 0.5 and intermediate-high mass > 2× 1014 M� h−1.
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(a) Catalogue C. (b) Catalogue D.

Figure B.13: Percentage of matched haloes (completeness) as a function of mass and redshift
for the two catalogues. Each bidimensional bin shows the percentage of matched detections
(over all the simulated haloes) in that bin. The percentages are shown as a colour map for
catalogue C and D in panel B.13a and panel B.13b respectively. Most of the haloes with
intermediate redshift ≈ 0.2÷ 0.5 and intermediate-high mass > 3× 1014 M� h−1 are matched.

B.2.3 Virial Mass

The virial mass distribution of the matched haloes is shown in figure B.14, where it is
compared with the distribution of all the simulated haloes. Not every mass can be detected
with the same efficiency: in units of 1014 M� h−1 the median mass of the simulated haloes
is 1.07 with quartiles 0.86÷ 1.47, while the median mass of the matched detections is 2.45
with quartiles 1.53÷ 3.44 in catalogue C and 1.76 with quartiles 1.10÷ 2.46 in catalogue
D. As it happened for catalogues A and B in section 4.2.2 the second most massive
haloes of the simulation (halo H#12) is detected and matched only in catalogue D; the
third most massive (halo H#1) in not detected in either of them. They are described in
table 4.2 of chapter 4. A notable feature in catalogue C is that the fourth massive halo
of the simulation is not matched: this is halo H#194, with a mass of 8.26× 1014 M� h−1

at redshift 0.31. It was matched in catalogue A with source A#97 that had S/N= 6.976,
so losing it can be attributed to an increase of threshold from 6.871 for cat. A to 7.036
for cat. C. In fact, it is matched to detection D#338 (and B#355).

Figure B.15 describes catalogues C and D completeness as a function of the virial
mass. Figure B.15a plots the percentage of matched haloes in the mass bins of figure
B.14 at the lowest end of the bin. Figure B.15b shows the the percentage of matched
detections with virial mass above a given value. At 4× 1014 M� h−1 we reach 65% of
completeness for catalogue D. The percentages are steadily growing functions of the
mass until we get to 4× 1014 M� h−1; after that the poor statistics makes them subject to
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strong fluctuations. Those are responsible for the dips in completeness that can be seen
at high mass values. There are in fact only 5 haloes in total with mass > 7× 1014 M� h−1;
catalogue C does not detect three of them (H#12, H#1, H#194) while D does not detect
H#1. This prevents the completeness functions from reaching 100% but in the last bin
(due to the detection of the most massive halo of the simulation in both catalogues). The
completeness is lower for catalogue C, another confirmation that lowering the threshold
can in fact improve the catalogue completeness.

The catalogue completeness is a function of both the virial mass and redshift; we
expect the completeness to be higher at intermediate redshift. We have plotted in figure
B.16 the completeness of our catalogues as a function of mass or above a given mass
after we had divided the haloes in four subsets according to their redshift: z < 0.2,
0.2 < z < 0.4, 0.4 < z < 0.6, z > 0.6. We plot the completeness as a function of mass in
figures B.16a (catalogue C) and B.16b (catalogue D); we have used the same binning of
figure B.15a. We plot completeness above a given virial mass in figures B.16c (cat. C)
and B.16d (cat. D), splitting each curve of figure B.15b into three redshift subsets. For
z < 0.2 and z > 0.6 our filter does not find many haloes, hence the completeness above a
given mass never goes above 55%. For haloes with 0.2 < z < 0.6 the matching percentage
above a given mass increases when the mass increases and it reaches 100% completeness
at mass 4× 1014 M� h−1 in cat. D. It is not reached in cat. C until the very last bin. As
we found in section 4.2.2 the haloes with 0.2 < z < 0.6 have the greatest probability of
being detected.
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(a) Catalogue C (b) Catalogue D

Figure B.14: Distribution of the virial mass M200 for the matched haloes of catalogue C (panel
B.14a), D (panel B.14b), and all the simulated haloes. Note that the second (H#12) and
fourth (H#194) most massive halo are detected and matched only in catalogue D, while the
third (H#1) is lost in both catalogues. This can be probably attributed to their high redshift
for H#12 (z = 0.55) and H#1 (z = 0.89) and the more restrictive S/N threshold of catalogue
D for H#194.

(a) Percentage of matched haloes as a function of
the virial mass.

(b) Percentage of matched haloes above a given
virial mass.

Figure B.15: Percentage of matched haloes as a function of the virial mass (panel B.15a) and
above a given virial mass (panel B.15b). Both graphs show that the catalogue completeness
increases when the mass increases. The percentages at higher masses than > 7× 1014 M� h−1

are computed on a very small number of haloes, hence they are subject to strong fluctuations
and a dip in percentages due to losing some of the most massive haloes of the simulation.
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(a) Percentage of matched haloes as a function of
the virial mass, by redshift, catalogue C.

(b) Percentage of matched haloes as a function of
the virial mass, by redshift, catalogue D.

(c) Percentage of matched haloes above a given
virial mass, by redshift, catalogue C.

(d) Percentage of matched haloes above a given
virial mass, by redshift, catalogue D.

Figure B.16: Percentage of matched haloes as a function of the virial mass, by redshift. These
graphs show how the completeness of the catalogues changes as a function of halo redshift.
The sources with redshift z ∈ [0.2; 0.6] tend to have the highest matching percentages because
of the peak in detection efficiency of the filter in this redshift range. Another trend is that
the matching percentage tends to increase as a function of the halo mass, although there are
fluctuations given by the poor statistics.
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