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Abstract

Self-interacting dark matter models (SIDM) have become attractive alternatives to the
collisionless cold dark matter model (CDM) since they can alleviate tensions between
the results of CDM-only simulations and observations (small scale crisis of CDM). The
majority of prior research on these DM models has relied on SIDM-only simulations,
ignoring the interplay of self-interactions and baryonic physics. However, even these re-
sults may not be adequate for making comparisons with observations. As in the CDM
paradigm, baryons can have a strong impact on the distribution of SIDM. Therefore it
becomes crucial to understand the role of baryonic physics on the halo properties also in
these models.
In this thesis work, we use cosmological simulation to test the differences of halo prop-
erties on the mass range that goes from Milky-Way-like (M = 1012M�/h) to massive
elliptical galaxies (M = 1013.5M�/h) in CDM and SIDM models. We use two dis-
tinct SIDM models, one with constant cross section (σ/mχ = 1 cm2/g) and one with a
velocity-dependent cross section. The simulation set is made of 6 runs in total, which
simulate the same volume of 50 Mpc3, in CDM and the two SIDM models; moreover,
for each of those a DM-only and a full-hydrodynamic version is available, allowing us
to study the effect of baryons and alternative dark matter models at the same time. In
particular, we focus on the analysis of density profiles and halo shapes at z = 0. We split
our sample into three mass bins in order to compare and average the features of haloes
of comparable mass.
From DM-only simulations we find: 1) both SIDM models produce a central core in den-
sity profiles regardless of the halo mass; 2) both SIDM models make DM haloes rounder
than in CDM counterpart for each mass bin.
From full-hydrodynamic simulations, we find that the inclusion of baryonic effects can
modify these properties. Both for the density profiles and the halo shapes the baryon
effects make the differences between the DM models less pronounced than in the DM-
only case. Moreover, we find that the average final properties of the density profiles
in full-hydrodynamic simulations depend on the considered mass bin: the most massive
shows a cored profile in the SIDM runs, while the less massive one shows a cuspier profile
than in CDM. For the intermediate-mass bin we find no differences in the density profile
between the models.
Regarding the halo shapes we find that the haloes in the SIDM models are more spherical
than in the CDM counterpart also with the inclusion of the baryonic effects. However,
while the differences between DM models in the density profiles are visible only at small
radii (r < 10 kpc/h), we show that SIDM haloes remain more spherical than in CDM
even in more external regions (r ∼ 60− 100 kpc/h).





Abstract

I modelli di self-interacting dark matter (SIDM) sono diventati una interessante alter-
nativa al modello di cold dark matter (CDM) dato che possono attenuare le tensioni tra
le predizioni da simulazioni in CDM-only e le osservazioni (small scale crisis of CDM).
La maggior parte delle analisi su questi modelli di DM si sono basate su risultati prove-
nienti da simulazioni in SIDM-only, dunque trascurando gli effetti dovuti alla presenza
dei barioni. Tuttavia, anche tali risultati potrebbero non essere adeguati nel momento
in cui bisogna confrontare le predizioni con le osservazioni. Infatti, come per il modello
di CDM, i barioni possono avere un forte impatto sulla distribuzione delle particelle di
SIDM. Per questo motivo è fondamentale capire il ruolo della fisica barionica sulle pro-
prietà degli aloni, anche per questi modelli.
In questo progetto di tesi, utilizzando simulazioni cosmologiche abbiamo testato quali
sono le principali differenze per le proprietà di aloni nei modelli di cold dark matter
(CDM) e self-interacting dark matter (SIDM). Abbiamo selezionato aloni con massa
compresa traM = 1012M�/h eM = 1013.5M�/h. Abbiamo usato due modelli differenti
di SIDM, il primo con sezione d’urto costante (σ/mχ = 1 cm2/g), il secondo con sezione
d’urto dipendendte dalla velocità relativa delle particelle di DM. Abbiamo in totale un
set di 6 simulazioni che simulano lo stesso volume di 50 Mpc3 in CDM e nei due mod-
elli di SIDM. Per ognuno di questi modelli abbiamo a disposizione sia le simulazioni in
DM-only sia la versione full-hydrodynamic, in modo tale da poter studiare simultanea-
mente gli effetti barionici ed i diversi modelli di DM. Nello specifico ci concentriamo sulla
analisi dei profili di densità e sulle forme degli aloni a z = 0. Abbiamo diviso gli aloni
selezionati in 3 bin di massa così da confrontare e mediare le caratteristiche di aloni con
massa simile.
Dall’analisi di aloni nelle simulazioni DM-only, troviamo: 1) entrambi i modelli di SIDM
producono un core centrale nei profili di densità indipendentemente dalla massa; 2) gli
aloni nei modelli di SIDM sono più sferici che nel caso degli aloni in CDM.
Dallo studio degli aloni nelle simulazioni full-hydrodynamic mostriamo che l’inclusione
dei barioni può modificare le proprietà sopra descritte. Sia per i profili di densità che per
le forme degli aloni troviamo che gli effetti barionici rendono le differenze tra i diversi
modelli di DM meno pronunciate rispetto a quanto trovato nel caso DM-only. Inoltre
troviamo che le proprietà finali dei profili di densità nelle simulazioni full-hydrodynamic
dipendono dal bin di massa considerato: il bin più massivo presenta densità più basse
nelle parti centrali nei casi dei modelli SIDM rispetto al profilo in CDM, mentre per il
bin a massa più bassa troviamo che i profili in SIDM hanno densità più elevata del profilo
in CDM. Nel caso del bin di massa intermedio non troviamo differenze tra i modelli di
DM.
Per quanto riguarda le forme degli aloni troviamo che anche con l’inclusione dei barioni,



gli aloni nei modelli SIDM sono più sferici rispetto alle controparti in CDM. Inoltre,
mentre le differenze tra i modelli di DM nei profili di densità diventano visibili solo a
piccoli raggi (r < 10 kpc/h), gli aloni nei modelli di SIDM rimangono più sferici che nel
caso in CDM anche per raggi più elevati (r ∼ 60− 100 kpc/h).
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Introduction

The dominant hypothesis for the formation and evolution of cosmic structure in our Uni-
verse is the Λ cold dark matter (ΛCDM) model, in which dark matter (DM) is thought
to be non-relativistic and collisionless. It explains several fundamental features of galaxy
formation and evolution (Frenk et al. 2012; Vogelsberger et al. 2014) and it predicts
the spectrum of matter fluctuations in the early Universe with exceptional accuracy
(Aghanim et al. 2020). However, the absence of experimental evidence of collisionless
cold dark matter particles (Arcadi et al. 2018) and the fact that N-body simulations
based on CDM models present some discrepancies with observed quantities (small-scale
crisis of CDM) has led to interest in alternative DM models. Small-scale issues like as
missing satellites (Klypin et al. 1999), core-cusp (Moore 1994), diversity (Oman et al.
2015) and Too-Big-To Fail (Boylan-Kolchin et al. 2011) problems seem to be troubling
for the CDM paradigm. These inconsistencies in part come from comparing data to
DM-only simulations, which neglect baryonic effects. As a result, several studies have
been performed to determine if these discrepancies are due to an incomplete modelling
of baryonic physics with the CDM paradigm. However, it is still uncertain if accurately
including relevant astrophysical processes will be sufficient to bring the simulated CDM
model completely in agreement with observations.
Another potential option is that these discrepancies tell us something about the nature
of DM and it is the CDM model that needs to be revisited. The first possibility is that
the DM is not cold, but it is warm, meaning that the DM particles are quasi-relativistic
during kinetic decoupling (Warm Dark Matter models). The WDM models predict a
damped linear power spectrum due to free-streaming leading to a reduction in the num-
ber of substructures and the formation of less concentrated haloes when compared to
CDM. These properties suggest that WDM can provide a solution to two of the four
main issues related to the CDM paradigm, respectively the missing satellites problem
and the too-big-to-fail problem (Li et al. 2017; Diamanti et al. 2017). However, it has
been shown that an unrealistic low value of the WDM mass is needed to create core sizes
that match observations (Carucci et al. 2015) and solve the Core/Cusp problem.
Another of the proposed alternatives, first introduced by Spergel and Steinhardt (2000a),
is that DM is not collisionless, but that the DM particles can scatter with each other.
These are Self-interacting dark matter models. N-body simulations and analytical consid-
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erations show that DM self-interactions can have an impact on the macroscopic character-
istics of haloes, alleviating some of the issues that emerge in a collisionless CDM scenario,
while leaving the properties on large scale unchanged. In particular, self-interactions can
flatten the centrally peaked cusps in the inner regions of galaxies and can disturb the
growth of dense satellite galaxies predicted by simulations, that are at the base of the
core-cusp and Too-big-to-fail issues (Vogelsberger et al. 2012; Elbert et al. 2015b).
In general, it is possible to divide the SIDM models into two large families: constant
cross-section where the probability of scattering is constant on all scales and depends
only on the DM density and the velocity dependent cross-section where the probability
of scattering depends, not only on the density, but also on the relative velocity of the
DM particles. Moreover, the properties of each SIDM model depend on the strength
of the self-interaction cross-section. Studies of the predicted SIDM effects in compari-
son to observations set constraints on the ratio of the dark matter self-interaction cross
section to the dark matter mass: σ/m. The current constraints come from studies on
different scales: to explain the distribution of DM in dwarf galaxies SIDM requires a
cross-section σ/m > 0.5 cm2g/ (Elbert et al. 2015a), from the ellipticity of the elliptical
galaxies it was deduced that σ/m ≤ 1 cm2/g (Peter et al. 2013) while from strong lens-
ing arc statistics in galaxy clusters the allowed cross-section should be σ/m < 0.1 cm2/g
(Meneghetti et al. 2001). Given these disparities on different scales, a cross-section com-
patible with cluster scale limitations is unable to appreciably lower the centeral density
of dwarf galaxies (Fry et al. 2015). As a result, there has been a surge in interest in
SIDM models with velocity-dependent cross-sections, i.e a cross-section that decreases
with increasing relative velocity. The cross section on dwarf galaxies scale can be several
orders of magnitude bigger than on cluster sizes, bringing in agreement constraints on
different scales.
It is worth mentioning that the majority of prior research has relied on DM-only sim-
ulations, ignoring the interplay of self-interactions and baryonic physics. Sameie et al.
(2018a) and Elbert et al. (2018) used simulations of isolated galaxies and showed that the
cross talk between DM particles interactions and baryons produces a wide range of halo
profiles, depending on how centrally concentrated the baryonic component is. Recently,
Despali et al. (2019) studied the baryonic effects not in an isolated and idealized sce-
nario, but in full-hydrodynamic zoom-in simulations. Focusing on zoomed simulations
of 9 haloes in the mass range that goes from Milky-Way-like to massive elliptical galax-
ies, they showed that the combination of DM self-interaction and baryonic physics leads
to a complicated evolution of halo properties, dependent on halo mass, morphological
type, as well as the halo mass accretion history. These results show that as in the CDM
paradigm, baryons can have a strong impact on the distribution of SIDM. Therefore it
becomes crucial to understand the role of baryonic physics on the halo properties also in
SIDM models.
In this thesis work, using full-hydrodynamic simulations we want to test what are the
main differences between the CDM model and the SIDM models and how the baryonic
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effects can have an impact on the properties of the simulated haloes. We use two dis-
tinct SIDM models, one with constant cross section (σ/mχ = 1 cm2g−1) and one with a
velocity-dependent cross section. The simulation set is made of 6 runs in total, which
simulate the same volume of 50 Mpc3, in CDM and the two SIDM models; moreover,
for each of those a DM-only and a full-hydrodynamic version is available, allowing us to
study the effect of baryons and alternative dark matter at the same time. The simula-
tions have been run with the cosmological parameters taken from the most recent Planck
results (Aghanim et al. 2020) using the Gadget3 code and are part of the extended fam-
ily of EAGLE simulations. In these simulations there are N = 7523 DM particles and
initially there is an equal number of baryonic particles. The dark matter mass resolution
is mDM = 9.70 · 106M�, while the baryonic resolution is mg = 1.81 · 106M�.
We select haloes with masses M200 in the range between 1012M�h

−1 and 1014M�h
−1 at

z = 0, for all 6 models available. However, given the volume of the boxes, we do not find
haloes with mass M200 > 1013.5M�h

−1. The mass range is chosen to test and extend
the results obtained by Sameie et al. (2018a) and Despali et al. (2019), not in isolated
or zoom-in simulations of individual galaxies, but using a full cosmological box.
This thesis work is organised as follows:

• Chapter 1 provides the cosmological framework on which this thesis work is based,
introducing the fundamental equations to describe the dynamics of the Universe
and how to use them to build a cosmological model.

• Chapter 2 deals with the theory of structure formation and evolution in our Uni-
verse.

• Chapter 3: we introduce dark matter and its role in structure formation and evo-
lution. We discuss the standard cosmological model (ΛCDM) and its main evi-
dences.

• Chapter 4: we discuss in detail the main problems related to the CDM model,
we introduce Self-Interacting Dark Matter models and their implementation in the
Gadget3 code.

• Chapter 5: we present the key features of the simulations used in this work and
we analyze the density profiles of the selected haloes using both DM-only and
full-hydrodynamic simulation.

• Chapter 6: we analyze the halo shape properties for the considered DM models.

• Chapter 7 summarises the main results of this thesis project.
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Chapter 1

Cosmological Models

In this Chapter we will present the cosmological framework on which this thesis work
is based. We will present the fundamental equations describing the dynamics of the
Universe and how to use them to build a cosmological model. In the last paragraphs we
will define the scales useful for describing the process of structure formation. A more
complete treatment can be found in "Cosmology: The origin and evolution of cosmic
structure" (Coles et al. 2003).

1.1 Cosmological Principle
Cosmology is that branch of Physics that studies the Universe as a whole system us-
ing observational, physical and mathematical instruments to understand its origin and
evolution in order to build a model that is descriptive, but above all predictive. One
of the fundamental ingredients on which the large majority of the current models are
based is the Cosmological Principle (CP) which states that the Universe is isotropic
and homogeneous on large scale ( larger than hundreds of Mpc ). Isotropy implies that
there are no differences when looking at the Universe in different directions, i.e. there
are no privileged directions. Homogeneity implies that all observers, in any part of the
Universe, will observe, on average, the same properties and the same matter distribution,
that is, there are no privileged positions. A corollary to the cosmological principle is that
the laws of physics are universal. The same physical laws and models that apply here
on the Earth also work in all parts of the Universe and physical constants (such as the
gravitational constant, mass of the electron, speed of light) do not change their values
in space and time. The clearest modern observational evidence of this principle is the
measurement of the cosmic microwave background (CMB) : a "thermal bath of photons"
coming from the early universe, observable from any direction. It has been shown that
the photons of this radiation, on large scale, have the same average temperature in every
part of the Universe and this means that in any direction, for any observer, the same
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average results are obtained (Aghanim et al. 2020).

1.2 Friedmann-Lemaître-Robertson-Walker metric
On large scales, the dominant force in the Universe is the gravitational force, that we
assume to be described by Einstein’s theory of General Relativity, in this way the ge-
ometric properties of space-time are related to the energy-matter content, that for the
CP, we assume homogeneous and isotropic.
To study the dynamics of such a Universe, we need to find a suitable metric (distance
between two events in space-time). Using Einstein’s convention, we can define a general
metric such as:

ds2 = gαβdx
αdxβ , (1.1)

which in its explicit form reads:

ds2 = g00dt
2 + 2gi0dtdxi + gijdx

idxj , (1.2)

where gαβ is the metric tensor that describes the geometry of space-time, in our conven-
tion gαβ = diag(+1,−1,−1,−1). The metric can be simplified given two assumptions:
the isotropy implies that the mixed terms of the tensor are null (gi0 = 0) and photons
must follow null geodesics (ds2 = 0 and v = c). Considering these assumptions the
metric becomes:

ds2 = c2dt2 + gijdx
idxj = c2dt2 − dl2 , (1.3)

where dl2 = gijdx
idxj describes the spatial metric part.

Considering a two-dimensional Universe, there are only 3 types of two-dimensional sur-
faces, i.e. 3 possible cases for the curvature :

1. Cartesian plane : Infinite curvature
Using polar coordinates [ρ, ϕ] the spatial metric part becomes:

dl2 = dρ2 + ρ2dϕ2 , (1.4)

defining ρ = ar, where r is a dimensionless parameter and a has the dimensions of
a length (in general it is a time function a(t)), we can write the flat spatial metric:

dl2 = a2(dr2 + r2dϕ2) . (1.5)

2. Spherical surface : Positive curvature
Using spherical coordinates [R, θ, ϕ], with R radius of the sphere :

dl2 = R2(sin2 θ dϕ2 + dθ2) , (1.6)

setting R = a, sin θ = r, we get the close spatial metric :

dl2 = a2
[
r2dϕ2 + dr2

1− r2

]
. (1.7)
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3. Hyperbolic surface : Negative curvature
Considering the equation (1.6), we can replace sin→ sinh, getting :

dl2 = R2(sinh2 θ dϕ2 + dθ2) , (1.8)

setting R = a, sinh θ = r and remembering that cosh2 θ = 1 + sinh2 θ, the open
spatial metric becomes:

dl2 = a2
[
r2dϕ2 + dr2

1 + r2

]
. (1.9)

Looking at the equations (1.5),(1.7),(1.9), we note that it is possible to define the three
geometries in a general form :

dl2 = a2
[

dr2

1− kr2 + r2dϕ2
]
, (1.10)

where k, called Curvature Parameter, can take only 3 integer values, one for each geom-
etry: 

k = 0 Flat
k = +1 Closed
k = −1 Open

(1.11)

Following the same steps, but in a three-dimensional Universe, adding the time metric
part and and reinserting the time dependence of a, we get:

ds2 = c2dt2 − a(t)2
[

dr2

1− kr2 + r2(dθ2 + sin2 θdϕ2)
]
, (1.12)

that defines the Friedmann-Lemaître-Robertson-Walker metric (FLRW metric).
This is the best metric for studying an isotropic and homogeneous Universe, in which
photons move at a fixed speed c. Moreover, using this metric, one can study the Universe
without assuming a priori any geometry, since it is able to describe all of them.
The term a(t), called cosmic scale factor, is a parameter that changes the scale of the
spatial part, without changing the geometry, while it is the parameter k, dimensionless
and discrete, that defines the geometry.
Related to the scale factor, we can define the Hubble parameter:

H(t) =̇ ȧ

a
, (1.13)

from which the Hubble-Lemaître law can be made explicit:

vR = HdPR (1.14)
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and states that there is a speed of recession in the radial direction (vR) which is propor-
tional to the distance (dPR) and the Hubble parameter quantifies this proportionality.
The Hubble constant, i.e. the current value of the Hubble parameter, is defined as

H0 =̇ ȧ0

a0
. (1.15)

Because of the troubled history of the measurement of the value of this constant, it has
become customary to express it in units of 100 km/s Mpc−1. Present measurements
(Aghanim et al. 2020) give:

h0 = H0

100 km/s Mpc−1 = 0.6777± 0.0770 , (1.16)

where h0 measures the uncertainty with which the value of the Hubble constant is known.
Through this constant we can fix the corresponding length and time scales :

lH0 = c

H0
= 3000h−1

0 Mpc , (1.17)

tH0 = 1
H0

= 9.8h−1
0 Gyr , (1.18)

where tH0 defines the age that the Universe would have if it had expanded linearly 1.

1.3 Friedmann Equations
Friedmann’s cosmological models are based on 3 hypotheses:

• Cosmological Principle

• General Relativity applies

• Universe as a Perfect Fluid

In these hypotheses we can write the field equation:

Rµν −
1
2gµνR = 8πG

c4 Tµν . (1.19)

This equation (Einstein’s equation) asserts that the space-time geometry of the Uni-
verse, expressed by the right-hand member, is determined by its mass-energetic content,
represented by the energy-momentum tensor Tµν . Rµν is the Ricci tensor, while R is the
scalar of curvature. In general the Tµν components physically mean the following: T 00

1This value is too low and is in tension with current age measurements of older globular clusters.
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is the energy density; T 0j is the energy flux across the spatial surface xj = constant; T i0
is the density of i− th component of momentum; T ij is the i− th component of momen-
tum flux across the spatial-surface xj = constant, where if i = j the momentum causes
normal stress on the fluid element (Pressure), while if i 6= j it causes shear stress. Since
we are considering a perfect fluid T 0j = 0 (there is no conduction) and T ij = 0, with
i 6= j (there is no viscosity). The CP implies that spatial components must be equal,
then the tensor Tµν can be expressed exclusively using pressure and density. Using the
four-velocity uµ:

Tµν = −Pgµν + (P + ρc2)uµuν . (1.20)
The Einstein’s equation actually represents 16 equations, one for each combination of
the indices. To solve it one must assume a metric (1.12) since CP holds and express
the energy-momentum tensor (1.20). Under these conditions, only 2 of the Einstein
equations do not become identities and these are the so-called Friedmann equations:

ä = −4
3πG

(
ρ+ 3P

c2

)
a , (1.21)

ȧ2 + kc2 = 8
3πGρa

2 . (1.22)

By solving these two equations we can build a cosmological model. They are differential
equations that need a value for the curvature k and an equation of state P = P (T, ρ) to
be solved. By definition, the Universe is an adiabatic system, so we can use the adiabatic
condition to link the two Friedmann equations:

dU = −PdV −→ d(ρc2a3) = −Pda3 , (1.23)

thus only two of the three equations are independent.

1.3.1 Friedmann equations with a cosmological constant
Before the discovery of the Hubble expansion, the Universe was thought to be a static
system. Taking the equation (1.21), to have static solutions (i.e. ä = ȧ = 0) we must
have :

ρ = −3P
c2 , (1.24)

which means that either the pressure or the density must be negative, while these quan-
tities are positive definite. To solve this problem, Einstein thought of adding a term Λ,
the so called Cosmological Constant, to the field equation:

Rµν −
1
2gµνR− Λgµν = 8πG

c4 Tµν . (1.25)

In this way the covariant character of the equation is maintained, and it is possible to
derive a static solution. When Hubble discovered the expansion of the Universe, Einstein
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judged the introduction of Λ as "one of the biggest error of his life". Nevertheless, in
the standard cosmological model, this constant has been reintroduced to describe the
accelerated expansion of the Universe, due to the presence of Dark Energy. With the
equation (1.25), the Friedmann equations can be obtained in the same analytical form:

ä = −4
3πG

(
ρ̃+ 3P̃

c2

)
a , (1.26)

ȧ2 + kc2 = 8
3πGρ̃a

2 , (1.27)

where

P̃ = P − Λc4

8πG , (1.28)

ρ̃ = ρ+ Λc2

8πG . (1.29)

Thus the cosmological constant contributes negatively to pressure and positively to den-
sity, i.e. has the effect of a source of repulsive gravitational force.

1.4 Components of the Universe
One of the most important cosmological parameters is the so-called density parameter:
a dimensionless parameter useful for describing the geometry of the universe. To define
it, we take the Friedmann equation (1.22) and divide it by a0 (today’s value of the scale
factor): (

ȧ

a0

)2
− 8

3πGρ
(
a

a0

)2
= −kc

2

a2
0
, (1.30)

where we know that H = ȧ
a
and H0 = ȧ0

a
, so we can define the critical density of the

Universe:
ρc =̇ 3H2

8πG , (1.31)

and its value today:
ρ0,c = 3H2

0
8πG = 1.19 · 10−29 h2

0 g/cm3 . (1.32)

This means that 8/3πG = H2
0/ρc,0, replacing this relation in (1.30) calculated for t = t0,

we obtain:
H2

0

(
1− ρ0

ρ0,c

)
= −kc

2

a2
0
. (1.33)
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In this way, the geometry of the Universe is defined by the value of the round bracket
that allows us to define the density parameter:

Ω ≡ ρ

ρc
, Ω0 ≡

ρ0

ρ0,c
, (1.34)

then 
Ω0 = 1→ ρ0 = ρc,0 Flat
Ω0 > 1→ ρ0 > ρc,0 Closed
Ω0 < 1→ ρ0 < ρc,0 Open

(1.35)

Therefore, to know the geometry of Universe we have to know the current density ρ0 of
all the Universe components and compare that value with ρc,0. If we consider all the
components that make up the Universe, equation (1.33) become :

H2
0 (1− Ω0,tot) = −kc

2

a2
0
, (1.36)

where
Ω0,tot =

∑
ith−comp

Ω0,i = Ω0,M + Ω0,R + Ω0,Λ . (1.37)

The last equation defines the current total density parameter, which specifies the three
components that make up the Universe in the current cosmological model: Non-Relativistic
Matter (Baryons + Dark Matter), Radiation and Cosmological Constant. For each of
these components we can specify an equation of state which in adiabatic conditions can
be represented as P ≡ P (ρ). We can write a general form of this equation that includes
all the components:

P = Wρc2 with W = constant , (1.38)
where 

W = 0 Non-relativistic Matter
W = 1/3 Radiation and Relativistic Matter
W = −1 Cosmological Constant

(1.39)

If we now consider the adiabatic equation and substitute equation (1.38):

d(ρa3) = −Wρda3 −→ dρ

ρ
= −da

3

a3 (1 +W ) , (1.40)

and integrating from t0 to t:

ρ = ρ0

(
a

a0

)−3(1+W )
= ρ0(1 + z)3(1+W ) , (1.41)

where z = a0/a − 1 defines the cosmological redshift. We can use the equation (1.41)
to study the density trends as a function of time, for each component substituting the
respective values of W :
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1. Non-Relativistic Matter ρM ∝ a−3 ∝ (z + 1)3 ;

2. Radiation ρR ∝ a−4 ∝ (z + 1)4 ;

3. Cosmological Constant ρΛ ∝ a0 = (z + 1)0 = const .

Therefore the density evolution depends on the considered component, i.e. the value
of W . Moreover, as shown in Fig. 1.1, if we plot these dependencies, we can define
three different epochs looking at which component dominates the others. To simplify
the Friedmann equations, we could consider only the component prevailing over the
others, depending on the cosmic epoch we are studying. In this way we can define two

Figure 1.1: Density of species in the Universe as a function of (1 + z). The dashed
vertical lines indicate the two equivalence redshifts zeq,Λ and zeq.

equivalence redshifts at which the densities of two components cross:

1. Matter-Radiation equality zeq

ρM(zeq) = ρR(zeq)→ ρ0,M(1 + zeq)3 = ρ0,R(1 + zeq)4

(1 + zeq) = ρ0,M

ρ0,R
→ (1 + zeq) = Ω0,M

Ω0,R
; (1.42)
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2. Matter-Cosmological Constant equality zeq,Λ

ρM(zeq,Λ) = ρΛ(zeq,Λ)→ ρ0,M(1 + zeq,Λ)3 = ρ0,Λ

(1 + zeq,Λ) =
(
ρ0,Λ

ρ0,M

)1/3

→ (1 + zeq,Λ) =
(

Ω0,Λ

Ω0,M

)1/3

. (1.43)

Using the current density value for each component (Planck Collaboration: Aghanim
et al. (2020)): 

Ω0,M ≈ 0.307
Ω0,R ≈ 10−5

Ω0,Λ ≈ 0.693
(1.44)

we get:
zeq ≈ 6 · 103 and zeq,Λ ≈ 0.3 . (1.45)

If z > zeq we are studying the Radiation Era and we can neglect the other components,
if zeq,Λ < z < zeq we are studying the Matter Era, while if z < zeq,Λ we call it Dark
Energy Era.

1.5 Einstein-de Sitter model
The Einstein-de Sitter (EdS) Universes are flat Universes (k = 0 ,Ω0 = 1) that play an
important role in cosmology. It can be shown that they are valid for a large part of
the history of our Universe (a possible curvature only becomes important at low z). To
describe them we consider a single component with equation of state: P = Wρc2. We
rewrite the Friedmann equation (1.22) as a function of the parameter W(

ȧ

a0

)2
= H2

0

[
1− Ω0 + Ω0

(
a0

a

)1+3W
]
. (1.46)

If Ω0 = 1 this equation becomes(
ȧ

a0

)2
= H2

0

(
a0

a

)1+3W
→
(
ȧ

a0

)
= H0

(
a0

a

) 1+3W
2

ȧ = a0H0

(
a0

a

) 1+3W
2
→ da

dt
= H0a

2
0 a
− 1+3W

2 ,

separating the variables and integrating we obtain

a(t) = a0

(
t

t0

) 2
3(1+W )

. (1.47)
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But we have seen that
ρ(t) = ρ0

(
a0

a

)3(1+W )
. (1.48)

Then substituting (1.47) into (1.48) we obtain

ρ(t) = ρ0

(
t

t0

)−2
−→ ρ(t) ∝ t−2 . (1.49)

To summarize, the Eds model is a Universe in increasing monotonous expansion, which
decelerates in a constant and infinite way.

1.6 Decoupling redshift
The history of the Universe is a history of cooling. The actual temperature of the
Universe is T0 = 2.73K, that is the mean temperature of the CMB radiation. Going
backwards in time, what is called early Universe, temperature was higher than today.
However, the Universe is made of multiple species and it is not certain that they all have
the same temperature for the entire life of the Universe.
Two or more species of the Universe maintain the same temperature as long as the
interactions between them are efficient enough to maintain an equilibrium condition. So
to know if two components are at equilibrium, we can compare two scale times:

• Collisional scale time
τcoll = 1

Ncσ

• Expansion scale time
τexp = 1

H

where N represents the density number, c is the speed of light, σ is the cross-section and
H is the Hubble parameter. If τcoll < τexp they are in equilibrium.
To know if Matter and Radiation are currently in equilibrium, we take N = ρ0,M/mp

and σ = σH since, today much of the matter is in neutral form and we get:

τcoll,0 � τexp,0 . (1.50)

Meaning that the interactions are not efficient for maintaining a state of equilibrium and

TM,0 6= TR,0 , (1.51)

therefore, we can consider them as separate components. Using the adiabaticity equation
it is possible to study the trends of the two temperatures with the redshift and it is
possible to prove that

TM ∝ (1 + z)2 , TR ∝ (1 + z) . (1.52)
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Matter and radiation, when they are decoupled, follow different adiabatics. All this
applies to t = t0, but we must ask ourselves if it is also valid at earlier times. If
we look at the definition of the collisional scale time we have that τcoll ∝ ρ−1

M , but
ρM ∝ (1 + z)3 so τcoll ∝ (1 + z)−3: going back in time, the density of matter increases
and the collisional time decreases. Furthermore, at higher temperatures, the cross section
changes (σH → σT ) and the Thomson cross section is much more efficient. It can be
shown that there is a value of z, called the decoupling redshift (zdec), before which the
two components are coupled. This means that for z > zdec matter and radiation are in
equilibrium and follow the same adiabatic, that can be shown to be:

T ∝ a−1 ∝ (1 + z)1 . (1.53)

1.7 Cosmological Horizon
Another scale length that will be useful for the next chapter is the so-called Cosmological
Horizon RH . It represents the finite region of the Universe in causal connection. To have
causal connection, the regions considered must be able to communicate and the maximum
communication speed is the speed of light. However, the Universe is expanding and thus
we define RH as

RH(t) = a(t)
∫ t

0

cdt′

a(t′) . (1.54)

It can be shown that the cosmological horizon is finite and grows over time due to the
expansion of the Universe, hence the causally connected region is finite and grows faster
than the speed of light. This means that larger and larger regions of the Universe come
into causal contact with the observer.
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Chapter 2

Theory of structure formation

The Cosmological Principle tells us that on large scales the Universe is isotropic and
homogeneous, but we know that this is no longer true on small scales as we observe
galaxies, clusters etc. In this Chapter we will discuss the theories of structure formation
and evolution. We will also go through the major characteristics of the power spectrum,
which are helpful for figuring out how to distinguish between different Dark Matter
models.

2.1 Jeans Scale
Once the thermodynamic properties of a halo (T, ρ, P, ...) have been fixed, the Jeans
scale represents the minimum scale that a perturbation must have in order for it to
increase. To derive its definition, we use the Jeans theory’s main premise, which states
that the collapse is governed by two opposing processes: gravity collapse and pressure
inside collapsing haloes caused by thermal movements of the particles. For a spherical
collapse of a cloud of radius R, mass M and with particles moving with speed v we can
derive the Jeans scale RJ through different approaches, For example, we can consider
the balance between kinetic energy and potential energy:

EK = 1
2Mv2 , Ep = −GM

2

R
.

For the cloud to collapse, the potential energy must be greater than the kinetic energy,
so to find the minimum scale we equal the two components

EK = Ep →
v2

2 = GM

RJ

= GρR3
J

RJ

= GρR2
J

and derive the Jeans scale as
RJ = v√

2Gρ . (2.1)

Then, if R > RJ , Ep > EK , the perturbation can collapse and grow.

15



2.2 Classic Jeans Theory
The classic Jeans theory is a linear theory of gravitational instabilities in a static Uni-
verse. To describe our system we need the hydrodynamic equations :

1. Mass Conservation Equation

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 ; (2.2)

2. Euler’s Equation

∂~v

∂t
+ (~v · ~∇)~v = −1

ρ
~∇P − ~∇Φ ; (2.3)

3. Poisson’s Equation

∇2Φ = 4πGρ ; (2.4)

4. Equation of State

P = P (ρ, S) . (2.5)

where P , Φ and S represent pressure, potential and entropy respectively.
We have a system with 5 variables (ρ, v, P,Φ, S) and 4 equations, but by definition the
Universe is adiabatic (dS = 0), thus we can consider a barotropic equation of state
P = P (ρ). We obtain a system of 4 variables and 4 equations. The state of equilibrium
is introduced through the so-called background conditions:

ρB = const

PB = const

ΦB = const

~v = 0

(2.6)

Then we apply small perturbations to each of the background conditions, to study how
the system evolves: 

ρ = ρB + δρ

P = PB + δP

Φ = ΦB + δΦ
~v = δ~v

(2.7)
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Since these perturbations are small, we can neglect the second-order terms, linearizing
the equations. Using equations (2.2), (2.3), (2.4), the perturbed solutions (2.7) and
neglecting the second-order terms, we get:

∂δρ
∂t

+ ρB ~∇ · δ~v = 0

∂δ~v
∂t

= −v2
s
~∇( δρ

ρB
)− ~∇δΦ

∇2δΦ = 4πGδρ

(2.8)

where in the second equation we defined the speed of sound:

v2
s =̇

(
∂P

∂ρ

)
S

. (2.9)

The system solutions will tell us how small perturbations evolve in a static Universe. It
is convenient to study these solutions in Fourier space, so that the differential equations
are transformed into algebraic equations. We define the solutions in the following way:

δρ = δρk e
i(~k·~r+ωt)

δΦ = δΦk e
i(~k·~r+ωt)

δv = δvk e
i(~k·~r+ωt)

(2.10)

with ~r the spatial vector, (δρk, δΦk, δvk) the amplitudes of the waves and ~k = 2π
λ
k̂ the

wave vector. Defining the so-called density contrast δ =̇ δρ/ρB and substituting equations
(2.10) in (2.8), we obtain the hydrodynamic equations of the perturbations in algebraic
form : 

ωδk + kδvk = 0

ωδvk = −k(v2
sδk + δΦk)

δΦk = −4πG
k2 ρBδk

(2.11)

The solutions are derived by setting the Jacobian J of the system to zero :
ω k 0

kv2
s ω k

4πGρB

k2 0 1

 = 0 . (2.12)
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Obtaining the so-called dispersion equation

ω2 = k2v2
s − 4πGρB , (2.13)

which links the pulsation of plane waves to the speed of sound and to the wave vector.
This equation has two possible solutions, depending on the sign of ω2 , that discriminates
between real (ω2 > 0) and imaginary values (ω2 < 0). The value that discriminates the
two cases is ω2 = 0 and defines the Jeans wave number:

kJ =
√

4πGρB
vs

. (2.14)

In the real space we find the definition of Jeans scale:

λJ = 2π
kJ

= vs

√
π

GρB
. (2.15)

Then we can write the dispersion equation

ω2 = k2v2
s

(
1− k2

J

ks

)
= k2v2

s

1−
(
λ

λJ

)2
 . (2.16)

Depending on the values of λ, we will have two kinds of solutions:

• Physically small scales if λ < λJ , where ω2 > 0 and the pulsation is real. We
have two waves of small amplitude that propagate in opposite directions. In this
case the perturbations cannot grow.

• Physically big scales if λ > λJ , where ω2 > 0 and the pulsation is imaginary.
Substituting these pulsations in equations (2.10), we obtain stationary waves with
amplitude increasing over time:

δ± = δk e
±|ω|t ei

~k·~r . (2.17)

Equation (2.17) represents the solutions for the evolution of perturbations in a static
Universe, valid only in a linear regime, i.e. until δ � 1.

2.3 Cosmological Jeans Theory
The Classic Jeans theory holds for a static Universe, but in reality our Universe is
expanding, and the expansion tends to contrast the collapse of matter. The background
solutions in this situation will no longer be constant, but instead functions of time. We
must examine several fundamental scales in order to understand how to use Jeans theory
in an expanding Universe:
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1. Horizon scale RH(t), defined in equation (1.54), which represents the scale under
which there is causal connection and microphysical phenomena must be taken into
account. On scales greater than the horizon, the only interaction to consider is
gravity: all the perturbations can collapse and grow.

2. Jeans scale RJ , this scale only makes sense within the horizon, since it depends
on the interactions between the components, and represents the scale that discrim-
inates what can grow (R > RJ) from what cannot grow (R < RJ) and propagates
as a wave.

3. Dissipation scale RD. It represents the scale under which the wave propagation
causes the wave to dissipate, canceling the perturbation.

4. Equivalence time teq. It represents the moment in which matter begins to dom-
inate the radiation. For t > teq we will be in the radiative era, where the radiation
pressure dominates and opposes gravity.

5. Decoupling time tde. It represents the moment in which matter decouples from
the radiation. The different components of matter decouple at different times,
changing the behavior of the collapse.

6. Non-relativistic time tNR. It represents the time beyond which a component
stops being relativistic and depends on the mass of the particles.

Having defined these fundamental scales, we can study the evolution of perturbations in
an expanding Universe on different scales.

2.3.1 Outside the cosmological horizon
We consider scales R > RH where only gravity acts. The idea is to consider a per-
turbation as a small closed Universe (Ωtot > 1, k = +1) immersed in a flat Universe
(Ωtot = 1, k = 0). From the Friedmann equation (1.22) divided by a2, we have

ȧ2

a2 = 8
3πGρ

a2

a2 −
kc2

a2 −→ H2 = 8
3πGρ−

kc2

a2 , (2.18)

we can consider separately the perturbation (HP ) and the background Universe (HB):

H2
B = 8

3πGρB , H2
P = 8

3πGρP −
c2

a2 . (2.19)
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We look for solutions that are synchronized, so the two equations must be equal:

H2
B = H2

P →
8
3πGρB = 8

3πGρP −
c2

a2

8
3πG(ρP − ρB) = c2

a2

8
3πGδ = c2

a2
1
ρB
→ δ = 3c2

8πG
1

ρBa2 . (2.20)

We defined δ =̇ (ρP − ρB)/ρB and from equation (2.20) we notice:

δ ∝ 1
ρB a2 . (2.21)

If z > zeq, we are in the Radiative Era and ρB = ρR ∝ a−4, so δ = δR ∝ a−2a4 then
δ ∝ a2. Being outside the horizon, the only force to consider is the gravitational force,
then all the other components will follow the trend of the dominant component as well
δDM ∝ δb ∝ δR ∝ a2. Conversely, if z < zeq, ρB = ρM ∝ a−3, so δ = δM ∝ a−2a3 then
δ ∝ a and again all the other components will follow this trend.
To summarize, if we are outside the horizon R > RH the perturbations always grow, but
with a trend that changes at the time of equivalence:δ ∝ a2 z > zeq

δ ∝ a z < zeq
(2.22)

2.3.2 Inside the cosmological horizon
To find solutions within the horizon, the expansion of the Universe must be taken into
account. In this case it is more convenient to work with co-moving coordinates and we
will call ~r the physical coordinates and ~x the co-moving ones, where ~r = a~x. In this case

~̇r = d~r

dt
= ȧ~x+ a~̇x = H~r + a~̇x . (2.23)

The physical variation of a body’s position, that depends on the Hubble flux (H~r) plus
a perturbative term a~̇x. We define the velocity in physical coordinates:

~u = H~r + δ~v . (2.24)

We take the hydrodynamic equations (2.2), (2.3), (2.4) and write them in physical coor-
dinates

∂

∂f

∣∣∣
~r
ρ+ ~∇~r · (ρ~u) = 0 ; (2.25)
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∂

∂f

∣∣∣
~r
~u+ (~u · ~∇~r)~u = −1

ρ
~∇~rP − ~∇~rΦ ; (2.26)

∇2
~rΦ = 4πGρ . (2.27)

To study the solutions of Jeans theory in an expanding Universe, we follow the same
procedure used for a static Universe. Now the background solutions derived from a
Friedmann Universe and are not static, but are functions of time. Moreover, ~v 6= 0.
As before, we take the background solutions, add small perturbations, replace these
perturbations in the hydrodynamic equations and neglect the second-order terms. Using
the relation ~r = a~x we transform the equations into co-moving coordinates and we look
for solutions in Fourier space (the amplitude of fluctuations are not constant over time).
The differential equations become algebraic equations. Using this system of equations it
is possible to obtain the dispersion relation :

δ̈k + 2 ȧ
a
δ̇k + δk

[
k2v2

s − 4πGρB
]

= 0 , (2.28)

which describes the time evolution of the density field in an expanding Universe. This
equation tells us that the density field is controlled by a term related to the expansion
(H = ȧ/a) that opposes the collapse, while in the second term we have a competition
between velocity dispersion and the gravitational field.

2.4 Perturbations evolution in an EdS Universe
Considering an EdS Universe of matter only: Ωtot = ΩM = 1 and W = 0. We start at
t > teq and R < RH . Under these conditions we have:

a ∝ t2/3 , H = 2
3

1
t
, ρB = 1

6πGt2 . (2.29)

The dispersion relation (2.28) becomes:

δ̈k + 4
3

1
t
δ̇k + 2

3 δk
1
t2

[
k2v2

s

4πGρB
− 1

]
= 0 . (2.30)

We are looking for solutions such as δk ∝ tα, to make explicit the dependence on time.
In terms of α the dispersion relation is

3α2 + α + 2
(

k2v2
s

4πGρB
− 1

)
= 0 , (2.31)

which is a second-order equation (two real solutions or two imaginary solutions). In
order for the perturbations to grow, we need the solutions to be real and this happens if
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∆ > 0. The discriminating value, that allows us to derive the Jeans scale is ∆ = 0 and
we get

λJ = vs

√
24π

25GρB
. (2.32)

If ∆ > 0 and λ� λJ we can solve the equation (2.31). We get α− = −1 and α+ = 2/3,
then the increasing perturbations is:

δ+ ∝ t2/3 ∝ a . (2.33)

All the perturbations of matter in the EdS Universes in linear regime, for λ� λJ , grow
as the expansion factor.

2.5 Perturbation evolution in a Radiative Universe
In the radiative era, the contribution of the radiation pressure must be taken into account.
Then we take the hydrodynamic equations and substitute ρ→ ρ+ 3P/c2 :

∂ρ
∂t

+ ~∇
(
ρ+ P

c2

)
~v = 0

(
ρ+ P

c2

)[
∂~v
∂t

+ ~v ~∇~v
]

+ ~∇P +
(
ρ+ P

c2

)
~∇Φ

∇2δΦ = 4πG
(
ρ+ 3P

c2

)
(2.34)

Following the same procedure used in the previous cases, we find the dispersion relation
in a Radiative Universe:

δ̈k + 2 ȧ
a
δ̇k + δk

[
k2v2

s −
32
3 πGρB

]
= 0 . (2.35)

Being z > zeq, we can consider the Universe EdS, but we are in the Radiative era then
W = 1

3 , then the dispersion equation becomes

δ̈k + δ̇k
t

+ δk

[
k2v2

s −
1
t2

]
= 0 . (2.36)

Now we write the dispersion equation as a function of α (δk ∝ tα):

α2 = 1− k2v2
st

2 . (2.37)

We find that the Jeans scale for t < teq is

λJ = vs

√
3π

8Gρ . (2.38)
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For λ � λJ we can solve the equation (2.37) and we get α+/− = ±1. The increasing
solution is:

δ+ ∝ t ∝ a2 . (2.39)
These equations hold for R > RH , but we want to know how big the Jeans scale is
relative to the horizon. From the dispersion relation:

α2 = 1− k2v2
st

2 = 0→ kJ = 1
vst
→ λJ = 2πvst→ λJ = 2πct√

3
. (2.40)

This scale only makes sense within the horizon, because outside any perturbation can
grow. If we calculate the radius of the horizon at this time:

RH(t) = a(t)
∫ t

0

cdt′

a(t′) , (2.41)

in an Eds Universe with W = 1/3, we have a(t) = a0(t/t0)1/2, then the horizon becomes

RH(t) = 2 c t . (2.42)

In the Radiative era λJ > RH , and this means that this Jeans scale has no physical sense:
in this era it is not possible to make the radiative perturbations grow inside the horizon.
Thus, ρR = 0 and as long as matter is coupled to radiation, matter perturbations will also
not grow due to radiation pressure. This phenomena is one of the proofs of the presence
of dark matter. Since baryonic perturbations do not grow until decoupling, there must
be another component of matter that acts differently to produce the perturbations that
we see today. Dark Matter decouples sooner than baryons, and its perturbations might
begin to develop shortly after the period of equivalence. After decoupling, baryonic
perturbations develop faster because they can take advantage of the potential wells left
by dark matter after it has grown.

2.6 Statistical treatment of perturbations
According to inflation theories, statistical fluctuations in the metric (spiraling in the
inflaton phase space) produce the perturbation field in the last phases of inflation, and
the perturbations are generated with a stochastic and quasi-Gaussian distribution. We
can assume that the perturbations in the early Universe follow a Gaussian distribution
so the probability to have a perturbation δ(~x) is:

P (δ(~x)) = 1
2πσ2 exp

[
−(δ(~x)− < δ >)2

2σ2

]
, (2.43)

where the perturbations are defined as

δ = δρ

< ρ >
= ρ − < ρ >

< ρ >
. (2.44)
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Being P (δ) Gaussian, it is defined only by its average < δ > and variance < δ2 >, but
by definition < δ >= 0, then the only value that defines this field is the variance.
To apply a statistical method, we require a suitably big sample, which means we wish
to witness the occurrence several times. This is not possible in the case of the Universe
because the sample consists of just one element: the Universe itself. To overcome the
difficulty, we may use the ergodic hypothesis (for a Gaussian field it becomes a theorem),
which states that while we can not create averages on many different realizations of
the Universe, we must make them on sufficiently vast and distinct sub-spaces. This
hypothesis states that, because of the CP, we may think of our Universe as a collection
of statistically independent sub-Universes.
To perform a statistical analysis, we go to Fourier space and consider a perturbation as
a superposition of plane waves. Then in the Fourier space a perturbation δ(~x) becomes:

δ(~k) = 1
(2π)3

∫
δ(~x) e−i~k·~x dx3 . (2.45)

2.6.1 Power Spectrum
One of the most effective tools for studying perturbations from a statistical point of view
is the so-called Power Spectrum P (~k). It tells us how important a fluctuation is on a given
length-scale L = 2π/|~k|: the larger P (~k), the larger the amplitude of the fluctuations on
this length-scale. Since we have decomposed a perturbation as the sum of plane waves
with wave vector ~k, we can say that the Power spectrum describes the distribution of
amplitudes with equal k = |~k|. We can define the power spectrum analytically, through
another quantity called Two-point correlation function

ξ(~r) =< δ(~x)δ(~x+ ~r) > . (2.46)

It is the average of the product between two values of the field of fluctuations, taken
between two points at co-moving distance r = |~r |. Given this definition, it can be
shown that the correlation function and the power spectrum represent a Fourier pair:

ξ(~r) = 1
(2π)3

∫
P (k) ei~k·~r d3k . (2.47)

The correlation function, defined in real space, is the inverse transform of the power
spectrum, defined in Fourier space. From equation (2.47) it is possible to prove that

P (k) ∝< δ2(~k) > . (2.48)

The power spectrum is proportional to the variance of the amplitude of a perturbation
with wave number ~k.
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2.6.2 The Initial Power Spectrum
At early times, the expansion of the Universe follows a power law, in the radiation-
dominated era and at that time, no natural length-scale existed to which one might
compare a wavelength. The only mathematical function that depends on a length but
does not contain any characteristic scale is a power law; hence for very early times one
should expect

P (k) = Akn , (2.49)
where A is the amplitude, and n is called spectral index. However, primordial perturba-
tions are the result of a stochastic process due to the oscillation of the so called inflaton
and therefore we expect these fluctuations not to have privileged scales. Oscillating, the
inflaton creates fluctuations in the metric, i.e. fluctuations in the gravitational potential
δΦ. Assuming a power spectrum with a power law (2.49), it is possible to prove that

δΦ ∝M
1−n

6 . (2.50)

To get a scale free relationship, we must assume n = 1, then the primordial power
spectrum (called the Zeldovich spectrum) becomes

P (k) = Ak . (2.51)

This trend is valid only in primordial epochs, while its shape and its evolution will depend
on cosmology. For a complete discussion see Zeldovich (1972).
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Chapter 3

Dark Matter

The first hints of the existence of dark matter come from the 1930s when Zwicky discov-
ered dynamical evidence that the Coma cluster has ten to one hundred times more mass
than luminous matter in galaxies (Zwicky 1933). However, it was not until the early
1980s that astronomers realized that the majority of the mass keeping galaxies and clus-
ters of galaxies together is invisible. According to astronomical measurements, baryonic
matter makes up just around 16% of the total quantity of matter in the Universe. The
remaining 84% is attributed to a new type of matter that cannot be observed by the
light it emits, called Dark Matter (DM). In this scenario, gravitational DM interactions
are the only ones that matter for structure formation. Given the importance of DM
role, determining what it is has become one of the greatest challenge of this century.
The evidence for dark matter’s existence is vast and compelling. It comes from cosmic
structures on all scales and across all epochs, from the faintest dark-matter-dominated
dwarf galaxies to the largest clusters of galaxies, the large-scale structure of the Universe,
and back to the very seeds of cosmic background radiation. This collection of data may
be explained by a coherent theory of structure formation in which dark matter gravity
amplifies primordial density perturbations imprinted during an early era of cosmic infla-
tion. In this chapter we will look at the role of dark matter in the structure formation
and evolution discussing over the the main detection methods and probable candidates.

3.1 Dark Matter Perturbation evolution
Accurate observations of the temperature anisotropies and polarization of cosmic mi-
crowave background (CMB) in principle allow us to derive the parameters of the Stan-
dard Cosmological Model with very high accuracy. For this reason, these observations
are one of the greatest proofs of the existence of dark matter. Although the isotropic
microwave background suggests that the Universe was once quite homogeneous, we know
that today it is far from homogeneity: we observe galaxies, clusters, empty regions and
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superclusters. In the current model of structure formation, these structures form from
extremely small primordial inhomogeneities that grew in size over time due to gravita-
tional instability. These inhomogeneities leave a mark (anisotropy in temperature) in
the microwave background. First discovered by COBE in 1992, and more recently in-
vestigated in much more detail by the Planck mission (see Fig. 3.1), these fluctuations,
linked to the density perturbations, have an amplitude of the order of 10−5 at the last
scattering surface (z ∼ 1100). Therefore, a theory of structure formation must explain

Figure 3.1: The anisotropies of the microwave background measured by the Planck
satellite with 4 arcminute resolution. It shows tiny temperature fluctuations (∆T ∼ 10−5)
that correspond to regions of slightly different densities, representing the seeds of all
future structure: the today large scale structure of the Universe. In this map the galactic
foreground has been properly subtracted. Credits: Aghanim et al. (2020)

the evolution of the Universe from a nearly homogeneous initial state, with small matter
density perturbations, δ ∼ 10−5 at z ∼ 1100, up to density contrasts larger then 103

for galaxies at z << 1. The most common hypothesis to explain this rapid growth of
density perturbations, which is not possible in a Universe made up of baryons only, is
the existence of an invisible type of matter: the Dark Matter.
Another strong direct evidence for the presence of a large quantity of dark matter is
the flat rotation curves of spiral galaxies. Spiral galaxies have a central bulge and a
very narrow disk that are supported by angular momentum and surrounded by a dark
matter halo that is roughly spherical. The Doppler shifts of spectral lines can be used to
calculate the orbital velocities of objects orbiting around the disk as a function of radius.
Babcock (1939) estimated the Andromeda galaxy’s rotation curve from the stars in the
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disk for the first time in 1939. Later, it became feasible to measure galactic rotation
curves far out in to the disk, and a trend was discovered: the orbital velocity increases
linearly from the center outward until it reaches a peak, then flattens out to the greatest
recorded radii (see Fig. 3.2). This was completely unexpected since the observed surface
luminosity of the disk falls off exponentially with radius. Thousands of galaxy rotation
curves are now known, and all the results point to the fact that dark matter must be
present as a hidden underlying component, to explain the shape of rotation curves.

Figure 3.2: The rotation curves of several spiral galaxies. Galactocentric radii are
normalized to Ropt, the radius encompassing 83% of the total I−band luminosity. Credits:
Persic, Salucci, and Stel (1996).

3.1.1 Primordial Power Spectrum
As we saw in section 2.6.2, the starting point of structure formation is the end of cosmic
inflation when dark matter perturbations are predicted to have a nearly scale-invariant
power spectrum: P (k) ∝ kn, with a spectral index n = 0.965, derived by the Plank
collaboration (Aghanim et al. 2020). Then, self-gravity drives the growth of dark matter
perturbations in the expanding Universe and in the linear regime (δ << 1) this growth
can be described by the linear perturbation theory seen in Chapter 2. The dispersion
relation (equation (2.28)), for a DM perturbation δk,DM , becomes 1.

δ̈k,DM + 2 ȧ
a
δ̇k,DM − δk,DM4πGρb,DM = 0 (3.1)

1during the radiative era δk,R ∼ δk,B ∼ 0, therefore there is only the contribution of the DM
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and it is possible to show that in a linear regime this equation has the following increasing
solution:

δ+
k,DM = 1 + 3

2x , (3.2)

where x = a/aeq. In this regime, two key events occur that alter the primordial power
spectrum. The first, known as Meszaros effect or stagnation, is active for z < zeq: the
growth of dark matter perturbations on scale lower than the horizon stagnates, while
super-horizon scales continue to expand. When matter becomes the main component of
the energy density (z > zeq), all perturbations grow at the same rate. The transition
introduces a characteristic scale in the power spectrum, the size of the horizon at the
time of matter-radiation equality: RH(teq).
The cut-off in the power spectrum, which reflects the nature of the DM particle, is
the second crucial effect. This cutoff is imposed by a physical process that is model
dependent. The mechanism for collisionless DM is free-streaming, a type of damping
whose scale is determined by the horizon size at the time when dark matter particles
become non-relativistic; the more massive the particle, the earlier this epoch, and hence
the smaller the free-streaming scale. (for more details about Meszaros effect and Free-
streaming see Appendix A). To understand how the two effects modify the primordial
power spectrum, we can introduce the mass of the horizon MH ∝ ρMR

3
H , where

MH ∝

a3 if a < aeq

a
3
2 if a > aeq

(3.3)

Then we will have two different situations:

• Scales entering the horizon before equivalence aH < aeq experience stagnation.
Such scales will only grow up to aH , then at the time of equivalence we will have

δk(teq) = δk(ti)
(
aH
ai

)2
∝ δk(ti)a2

H (3.4)

, but before equivalence MH ∝ a3 → a2 ∝M
2/3
H , then

δk(teq) ∝ δk(ti)M
2
3
H ∝ δk(ti)k−2 , (3.5)

therefore the power spectrum

P (k, teq) ∝ δ2
k(teq) ∝ δ2

k(ti)k−4 ∝ P (k, ti)k−4 ∝ kn−4 . (3.6)

The effect of stagnation is a loss of power at the scales that enter the horizon before
equivalence.
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• Scales entering the horizon after equivalence aH > aeq do not experience stagnation,
then for these scales

δk(teq) = δk(ti)
(
aeq
ai

)2
∝ δk(ti)a2

eq , (3.7)

therefore the power spectrum

P (k, teq) ∝ δ2
k(teq) ∝ δ2

k(ti)a4
eq ∝ P (k, ti)a4

eq ∝ kn . (3.8)

For these scales the shape of the spectrum remains the same as the primordial one.

The trend of the power spectrum at the time of equivalence P (k, teq) is schematically
plotted in Fig. 3.3. The peak distinguishes the scales that have faced the phenomenon
of stagnation, from those that have instead grown while remaining outside the horizon;
it represents the size of the horizon at the moment of equivalence, i.e. keq = 2π/RH(teq).
The free-streaming scale, on the other hand, is model dependent: the scale on which we

Figure 3.3: Power spectrum at the time of equivalence. The vertical dashed line corre-
sponds to the scale of the horizon radius at the time of equivalence keq = 2π/RH(teq). The
scales with k > keq have undergone the phenomenon of stagnation, then P (k) ∝ kn−4,
while scales with k < keq will enter the horizon after equivalence, then P (k) ∝ kn.

have the power spectrum cutoff depends on the dark matter model. This means that we
can use the point where the spectrum becomes zero P (k) = 0 = P (kFS) to discriminate
between DM particle models. Fig. 3.4. shows an example of power spectrum for CDM
model and different WDM models. For WDM the free-streaming scale shifts to smaller
k, which means that in these models we lose power to the small masses. For a more
detailed description of the relation between different DM models and particle mass see
Appendix A.
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Figure 3.4: Power spectrum for different DM models. The less massive the DM
particles, the smaller the scale for which P (kFS) = 0. Credits: Dunstan et al. (2011).

3.2 The standard cosmological model: ΛCDM
Cosmological and astrophysical data have converged upon the ΛCDM paradigm as the
standard model of cosmology which brings together the Big Bang and inflation theories
to describe and study the evolutionary history of our Universe. The standard model
makes a specific assumption about the nature of dark matter: dark matter consists of
non-relativistic, collisionless particles which had negligible thermal velocities at early
times (Cold dark matter). In this picture, of the total mass-energy content of the Uni-
verse, approximately 26% is cold dark matter (CDM), 5% is baryonic matter and ∼ 69%
is in the form of the cosmological constant Λ. This constant generates a negative contri-
bution to pressure (see section 1.3), which explains the current accelerating expansion
of space against the attractive forces of gravity.
The ΛCDM model has had tremendous success, since it can predict various empiri-
cal evidences in our Universe. Fig. 3.5 shows the remarkable agreement between the
observed matter power spectrum, obtained from a variety of cosmological probes on dif-
ferent scales, and the ΛCDM cosmology. In this scenario, structures in the Universe,
formed as primordial overdensities, collapse under the influence of gravity. Thus, since
DM dominates and collapses before than baryonic matter, it provides the gravitational
potential underlying the distribution of visible matter in the Universe.
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Figure 3.5: Matter power spectrum inferred through cosmological measurements of
the Sloan Digital Sky Survey. Red line shows the best fit for ΛCDM cosmology for a
simplified five-parameter model, assuming a flat spatial geometry and a scale-invariant
primordial spectrum. Credits: Tegmark et al. (2004).

3.2.1 CDM haloes and NFW profile
The small primordial density perturbations grow in time as a result of gravitational
clustering and form self-gravitating bound structures known as dark matter haloes. The
basic spherical collapse model may be used to explain how virialised haloes originate (for
a more complete discussion of the spherical collapse see Appendix B), but the definition
of halo’s boundary and its mass it is not unique and several different definitions are in
common use, each having different advantages (White 2001). The most common ones,
derived in simulations, are:

• Friends-of-Friends mass: the mass of a group of particles connected by a per-
colation scale and characterized by a linking length, b given in units of mean inter-
particle separation

• Spherical overdensity mass: the massM∆ contained within a sphere centered on
the halo (with the center placed at the halo gravitational potential minimum), with
a radius determined by the spherical collapse model, in which the collapsed region
that defines a halo contains an average density ∆(z) times the critical density.

• Virial mass: the spherical overdensity mass with ∆ = 200, which simulations
found as the radius r200 that separates the halo dynamical equilibrium region from
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the still contracting surrounding region. This is effectively a subset of the previous
definition.

According to N-body simulations and observations, regardless the definition of the halo,
the spherically averaged mass density profiles of dark matter haloes in dynamical equi-
librium have a nearly universal shape that is independent of halo mass, initial conditions,
and cosmological parameters (see Fig. 3.6). This is the so-called Navarro-Frenk-White
(NFW) profile (Navarro et al. 1997):

ρ(r) = ρcδc
(r/rs)(1 + r/rs)2 . (3.9)

This profile is described by only two parameters: rs is the scale length at which the
logarithmic slope of the profile is equal to −2 and δc defined as

δc = ∆c3

3Kc(c)
, (3.10)

where Kc(c) = ln(1 + c)− c/(1 + c) and c =̇ rvir/rs is the halo’s concentration. The slope

Figure 3.6: Density profiles of CDM haloes for different masses and cosmological pa-
rameter. Radii are given in kpc (scale at top), and densities are in units of 1010M� kpc

−3.
Credits: Navarro et al. (1997).

of this density profile changes from the central to the outer regions: ρ(r) ∝ r−1 in the
inner regions of the halo and ρ(r) ∝ r−3 in the outer part, hence an increase in density
in the central parts of the DM halos, known as cusp.
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3.2.2 Halo mass function
The mass function of dark matter haloes provides the number density of haloes of dif-
ferent mass per unit of volume. The abundance of haloes across cosmic epochs was
investigated since the early work of Press and Schechter (1974), based on the prop-
erties of the initial Gaussian density field (described by the power spectrum) and the
gravitational collapse of density perturbations into virialised haloes as modelled by the
spherical collapse model. More recently, the same analyses have been repeated by Sheth
and Tormen (2002) extending the P&S formalism with the assumption that the spheri-
cal symmetry is replaced by the assumption of ellipsoidal collapse. In the last couple of
decades, the halo mass function has been characterised more precisely using the result of
N-body simulations over the full range of masses, from dwarf-size haloes to cluster-size
haloes. The number density of haloes per unit mass is a decreasing function of the halo
mass and scales as:

dn

dM
∝Mα , (3.11)

where α ∼ −1.9 and the normalisation is related to the large scale environment with
denser environments having a larger halo abundance. Fig. 3.7 shows an example of halo
mass functions built from ΛCDM N-body simulations for different redshifts. The solid
lines represent the Sheth&Tormen prediction.

Figure 3.7: Top: FOF mass functions for the COCO and the COLOR simulations
from z = 9, to z = 0, on which are superimpose the S&T prediction (solid lines). The
vertical bars indicate Poisson errors. Bottom: the COCO and COLOR mass functions
normalized by the S&T prediction at the corresponding redshift. Credits: Hellwing et al.
(2016).
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3.3 Dark Matter detection
Given the large-scale agreement between ΛCDM model predictions and observations,
understanding the nature of DM is now a significant objective not just for the astro-
physics community, but also for the particle physics community. Astronomical evidence
for non-baryonic DM is one of the greatest pieces of evidence for physics beyond the Stan-
dard Model (SM), driving experimental innovation to discover its existence. The most
plausible candidate for the CDM particle is the so-called weakly-interacting massive-
particle (WIMP), a massive particle (mDM ∼ 1 − 100GeV ) interacting through weak
interaction. This model is successful for two reasons: there is high agreement between
the predicted and observed abundances of DM (a phenomena known as the WIMP mir-
acle); and this DM candidate occurs naturally in popular extensions of the SM, known
as super-symmetry. As a result, all attempts to determine the nature of DM rely on
the assumption that DM particles interact with SM particles, i.e. DM is related to SM
particles by a force other than gravity. In this framework there are three ways to proceed
in detecting DM:

• Indirect detection
The goal of this research is to look at the products of dark matter particle annihi-
lation or decay. The density of DM haloes has a peak in the inner part, thus the
annihilation process is supposed to increase there, allowing us to identify the re-
sults of these events. Usually, in the case of WIMP annihilation, the end products
are expected to be photons in the gamma-ray band;

• Direct detection
The goal is to detect dark matter elastic scatterings from atomic nuclei in a labo-
ratory setting, where the momentum transfer causes a nuclear recoil that may be
detected in a variety of ways depending on the detector.

• Colliders searches
Using particle scattering in a collider, try to create dark matter particles during
high-energy collisions at particle colliders. Any DM generated would not be de-
tected by particle detectors, but it would subtract energy and momentum. The
amount of energy and momentum left over after a collision may thus be used to
infer the existence of such particles. In this direction, many experiments are carried
out at the Large Hadron Collider (LHC), with different approaches (for a review
see Kahlhoefer (2017)).

For now, all these experiments remain unsuccessful and dark matter remains a hypoth-
esis, albeit one with strong empirical support.
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3.4 Revealing the nature of Dark matter
Given the failure of experiments presented in the last section and given some discrepan-
cies between CDM model predictions and small-scale observations (see section 4.1), the
field is still open to the possibility of different DM models. Several methods have been
developed to solve this puzzle and to determine the properties and the nature of DM. In
this section we analyze the main ones.

3.4.1 Strong gravitational lensing
Strong gravitational lensing occurs when the light from a background galaxy is deflected
by the gravitational potential of another object. As a result, one observes multiple
images of the background galaxy that are highly distorted and magnified. Additional
perturbations to the lensed images can be caused by substructures inside the foreground
lensing galaxy and low-mass haloes along the line of sight to the background object, the
intensity of which is dependent on the mass and the number of these (sub)haloes. As
a result, gravitational lensing allows us to directly constrain the halo and subhalo mass
functions, which depend on the content and type of dark matter. Various techniques
have been developed in order to use gravitational lensing to obtain information on the
(sub)halo mass function. Fig. 3.8 shows one such method, in which a lens model is used
to reconstruct the observed lensing effects. Subsequently, by analyzing the residual map
between model and observation, it is possible to trace the number and/or mass of any
sub-structure present in the field.

Figure 3.8: Results of two methods of the non-linear reconstruction for the smooth
component of a the perturbed lens. The top right-hand panel shows the original mock
data, while the top left-hand panel shows the final reconstruction. On the second row,
the source reconstruction (left-hand panel) and the image residuals (right-hand panel).
Credits: Vegetti and Koopmans (2009).
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3.4.2 Lyman-α Forest
The study of high-quality optical spectra from Lyman-emitting high-redshift quasars is
another astrophysical probe for the nature of DM. At different redshifts, the spectrum
of the quasar becomes related to the matter power spectrum as it travels across the
Universe. The quasar light, in particular, is redshifted as the Universe expands, thus
Lyman-α absorption from neutral hydrogen clouds along the line of sight suppresses por-
tions of the original quasar spectrum. Since the matter power spectrum is dependent on
the DM model (see section 3.1.1), the comparison of mock spectra generated from hydro-
dynamic simulations and those collected from spectroscopic observations can constrain
the nature of DM. Murgia et al. (2018) used a Monte Carlo Markov Chain (MCMC)
analysis of the entire parameter space impacting the power spectrum reconstructed from
high-redshift Lyman-forest data. They used a parametric transfer function

T 2(k) =
[
P (k)nCDM
P (k)CDM

]
= [1 + (αk)β]γ , (3.12)

where the subscript nCDM indicates non-CDMmodels. The parameters {α, β, γ} depend
on the DM mass. Therefore, it is possible to compare the transfer function predicted
by the simulations with the one constructed by observations to have constraints on the
nature of the DM (see Fig. 3.9).

Figure 3.9: Squared transfer functions associated to the 109 {α, β, γ}-combinations,
each of them corresponding to a different nCDM model. In red the accepted models by
the reference MCMC analysis at 2σ. In blue the rejected ones. Credits: Murgia et al.
(2018).
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3.4.3 Milky Way satellites
The Milky Way’s (MW) satellite galaxies are effective probes of the underlying dark
matter distribution, which is sensitive to the DM particle’s mass. In section 3.1.1, we
saw that the small-scale cut-off of the power spectrum depends on the DM model. If
a DM model has a cut-off on the mass scale of dwarf galaxies, we expect to find only
a few structures below the cut-off mass. This makes the MW satellite systems a good
candidate for constraining the DM properties: plausible models must create enough sub-
structure to accommodate the number of observable Galactic satellites. Fig. 3.10 shows
an example of a simulated luminosity function for MW-type galaxies, in CDM and in a
WDM model. Since WDM models have a cut-off at larger physical scales, fewer low-mass
structures are expected.

Figure 3.10: Cumulative satellite galaxy luminosity functions for haloes with masses
in the range M200 = [1, 1.5] · 1012M�. Right: 3.3 keV thermal relic WDM model. Left:
CDM model. Credits: Newton et al. (2021).

All these methods are used to put constraints on possible DM models. Recently, Enzi
et al. (2021), focusing on WDM models (DM particles that were quasi-relativistic during
kinetic decoupling), show how to employ these techniques together to get constraints
on the mass of DM particles and therefore rule out some models rather than others
(see Fig 3.11). From the analysis of the joint posterior they found an upper limit of
mth = 2.552 keV −1, mostly determined by the analysis of MW satellites. The second
strongest constraint comes from the Lyman-α forest analysis with an upper limit of
mth = 1.197 keV −1. While, for the lensing probes only the SLACS sample (red) puts an
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Figure 3.11: Posterior probability distributions for the analysis of the gravitational lens-
ing (red and purple), the Lyman-α forest data (blue), the luminous satellites of the MW
(green) and joint probability (gray). The upper limits from each analysis are represented
by vertical solid lines. Credits: Enzi et al. (2021)

upper limit of mth = 0.216 keV −1, even if it is weaker than the other methods.
The WDM models have been proposed as possible solutions to discrepancies between
CDM N-body simulations and observations. In fact, WDM predicts a damped linear
power spectrum due to free-streaming leading in a reduction in the number of substruc-
tures and forming less concentrated haloes when compared to CDM. These properties
suggest that WDM can provide a solution to two of the four main issues related to the
CDM paradigm, respectively the missing satellites problem (see section 4.1.1) and the
too-big-to-fail problem (see section 4.1.4). However, even if WDM haloes have constant
density cores, it has been shown that an unrealistic low value of the WDM mass is
needed to create core sizes that match observations (Carucci et al. 2015) and solve the
Core/Cusp problem (see section 4.1.2).
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Chapter 4

A new Dark Matter model: SIDM

In the standard ΛCDM model dark matter is composed by CDM particles, in which
gravity is the only dark matter interaction. In fact the success of the CDM model
in explaining the observed large-scale structure of the Universe established the current
paradigm of structure formation and, as a result, most of our understanding of cosmic
structure comes from studies that assume the CDM model. However, significant small-
scale discrepancies between the CDM N-body simulations and observations on galactic
and sub-galactic scales remain: the so called "CDM small-scale crisis", leading to the
hunt for new DM candidates. In this chapter we will discuss the main problems related
to the CDM model and we will introduce a new DM model often proposed as a solution:
the Self-Interacting Dark Matter models (SIDM).

4.1 CDM small-scale crisis
The standard CDM model has been scrutinized extensively thanks to high-resolution
N-body simulations. The model two most crucial predictions are the existence of a large
population of DM haloes and subhaloes, and the presence of a sharp cusp in the density
profile of dark matter haloes of all masses. These two predictions are linked to four of
the CDM model well-known issues: (i) missing satellites; (ii) core/cusp problems; (iii)
diversity problem and (iv) too-big-to-fail. We will now describe these in more detail,
together with the effect of SIDM on each prediction

4.1.1 Missing satellites
The first issue lies in the number of satellites predicted by N-body simulations for Milky
Way-like galaxies. Kauffmann et al. (1993) showed, using CDM-only simulations, that
CDM haloes should contain a large number of subhaloes. Similar work was published by
Klypin et al. (1999), under the title "Where are the Missing Galactic Satellites?" (from
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whence the missing satellites problem gets its name), showed that according to CDM
predictions, the MW should have several hundred subhaloes with within its virial radius,
each in principle hosting a satellite. However, at the time, only 11 dwarf satellite galaxies
were known in the MW. Various solutions to this problem were then offered. One possi-
bility is that the CDM’s small subhaloes are ineffective at retaining gas: the ultraviolet
photoionizing background can heat the gas, preventing the collapse into DM haloes and
reducing the gas cooling rate (Thoul and Weinberg 1995). Moreover, effects due to super-
nova feedback can also be considered: after an initial star formation episode, supernovae
winds could push the remaining gas out of the shallow potential wells of these DM low
mass haloes (Dekel and Silk 1986). These two effects could suppress star formation and
galaxy evolution, making these sub-haloes invisible to current surveys and thus lessening
the missing satellites problem. In fact, it appears that when sophisticated baryon physics
is included in simulations (Hopkins et al. 2014; Trujillo-Gomez et al. 2015), the projected
number of small satellites drops: supernova feedback and reionization deplete baryons
in low mass halos and only a subset of them can form galaxies, reducing the disparity.
As an alternative, Spergel and Steinhardt (2000b) showed that in SIDM cosmology, the
sub-halo abundance can be modified for large enough cross-sections. However, the cross-
sections required for this to happen are seemingly too large (∼ 10cm2/g) on galactic
scales (at least in DM-only simulations), above the most recent constraints. Although
DM self-collisions are not strong enough to impact the power spectrum on galactic scales,
another possibility is that the interplay between DM interactions with relativistic parti-
cles in the early Universe and DM collisions due to DM self-scattering can create a cutoff
in the power spectrum on scales larger than the CDM model (Vogelsberger et al. 2016).
This effect can suppress the formation of subhaloes (see section 3.4.3).
In reality, the number of observed faint satellite galaxies has risen considerably since this
problem was originally addressed. Due to faintness, luminosity bias, and restricted sky
coverage, the finding of numerous faint new satellites in the Sloan Digital Sky Survey
suggests that up to a factor of 5−20 more dwarf galaxies may yet be found. Given these
factors, the issue of lost satellites no longer appears to be a major concern.

4.1.2 The core/cusp problem
This second problem is related to the different behavior of the density profiles of some
cosmic structures. As explained in section 3.2.1, CDM-only simulations predict haloes
with cuspy DM density profiles well-described by NFW profile. However, observational
studies have measured the density profiles of structures, ranging in size from dwarf
galaxies to galaxy clusters. It has been found that some of these structures have a lower
slope in the central regions with respect to predictions with the NFW profile, sometimes
leading to a constant density profile in these areas, known as cored system. Solutions to
this discrepancy within a CDM framework typically invoke baryonic feedback processes
that can alter the DM profile in the inner regions: core formation, for example, might
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be driven by sufficiently strong supernova feedback. DM particles can migrate out to
larger orbits when a substantial percentage of baryons is rapidly removed from the inner
halo. In this way, through a purely gravitational interaction between DM and baryons,
recurrent bursts of star formation and outflows might lower the core halo density (Navarro
et al. 1996; Ocvirk et al. 2014; T. Sawala et al. 2016).
Another solution is to assume that DM is not collisionless, but it is self-interacting: the
interactions between DM particles can form isothermal cores in the central parts of the
haloes, as we will discuss in detail in section 4.2 (see also Fig. 4.1).

4.1.3 Diversity problem (of rotation curves)
This issue occurs as a result of the fact that not all observed galaxies appear to have
cores: while some systems have large cores, there are galaxies which are consistent with a
cuspy CDM halo (Oman et al. 2015). This is in contrast with ΛCDM model in which the
development of hierarchical structures results in self-similar halos that are well-described
by NFW profiles. Because the halo parameters are correlated, specifying a halo with just
one parameter is sufficient. For example, the halo density profile is entirely defined at
all radii, including the inner density cusp, once the maximum circular velocity Vmax
is fixed, but observed galaxies with similar Vmax can have significant variation in their
central densities. In other dark matter models, the diversity of observed rotation curves
is similarly expected, because changing the nature of dark matter may generate cores in
DM haloes, but such cores would all be similar at a given mass scale, contrary to what
rotation curves suggest.
A solution to this problem can be found if both baryon effects and another DM model
are considered. In the presence of baryons, SIDM has been shown to both increase and
reduce the central density of DM, depending on how centrally concentrated the baryonic
component is, solving both the core/cusp problem and the diversity problem. These
results will be discussed in more detail in the next section.

4.1.4 Too-big-to-fail
The presence of large, dense galactic subhaloes whose kinematics looks incongruous with
those of the brightest Milky Way satellites in CDM N-body simulations, is commonly
referred to as the "too-big-to-fail" (TBTF) problem. Boylan-Kolchin et al. (2011) showed
that CDM simulations predict the majority of the Milky Way’s most massive sub-haloes
to be too dense to host any of the Milky Way’s bright satellites. The problem is that
these sub-haloes are much more massive than the estimated dwarf galaxy masses based
on line-of-sight velocity measurements, hence, these substructures should be too big
to fail to form stars. This problem, like the preceding ones, has a slew of proposed
solutions inside the ΛCDM model that incorporates baryon physics. For example, the
loss of baryons due to reionisation, as well as environmental factors like as ram pressure,
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gas stripping, and tidal stripping of DM, can reduce the mass of haloes containing dwarf
satellite galaxies, yielding conclusions that are compatible with observations. These
environmental processes, on the other hand, should not be significant for field galaxies,
where a TBTF issue has also been identified (Garrison-Kimmel et al. 2014).
Also in this case SIDM models have been proposed to solve this problem: the reduced
central densities in SIDM haloes lower the circular velocity profiles in the inner regions
and bring simulated SIDM DM-only systems into better agreement with stellar velocity
dispersion measurements, than CDM DM-only simulations.

4.2 Self-Interacting Dark Matter
The ΛCDM model assumes that the DM is non-relativistic at decoupling and effectively
collisionless, although it is weakly interacting with other particles within the standard
model. As discussed in section 3.2, the standard model is in remarkable agreement with
a variety of cosmological data on large scales, but its consistency with observations on
small-scale is less clear: the ΛCDM model has to face the small-scale challenges dis-
cussed above. These discrepancies come from comparing data with DM-only simulations,
which ignore baryonic effects. As a result, a lot of researches have been conducted to
understand whether these differences are due to an incomplete modelling of baryonic
physics with the CDM paradigm. However, it is still unclear whether accurately includ-
ing relevant astrophysics phenomena will be enough to place simulated CDM model in
line with observations. Another intriguing possibility is that these differences are re-
vealing something about the nature of DM and it is the CDM model that needs to be
revisited. One of the proposed alternatives, first introduced by Spergel and Steinhardt
(2000a), is that DM is not collisionless, but that the DM particles can scatter with each
other: these models are referred to as Self-interacting dark matter models. In compari-
son to the collisionless case, SIDM models assume a non-zero DM cross-section, that can
modify the distribution of DM. These models are expected to produce a wider range of
configurations that could solve the small-scale CDM problems, leaving the properties on
large scale unchanged. We summarize the expectations for SIDM haloes as follows (see
Fig. 4.1):

• Reduced central density: The central density is lowered in the presence of
self-interaction as low entropy particles are heated within the dense inner halo,
transforming the NFW cusp into a core.

• Spherical halo shape: While CDM halos are usually triaxial, self-interaction can
isotropize DM particle velocities and erase or reduce ellipticity. In comparison to
CDM halos, the minor-to-major axis ratio c/a is expected to be closer to unity in
the central regions of SIDM haloes.
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• Isothermal velocity dispersion: Even for virialised CDM haloes, the DM veloc-
ity dispersion, which indicates the “temperature” of DM particles, is not constant
and decreases towards the center of the halo. Self-interactions transport heat from
the DM halo’s hotter outer area to its cooler inner region, thermalizing the inner
halo and causing the velocity dispersion to be uniform with radius.

Figure 4.1: Summary of the main effects of SIDM on halo properties: density profiles
(left), dispersion profiles (center), and median halo shapes (right) for SIDM with σ/m =
1 cm2/g and its CDM counterpart. Credit: Tulin and Yu (2018).

In principle, many models based on SIDM can be built based on strength of the self-
interactions and in recent years, simulations and semi-analytical models have been used
to place constraints on the allowed SIDM cross-section. The SIDM models can be divided
into two large families:

• Constant cross-section: the probability of scattering is constant on all scales
and depends only on the DM density.

• Velocity dependent cross-section: the probability of scattering depends, not
only on the density, but also on the relative velocity of the DM particles.

We will now discuss the main evidence in favor of the SIDM model on different scales
and the current constraints on the cross-section values.

4.2.1 Dwarf galaxies
It is precisely to solve the Core/Cusp problem in dwarf galaxies that the SIDM model
was introduced for the first time. As shown in Fig. 4.2, initial excitement about SIDM
model was related to its ability to produce constant density cores in dwarf galaxies: with
a cross-section σ/mχ ∼ 1 cm2/g, the DM interactions produce an isothermal core with a
O(1kpc) size in low-mass galaxies, close to what is apparently observed. As discussed in
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Figure 4.2: Density profiles of dwarf galaxies in CDM (solid lines) and SIDM (dashed
lines). At the center of the CDM galaxies, the densities continue to rise steeply, whereas
in SIDM model, the density profiles in central regions flatten to lower densities. Credit:
Robles et al. (2017).

Figure 4.3: Density profiles of dwarf galaxies in CDM (black line) and different SIDM
models. The extent of the core depends on the self-interaction cross section: the larger
this value, the larger the core. Credits: Elbert et al. (2015a).
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section 4.1.4, the production of constant density cores also naturally solves the too-big-
to-fail problem (Elbert et al. 2015a). The typical core size for SIDM models depends on
the cross section: the larger this value, the larger the core (see Fig. 4.3). This relation
is not linear, meaning that a cross-sections spanning at least two orders of magnitude
(σ/m = 0.5− 50 cm2/g ) can alleviate TBTF problem. They show that, to explain the
distribution of DM in dwarf and low-surface-brightness galaxy haloes the cross section
must be: σ/m ≥ 0.5cm2/g.

4.2.2 Disk and elliptical galaxies
Unlike dwarf galaxies, disk or elliptical galaxies are baryon dominated systems in the
central areas. This makes these objects excellent systems for studying the interplay
between baryon physics and DM properties. Kaplinghat et al. (2014a) derived an equi-
librium solution in SIDM models for the dark matter halo density profile including the
gravitational potential of both baryons and dark matter. They showed that the presence
of baryons can have a dramatic effect on the predictions for SIDM halo profile with the
inner halo shape following the baryonic potential. Small changes in the baryonic com-
ponent might result in significant changes in the total density profile due to interactions
between a baryonic disk and the SIDM halo in which it lives. Sameie et al. (2018a) used
isolated N-body simulations to study the response of SIDM haloes (M ∼ 1012M�) to
the presence of baryonic potentials. They showed (see Fig 4.4) that in the presence of
baryons, SIDM can both increase and reduce the central density of DM, depending on
how centrally concentrated the baryonic component is. SIDM changes the DM density
profile in the presence of an extended baryonic disk in the same manner it does for a
DM-only scenario, generating a constant density core and lowering the mass in the halo’s
center (CORED systems). A compact baryonic disk, on the other hand, can contract the
DM halo (CUSPY sistems). This contraction increases the rate of scattering, which can
become efficient and can transport energy away from the centre of the halo, producing
a very dense halo cores (Balberg et al. 2002; Koda et al. 2011). In agreement with these
results, Despali et al. (2019) have studied the baryonic effects not in an isolated and
idealized scenario, but in full-hydrodynamic zoom-in simulations. They showed that the
final properties, such as the density profile, also correlated with the mass accretion his-
tory of the halo (these results will be discussed in section 5.3). Moreover, they used mock
lensed images created from their simulated haloes in SIDM with σ/m = 1 cm2/g and in
CDM to estimate the Einstein radius rE. They showed (see Fig 4.5) that in SIDM the
median Einstein radius of cored and cuspy systems, once baryonic effects are included,
are in practice identical so the bi-modality seen in CDM is in general lost in the SIDM
run. As discussed in section 3.4.1, observed properties of lens galaxies can offer a way
to discriminate between DM models. Moreover, the shape of elliptical galaxies offers the
opportunity to constrain self-interactions in haloes on 1012 − 1013M�. In comparison to
triaxial CDM haloes, self-interactions are predicted to make DM haloes more spherical,
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Figure 4.4: Top: DM density profiles for σ/m = 0 (CDM), 0.5, 1, 3, and 5 cm2/g
in the presence of compact (left) and extended (right) discs. For comparison the profiles
in the various models for DM-only simulations are also plotted (dashed lines). Bottom:
velocity dispersion profiles for the same models. Credits: Sameie et al. (2018a).

Figure 4.5: a) Einstein radii distribution in the CDM and SIDM. The vertical lines
show the medians for the cuspy and cored haloes and in SIDM these values are superposed.
(b) Mock lensed images created from two of the simulated haloes (zL = 0.2), the critical
lines (white) are superposed to the surface brightness distribution of the lensed simulated
source (zS = 1) Credits: Despali et al. (2019).
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at least in the inner regions where the scattering rate is highest. Studies in this direction
have focused on the isolated elliptical galaxy NGC720 (Mhalo ∼ 7 · 1012M�), based on
X-ray shape measurements from the Chandra telescope with the the assumption that one
scattering per particle is sufficient to substantially affect the ellipticity of a halo. Buote
et al. (2002) showed that the X-ray isophotes remain elliptical at least down to projected
radii ∼ 5kpc with ellipticity ε ≈ 0.4. To have constraints on SIDM models from these ob-
servations, Peter et al. (2013) showed that the distribution of ellipticities, based on their
sample of simulated SIDM haloes with mass 3− 10 · 1012M� and with σ/m = 0.1 cm2/g,
is precisely consistent with ε ≈ 0.4 and that even a cross-section ∼ 1 cm2/g is marginally
allowed. However, these results are based on SIDM DM-only simulations, while Sameie
et al. (2018a) showed that the baryonic physics can have a strong impact also on the
shape and the ellipticities of the halo and are part of the motivation for the work done
in this thesis (these results will be discussed in section 6.2).

4.2.3 Galaxy clusters
The rate of DM self-interactions scales with the local DM density and DM particle
velocity-dispersion. As a result, more larger systems, like galaxy clusters, also have the
potential to be used as probes of DM particle characteristics. The first cosmological
simulations at these scales were performed by Yoshida et al. (2000), which studied a
single halo (M = 1015M�) for σ/m = 0.1, 1, 10 cm2/g. Rocha et al. (2013) more recently
ran simulations for σ/m = 0.1, 1 cm2/g at similar sizes but across a significantly larger
cosmic region. In terms of volume, the best-resolved halos are between 1012M� and
1014M�. Both works showed that SIDM haloes with a cross-section σ/m = 1.0 cm2/g,
have O(100− 200kpc) radius cores and central densities of ρ0 ∼ 10−3M�/pc

3 on cluster
sizes (see top panels in Fig. 4.6).
Strong gravitational lensing data have been used to constrain the core size and density
in clusters relevant for SIDM. In this direction, Meneghetti et al. (2001) examined the
ability of SIDM haloes to create “extreme” strong lensing arcs, i.e. radial arcs or large
tangential arcs, imposing strong constraints on cluster cores. Since these do not occur
for SIDM haloes with σ/m = 0.1 cm2/g or for larger values, they obtained that on
cluster scale the cross section must be < 0.1 cm2/g. This earlier constraint relied on
SIDM-only simulations, while Robertson et al. (2019) provided observable quantities of
cluster from full-hydrodynamic simulations, producing strong gravitational lensing maps
(see Fig. 4.7). They compared the results of their simulations with 19 clusters from the
CLASH survey (Postman et al. 2012). They concluded that σ/m < 1 cm2/g on clusters
scale, highlighting the importance of including baryons in simulations with SIDM, both
because of the direct effect of the baryonic distribution on observable quantities, and of
their indirect effect influencing the structure of DM haloes.
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Figure 4.6: Density profiles of six haloes from SIDM1 (blue stars) and SIDM0.1 (green
triangles) simulations and their CDM counterparts. Top: Cluster scales. Bottom : galaxy
scales. Credits: Rocha et al. (2013).

Figure 4.7: Convergence maps of four FOF groups in the BAHAMAS simulations, with
different SIDM cross-sections (with a lens redshift of zL = 0.375 and a source redshift
zS = 2). The critical curves are given in red. The dashed circles represent the effective
Einstein radius. The scale of each panel covers a field of view of 1Mpc in the lens plane,
corresponding to approximately 3.2 arcmin. Credits: Robertson et al. (2019).

49



4.2.4 Velocity dependent cross-section
If the literature’s constraints on σ/m are taken at face value, the door to a velocity-
independent cross-section that can address CDM’s "small-scale crisis" has been shut.
Fry et al. (2015) discovered that cross-sections compatible with cluster scale limitations
were unable to appreciably lower the central density of haloes with peak circular veloci-
ties less than 30 km/s. As a result, there has been a surge in interest in SIDM models
with velocity-dependent cross-sections, i.e a cross-section that decreases with increasing
relative velocity. The velocity dependency that emerges in SIDM particle models is anal-
ogous to scattering in a Coulomb potential, where the cross-section is ∝ 1/v4. Because
of this, dwarf galaxies’ cross sections can be several orders of magnitude bigger than on
cluster sizes. As a result, these models may easily create effects in dwarf galaxies while
satisfying all existing galaxy cluster constraints.
Recently, Robertson et al. (2019) run simulations with a SIDM model with a velocity
dependent cross-section. This model corresponds to DM particles scattering though a
Yukawa potential and is described by 3 parameters: the DM mass mχ, the mediator
mass mφ , and a coupling strength αχ, so the differential cross-section becomes:

dσ

dΩ =
α2
χ

m2
χ(m2

φ/m
2
χ + v2 sin θ

2)2 , (4.1)

where v is the relative velocity between two DM particles, and θ is the polar scattering
angle. Fig. 4.8 shows the trend of the momentum transfer cross-section just defined,
compared with other velocity independent cross-section. They show that for this cross-
section, the halo density profiles can be approximately reproduced using a velocity-
independent and isotropic cross-section.

4.3 N-body simulations
Cosmological simulations are commonly used to simulate the evolution of cosmic struc-
tures and assess the impact of dark matter particle phenomenology. N-body codes are
used to simulate the development of N gravitationally interacting bodies (stars orbiting
in a globular cluster or DM particles) by directly computing the gravitational force on
each body from the N-1 other bodies. The simulation progresses by making tiny time
leaps, or ‘time-steps,’ during which the velocities and the positions of particles change
depending on the gravitational forces. The starting point to integrate a particle distribu-
tion forward in time is an initial state, the initial conditions, which are typically assumed
to be in the linear regime defined by perturbation theory. The procedure for creating
generic initial conditions may be divided into 4 phases:

1. Homogeneous N-particles realization: create a realization of an unperturbed
cubic volume of side L by distributing N particles homogeneously in a lattice or
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Figure 4.8: The momentum transfer cross-section for four simulated DM models, as a
function of the relative velocity between DM particles. At a velocity scale characteristic
to the considered halo M ∼ 1014, the velocity-independent cross-section is equal to the
momentum transfer cross-section of the velocity-dependent one. Credits: Robertson et al.
(2019).

a glass-like configuration, in which the particles are initially placed at random in
the simulation cube and then left to evolve under a repulsive force by reversing the
sign of the gravitational force until they reach an equilibrium configuration.

2. Select the power spectrum: As we have seen (Fig. 3.4), different cosmological
models predict differences in the primordial power spectra. So we must choose the
desired one.

3. Add perturbations: perturbations of wavelength λ down to the Nyquist fre-
quency of the particle distribution are represented by plane waves of spatial fre-
quency in Fourier space, k = 2π/λ. A Gaussian distribution with variance pro-
portionate to the desired linear power spectrum is used to generate amplitudes of
these plane waves.

4. Create the initial density field: an inverse Fourier transform is then used to get
the density field and associated gravitational potential in real space. These fields
are used to determine the displacements needed to convert the uniform N-particle
distribution (point 1 in this list) into a distribution with the appropriate power
spectrum.

Fig. 4.9 shows an illustration of the end results of this procedure. Once the initial
conditions are generated, an N-body simulation is performed to follow the evolution of
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Figure 4.9: Initial conditions for an N-body CDM simulation. Left: the dimensionless
linear CDM power spectrum; the vertical dashed lines show the greatest and smallest
scales that may be represented in the initial conditions. Right: dark matter density field
generated from the power spectrum on the left at z = 127, with N = 10243 particles in a
cosmological cube of co-moving side, L = 40Mpch−1. Credits: Jesús Zavala and C. S.
Frenk (2019).

the density and velocity fields across all resolved scales. Fig. 4.10 shows an example of
the evolution with redshift of the projected CDM dark matter density distribution, in
Millennium II simulation (M. Boylan-Kolchin et al. 2009). The evolution follows the
hierarchical clustering: structures start to form around density peaks in the initial con-
ditions and become bigger and denser with time.
Due to the different nature of CDM and SIDM, gravity and the interactions between
particles are modeled differently in the two cases. Now, we will discuss the equations
underlying these implementations: the Collisionless Boltzmann Equation and the Colli-
sional Boltzmann Equation.

4.3.1 The Collisionless Boltzmann Equation
In the case of non-relativistic and collisionless particles, i.e. CDM, N-body simulations
follow the evolution of the dark matter phase-space distribution function, f(~r,~v, t), given
by the collisionless Boltzmann equation (CBE) coupled with the Poisson equation for
the gravitational field: Φ(~x). To define CBE, we introduce the mass of DM contained in
a volume d3r centered in ~r, with velocity in the velocity-space element d3v centred on ~v
as :

dM = f(~r,~v, t)d3rd3v , (4.2)
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Figure 4.10: Evolution of the projected dark matter density field in a box of side length
L = 100Mpch−1 from the Millennium II simulation. The redshift corresponding to each
snapshot is shown on the top right. Credits: M. Boylan-Kolchin et al. (2009).

where f(~r,~v, t) is the DM’s distribution function in the phase space. Considering the
non-collisional case, from the Liouville’s Theorem

df

dt
= 0 , (4.3)

where the derivative in this case represents the Lagrangian derivative, then

df

dt
= ∂f

∂t
+ ∂f

∂~r
· d~r
dt

+ ∂f

∂~v
· d~v
dt

= 0 , (4.4)

but d~r/dt = ~v and d~v/dt = −∇Φ, so

∂f

∂t
= −~v · ∇f +∇Φ∂f

∂~v
. (4.5)

This is known as the Collisionless Boltzmann equation, which is coupled with the Poisson
equation

∇2Φ = 4πG
∫
fd3v . (4.6)

Assuming that DM is the only species, and thus makes the only contribution to the
gravitational potential, equations (4.5) and (4.6) describe the evolution of the DM fluid.
However this method would be highly inefficient, so N-body simulations use a Monte
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Carlo technique: the smooth distribution function f(~r,~v, t) is discretized as an ensemble
of N phase-space elements or “particles”, {~ri , ~vi} , with i = 1, ..., N , each with its own
mass mi, position ~ri, and velocity ~vi. Then over any phase-space volume V∫

V
f(~r,~v, t) d3rd3v =

〈 ∑
(~ri,~vi)∈V

mi

〉
. (4.7)

With this discretization, calculating the development of the phase-space distribution in
an N-body simulation is reduced to tracking the dynamics of a system of N particles
according to the potential obtained from the particle distribution.
Moreover, using the Poisson equation, it is possible to calculate the potential from the
masses and locations of the N particles. The linearity of the equation means that the
potential at ~ri is just the sum of the potentials at ~ri from all other particles in the system
:

Φ(~ri) = −
∑
j 6=i

Gmj

|~ri − ~rj|
. (4.8)

As particles approach one another, this potential diverges, resulting in high gradients,
and therefore enormous accelerations. As a result, it is standard practice to ‘soften’
the gravitational potential, such that the force between two particles decreases as the
distance between them approaches zero. Then defining ε, the ‘gravitational softening
length’, equation (4.8) becomes

Φ(~ri) = −
∑
j 6=i

Gmj

(|~ri − ~rj|2 + ε2)1/2 . (4.9)

Softening decreases the forces in near contacts, allowing for longer time steps than a
potential that has not been softened. It also gives a better estimate of the forces that
would exist if the matter distribution were smooth instead of being discretized in N
particles.

4.3.2 Collisional Boltzmann Equation
The collisionless Boltzmann equation (CBE) explains the development of a collisionless
fluid like CDM. However, if dark matter cannot be treated as CDM, the fundamental
equations need to be modified. In case of non-relativistic but no longer collisionless dark
matter, as in SIDM, the collisionless Boltzmann equation must be replaced with the
full collisional Boltzmann equation. It includes an extra term (the collisional operator)
in the right-hand side to account for the effect of dark matter collisions according to a
self-scattering cross-section. We can write the collisional Boltzmann equation, adding a
term that describes these collisions :

df(~r,~v, t)
dt

= Γin − Γout , (4.10)
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where the term Γout accounts collisions in which a particle at location ~r and velocity ~v
scatters from another particle and so changes its velocity, whereas the term Γin accounts
collisions that result in a particle with velocity ~v when it previously had another velocity.
If the interacting particles are spherical rigid bodies of radius r, they will interact if they
are within d = 2r of one other. As a result, the cross-section for particle interactions is
σ = π(2r)2. A particle traveling at ~v across a stationary background of similar particles
will scatter at a rate of

Γ = nσv , (4.11)
where n is the particle number density. Now if we consider the case where the background
particles have a certain velocity distribution fv(~r,~v), then a particle at ~ri with velocity
~vi will scatter at a rate

Γi(~ri, ~vi) =
∫
fv(~ri, ~v)ρ(~ri)

σ

m
|~vi − ~v| d3v . (4.12)

This relation gives the rate of scattering for individual particles, where σ/m is the cross-
section per unit mass, rather than the cross-section of individual particles. The aim,
however, is to include scattering into an N-body code, where the scattering rate per
particle is already a valuable statistic. As a result, to calculate scattering probabilities
within an N -body simulation, fv and ρ are estimated from the volume within a distance
hSI of a particle’s position. Where hSI is called scatter search radius. Then, to estimate
the scattering rate from particles encompassed in the search region, all neighboring parti-
cles must contribute equally to the estimation of fv and ρ, regardless their position inside
the search region. The number of particles inside the search zone will be N = 4/3πh3

SIn
for a local number density n. Then it is possible to compute the scatter rate as a sum
over the N neighbor particles:

Γi =
N∑
j=1

σ|~vi − ~vj|
(4/3)πh3

SI

. (4.13)

Therefore the probability of two particles, i and j, separated by a distance d < hSI ,
scattering within a time step ∆t, may be calculated as follows:

Pij = σ|~vi − ~vj|
(4/3)πh3

SI

∆t . (4.14)

4.4 The GADGET code
In this section we will describe the main algorithms for the calculation of gravitational
forces and for the implementation of the SIDM models, used in the GADGET software.
This is a software for N-body cosmological simulations written by Volker Springel at the
Max Planck Institute for Astrophysics. A more complete description can be found in
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Robertson (2017) and Springel (2005).
To compute the effective gravitational force, a direct sum of the forces operating on all
particle pairs in a simulation with N particles, would need N(N − 1)/2 individual force
computations. This is not feasible in a reasonable period of time for simulations with
billions of particles, thus alternatives to direct summation are used. A tree or a particle
mesh are two typical solutions to this problem. GADGET makes use of both, so we will
go through them both here.

• Particle mesh: This algorithm begins by computing a gridded density field, which
is created by assigning the mass of the particles on to a grid. Then in this case,
the Poisson equation can be solved in Fourier space:

− |~k|2Φ(~k) = 4πGρ(~k) . (4.15)
The gravitational forces are calculated in Fourier space converting the gridded
density and solving equation (4.15) before conducting an inverse Fourier transform.
From the gradient of Φ, it is possible to calculate the gravitational forces. This
technique is quick, and it also includes periodic boundary constraints, which are
necessary for cosmological simulations. One drawback is that the resolution is
restricted by the size of the grid used to calculate density and potential.

• Tree: This hierarchical method divides the simulation box into sub-regions, which
are then divided into sub-regions, and so on, until each region has one or no par-
ticles. This division is done in GADGET using an octree, see Fig. 4.11, which
divides each cubic area into eight equal-sized octants. When calculating the forces
on a particle, close particles can have their forces computed directly, while sets of
more distant particles included in a sub-region can have their forces estimated using
the mass within the sub-region at the centre-of-mass of the sub-region itself. The
algorithm starts at the root node and works the way up the tree to compute the
force on a particle. If a node’s centre of mass is sufficiently enough away from the
particle for which the forces are being calculated, all particles inside the associated
cell are considered as a single particle with mass equal to the total mass within
the cell and located at the cell’s centre of mass. While the algorithm continues to
descend the tree, if the node is not sufficiently far away.

GADGET, as previously stated, employs both techniques, dividing the force computation
into a long and short-range component. A tree is used to compute short-range forces,
while a mesh with a set cell size is used to calculate long-range forces. In this way the
computation remains fast without losing in terms of resolution.

4.4.1 Velocity dependent cross-section
These simulations employ the SIDM model with a velocity dependent cross-section de-
fined in M. Vogelsberger and Jesus Zavala (2013). These models are well-motivated by
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Figure 4.11: On the left, a graphic of an octree shows how the physical simulation vol-
ume is split into octants, and on the right, how this may be stored in a tree structure.The
mass within the simulation box and the box’s center of mass are contained in the root
node of the tree, which is followed by eight connections to its daughter nodes. Credits:
David (2017)

particle physics, and they represent the elastic scattering transfer cross-section medi-
ated by a new gauge boson with mass mΦ. As a result, an attractive Yukawa potential
with coupling strength αc emerges. For these interactions, the the momentum-transfer
cross-section can be approximated by

σT
σmaxT

∝



β2 ln(1 + β−1) β < 0.1

β2(1 + 1.5β1.65)−1 0.1 < β < 103

(ln β + 1− 1/2(ln β)−1)2 β > 103

(4.16)

where β = πv2
max/v

2, and v2
max is the velocity at which σTv peaks. As the velocity v ap-

proaches zero, this cross-section diverges, enhancing scattering in low mass haloes (with
average velocities smaller than vmax ) over the constant cross-section scenario, while for
v >> vmax → σT ∝ v−4 so the scattering rate in these DM haloes is strongly suppressed.
These simulations adopt the values of σmaxT and vmax to maximize the self-interaction
rate at the typical velocity dispersion of Milky Way dwarf spheroidals:vmax = 30 km/s

σmaxT /m = 3.5 cm2/g
DM − only (4.17)

vmax = 10 km/s
σmaxT /m = 35 cm2/g

DM + baryons (4.18)
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4.4.2 GADGET system of units
GADGET employs comoving coordinates in cosmological simulations, as well as velocities
and time intervals that differ from those used in non-cosmological simulations. The co-
moving coordinates ~x, are related to the physical coordinates ~r through the following
relation

~r = a(t)~x . (4.19)
From this, we can define the physical velocity,~v, and peculiar velocity, vp

~v = ~̇r = ȧ~x+ a~̇x = ȧ~x+ ~vp . (4.20)

The internal positions in GADGET are comoving, so it is possible to define

Pos ≡ ~x , (4.21)

V el ≡ a2~̇x . (4.22)
The units used in GADGET are set in the parameter file, with default values:

UM = 1010M� = 1.989 · 1033g = ÛM g , (4.23)

UL = 1kpc = 3.085 · 1021cm = ÛL cm , (4.24)
UV = 1kms−1 = 105cm s−1 = ÛV cm s−1 (4.25)

and the unit of time

UT = ULU
−1
V = 3.085 · 1016s = 0.979Gyr . (4.26)

GADGET uses also the following definitions

Hubble ≡ 100 kms−1Mpc−1 UT , (4.27)

E(a) ≡
√

ΩMa−3 + ΩΛ + (1− ΩM − ΩΛ)a−2 , (4.28)
then

H(a) = hU−1
T HubbleE(a) . (4.29)
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Chapter 5

Density Profiles

In the previous chapter, we described the main properties of SIDM models and their
implementation in simulations. SIDM models can address both the too-big-to-fail and
the core-cusp problems at the scale of dwarf galaxies if the self-scattering cross-section is
∼ 1 cm2 g−1 (Zavala et al. 2013). Furthermore, it has been demonstrated that SIDM with
a constant cross section ∼ 3 cm2 g−1 can explain a wide range of galaxy rotation curve
morphologies while being compatible with observations of galaxy clusters (Kamada et al.
2017)1. However, it is worth mentioning that the majority of prior research was based
on dark-matter-only simulations, ignoring the interplay of self-interactions and baryonic
physics. Kaplinghat et al. (2014b) discovered through analytic calculations that ther-
malization may considerably enhance the SIDM central density in baryon-dominated
systems, with the inner halo shape matching the baryonic potential. This is not surpris-
ing, since even in the context of CDM, the inclusion of baryons can significantly alter the
halo properties. Thus, in this chapter we will calculate and analyze the density profiles
of haloes using both DM-only and full-hydrodynamic simulations to test what are the
main differences between the CDM model and SIDM models, and how baryon physics
impacts the properties of these profiles. Previous work, on the impact of baryonic effects
on these models, focused on zoomed simulations of individual haloes, while the aim of
this project is to extend and test their results using a full cosmological box.

5.1 Simulation
The simulations used in this work have been run with the Gadget3 code and are part of
the extended family of EAGLE simulations. The EAGLE simulations are cosmological
hydrodynamic simulations of galaxy formation, that include sub-grid physics models for
gas cooling, star formation, and feedback from both stars and active galactic nuclei.

1They found that even a cross-section σ/m = 1 cm2 g−1 is in good agreement with the brightest
galaxies.
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The simulations are run with the cosmological parameters taken from the most recent
Planck results (Aghanim et al. 2020), listed in Tab. 5.1. Different box sizes are available,

Cosmological parameters Value
ΩM 0.307
ΩΛ 0.693
Ωb 0.0482
σ8 0.8288
ns 0.9611
h 0.6777
Y 0.248

Table 5.1: Cosmological parameters used in the EAGLE simulations: ΩM , ΩΛ and Ωb

are the average densities of total matter, dark energy, and baryonic matter in units of the
critical density at z = 0; σ8 is the square root of the linear variance of the matter fluc-
tuations; ns is the scalar power-law index of the power spectrum of primordial adiabatic
perturbations and Y is the primordial abundance of helium.

each with a different resolution, and Tab. 5.2 highlights the key features of each box.
For details on these simulations and baryon physics implementations see Schaye et al.
(2015).

Name L(cMpc) N mg(M�) mDM(M�) ε(kpc)
L025N0376 25 3763 1.81 · 106 9.70 · 106 0.70
L025N0752 25 7523 2.26 · 105 1.21 · 106 0.35
L050N0752 50 7523 1.81 · 106 9.70 · 106 0.70
L100N1504 100 15043 1.81 · 106 9.70 · 106 0.70

Table 5.2: The main characteristics of EAGLE simulations. The columns from left to
right show: simulation name; comoving box size; number of dark matter particles (there
are originally an equal number of baryonic particles); initial baryonic particle mass;
dark matter particle mass; Plummer-equivalent gravitational softening length. Particle
properties were recorded for 29 snapshots between z = 20 and z = 0.
Credits: Schaye et al. (2015)
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We will work with a simulation set made of 6 runs in total, which simulate the
same volume of V = 50 cMpc3 (L050N0752), in CDM and two SIDM models: one with
constant cross section σ/m = 1 cm2g−1 (SIDM1) and one with a velocity- dependent
cross section (vdSIDM); moreover, for each of those both a DM-only and a full-hydro
version are available, allowing us to study the effect of baryons and alternative dark
matter at the same time. From now on, we will label the full-hydrodynamic simulation
run with a ’b’, so we will have: CDMb, SIDM1b and vdSIDMb; together with their
DM-only counterpart. These models have already been used in Robertson et al. (2018)
to look at the density profiles of clusters of galaxies in CDM and SIDM models and in
Bondarenko et al. (2021) to analyze how the predictions in SIDM scale in different mass
ranges.

5.2 Halo identification
Haloes are identified by the Friends-of-Friends (FOF) algorithm using all dark matter
particles and adopting a dimensionless linking length, b = 0.2 (Davis et al. 1985). We
have selected haloes with massesM200 in the range between 1012M�h

−1 and 1014M�h
−1,

at z = 0, for all 6 models available; M200 is defined by counting the mass within a sphere
of radius, R200 , for which

3M200

4πR3
200

= 200ρc(z) , (5.1)

where ρc(z) = 3H2(z)/8πG. Thus the halo boundary is defined by the radius at which
the density drops below 200ρc(z).
We have chosen this mass range for two reasons:

1. to resemble and to have a direct comparison with observed elliptical galaxies that
are the main systems for studying the effects of strong gravitational lensing: it has
been shown in previous works that this regime might be especially influenced by
the inclusion of baryons and that this could influence the lensing signal in terms
of Einstein radius distribution (Despali et al. 2019).

2. the mass of the DM particles in these simulations is mDM = 9.70 · 106M�, thus
this resolution does not allow us to study small systems such as dwarf galaxies.

In Fig. 5.1 we plot the halo mass distribution for each simulation. From these
histograms we immediately notice that in none of the 6 cases there are haloes with
log(M200/M�h

−1) > 13.5, because of the box size of 50Mpc and that the distribu-
tions of the halos follow the same trend: the number of halos decreases as the virial
mass increases, as predicted by hierarchical clustering. We split our sample into mass
bins in order to compare and average the features of halos of comparable mass. To
have a sufficient number of haloes for each bin, we divide our sample into 3 groups:
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Figure 5.1: Distributions of the number of halos as a function of virial mass at z = 0 for
our 6 runs. The filled histograms are the distributions in full-hydrodynamic simulations.
The empty histograms refer to DM-only simulations
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12.0 < log(M200/M�h
−1) < 12.5 (Group 1), 12.5 < log(M200/M�h

−1) < 13.0 (Group 2)
and 13.0 < log(M200/M�h

−1) < 13.5 (Group 3). Tab. 5.3 shows the relative number of
haloes for each bin and for each model.

Total Group 1 Group 2 Group 3
CDM 153 99 37 17
CDMb 129 83 32 14
SIDM1 154 99 38 17
SIDM1b 128 83 32 13
vdSIDM 149 94 38 17
vdSIDMb 133 87 31 15

Table 5.3: Number of halos for the 3 bins in mass and the 6 simulations used (both
DM-only and full-hydrodynamic simulations).

5.2.1 Impact of baryon feedback on the total halo mass
Looking at the total number of halos for each simulation in Tab. 5.3, we note that in
all cases the number of halos in hydrodynamic simulations is lower than the counterpart
in DM-only. This phenomenon can be attributed to baryon feedback effects: previous
work has revealed that feedback has a substantial impact on low and intermediate halo
masses compared to the corresponding haloes in DM-only simulations. Cui et al. (2012)
and Sawala et al. (2013) found that baryonic effects can suppress halo masses by up
to 25% for halo masses below 1013M� (in DM-only simulations). Schaller et al. (2015)
conducted similar analysis using EAGLE simulations: they built the halo mass function
for DM-only simulations and for full-hydrodynamic simulations, shown in Fig. 5.2. Thus
they showed that, in the mass range that we are considering in this work, the number
of haloes in full-hydrodynamic simulations is about 15%-20% lower than the number of
haloes in DM-only simulations. These results are in agreement with what we find: the
suppression is 16% and 17% for CDM and SIDM1 respectively, while for vdSIDM we
find that this percentage drops to 11% (still within the errors found by M. Schaller). At
these masses AGN feedback can still expel baryons, leading to a decrease in the total
mass of the haloes, especially for the less massive ones, bringing these haloes out of the
range that we selected. Thus the change in the halo mass functions due to baryon effects
are similar in all the considered models, consistently with the fact that all simulations
were run with the same baryonic physics model calibrated on CDM.

63



Figure 5.2: Top: the abundance of haloes at z = 0 as a function of the mass, in the full-
hydrodynamic (red curve) and DM-only (green curve) simulations. The vertical dashed
lines on the left represent the resolution limits for both simulations, and the number of
halos in sparsely populated bins is provided above the Poisson error bars. Bottom: ratio
of the mass functions in the full and DM-only simulations. Credits: Schaller et al. (2015)

5.3 Constant cross-section
The influence of self-interactions on DM density profiles has been the driving force behind
the idea of SIDM. The primary effect is a decrease in the DM density in the central regions
of a halo when compared to its CDM equivalent (see section 4.2, Fig. 4.1 and Fig.4.2).
This effect can be reversed in the presence of a dense baryonic component by slowing
down the timescale on which haloes undergo core-collapse, also known as ’gravothermal
collapse’ or the ’gravothermal catastrophe’ (Sameie et al. 2018b). For this reason in this
section, we will focus on comparing the results in the CDM and SIDM1 models and
analyzing what happens when the baryons are also considered.
We start by calculating the spherically-averaged density profiles of the individual haloes
for each of the 4 runs here considered. We divide the halo into logarithmically-spaced
spherical shells, calculate the number of particles present in each shell and multiply
this number by the mass of a DM particle, thus finding the total mass of each shell
Mtot(sh); therefore the density in each shell becomes ρ(sh) = Mtot(sh)/V (sh). In the
case of CDMb and SIDMb, in addition to the contribution of dark matter, gas and star
particles are also considered. From the profiles for each halo, we calculate the average
profile in every mass Groups described in the previous section. We use the Einasto profile
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(Einasto 1965) to fit the mean radial density distribution, defined as

ρ(r) = ρ−2 exp
{
− 2
α

[(
r

r−2

)α
− 1

]}
, (5.2)

where r−2 and ρ−2 are the radius and the density at which ρ(r) ∝ r−2 and α defines the
steepness of the power law. Because it can produce varied inner slopes, the Einasto profile
is a suitable match for both the CDM and SIDM haloes. Both the NFW and Einasto
profiles are reasonable fits for CDM haloes, but the NFW profile is not a good match
for cored SIDM haloes; self-interaction creates a wider range of profile configurations,
necessitating a more flexible model for the profile. For a meaningful comparison, we use
the Einasto profile for all our 4 models. Tab. 5.4 shows the best fit parameters for
these models. In Fig. 5.3 we plot the z = 0 spherically-averaged density profiles fitted

Group 1 Group 2 Group 3
CDM ρ−2 (4.34± 0.66) · 106 (3.90± 0.72) · 106 (2.32± 0.34) · 106

r−2 19.96± 1.51 30.73± 2.68 51.68± 3.23
α 0.26± 0.02 0.28± 0.03 0.23± 0.02

CDMb ρ−2 (1.31± 0.39) · 107 (7.44± 2.36) · 106 (3.60± 1.06) · 106

r−2 11.18± 1.75 20.51± 3.32 38.01± 5.29
α 0.15± 0.02 0.14± 0.03 0.12± 0.02

SIDM1 ρ−2 (2.42± 0.33) · 106 (1.87± 0.27) · 106 (1.21± 0.14) · 106

r−2 28.13± 1.75 47.85± 2.80 81.58± 3.52
α 0.39± 0.03 0.46± 0.04 0.47± 0.03

SIDM1b ρ−2 (1.89± 0.67) · 107 (7.35± 2.18) · 106 (2.41± 0.70) · 106

r−2 9.56± 1.75 20.97± 3.18 46.34± 6.21
α 0.14± 0.02 0.15± 0.02 0.13± 0.02

Table 5.4: Best fit parameters with Einasto profile for the 3 mass Groups for each simu-
lation, where ρ−2 is expressed in M�h−1/(kpc/h)3, r−2 in kpc/h and α is dimensionless.
The errors represent 1 standard deviation.

with the Einasto profile for all models. For all three Groups, looking at the simulated
profiles in DM-only CDM and SIDM (black and red dotted lines respectively), we note
that in SIDM, haloes form a core in the central parts, as expected. Also looking at the
ρSIDM/ρCDM ratio for DM-only (bottom panels), we see that for radii r ≤ 10 kpc/h this
ratio is always less than unity: the density in the central areas of the SIDM profiles is
lower by more than 50% compared to the CDM profiles.
However, if we want to compare the predictions from simulations with observations, we
also need to take into account baryon effects. In all three cases the addition of baryons
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Figure 5.3: Top: Density profiles with CDM and SIDM models for both DM-only
(dashed lines) and full-hydrodynamic (solid lines) simulations, at z = 0. Bottom: ratio
between the total and the DM-only profiles in the two models: ρSIDM/ρCDM . The first
density value is calculated at r = 1 kpc/h, therefore above the spatial resolution (softening
length ε = 0.7 kpc/h), for this reason this scale is not represented in these plots. Group
1: log(M200/M�h

−1) ∈ [12.0, 12.5], Group 2: log(M200/M�h
−1) ∈ [12.5, 13.0] and Group

3: log(M200/M�h
−1) ∈ [13.0, 13.5].

increases the density in the central regions of the haloes compared to DM-only runs.
This effect is higher for SIDM, implying that baryons reduce the differences between the
two DM models: in fact, in simulations with baryons, the ρSIDM/ρCDM ratio (middle
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panels) approaches 1, implying that the profiles in the two models become more similar,
even though not identical. Moreover, we observe differences in the trends of the profiles
in SIDM for the three Groups:

• Group 1: In the central regions the SIDM1b profile has a higher density than
that of CDMb, with ρSIDM/ρCDM > 1. However, in these regions the difference
between the two models drops to less than 20%.

• Group 2: the difference between the two density profiles begins to disappear and
the profiles are almost overlapping (ρSIDM/ρCDM ∼ 1).

• Group 3: the situation is reversed and the profile of SIDMb has a lower density
than the profile of CDMb (ρSIDM/ρCDM < 1), but also for this Group the difference
between the two DM models is less then 20%.

For an easier visualization, Fig. 5.4 shows a zoom of the core regions with the addition
of the standard deviation for each point. The profiles follow the trends discussed above
even within one standard deviation.
As we already expected, we found that in DM-only simulations all SIDM haloes produce
a central core in the density profile that is always below the profiles of CDM haloes in
these regions. However, when the average density profiles are calculated by adding the
baryon component, the situation changes: only Group 1 exhibits a cored profile, meaning
that the SIDM profile lies below the CDM profile; Group 2 has similar profiles in both
models; Group 3, on the contrary, has a cuspier profile in SIDM than in CDM, meaning
that, in this case, the SIDM profile has higher central densities than CDM. These results
are in agreement with what Despali et al. (2019) found. They simulated 9 haloes with
virial masses ranging in our mass range and finding that in the central regions:

• SIDM haloes with Mvir > 7 · 1012M� have higher density profiles than their CDM
counterpart, called CORED systems.

• SIDM haloes with Mvir < 5 · 1012M� have a lower density profiles than their CDM
counterpart, called CUSPY systems.

These differences are attributed to different evolutionary histories of the considered
haloes: the CORED systems experience a fast accretion phase at low z (late assembly),
while the CUSPY systems have a more regular history (early assembly). Therefore,
they found a correlation between the mass accretion history and the properties of the
final density profile: for CUSPY systems the baryons drive the evolution of the central
dark matter core, created at an earlier time (early assembly systems) by the DM self-
interaction and then the interplay between baryons and dark matter leads to the final
cuspy profile; while the CORED systems were formed at low z (late assembly systems)
and thus we see them at the stage in which central core is just established. In Fig. 5.5,
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Figure 5.4: Zoom of the central parts of the density profiles for the three Groups, for
both SIDM1b and CDMb. The error bars represent 1 standard deviation for the two
models. The dotted lines represent the best fit for the two models (same as in Fig.5.3).

we plot the density profiles of the DM component of the three Groups both in the DM-
only and full-hydrodynamic simulation to understand if the baryons can have an effect
also on the DM distribution. The bottom panels show the ratio ρfull/ρonly between DM
density in full-hydrodynamic simulations and in DM-only once; in both models the addi-
tion of baryons modifies the distribution of dark matter by increasing its central density,
but this effect is stronger for SIDM1:

• CDM: ρfull/ρonly < 1.5 for each Group. (Left panel)
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• SIDM1: ρfull/ρonly > 4.0 for each Group. (Right panel)

This result suggests that a reliable comparison with the data demands accurate baryon
distributions in the simulated haloes and that this condition applies not only to the total
(DM + baryon) density profile, but also to the DM density, since adiabatic contraction
might cause the DM density to rise as the gas cools towards the halo’s center (Gnedin
et al. 2004). However it remains to be understood how the self-interaction between DM
particles can make this effect stronger than in the collisionless case.

Figure 5.5: Top: DM density profiles in the three groups both for DM-only(dashed lines)
and full-hydrodynamic (solid lines) simulations. Bottom: ratio between DM density in
full-hydrodynamic simulations ρfull and density in DM-only simulations ρonly. On the
right in the CDM model, on the left in the SIDM1 model.

5.4 Velocity dependent cross-section
In this section we will analyze the halo density profiles for the SIDM model with a
velocity-dependent cross-section (vdSIDM). We follow the same procedures carried out
in the case of SIDM with constant cross section: the average profiles of each Group are
fitted with an Einasto profile. Tab. 5.5 shows the best fit parameters for these models.
In Fig. 5.6 we plot the z = 0 spherically-averaged density profiles fitted with the Einasto
profile from full-hydrodynamic simulations (vSIDMb and CDMb models) as well as the
density profiles from DM-only simulations (vdSIDM and CDM models). Looking at the
profiles for the three Groups, we see the same trends as in the case of the SIDM1 model
(constant cross section): vdSIDM DM-only simulations have a core in the inner region
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Group 1 Group 2 Group 3
vdSIDM ρ−2 (2.04± 0.28) · 106 (1.61± 0.22) · 106 (1.12± 0.14) · 106

r−2 31.09± 1.84 52.13± 2.88 85.70± 3.77
α 0.43± 0.04 0.50± 0.04 0.50± 0.03

vdSIDMb ρ−2 (1.91± 0.67) · 107 (8.48± 2.84) · 106 (2.37± 0.67) · 106

r−2 9.42± 1.72 19.66± 3.4 45.98± 6.00
α 0.14± 0.02 0.16± 0.03 0.13± 0.02

Table 5.5: Best fit parameters with an Einasto profile for 3 mass Groups for vdSIDM
and vdSIDMb simulations, where ρ−2 is expressed in M�h−1/(kpc/h)3, r−2 in kpc/h and
α is dimensionless. The errors represent 1 standard deviation.

for every mass Group, meaning that also vdSIDM haloes have lower densities than the
CDM counterparts, while with the addition of baryons these differences become much
smaller and they vary from one Group to another in the same way as the SIDM1 model.
As a final comparison, Fig. 5.7 shows the density profiles for all 6 runs. The three plots
on the left show the average profiles in DM-only simulations, while those on the right
show the average profiles in full-hydrodynamic simulations for each mass bin. While in
the case of DM-only simulations, the average density profiles of the two SIDM models
exhibit differences at small radii, with the vdSIDM model having lower densities than the
SIDM model, when we study the same average profiles with the addition of the baryons
also these differences are canceled and the profiles in the two models overlap, meaning
that at these scales the velocity-dependent cross-section with the interplay with baryons
acts like the constant one. These results are in agreement with what A. Robertson found
on the average profiles on the scale of galaxy clusters (see section 4.2.4). Therefore, also
in this case the addition of baryon physics has a strong impact on the properties of the
average haloes of SIDM, making the differences between the various models less evident.
All results discussed so far are based on profiles averaged across three mass ranges and
fitted with an Einasto profile (model dependent), but it is possible that individual haloes
may behave differently. For this reasons in section 5.5, we will investigate some single
halo to see how the different DM models impact their density profiles.
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Figure 5.6: Top: Density profiles with CDM and vdSIDM models for both DM-only
and full-hydrodynamic simulations, at z = 0. Bottom: ratio between the total and the
DM-only profiles in the two models: ρvdSIDM/ρCDM . The first density value is calculated
at r = 1 kpc/h, therefore above the spatial resolution (softening length ε = 0.7 kpc/h),
for this reason this scale is not represented in these plots. Group 1: log(M200/M�h

−1) ∈
[12.0, 12.5], Group 2: log(M200/M�h

−1) ∈ [12.5, 13.0] and Group 3: log(M200/M�h
−1) ∈

[13.0, 13.5].
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Figure 5.7: Top: Density profiles for the models considered in each 3 mass Groups. Left:
profiles in the DM-only simulations. Right: profiles in the full-hydrodynamic simulations
for the corresponding Groups. Bottom: Density ratio between profiles in SIDM and
CDM; ρSIDM1/ρCDM (orange); ρvdSIDM/ρCDM (green).
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5.5 Matched Haloes
In this section, we match the systems between the different runs in order to compare
their density profile. This is possible because all the simulations have been run starting
from the same initial conditions and thus the large scale perturbations are expected to
be the same in all models. To select the matched systems, we use the position of the
center of mass. We consider the minimum distance between the haloes centers of mass
in the different simulations dmin and the virial radius of each halo: haloes are matched if
dmin/rvir < 1. Fig. 5.8 shows the results obtained with this method both in the DM-only
case and for the full-hydrodynamic simulations. Most of the halos are distributed on the

Figure 5.8: Top: Masses of matched systems in DM-only simulations (left) and full-
hydrodynamic simulations (right); in blue matched system between CDM and vdSIDM,
in red matched systems between CDM and SIDM. The black dotted line represents the
bisector: if the matched systems have the same mass they are distributed on this line.
Middle: MSIDM1/MCDM . Bottom; MvdSIDM/MCDM .

bisector, with a greater scatter in the case of full-hydrodynamic simulations. Analyzing
the ratios (middle and bottom panels), we note that no trend is generated as a function
of the halo mass: the haloes in the three models preserve their mass.
Using the matched systems for the three DM models, in Fig. 5.9 we plot a zoom of the
central regions of the density profiles of some individual haloes. The haloes are sorted
in ascending order of mass and selected so that two haloes belong to each mass Group.
We highlight the value of the mass of the matched systems on each figure. The vertical
line (twice the value of the softening length) denotes the point below which the influence
of the simulation resolutions can affect the density values of single haloes. Moving from
the less to the more massive halo, the trend found for the average profiles is confirmed:
the less massive haloes tend to be CUSPY, while the more massive ones tend to be
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Figure 5.9: Top: Density profiles of the central regions of single matched haloes in
full-hydrodynamic simulations. The vertical line marks 2ε = 1.4kpc/h, within which
interpretation requires care. Bottom: Density ratio between profiles in SIDM and CDM;
ρSIDM1/ρCDM (orange); ρvdSIDM/ρCDM (green). The plots are ordered in increasing
order of mass from the least to the most massive of available haloes.

74



CORED systems, but the amplitude of the difference between SIDM and CDM does
not vary continuously with the mass, but depends on the considered halo. Moreover,
while in the average profiles we found no differences between the SIDM1 model and the
vdSIDM model of the same mass Group, in the case of single haloes the two models differ
from each other and their trend varies moving from one halo to another. These results
seem to suggest that in order to obtain more solid results, it is not enough to study the
averaged profiles in mass bins, but it is also necessary to analyze some single haloes or
a sub-population which in some cases may behave differently, regardless of the mass. At
the same time, one should be careful when extending results coming from small samples
to the general halo population.

5.6 Mass-concentration relation
We now use the results from the previous sections to study the mass-concentration
relation of our simulated sample.
As discussed in section 3.2.1, the equilibrium density profile of CDM haloes is now well
known, and it may be well approximated by scaling a simple formula, known as NFW
profile

ρ(r)
ρc

= δc
(r/rs)(1 + r/rs)2 . (5.3)

This profile is defined by a scale radius, rs, and a characteristic density , δc, where these
scaling parameters may also be defined in terms of the halo virial mass, Mvir, and a
dimensionless concentration parameter, c which is defined as the ratio of a halo’s virial
and scale radius:

cvir = rvir
rs

. (5.4)

Mass and concentration are correlated: at a given redshift, the concentration drops mono-
tonically with increasing halo mass, implying a connection between a halo’s characteristic
density and its assembly time. The concentration-mass relation, c(M), is attractive be-
cause over a small range of halo masses, concentrations can be well fit by simple power
law in M . Because mass and concentration together fully describe the equilibrium mass
profile of a halo, there has been a lot of interest in figuring out how such a connection
came to be, as well as how it relates to redshift and cosmological parameters. Ludlow
et al. (2014), using Millennium Simulations, worked in this direction, studying the mass
– concentration – redshift relation for CDM haloes. They found that concentration is
a monotonic but weak function of mass, varying by only a factor of four over the six
decades in the mass range resolved by these simulations at z = 0, and that concentra-
tions decrease systematically with increasing redshift, even though the magnitude of the
decrease is mass dependent (see Fig. 5.10). The results just presented use haloes in
CDM only, and the fits are made with an NFW profile. However other works have also
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Figure 5.10: Mass and redshift dependence of the best-fitting NFW concentrations for
all relaxed CDM haloes. From top to bottom, panels correspond to haloes identified at
z = 0, 1, 3 respectively. Individual haloes are shown as coloured dots; heavy filled symbols
show the median trends for each simulation; 25th and 75th percentiles are shown as thin
lines. The solid red line in each panel shows the mass–concentration relation obtained
from fitting NFW profiles. Credits : Ludlow et al. (2014)
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calculated Einasto concentrations showing that r−2, the radius at which the density’s
logarithmic slope is isothermal, is similar to rs in the NFW profile: as a result, the
concentration, c200 = r200/r−2, approaches the NFW value (eq. (5.4)). In this work we
have fitted the profiles with an Einasto profile, defined by eq (5.2), thus here we use the
profiles from previous section to calculate the concentration of each and we perform a
linear fit to derive the mass-concentration relation for all our models:

log(c200) = A+B log(M200) , (5.5)

where A represents the intercept and B the slope of the relation. Tab. 5.6 shows the
best-fit parameters for our models. Fig. 5.11 shows the mass-concentration relation both

A B
CDM 1.413± 0.234 −0.053± 0.019
CDMb 1.628± 0.447 −0.057± 0.036
SIDM1 1.928± 0.140 −0.105± 0.011
SIDM1b 1.889± 0.521 −0.079± 0.042
vdSIDM 1.742± 0.146 −0.093± 0.012
vdSIDMb 1.656± 0.492 −0.061± 0.040

Table 5.6: Linear best fit parameters (eq.(5.5)), for the mass-concentration relation for
the 6 models. The errors represent 1 standard deviation.

in the case of DM-only simulations (left) and in the case of full-hydrodynamic simulations
(right). We recover the typical trend of the relation c200(M200): the concentration is a
monotonic but weak decreasing function of halo mass. For DM-only simulations, both
SIDMmodels have a steeper slope than the CDMmodel with vdSIDM lower than SIDM1:
over our mass range, SIDM halo concentrations span a wider range of values than CDM
concentrations. The solid light blue line, in Fig. 5.11 (left panel), represents the mass-
concentration relationship found by Child et al. (2018) for CDM-only haloes ranging
between 1011M� and 1015M�, at z = 0. The authors used the same linear equation
((5.5)) and found:

log(c200) = 2.086 + (−0.101) log(M200) , (5.6)
which is consistent within the errors with our results.
Moreover, the concentration increases in the full-hydrodynamic simulations, but this
increase is greater for the SIDM models. As a result, when we consider baryon physics
in the simulations, the differences between DM models are less pronounced (bottom
panels).
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Figure 5.11: Concentration–mass relation computed at z = 0 using the best-fitting
parameters from Einasto profile. The best-fitting linear relation for the CDM, SIDM and
vdSIDM runs is shown by the black, red and blue lines. Individual haloes are shown as
coloured dots. Left: haloes in DM-only simulations. The solid light blue line represents
the mass-correlation relationship found by Child et al. (2018), with ’Q Continuum’ and
’Outer Rim’ simulations. Right: haloes in full-hydrodynamic simulations. Bottom panels:
ratio between the linear fit in SIDM models and the one in CDM.
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Chapter 6

Halo Shapes

As discussed in section 4.2, in addition to redistributing energy amongst DM particles,
self-interactions modify the orientations of DM particle orbits, resulting in more isotropic
velocity distributions. This modifies the DM distribution, changing the shape of the halo.
While CDM haloes are usually triaxial, self-interaction can make them more spherical.
In comparison to CDM haloes, the minor-to-major axis ratio c/a is expected to be closer
to unity in the central regions of SIDM haloes (Spergel and Steinhardt 2000a; Peter et al.
2013). These predictions for the macroscopic effects of SIDM provide an opportunity to
use halo shapes as a test of DM self-interactions (Buote et al. 2002; Miralda-Escudé 2002).
However, also these results are based on SIDM DM-only simulations, while it is essential
to understand if the inclusion of baryonic effects can, as in the case of density profiles,
modify and / or mask these differences between DM models. Recently, it has been
shown that for both CDM (Chua et al. 2021) and SIDM (Robertson et al. 2019) haloes,
the presence of baryons close to the halo centres can have an impact on halo shapes:
the formation of a central baryonic mass can modify the orbits of approaching dark
matter particles. As a result, DM haloes from full-hydrodynamic simulations present
more spherical configurations than their DM-only counterparts.
In this chapter we will analyze the shape properties of our simulated haloes at z = 0,
comparing the predictions from DM-only simulations with those from full-hydrodynamic
simulations.

6.1 Halo shape algorithm
We use the method used in Robertson et al. (2019) to calculate the shapes of the simu-
lated haloes. For each of the 3 DM models, we separate the calculation using the mass
bins (Groups) defined in section 5.2. Assuming that dark matter haloes are triaxial,
their shapes are determined by the axis ratios: s ≡ c/a and q ≡ b/a where a, b and c are
the major, intermediate and minor axes respectively (i.e. a > b > c). These parameters
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can be found at each radius, using an iterative algorithm with the reduced inertia tensor
defined as follows:

Iij(R) ≡
∑

n:rn<R

xi,nxi,jmn

r2
n

/ ∑
n:rn<R

mn , (6.1)

where (x1,n, x2,n, x3,n) are the coordinates of the nth particle with mass mn. For the
shape definition we use the location of the center of mass of each halo, with the positions
of particles defined with respect to this point and all spherical/ellipsoidal search volumes
centred there also. At fixed R we use all particles with rn < R. At the first iteration rn
is the distance of the nth particle from the centre of mass of the halo:

rn =
√
x2

1,n + x2
2,n + x2

3,n , (6.2)

and the algorithm calculates and diagonalizes the reduced inertia tensor (Eq. (6.1)) to
get the first set of eigenvalues and eigenvectors. We label the eigenvalues of Iij(r) as a2,
b2 and c2, with corresponding eigenvectors ~e1, ~e2 and ~e3

1. In the subsequent iterations
the algorithm uses the eigenvectors from the previous iteration as a coordinate basis,
rotating the reference frame and it redefine rn as an ellipsoidal radius:

rn =
√
x2

1,n + x2
2,n/q

2 + x2
3,n/s

2 , (6.3)

where the sum in equation (6.1) is made over all particles with rn < (q s)−1/3R. This
requirement corresponds to keeping the volume within which particles contribute to Iij
fixed. For each radius R the algorithm continues until both s and q converge; i.e. when
fractional differences in successive values differ by less than 1%, meaning when:(

qi − qi−1

qi−1

)
≤ 0.01 and

(
si − si−1

si−1

)
≤ 0.01 (6.4)

For each halo in each Group we calculate the inertia tensor Iij(R) for 15 bins , with R
logarithmically-spaced between Rmin ∼ 3 kpc (minimum radius to have Nparticles > 1000)
and Rmax =< rvir > (mean virial radius for each Group). Once we have obtained
the inertia tensors for each halo at different radii, we calculate the eigenvalues and
eigenvectors.

6.2 Halo Shapes
In this section, we will focus on comparing the shape properties in the CDM, SIDM1
and vdSIDM models and analyzing what happens when the baryons are also considered.
Fig. 6.1 shows the median minor-to-major axis ratios (s = c/a) as a function of radius,
for each Group in CDM and SIDM1 models. Fig. 6.2 shows the same analysis in vdSIDM
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Figure 6.1: Top: median minor-to-major axis ratios for CDM (black lines) and SIDM1
models (red lines) of haloes at z = 0. The solid and dashed lines represent the values for
the DM haloes in full-hydrodynamic and DM-only simulations respectively. The dotted
lines represent the values for DM+baryons. Bottom: ratio between DM minor-to-major
axis ratio in full-hydrodynamic (DM-full) and DM-only simulations (DM-only). Group
1: log(M200/M�h

−1) ∈ [12.0, 12.5], Group 2: log(M200/M�h
−1) ∈ [12.5, 13.0] and Group

3: log(M200/M�h
−1) ∈ [13.0, 13.5].

model. In agreement with previous work (Peter et al. 2013), we find that in DM-only
1The eigenvalues are related to the square-roots of the principal axes lengths, while the eigenvectors

represents the directions of the principal axes.
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Figure 6.2: Top: median minor-to-major axis ratios for CDM (black lines) and vdSIDM
models (blue lines) of haloes at z = 0. The solid and dashed lines represent the values for
the DM haloes in full-hydrodynamic and DM-only simulations respectively. The dotted
lines rapresent the values for DM+baryons. Bottom: ratio between DM minor-to-major
axis ratio in full-hydrodynamic (DM-full) and DM-only simulations(DM-only). Group
1: log(M200/M�h

−1) ∈ [12.0, 12.5], Group 2: log(M200/M�h
−1) ∈ [12.5, 13.0] and Group

3: log(M200/M�h
−1) ∈ [13.0, 13.5].

simulations (dashed lines) both SIDM1 and vdSIDM models make DM haloes rounder
than in CDM counterpart for each mass Group. Looking at the ratio sSIDM/sCDM
(bottom panels), it is possible to see that this is true for all the considered radii, but
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especially in the inner regions of haloes where the scattering rates are highest. In these
regions we find that SIDM haloes are more spherical by more than 50% compared to
CDM haloes. The trend, on the other hand, seems to be reversed approaching the
minimum radius, but this is due to what Robertson et al. (2019) found on galaxy cluster
scales (see Fig. 6.3): at the smallest radii the low number of particles does not allow a
robust determination of the halo shape. These resolution effects are stronger for SIDM

Figure 6.3: Minor-to-major axis ratios for the DM haloes in the mass range 1014.8 −
1015.2M� from different simulations at z = 0, with the DM-only results represented by
dashed lines. The lines become faded at radii where there are an insufficient number of
particles to trust the shape measurements. Credits : Robertson et al. (2019)

models in DM-only simulations, since as we have shown in the previous chapter, these
haloes are CORED systems, thus we expect to find fewer particles at these radii than in
the CDM counterpart.
In full-hydrodynamic simulations (solid lines), the CDM haloes in each Group are rounder
(larger s) at all radii compared to their DM-only counterparts (the solid and dashed black
lines are separated at all radii). We find that the amount of "sphericalization" (increase
of s) in CDM model depends on the distance to the halo centre: the effect of baryons is
the largest near the halo centre but reduces towards the virial radius. These results are
in agreement with previous work on the impact of the baryonic feedback on the CDM
haloes shape (Bryan et al. 2013; Chua et al. 2021) and they make sense given that the
contribution of baryons to the total density decreases with radius.
In the case of the SIDM models this effect is less intense, we find that at the maxima
of sphericity, the values of s for SIDM haloes in full-hydrodynamic simulations and in
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DM-only simulations are similar (the solid and dashed red/blue lines are overlapped).
As shown for the density profiles, this behavior may be due to the fact that SIDM haloes
are more strongly affected by the presence of baryons in the inner regions, where the
scattering rate is highest and baryons are the dominant component (see Fig. 5.5). In
agreement with these results, Sameie et al. (2018a) showed that SIDM haloes shape are
more responsive to the presence of the baryonic disk and are more aligned with the disk
potential than their CDM counterpart. For this reason we expect that this trend is also
true at smallest radii, where it is not possible to trust the measurements of the DM-only
SIDM halo shapes due to the resolution effects discussed above. For larger radii, where
the scatter rate is lower and and the baryons are no longer dominant, we find the same
trend of CDM haloes: SIDM haloes are more spherical in full-hydrodynamic simulations
than in their DM-only counterpart and the difference decreases towards the virial radius.
Therefore, in full-hydrodynamic simulations we have two different baryonic effects on the
DM haloes shape, which depend on the DM model:

• Due to baryon feedback, CDM haloes are rounder at all radii compared to their
DM-only counterparts and the difference decreases towards the virial radius.

• The distribution of SIDM particles is strongly affected by the baryon potential. For
this reason, in the central parts where the baryons dominate (r < 30 − 40 kpc/h)
the SIDM haloes have similar sphericity as their DM-only counterpart. In the outer
regions SIDM haloes are more spherical in full-hydrodynamic simulations than in
their DM-only counterpart and the difference decreases with the radius.

The two effects described above make the differences between DMmodels less pronounced
in the case of full-hydrodynamic simulation, compared to DM-only simulations. While
from DM-only simulations we find that in the central areas the differences in the shapes
of the haloes between CDM and SIDM models is about 50% (bottom panels), in the
case of full-hydrodynamic simulations these differences drop to 20-25% (middle pan-
els). However, even if the differences are smaller than in DM-only counterparts, in
full-hydrodynamic simulations the SIDM haloes are still more spherical than the CDM
haloes.
As a final comparison, Fig. 6.4 shows all median minor-to-major axis ratios as a func-
tions of the radius for all 6 runs. The three plots on the left show the ratio in DM-only
simulations, while those on the right show the average profiles in full-hydrodynamic
simulations for each mass bin. From this figure it is easier to compare the two SIDM
models used. We find that even in the case of the haloes shape, the small differences
between the two models in DM-only simulations (see Group 1) are canceled in the case
of full-hydrodynamic simulations. However, both for DM-only and full-hydrodynamic
simulations, the median minor-to-major axis ratios is higher for SIDM haloes than in
CDM counterparts.
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Figure 6.4: Top: Median minor-to-major axis ratios for the models used in each 3
mass Groups at z = 0. Left: profiles in the DM-only simulations. Right: profiles in
the full-hydrodynamic simulations for the corresponding Groups. Halo-to-halo variations
are represented by shaded regions which enclose the 25th-75th percentiles. Bottom: ratio
between profiles in SIDM and CDM.
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6.3 Matched Haloes
In this section, using the matched systems described in section 5.5, we analyze the shape
properties for some individual haloes. In Fig. 6.5 we plot the minor-to-major axis ratios
for the same individual haloes selected in Fig. 5.9, for our three DM models. Despite the
general average behavior, individual haloes can behave differently. For example, we find
that in the haloes with log(M200/M�h

−1) = 12.01 and log(M200/M�h
−1) = 13.25, the

differences between the models become negligible. This may depend on the evolutionary
history of the single halo: AGN feedback, Supernovae feedback, star formation, stellar
winds, but also the presence of a more or less compact baryonic disk can alter the
distribution of DM, consequently modifying the halo shapes (Sameie et al. 2018a; Chua
et al. 2021).
In Fig. 6.6 we plot the minor-to-major axis ratios for all matched haloes as a function
of their virial mass, for three different radii. For r = 14 kpc/h, almost all haloes in
SIDM models are more spherical than their counterparts in CDM (bottom panels): as
shown in Fig 6.5 it is possible that some individual haloes may behave differently due
to different evolution histories. This also holds true for r = 60 kpc/h. For the largest
considered radius (r = 260 kpc/h), even if the differences between the two models are less
pronounced, it is still possible to note that most haloes in SIDM remain more spherical
than in the CDM case.
These results suggest that halo shapes are affected by SIDM on larger scales than density
profiles where as shown in Fig. 5.3 and Fig. 5.6 the differences between the DM models
become visible on small radii (r < 10 kpc/h). Moreover, at each radius, the differences
in the halo shapes between DM models are more pronounced than those in the density
profiles and this could make halo shapes an excellent test of DM self-interactions. In
fact, since the interstellar X-ray emitting gas of elliptical galaxies fills the gravitational
potential, it acts as a tracer of the underlying gravitational potential. Therefore, by
observing the X-ray shapes of relaxed (i.e. thermal equilibrium) elliptical galaxies, it is
possible to infer the DM halo shapes and then compare them with the predictions of
CDM and SIDM halo shapes from simulations (McDaniel et al. 2021).
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Figure 6.5: Top: Minor-to-major axis ratios of single matched haloes in full-
hydrodynamic simulations at z = 0. Bottom: ratio between profiles in SIDM and CDM;
sSIDM1/sCDM (orange); svdSIDM/sCDM (green). The plots are ordered in increasing or-
der of mass from the least to the most massive of available haloes.
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Figure 6.6: Top: Minor-to-major axis ratios of all matched haloes in full-hydrodynamic
simulations at z = 0, for three different radii. Bottom: ratio between profiles in SIDM
and CDM; sSIDM1/sCDM (orange); svdSIDM/sCDM (green).
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Chapter 7

Conclusions

SIDM has become an attractive alternative to CDM, due to its ability to produce a
wider range of configurations that could solve the small-scale CDM problems, leaving
the properties on large scale unchanged. The main signatures of SIDM models are the
reduction of the central densities of DM haloes and more spherical halo shapes than
the CDM counterparts. However, these predictions have so far been based on DM-only
simulations, while it is essential to understand how the interplay between self-interaction
and baryonic effects can urther modify the properties of haloes. For this purpose, we
use EAGLE cosmological simulations, that simulate the same volume of 50 Mpc3 , in
CDM and the two SIDM models: one with constant cross section (σ/m = 1 cm2/g)
and one with a velocity-dependent cross section. For each models a DM-only and a
full-hydrodynamic version is available, allowing us to study the effect of baryons and
alternative dark matter models at the same time.
We select haloes with masses M200 in the range between 1012M�h

−1 and 1014M�h
−1, at

z = 0, for all 6 models available. However, given the volume of the boxes, we do not find
haloes with mass M200 > 1013.5M�h

−1. The mass range is chosen to test and extend the
results obtained by Sameie et al. (2018a) and Despali et al. (2019), not in an isolated or
zoom-in simulations of individual galaxies, but using a full cosmological box. Moreover,
disk and elliptical galaxies are baryon-dominated systems in the central areas. This
makes these objects excellent systems for studying the interplay between baryon physics
and DM properties. We split our sample into mass bins in order to compare and average
the features of haloes of comparable mass. To have a sufficient number of haloes for each
bin, we divide our sample into 3 groups: 12.0 < log(M200/M�h

−1) < 12.5 (Group 1),
12.5 < log(M200/M�h

−1) < 13.0 (Group 2) and 13.0 < log(M200/M�h
−1) < 13.5 (Group

3). Tab. 5.3 shows the relative number of haloes for each bin and for each model.
We calculate the average profile in every mass Groups and we use the Einasto profile
to fit the mean radial density distribution. In DM-only simulations we find that SIDM
haloes are systematically less dense in the central regions (r < 10 kpc/h) than their
CDM counterparts. For each Group the density in these regions can be lower by more
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than 50% in SIDM compared to the CDM profiles. However, when we calculate the
average density profiles in full-hydrodynamic simulations we find the final properties of
the central regions depend on the considered mass bin:

• Group 1: SIDM has a higher density than that in CMB;

• Group 2: there are no differences in the density profile between the models:

• Group 3: SIDM has a lower density than that in CMB.

Moreover, we find that also in full-hydrodynamic simulations the differences between the
DM models are visible only at small radii (r < 10 kpc/h), but they drop from ∼ 50−60%
in DM-only simulations to ∼ 15−20% with the addition of baryonic physics (see Fig. 5.3
and Fig. 5.6). In agreement with Despali et al. (2019) we show that the interplay between
DM self-interaction and baryons can induce a complex evolution of the halo properties,
which depends on the halo mass and morphological type. However, we show that the
baryonic effects can in part mask the differences in the density profiles between the DM
models, making them less pronounced than in the DM-only case. The results presented
above hold true for both SIDM models. In the considered mass range, we find that, on
average, there are no differences between the SIDM model with constant cross section
and the SIDM model with velocity dependent cross section (see Fig. 5.7).
In Chapter 6 we employ the method used in Robertson et al. (2019) to calculate the
shapes of the simulated haloes. This method is described in section 5.2. We use the
minor-to-major axis ratios (s = c/a) as a proxy of the halo shapes. In agreement with
previous work (Peter et al. 2013), we find that in DM-only simulations both SIDM mod-
els make DM haloes rounder than their CDM counterpart for each mass Group and we
show that this is true for all the considered radii, but especially in the inner regions
where the scattering rates are highest. In these regions we find that SIDM haloes are
more spherical by more than 50% compared to CDM haloes. The trend, on the other
hand, seems to be reversed approaching the minimum radius, but this is due to resolution
effects of our method: at these radii there are an insufficient number of particles to trust
the shape measurement.
In agreement with Bryan et al. (2013) and Chua et al. (2021) we find that in full-
hydrodynamic simulations the CDM haloes are rounder at all radii compared to their
DM-only counterparts, but this effect is larger near the halo centre and decreases to-
wards the virial radius. This holds true for SIDM models, but only in the outer parts of
the haloes (r > 30 − 40 kpc/h), while at smaller radii the values of s for SIDM haloes
in full-hydrodynamic simulations and in DM-only simulations are similar (see Fig. 6.1
and Fig. 6.2). This behavior may be due to the fact that SIDM haloes shape are more
responsive to the presence of the baryonic disk potential in the inner part than their
CDM counterpart (Sameie et al. 2018a).
These effects described above make the differences between DM models less pronounced
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in full-hydrodynamic simulation, compared to DM-only simulations. Also for the halo
shapes we find that these differences drop from ∼ 50 − 60% in DM-only simulations to
∼ 25 − 20% with the addition of baryonic physics. However, we show that also with
the inclusion of the baryonic effects the haloes in the SIDM models are more spherical
than in the CDM counterpart and that this is true not only at small radii, but even in
more external regions (r ∼ 60 − 100 kpc/h). Such results suggest that the comparison
between the predictions on the DM halo shapes from simulations and the ones inferred
from observations can offer us a way to discriminate between DM models.
Finally, we match systems between the different runs using the minimum distance be-
tween the haloes centers of mass in the different simulations (see 5.8). Despite the
general average behavior on the properties of the density profiles and on the shapes, we
show that individual haloes can behave differently (see 5.9 and 6.6). This may depend
on the evolutionary history of the single halo: systems with comparable mass can belong
to distinct categories, and their behavior can be explained in terms of different accretion
history (Sameie et al. 2018a; Despali et al. 2019). For these reason, we aim to analyze the
mass accretion history of these systems from higher z up to z = 0 in order to understand
how the haloes final properties found in this work, can be linked to different evolutionary
histories.
As we have seen in sections 3.4.1 and 4.2.2 strong gravitational lensing allows us to
measure the total projected mass distribution of the lens directly. Thus, different halo
properties between DM models may have direct consequences on the distribution of the
main lensing observables. Therefore, a step forward for this work will be to generate
realistic mock lensed images to calculate the strong lensing properties of our simulated
systems, such as the Einstein radii and convergence maps. In this way, it will be possible
to test the differences (if any) in the lensing signal between our DM models. The compar-
ison between these predictions and observational data could offer us a way, independent
from X-ray observations, to discriminate between DM models.

91





Appendix A

Meszaros effect and Free-streaming

The dark matter component inside the horizon grows as in equation (3.2). From this
equation it is possible to calculate how much the DM density contrast has increased,
from when the perturbations enter the horizon until the time of equivalence, i.e. we
calculate the ratio

δk,DM(teq)
δk,DM(tor)

=
1 + 3

2
aeq

aeq

1 + 3
2
aor

aeq

=
5
2

1 + 3
2
aor

aeq

, (A.1)

so if the perturbation enters the horizon immediately after the Big-bang, aor = 0:(
δeq
δor

)
max

= 5
2 , (A.2)

while if the perturbation enters the horizon at t = teq:(
δeq
δor

)
min

= 1 , (A.3)

i.e. the perturbation does not have sufficient time to grow inside the horizon. The first
case is the extreme case, that is, where we would have greater growth, this means that
the perturbations of DM before the equivalence can grow inside the horizon at least
than a factor of 5/2 which is absolutely negligible. This effect is called stagnation or
Meszaros effect and essentially tells us that if a perturbation enters the horizon before
the equivalence it will stop growing. Therefore, perturbations started with the same
amplitude will end up having different amplitudes (those outside the horizon will continue
to grow). Once the equivalence has been overcome, all the perturbations will start
growing again in the same way.
Another fundamental characteristics of DM must be that it interacts weakly with the
baryonic matter, therefore it does not emit radiation and that it must decouple from
the radiation much earlier than the baryons adec,DM < aeq, to allow the so-called baryon
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catch up. But given these fundamental characteristics, several models of DM can be
built. To carry out a first classification, we introduce the time scale of non-relativization
aNR,DM , that is, the time scale at which the DM particles stop being relativistic, which
is essentially the same as knowing the mass of the particles because this happens when:

kT < mDMc
2 , (A.4)

therefore the most massive particles are those that stop being relativistic first, since T is
a function that decreases over time. Having defined this time scale, we can classify the
particles as:

• Hot Dark Matter(HDM) if they are still relativistic at the moment of decoupling:
aNR,DM > adec,DM .

• Cold Dark Matter(CDM) if they stop being relativistic before the moment of
decoupling: aNR,DM < adec,DM .

• Warm Dark Matter(WDM) it is an intermediate case between HDM and CDM.

This classification results in a difference in the masses of the particles, and from equation
(A.4) we derive that CDM and WDM candidates will be heavier than HDM ones. To
study the effects due to free-streaming, it is useful to introduce the Jeans mass for the
DM pertrurbations. The typical trend for the Jeans scale is

λJ ∝ v ρ
−1/2
dom , (A.5)

where ρdom represents the density of the dominant component. Or similarly we can define
the Jeans Mass:

MJ ∝ λ3
J < ρM > , (A.6)

where < ρM >∝ a−3 represents the average density of matter. This scale varies during
the cosmic epochs, depending on the trends of v and ρdom:

1. a < aNR,DM

Radiative era ρdom = ρR ∝ a−4, and the particles are still relativistic v ∼ c = const:

λJ ∝ cost ρ
−1/2
R ∝ a2 −→MJ ∝ a3 . (A.7)

2. aNR,DM < a < adec,DM

Radiative era, then the velocity of the particles will also be affected by being
coupled to the radiation: v2 ∝ TR ∝ a−1, so v ∝ a−1/2:

λJ ∝ a3/2 −→MJ ∝ a3/2 . (A.8)
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3. adec,DM < a < aeq

After decoupling, the particles will begin to propagate freely following the ex-
pansion of the Universe v ∝ a−1 :

λJ ∝ a −→MJ = const . (A.9)

4. a > aeq

Matter era ρdom = ρM ∝ a−3 and the speed always remains of free motion, so

λJ ∝ a−1/2 −→MJ ∝ a−3/2 . (A.10)

In general we will have that a perturbation with a mass greater than the mass of Jeans
will be able to grow, while if its mass is smaller than the Jeans mass, we must consider
the phenomena of cancellation due to free streaming. Looking at the trends of the mass
of Jeans in the various eras, we notice that after adec this scale stops growing and remains
constant up to aeq and then starts to decrease. We conclude that any scale that has a
mass M > MJ(adec) = MJ(aeq) will always be able to grow and will not undergo any
phenomenon of free streaming. Using the dispersion equation, the functional trend of
the Jeans mass can be found more accurately and therefore this maximum value can be
calculated, which in the case of CDM is typically:

MJ,CDM(aeq) = 105 − 106M� , (A.11)

but the exact value depends on the mass of the specific candidate. Fig. A.1 shows
schematically the trends of the Jeans Mass. For comparison, both CDM and HDM
trends are shown. As we have defined the Jeans scale, it is also possible to define a
free streaming scale under which free-streaming acts, canceling the perturbation: the
particles respond to the average potential of the Universe, which tends to level the
density contrasts.

λFS = a(t)
∫ t

0

vDMdt
′

a(t′) →MFS = 4
3πλ

3
FS < ρM > . (A.12)

In this case, we know that a(t) changes at z = zeq:a ∝ t1/2 → dt ∝ a da if a < aeq

a ∝ t2/3 → dt ∝ a1/2da if a > aeq
(A.13)

Rewriting the free-streaming scale in a more useful way:

λFS(t) = a(t)
∫ a(t)

0

vDM
a

dt

da
da , (A.14)

it is possible to calculate its trend in the different cosmic eras:
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Figure A.1: Trends in the Jeans mass during the various cosmic eras for CDM (blue)
and HDM (red). The dotted horizontal lines represent the scale above which the collapse
occurs without experiencing the free streaming, for the two models.

• a < aNR −→MFS ∝ a3 ;

• aNR < a < adec,DM −→MFS ∝ a3/2 ;

• adec,DM < a < aeq −→MFS ∝ (ln a)3 ;

• a > aeq −→MFS = const .

By substituting the exact values, it can be shown that the free-streaming mass scale
follows similar trends to those of the Jeans mass scale, meaning that all perturbations
with mass M < MFS ∼ MJ will be canceled from free-streaming. Then, the only
perturbations that can grow (i.e. they will never be under MFS) are those with M >
MJ(aeq).
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Appendix B

Spherical collapse model

Linear perturbation theory has a limited range of applicability δ � 1; in particular, the
evolution of structures like clusters of galaxies cannot be treated within the framework
of linear perturbation theory, since we know that for these structures δ ∼ 102−3. In
general, numerical approaches are required to analyze the development of non-linear
structures. However, analytical descriptions exist for certain relevant limiting situations
that can reflect the non-linear development of the mass distribution in the Universe. The
spherical collapse model follows the simplest approach to non-linear development, which
is to examine fluctuations with a basic geometric symmetry. The idea is to consider the
perturbations as perfectly spherical closed Universes (ΩP > 1), immersed in a background
Universe, which for simplicity we consider EdS (ΩU = 1). Moreover, we consider that
these perturbations are stationary with respect to the Hubble flux, that is, that they
have zero peculiar velocity. Equation (1.46) for the perturbation (W = 0), seen as a
closed Universe is (

ȧ

ai

)2
= H2

i

[
1− ΩP + ΩP

(
ai
a

)]
. (B.1)

In this model, there is a tmax whereby the Universe stops expanding and starts collapsing.
The density perturbation at this time will be:

ρP (tmax) = ρP (ti)
(

ai
amax

)3
, (B.2)

where amax = a(tmax) as we have said, it is the point where the perturbation stops
expanding, i.e. ȧmax = 0. From this moment on, the self-gravity will be such that it
starts the collapse. Then we take the equation (B.1) for t = tmax:

0 = ΩP

(
ai
amax

)
+ (1− ΩP ) −→ amax

ai
= ΩP

ΩP − 1 (B.3)

and replacing this last relation in the equation (B.2)

ρP (tmax) = ρc(ti) ΩP

(
ΩP − 1

ΩP

)3

. (B.4)
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Now to derive ρP (tmax), we need to use parametric solutions obtained for curved Uni-
verses: 

a(θ) = a0
Ω0

2(Ω0−1)(1− cos θ)

t(θ) = 1
2H0

Ω0
(Ω0−1)2/3 (θ − sin θ)

(B.5)

and for θmax = π we obtain 
a(π) = amax = a0

Ω0
Ω0−1

t(π) = tmax = π
2H0

Ω0
(Ω0−1)2/3

(B.6)

We can rewrite the equation for t also at time ti

tmax = π

2Hi

ΩP

(ΩP − 1)2/3 . (B.7)

Now we can get (ΩP − 1) from equation (B.4)

ΩP (ti)− 1 = ΩP (ti)
[
ρP (tmax)
ρc(ti)ΩP

]1/3

, (B.8)

then

tmax = π

2Hi

(
ρc(ti)

ρP (tmax)

)1/2

, (B.9)

but ρc(ti) = 3H2
i /8πG, so

ρP (tmax) = 3π
32Gt2max

. (B.10)

For an EdS background Universe, the density trend is t = tmax is

< ρ > (tmax) = 1
6πG

1
t2max

. (B.11)

Then we can define the excess density of the perturbation with respect to the background:

χ(tmax) = ρP (tmax)
< ρ > (tmax)

=
(3π

4

)2
∼ 5.6 , (B.12)

then
δ(tmax) = ρP (tmax)− < ρ > (tmax)

< ρ > (tmax)
∼ 4.6 . (B.13)

We notice that already at the moment of maximum expansion we are no longer linear
theory δ > 1.
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After tmax, the pertrubation, assumed as a closed Universe, is expected to collapse on
itself in a time tcoll = 2tmax, however the perturbations of matter cannot collapse in
one point, then it is necessary to find a radius at which the perturbation stabilizes and
subsequently virializes; therefore we use the virial theorem

K = −U2 , (B.14)

while the total energy Etot = K + U , so Etot = −V/2 + V = V/2 and we calculate it at
tvir and at tmax

Etot(tvir) = −1
2

3
5
GM2

Rvir

, Etot(tmax) = −3
5
GM2

Rmax

, (B.15)

where at t = tmax, we have zero expansion speed, so energy is all potential energy. For
the conservation of energy Etot(tvir) = Etot(tmax) → Rvir = Rmax/2 and assuming that
the mass is conserved during collapse, we can calculate the density contrast at t = tcoll

χ(tcoll) = ρP (tcoll)
< ρ > (tcoll)

= 8 ρP (tmax)
< ρ > (tmax)

(
tcoll
tmax

)2
, (B.16)

but tcoll = 2tmax so
χ(tcoll) = 32χ(tmax) ∼ 180 . (B.17)

Also the simulations show that the perturbation ceases to collapse, reaching a physical
dimension of equilibrium Rvir , at the time t = 2tmax. After this moment, the overdensity
begins to stabilize, until it is virialized to tvir = 3tmax and at this time χ(tvir) ∼ 400.
This approach to the non-linear theory rightly predicts high values for the density of
the perturbations, closer to those observed in the formed structures (if we had used
linear theories we would have been wrong by more than two orders of magnitude), but
this theory, despite being simple, has two fundamental problems: it assumes perfectly
spherical perturbations (the probability of having perfectly spherical perturbations is
very low) and furthermore this theory strongly depends on cosmology, in fact to derive
the density contrast we have assumed an Eds background. In any case, this theory
predicts that the perturbation first proceeds following the Hubble expansion, then begins
to slow down until it stops at tmax, after which it begins to collapse until Rvir = Rmax/2,
with χ(tcoll) ∼ 180 and χ(tvir) ∼ 400.
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