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Abstract

Star-forming galaxies like the Milky Way are surrounded by a hot gaseous halo at

the virial temperature, the so-called hot corona, that plays a fundamental role in

their evolution. On the one hand, this coronal gas is a potential reservoir of fresh,

low-metallicity gas that can replenish the disc with new material to sustain the star

formation activity over a Hubble time. On the other hand, galactic fountain flows

driven by supernova feedback inject high-metallicity gas from the disc to the halo

region, causing the cold fountain gas to interact with the hot coronal gas. This

interaction has been shown to have a direct impact on efficiency of the cooling and

accretion of coronal gas onto the disc with major implications for galaxy evolution.

This Thesis project is focused on the study of the gas circulation between the disc

and the gaseous halo of star-forming galaxies like the Milky Way. To analyze this

circulation and its implications on the properties of the corona and of the disc,

we used high-resolution hydrodynamical N -body simulations of a Milky Way-type

galaxy with the inclusion of an observationally-motivated hot corona. As a first

step, we created suitable galaxy models representative of the Milky Way with a hot

gaseous halo in hydrostatic equilibrium. After checking the dynamical equilibrium of

such configurations with adiabatic simulations, we evolved the initial conditions thus

generated with the SMUGGLE model, an explicit ISM and stellar feedback model

which is part of the moving-mesh code Arepo. We focused on the interaction

between the material ejected from the disc and the galactic corona, analyzing the

differences that emerge changing the mass of the latter and studying inflows and

outflows of gas and their temperature and metallicity distributions. We have found

that gas accreted from the corona is the primary fuel for the star formation, helping

in maintaining a constant level of cold gas mass in the disc of the galaxy. The

accretion of coronal gas is promoted by its mixing with the galactic fountains. At

the disc-corona interface, the corona and the gaseous outflows from the disc mix

efficiently, forming regions of gas at intermediate temperatures and metallicities

that enhance the cooling of the corona. This mixed gas is then accreted onto the

disc diluting its metallicity. The simulations carried out in this Thesis work will

enable a step forward toward a realistic modelling of the formation and evolution of

Milky Way-type galaxies.
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Sommario

Le galassie come la Via Lattea sono circondate da un alone caldo di gas alla tempe-

ratura viriale, detto corona, che ha un ruolo cruciale nella loro evoluzione. Da

un lato, la corona è una potenziale riserva di gas a bassa metallicità che può ri-

fornire il disco di nuovo materiale in modo da sostenere la formazione stellare

per un tempo di Hubble. Dall’altro, le esplosioni di supernova nel disco galat-

tico iniettano parte del gas ad alta metallicità del mezzo interstellare nell’alone,

causando l’interazione tra il gas freddo del disco e il gas caldo coronale. È stato di-

mostrato come questa interazione abbia un impatto diretto sull’efficienza del raffred-

damento e sull’accrescimento del gas coronale sul disco, con profonde implicazioni

per l’evoluzione generale delle galassie. Questo progetto di tesi si focalizza sullo stu-

dio della circolazione del gas tra il disco e l’alone in galassie simili alla Via Lattea.

Per analizzare questo fenomeno e le sue implicazioni sulle proprietà della corona

e del disco abbiamo utilizzato simulazioni idrodinamiche a N corpi che includono

una corona calda attorno alla galassia centrale. Nella prima fase abbiamo creato

un modello di galassia che rappresenta la Via Lattea con un alone di gas caldo in

equilibrio idrostatico. Dopo aver controllato, tramite simulazioni adiabatiche, la sta-

bilità dinamica di questa configurazione iniziale abbiamo fatto evolvere le condizioni

iniziali così generate con il modello SMUGGLE, un modello esplicito per il mezzo

interstellare e il feedback stellare che è parte del codice a griglia mobile Arepo. Ci

siamo concentrati sull’interazione tra il materiale espulso dal disco e la corona galat-

tica, analizzando le differenze che emergono al variare della massa di quest’ultima,

studiando le distribuzioni di temperatura e metallicità e i moti di inflow e outflow

del gas. Quello che è emerso è che la corona è la principale riserva di materiale per la

formazione stellare nel disco. L’accrescimento di gas coronale è promosso dal mesco-

lamento con il gas espulso dal disco dal feedback stellare. In effetti, all’interfaccia

tra il disco e la corona, il gas coronale e quello espulso dal disco si mescolano ef-

ficientemente formando regioni con gas a temperatura e metallicità intermedie che

facilitano il raffreddamento della corona. Questo gas è in seguito accresciuto sul

disco diluendone la metallicità. Le simulazioni effettuate in questo lavoro di tesi

permetteranno di compiere un passo avanti nella modellizzazione numerica accurata

della formazione ed evoluzione delle galassie simili alla Via Lattea.

iii





1Introduction

The Λ Cold Dark Matter (ΛCDM) model is the most accepted cosmological frame-

work that describes the evolution of our Universe. In the ΛCDM scenario the mass-

energy budget of our Universe is composed by dark energy (∼ 70%), matter (∼ 30%)

and radiation (that has a negligible contribute to this budget at redshift zero). The

matter component is further divided in cold dark matter, ∼ 85% of the matter to-

tal content, and baryons (i.e. ordinary matter) making up the remaining ∼ 15%.

Thanks to their nature, the cold dark matter particles trigger the gravitational col-

lapse at small masses (∼ 104 − 105 M⊙). For this reason, the evolution of the

structures in the Universe is hierarchical, meaning that less massive structure are

formed earlier and the more massive ones are the result of subsequent mergers. The

dark matter density fluctuations grow in time driven by the gravitational interac-

tions, forming the potential wells in which the baryons can cool down and collapse,

creating the first generations of stars and, subsequently, the first galaxies.

Galaxies have been classified for the first time by Hubble (1926), with a clas-

sification that is still widely used nowadays. In Figure 1.1 we show a schematic

representation of the so-called Hubble tuning fork diagram.

Figure 1.1: Schematic representation of the Hubble tuning fork. From left to right we see
elliptical galaxies (Eb or Ed), lenticular galaxy (S0 or SB0), spiral galaxies (S or SB) and
irregular galaxies (Im or IBm). Figure taken from Kormendy and Bender (1996).
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Chapter 1. Introduction

In general, galaxies can be divided in two broad categories:

(i) Early-type galaxies, that include elliptical and lenticular galaxies. Elliptical

galaxies are the most massive galaxies (∼ 1010 − 1013 M⊙
1; Cimatti, Frater-

nali and Nipoti 2019) in the present-day Universe. They have in general a

population of very old stars (age ≫ 1 Gyr; De Jong and Davies 1997) and

no star formation, for this reason they are also called quiescent or passive

galaxies. The gas in these galaxies is for the most part (∼ 109 − 1011 M⊙)

hot (T ∼ 107 K) and at high-metallicity2 (Z > 0.5 Z⊙); in some cases, traces

of dust, neutral and cold gas and star formation are found, probably due to

past interactions with gas-rich galaxies (e.g. Morganti et al. 2006). Lenticular

galaxies are halfway between elliptical and spiral galaxies, having the same

properties of the former, but presenting also a disc with little or no star for-

mation. They are interpreted as spiral galaxies which have lost the reservoir

of gas, quenching their star formation (e.g. Spitzer Jr and Baade, 1951).

(ii) Late-type galaxies include spiral and irregular galaxies. These objects

are also called star-forming galaxies because they present an ongoing, non-

negligible level of star formation. Spiral galaxies have a more complex struc-

ture than elliptical galaxies, they are in general gas-rich galaxies, presenting

a complex and multi-phase interstellar medium (ISM), with cold, warm and

hot gas coexisting in the same environment. Irregular galaxies have in general

smaller masses and an irregular shape without the presence of a disc.

In recent years, thanks to the advent of large field surveys (e.g. the Sloan Digital

Sky Survey, York et al. 2000) which made possible the observation of millions of

galaxies, also a bimodality (e.g. Baldry et al. 2006) in galaxy colors as a function of

stellar mass has emerged. In Figure 1.2 we show a u− r color3-stellar mass diagram

taken from Schawinski et al. (2014): in the top left panel all the galaxies of the

sample are present, and we can note the presence of two regions of interest: the

so-called red sequence, a clear correlation between the colour and the mass of the

galaxy towards redder colours, and the so-called blue cloud, a distribution centrally

peaked in the bluer region of the diagram. Isolating only a type of galaxy shows

1In galaxy clusters, the elliptical galaxies at the center of the cluster can be even more massive
than 1013 M⊙.

2The metallicity quantifies the abundance of metals, i.e. elements heavier than helium, in the
gas.

3The filter u is sensitive to the ultraviolet light, i.e. to the lights of young and massive stars
present in the case of an active star formation. The filter r is more sensible to the red light of
old stars.
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1.1. Galaxy interactions with their surrounding environment

Figure 1.2: u− r color-stellar mass diagram of a sample of galaxies taken from the Sloan
Digital Sky Survey. The left panel shows all the galaxies in the sample, the top right panel
only the early-type galaxies, while the bottom right only the late-type galaxies. Figure
taken from Schawinski et al. (2014).

that early-type galaxies (top right panel) populate almost only the red sequence,

they are in fact dominated by old stellar populations, whereas late-type galaxies

(bottom right panel) mostly reside in the blue cloud, feature explained by their

ongoing star formation. The panels in Figure 1.1 shows the existence of two distinct

populations of galaxies with different physical properties and evolution. It has been

suggested that galaxies tend to evolve from the blue cloud to the red sequence

but not vice versa (Peng et al., 2010), this type of evolutionary track is described

later in this Chapter in Section 1.1.3. In this Thesis work we focus on star-forming

galaxies and in particular on the gas present in their surrounding environment, on its

connection with the disc of such galaxies and on the importance of this interaction

for the formation of new stars.

1.1 Galaxy interactions with their surrounding

environment

Galaxies are not isolated systems, in fact they interact with their surrounding envi-

ronment in various ways. For instance, they can interact with other galaxies through

high-speed encounters (Moore et al., 1996), mergers (Conselice et al., 2003) or, in
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Chapter 1. Introduction

more dense environments, ram pressure stripping (Abadi et al., 1999) and cannibal-

ism (Hausman and Ostriker, 1978). These interactions between galaxies and their

environment are extremely important because have a direct influence in the way

galaxies evolve. For the investigation carried out in this work, we concentrate on

the interactions only with the external medium, without considering possible inter-

actions with other galaxies. The interaction between galaxies and their environment

is mediated by outflows and inflows of gas (left-hand panel in Figure 1.3). Star-

forming galaxies can eject gas outflows from the disc through stellar feedback, a

set of processes that release energy and momentum in the ISM, changing its ther-

mal and dynamical state; these processes include stellar winds, stellar radiation and

supernovae explosions. In particular, multiple supernovae explosions can produce

superbubbles (Mac Low and McCray, 1988), giant bubbles filled with hot gas that

can exceed the height of the disc, ejecting material out of it. If this material has

a velocity that is smaller than the escape velocity from the galaxy, it will fall back

onto the disc (generally at a different location) giving rise to a gas circulation and

creating the so-called galactic fountains.

Figure 1.3: Left : Schematic representation of the interaction between the disc of a spiral
galaxy and the external environment. The gas can be expelled from the galaxy through
outflows, in particular galactic fountains, or enter through inflows from the intergalactic
medium (IGM) or from the hot coronal gas present around the disc. Figure taken from
Tumlinson et al. (2017). Right : Critical halo mass as a function of the redshift. The
red line separates a pure cold accretion mode from a hot/hot and cold accretion mode
(separated from the blue line). Figure taken from Dekel et al. (2013).

Gas can also be accreted from the surrounding medium and this occurs generally

in two distinct ways. In the hot accretion mode the gas falling into the potential
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1.1. Galaxy interactions with their surrounding environment

well of the dark matter halo is shock heated to its virial temperature when it reaches

the center (Rees and Ostriker, 1977; White and Rees, 1978; Silk, 1977), while in the

cold accretion mode the gas can reach the center of the halo still in a cold form

(Kereš et al., 2005) because the post-shock cooling time becomes shorter then the

dynamical time and the gas is not heated efficiently. This dual nature of gas accretion

has been investigated with numerical simulations over the past years (e.g. Birnboim

and Dekel 2003). In Figure 1.3 (right-hand panel) we show a diagram (Dekel et al.,

2013) that explains both these phenomena, based on analytic spherically-symmetric

calculations.

In practice, the panel shows the presence of a critical halo mass (Mcr ∼ 1012 M⊙)

under which the halo cannot efficiently shock heat the gas that falls in it, allowing

cold gas to penetrate and accrete onto the disc of the galaxy. Below this critical mass,

this occurs independently of redshift. On the other hand, halos with Mh > Mcr are

effective at shock heating the gas, in this case for redshifts z < 2 the hot accretion

mode is dominant. For z > 2 the gas is still heated to the virial temperature,

but the accretion occurs predominantly through gas filaments from the intergalactic

medium that can reach the galaxy without being disrupted thanks to their high

density (Ocvirk et al., 2008). Therefore, galaxies change the predominant mode of

accretion over time: high redshift star-forming galaxies will have a mass Mh < Mcr

and will be accreting gas predominantly via the cold mode. However, galaxies tend

to increase their mass over time and some will eventually exceed the critical mass,

accreting gas at the virial temperature and forming a gas reservoir (the so-called hot

corona) around them. A Milky Way-like galaxy (Mh ∼ 1012 M⊙) typically reaches

Mcr at z ∼ 1 − 2 (Kereš et al., 2009), therefore it will form a hot gaseous halo

at around that time, but more massive galaxies tend to form the corona at higher

redshifts.

1.1.1 Indirect evidence of gas accretion

Gas accretion is difficult to observe, in fact observations cannot accurately distin-

guish between inflows, outflows or other types of motion. However, in the past

years many indirect pieces of evidence of gas accretion and of the presence of gas

around star-forming galaxies have been found (see Almeida et al. 2014, Fraternali

2013 and Fraternali 2017 for detailed reviews). Such pieces of indirect evidence of

gas accretion can be summarized by the following points.

• Depletion time: galaxies like the Milky-Way have formed stars with an almost

constant star formation rate for about their entire life (Twarog, 1980; Cignoni et al.,
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Chapter 1. Introduction

2006), however the gas present inside these galaxies is not sufficient to sustain star

formation rate levels of ∼ 1 M⊙ yr−1 for more than ∼ 1 Gyr. Therefore, inflows of

gas are necessary to prevent the quenching of star formation.

• Missing baryon problem: another indirect evidence of the necessity of low den-

sity gas around galaxies is the so-called missing baryon problem. The mean baryon

density, measured in the low-redshift Universe (Fukugita et al., 1998; Nicastro et al.,

2005), accounts only for a small fraction of the baryon density obtained from cosmo-

logical observations, e.g. the Planck Collaboration (Aghanim et al., 2020) obtained

from the angular spectrum of the CMB a baryon density Ωbh
2 = 0.0224 ± 0.0001.

What have been observed is that ∼ 10% of the baryons resides in stars, interstellar

medium and intracluster medium. The rest of the baryons is thought to reside in

the cold and hot intergalactic medium inside cosmic filaments (∼ 50%; Penton et al.

2004; Nicastro et al. 2018) and surrounding galaxies (∼ 40%). Moreover, baryons

inside galaxies in the form of cool gas and stars are much less than expected (e.g.

Papastergis et al. 2012), with baryon fraction that are much smaller than the uni-

versal one (fb ∼ 0.16). For these reasons we expect hot gas difficult to observe to

reside around galaxies, accounting for a fraction of these missing baryons.

• G-dwarf problem: the necessity of gas accretion comes also from the G-dwarf

problem (Van den Bergh, 1962), that is a deficit of metal-poor stars in the solar

neighbourhood: ∼ 20% of the stars have a metallicity < 1/4 solar, with respect

to the 40% expected in the case of a closed-box evolution (i.e. evolution of the

galaxy in isolation with no interaction with its environment). This suggests the

presence of an evolutionary track for star-forming galaxies very different from total

isolation. The preferred solution to this problem is to require a continuous accretion

of low metallicity gas (∼ 0.1 Z⊙, Tosi 1988) that fuels star formation (Chiappini

et al., 2001). The G-dwarf problem is also present in galaxies other than the Milky

Way (Worthey et al., 1996), confirming the fundamental nature of the metal-poor

accretion phenomena. Also, the abundance of observed deuterium in the local ISM

becomes consistent with the one expected from the cosmological nucleosynthesis

only if we account for this accretion of low-metallicity gas (Steigman, 2007).

• Mass-metallicity relation: a universal scaling law of galaxies is the mass-metalli-

city relation (Skillman et al., 1989; Tremonti et al., 2004), for which more massive

galaxies have a higher metallicity. This happens because massive galaxies have a

deeper potential well in which gas can more efficiently accrete, and form stars more

effectively and for a longer time with respect to lower mass galaxies. Moreover, the

large mass can help the retention of gas: the gas ejected from winds and SNe will
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1.1. Galaxy interactions with their surrounding environment

hardly escape from the galaxy, preventing the quenching of the star formation. It

has been shown that the wide scatter present in the relation, for which galaxies with

the same mass can have different metallicities, is associated with the SFR of the

galaxy (Mannucci et al., 2010; Lara-López et al., 2010): higher present SFR gives

a lower metallicity. This can be explained if the formation of stars is sustained by

metal-poor gas inflows, which decrease the metallicity of the ISM and increases the

SFR.

1.1.2 Observations of extraplanar gas

Figure 1.4: Left : Hi map (blue) of NGC 891 superimposed on an optical image (orange),
the cold gas extends up to ∼ 8 kpc above and below the disc. Figure taken from Oosterloo
et al. (2007). Right : Hi map of NGC 4565 superimposed on the optical image. Figure
taken from Sancisi et al. (2008).

We now focus on the observations of the gas that surrounds the disc of the galaxy,

also known as the circumgalactic medium (CGM). For its fundamental nature in

supplying the galaxy with fresh gas eligible for star formation, extraplanar gas, i.e.

gas present outside the disc of the galaxy, around star-forming galaxies has been

widely observed in the last years. Cold (T < 104 K) neutral gas can be tracked

observing the neutral hydrogen Hi with the 21 cm line. The Milky Way (Lockman,

2002) and nearby spiral galaxies (Fraternali et al., 2002; Matthews and Wood, 2003;

Zschaechner et al., 2015), like NGC 891 (Oosterloo et al., 2007) or NGC 4565 (Sancisi
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Chapter 1. Introduction

et al., 2008) (Figure 1.4), show the presence of neutral gas that extends for few kpc

over the plane of the disc. In our Galaxy the existence of clouds of gas surrounding

the disc has been known for a long time, these are the so-called High Velocity Clouds

(HVCs).

HVCs can have an external (i.e. accreted from the environment) or internal

(i.e. coming from galactic fountains ejected from the disc; Fraternali et al. 2015)

origin. Putman et al. (2012) estimated a mass of cold gas around the Milky Way,

traced by HVCs (excluding the contribution from the Large Magellanic stream),

of 2.6 × 107 M⊙. The inflow rate of the HVCs is ∼ 0.1 − 0.2 M⊙ yr−1, too small

to sustain the star formation (SFR ∼ 1 − 2 M⊙ yr−1), therefore they cannot be

powering star formation in the Galaxy. Furthermore, ionized gas (104 < T < 106 K)

is also observed around the discs of spiral galaxies: this is usually done observing

absorption lines in distant background bright sources like quasars around the Milky

Way (Richter et al., 2013) and around other galaxies (Werk et al., 2014). Lehner

and Howk (2011) found a mass ∼ 108 M⊙ and an hypothetical inflow rate of ∼
0.8− 1.4 M⊙ yr−1 that could be able to fuel the star formation in our galaxy.

Observations of galactic coronae

As already mentioned, in halos more massive than ∼ 1012 M⊙ we expect the for-

mation of a corona of hot gas around the galaxy, in this component must reside

a significant fraction of the gas mass associated to a star-forming galaxy. These

massive halos have a virial temperature higher than 0.1 keV and therefore the hot

gas is expected to thermally emit X-ray photons through bremsstrahlung emission.

In the past years many observations have been attempted to find and study the

properties of these hot coronae around spiral galaxies, but due to their temperature

range and the low-densities a large fraction of the thermal emission falls under the

Galactic absorption threshold (0.2-0.3 keV) making this component very faint and

highly contaminated by the X-ray background. For these reasons, these observations

have been unsuccessful for years (Li et al., 2008; Rasmussen et al., 2009; Li et al.,

2011; Bogdán et al., 2015).

Observations around four massive (∼ 1013 M⊙) spiral galaxies (i.e. NGC 1961,

UGC 12591, NGC 266 and NGC 6753; taken with Chandra, XMM-Newton and

ROSAT ), finally succeded in finding a visible X-ray emission of the corona. In NGC

1961 Anderson and Bregman (2011) estimated a total hot gas mass of 1− 3× 1011

M⊙ assuming a metallicity of 0.5 Z⊙, but a precise measurement of the metallicity is

extremely important to constraint the real mass of the corona. In UGC 12591 Dai

8



1.1. Galaxy interactions with their surrounding environment

et al. (2012) detected an emission within 80 kpc finding an upper limit of 4.5× 1011

M⊙ for the corona mass and a temperature ∼ 7.42 × 106 K. In NGC 266 Bogdán

et al. (2013) found a mass very similar to NGC 1961 and UGC 12591, these galaxies

have a very similar virial mass, suggesting similar physical properties in the coronae

of these massive spiral galaxies.

Figure 1.5: Left : XMM-Newton image of NGC 6753 in the 0.3-2.5 keV band. The image
was created combining the datas from the three instruments of the telescope: the PN and
the two MOS cameras. We can note the presence of the corona and of many point-like
X-ray sources (active galactic nuclei (AGN) or X-ray binaries). Right : Same image but
de-noised. This shows the X-ray diffuse emission of the galaxy up to ∼ 25 kpc from the
center of the galaxy. Figures taken from Bogdán et al. (2017).

Bogdán et al. (2017) observed NGC 6753 with deeper observations, finding a tem-

perature that decreases from ∼ 8.12× 106 K in the center to ∼ 4.64× 106 K at 50

kpc. They also found a uniform metallicity ∼ 0.1 Z⊙, which is about one order of

magnitude smaller than the one observed in elliptical galaxies, suggesting a forma-

tion through an accretion of gas rather than an internal origin. This observation is

shown in Figure 1.5, where is apparent the presence of a symmetric diffuse X-ray

emission around the galaxy.

Despite the physical properties that make very difficult its direct detection, many

attempts to determine the density of the Milky Way corona have been carried out.

A possible approach to estimate the density of the corona is to investigate the pro-

cess of ram-pressure stripping of dwarf spheroidal galaxies inside the Milky Way

halo (Grcevich and Putman, 2009; Gatto et al., 2013; Salem et al., 2015; Marty-
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Chapter 1. Introduction

nenko, 2021). These dwarf galaxies have very small masses of gas that have been

hypothetically stripped away along their trajectories inside the Milky Way corona.

Combining simulations of satellites orbiting around the Milky Way (including the

presence of ram-pressure) with observations, an estimate of the coronal density can

be found without assumptions on the gas metallicity. Also, observations of the

dispersion measure of pulsars can be used (Anderson and Bregman, 2010): the dis-

persion measure yields the electron density integrated along the line-of-sight between

the observer and the pulsar and it can be found measuring the delay in the periodic

pulsar emission observed at two different frequencies. Furthermore, another obser-

vational approach used to find the coronal density lies in observations of absorption

lines (mainly Ovii and Oviii lines) at zero redshift in the spectra of distant objects

(Yao et al., 2012; Gupta et al., 2012; Miller and Bregman, 2013; Kaaret et al., 2020).

However, in this case it is necessary to make an assumption on the gas metallicity

(that is still uncertain) and this gives less robust results. Results from ram-pressure

stripping and from X-ray spectra have a wide discrepancy, Troitsky (2017) found

that this can be reduced assuming a metallicity profile, with a large decrease of

Z in the outer parts of the corona. The typical values for the Milky Way corona

found by these observations, as order of magnitude, are: an electron number den-

sity 〈ne〉 ∼ 10−5 cm−3 (averaged over a distance of 250 kpc radius), an average

temperature of T ∼ 106 K and metallicities Z ∼ 0.1− 0.7 Z⊙.

1.1.3 Cooling of the corona: theoretical and numerical results

We have understood that both theory (e.g. White and Rees 1978; Fukugita and Pee-

bles 2006) and (direct and indirect) observations go in the direction of the presence

of a hot metal-poor gas reservoir, the galactic corona, around galaxies. Galactic

coronae in elliptical and spiral galaxies are expected to have very different physi-

cal properties. The early-type galaxy coronae have a metallicity that is very close

to Z⊙ (Ji et al., 2009), suggesting a large contribution from material ejected from

evolved stars via stellar feedback (Ciotti and Ostriker, 1997). These galaxies do

not have or have only small amount of cold gas and star formation, suggesting an

inefficiency in the cooling of the corona: cooling can happen in the center of the

galaxy where the densities are the highest, but the generated cold gas is accreted

onto the super-massive black hole, fueling AGN feedback, that re-heats the corona.

In spiral galaxies a totally different scenario emerges, with a low-metallicity corona

and comparatively large cooling times (of a few Gyr near the disc). Here, we expect

the presence of an efficient mechanism that cools the corona and accretes it onto
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1.1. Galaxy interactions with their surrounding environment

Figure 1.6: Cartoon sketch of a galactic fountain. The cold gas is ejected from the disc and
travels through the hot corona generating a wake in which the coronal gas can condensate.
Figure taken from Fraternali (2013).

the disc of the galaxy. The mechanism that cools the coronal gas must be efficient in

spiral galaxies and not in early type galaxies since the cooling seems to happen only

in the presence of a cold disc of gas. A possible mechanism that could be triggered is

represented by the interaction between the cold high-metallicity gas ejected from the

disc and the metal-poor hot corona. As mentioned, star-forming galaxies can eject

gas in the form of galactic fountains or galactic winds (Oppenheimer et al., 2010); if

this gas efficiently mixes with the corona it can decrease its cooling time forming an

intermediate temperature and metallicity gas. As the cloud of gas ejected from the

disc travels through the hot corona there is the development of a Kelvin-Helmoltz

instability4, that helps the mixing of the gas, and the formation of a wake of gas

behind it. In the wake some of the coronal gas can condensate thanks to its reduced

cooling time, increasing the mass of the cold gas that then rains down on the disc,

supplying it with fresh fuel for star formation (see Figure 1.6). This phenomena has

been studied with very high resolution (on parsec-scale) simulations of the interface

region between the corona and the cold gas clouds (Marinacci et al., 2010, 2011).

In this way the nature of the interaction is captured but not inserted in a realistic

galaxy model. It has been found that a higher temperature of the corona reduces the

ability of its condensation onto the galactic fountains, meaning that more massive

galaxies (that have a higher virial temperature) will be less efficient in accreting

gas from the external environment, bringing to a quenching of the star formation

(Armillotta et al., 2016). Therefore, reaching high galaxy masses (∼ 1013 M⊙)

4The Kelvin-Helmoltz instability is a hydrodynamical instability that occurs when two different
fluids are in relative shearing motion.
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Chapter 1. Introduction

blocks the gas inflows that sustain the formation of new stars, this could be one of

the channel with which star-forming galaxies evolve, passing from the blue cloud to

the red sequence (Figure 1.2).

Besides the high-resolution pc-scale simulations just described, other types of

simulations have been performed in the last years, such as zoom-in simulations, in

which also the cosmological framework is captured still being able to reach good

resolutions in the regions where the galaxies reside (e.g. Hafen et al. 2019; Anglés-

Alcázar et al. 2017; Suresh et al. 2015; Grand et al. 2019). For instance, Suresh

et al. (2015) studied the effects of the galactic feedback implementation on the

CGM, finding that different CGM behaviours can emerge from different choices of

the stellar feedback implementation. Hence, developing a realistic stellar feedback

model is fundamental to capture the essence of the physical interaction between the

disc and the corona.

1.2 This Thesis

This Master Thesis project is focused on the study of the gas circulation between

the disc and the corona of star-forming galaxies like the Milky Way. To analyze this

circulation and its implications on the properties of the corona and of the gas that

is subsequently accreted onto the disc, we made use of high-resolution (∼ 104 M⊙)

hydrodynamical N -body simulations of a Milky Way-like galaxy, with the inclusion

of an observationally-motivated hot corona around the galaxy. After sampling the

galaxy initial conditions, the simulations were evolved with the SMUGGLE model,

an explicit ISM and stellar feedback model that is part of the moving-mesh code

Arepo. So far, the SMUGGLE model has been tested on isolated galaxies in the

absence of a hot corona, which was a missing ingredient in the previous generation

of hydrodynamical N -body simulations. The calculations that we will carry out

in this Thesis work will be the first that include such an important component for

galactic evolution in this framework. This will enable us to make an important step

forward towards a more physically faithful modelling of the evolution of star-forming

galaxies. The Thesis is organised as follows:

• In Chapter 2 we describe the numerical methods used in this Thesis work.

In particular, first we describe in general the numerical methods more used in

astrophysics for solving the equations of hydrodynamics and gravity, we then

describe in more detail the moving-mesh code Arepo and the SMUGGLE

model.
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1.2. This Thesis

• In Chapter 3 we describe the initial conditions for the isolated Milky Way-

type galaxy. First, we describe the assignment of the structural and kinemat-

ics properties of the different galaxy components. After that, we illustrate

the numerical implementation of the initial conditions. Finally, we test them

creating plots of the main quantities and comparing them with the analytic

expectations and the observations.

• In Chapter 4 we present the results obtained from the simulations. In par-

ticular, in Section 4.1 we show the results of the performed adiabatic simula-

tions, i.e. simulations with only the presence of hydrodynamics and gravity.

This has been done to test the equilibrium of the different components of the

galaxy in the initial conditions. In Section 4.2 we show the results obtained

from the simulations carried out using the SMUGGLE model. We studied

the connection between the star formation and the outflows and inflows of gas

(Subsection 4.2.1) and the disc-corona interface (Subsection 4.2.2), focusing

on the differences that emerge changing the mass of the corona.

• In Chapter 5 we summarize the main results obtained in this Thesis work

and we describe its future perspectives.
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2Numerical methods

The majority of astrophysical phenomena are non-linear and it is usually not possible

to determine an analytical solution to the equations that describe their evolution.

Therefore,to model and understand the different processes that govern fluid and N -

body dynamics, the use of numerical simulations is necessary. We therefore describe

the numerical methods used to solve the equations of hydrodynamics (Section 2.1)

and the Poisson equation (Section 2.2) in modern astrophysical simulations (see

Vogelsberger et al. 2020 for a more detailed review on the methods used in particular

for galaxy formation simulations) and in particular the one used in this work. In

Section 2.3 we describe the code Arepo, used to perform the simulations analysed

in this Thesis. Finally, in Section 2.4 we describe the SMUGGLE model, an explicit

ISM and stellar feedback model, that has been used in this work.

2.1 Numerical methods for hydrodynamics

Baryons represent ∼ 5% of the matter-energy budget of the Universe, and can be

divided into stars (∼ 7%) and gas (∼ 93%). Despite the small contribution to the

total mass of the Universe, at small scales hydrodynamics is fundamental, as it is

the driver of many important phenomena, such as star formation, AGN feedback,

stellar feedback, turbulence, shock waves, cooling flows and many others. All these

phenomena contributes in shaping the evolution of astrophysical objects on many

scales, from stars to clusters of galaxies. In particular, the physics of the gas have

a major role in the formation and evolution of galaxies, as described in Chapter 1.

Therefore, studying the gaseous phase is fundamental to correctly understand the

majority of these astrophysical processes.

If we consider an inviscid fluid, neglecting the presence of magnetic fields, its

dynamics is governed by the Euler equations, a set of hyperbolic, non-linear partial

differential equations
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2.1. Numerical methods for hydrodynamics
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

∂ρ

∂t
+∇ · (ρv) = 0

∂(ρv)

∂t
+∇ · (ρv ⊗ v + P1) = 0

∂E

∂t
+∇ · (E + P )v = 0

. (2.1.1)

where ρ is the density, v is the velocity, P is the pressure, E is the total energy

density of the fluid and 1 is the identity matrix. Equations (2.1.1) represent, from

top to bottom, the conservation of mass, momentum and energy of the fluid. The

total energy density is defined as

E =
ρv2

2
+

P

γ − 1
. (2.1.2)

Also, to close and solve the system we need another equation, that is an equation of

state relating gas pressure, density and internal energy. Such equation for an ideal

fluid (the case that we treat in this Thesis work) reads

P = (γ − 1)ρe, (2.1.3)

where γ is the adiabatic index and e is the internal energy per unit mass. In order

to solve the hydrodynamics equations (2.1.1), two families of methods are widely

used, Eulerian and Lagrangian methods. Both types of methods have advantages

and disadvantages and they will be briefly outlined below.

2.1.1 Eulerian codes

In an Eulerian code the simulated volume is discretized on a mesh (that is formed

by cells) and the evolution of the fluid is obtained studying the variables that define

the state of the fluid, in particular the primitive W = (ρ, P,v) or the conservative

Q = (m,p, E) variables (p is the momentum of the fluid), inside the grid cell

volumes. Between the cell interfaces there are exchanges of mass, momentum and

energy. Therefore, with this method we are focused on given volumes in space and

we observe how the properties of the fluid vary over the time. There are different

types of Eulerian methods, for instance finite differences methods (e.g. Ryu and

Jones 1995, Ryu et al. 1995), in which it is studied how the variables evolve at

the center of the cells, and the finite volume methods (e.g. Zachary and Colella
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Chapter 2. Numerical methods

1992, Dai and Woodward 1994, Janhunen 2000, Ziegler 2004, Balsara 2004) where

volume-averaged quantities are used. Nowadays, finite-volume Godunov methods

(Godunov, 1959) are widely adopted. In such methods (see Section 2.3.3), the fluxes

across cell interfaces are computed by solving a set of Riemann problems at these

interfaces and the variables are updated consequently with a conservative scheme.

If we consider constant values for the variables inside the cells, the method has a

first-order accuracy; to reach the second-order it is possible to use extrapolation

methods. One disadvantage of Eulerian methods is that the resolution has to be

modified explicitly in different zones of the simulation in order to resolve phenomena

that occur on different spatial scales.

2.1.2 Lagrangian codes

In a Lagrangian code the motion of individual fluid elements is followed and the

variation of their properties over time is analysed (in this case there is no volume

discretization). The more used methods are the so-called Smoothed Particles Hydro-

dynamics (SPH) techniques (Lucy, 1977; Gingold and Monaghan, 1977; Springel,

2010b), which use particles to sample the fluid elements. In this way the resolution

is always automatically adapted to the flow. This is extremely attractive in some

applications that need to model a large dynamic range of spatial scales, such as

cosmological simulations, and the resolution does not need to be explicitly adjusted

in different regions of the simulation. The main disadvantage of these types of codes

is their inability in accurately representing discontinuities, which are very common

in astrophysical problems, for instance shock waves or contact instabilities.

2.1.3 Arbitrary Lagrangian-Eulerian codes

Another approach that combines both Eulerian and Lagrangian codes, thus miti-

gating their shortcomings, is possible. In this case, the volume is discretized but the

cells are allowed to move with the fluid. The numerical methods using this approach

are called Arbitrary Lagrangian-Eulerian (ale) methods. These methods are

particularly important as they are becoming commonly used in galaxy evolution

simulations nowadays for their flexibility. This family of methods had a great devel-

opment in recent years with the creation of new ale codes (Duffell and MacFadyen,

2011; Vandenbroucke and De Rijcke, 2016; Hopkins, 2015). These also include the

Arepo code (see Section 2.3), which has been used in this Thesis work.
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2.2. Numerical methods for gravity

2.2 Numerical methods for gravity

Gravity is the driving force of many astrophysical phenomena that shape the evo-

lution of the Universe, for instance it is responsible for instability processes that

lead to the formation of cosmic structures. In order to determine the evolution of

complex systems like galaxies it is necessary to compute the evolution of a set of

N collision-less (or collisional in the case of gas particles) particles evolving under

their own self-gravity (the so-called N -body problem), these particles interact with

each other, feel a given gravitational acceleration and move according to it. The

only way to address in full detail the N -body problem (if N > 2) is to use numerical

methods. The problem that we want to face is to find the acceleration to which

each particle is subject and solve for its motion that is governed by the second order

differential equation

ẍi = −∇Φ(xi), (2.2.1)

where xi is the coordinate of the i-th particle, ẍi is its acceleration and Φ is the

gravitational potential determined by all the particles present in the system and

that can be computed numerically as

Φ(xi) = −G
∑

j 6=i

mj

[||x− xj||2 + ε2]1/2
, (2.2.2)

where G is the gravitational constant and mj is the mass of the j-th particle. Also,

it is worth noting the presence of the parameter ε, which did not appear in the

Newtonian form of the gravitational potential. This is a numerical expedient called

gravitational softening that is necessary to ensure that the potential does not become

extremely large when two particles are very close. Evaluating the potential directly

with equation (2.2.2) brings to the direct summation technique, with which

we are simply taking the sum of N individual contributions to the gravitational

potential given by all other particles. Obtaining the gravitational potential allows

to compute the acceleration with equation (2.2.1), from which we can compute the

evolution of velocity and position of the particles solving the following system of

differential equations for each particle i



















v̇i = −∇Φ(xi)

ẋi = vi

. (2.2.3)
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Equations (2.2.3) can be numerically integrated with different ODE solving methods,

but a widely used method is the Leapfrog scheme. As we will discuss in Section 2.3.4,

Arepo uses this very scheme to integrate equations (2.2.3).

However, to solve for the gravitational N -body problem requires more efficient

techniques. In fact the sum in equation (2.2.2) requires N − 1 operations and has

to be repeated for N particles. This requires N(N − 1) ∼ N2 operations and it

quickly becomes computationally prohibitive for a large number of particles, as it

is customary in astrophysical applications. Fortunately, there are other techniques

which allow to solve this problem in a more efficient (but approximated) way reduc-

ing the numerical complexity of the solver from N2 to N or to N logN . Some of the

more used techniques include the Particle-Mesh method, the Tree Method and the

Tree-PM method, that we will describe in the Sections below.

2.2.1 Particle-mesh method

The Particle-mesh (PM) method (Eastwood and Hockney, 1981) exploits the fact

that the Poisson’s equation (that connects the gravitational potential to the density

distribution)

∇2Φ = 4πGρ(x), (2.2.4)

can be simply rewritten in Fourier space as

k2Φ̂(k) = 4πGρ̂(k), (2.2.5)

i.e. a simple product of terms, where k is the wave vector. The method is performed

on a Cartesian mesh: from a given distribution of particles a scheme is used to assign

a mass to each grid cell1, based on the particles inside each cell, from which it is pos-

sible to derive a smooth density field dividing the assigned cell mass for its volume.

From equation (2.2.5) it is possible, after having found the Fourier transform of the

density field ρ̂, to estimate the Fourier transform of the gravitational potential Φ̂.

The gravitational potential is then obtained with an inverse Fourier transform. The

gravitational accelerations are subsequently computed from equation (2.2.1) with a

finite-difference approach and interpolated to the particle positions. The main ad-

vantage of the PM method is that it is fast and simple, in fact its complexity scales

with the number of particle N . The problem is that the computation of the force

is bind to the mesh resolution, the force resolution cannot go beyond the size of a

1In particular Arepo uses the cloud-in-cell scheme (Eastwood and Hockney, 1981).
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2.2. Numerical methods for gravity

single mesh cell. This is particularly problematic in cosmological simulations, where

a high dynamic range of scales is present. For this reason, the method is particularly

suited to compute the force field from almost homogeneous distributions of matter

on large scale (Springel, 2016).

2.2.2 Tree method

The Tree method (Barnes and Hut, 1986) is based on the division of the simulation

domain into eight subdomains (nodes). Each subdomains is recursively divided

in other eight nodes2 until each subdomain has one or zero particles (these are

called the leaves of the tree). The goal of the Tree method is to group together

particles at a relatively large distance from the particle for which we want to compute

the gravitational force, in order to approximate the gravitational potential with a

multipole expansion, speeding up the calculation over direct summation techniques.

For its nature this method is appropriate to compute the gravitational forces coming

from highly clustered particles and when a high force resolution (i.e. when the forces

have to be computed at small scales) is needed, in fact the resolution automatically

increases in regions where the matter is more clustered. The main disadvantage

is that for large scale homogeneous matter distributions the computation becomes

very onerous, due to the many gravitational terms that have to be computed to

obtain an almost vanishing force. Since this is the method used to solve for the

gravitational potential in this Thesis, it is described in more detail in Section 2.3.4.

2.2.3 Tree-PM method

In order to overcome their disadvantages and to combine the high resolution of the

Tree method and the high speed of the PM method, many N -body codes implement

a combination of these two algorithms, the so-called Tree-PM method (Bode and

Ostriker, 2003; Springel, 2005; Springel et al., 2021). In these methods the gravi-

tational potential is divided in a short-range component (computed with the Tree

method) and in a long-range component (computed with a PM method). This is an

approach that is particularly used in large-scale cosmological simulations.

2For this reason it is also called an Oct-Tree method.
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2.3 The moving-mesh code Arepo

The Arepo code (Springel, 2010a; Weinberger et al., 2020) is a moving-mesh code

that uses a finite volume solver on an unstructured Voronoi mesh for hydrodynamics

and a Tree-PM method to solve the Poisson equation. The presence of a mesh that is

free to move with the fluid allows to mitigate the problems that affects Eulerian and

Lagrangian codes, combining the high spatial adaptivity of Lagrangian codes and

the ability of accurately resolve discontinuities of Eulerian codes. This is the main

reason why we chose Arepo in this work. In the last years Arepo has been success-

fully used in computational astrophysics in a vast number of topics, for instance in

state-of-the-art cosmological simulations of galaxy formation and evolution, such as

Illustris (Genel et al., 2014; Vogelsberger et al., 2014), IllustrisTNG (Naiman et al.,

2018; Nelson et al., 2018; Pillepich et al., 2018; Marinacci et al., 2018; Springel et al.,

2018) and Auriga (Monachesi et al., 2016; Gómez et al., 2016; Marinacci et al., 2017;

Grand et al., 2017), but also in smaller scale simulations of different astrophysical

objects, like isolated galaxies (Jacob et al., 2018; Pascale et al., 2021), molecular

filaments in galaxies (Smith et al., 2014), type Ia supernovae (Pakmor et al., 2013)

and protoplanetary discs (Munoz et al., 2014).

In this Section we briefly discuss the structure of the Arepo code. In particular,

we focus on the different particle types used in our simulations (Section 2.3.1), on

the distinctive structure of the mesh (Section 2.3.2), on the time integration scheme

employed to solve hydrodynamics (Section 2.3.3) and gravity (Section 2.3.4) and

finally on the time-step constraints set in the code (Section 2.3.5).

2.3.1 Particle types

Arepo works with the definition of point-like particles, used to sample the density

distribution of the different components of the system (e.g. stars, dark matter etc.),

the mass of these particle defines the mass resolution of the simulation (Table 3.3).

Despite being called particles, the gas particles are not point-like, in fact the gas is

discretized on a grid and has properties that are continuous in space. This mesh

and its dynamics are described in Section 2.3.2. The different particles are treated

in various ways. A first distinction is between collision-less and collisional parti-

cles. The dark matter and stellar particles are collision-less: this means that these

particles have no interactions among them except for gravity and their dynamics is

driven only by gravitational forces. On the contrary, gaseous particles are collisional
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2.3. The moving-mesh code Arepo

and in addition to the gravitational forces we have to solve also the hydrodynam-

ics equations. In general, in our simulations (see Chapter 3 for more details) five

particle types are present:

(i) Particle type 0: gas particles discretized on a Voronoi mesh. These are

the only particles for which the hydrodynamics equations are solved, using

the scheme in Section 2.3.3. The gas particles compose the gaseous disc (see

Section 3.2) and the hot corona (see Section 3.3).

(ii) Particle type 1: Dark matter particles, that compose the structure of the

dark matter halo (see Section 3.1).

(iii) Particle type 2: Bulge particles, the star particles used to model the spherical

bulge in the galaxy (see Section 3.1).

(iv) Particle type 3: Disc particles, the star particles used to model the stellar

disc of the galaxy (see Section 3.2).

(v) Particle type 4: Newly formed stellar particles, these are the only stellar

particles for which stellar evolution is computed and hence they cause stellar

feedback, according to the SMUGGLE model (Section 2.4). Particles type 2

and 3 are considered to be old stars that have already exhausted their ability

to cause feedback on the surrounding medium.

The method to assign the initial coordinates and velocities of the particles (and

other characteristics for the gas cells) is explained in detail in Chapter 3.

2.3.2 Moving mesh

Arepo uses a particular mesh to partition the simulated volume with peculiar

geometric and topologic properties, called Voronoi mesh. The so-called mesh gener-

ating points are the starting points around which the Voronoi cells are generated. A

Voronoi tessellation of space consists of non-overlapping cells around each mesh-

generating points such that each cell contains the region of space closer to it than

any of the other mesh-generating points.

We can also define the Delaunay triangulation, formed by tetrahedra (triangles

in two dimensions) that have the mesh generating points as vertices, and each cir-

cumsphere around one of these tetrahedra is not allowed to contain any other mesh-

generating point inside it. In general, it is more simple to generate a Delaunay
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Figure 2.1: Schematic view of the Voronoi tessellation in two dimensions. The red lines
show the Voronoi cells and the blue dashed lines shows the corresponding Delaunay trian-
gulation. Black filled circles are the mesh generating points. Figure taken from Weinberger
et al. (2020).

triangulation and derive from it the Voronoi tessellation. Therefore, this is what is

done to build the mesh in Arepo (see Figure 2.1 for an illustration of the consti-

tuting elements of the mesh).

A fundamental property of Arepo is that it allows the grid cells to move with

the fluid. At each time-step each mesh generating point is moved according to the

gas bulk velocity and the Voronoi mesh is reconstructed consistently. In particular

the velocity of the i-th mesh generating point is assigned as

wi = vi + vcorr,i (2.3.1)

where vi is the velocity of the fluid in the cell i and vcorr,i is a corrective velocity

(equation 2.3.4), described below. It can happen that in the reconstructed grid may

be present highly distorted cells due to the fact that the mesh generating points can

largely step away from the geometric centre of the cell. Such feature can decrease

the accuracy of the scheme, particularly in the linear reconstruction step (equation

2.3.14). Therefore, we want the geometric centre and the mesh generating point to

remain as close as possible, this can also reduce the rate at which the mesh faces

can rotate during their motion. These highly distorted cells are identified by the

maximum angle αmax within which each cell face is seen from the mesh generating

point
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αface = (Aface/π)
1/2/hface, (2.3.2)

αmax = max(αface), (2.3.3)

where Aface is the area of each face of the cell and hface is the distance between the

face and the mesh generating point.

In particular, if αmax is greater then 0.75β, where β is a free parameter called

“cell roundness criterion”, set to β = 2.25 in our simulations, the cell is considered

distorted and the velocity assigned to its mesh generating point is corrected with a

velocity that points versus the center of mass of the cell, as follows (Vogelsberger

et al., 2012; Weinberger et al., 2020)

vcorr =











































0 for αmax ≤ 0.75β

fshaping
αmax−0.75β

0.25β
vcharn̂ for 0.75β < αmax ≤ β

fshapingvcharn̂ for αmax > β

(2.3.4)

where fshaping is called “cell deformability parameter ” and is set to fshaping = 0.5, n̂

is the normal vector to the cell and vchar is a characteristic velocity, corresponding

to the sound speed in this work.

Another characteristic of the mesh used in Arepo is the possibility to be refined

or de-refined, in this way the mass of the gas cells will have a very tight distribution

around the (prescribed) mass resolution. If a cell is refined, its mesh generating

point is split into a very close pair of points, while the de-refining removes a mesh

generating point and its Voronoi cell, giving its volume and thermodynamic prop-

erties to the adjacent cells. These operations are triggered when a cell has less than

half (de-refinement) or more than twice (refinement) mass with respect to the target

mass resolution. Another operation that modifies the structure of the mesh is called

conversion. Conversion happens for instance when a new stellar particle (particle

type 4) is formed (see Section 2.4.2): in this case a gas cell disappears and its mass

goes entirely to the stellar particle while its volume is occupied by the adjacent gas

cells once the mesh is reconstructed.
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2.3.3 Hydrodynamic solver

To solve the hydrodynamics equations, Arepo employs a finite-volume Godunov

method on an unstructured Voronoi-mesh. The aim of this method is to employ

a conservative update for the variables that describes the state of the fluid, this is

done discretizing the conservative form of the Euler equations (2.3.7).

At each time-step Arepo performs the following steps to solve the hydrodynamics

equations:

(i) derive the primitive variables of the fluid W = (ρ, P,v) in each cell from the

conserved variables Q = (m,p, E);

(ii) compute the gradients of the primitive variables in each cell;

(iii) assign a velocity wn to each mesh generating point (equation 2.3.1);

(iv) determine the time-step from the time-step criteria (Section 2.3.5);

(v) compute the first fluxes across each cell interface using a Riemann solver;

(vi) move the mesh generating points consistently with their velocity wn;

(vii) compute a new Voronoi mesh, based on the new generating mesh points coor-

dinates r′;

(viii) compute the second fluxes on an updated mesh;

(ix) update the conserved variables in each cell, with a second order Runge-Kutta

scheme (2.3.9), using the derived fluxes and obtaining the new variables Qn+1
i .

We now explain in more detail how the time integration through a finite-volume Go-

dunov method works in Arepo. The gradients computation (step (ii)) is described

in more detail later in a separate paragraph. First, for each grid cell, we define the

state vector

U =







ρ

ρv

ρe






, (2.3.5)

containing, from top to bottom, density, momentum density and total energy density

of the fluid. The fluxes of these variables are defined as

F(U) =







ρv

ρvvT + P

ρev + Pv






. (2.3.6)

With these definitions the Euler equations can be written in the following compact

conservative form

24



2.3. The moving-mesh code Arepo

∂U

∂t
+∇ · F = 0. (2.3.7)

In Arepo a finite-volume strategy is employed, therefore the variables U are aver-

aged inside each cell volume, obtaining the conservative variables

Q =

∫

Vi

U dV = (mi,pi, Ei), (2.3.8)

where mi, pi and Ei are the mass, the momentum and the total energy (kinetic +

internal) of the i-th cell.

The conservative update of the variables Q in each time-step is done through a

second order Runge-Kutta scheme, the Heun’s method3 (see Pakmor et al. 2016)

Qn+1
i = Qn

i −
∆t

2

(

∑

j

An
ijF̂

n
ij(W

n) +
∑

j

A′
ijF̂

′
ij(W

′)

)

, (2.3.9)

where Qn
i represents the variable Q in the i-th cell at the n-th time-step, ∆t is the

time-step and Aij is the oriented area of the face between cells i and j. Here, the

quantities with the apex n are computed in the grid from the previous time-step,

the quantities with the apex ′ are computed in the newly created Voronoi mesh.

Therefore, in these scheme the fluxes have to be computed twice in two different

grids for each time-step.

The coordinates of the new j-th mesh generating points are computed as follows

r′j = rnj +∆twn
j , (2.3.10)

where rn are the mesh generating points coordinates of the previous time-step and

wn are the mesh generating points velocities, computed with equation (2.3.1).

At the end of the time step these coordinates should be updated as

rn+1
j = rnj +

∆t

2
(wn

j +w′
j), (2.3.11)

but, since the velocities are kept constant inside each time-step: w′ = wn, it is easy

to demonstrate that

rn+1 = r′ (2.3.12)

3The scheme can also be thought as a hybrid method between a Runge-Kutta and a MUSCL-
Hancock scheme. It has been employed instead of the original MUSCL-Hancock scheme pre-
sented in Springel (2010a).
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This is fundamental because it allows to have only one mesh computation for each

time-step, since it is a very onerous computational operation. The fluxes are there-

fore computed first from the primitive variables obtained in the previous time-step,

and then from new primitive variables found with a time extrapolation as

W′
i = Wn

i +∆t
∂W

∂t
. (2.3.13)

Equation (2.3.9) is used in step (vii) to update the conservative variables inside each

cell. To compute the changes of the variables inside a given cell, it is necessary to

obtain the variable fluxes at each interface of the cell, quantities that measure how

much mass, momentum and energy have entered and exited from the cell. Therefore,

the code has to compute an approximation of the conservative variables fluxes at each

interface (step v), which is done solving a so-called Riemann problem, a configuration

in which we have two different constant states (left and right) separated by a single

discontinuity, at each interface. This is performed with a Riemann solver (see

Toro 2013), in particular, Arepo gives the possibility to use different types of

Riemann solvers for the Euler equations (in the case of pure hydrodynamics): an

exact Riemann solver or an approximate one, called HLLC (Toro et al., 1994).

We used the exact Riemann solver (the default mode of operation in Arepo for

hydrodynamics) for this work.

Gradients computation

The gradients are computed (step ii) using a least-square gradient estimate (Pakmor

et al., 2016). This method differs from the original one by Springel (2010a) which

was slightly inaccurate for distorted cells. This computation is required in order

to reach a higher order spatial accuracy of the Godunov method. The primitive

variables are defined at the center of each cell and finding their values at the cell

interfaces allows to solve a more accurate Riemann problem at each interface.

The gradient ∇Wi of a primitive variable Wi is obtained with a linear extrapola-

tion, such that the extrapolated value of the variable in the cell j is very close to

the real one

W̃j = Wi + dij∇Wi, (2.3.14)

where dij is the position vector of the j-th cell relative to the i-th cell. Of course

multiple neighbour cells are involved in this computation. Therefore, to find a single

value for the gradient a residuals minimization is employed, weighting the equations
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squared for each couple of cells ij

STOT =
∑

j

gj(Wj −Wi − dij∇Wi)
2. (2.3.15)

Here, gj = Aij/|dij| are the weights adopted, where Aij is the area of the interface

between the i-th and the j-th cell. Minimizing equation (2.3.15) allows to find an

estimate of the gradient ∇Wi. In this way we can find a linear reconstruction of

the primitive quantities W = (ρ, P,v) at the interface of the cell with equation

(2.3.14), therefore allowing a better reconstruction of the primitive variable and

a more accurate Riemann problem. This scheme allows to reach the second-order

accuracy, but near hydrodynamical discontinuities (e.g. shock waves) it is important

to reduce the order of the scheme, with a so-called slope limiter, to avoid numerical

instabilities.

2.3.4 Gravitational time evolution

The gravitational time evolution is structured in the following way

(i) Computation of the gravitational potential Φ with a Tree-based method and

consequent derivation of the gravitational acceleration a.

(ii) Determination of the time-step ∆t.

(iii) Time integration with a leapfrog scheme.

Gravitational potential computation

The computation of the gravitational potential Φ in Arepo is performed in general

with a Tree-PM method (Section 2.2.3), this happens in cosmological simulations

where the application of this method is particularly efficient. In our case we simu-

lated an isolated galaxy and therefore we used only a Tree-based method (Section

2.2.2). After having created the tree structure (until the leaves of the tree) the

computation of the potential is performed for each particle, starting from the big-

ger nodes with group of particles (using a multipole expansion) and then going to

the sub-nodes if the approximation does not satisfy certain conditions. What is

important is to determine an opening criterion, i.e. a criterion to understand if a

certain multipole approximation does not differ too much from the real potential.

In particular, a relative opening criterion is used

Gm

d2
L2

node

d2
> α|a|, (2.3.16)
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where m is the mass of the node, d is the distance between the node center of mass

and the particle of which we are computing the potential, a is the acceleration of

the particle at the previous time-step and α is a free parameter set to α = 0.0025.

If this criterion is satisfied, the node is opened and the potential computation is

done in each sub-node. The gravitational acceleration is then obtained summing

the contribute coming from each individual node (or single particle).

For the first time-step, a geometrical criterion is used, because we do not have an

estimate of the acceleration in the previous time-step

Lnode > dθopening, (2.3.17)

with θopening a free parameter set to 0.7. This first computation of the acceleration

is then repeated using the relative opening criterion (2.3.16).

Leapfrog scheme

The positions and the velocities of the particles are updated with a second-order

leapfrog scheme. The characteristic that makes this method of particular interest in

astrophysical numerical simulations is that it is a symplectic integrator, therefore it

is an exact solution of a discrete Hamiltonian that approximates the real one of the

system and it conserves its energy. A general leapfrog scheme is constructed by an

alternation of drift (coordinates update) and kick (velocities update) operations















D(∆t) : xi → xi +∆tvi (drift)

K(∆t) : vi → vi +∆ta(xi) (kick)

, (2.3.18)

where x are the positions, v are the velocities and a are the accelerations of the

particles. The scheme implemented in Arepo is similar to the one implemented in

the gadget-2 code (Springel, 2005), and in our case simply consists in a simple

kick-drift-kick application















































xi+1/2 = xi +
1

2
∆tvi

vi+1 = vi +∆ta(xi+1/2)

xi+1 = xi+1/2 +
1

2
∆tvi+1

. (2.3.19)
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In the first step the positions are evolved for half time-step ∆t/2, then the veloc-

ities are evolved for an entire time-step ∆t with the gravitational accelerations a

computed from the updated positions xi+1/2 and finally the positions are updated

for another half time-step with the newly derived velocities vi+1. This method has

a second-order time accuracy.

2.3.5 Time-step constraints

The time-steps ∆t chosen for the time evolution of hydrodynamics and gravity are

fundamental to ensure the stability of the code, in fact a time-step that is too large

can lead to an unstable scheme.

The first time-step criterion valid for hydrodynamics is the Courant-Friedrichs-

Lewy (CFL) criterion (Courant, Friedrichs and Lewy, 1967)

∆t ≤ CCFL

rcell

vsignal

, (2.3.20)

where the Courant factor CCFL is a free parameter set to CCFL = 0.3 in our sim-

ulations, rcell = (3V/4π)1/3 is the cell size, V is the cell volume, and vsignal is the

maximum signal velocity in the fluid

vsignal =

(

γ
P

ρ

)1/2

, (2.3.21)

corresponding to the sound speed. Gas bulk velocity is not taken into account (as

it is done in fixed-mesh codes) because the mesh moves with the fluid flow and,

therefore, relative to the mesh, the fluid has a small bulk velocity (much smaller

than the sound speed). If magnetic fields are included, the Alfvén speed must also

be considered.

The time-step for the gravitational dynamics is defined as

∆t ≥
√

2Cgravεsoft

|a| , (2.3.22)

where Cgrav is a free parameter set to Cgrav = 0.012 in our simulations.

Also, another time-step criterion is needed to account for information from distant

regions. For instance, if a shock wave is coming and the gas cell is unaware of that,

the time step would be too high, causing the instability of the code. This can be
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avoided using

∆ti ≥ min
j 6=i

(

rij
ci + cj − vij · rijrij

)

, (2.3.23)

where vij is the velocity difference between two cells, ci is the sound speed in the

i-th cell and rij is the distance between the two cells. If a global time-step constraint

is used, the time-step is chosen minimizing all the time-step just described

∆t = min
i

∆ti. (2.3.24)

Otherwise, a more flexible scheme that uses local time-steps can be implemented.

Typically, in astrophysical simulations, a wide range of density is present. For

instance, in high density regions like the center of a galaxy we expect time-step

smaller with respect to low density environments like in the coronal gas that sur-

rounds galaxies or in the intergalactic medium. Therefore, evolving all the particles

with the minimum time-step would result in a very poor efficient time evolution, so

what is done is to allow each particle to have an individual time-step. In this way,

some particles will evolve with a shorter time-step than others, with the presence of

a synchronization scheme that ensures that the shorter time-steps are nested within

the longer one. Local time-stepping is used also for the simulations in this work.
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2.4 The SMUGGLE model

The Stars and MUltiphase Gas in GaLaxiEs model (SMUGGLE ; Marinacci

et al. 2019) is an explicit stellar feedback and interstellar medium model for the

moving-mesh code Arepo. SMUGGLE is a sub-resolution model4 that describes

the complex multiphase structure of the ISM and self-consistently generates gaseous

outflows. Making realistic galaxy simulations requires the use of large volumes (in

order to have a realistic environment and the natural interactions between different

cosmic structures) while still resolving the smaller scales (to capture, for instance,

the nature of star formation and SNe explosions).

Figure 2.2: Schematic view of the main processes implemented in the SMUGGLE model,
and their mutual interplay across spatial scales: cooling (primordial and metal line cooling,
low temperature cooling and self-shielding) and heating (cosmic rays and photoelectric
heating) of the gas; star formation and stellar feedback (i.e. supernovae, stellar winds and
radiative feedback). Figure taken from Marinacci et al. (2019).

In general, the ISM structure is very complex, with cold, warm and hot phases

4A subresolution model is a set of numerical prescriptions used to capture physical processes that
are unresolved, i.e. that happen on scales below the resolution of the simulations.
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that coexist in the same environment. What is commonly done to numerically

implement the ISM is to use an equation of state instead of resolving individually

the different phases of the gas, for instance treating the gas as a two-fluid component

with cold clouds inside a hot medium (Springel and Hernquist, 2003; Agertz et al.,

2011). This could lead to an ISM model that is too smooth on parsec scales, missing

its real complexity. In order to capture the ISM complex nature it is necessary to

accurately model both the different gaseous phases and stellar feedback with its

associated injection of energy, momentum and mass into the ISM.

In this Section we describe in detail the physical processes considered in the

SMUGGLE model and their numerical implementation. The main processes im-

plemented in the SMUGGLE model (schematically described in Figure 2.2) are:

(i) Cooling, in particular primordial and metal cooling lines, low-temperature

cooling and an implementation of gas self-shielding, cosmic rays and photo-

electric heating processes (Section 2.4.1);

(ii) A stochastic implementation of the star formation (Section 2.4.2), comple-

mented with a prescription for stellar evolution (Section 2.4.3) taken from

Vogelsberger et al. (2013).

Also, an extremely important part of this model is the implementation of the stellar

feedback that occurs through three main different channels:

(iii) Supernova feedback (Section 2.4.4). After explaining the numerical imple-

mentation of this phenomena, we give a brief description of the SN remnant

evolution and the implementation of the momentum boost from the PdV work

(Section 2.4.4). Also, we explain in detail the method used to couple the energy

and momentum generated to the surrounding gas (Section 2.4.4);

(iv) Radiative feedback (Section 2.4.5) from young and massive stars. The ra-

diation can have an impact on the ISM mainly through photoionization

(Section 2.4.5) and radiation pressure (Section 2.4.5);

(v) Stellar winds feedback (Section 2.4.6) from two classes of stars: OB and

AGB stars.

The implementation of cooling, star formation and stellar feedback is inspired by

the one in the FIRE-2 model (Hopkins et al., 2018) with some modifications.
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2.4.1 Cooling and heating

Radiative cooling is the process through which gas cools down emitting photons.

All these processes can be parametrized by the so-called cooling function

L = n2Λcool(T,X,Z) erg cm3 s−1, (2.4.1)

where L is the luminosity per unit volume, n is the gas number density and Λcool is

the cooling function, that depends on the temperature T , on the ionization state X

and on the metallicity Z of the gas.

On the other hand, also processes that heat the gas are possible, we can therefore

define a heating function Λheat. The balancing between the cooling and heating

functions gives the net cooling function

Λnet = Λcool − Λheat. (2.4.2)

In galaxy formation and evolution simulations accounting for the cooling and the

heating of the gas is extremely important, since such processes can affect the thermal

properties and state of the gas, for instance promoting or hindering the formation

of stars. The main cooling and heating processes that have been considered in

SMUGGLE are: (i) cooling from a primordial network of hydrogen (H) and helium

(He) that comprehends also (ii) Compton cooling off cosmic microwave background

(CMB) photons; (iii) metal line cooling. These first processes are implemented in

the same way of Vogelsberger et al. (2013). In addition, the SMUGGLE model

accounts also for (iv) low-temperature metal lines, fine structure and molecular

cooling processes; (v) cosmic ray heating and (vi) photo-electric heating. Now we

briefly describe each of these processes.

The total cooling rate Λcool is computed as follows

Λcool = Λp +
Z

Z⊙

Λm + ΛC + (1− fssh)Λmol, (2.4.3)

where Λp is the net primordial cooling rate from two-body processes, Λm is the net

metal cooling rate and ΛC is the cooling due to the Compton scattering with the

CMB photons, Z/Z⊙ is the gas metallicity in solar units, Λmol is the low temperature

cooling rate (equation 2.4.6) and fssh is the gas self-shielding. A primordial mixture

of H and He (i.e. H, H+, He, He+, He++) is affected by different processes: two-body

processes (collisional excitation and ionization, recombination, dielectric recombina-

tion and bremmstrahlung emission), photoionization from a UV background and
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Compton cooling with the CMB photons. The primordial net cooling rates Λp

are computed from ionization equations using rates from Cen (1992) and Katz et al.

(1996). The metal cooling lines are computed from the cloudy photo-ionization

code5 (Ferland et al., 1998) assuming ionization equilibrium and a optically thin gas.

In this way it is possible to compute Λm considering all metal lines for a given tem-

perature and density (Smith et al., 2008). The Compton cooling off CMB photons

rate is taken from Ikeuchi and Ostriker (1986)

ΛC = 5.41× 10−36neT (1 + z)4 erg cm−3 s−1, (2.4.4)

where ne is the electrons number density, T is the temperature of the gas and z is

the redshift. For both the primordial and the metal cooling rates it is important

to consider also the presence of a UV background in the cloudy calculations, this

affects the thermal and ionization state of the gas (Efstathiou, 1992; Gnedin and

Hollon, 2012) decreasing the cooling rates. The photoionization and photoheating

rates are obtained from the space-uniform UV background from Faucher-Giguere

et al. (2009), which includes the contribute from star-forming galaxies and quasars,

where galaxies are dominants at redshifts z > 3. In our case the simulations are

performed at redshift z = 0 and the background is consequently taken at this red-

shift.

The code also accounts for gas self-shielding, a phenomenon that prevents UV

radiation to reach the central zones of a dense gas cloud. In the outer parts the

UV radiation can photoionize the hydrogen, but, as the density increases, fewer and

fewer photons can reach the central zones. SMUGGLE accounts for the self-shielding

effect using the fitting formula in Rahmati et al. (2013)

fssh = (1− f)

[

1 +

(

nH

n0

)β]α1

+ f

[

1 +
nH

n0

]α2

, (2.4.5)

where nH is the neutral hydrogen number density and the parameters (α1, α2, β, f ,

n0) parametrize the dependence of the self-shielding from the UV background with

the redshift (see Table A1 in Rahmati et al. 2013) and have been obtained applying

the radiation transfer code traphic to cosmological simulations (Pawlik and Schaye,

2008). In particular, for redshift z = 0 the set of parameters is: log(n0/cm−3) =

−2.94, α1 = −3.98, α2 = −1.09, β = 1.29, f = 0.01. The self-shielding parameter

fssh suppresses the heating and ionization rates used for the primordial network and

5This code balances the heating and the radiative cooling to find an equilibrium solution, ac-
counting for all the transitions of the considered atomic species.
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also the input radiation field (i.e. the UV spectrum) given to the cloudy code for

the metal line cooling calculations (the optically thin approximation is not realistic).

fssh is also used for the computation of the low temperature cooling.

An important feature of the SMUGGLE model is the presence of cooling processes

from low temperature metal lines, fine structure and molecules lines that allow

the gas to reach very low temperatures (T ∼ 10 K) and, consequently, to form stars

in high density and low temperature regions. This cooling channel is parametrized

with the fit to the cloudy tables computed by Hopkins et al. (2018)

Λmol = 2.896× 10−26

{(

T

125.215 K

)−4.9202

+

(

T

1349.86 K

)−1.7288

+

(

T

6450.06 K

)−0.3075}−1

×
(

0.001 +
0.10nH

1 + nH

+
0.09nH

1 + 0.1nH

+
(Z/Z⊙)

2

1 + nH

)

×
(

1 + (Z/Z⊙)

1 + 0.00143nH

)

× exp

(

−
[

T

158000 K

]2)

erg s−1 cm3.

(2.4.6)

Equation (2.4.6) is multiplied for the factor (1−fssh) to account for the self-shielding

of the gas.

It is also important to consider heating processes such as cosmic ray (Field et al.,

1969) and photoelectric heating (Wolfire et al., 2003), in fact they are thought to

have a fundamental role in maintaining the stability of both the cold (T ∼ 50 K)

and the warm (T ∼ 8000 K) phases of the ISM (Wolfire et al., 1995). Cosmic ray

heating is taken from Guo and Oh (2008)

ΛCR = −10−16(0.98 + 1.65)ñeeCRn
−1
H erg s−1 cm3, (2.4.7)

where ñe is the electron number density in units of the neutral hydrogen number

density nH and eCR is the cosmic rays energy density that is parameterized as follows

eCR =



















9× 10−12 erg cm−3 for nH > 0.01 cm−3

9× 10−12
(

nH

0.01 cm−3

)

erg cm−3 for nH ≤ 0.01 cm−3

. (2.4.8)

Cosmic ray heating occurs through two main channels: Coulomb interactions be-

tween the cosmic rays and the electrons of the gas and hadronic collisions 6, rep-

6Cosmic rays protons can interact with the thermal gas particles producing a cascade of particle
that is mainly composed of π+, π− and π0.
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resented, respectively, by the first and the second term in equation (2.4.7). This

heating acts mainly on the dense gas, as seen in equation (2.4.8).

The second main heating process considered is the photoelectric heating driven

by dust grains that are present in the interstellar medium. The photons of the ra-

diation field (mainly UV radiation due to high mass young stars) can interact with

the grains through photoelectric effect and extract electrons from them. Then, the

heating happens through Coulomb interactions of these electrons with the free elec-

trons of the ISM. The main contributors to this process are the polycyclic aromatic

hydrocarbons (PAHs)7. The heating rate Λphot is taken from Wolfire et al. (2003) 8

Λphot = −1.3× 10−24ẽpe
v n−1

H

(

Z

Z⊙

)

×
(

0.049

1 + (xpe/1925)0.73
+

0.037(T/104 K)0.7

1 + (xpe/5000)

)

erg s−1 cm3,

(2.4.9)

where

xpe ≡
ẽpe
v T 0.5

ΦPAHne

. (2.4.10)

In equation 2.4.10 ẽpe
v is the photon energy density in Milky Way units (the so-called

Habing (1968) field) and therefore it is set to ẽpe
v = epe

v /(3.9× 10−14 erg cm3) = 1,

ΦPAH is a parameter that incorporates the electron-PAH collision rates and is set to

ΦPAH = 0.5 from Ci observations in the galactic plane (Jenkins and Tripp, 2001).

Therefore, the total heating rate is obtained as

Λheat = ΛCR + Λphot. (2.4.11)

After accounting for all these processes, the total net cooling rate is obtained with

equation (2.4.2).

2.4.2 Star formation

Another crucial aspect of the model is the implementation of star formation. Stars

are modeled via collision-less particles (called star or stellar particles) and each of

7The PAHs are chemical compounds formed by aromatic rings of hydrogen and carbon.
8This is a modification of the rates from Bakes and Tielens (1994) for a higher abundance of

PAHs derived from more recent observations of the Infrared Space Observatory (Tielens et al.,
1999).
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them represents a simple stellar population9 (SSP). A SSP is characterized by an

initial mass function (IMF) Φ(m), a function that parametrizes the mass distribution

of the newly formed stars, giving the fraction of stars with a given mass inside the

SSP. The integral of the IMF weighted on the mass of each star, m, is equal to the

mass, M⋆, of the SSP (in this case the star particle) at its birth, i.e.

M⋆(t = t0) =

∫ Mmax

Mmin

mΦ(m) dm, (2.4.12)

where t0 is the birth time of the star particle, Mmin = 0.1 M⊙ and Mmax = 100

M⊙. The choice of this function is extremely important because it determines, for

instance, the rate of type II SNe explosions, affecting both the energy and momentum

injection in the ISM and its chemical enrichment. In particular the SMUGGLE

model uses a Chabrier (2003) IMF, characterized by a log-normal trend for low

mass stars and by a power-law for higher masses

Φ(m) =























0.158

(

1

2.3m

)

exp

[

−(log(m)− log(0.08))2

2× 0.692

]

for m ≤ 1 M⊙

0.238×m−2.3 for m > 1 M⊙

.

(2.4.13)

This IMF is top-heavy compared to the Salpeter (1955)10 IMF, meaning that from

the formation of a population of stars we expect less low mass and more high mass

stars compared to the Salpeter case.

The star formation process is treated with an approach based on the Springel

and Hernquist (2003) model, in which a gas cell can turn into a star particle under

certain conditions.

(i) At first, gas density must be above a density threshold ρth in order to allow

for its gravitational collapse. Most of the star formation happens in the dense

cores of giant molecular clouds in the spiral arms of the galaxy (Herbig, 1962;

Cohen and Kuhi, 1979; Ward Thompson et al., 2002). The density of these

systems is ≃ 102 − 103 cm−3 (Ferriere, 2001), therefore the threshold is set to

9A simple stellar population is an ideal stellar population in which all the stars: (i) are formed
at the same time; (ii) have the same chemical composition.

10First derivation of the initial mass function, commonly used as a comparison for its simple
analytic form Φ(m) = km−2.35.
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ρth = 100 cm−3 and the condition is

ρ > ρth, (2.4.14)

where ρ is the density of the gas cell.

(ii) The second condition restricts the star formation only to the regions that can-

not resist to the gravitational collapse and therefore are gravitationally bound

(Semenov et al., 2017). This information is encoded in the virial parameter

defined for each gas cell i as (see Hopkins et al. 2018)

αi =
||∇ ⊗ vi||2 + (cs,i/∆xi)

2

8πGρi
, (2.4.15)

where cs,i is the sound speed, ∆xi is the cell size, ρi is the cell density, G is the

gravitational constant. ||∇⊗vi||2 is the norm of the velocity gradient tensor11,

computed as

||∇ ⊗ vi||2 ≡
∑

i,j

(

∂vi
∂xj

)2

, (2.4.16)

here vi is the gas velocity of the i-th cell. The star formation is allowed only

in star particles with α < 1.

If these two criteria are satisfied by a given gas cell i, the star formation rate is

computed as follows

Ṁ⋆ = ε
Mgas

tdyn

, (2.4.17)

otherwise it is set to zero. In equation (2.4.17) Mgas is the gas cell mass, ε is the star

formation efficiency, set to ε = 0.01 as suggested by observations (e.g. Krumholz

and Tan 2007), and tdyn is the dynamical time

tdyn =

√

3π

32Gρgas

, (2.4.18)

where ρgas is the gas density. From the star formation rate Ṁ⋆ of a given gas cell i

it is possible to derive the stellar mass M⋆,i that has to be formed in a time-step ∆t

in that cell i as

M⋆,i = Mi

[

1− exp

(

−Ṁ⋆∆t

Mi

)]

, (2.4.19)

11⊗ is the outer product, e.g. (u⊗ v)ij = uivj .
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where Mi is the mass of the i-th gas cell. The stellar mass formed in this way would

be much smaller than the gas cell mass. For numerical reasons, it would be better

if an entire given gas cell turned into a star particle in a certain time-step, in order

to have a star particle mass similar to the mass of the gas particles. This can be

implemented with a stochastic method (e.g. Springel and Hernquist 2003) that,

on average, recovers the correct stellar mass formed per time-step across the whole

galaxy in the following way. For each cell an uniformly-distributed random variable

between 0 and 1 p∗ is extracted at each time step. The gas cell is then converted

entirely into a star particle if p∗ < p, where p = 1− exp(−Ṁ⋆∆t/Mi) is the fraction

of the gas cell mass that would be converted in stars in a single time-step. In this

way the correct stellar mass is formed in the galaxy at each time-step.

2.4.3 Stellar evolution

The stellar evolution model adopted in SMUGGLE is the same described in Vo-

gelsberger et al. (2013), with the addition of stellar mass loss from OB stars (see

Section 2.4.6). The main mechanisms that give back to the ISM mass and met-

als that have been considered in the stellar evolution model are stellar winds from

young and massive OB stars and from asymptotic giant branch (AGB) stars, and

supernova explosions (type II and type Ia). In this section we briefly summarize

how the stellar evolution model works; more details on single evolutionary channels

are given in Sections 2.4.4 and 2.4.6.

The mass and metals that are returned to the ISM are tracked as a function of

time, with an approach similar to Wiersma et al. (2009). In doing so, the stellar

evolution is integrated in time in order to find the mass and metal losses at each

time-step (see equations 2.4.20 and 2.4.23). What is assumed is that the evolution

after the main sequence happens instantaneously, this is reasonable because the

post main sequence phases are much shorter (< 1/10 of the entire life of the star).

Therefore, after a certain lifetime each star loses some fraction of its mass with

a certain metallicity. This time is parametrized with the stellar lifetime function

τ(m,Z), depending on the mass m and metallicity Z of the star. This function

is taken from Portinari et al. (1998) and it was obtained summing the hydrogen

and helium burning phases length. From this function we can evaluate the inverted

lifetime function M(t = t0 + τ, Z), that is the mass of a star leaving the main

sequence at an age t (t0 is the birth time of the star). The mass of gas that is

returned to the ISM in a single time step ∆t from a SSP can be obtained from the

stellar recycling fraction frec(m,Z), i.e. the fraction of the initial mass of the star
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that is released in the ISM over its entire life. Depending on the mass m and on the

metallicity Z the main contribution to this recycle of mass is different. For instance,

more massive stars (> 13M⊙) will lose mass mainly through type II SNe, while low

mass stars will have a greater contribution from the AGB phase. The total mass

released in the ISM in a time-step ∆t is

∆Mrec(t,∆t, Z) =

∫ M(t)

M(t+∆t)

mfrec(m,Z)Φ(m)dm. (2.4.20)

Also it is important to track the release of each element. The mass of a given element

i recycled to the ISM in a time-step is given by

∆Mi(t,∆t, Z) = Zi

∫ M(t)

M(t+∆t)

mfrec(m,Z)Φ(m)dm = Zi∆Mrec, (2.4.21)

where Zi is the initial mass fraction of the element i. In this case the chemical

enrichment was not considered and therefore the released mass has the same chemical

composition of the stellar particle at its birth.

Elements are processed by thermonuclear reactions during the lifetime of a star,

bringing to a chemical composition of the ejected mass that differs from the initial

one of the star. To include the presence of this chemical enrichment (in particular

nine elements are tracked: H, He, C, N, O, Ne, Mg, Si, Fe), it is possible to define

the yield of an element i, i.e. the net created mass for each element (these have to

be obtained for each mass and metal return channel), as

yi(m,Z) = Mi,enrich(m,Z)−mZifrec(m,Z), (2.4.22)

Then, the mass of a given element returned to the ISM in a single time-step is

defined as

∆Mi(t,∆t, Z) =

∫ M(t)

M(t+∆t)

(yi +mZifrec(m,Z))Φ(m)dm. (2.4.23)

The yields for AGB stars are taken from Karakas (2010), for core collapse SNe are

taken from Portinari et al. (1998), obtained using the stellar evolution tracks from

Padova (e.g. Bertelli et al. 2009) and the nucleosynthesis model from Woosley and

Weaver (1986). Also the stellar recycling fractions frec(m,Z) have been obtained

from these works. The yields for thermonuclear SNe are obtained from Thielemann

et al. (2003) and Travaglio et al. (2004).
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2.4.4 Feedback from supernovae

Supernova feedback is one of the main feedback processes that can occur in star-

forming galaxies. It is thought to be fundamental in regulating the star formation

and the structure of the ISM (e.g. Agertz et al. 2011, 2013), also generating tur-

bulence (Martizzi et al., 2016) and galactic outflows (Li et al., 2017). Most of the

times it functions as negative feedback for the star formation in the galaxy, heating

the gas and generating superbubbles12. These can cause the formation of outflows

from the disc, creating the so-called galactic fountains (Chapter 1). One of the

characteristics of the SMUGGLE model is the ability to self-consistently generate

galactic-scale outflows. In particular, the SMUGGLE model accounts for type II

and type Ia SNe.

• Type II supernovae (core-collapse SNe) are considered to be the main in-

jectors of mass and they release the majority of the α elements in the ISM. These

SNe explosions originate from the collapse of high-mass stars (approximately with

a mass > 8 M⊙). After the formation of an iron core there are no thermonuclear

reactions possible and the core collapses on itself, making the envelope fall on it and

generating a shock wave that creates the SN explosion.

• Type Ia supernovae (thermonuclear SNe) inject the majority of iron in the

ISM. Type Ia explosions occur when a white dwarf (WD) activates the burning of the

carbon in a degenerate environment causing the explosion of the structure. To reach

this condition the WD needs to be in a binary system. Two scenarios are possible:

the so-called double and single degenerate scenarios. The double degenerate scenario

involves the presence of a WD binary system, the merger between these two objects

can form a WD with a mass greater then the Chandrasekhar mass Mch ∼ 1.44 M⊙

(i.e. the limit mass that can be maintained in equilibrium by mean of electron

degeneracy pressure), bringing to the collapse of the structure and to the triggering

of the carbon burning. In the single degenerate scenario the WD is in a binary

system with a star that under certain conditions can lose mass that is subsequently

accreted onto the WD until the carbon burning is triggered, in this situation it can

happen at a mass < Mch, bringing to the so-called Sub-Chandrasekhar Type Ia SNe.

The uncertainties on the progenitors of these SNe and on the time after the birth of

a certain population at which these SNe explode make the parametrization of these

phenomena not trivial.

12In an OB stars association multiple SNe can explode in a short time, each single bubble generated
from the explosions can merge and form a superbubble.
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Supernova remnant evolution

In order to better understand the numerical implementation of SN feedback, in

this Section we briefly discuss the evolutionary phases of a SN remnant. We can

schematically describe a SN as a point-like explosion. In this very small region

(where is present the SN progenitor) ∼ 1051 erg of energy are released and the

ejecta expands with a velocity vej ≫ cs, where cs is the sound speed in the ISM.

Therefore, there is the formation of a shock wave that pushes and heats the gas.

The SN remnant is formed by a bubble of hot and rarefied gas and by an outer shell,

where almost all the material is concentrated (see Figure 2.3)13.

𝜌!"# , 𝑃!"#

𝑃$

Shell

Hot bubble

Figure 2.3: Schematic representation of a SN explosion. The blue layer is the shell and
the red region is the bubble of the remnant (with an internal pressure Pb). The ISM is
outside the remnant, with a density ρISM and a pressure PISM.

The pressure of the bubble Pb is higher then the external pressure of the ISM

and this causes the expansion of the remnant over the time. This expansion can be

schematically divided in four phases:

(i) Free-expansion phase: initially the ejecta of material is expanding without

any resistance from the external environment. This phase ends when the

ejecta have dragged a mass of ISM approximately equal to the mass of the

ejecta itself. This is a very short period that lasts ∼ 200 yr;

(ii) Sedov-Taylor phase14: this is the energy-conserving phase of the supernova

evolution, where radiative losses are negligible. The internal pressure gener-

13We consider a uniform density for the interstellar medium, due to the small region in which the
SN explosion takes place, hence the blast wave can be approximated as spherical.

14This phase is named after Sedov (1946) and Taylor (1950) who independently found a self-similar
solution to the Euler equation describing the time evolution of this phase.
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ated by the explosion is higher than the ISM pressure, thus it is expanding the

shell of the supernova remnant making mechanical PdV work and generating

an increase of the momentum (see Figure 2.4) between the start and the end

of this phase (the so-called momentum boost). The shell radius evolves as

Rs ∝
(

ESN

ρ

)1/5

t2/5. (2.4.24)

This phase lasts ∼ 104 yr;

(iii) Radiative phase: when the shell reaches the cooling radius (after ∼ 104

yr), i.e. the radius at which the cooling time is equal to the age of the SN

remnant, the radiative losses become important and the remnant is not energy

conserving anymore. At this radius the temperature of the shell is ∼ 106 K,

and in this regime the cooling function is at its peak due to the metals emission

lines. In this phase the shell radius evolves as

Rs ∝ t2/7; (2.4.25)

(iv) Momentum-conserving phase: after ∼ 3×104 yr the gas inside the bubble

radiates all its energy and the momentum reaches an asymptotic value. The

shell radius evolves as

Rs ∝ t1/4. (2.4.26)

In Figure 2.4 we can see results from high resolution hydrodynamical simulations

of SN remnants (Martizzi et al., 2015), in which we can appreciate the presence of

the different phases in its evolution. In particular, we see the radial momentum

(left-hand panel) and the thermal energy (right-hand panel) of a SN remnant as a

function of the distance from the center of the bubble. In the first phase (R < 4

pc, blue line) the radial momentum increases in time due to the Sedov-Taylor phase

(ii). After this phase, the thermal energy drops down due to the radiative losses

(iii). Finally, the radial momentum remains constant in time (iv), but with a value

that is higher then the starting momentum, in particular it can be larger by a factor

of ∼ 10 with respect to the initial one.
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Figure 2.4: Radial momentum (left-hand panel) and thermal energy (right-hand panel)
of a SN remnant as a function of the shock position R. The Figure shows results from
simulations with a homogeneous medium (blue line) and an inhomogeneous medium (green
line). Figure taken from Martizzi et al. (2015).

Energy and momentum budget derivation

Here we describe how the number of SNe and the consequent release of energy and

momentum are implemented in the SMUGGLE model. The total energy injected

in the ISM by a single SN is defined as

ESN = fSNE51, (2.4.27)

in our simulations fSN = 1, as the average energy released per SN in the ISM is

E51 ∼ 1051 erg.

As mentioned in Section 2.4.2, each stellar particle represents a simple stellar

population, not a single star. For this reason multiple SNe can explode in a single

stellar particle in a given time-step ∆t. It is therefore important to compute the

number of type Ia (NSNIa) and type II (NSNII) SNe at each time-step. In this way

we can obtain the total energy ESN,tot and momentum pSN,tot injected in the ISM.

These are defined for each star particle and each time-step as follows

ESN,tot = fSNE51(NSNII +NSNIa), (2.4.28)
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pSN,tot = pSNII,tot + pSNIa,tot =
√

2NSNIIESNMSNII,tot+
√

2NSNIaESNMSNIa,tot,
(2.4.29)

where MSNII,tot and MSNIa,tot are the total ejecta mass of the type II and type Ia

SNe.

The total number and the total ejecta mass of type II SNe are found integrating

the initial mass function Φ(m) (see equation 2.4.13) (Vogelsberger et al., 2013)

NSNII =

∫ M(t)

M(t+∆t)

Φ(m) dm, (2.4.30)

MSNII,tot =

∫ M(t)

M(t+∆t)

mfrec(m,Z)Φ(m) dm, (2.4.31)

where frec(m,Z) is the mass released from a single star with a mass m and a metal-

licity Z (Portinari et al., 1998) and M(t) is the mass of a star leaving the main

sequence at an age t (as already explained in Section 2.4.3), it is assumed that only

stars between MSNII,min = 8 M⊙ and MSNII,max = 100 M⊙ can explode as type II

SNe. We note that the number of type II SNe is strongly dependent on the chosen

IMF because the latter determines the fraction of stars with M > 8 M⊙.

The evolution of type Ia SNe, in terms of the delay after the formation of the

stellar population at which the SN Ia will occur, is unknown. The time after which

the SN explodes cannot be well constrained starting from the mass of the star, as it

is for type II SNe. This happens because of the uncertainties on the nature of their

progenitors (single and double degenerate scenarios), on the real form of the IMF

and on the fractions of binary system (that are thought to be necessary for these

type of supernovae). For these reasons type Ia SN rates are not well constrained.

In SMUGGLE the rate has been parametrized with a delay time distribution

(DTD) of SNe Ia events (Dahlen et al., 2004; Strolger et al., 2004; Greggio, 2005;

Mannucci et al., 2006). The rates of type Ia SNe (SNRIa) should follow the star

formation rate (SFR) of the galaxy, but with a certain delay time, as they need the

presence of a WD, the final state in the evolution of low mass stars. Hence, the

SNRIa can be obtained with a convolution of the star formation history SFR(t) over

the DTD

SNRIa =

∫ t

0

SFR(t′)DTD(t− t′) dt′. (2.4.32)

The star formation history of an SSP is a Dirac delta function centered on the birth
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time of the population. The number of type Ia SNe at a certain time-step ∆t is,

therefore,

NSNIa =

∫ t+∆t

t

DTD(t′)dt′. (2.4.33)

The delay time distribution is defined as a power-law in time (Maoz et al., 2012)

DTD(t) = Θ(t− τ8)N0

(

t

τ8

)−s
s− 1

τ8
, (2.4.34)

where Θ(t− τ8) is the Heaviside step function15, meaning that SNRIa = 0 for t < τ8.

In equation (2.4.34) τ8 = 40 Myr is the main sequence life time of an 8 M⊙ star,

s = 1.12 and N0 = 2.6× 10−3 SN M−1
⊙ . Due to the nature of type Ia SN explosions

the ejected mass is constant and given by MSNIa ∼ 1.37 M⊙ SN−1. Therefore, the

total mass ejected in a time-step by a single star particle is

MSNIa,tot = MSNIaNSNIa. (2.4.36)

The metal return for both type II and type Ia SNe is computed from the stellar

yields as mentioned in Section 2.4.3. The method used to distribute the mass and

the metals in the ISM is described in detail in Section 2.4.4.

SN explosions are discrete events, so, to ensure this characteristic a particular

time-step ∆t⋆ for the stellar particles is imposed (see Section 2.3.5 for the Arepo

time-step constraints)

∆t⋆ = min

(

∆tgrav,∆tevol

)

, (2.4.37)

∆tgrav is the gravitational time-step and ∆tevol is defined as

∆tevol = min

(

∆tSNII,
tage
300

)

yr, (2.4.38)

where ∆tSNII = τ8/NSNII,8, NSNII,8 is the number of type II SNe over a time τ8.

These parameters are computed consistently with the stellar evolution model (Sec-

tion 2.4.3). With this time-step limit a rate of ∼ 1 SN per time-step is expected.

Hence, at each time-step for each star particle we compute the total number NSN

15The Heaviside step function is defined as

Θ(t− τ8) =

{

1 for t ≥ τ8

0 for t < τ8.
(2.4.35)
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of type II and type Ia SNe in a time step ∆t⋆ with equations (2.4.30) and (2.4.33).

Then, to obtain the actual number of SNe, we use NSN = λ as the expectation value

of a Poisson distribution

P (n;λ) =
λne−λ

n!
, (2.4.39)

from which the actual number of events per time-step ∆t⋆ is sampled; that will

usually be 0 or 1 SN events per time-step due to the time-step limit. From these

quantities the energy, the momentum ejected from the star particle in the ISM

(equations 2.4.28 and 2.4.29) and the mass and metals return are obtained.

Sedov-Taylor momentum boost

In reality, the momentum obtained with equation (2.4.29) underestimates the real

one, due to the limited resolution of galaxy formation simulations (∼ 10 − 100 pc)

that does not allow one to fully resolve the cooling radius of the supernova remnant.

An analytical expression of the cooling radius, from which it is apparent that this

scale can be at best only marginally resolved in our simulations, is given by (Cioffi

et al., 1988)

rcool = 28.4E
2/7
51 〈n〉−3/7f(Z) pc, (2.4.40)

where E51 is the SN energy in units of 1051 erg, 〈n〉 is the average density within

the cooling radius and f(Z) is defined in equation (2.4.44).

We want to add to the gas the final momentum that would be generated naturally

from the SN remnant evolution if we had enough resolution to resolve the cooling

radius and, therefore, the Sedov-Taylor phase. Instead, due to the limited resolution

of our calculations, energy and mass are returned to the ISM on scales larger than

rcool. The momentum boost generated by the Sedov-Taylor phase is not negligible

(Figure 2.4) and, therefore, it has to be accounted in the model. High-resolution

simulations of the evolution of SN remnants in a variety of environments (e.g. Cioffi

et al. 1988) suggest that the value of the terminal momentum pt (that remains

constant from the momentum-conserving phase) is

pt = 4.8× 105E
13/14
SN,tot

( 〈nH〉
1 cm−3

)−1/7

f(Z)3/2 M⊙ km s−1, (2.4.41)

where 〈nH〉 is the neutral hydrogen number density averaged around the star particle

with weights determined with an SPH kernel (see equation 2.4.44) and

f(Z) = min

[(〈Z〉
Z⊙

)−0.14

, 2

]

, (2.4.42)
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where Z⊙ = 0.0127 is the solar metallicity and 〈Z〉 is the gas metallicity averaged

around the star particle in the same way of 〈nH〉.
The momentum that is added to each gas particle influenced by a SN explosion

is increased by an amount

∆pi = w̃imin

[

pSN,tot

√

1 +
mi

∆mi

, pt

]

. (2.4.43)

Here, the term pSN,tot

√

1 +mi/∆mi, comes from the energy conservation, mi is the

gas cell mass and ∆mi = w̃i(MSNII,tot+MSNIa,tot). pt is the terminal momentum and

w̃i (defined in equation 2.4.46) is a weight function used to divide the energy and the

momentum injected from the SN explosion. Also, to compute the correct terminal

momentum for a star particle in a time-step ∆t, the terminal momentum pt has to

be multiplied by the total number of supernovae (NSNII +NSNIa) that occurs in the

time-step in that star particle.

Supernova energy and momentum coupling

The energy and momentum (but also mass and metals) that come from supernovae

explosions (and also from other feedback channels) have to be injected in the gas

cells around the star particles. This is done using weight functions. The number of

neighbours cells that are influenced by stellar feedback is defined as

Nngb =
4π

3
h3

∑

i

W (|ri − rs|, h), (2.4.44)

where W is the standard cubic spline SPH kernel (Monaghan and Lattanzio, 1985),

h is a search radius and |ri − rs| is the distance between the gas cell and the star

particle. Equation (2.4.44) is solved iteratively in order to find the parameter h with

a predetermined value of Nngb. In our simulations we set Nngb = 64.

To avoid numerical instabilities, Marinacci et al. (2019) imposed a limit to the

radius within which the gas cells are affected by feedback. The coupling scale hcoupling

is limited to a maximum radius RSB, which in our simulations is fixed at 0.86 kpc,

however, the coupling scale for the injection of mass and metals is always set to h

to ensure the mass and metal conservation.

Finally, for each gas cell i the weights are defined as

wi =
∆Ωi

4π
=

1

2

{

1− 1

[1 + Ai/(π|ri − rs|2)]1/2
}

, (2.4.45)
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where Ai = π∆x2
i is the gas cell area. In this way each gas cell within hcoupling

receives a fraction of energy and momenta (while mass and metals are returned

within the scale h) proportional to the fraction of the solid angle 4π covered by

the cell as seen from the stellar particle position. The total energy and momentum

(equations 2.4.28 and 2.4.29) is injected in each gas cell multiplied by the factor

w̃i =
wi

∑

i wi

, (2.4.46)

which ensures that each cell receives the correct amount of momentum and energy.

2.4.5 Radiative feedback

Radiative feedback is thought to be important for the thermal and dynamical state

of the ISM. It can affect its temperature through photoionization by young massive

stars and it can inject additional momentum thanks to radiation pressure. Also,

this feedback channel is important due to its timing, in fact the majority of energy

and momentum is released before the first SN explosions (Murray et al., 2009; Lopez

et al., 2011; Walch et al., 2012), therefore, it can disperse giant molecular clouds,

setting a low-density environment and making SN feedback more efficient. Because

it occurs before SN explosions it is also known as being part of the so-called early

stellar feedback.

Photoionization

Young and massive stars (OB stars) are one of the main sources of photoionization

in disc galaxies and cause the formation of Hii regions. The photoionization is a

process in which a bound electron absorbs a photon with energy high enough to

remove it from the atom. In particular, for neutral hydrogen the process is

H + hν → H+ + e−, (2.4.47)

where the neutral hydrogen H is photoionized only by photons with an energy E =

hν > 13.6 eV. These high-energy UV photons are abundantly produced by OB stars.

Around these stars this process forms the Hii regions (i.e. the so-called Strömgren

sphere), in which the hydrogen is all photoionized within the Strömgren radius (the

size of the Hii region) and all neutral outside of it.

In the SMUGGLE model the ionizing photon rate emitted by a single star particle
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is parametrized as

N⋆ =
L⋆

〈hν〉 =
γ⋆M⋆

〈hν〉 , (2.4.48)

where L⋆ is the star particle luminosity and M⋆ is the star particle mass. γ⋆ =

103 L⊙/M⊙ is the mass-to-light ratio and 〈hν〉 = 17 eV is the average photon energy

above 13.6 eV, which corresponds to the peak emission of a black-body with a

temperature T ∼ 40000 K, consistent with the properties of OB stars (Rybicki and

Lightman, 1991).

The photoionizing photons (E>13.6 eV) are all absorbed by the hydrogen within

the Strömgren radius, that is most of the time smaller then the effective coupling

scale hcoupling. For this reason a probabilistic approach is used. For each gas cell we

can define a probability of being photoionized

P =
n⋆

αrecn2
HV

. (2.4.49)

This probability is derived assuming that the ionizing photon rate, scaled by the

same weights used for the SN explosions, is equal to the recombination rate Ṅrec

(i.e. the number of recombination per second)

n⋆ = Ṅrec = αrecn
2
HV, (2.4.50)

where n⋆ = w̃iN⋆, V = 4/3π∆r3 is the cell volume, nH = Xρ/mp is the average

hydrogen number density in the cell (X is the hydrogen mass fraction and mp is the

proton mass) and αrec = 2.6× 10−13 cm3 s−1 is the hydrogen recombination rate.

A gas cell is considered photoionized if three conditions are satisfied, in this case

the temperature of the gas cell is set to Tphot = 1.7 × 104 K16 and its cooling is

disabled for a time toff, equal to the star particle time-step ∆t⋆:

(i) First, a number P ′ is extracted randomly between 0 and 1, the gas cell is

eligible for photoionization if P ′ < P .

(ii) The thermal energy per mass unit of the gas cell must be utherm < 1.2uphot,

where uphot is the thermal energy per mass unit corresponding to Tphot.

(iii) The cooling in the gas cell must be active, therefore toff = 0.

If one of the conditions (ii) and (iii) is not satisfied it means that the gas cell is

already photoionized. This mechanism causes the formation of a region with a higher

16The temperature of a hydrogen gas ionized from photons with 〈hν〉 = 17 eV.
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pressure with respect to the external neutral environment, causing the expansion of

the Hii region.

Radiation pressure

Another source of momentum is the pressure generated from the radiation emitted

by these stars. The total momentum injected in a time-step ∆t from a star particle

is defined as

∆p =
L⋆

c
(1 + τIR)∆t, (2.4.51)

where L⋆ = γ⋆M⋆ is the star particle luminosity, c is the light speed and τIR = κIRΣgas

is the gas optical depth to infrared radiation. κIR = 10(Z/Z⊙) cm2 g−1 is the opacity

in the infrared band and Σgas is the gas column density, defined using a Sobolev

approximation (see Hopkins et al. 2018). In particular, the Sobolev length for each

star particle j is

lj = hcoupling,j +
ρj

||∇ρj||
. (2.4.52)

Here, ρj and ∇ρj are the gas density and its gradient, computed with a SPH ap-

proach. Then, the gas column density is obtained as

Σgas,j = 〈ρs〉jlj, (2.4.53)

where

〈ρs〉j =
∑

j

W (|ri − rj|, h)mi. (2.4.54)

In equation (2.4.54), W is the cubic spline SPH kernel, |ri − rj| is the distance

between the gas cell and the star particle, mi is the mass of the i-th gas cell and h

is the coupling scale obtained solving equation (2.4.44).

This momentum is injected at each time-step in the gas cells around the star par-

ticle in the same way described in Section 2.4.4 for SNe (within hcoupling). Also, the

same maximum coupling radius RSB is used for both photoionization and radiation

pressure.

2.4.6 Feedback from stellar winds

Another important feedback source is represented by stellar winds. The SMUGGLE

model accounts for stellar winds generated by two classes of stars: young and massive

type OB stars and asymptotic giant branch (AGB) stars. These provide two channels
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of feedback that act at different moments. At early times winds from OB stars

play an important role, in fact they can pre-process the environment dispersing the

dense gas clouds, leading to a more efficient SN feedback, with a role similar to

the radiative feedback (Matzner, 2002; Krumholz and Matzner, 2009). The stellar

winds can also be an important feedback source at later times through AGB winds,

injecting momentum and energy in the ISM.

Figure 2.5: Integrated specific momentum as a function of time (left-hand panel) due to
radiation pressure (black line), type II SNe (blue line) and stellar winds (red line) with
Z = Z⊙ (solid lines) and Z = 0.01Z⊙ (dashed lines). Also, the radiation pressure is shown
for different stellar population masses (i.e. m⋆ = 105 M⊙ and m⋆ = 106 M⊙). Integrated
specific energy as a function of time (right-hand panel) injected from SNe (blue line) and
stellar winds (red line). Figure taken from Agertz et al. (2013).

It is worth noting that the different feedback channels considered in SMUGGLE

have an integrated specific momentum, defined as
∫

p(t)/m⋆dt, of the same order

of magnitude but that is released on different time scales. Figure 2.5 shows the

integrated specific momentum as a function of time due to radiation pressure, type

II SNe and stellar winds. In particular, we can see how these different channels of

feedback act at different times (see Agertz et al. 2013): first we have the momentum

injection from stellar winds and radiative feedback that acts before the explosion

of the first SNe, confirming their role in pre-processing the gas. At later times,

feedback is dominated by SNe explosions.

Stellar winds in SMUGGLE are implemented as follows. First, the mass loss for

the two type of stars is derived. The cumulative mass loss per stellar unit mass for
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OB stars is parameterized as (see Hopkins et al. 2018)

mcloss =



















f(t) if t > 1 Myr

g(t) if 1 Myr < t < 3.5 Myr

h(t) if 3.5 Myr < t < 100 Myr

, (2.4.55)

where























































f(t) = 4.763× 10−3(0.01 + Z̃)t

g(t) = 4.763× 10−3(0.01 + Z̃)
t2.45+0.8log(Z̃) − 1

2.45 + 0.8log(Z̃)
+ f(1)

h(t) = g(3.5)− 4.57× 10−2

[(

t

3.5

)−2.25

− 1

]

+ 4.2× 10−6(t− 3.5)

, (2.4.56)

here Z̃ is the star particle metallicity in solar units and for t > 100 Myr mcloss =

h(100).

The mass and metal losses from AGB stars are treated with the Arepo stellar

evolution model from Vogelsberger et al. (2013) (see Section 2.4.3). Then, the mass

loss by a star particle with a mass M⋆ in a time-step ∆t is computed as

Mloss = M⋆[mcloss(t+∆t)−mcloss(t)]. (2.4.57)

In particular, OB stellar winds are considered only for times smaller then the life

time of a 8 M⊙ star (i.e. the smaller progenitor of a type II SN).

The energy Ewinds and momentum pwinds injected around the stellar particle at a

given time-step ∆t are defined as

Ewinds = ∆tLkin = Mloss ×Ψ× 1012 erg g−1, (2.4.58)

where

Ψ =
5.94× 104

1 +

(

tMyr

2.5

)1.4

+

(

tMyr

10

)5 + 4.83, (2.4.59)

and

pwinds =
√

2MlossEwinds. (2.4.60)
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The assignment of these two quantities to the gas cells near the star particle is

performed as in the supernova case (Section 2.4.4). The main difference is that

stellar winds are a continuous phenomenon, unlike supernovae which explode in a

discrete manner, and are implemented accordingly.
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3Initial conditions

The initial conditions (referred to as ICs hereafter) are the starting point from

which the time evolution of any hydrodynamical N -body simulation is computed.

ICs are a set of physical variables that are assigned to each particle depending on

its type (Section 2.3.1). In this Chapter we describe the methods used to create

these ICs for the Milky Way-like multicomponent galaxy model that we simulate

in this work with the moving-mesh code Arepo. The physical properties of each

component have been assigned following observational constraints. The ICs of the

galaxy have been generated according to the approach adopted in Springel et al.

(2005, see also Hernquist 1993 and Springel 2000). This method allows to build

a multicomponent galaxy with all the the constitutive components in approximate

equilibrium. These include: a dark matter halo and a stellar bulge that follow a

Hernquist profile, an exponential thick stellar disc, an exponential thick gaseous

disc and a galactic hot corona described by the same Hernquist profile of the dark

matter halo. As described in Section 2.3.1, Arepo treats the different particle types

in various ways: we assigned to both collisional and collision-less particles a set of

Cartesian coordinates (x, y, z) and velocities (vx, vy, vz). The collisional particles

(i.e. the gas particles) are also characterized with a temperature (or more precisely

by a specific internal energy) and a metallicity (Sections 3.2.5 and 3.3).

The Chapter is structured as follows. In Section 3.1 we present the theoretical

density profiles and the velocity structure of the dark matter halo and the bulge.

The same properties are discussed for both the stellar and gaseous discs in Section

3.2, and for the hot corona in Section 3.3. In Section 3.4 we present the numerical

implementation used to sample the ICs. In Section 3.5 we illustrate the galaxy

parameters used in this work. In Section 3.6 we test the ICs thus generated showing

the different quantities characterizing the constitutive components of the galaxy

compared with the theoretical profiles and the observational constraints.
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3.1 Dark matter halo and bulge

In this Section we describe the structural and kinematic properties of the model

used to sample the ICs of the dark matter halo and the stellar bulge.

The dark matter halo is modelled using a spherical Hernquist (1990) profile

ρdm(r) =
Mdm

2π

a

r(r + a)3
, (3.1.1)

where a is the scale radius, Mdm is the total mass of the dark matter halo and

r =
√

x2 + y2 + z2 is the spherical radius. From the Hernquist profile the cumulative

mass function (i.e. the mass enclosed within a radius r) can be derived analytically

integrating the density profile as

Mdm(r) = 4π

∫ r

0

ρdm(r
′)r′2 dr′ = Mdm

(

r

r + a

)2

, (3.1.2)

this physical quantity will be used to sample the particles positions (Section 3.4),

making sure that they follow the analytic density profile. Cosmological N -body

simulations have shown that the density profiles of dark matter halos are well fitted

by the so-called Navarro, Frenk and White (NFW) profile (Navarro et al., 1997)

ρdm(r) =
ρs

r
rs
(1 + r

rs
)2
, (3.1.3)

where rs is the scale radius of the NFW profile and ρs is the characteristic density

ρs =
200

3
ρcr

c3

[ln(1 + c)− c/(1 + c)]
. (3.1.4)

Here, c = r200/rs is the concentration parameter of the NFW profile (tipically more

massive halos have smaller concentrations), where r200 is the radius within which

the mean density of the dark matter halo is 200 times the critical density ρcr of

the Universe 1. However, using a Hernquist profile instead of a NFW is convenient

because it brings some advantages over the NFW distribution:

(i) the Hernquist profile in the outer parts goes as ρ(r) ∝ r−4, so for r → +∞
the total mass converges, making it a more realistic configuration. Instead,

the NFW profile goes as ρ(r) ∝ r−3 and a truncation of the profile is needed

to have a finite mass;

1r200 is assumed conventionally as the virial radius of the system, in fact the virial radius corre-
sponds to ∼ 180ρcr for an Einstein-de Sitter Universe (Coles and Lucchin, 2003).
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3.1. Dark matter halo and bulge

(ii) the Hernquist profile does have an analytic distribution function, which, in

some cases simplifies the sampling of the ICs, while the NFW profile does

not. This approach can be convenient, for instance, when the halo is the only

component of the system or when it provides the dominant contribution to

the total galaxy gravitational potential. In these cases the sampling of the

distribution function can give an exact result for the system equilibrium. This

approach has not been used in this work.

We associated the properties of the Hernquist model to those of a NFW profile

in order to have a strict connection with the cosmological simulations. In doing

so, we assume that the Hernquist profile total mass is the same mass contained in

the NFW profile within the virial radius r200. Then we impose the profiles to be

identical in the inner parts (r ≪ r200)

ρdm = ρNFW, (3.1.5)

and, putting together equations (3.1.4) and (3.1.5) we find the relation

a = rs
√

2[ln(1 + c)− c/(1 + c)], (3.1.6)

between the scale radii rs and the halo concentration a.

The bulge is assumed to be spherical and is also modelled with a Hernquist profile

ρb(r) =
Mb

2π

b

r(r + b)3
, (3.1.7)

where b is the bulge scale length. The cumulative mass function has the same form

of the dark matter halo (3.1.2). The bulge mass is defined as Mb = M200mb, where

mb is the bulge fraction and M200 is the virial mass of the galaxy (the mass of the

galaxy contained within r200). The mass of the dark matter halo is assumed as the

difference between M200 and the mass of all the other components (see the upcoming

sections of this Chapter for their detailed description).

3.1.1 Velocity structure

Here we provide a theoretical description for the dark matter halo and bulge velocity

structure. This will be important to define the three velocity component (vx,vy,vz)

for each particle. For spherical non-collisional structures (dark matter halo and

bulge) we assume that the distribution function depends only on the energy and on
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the z-component of the angular momentum Lz. In this configuration the mixed sec-

ond order velocity momenta and the first momenta in radial and vertical directions

are null 〈vRvφ〉 = 〈vRvz〉 = 〈vφvz〉 = 0, 〈vR〉 = 〈vz〉 = 0 (Binney and Tremaine,

2011). If the distribution function of the system were known, it would be simple to

derive the velocities. However, the distribution function is unknown for our model

galaxy, therefore, the particle velocities for the dark matter halo and the bulge can

be derived from the Jeans equations using the so-called Gaussian approximation:

we assume that, at each point r, the velocities (vR, vz, vφ) in cylindrical coordinates

follow a triaxial Gaussian distribution, from which they are randomly sampled. vR

is distributed as a normal distribution with dispersion σR and mean 〈vR〉, the same

happens for vφ and vz but with dispersions σφ and σz and mean 〈vφ〉 and 〈vz〉. With

this method we are not computing the exact equilibrium distribution, but this ap-

proximation reveals good enough for the generation of ICs that are in approximate

equilibrium. Once the velocities have been sampled, we convert them in Cartesian

coordinates as described in Section 3.4.2.

The non-vanishing second-momenta can be obtained from the Jeans equations as:

〈v2z〉 = 〈v2R〉 =
1

ρ

∫ ∞

z

ρ(z, R)
∂Φ

∂z
dz , (3.1.8)

〈v2φ〉 = 〈v2R〉+
R

ρ

∂(ρ〈v2R〉)
∂R

+ v2c , (3.1.9)

where vc = R ∂φ/∂R is the circular velocity, ρ is the density of the dark matter

halo or the bulge, 〈v2φ〉 is the azimuthal second order velocity moment, 〈v2R〉 is the

radial second order velocity moment and Φ is the total gravitational potential, which

includes the contribution of all galaxy components. Also, a mean streaming compo-

nent in the azimuthal direction 〈vφ〉 can be present. The velocity dispersion in the

azimuthal direction is then

σ2
φ = 〈v2φ〉 − 〈vφ〉2, (3.1.10)

where 〈vφ〉 is the mean of the azimuthal velocity. We assume that the bulge has no

net rotation, this implies that the mean streaming component is set to zero. For

the dark matter halo 〈vφ〉 is taken as a fraction of the circular velocity 〈vφ〉 = fcvc

under the assumption that the halo and the disc have the same specific angular

momentum (Springel and White, 1999).
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3.2 Stellar and gaseous discs

In this Section we discuss the radial (Subsection 3.2.1) and vertical (Subsection

3.2.2) structure of both stellar and gaseous discs. Furthermore, in Subsection 3.2.3

we describe the procedure used to set the disc scale length and in Subsection 3.2.4

we describe how the velocity distribution of the discs particles are sampled.

3.2.1 Radial discs structure

Observationally it has been shown that disc galaxies have radial exponential profiles

(Freeman, 1970; Van Der Kruit and Searle, 1981; Courteau et al., 1996), for this

reason the stellar and the gaseous discs have been modeled with exponential surface

density profiles

Σ⋆(R) =
M⋆

2πh2
⋆

exp(−R/h⋆) , (3.2.1)

Σg(R) =
Mg

2πh2
g

exp(−R/hg), (3.2.2)

respectively. In equations (3.2.1) and (3.2.2), h⋆ is the scale length of the stellar

disc and hg is the scale length of the gaseous disc, M⋆ is the mass of the stellar disc

and Mg is the mass of the gaseous disc while R is the cylindrical radius, defined as

R =
√

x2 + y2. The radial cumulative mass profiles are given by

M⋆(R) = 2π

∫ R

0

ρ⋆(R
′)R′ dR′ = M⋆

[

1−
(

1 +
R

h⋆

)

e−R/h⋆

]

, (3.2.3)

Mg(R) = 2π

∫ R

0

ρg(R
′)R′ dR′ = Mg

[

1−
(

1 +
R

hg

)

e−R/hg

]

. (3.2.4)

We set Md = M⋆+Mg = mdM200, where md is the fraction mass of the disc (summing

the contributes from stellar and gaseous discs). All the parameters of our galaxy

model are listed in Table 3.2.

3.2.2 Vertical discs structure

While radially both discs have an exponential profile, vertically the stellar disc

follows a sech2 profile, that corresponds to isothermal sheets perpendicular to the

disc plane (Spitzer Jr, 1942; Bahcall and Soneira, 1980)
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ρ⋆(R, z) =
Σ⋆(R)

2z0
sech2

(

z

z0

)

, (3.2.5)

where ρ⋆(R, z) is the stellar density and z0 is a free parameter that determines the

scale height of the stellar disc.

In the case of the stellar disc the parameter z0, that sets the ’temperature’, can

be chosen freely (the velocities are determined in order to maintain the disc in

equilibrium with this scale height in the total potential of the galaxy), but this

cannot be done for the gaseous disc, in which the vertical distribution is determined

by the vertical hydrostatic equilibrium, i.e. by the balance between the gas pressure

and gravity (including gas self-gravity):

1

ρg

∂P

∂z
= −∂Φ

∂z
. (3.2.6)

In equation (3.2.6), ρg is the density, P is the pressure of the gas and Φ is the total

gravitational potential. For a given potential this equation is solved obtaining ρg,

assuming that

Σg(R) =

∫ +∞

−∞

ρg(R, z) dz, (3.2.7)

where Σg(R) is the gas surface density described in (3.2.2) and ρg(R, z) is the gaseous

disc density. This process is done through an iterative method, an initial potential

Φ is assumed and with this initial estimate the vertical gas distribution is obtained

solving equations (3.2.6) and (3.2.7). Once the vertical gas distribution is obtained,

a new potential is computed with a hierarchical multipole expansion based on a tree

code and the whole process is repeated until the convergence is reached, i.e. when

the desired surface density at each radius is obtained.

3.2.3 Disc scale length

The scale length of the stellar disc h⋆ is calculated from the angular momentum of

the disc assuming that the latter is related to the total angular momentum of the

dark matter halo (Mo et al., 1998; Springel and White, 1999). From cosmological

N -body simulations it emerges that the dark matter halos begin to rotate because

of the tidal forces between them (dark matter halos are not perfectly spherical).

The baryons that collapse inside the halo potential will then have a certain angular

momentum. Considering a NFW profile, it is possible to calculate the total energy
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of the halo truncated at r200 from the virial theorem as

E = −GM2

2r200
fc, (3.2.8)

where M is the virial mass of the dark matter halo and fc can be calculated from

the concentration parameter

fc =
c

2

1− 1/(1 + c)2 − 2ln(1 + c)/(1 + c)

[c/(1 + c)− ln(1 + c)]2
. (3.2.9)

It is often convenient to define a dimensionless spin parameter λ, that characterizes

the angular momentum J , as

λ =
J |E|1/2

GM
5/2
200

. (3.2.10)

From which is simple to derive

J = λG1/2M
3/2
200 r

1/2
200

(

2

fc

)1/2

, (3.2.11)

where λ is a model free parameter that can be chosen to set the desired disc scale

length. In fact, we assume that the angular momentum of the disc is related to the

angular momentum of the halo Jd = jdJ . With this condition we can derive the disc

scale length. In the thin disc approximation the angular momentum of the disc is

given by

Jd = Md

∫ ∞

0

Vc(R)

(

R

h

)2

exp

(

−R

h

)

dR. (3.2.12)

Then, for a given set of parameters: λ (spin parameter), md (disc mass fraction),

M200 (virial mass of the galaxy), v200 (circular velocity at R200) and jd (conversion

factor between the disc and the dark matter halo angular momenta), the scale

length h⋆ is found iteratively solving equation (3.2.12) in order to obtain the best

approximation for the disc angular momentum. Notice that, while the thin disc

approximation assumed in equation (3.2.12) is good enough for the calculation of

h⋆, in our ICs and in the simulations the disc has non negligible thickness, it has in

fact a stratification in the z-direction (as explained in Section 3.2.2).
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3.2.4 Velocity structure

Here we describe the derivation of the discs velocity structure.

For the stellar disc we adopt a Gaussian approximation for the velocity distri-

bution (as described in Section 3.1.1) as well. Observations suggest that there is

a connection between 〈v2R〉 and 〈v2z〉 (Hernquist, 1993), in particular we assumed

σR = 〈v2R〉 = 〈v2z〉. To obtain the mean streaming velocity we use the epiciclic

approximation, valid for quasi-circular orbits in an axisymmetric potential

σ2
φ =

σ2
R

η2
, (3.2.13)

where η is defined as

η2 =
4

R

∂φ

∂R

(

3

R

∂φ

∂R
+

∂2φ

∂R2

)−1

. (3.2.14)

The streaming component in the azimuthal direction is set to

〈vφ〉 =
(

〈v2φ〉 −
σ2
R

η2

)1/2

. (3.2.15)

For the gaseous disc only the azimuthal component has to be computed. This can

be obtained from the stationary equation of momentum conservation in the radial

direction tht yields

v2φ,gas = R

(

∂φ

∂R
+

1

ρg

∂P

∂R

)

. (3.2.16)

3.2.5 Temperature and metallicity

The gaseous components in the ICs are also characterized with a temperature pro-

file and a metallicity distribution. The initial temperature in the disc is assumed

constant at the value of 104 K, and from this temperature T, we obtain the internal

energy per unit mass as

u =
kB

µ(γ − 1)mp

T , (3.2.17)

here kB = 1.38× 10−16 erg K−1 is the Boltzmann constant, γ = 5/3 is the adiabatic

index and µ = 4/[8− 5(1− fH)] is the mean molecular weight for a full ionized gas

(fH = 0.76 is the hydrogen mass fraction). Although the temperature is constant in

the ICs, when the galaxy is evolved in time we expect the formation of a multiphase

gas, with both very low (∼ 102 K) and very high temperatures (∼ 106 K), due
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to cooling and heating mechanisms, to the stellar feedback, implemented in the

SMUGGLE model (Section 2.4), and also to the mixing and accretion of the hot

coronal gas. The overall metallicity of the gas in the disc is set to Z = Z⊙ for

simplicity (see 3.4.3 for details about the metallicity sampling).

3.3 Hot corona

In addition to the components described above, we also include a hot corona around

the galaxy. As explained in Chapter 1 the corona is essential for sustaining the star

formation in the disc over a long time (> 10 Gyr) and the main purpose of this

Thesis project is to analyze its interaction with the material that is ejected from

the disc due to stellar feedback. In particular, the properties of the hot corona have

been modeled using the few observations available for this component in the Milky

Way, in fact the extremely low densities of this gas makes it very difficult to observe.

The corona follows the same profile of the dark matter halo (Hernquist, 1990)

ρcor(r) =
Mcor

2π

rcor

r(r + rcor)3
, (3.3.1)

where Mcor is the total mass and rcor is the scale length of the hot corona. For

simplicity we set rcor = rs. As we will shortly discuss, this condition allows us to

determine the corona temperature directly from the velocity dispersion of the dark

matter halo. We assume that the coronal gas is in hydrostatic equilibrium in the

dark matter halo potential, therefore the velocity field of this gaseous component is

zero.

To compute the equilibrium configuration, we start from the radial Jeans equa-

tions that, under the assumption of steady-state equilibrium (∂/∂t = 0 and v̄r = 0)

and spherical symmetry (v̄φ = v̄θ = 0, σ2
θr = σ2

θφ = σ2
φr = 0 and σ2

θθ = σ2
φφ ) reduces

to:

1

ρ

∂ρσ2
rr

∂r
+ 2

σ2
rr − σ2

θθ

r
= −∂φ

∂r
= −GM(r)

r2
. (3.3.2)

Assuming that the dark matter halo is isotropic (σ2 = σ2
rr = σ2

θθ) yields

1

ρ

∂ρσ2

∂r
= −GM

r2
. (3.3.3)

We note that this equation has the same functional form of the hydrostatic equilib-

rium equation (3.3.4).
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This gaseous halo is set in hydrostatic equilibrium in the dark matter halo poten-

tial, in fact the velocity field is zero, so the corona and therefore its pressure must

obey the equation
1

ρcor

∂P

∂r
= −GM

r2
, (3.3.4)

where P = ρcorkBT/µmp is the gas pressure. Comparing equations (3.3.3) and

(3.3.4)2, we obtain

σ2 =
kBT

µmp

, (3.3.5)

where T is the temperature of the gas, µ is the mean molecular weight and mp is the

proton mass. σ is the dark matter halo velocity dispersion, from which it is possible

to derive the temperature profile of the hot corona:

T =
µmpσ

2

kB
. (3.3.6)

Finally, a uniform metallicity (set to 0.1Z⊙) is also assigned to the coronal gas. The

computation of the metallicity is described in Section 3.4.3.

3.4 Sampling of the initial conditions

After describing the theoretical models that are at the foundations of the ICs con-

struction, we proceed explaining how the physical properties are actually assigned

to each particle. It is important to make an accurate realization of the analytical

profiles described above, because these ICs are then used as a starting point to

compute the time evolution of the galaxy. To do so, we need to sample the particle

positions in the phase space: i.e. the position and the velocity of each particle.

For the gas particles we also need to set the internal energy and the metallicity to

compute their evolution in terms of metallicity and temperature. The positions and

the velocities of the particles (dark matter, stars and gas) are computed directly

from their respective profiles.

3.4.1 Position sampling

The particle positions of each component are derived with the inversion method, a

general statistical method to sample a variable X from a probability density function

fX(X):

2Note that we can simplify the density dependence only because the dark matter halo and the
corona follow the same density profile.
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(i) Given a probability density function fX(X) we calculate the cumulative dis-

tribution function

FX(X) =

∫ X

−∞

fX(τ) dτ . (3.4.1)

This is a monotonically non-decreasing function with values between 0 and 1.

(ii) We set u = FX(X), where u is a random number between 0 and 1 extracted

from a uniform distribution.

(iii) We invert the equation to find the variable X: X = F−1
X (u); X will be dis-

tributed as fX(X).

In our case the density distribution is the probability density function fX(X), from

which we derive FX , i.e. the normalized cumulative mass profile.

Spherical systems

For the dark matter halo, the bulge and the hot corona the inversion can be carried

out analitically, since they all follow a Hernquist profile. In this case, the normalized

cumulative mass function is

FX(r) =

(

r

r + a

)2

, (3.4.2)

which, imposing

u =

(

r

r + a

)2

, (3.4.3)

can be inverted to find

r =
a
√
u

1−√
u
. (3.4.4)

In equations (3.4.2) and (3.4.3) u is a number between 0 and 1 extracted from

a uniform random distribution. This procedure allows us to sample the spherical

distance from the galaxy center r. To find the missing components required to

attribute to each particle its (x, y, z) positions we procede as follows. We set the

azimuthal coordinate φ as

φ = 2πv, (3.4.5)
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where v is another random variable extracted from 0 to 1. In this way 0 < φ < 2π.

The polar angle θ can go from 0 to π and is derived as

θ = arcos(2w − 1), (3.4.6)

with w being another random variable. The Cartesian coordinates (x,y,z) are then

simply derived from the spherical coordinates (r,θ,φ):

x = rsin(θ)cos(φ), (3.4.7)

y = rsin(θ)sin(φ), (3.4.8)

z = rcos(θ). (3.4.9)

Axisymmetric systems

For the stellar disc the vertical position z can be computed analitically, since the

vertical profile follows a sech2 profile (equation 3.2.5):

z =
z0

2ln(u/(1− u))
, (3.4.10)

where u is a random number extracted from 0 to 1. For the gaseous disc the vertical

position z is derived from the vertical density structure computed as described in

Section 3.2.2.

Instead, for the radial component the analytical inversion of equations (3.2.3) and

(3.2.4) is not possible, but we can estimate it with the Newton-Raphson method,

an iterative root-finding algorithm. Starting with an equation written in the form

f(x) = 0, we find the root iteratively as follows

xn+1 = xn −
f(xn)

f ′(xn)
, (3.4.11)

where xn+1 is a better approximation of the root. For the stellar disc x = R/h⋆, and

f(xn) is given by

f(xn) = −1 +

(

1 + xn

)

exp(−xn) + u (3.4.12)

while the first derivative f ′(xn) reads

f ′(xn) = −xnexp(−xn). (3.4.13)
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3.4. Sampling of the initial conditions

Starting from x1 = 1, the process described in equation 3.4.11 is repeated until

convergence is reached, in particular until |xn+1 − xn|/xn < 10−7. Since the cumu-

lative mass profiles are monotonically non-decreasing functions, we expect to find a

solution Ri to the problem M(Ri)/Mtot=u, where u is a random number uniformly

distributed between 0 and 1. The cylindrical radius is then obtained as R=xn h⋆.

The stellar disc is sampled from 0 to ∞, while the gaseous disc extends only from

0 to 10hg. Therefore, the functions f(xn) and f ′(xn) used in the Newton-Raphson

algorithm must be modified accordingly

f(xn) =
−1 + (1 + xn)exp(−xn)

1− (1 + 10)exp(−10)
+ u, (3.4.14)

f ′(xn) = − xnexp(−xn)

1− (1 + 10)exp(−10)
. (3.4.15)

The cylindrical radius is then found as R=xn hg. After obtaining R and z, we sample

φ in the same way described in equation (3.4.5) and then we pass from cylindrical

to Cartesian coordinates:

x = Rcos(φ), (3.4.16)

y = Rsin(φ), (3.4.17)

z = z. (3.4.18)

3.4.2 Velocity sampling

Here we explain how the sampling for the particle velocities is performed. For each

particle position computed as described in Section 3.4.1 the velocity components

are sampled from three Gaussian distributions with means and standard deviations

found in Sections 3.1.1 and 3.2.4. The first step is to compute the velocity dispersions

in the radial, vertical and azimuthal directions solving the differential equations

described in Section 3.2.4 on a logarithmic grid in R and z. We used 512 grid points

for each direction and a box size of ∼ 857 kpc in which the galaxy is inserted. The

use of a logarithmic grid is motivated by the fact that we want a finer sampling on

each scale, from the largest to the smallest. Then, we used a bilinear interpolation to

find the velocity dispersions at the particles positions. Once the velocity dispersions

have been computed, we assume that the velocities (except for the coronal gas)

are distributed with a normal distribution with mean and dispersion described in

Section 3.2.4. For this task we applied the polar form of the Box-Muller algorithm

(Box and Muller, 1958), a method to extract random variables that are Gaussian
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distributed.

First, two pseudo-random number y1 and y2 are extracted from a uniform distri-

bution (from -1 to 1). We define r = y21 + y22 and if r = 0 or r ≥ 1 the couple y1,2 is

discarded and re-extracted. Otherwise we compute:

ξ0 = y1,2

√

−2 ln r

r
, (3.4.19)

resulting in ξ0 as being distributed as a Gaussian distribution with mean m = 0

and variance σ2 = 1. The first time we set y1,2 = y1. Then, the second time that

we need another Gaussian variable, y1,2 = y2 is directly used without the need of

re-extracting another (y1, y2) couple. After both elements of the y1,2 couple are used

the algorithm starts again from the beginning.

If we want Gaussian distributed values with a given mean m and variance σ, we

simply multiply for σ and add m. For instance, for the stellar disc we have

vR = ξ0
√

σ2
R, (3.4.20)

vz = ξ0
√

σ2
z , (3.4.21)

vφ = ξ0
√

σ2
φ + 〈vφ〉. (3.4.22)

In this case the mean in the radial and in the vertical directions are zero, while in the

azimuthal direction a free streaming component is present. This is valid also for the

dark matter halo, whereas for the bulge component no net rotation is present and

〈vφ〉 = 0 (see Section 3.1.1). Also, in the case of the gaseous disc only the azimuthal

velocity component has to be computed. This is not sampled from a distribution

but its value is set by equation (3.2.16, see Section 3.2.4). For the hot coronal gas

all velocity components are set to zero. The velocities (vR,vφ,vz) are then converted

from cylindrical to Cartesian coordinates (vx,vy,vz):

vx = vR
x

R
− vφ

y

R
, (3.4.23)

vy = vR
y

R
+ vφ

x

R
, (3.4.24)

vz = vz, (3.4.25)

where x and y are the Cartesian coordinates of the particle (described in Section

3.4.1) and R is the cylindrical radius.

68



3.4. Sampling of the initial conditions

3.4.3 Metallicity sampling

In this section we describe the sampling of the metallicity for the gas particles.

This is an essential component of the simulations that we performed in this work.

Indeed, gas metallicity is a fundamental property in galaxy formation and evolution:

its main effect is a more efficient cooling of the gas that can promote the gravitational

collapse of the gas and lead initially to a more efficient star formation. Hence, it is

important to model this property in a faithfully physical way, in order to obtain more

realistic simulations describing galaxy evolution. In the ICs, the gas particles in the

disc and in the hot corona have a homogeneous, although different, metallicity: the

hot corona particles have Z = 0.1Z⊙, in line with observational determinations (see

Chapter 1), and the gaseous disc particles have Z = Z⊙. The metallicity is treated

as a passive scalar, that means that in each gas cell is evolved passively through a

continuity equation

(∂ρZ)

∂t
+∇ · (ρZv) = 0, (3.4.26)

each gas cell has its own metallicity Zi that is transported by the fluid.

The code traces not only the global metallicity but also the abundances of nine

chemical elements (i.e. Hydrogen, Helium, Carbon, Nitrogen, Oxygen, Neon, Mag-

nesium, Silicon and Iron). To different metallicities correspond different chemical

abundances of the different elements. These are derived as follows.

Table 3.1: Primordial abundances (these abundances are mass fractions, therefore they
are defined as the ratio between the mass of a given element X and the total mass of all
the elements) fprim and solar abundances f⊙ of different elements: Hydrogen (H), Helium
(He), Carbon (C), Nitrogen (N), Oxygen (O), Neon (Ne), Magnesium (Mg), Silicon (Si)
and Iron (Fe). Solar abundances are taken from Asplund et al. (2009).

H He C N O Ne Mg Si Fe
(10−3) (10−3) (10−3) (10−3) (10−3) (10−3) (10−3)

fprim 0.76 0.24 0 0 0 0 0 0 0

f⊙ 0.7388 0.2485 2.4 0.7 5.7 1.2 0.7 0.7 1.3

The abundance of a given element X is computed with a linear interpolation

between two sets of abundances: primordial abundances fprim and solar abundances

f⊙, which are taken from Asplund et al. (2009) and reported on Table 3.1. Therefore,
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given the gas metallicity Zi, in each cell i we have:

fX,i = fX,prim,i +
Zi

Z⊙

(fX,⊙,i − fX,prim,i) , (3.4.27)

where fX,prim is the primordial abundance of the element X, fX,⊙ is the solar abun-

dance of the element X and Z⊙ = 0.0127 is the solar metallicity (we are considering

only the nine elements in Table 3.1). In each cell the sum of the abundances of the

nine elements has to be
∑

X fX,i = 1, as the total mass has to be conserved.

3.5 Model parameters

In Table 3.2 we report the different parameters used to create our ICs. The values

adopted for our galaxies are similar to those used in Marinacci et al. (2019). In

particular, the total mass of the galaxy is ∼ 1.6× 1012 M⊙, of which 1.53× 1012 M⊙

are contained in the dark matter halo, 1.5×1010 M⊙ in the bulge and 5.63×1010 M⊙

in the disc (stars + gas). The only parameter that changes is the mass of the corona

(see Table 4.1 for more details). In Table 3.3 the resolution level adopted in our

model is illustrated.

Table 3.2: Structural parameters of the Milky Way-type galaxy. In the first grey row, from
left to right: circular velocity of the halo at r200 (v200); dark matter halo mass (Mdm);
dark matter halo scale length (rs); bulge mass (Mb); bulge scale length (a); stellar disc
mass (M⋆). In the second grey row, from left to right: stellar disc scale length (h⋆); stellar
disc scale heigth (z0); gaseous disc mass (Mg); gaseous disc scale length (hg); mass of the
corona (Mcor); corona scale length (rcor).

v200 Mdm rs Mb a M⋆

(km s−1) (M⊙) (kpc) (M⊙) (kpc) (M⊙)

169 1.53× 1012 36.46 1.5× 1010 1.3 4.73× 1010

h⋆ z0 Mg hg Mcor rcor

(kpc) (pc) (M⊙) (kpc) (M⊙) (kpc)

3.8 380 9× 109 7.6 variable 36.46

A representation of the gaseous component of the ICs is shown in the column

density maps of Figure 3.1, where we can see the galaxy face-on (left-hand panel)

and edge-on (right-hand panel). The presence of a galactic corona (much less dense

than the disc) is particularly evident around the galaxy in the edge-on projection.
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3.5. Model parameters

The ‘cloudy’ patches present in the corona density projection are caused by a low

number of gas particles that does not make a smooth sampling possible.

Table 3.3: Parameters that define the resolution level. From left to right: gravitational
softening length for dark matter particles (εdm); gravitational softening length for star
particles (ε⋆); gravitational softening length for gas cells (εg, in this case the softening
length is variable and changes with the volume of the gas cell); mass of dark matter
particles (mdm); mass of gas cells (mg); mass of bulge particles (mb); mass of disc particles
(md).

εdm ε⋆ εg mdm mg mb md

(pc) (pc) (pc) (M⊙) (M⊙) (M⊙) (M⊙)

43 43 variable 106 3.16×104 105 8.3×104

Figure 3.1: Projected density of the gas of the ICs shown face-on (left panel) and edge-on
(right panel). Note the presence of the galactic corona around the disc of the galaxy in
the right-hand panel.
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3.6 Testing the initial conditions

In this Section we show the results obtained after testing the ICs. We will compare

the profiles obtained from the ICs with the corresponding analytical models. We

show different physical quantities derived from the ICs for our galaxy model. In

particular we obtained density and cumulative mass profiles (Section 3.6.1), circu-

lar velocity profiles (Section 3.6.2), velocity dispersion profiles (Section 3.6.3) and

temperature and metallicity profiles (Section 3.6.4).

3.6.1 Density and cumulative mass profiles

The method used to derive these profiles is different depending on the galaxy com-

ponent. For spherical components (dark matter halo, bulge and hot corona) we

divided the space into spherical shells. We then computed the mass of the particles

within each shell and divided it by the shell volume. In this way we obtained the

(volumetric) density as a function of the distance from the centre of the system. For

the axisymmetric components (stellar and gaseous discs) the procedure is the same,

but the space is divided into cylindrical shells (these systems have a cylindrical sym-

metry): in this way we derive the density at a given (galactocentric) distance from

the center considering the particles with any z-values in a given bin and we obtain

surface density profiles.

To each (volumetric or surface) density measurement we associate an error con-

sisting of two terms:

(i) Sampling error: the operation of counting the number of particles in each

bin entails a sampling error (that comes from a Poisson distribution). The

sampling error of the density in the i-th bin can be calculated as follows:

σp,i =

√
Ni

Vs,i

mp, (3.6.1)

where Ni is the number of particles in the i-th bin, mp is the mass of the

single particle and Vs,i is the volume of the spherical or cylindrical shell. This

formula is valid if all the particles of one type have the same mass.

(ii) Root mean square error: this error contains informations on any deviation

from spherical or cylindrical symmetry of the system. The space has to be

divided in different parts (we chose to divide it in octants for spherical compo-

nents and in quadrants for axisymmetric components, for simplicity). In each
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octant or quadrant, we calculated the density profile and evaluated the root

mean square error of these different realizations of the density profile in the

i-th bin as

σrms,i =

√

√

√

√

n
∑

j=1

(ρ̂i − ρi,j)
2

n
, (3.6.2)

where j goes from 1 to n = 8 (or n = 4), ρ̂i is the mean between the densities

of the eight (or four) realizations in the i-th bin and ρi,j is the density in the

j-th octant (or quadrant) and in the i-th bin.

The total error in a given bin i is then calculated by summing the previous terms

in quadrature

σtot,i =
√

σ2
p,i + σ2

rms,i. (3.6.3)

Similarly, the cumulative mass profiles are calculated summing the mass inside the

spherical radius r for the spherical components or inside the cylindrical radius R

for the axisymmetric components. This is done counting the number of particles at

a distance < r (or < R) from the center of the system and multiplying it for the

particle masses. We do not associate any error to this measurements.

Spherical systems

In this section we analyze the profiles obtained for the dark matter halo, the bulge

and the hot corona. Figure 3.2 shows the density and cumulative mass profiles. In

the dark matter halo profiles (top panel) the agreement of both the density (left-

hand panel) and the cumulative mass (right-hand panel) profiles with the analytic

ones is evident. The error-bars are larger in the inner parts due to the low statistics.

In fact, a logarithmic grid in radius was used and for this reason only a few particles

fall in the central bins. The same holds for the bulge (middle panel) and the hot

corona (bottom panel) profiles. In the bottom panels the normalized residuals are

displayed, the latter are defined as the difference between the values measured from

the N -body realization xi and the one from the analytic models xtrue, this has

been done for both density and cumulative mass profiles. Also, the residuals thus

calculated, have been normalized by the root mean square error:

residuals =
xtrue − xi

σrms,i

. (3.6.4)

The errors on the residuals are computed as the errors on the density points ρtrue,

normalized by σ. It is apparent that the residuals are extremely low (< 1%), except
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Figure 3.2: Density profile (left-hand panel) and cumulative mass profile (right-hand
panel) of dark matter halo (top panel), bulge (middle panel) and corona (bottom panel).
The black points with error-bars represent the ICs. The dashed blue lines represent the
analytical model (Hernquist profile, equations 3.1.1 and 3.1.7). In the lower panels the red
points represent the residuals between the analytical profile and the sampled points; the
dashed black line indicates the zero residual.
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for the density points in the inner bins where, however, within the error-bars the

residuals are still consistent with zero. It is clear how the ICs points reproduce well

the analytical profiles within the associated errors. This means that the analytical

profiles are approximated very well by the sampling made for the construction of

these ICs.
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Figure 3.3: Surface density profile (left-hand panels) and cumulative mass profile (right-
hand panels) of the stellar (top panels) and gaseous (bottom panels) discs. The black
points with error-bars represent the ICs. The dashed blue lines represent the analytical
model (exponential disc, equations 3.2.1 and 3.2.2). In the lower panels the red points
represent the residuals between the analytical profile and the sampled points; the dashed
black line is the zero residual.
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In Figure 3.3 we show the density and cumulative mass profiles of the stellar (top

panel) and the gaseous discs (bottom panel). Here, the error-bars are larger in the

outer parts because a linear grid in radius was used and a lower particle count is

present in the external regions. For these components the residuals (red points in

the lower panels) are consistent with zero, therefore the points derived from the ICs

are in very good agreement with the analytical profiles described in Section 3.2.1.

3.6.2 Rotation curve

In this Section we show the rotation curves derived from the ICs and we compare

them with the analytical profiles and with the observed values in the Milky Way.

A rotation curve is a profile that shows the circular velocity (the velocity that an

object at a certain distance would have to maintain a circular motion in a given

gravitational potential Φ) as a function of the distance from the centre of the system.

The rotation curves have been fundamental in astrophysics in general, since their

observation in spiral galaxies is one of the major evidence of the existence of dark

matter (Van de Hulst et al., 1957; Rubin et al., 1978). Reproducing these curves

correctly is fundamental to obtain a realistic setup for our galaxy model.

The circular velocity for the spherical components (dark matter halo, bulge and

hot corona) is derived from the first and the second Newton’s theorems. In a spher-

ical system the circular velocity at a distance r from the center is

v2c (r) =
GM(r)

r
, (3.6.5)

where M(r) is the total mass enclosed within the spherical radius r.

For the disc components we are assuming a thin disc approximation, for simplicity.

The potential produced by this system in cylindrical symmetry can be calculated as

(Binney and Tremaine, 2011)

Φ(R) = −2πG

∫ ∞

0

Σ̂0(k)e
−k|z|J0(kR) dk , (3.6.6)

where Σ̂0(k) is the Hankel transform of the disc surface density Σ and J0(kR) is

the Bessel function of the first kind. Knowing the disc potential we can obtain the

circular velocity from the equality:

v2c (R)

R
=

∂Φ(R)

∂R
. (3.6.7)
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The circular velocities, for the stellar and gaseous components respectively, are

v2c,⋆(R) =
2GM⋆

h⋆

y2[I0(y)K0(y)− I1(y)K1(y)] , (3.6.8)

v2c,g(R) =
2GMg

hg

x2[I0(x)K0(x)− I1(x)K1(x)] , (3.6.9)

where x = R/(2hg) and y = R/(2h⋆). In and Kn are the modified Bessel functions

of the first and second kind, respectively,

Iα(x) =
∞
∑

m=0

1

m!Γ(m+ α + 1)

(

x

2

)2m+α

, (3.6.10)

Kα(x) =
π

2

I−α(x)− Iα(x)

sin(απ)
, (3.6.11)

where Γ is the gamma function.
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Figure 3.4: Rotation curve of the gaseous disc taking into account (left-hand panel)
and without taking into account (right-hand panel) the gas pressure support. The solid
black line represents the total rotation curve, the dashed lines represent the rotation curve
of the different components: dark matter halo (green); stellar disc (blue); bulge (yellow);
gaseous disc (light blue); corona (purple). The red points with error-bars are the azimuthal
component of the velocity vφ computed from the ICs.

Finally, the total circular velocity is given by

v2c (R) =
G[Mdm(< R) +Mb(< R) +Mcor(< R)]

R
+ v2c,⋆(R) + v2c,g(R), (3.6.12)

where Mdm(< R), Mb(< R) and Mcor(< R) are the cumulative mass functions of
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dark matter halo, bulge and hot corona and vc,⋆(R) and vc,g(R) are the circular

velocity profiles of the stellar and the gaseous disc.

The measurement of the circular velocity in the ICs is made with a method similar

to the one used for determining the density profiles (Section 3.6.1). First we divided

the system in cylindrical shells. Then, for each gas or stellar particle, we derived

the azimuthal velocity vφ from the velocity in Cartesian components as

vφ = −vxsinθ + vycosθ, (3.6.13)

where sinθ = y/R and cosθ = x/R. In each shell j we computed the mean of the

azimuthal velocities weighted by the mass of the individual gas (or star) particles

v̄φ,j =

∑

i vφ,imi
∑

i mi

, (3.6.14)

obtaining a circular velocity profile. In equation (3.6.14) the sums go from 1 to

the number of particle inside the j-th shell. To these measurement we associated

an uncertainty as the root mean square error between different realizations of the

circular velocity profiles, as described in equation (3.6.2).
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Figure 3.5: Rotation curve of the stellar disc. The solid black line represents the total
rotation curve, the dashed lines represent the rotation curve of the different components:
dark matter halo (green); stellar disc (blue); bulge (yellow); gaseous disc (light blue);
hot corona (purple). The red points with error-bars are the azimuthal component of the
velocity vφ for the star particles computed from the ICs.

In Figure 3.4 we show the rotation curve for the gaseous disc. The red points with

error-bars 3 represent the circular velocity vφ derived from the ICs of the galaxy,

3In this case the error-bars are very small and cannot be seen in the Figures.
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whereas the black solid line represents the total analytical circular velocity that is

expected considering all the different galaxy components, computed with equation

(3.6.12).

The dashed lines represent the contribution given from each single component:

dark matter halo (green), stellar disc (blue), bulge (yellow), gaseous disc (light blue),

hot corona (purple), computed using the single terms in equation (3.6.12). As we

can see the gaseous components (gaseous disc and hot corona) do not contribute

significantly at any radius to the total circular velocity. In the inner parts ( < 1

kpc) the bulge is the dominant component, whereas in the outer parts the rotation

curve is totally dominated by the dark matter halo. It is important to note that

the red points are almost always under the analytical profile. This is due to the

fact that we are considering the gaseous disc. In fact, the azimuthal velocity for

this component in the ICs is calculated with equation (3.2.16) considering also the

pressure support of the gas. The analytical curves are derived considering equation

(3.6.7) and they do not include the contribution of pressure support, for this reason

in Figure 3.4 it seems as if we are overestimating the circular velocity with respect

to the analytical profile. This is demonstrated in the right-hand panel of Figure 3.4,

where the rotation curve is plotted without considering the contribution of the gas

pressure. We can see that the red points are almost perfectly lying on the analytical

black curve.

In Figure 3.5 we show the rotation curve for the stellar disc. In this case the ICs

(red points) show a very good agreement with the analytical profile for radius R > 10

kpc, since stars are collision-less particles and have not an associated pressure.

We also performed a consistency check on the rotation curve derived from our ICs

comparing it to observations of the circular velocity at the solar radius. In particular,

the circular speed at the solar radius (R⊙ ∼ 8 kpc) is (Binney and Tremaine, 2011):

vc(R⊙) = (220± 20) km s−1, (3.6.15)

and this is a value consistent with that obtained in our ICs (∼ 240 km s−1).

3.6.3 Velocity dispersion

In this Section we show the velocity dispersion profiles for the dark matter halo and

the bulge and the vertical velocity dispersion profile for the stellar disc.
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Chapter 3. Initial conditions

Dark matter halo and bulge velocity dispersion

The velocity dispersion profiles for the spherical components are obtained in the

following way. First the space is divided into spherical shells. To each particle is

associated a velocity vector (vx,vy,vz) as described in Section 3.4.2. The velocity dis-

persion in each shell is computed as the standard deviation of the (x,y,z)-component

of the velocities. For instance, for the velocity dispersion of vx we obtain

σx =

√

∑N
i=1(vx,i − v̄x)2

N
=

√

√

√

√

1

N

N
∑

i=1

(v2x,i)− v̄x2, (3.6.16)

where v̄x is the mean of vx weighted on the mass, computed as in equation (3.6.14),

for the particles inside the i-th shell and N is the number of particle in the shell. In

this case the error-bars are computed as the dispersion between different realizations

of the velocity dispersion profile (the space is divided in octants as for the density

profiles). In Figure 3.6.3 we show the velocity dispersions as a function of the radius

for the dark matter halo (left-hand panel) and the bulge (right-hand panel). The

velocity dispersion of the dark matter has a decreasing trend, starting from ∼ 180

km s−1 in the center and arriving to ∼ 60 km s−1 at 250 kpc. In the bulge σ is

increasing to a maximum of ∼ 125 km s−1 at 3 kpc and then remains almost constant

in the first 10 kpc. This is consistent with the observations of the bulge velocity

dispersion in the Milky Way (Valenti et al., 2018).
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Figure 3.6: Velocity dispersion as a function of radius (blue points with error-bars) for
the dark matter halo (left-hand panel) and for the bulge (right-hand panel).
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Vertical stellar disc velocity dispersion

Also, it is possible to check the vertical velocity dispersion of the stellar disc under

the thin and infinite disc approximation. Close to the plane of the disc |z| ≈ 0 the

stellar disc is dominating the gravitational potential (the gaseous disc is negligible

in mass) and therefore it drives the dynamics of the stars. The vertical equilibrium

of the stars in the total potential is set by the vertical Jeans equation

∂(ρ⋆σ
2
z)

∂z
+ ρ⋆

∂Φ

∂z
= 0, (3.6.17)

where ρ⋆ is the stellar density, Φ is the total gravitational potential, σz = σR is

the vertical velocity dispersion. From equation (3.6.17) it is possible to derive the

vertical velocity dispersion σz. Under these assumptions the dominant component

of the potential near the disc is the z-component, therefore the Poisson’s equation

can be written as
∂2Φ

∂z2
= −4πGρ(z), (3.6.18)

from which we derive

∂Φ

∂z
= −4πG

∫ z

0

ρ(z) dz = −2πGΣ⋆tanh

(

z

z0

)

. (3.6.19)

Solving equation (3.6.18) with (3.6.19) we find (Van Der Kruit, 1988)

σ2
z = −1

ρ

∫ ∞

0

ρ
∂Φ

∂z
dz = 2πGΣ⋆z0. (3.6.20)

In Figure 3.7 we show the vertical velocity dispersion σz, for the star particles in

the stellar disc as a function of the cylindrical radius R computed in the same way

as the dark matter and bulge velocity dispersions (equation 3.6.16). The analytical

profile (red dashed line) has been calculated with equation (3.6.20). The deviation in

the central parts is caused by the presence of the bulge that dominates the gravita-

tional potential in the inner regions, an effect that is not captured by our simplified

analytic treatment. Also in the outer parts the approximation of thin infinite disc

is not valid anymore, since the dark matter halo starts to dominate the total po-

tential. As we can see σz is decreasing with radius. Indeed, the stellar density will

decline exponentially moving to the outer parts of the disc and, consequently, this

component will exert a lower gravitational attraction. Since the disc scale height is

held constant in the ICs, this results in a decrease of the vertical velocity dispersion

for increasing galactocentric distances (as it is also evident from equation 3.6.20).
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Figure 3.7: Vertical velocity dispersion as a function of radius (blue points with error-
bars) for the stellar disc; the red dashed line represents the approximate analytical solution
derived from the vertical Jeans equation. The points are not in agreement with the an-
alytical profile in the inner (because of the bulge presence) and outer parts (because the
thin disc approximation is not valid).

To make a consistency check we compare the vertical velocity dispersion profile

in Figure 3.7 with the observations for the vertical velocity dispersion of old star in

the solar neighbourhood (Binney and Tremaine, 2011)

σz(R⊙) = (19± 2) km s−1, (3.6.21)

obtaining a good agreement at R⊙.

3.6.4 Temperature and metallicity profiles

Here we show the temperature and metallicity profiles for the gas, these are funda-

mental properties to model in order to obtain a more realistic time evolution of the

galaxy. In Figure 3.8 we show the temperature profiles of the ICs for the gaseous

disc (left panel) and the hot corona (right panel). As expected the temperature in

the disc is constant at a value of 104 K, while the coronal gas temperature follows

the trend of the dark matter halo velocity dispersion profile, reaching its peak in

the center (∼ 2.5 × 106 K). This temperature is around the virial temperature of

the dark matter halo. In Figure 3.9 we show, as a consistency check, the metallicity

profiles for the gaseous disc and the corona. As expected, the gaseous disc has a

metallicity Zd = 1 Z⊙ and the corona has a metallicity Zcor = 0.1 Z⊙.
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Figure 3.8: Temperature profiles of the gaseous disc (left panel) and the hot corona (right
panel).
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Figure 3.9: Metallicity profiles of the gaseous disc (left-hand panel) and the hot corona
(right-hand panel).
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4Simulations results

In this Chapter we present the results obtained from the numerical simulations per-

formed with Arepo. First, we run adiabatic simulations, i.e. without the presence

of the dissipation processes implemented in the SMUGGLE model (see Section 2.4),

to ensure that the different components of the galaxy are in equilibrium; the results

are shown in Section 4.1. Afterwards, we carried out a series of simulations using

the SMUGGLE model; we present these results in Section 4.2.

In order to create an observationally-motivated hot corona we used the few obser-

vational constraints available for the mass of the Milky Way corona. In particular,

we explored a range of masses relying on indirect estimates (see Chapter 1) based

on pulsar rotation measures and ram-pressure stripping of dwarf spheroidal galax-

ies and the Large Magellanic Cloud around the Milky Way (Grcevich and Putman,

2009; Gatto et al., 2013; Salem et al., 2015; Anderson and Bregman, 2010). We per-

formed simulations for five coronal masses: four adiabatic simulations (cor_a1,

cor_a2, cor_a3, cor_a4) and three simulations with the SMUGGLE model

(cor_s1, cor_s2, cor_s3). The masses of the corona used in these simulations

are listed in Table 4.1, while the corresponding density profiles are shown in Figure

4.1: the red dashed lines represent the corona of the cor_s1 and cor_s2 sim-

ulations, the blue dashed lines cor_a1 and cor_a2, and the black dashed line

cor_s3. As we can see from Figure 4.1 all the chosen masses are in agreement with

the observational points, except for cor_s3, that has been chosen to represent a

setup with an almost negligible coronal mass.

Table 4.1: Mass of the corona chosen for the adiabatic simulations (first row) and the
simulations with SMUGGLE (second row).

adiabatic cor_a1 cor_a2 cor_a3 cor_a4 -

SMUGGLE - - cor_s1 cor_s2 cor_s3

Mcor(r < rvir) [M⊙] 1.1× 1011 3.4× 1010 1.38× 1010 6.8× 109 6.8× 108
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4.1. Adiabatic simulations

Figure 4.1: Hot corona number density profiles compared with several observational
constraints: ram-pressure stripping from the dwarf spheroidal galaxies Fornax, Ursa Mi-
nor and Sculptor (Grcevich and Putman 2009), Carina and Sextans (Gatto et al. 2013)
and the Large Magellanic Cloud (Salem et al. 2015); Pulsar rotation measures from An-
derson and Bregman (2010). The dashed and the dash-dotted red lines represent re-
spectively the models of the corona with M(r < rvir) = 1.1 × 1011M⊙ (cor_a1) and
M(r < rvir) = 3.4 × 1010M⊙ (cor_a2) whereas the blue lines depict the ICs with
M(r < rvir) = 1.38 × 1010M⊙ (cor_s1) and M(r < rvir) = 6.8 × 109M⊙ (cor_s2) and
the black dashed line shows a coronal model with M(r < rvir) = 6.8× 108M⊙ (cor_s3).

4.1 Adiabatic simulations

In this Section we present the numerical setup and the results of the adiabatic

simulations of the Milky Way-like galaxies. By adiabatic simulation we mean a

simulation in which the galaxy evolves with hydrodynamics and gravity only, without

the presence of dissipation processes (as star formation, cooling, heating and stellar

feedback). The simulations are carried out with the moving-mesh code Arepo

(described in detail in Section 2.3) and the ICs have been created by following the

procedure described in Chapter 3. The system is enclosed within a box with edges

≈ 857 kpc long. The resolution level used in the simulations has been shown in Table

3.3. The galaxy parameters are the ones listed in Table 3.2 and used in Section 3.6,

except for the mass of the hot corona that is changed in each simulation to study its
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Chapter 4. Simulations results

stability. In particular, we performed four simulations with different coronal masses:

cor_a1, cor_a2, cor_a3, cor_a4, listed in Table 4.1. The system is evolved

in isolation for 2 Gyr. In Section 3.6 we have seen that the ICs are in agreement

with the analytical profiles, now we carry out these different simulations to observe

if an equilibrium is actually present and if the configuration remains stable during

its evolution.
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Figure 4.2: Evolution of density profiles in the cor_a2 simulation. The panels represent
the dark matter halo (top left panel), bulge (top right panel), stellar disc (bottom left panel)
and gaseous disc (bottom right panel). The black dashed line shows the analytical profiles
and the coloured lines represent the density profiles at different times, as indicated in the
legend.

We obtained density profiles for the bulge, the dark matter halo, the stellar disc

and the gaseous disc (shown in Figure 4.2) at four different times, t =0.5, 1, 1.5,

2 Gyr, for the cor_a2 simulation. Figure 4.2 shows how these profiles remain

almost unchanged in each snapshot, following the analytical profile imposed in the

ICs. The density profiles have been computed with the same method described in

Section 3.6.1. However, the accurate determination of the center of the system
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Figure 4.3: Number density profiles adiabatic evolution as a function of the galactocentric
distance for the simulations cor_a4 (top left panel), cor_a3 (top right panel), cor_a2

(bottom left panel) and cor_a1 (bottom right panel). The black dashed line shows the
analytical profiles and the coloured lines represent, respectively, the density profiles at
different times, as indicated in the legend.

requires some care. Arepo uses a Tree method to compute the gravitational po-

tential (see Section 2.3), this method does not conserve the momentum at machine

precision and we may expect a shift of the center of mass of the galaxy from one

snapshot to another. This can cause an artificial flattening in the inner parts of the

profiles (< 1 kpc). We corrected the center of mass shift using the shrinking sphere

method (Power et al., 2003), an iterative method to find the center of mass of the

system. First, we computed the (x,y,z)-position of the center of mass of a given

spherical component (dark matter halo, bulge, corona) as

xcm =

∑

i mixi
∑

i mi

, (4.1.1)
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from the particles inside a sphere with a radius of 100 kpc. Then, the center of the

sphere is moved to the newly calculated center of mass and its radius is decreased

by 2.5%. This computation is repeated until the radius of the sphere is 0.1 kpc. The

coordinates of the different particles are corrected by shifting them with the center

of mass calculated for each different snapshot. The inner density (< 1 kpc) of the

bulge slightly differs from the analytical profile, however this is a numerical artefact

due to the adopted values of the gravitational softening of the bulge particles (0.09

kpc). Since the adopted softenings are quoted as Plummer equivalent softenings,

at scales below ≈ 2.8ε we cannot fully trust the obtained density profile. The

lower right panel shows the density profile of the gaseous disc, after the start of

the simulation the gas particles that belong to the disc and to the corona cannot be

easily identified anymore due to the mass exchange that the two gas components can

undergo. In order to separate the disc and the corona particles and obtain plots of a

single component, we employed a selection in temperature T and height above and

below the disc plane z. In particular, we labeled as disc particles all those particles

with T < 5× 105 K and |z| < 2.5 kpc. All the other gas cells have been attributed

to the corona.

In Figure 4.3 we show the time evolution of the hot corona density profile for the

four different masses used in the simulations. In particular they are computed at

0.5 Gyr (red), 1 Gyr (green), 1.5 Gyr (orange) and 2 Gyr (blue), and are compared

with the analytical profile (black dashed line). These plots give an evidence of the

stability of the corona in these adiabatic simulations. After 2 Gyr the coronal gas

still reasonably follows the initial profile. The shrinking sphere method was used

also in this case to correct for the center of mass position.

In Figure 4.4 (top row) we show the adiabatic evolution of the azimuthal velocity

for the stellar (left-hand panel) and gaseous (right-hand panel) discs for the cor_a2

simulation. In both cases the kinematics structure is approximately maintained over

2 Gyr. The selection problems that affected the gaseous disc density profile are

present also here, for R > 15 kpc a large fraction of corona particles are selected,

causing an underestimation of the azimuthal velocity, but this could also be caused

by an exchange of moment between the disc and the corona. In Figure 4.4 (bottom

row) we show the adiabatic evolution of the velocity dispersion for the dark matter

halo (left-hand panel) and the bulge (right-hand panel) for the cor_a2 simulation.

The profiles remain stable in all the adiabatic simulations also in this case.

In Figure 4.5 we show the gas column density in face-on (upper panels) and edge-

on (lower panels) projections for t = 0.45, 0.9 and 1.35 Gyr. Each panel is 50× 50
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Figure 4.4: Rotation curve (top row) adiabatic evolution of stellar (left-hand panel) and
gaseous (right-hand panel) discs for the cor_a2 simulation, the black dashed lines rep-
resent the analytical profiles; velocity dispersion (bottom row) adiabatic evolution of dark
matter halo (left-hand panel) and bulge (right-hand panel) for the cor_a2 simulation,
the black dash-dotted lines represent the profiles at t=0 Gyr. The coloured lines represent
respectively the profiles at different times, as indicated in the legend.
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Chapter 4. Simulations results

Figure 4.5: Face-on (top row) and edge-on (bottom row) gas column density maps of the
Milky-Way like galaxy computed in the cor_a2 simulation at t = 0.45 Gyr (left panels),
t = 0.9 Gyr (middle panels), t = 1.35 Gyr (right panels). We can visually appreciate the
stability present in the different galaxy components, in particular in the hot corona, that
can be seen in the edge-on projections.

90



4.2. Simulations with the SMUGGLE model

kpc wide and is comprised of 1024 × 1024 pixels that give a resolution of ∼ 50 pc.

These projections visually confirm the dynamical stability of the simulated galaxy

model, with a configuration that remains almost unchanged for a time span of 2

Gyr.

4.2 Simulations with the SMUGGLE model

The next step is to simulate an isolated galaxy using the SMUGGLE model, in order

to compute a realistic evolution of the galaxy that includes dissipative processes,

such as star formation, cooling and heating of the gas, and stellar feedback (see

Section 2.4). We performed three simulations: cor_s1, cor_s2 and cor_s3,

with different coronal masses, reported in Table 4.1, using the same parameters

mentioned in Section 4.1. We analyzed the simulations focusing on the interplay

between the disc and the corona and its influence on the star formation of the

galaxy. In particular we show: (i) the star formation rate and its connection with

the circulation of gas, studying outflow and inflow rates of gas (Subsection 4.2.1),

(ii) the time evolution of the different gas phases (cold, warm and hot) and (iii) the

role of the metallicity (Subsection 4.2.2).

4.2.1 Star formation-outflow/inflow connection

As mentioned in Chapter 1, the formation of stars is a fundamental process to

understand the evolutionary state of galaxies; in star-forming galaxies like the Milky

Way a star formation rate (SFR) of ∼ 1−2M⊙ yr−1 is measured, therefore, we expect

our simulations to reproduce this quantity in the presence of the corona. Figure 4.6

shows the SFR of the galaxy as a function of time for the three simulations cor_s1,

cor_s2 and cor_s3. All three simulations present a large bump in the SFR for

times t < 0.5 Gyr. We note that the massive the corona the higher the bump. This

bump is due to the rapid collapse of the corona in the central regions, caused by a

configuration of non-equilibrium due to the presence of an efficient radiative cooling

from the beginning of the simulation, which was not present (by definition) in the

adiabatic simulations. Adiabatically, we set the corona in hydrostatic equilibrium,

but the activation of the cooling processes causes a significant deviation from it.

This causes the corona to lose pressure support in the central regions and accrete

(too) rapidly onto the disc. This problem is due to the numerical implementation of

the corona, which is already in place at the beginning of the simulations. A realistic
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simulation would gradually form the hot corona in time following the processes

mentioned in Chapter 1. Some solutions to this problem could be the addition

of rotation to the coronal gas or the implementation of a different coronal density

profile, as we will be briefly discussing in Chapter 5.

After this first “collapse” phase, that keeps the SFR at a relatively high level for

∼ 0.5 Gyr, the SFR stabilizes thanks to the self-regulation between star formation

and stellar feedback achieved by the SMUGGLE model. It is worth noting that

there is still a strict connection between the SFR and the mass of the corona: the

more massive the corona, the higher the star formation rate level at late times. This

behaviour is caused by the accretion of the coronal gas onto the disc of the galaxy.

A higher coronal gas accretion rate induces higher densities of the gas in the disc

and a larger star formation rate than in a no accretion scenario. In the cor_s1

simulation the SFR starts from ∼ 5 − 6 M⊙ yr−1 after the bump and it decreases

to ∼ 2 M⊙ yr−1 at 2 Gyr.
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Figure 4.6: SFR of the galaxy as a function of time for the three simulations performed:
cor_s1 (blue), cor_s2 (yellow) and cor_s3 (green). We note the presence of a SFR
bump in the first 0.5 Gyr (highlighted by the grey band) due to an initial collapse of the
corona caused by the activation of the radiative cooling processes. In general, in all the
three simulations, the higher the coronal mass, the higher the SFR, pointing out a link
between the presence of this component and the level of the star formation.

The same decreasing trend is present in the cor_s2 and in the cor_s3 simula-
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tions. In cor_s2 the SFR remains over 1M⊙ yr−1 (starting from ∼ 2M⊙ yr−1 after

the bump) until 1.7 Gyr (in good agreement with the SFR observed nowadays in

the Milky Way), when it continues decreasing to ∼ 0.7 M⊙ yr−1. cor_s3 features

a SFR after the bump that goes from ∼ 1 M⊙ yr−1 at 0.5 Gyr to ∼ 0.4 M⊙ yr−1 at 2

Gyr. It is worth noting the presence of a periodicity in the SFR (visible in particular

in the cor_s1 simulation), this ’up-and-down’ trend is linked to the self-regulation

between the formation of stars and the stellar feedback that it causes. On the one

hand, the periodic activation of the stellar feedback temporarily reduces the star

formation injecting energy and momentum in the ISM, heating the gas and ejecting

it from the disc. On the other hand, the periodic (re-)accretion of gas onto the disc

can support fresh star formation.

We show now the face-on and edge-on surface density maps of the cor_s1,

cor_s2 and cor_s3 simulations at different times, as indicated in each panel.

From the face-on projection of cor_s1 (Figure 4.7) it is evident the gaseous disc

structure of the galaxy. As the simulation starts, the first stars begin to form,

generating radiative feedback and stellar winds that are followed by the supernova

explosions: the formation of low-density cavities (surface densities < 1M⊙ pc−2)

caused by these phenomena is evident. These cavities, filled with hot gas, can

extend over the plane of the disc and are responsible for the production of outflows.

Along the spiral arms of the galaxy, on the edges of the generated cavities, are

present high-density gas filaments, where most of the star formation takes place.

The same phenomenon happens for cor_s2 (Figure 4.7) and cor_s3 (Figure 4.8).

Looking at the projections, we note that the size of the disc increases as the mass

of the corona decreases. This could be caused by a redistribution of the angular

momentum from the disc to the corona caused by the gas circulation (that is more

intense in cor_s1), but this speculation requires further investigations.

Focusing on the edge-on projections (Figures 4.10, 4.11 and 4.12), in a first phase,

as mentioned, the hot corona collapses rapidly onto the disc (see top left panel of

Figure 4.10), and this causes the initial bump in the SFR. Then the corona inflates

again and continues its evolution. From the edge-on projections of the cor_s1

model of Figure 4.10 it can be appreciated the presence of outflows ejected from the

disc. In this case the outflows can reach relatively large distances from the galaxy

midplane (∼ 10 kpc) and then fall back onto the disc. This is apparent in the 1.15

Gyr image where we can see the arc trajectory made by the galactic fountain. In

Figure 4.11 we show the gas column density edge-on projections for cor_s2, here

the coronal mass is smaller reaching lower densities in the last images (t=1.49, 1.55,
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1.86 Gyr). Also, we note that the gaseous outflow are more sporadic and reach

smaller heights (∼ 5 kpc). A similar trend is visible in Figure 4.12, in the case

of cor_s3, where the mass of the corona is almost negligible and no large scale

outflows are present. A more detailed outflow/inflow analysis is made below.

We computed also edge-on projections of the density-weighted gas velocity per-

pendicular to the disc plane. In cor_s1 (Figure 4.13) we see the complex kinematic

structure of the outflows of gas: these can have a velocity excess of 150 km s−1. Also,

particularly noticeable is the accretion of coronal gas that is strongest in the central

regions, where its density is higher. In cor_s2 (Figure 4.14) and cor_s3 (Figure

4.15) only a few outflows are visible, reaching very small distances above and below

the disc plane.
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Figure 4.7: Gas column density in face-on projections of the cor_s1 simulation computed
using the SMUGGLE model at the times indicated in each panel. Each panel is 50 kpc
across and in projection depth with a total number of 1024 × 1024 pixels that give a
resolution of ∼ 50 pc. Redder colors correspond to higher densities, as indicated in the
colorbar. We can appreciate the presence of a complex ISM structure, with low density
cavities produced by stellar feedback and high density filaments where the star formation
takes place.
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Figure 4.8: Same as Figure 4.7 but for the cor_s2 simulation.
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Figure 4.9: Same as Figure 4.7 but for the cor_s3 simulation.
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Figure 4.10: Gas column density in edge-on projections of the cor_s1 simulation com-
puted using the SMUGGLE model at the times indicated in each panel. Each panel is 50
kpc across and in projection depth with the presence of a total number of 1024 × 1024
pixels that give a resolution of ∼ 50 pc. Redder colors correspond to higher densities, as
indicated in the colorbar. We note the presence of galactic scale outflows caused by stellar
feedback that travel through the hot corona.
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Figure 4.11: Same as Figure 4.10 but for the cor_s2 simulation.
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Figure 4.12: Same as Figure 4.10 but for the cor_s3 simulation.
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Figure 4.13: Density-weighted maps of the gas velocity perpendicular to the disc plane
in edge-on projections of the cor_s1 simulation. Each panel is 50 kpc across and in
projection depth with a total number of 1024 × 1024 pixels that give a resolution of ∼ 50
pc. We can visually appreciate the kinematic structure of the outflows of gas ejected from
the disc.
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Figure 4.14: Same as Figure 4.13 but for the cor_s2 simulation.
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Figure 4.15: Same as Figure 4.13 but for the cor_s3 simulation.
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Outflow and inflow rates

To analyze the relationship between star formation and the gas accreted/ejected

onto/from the disc of the galaxy, we analyze the outflow and inflow rates of gas.

We computed these rates as described in Marinacci et al. (2019). We took two slabs

with a width ∆z = 0.3 kpc starting at an height from the plane of the disc of ±2 kpc

and ±5 kpc. Each gas particle i inside the slabs and with R < 30 kpc contributes

to the outflow/inflow rate with

(outflow/inflow)i =
vz,imi

∆z
, (4.2.1)

where vz,i is the vertical velocity and mi is the gas particle mass. The outflow rate is

computed summing the contributes of the particles that are moving away from the

disc, i.e. particles with vzz > 0; while the condition vzz < 0 identifies the particles

corresponding to an inflow. In Figures 4.16, 4.18 and 4.19 we show the outflow (red

line) and the inflow (blue line) rate changing the distance of the slabs: 2 kpc and

5 kpc. The three dash-dotted lines represent the average values of the inflow rate

(light blue), the SFR (grey) and the outflow rates (orange).

In Figure 4.16 the outflow and inflow rates for the cor_s1 simulation are shown.

In the top panel we show the rates at a distance of 2 kpc: the inflow rate (∼
6 M⊙ yr−1) is, on average, higher than the outflow rate (∼ 2 M⊙ yr−1). In the

bottom panel we show the rates at a distance of 5 kpc: we have an inflow rate of

∼ 3 M⊙ yr−1 and an outflow rate that is zero beside a few spikes that can reach

4 M⊙ yr−1. The stellar feedback is able to launch gaseous outflows over 5 kpc, with

a rate of ∼ 5 M⊙ yr−1. However, since these large distances can be reached only by

the strongest outflows, the transported mass of gas is very low (∼ 1− 2× 108 M⊙)

and only a few peaks in the outflow rate are present. It is worth to notice that most

of the peaks in the inflow rate correspond to depressions in the outflow rate and

vice versa. This indicates the presence of a gas circulation at the interface between

the disc and the halo (occupied by the corona) of the galaxy: the stellar feedback

produces galactic fountains (outflows) that pass through the corona and then fall

back onto the disc (inflows). We expect this phenomenon to drag also some coronal

gas (in addition to the one accreted onto the disc, powering the initial bump in the

star formation) that could refill the disc and sustain the star formation.

In Figure 4.16 we also superimposed the SFR, with an offset of 6 M⊙ yr−1

(grey dotted line) for clarity. The first noticeable thing is that the average SFR

(∼ 5 M⊙ yr−1) is below the average inflow rate, implying that the supplying
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of gas from the corona has a non negligible influence on the total gas budget of

the galaxy, making it an important reservoir for the star formation. Taking these

numbers at face value, we can infer that star formation can be sustained entirely

by the accretion of the coronal gas. Indeed, the inflowing gas is for the major

part caused by the accretion due to coronal gas. Computing the net inflow rate

inflow rate − outflow rate = ∼ 4 M⊙ yr−1, it follows that only a fraction of the

inflows is accounted by the gas that is ejected from the disc and that return back to

it, the rest of the gas must be accreted from the corona. Secondly, we note that the

SFR peaks correspond, approximately, to the peaks in the inflow rate, but shifted

by ∼ 0.2 Gyr. To help the eye, we have highlighted this behaviour by inserting grey

and blue arrows to indicate peaks in the SFR and in the inflow rate respectively.

The presence of this correlation between the SFR and outflow rate trends means

that the gas accreted from the corona can efficiently cool and form stars in the disc

of the galaxy. This highlights a strict connection between these two phenomena,

showing how the star formation is intimately linked to the accretion of gas from the

external environment.

In Figure 4.18 we show the outflow and inflow rates for the cor_s2 simulation at

2 kpc (top left panel) and at 5 kpc (bottom left panel). The outflow and inflow rates

are smaller with respect to cor_s1 at both the distances from the disc. The average

inflow rate at 2 kpc is ∼ 2.5 M⊙ yr−1, again an initial bump is present, reaching

10 M⊙ yr−1 in the first 0.1 Gyr. At 5 kpc the same trend is present but with a lower

rate (∼ 1 M⊙ yr−1). The outflow rate has an average value of ∼ 0.3 M⊙ yr−1, with

few peaks that reach 2 M⊙ yr−1 of maximum, whereas no outflows are launched to

a scale of ∼ 5 kpc. Also in this case we note that the average SFR (dash-dotted

grey line), i.e. ∼ 1.9 M⊙ yr−1, is below the average inflow rate (dash-dotted light

blue line) of ∼ 2.5 M⊙ yr−1, therefore the accreted gas is sufficient to sustain the

formation of new stars in this case too. Again, the SFR (dash-dotted grey line) has

the same trend of the inflow rate.

In Figure 4.19 we show the outflow and inflow rates for the cor_s3 simulation.

The outflow and inflow rates are even lower, with an inflow rate average value of

∼ 1.8 M⊙ yr−1 and an outflow rate of ∼ 0.1 M⊙ yr−1. At 5 kpc the inflow rate is

∼ 0.2 M⊙ yr−1, while no outflows are launched to this scale.

From the comparison between the three simulations, in which the only difference

is the mass of the corona, we understand how this parameter controls the circulation

of gas in the galaxy. In cor_s1 the coronal gas is more efficiently accreted onto the

disc leading to a higher SFR. The newly formed stars inject momentum and energy in
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the ISM causing the ejection of a fraction of the gas. As explained in Chapter 1 this

mechanism is responsible for the coronal accretion on the disc. Beside the first large

bump, we noted that the inflow rate increases with the mass of the corona, but also

with the outflow rate. Therefore, a higher outflow rate, caused by a more efficient

star formation, increases the accretion efficiency of the corona, sustaining the star

formation also at large distance from the center after 2 Gyr; this is corroborated by

the results on gas mixing at the disc-corona interface that we describe in Subsection

4.2.2. In cor_s2 and cor_s3 the accretion is lower and the denser regions are

concentrated in the center of the disc, causing a lower star formation rate.

We also computed the wind mass loading factor for both the 2 kpc and the 5

kpc slabs, comparing the outflow rate to the SFR: β = (outflow rate)/SFR. This

quantity estimates the efficiency of the stellar feedback in generating outflows of

gas. In Figure 4.17 we show β for the cor_s1 simulation. The average value

(dash-dotted green line), that is computed avoiding the initial peak in the first 0.1

Gyr, is β ∼ 0.6 considering the rates computed at a distance of 2 kpc (top panel),

and decreases to β ∼ 0.14 in the other case (bottom panel), confirming a damping of

these outflows at larger distances from the disc. We computed the same quantities

for the cor_s2 and cor_s3 simulations. The mass loading factor for both the

simulations shows the same trend of cor_s1 and also β is decreasing with the

mass, it has a value of 0.2 for cor_s2 and 0.08 for cor_s3. These findings point

out that the efficiency of the star formation in generating strong outflows is higher

for higher masses of the corona: a lower mass of the corona implies a lower SFR but

also a lower outflow rate, creating a net factor β that is smaller than the simulation

with a higher coronal mass. These values are smaller then the ones found in chemical

evolution modeling works, for instance Peeples and Shankar (2011) found values of

β ∼ 1.4 and Barrera-Ballesteros et al. (2018) found β ∼ 2 for a Milky Way-type

galaxy. On the other hand, Kim and Ostriker (2018) found β ∼ 0.1 in numerical

simulations of stellar feedback.
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Figure 4.16: Outflow (red line) and inflow (blue line) rates computed for the cor_s1

simulation, from the gas inside slabs with a 300 pc width located at ±2 kpc (upper panel)
and at ±5 kpc from the plane of the disc (lower panel). The grey dashed line represents
the SFR, shifted by 6 M⊙ yr−1 for clarity. In the upper panel the three dash-dotted lines
represent the average value of the outflow rate (orange), inflow rate (light blue) and SFR
(grey), and the grey and blue arrows represent the peaks in the SFR and in the outflow
rate, respectively, highlighting a strict connection between the formation of stars and the
accretion of gas from the corona.
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Figure 4.17: Wind mass loading factor β (light green line) in the same two cases of Figure
4.16, the dash-dotted green line represents its average value. This shows the dependence
of the mass loading on the height of the outflows over the disc: only the strongest outflows
can reach a height of 5 kpc.
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Figure 4.18: Left : Outflow (red line) and inflow (blue line) rates computed for the
cor_s2 simulation, from the gas inside slabs with a 300 pc width located at ±2 kpc
(upper panel) and at ±5 kpc (lower panel) from the plane of the disc. The dashed grey
line represents the SFR. In the upper panel the three dash-dotted lines represent the av-
erage value of the outflow rate (orange), inflow rate (light blue) and SFR (grey), in the
lower panel the dashed line represents the SFR. Right : Wind mass loading factor β (light
green line) in the same two cases, the dash-dotted green line represents its average value.
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Figure 4.19: Same as Figure 4.18 for the cor_s3 simulation.
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4.2.2 Gas mixing at the disc-corona interface

Another fundamental aspect that has to be considered is the gas mixing at the

disc-corona interface. This phenomenon is particularly important for its effect on

the cooling of the corona. In fact, the interaction of the cold gas ejected from the

disc and the hot gas of the corona produces a mixture at intermediate temperature

whose cooling is more efficient. Furthermore, the coronal gas has a low metallicity

(Zcor ∼ 0.1 Z⊙), unlike the gas in the disc (Zd ∼ 1 Z⊙) and the combination between

these two gas phases forms a gas with a metallicity higher than the original value

of the corona, further promoting radiative cooling. We analyze these two aspects

studying temperature and metallicity distributions in the zone of interaction between

the disc and the corona.

Temperature analysis of the different gas phases

The galaxy is surrounded by a high temperature gas (T > 106 K) that composes the

corona, on the other hand the gas in the plane of the disc is mostly cold (T < 104 K)

and warm (104 < T < 105 K). The SNe generate superbubbles that can reach sizes

larger than the width of the disc, ejecting material outside the disc. This material is

composed by a mix of cold and hot gas (i.e. the gas inside the superbubble, heated

by the shock wave generated by the SNe explosions). We expect this material to

mix with the coronal gas in the regions near the disc.

In Figure 4.20 we show the density-weighted projected temperature of the gas

for the cor_s1 simulation. First, we note the presence of a multiphase medium

around the disc. Within it the temperature reaches T < 103 K thus allowing the

gas to collapse and form stars. At 1 kpc above and below the disc the gas is hotter,

reaching 104 K. Outside of the disc of the galaxy the temperature is dominated by the

coronal gas (T > 106 K). The temperature of the aforementioned gaseous outflows is

in general at an intermediate level (104 < T < 105 K) thanks to the mixing with the

gas from the corona. The same characteristics can be seen in Figure 4.21, where we

show the temperature projections for cor_s2; as already described for the density

projections, the outflows in this case are very limited, as the cold and warm gas is

confined very close to the plane of the disc (|z| < 2 kpc) and only a few large-scale

outflows are visible; this is also confirmed by the low mass loading factor. In Figure

4.22 we show the temperature projection for the cor_s3 simulation, the warm gas

is more extended with respect to cor_s1 and cor_s2, reaching ∼ 5 kpc above

and under the disc. The outflows are almost negligible. In this case the warm gas
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Figure 4.20: Density-weighted temperature in edge-on projections of the Milky-Way like
galaxy computed with the SMUGGLE model at times indicated in each panel, for the
cor_s1 simulation. Each panel is 50 kpc across and in projection depth with the presence
of a total number of 1024 × 1024 pixels that give a resolution of ∼ 50 pc. We can visually
appreciate the mixing between the material ejected from the disc and the hot corona, with
the formation of an intermediate temperature gas phase at the disc-corona interface.
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Figure 4.21: Same as Figure 4.7 but for the cor_s2 simulation.
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Figure 4.22: Same as Figure 4.21 but for the cor_s3 simulation.
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is distributed also over 5 kpc above and below the disc. This can be explained with

two considerations: the corona has a very small mass in this setup, and a small

quantity of cold gas ejected from the disc is sufficient to rapidly decrease the corona

temperature. Furthermore, since the mass of each gas cell in the ICs is fixed, a small

mass results in a very low number of cells. This might cause an insufficient spatial

resolution in the interface region.

To study the evolution of the different gas phases we computed the mass of the

gas, divided in hot (T > 106 K), warm (104 < T < 106 K) and cold (T < 104 K)

gas. This gas has been selected taking all gas particles with R < 30 kpc and |z| > 2

kpc (gas outside the disc) or |z| < 2 kpc (gas within the disc). In Figure 4.23 we

show the evolution of the mass of these different phases as a function of time for

the cor_s1 simulation. Considering the gas at |z| > 2 kpc (left-hand panel), we

see that the mass of the hot gas (red line) decreases in time, this is consistent with

a scenario in which the corona is accreted onto the disc, in fact the hot gas mass

passes from ∼ 2×108 M⊙ to ∼ 2×106 M⊙ in 2 Gyr. The warm and cold phases have

a coeval evolution, with the cold gas dominating in mass. We analyze in more detail

these phases in Figure 4.25. The gas at |z| < 2 kpc (right-hand panel) is dominated

by the cold gas of the disc, the mass of this phase remains almost constant for the

entire lifespan of the simulation at a value ∼ 3× 109 M⊙, showing the efficiency of

the coronal gas to cool down and replenishing the reservoir of gas eligible for star

formation. With an average SFR of ∼ 5 M⊙ yr−1 we expect ∼ 1010 M⊙ of gas

to turn into stars, it would not be possible to maintain this high SFR without the

presence of an efficient accretion of gas from outside the disc. Also warm and hot

gas is present, with masses almost negligible with respect to the cold phase.

In Figure 4.24 we see the gas phases evolution for the cor_s2 simulation. At

|z| > 2 kpc (left-hand panel) the hot gas passes from ∼ 7×107 M⊙ to ∼ 2×106 M⊙,

showing a slightly less efficient accretion with respect to the higher coronal mass

present in cor_s1. Again the warm and cold phases are mixed together presenting

the peaks in their mass evolution at the same time. The gas at |z| < 2 kpc has

properties similar to cor_s1 with the cold gas keeping a constant value of ∼ 2 ×
109 M⊙ over the entire simulation. Despite having a similar cold gas mass in the disc

the two simulations cor_s1 and cor_s2 have a very different SFR. This difference

resides in the different accretion from the corona, in fact, the accreted mass in the

region R < 30 kpc in cor_s1 (∼ 9.9× 107 M⊙) is greater then the one in cor_s2

(∼ 6.8 × 107 M⊙). This helps the galaxy in cor_s1 to keep high-density regions

of star formation over the entire disc for 2 Gyr (Figure 4.7), while in cor_s2 after
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∼ 1 Gyr the presence of these regions has significantly decreased (Figure 4.8) and

in cor_s3 only in the center of the galaxy the gas density is high enough to form

stars after ∼ 1 Gyr (Figure 4.9). Moreover, a higher initial SFR causes a higher SN
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Figure 4.23: Mass of the gas with a cylindrical radius R < 30 kpc and |z| > 2 kpc (left-
hand panel) or |z| < 2 kpc (right-hand panel) for the cor_s1 simulation as a function of
time, divided in three ranges of temperature: hot (T > 106 K), warm (104 < T < 106 K)
and cold (T < 104 K) gas.
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Figure 4.24: Mass of the gas with a cylindrical radius R < 30 kpc and |z| > 2 kpc (left-
hand panel) or |z| < 2 kpc (right-hand panel) for the cor_s2 simulation as a function of
time, divided in three ranges of temperature: hot (T > 106 K), warm (104 < T < 106 K)
and cold (T < 104 K) gas.

rate. We speculate that the SNe can also act as a positive feedback, compressing the

gas in the disc at the edges of the bubbles formed by their explosions, and helping
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in maintaining high density gas filaments in the disc.

In Figure 4.25 the gas phases evolution for cor_s3 is shown, only little cold

mass is present in the gas at |z| > 2 kpc (left-hand panel), while looking at the

gas at |z| < 2 kpc (right-hand panel) we note that the cold gas mass passes from

∼ 2 × 109 M⊙ to ∼ 8 × 108 M⊙, since the corona does not have enough mass to

replenish the gas consumed by star formation in the disc.
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Figure 4.25: Mass of the gas with a cylindrical radius R < 30 kpc and |z| > 2 kpc (left-
hand panel) or |z| < 2 kpc (right-hand panel) for the cor_s3 simulation as a function of
time, divided in three ranges of temperature: hot (T > 106 K), warm (104 < T < 106 K)
and cold (T < 104 K) gas.

In Figure 4.26 we show the evolution of the gas phases at the disc-corona interface

for the cor_s1 simulation, in particular in the region at 2.5 < z < 6 kpc over and

under the disc. We also superimposed the outflow rate (whose values can be read

in the right-hand y axis) in the Figures, showing how they are tightly linked to the

trend of the cold and warm gas phases, highlighting the galactic fountains origin

of the gas in this region. The mass of cold/warm gas has a periodic trend, first

increasing and then decreasing over the time, we interpret this as the fountain cycle:

first the gas is ejected over the plane of the disc (increase of the cold/warm mass),

then after a certain time ∆tcycle it fall back onto the disc (decrease of the cold/warm

mass) in a different position. In particular, from the width of the different peaks

we can qualitatively determine the duration of a given fountain cycle. In cor_s1

we obtain ∆tcycle ∼ 100− 150 Myr, in cor_s2 (shown in Figure 4.27) the fountain

cycle has a similar duration. In both the simulations the outflows are composed by

a mix of cold and warm gas, with a mass dominance of the cold phase. The cold
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mass ejected outside the disc at 2.5 < z < 6 kpc in each fountain cycle varies from

∼ 2− 3× 107 M⊙ to peaks of ∼ 2× 108 M⊙ in cor_s1 and from ∼ 4− 5× 106 M⊙

to ∼ 6×107 M⊙ in cor_s2, this is consistent with the smaller outflow rates present

in this simulation. cor_s3 (Figure 4.28) presents a different trend. There are only

a few fountain clouds ejected from the disc, with an almost negligible transported

mass. At this height from the disc the total mass is dominated by the warm gas, as

it is visible in Figure 4.22, but its mass has a value of ∼ 2× 107 M⊙ only.
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Figure 4.26: Mass of the gas with a cylindrical radius R < 30 kpc and 2.5 < z < 6 kpc
above and below the disc for the cor_s1 simulation as a function of time, divided in three
ranges of temperature: hot (T > 106 K), warm (104 < T < 106 K) and cold (T < 104 K)
gas. The cold gas mass is increasing and decreasing over time, showing the presence of a
galactic fountain cycle at the disc-corona interface.
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Figure 4.27: Same as Figure 4.26 but for the cor_s2 simulation.
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Figure 4.28: Same as Figure 4.26 but for the cor_s3 simulation.
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Metallicity distribution

The accretion of low-metallicity gas from the corona is required from observations

in order to solve a series of problem, such as the G-dwarf problem (see Chapter 1).

In this subsection we analyze the metallicity distribution in the three simulations.

In Figure 4.29 we show the mass-weighted metallicity for the cor_s1 simulation:

initially, we have two very distinct metallicities between the disc and the corona.

Then, the interaction between the disc and the corona caused by the galactic foun-

tains produce a strong mixing of these two gas phases creating zones at different

intermediate metallicities. The outflows of gas are metal-rich, since they are mostly

composed of material from the disc. Moreover, a decrease of disc metallicity over

the time due to the accretion of the coronal gas can be appreciated. In Figures 4.30

and 4.31 we show the mass-weighted metallicity for cor_s2 and cor_s3, respec-

tively. The gas mixing is clearly smaller as a consequence of the smaller outflow

rate, maintaining a high metallicity in the disc.

Also, we have computed histograms that show the metallicity distribution of the

gas. We have divided the metallicities from 0 to 1 Z⊙ in uniformly spaced bins

of 0.033 Z⊙, in each bin we have calculated the mass of the gas present at this

metallicity. The histogram has been computed for different times: t = 0, 0.5, 1, 1.5,

2 Gyr. At t = 0 Gyr all the mass is located at 0 Z⊙ and 1 Z⊙, as set in the ICs

(Chapter 3), then the evolution takes place and the mixing creates gas at different

metallicities. In particular, the cor_s1 simulation is shown in Figure 4.32: at 2

Gyr the maximum metallicity reached is ∼ 0.6 Z⊙ (×107 M⊙) and the majority of

the gas (∼ 8×109 M⊙) is distributed around 0.5 Z⊙. A non-negligible portion of gas

is distributed between 0 Z⊙ and 0.5 Z⊙. The same features are present in cor_2

(Figure 4.33): here, at 2 Gyr most of the gas (∼ 5× 109 M⊙) is distributed around

0.67 Z⊙ (i.e. the maximum metallicity). Of course, a smaller coronal mass accreted

brings to a reduction in the dilution of the gas metallicity. In Figure 4.34 we show

the histogram for cor_s3, the mixing of the gas is visibly smaller, in fact at 2 Gyr

the disc is mostly at 0.9 Z⊙. As we expected, the mass of the corona largely affects

the efficiency of the mixing at the interface, more massive coronae lead to higher

accretion rates, diluting the disc metallicity more efficiently.

We conclude by noting that the synthesis of heavy elements from the stellar evo-

lution is a feature present in the SMUGGLE model, but for simplicity has been

disabled in our simulations. Therefore, in our case, chemical evolution is caused

only by the mixing of the initial two gas phases at different metallicity. The synthe-

sis and ejection of new metals from stars would tend to move the metallicity of the
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ISM toward larger values. We will evaluate the effects of this physical process in a

future analysis.
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Figure 4.29: Mass-weighted metallicity in edge-on projections of the Milky-Way like
galaxy computed with the SMUGGLE model at the times indicated in each panel for
the cor_s1 simulation. Each panel is 50 kpc across and in projection depth with a
total number of 1024 × 1024 pixels that give a resolution of ∼ 50 pc. We can visually
appreciate the mixing between the material ejected from the disc and the hot corona, with
the formation of an intermediate metallicity gas phase at the disc-corona interface.
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Figure 4.30: Same as Figure 4.29 but for the cor_s2 simulation.

123



Chapter 4. Simulations results

Figure 4.31: Same as Figure 4.29 but for the cor_s3 simulation.

124



4.2. Simulations with the SMUGGLE model

0.0 0.2 0.4 0.6 0.8 1.0
Z (Z⊙)

106

107

108

109

1010

M
 (M

⊙)

M=1.38×1010 M⊙

0 Gyr
0.5 Gyr
1 Gyr
1.5 Gyr
2 Gyr

Figure 4.32: Mass of the gas as a function of metallicity at t=0, 0.5, 1, 1.5, 2 Gyr for
the cor_s1 simulation. The histograms are divided in bins of 0.033 Z⊙. At 0 Gyr the
gas is distributed in distinct peaks at 0.1 and 1 Z⊙, at later times gas mixing takes place
generating gas with a more extended range of metallicities.
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Figure 4.33: Same as Figure 4.32 but for the cor_s2 simulation.
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Figure 4.34: Same as Figure 4.32 but for the cor_s3 simulation.
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In this Thesis work we studied the evolution of a series of multicomponent N -body

hydrodynamical models representative of a Milky Way-like galaxy embedded in a hot

gaseous atmosphere, the so-called corona, with the help of numerical simulations.

In particular, we focused on the interaction between the disc and the corona caused

by the gas exchanges between these two components mediated by stellar feedback.

We studied several aspects of such an interaction, such as the balancing between

the star formation and the outflows/inflows of gas and the mixing between the disc

and the corona. We analysed how these aspects are sensitive to the total mass of

the coronal gas employing the moving-mesh code Arepo and the explicit stellar

feedback and interstellar medium model SMUGGLE to carry out our simulations.

After a short discussion of the algorithms implemented in the Arepo code and a

presentation of the key aspects of the SMUGGLE model (Chapter 2), in Chapter 3

we have successfully built a set of initial conditions for the hydrodynamical N -body

simulations analyzed in this work that picture an equilibrium configuration for our

multicomponent galaxy containing a galactic corona. This configuration has then

been used to perform both adiabatic simulations and "full-physics" simulations with

the SMUGGLE model. The main results of these calculations can be summarized

as follows:

• In Section 4.1 we have tested our initial configuration in adiabatic simulations,

finding that the density profiles and the kinematics of the different components

are maintained for 2 Gyr of evolution.

• In Section 4.2.1 we found that the corona is the main contributor to the ma-

terial sustaining star formation in the galaxy: the star formation takes place

from the gas accreted from this component, without which the galaxy would

quench the star formation in a short time. Higher SFR levels have been found

for the higher coronal mass simulation, highlighting a correlation between the

mass of the coronal gas and the SFR: a higher corona mass helps the star for-

mation thanks to the more efficient formation of high-density filaments across

the entire disc of the galaxy. We have also analyzed the inflow and outflow
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rates, finding a connection between the gas accreted onto the disc of the galaxy

and star formation: an increase in the inflow rate is directly followed by a de-

crease of the SFR but, on average, with a delay of ∼ 0.2 Gyr. We observe also

the formation of gaseous outflows thanks to the combined effects of the dif-

ferent stellar feedback processes implemented in the SMUGGLE model. The

alternation of the peaks in the outflow and inflow rates, for which each outflow-

dominant phase is followed by an inflow-dominant phase, suggests the presence

of a circulation of the gas between the galactic disc and the corona. Also, the

accretion of gas might potentially be helped by the interaction between the

galactic fountains and the coronal gas, favoring its cooling.

• In Section 4.2.2 we have analyzed the time evolution of the different gas phases

present in the galaxy (cold, warm and hot gas). We found that the cold

gas ejected from the disc is efficiently mixed with the gas from the corona

forming, indeed, a mixture of intermediate temperature gas. The cold and

warm extraplanar gas mass present in the interface region (2.5 < z < 6 kpc),

increases and decreases over the time and this has been interpreted as gas

ejected from the disc, in the form of a galactic fountain flow. This hypotesis

corroborated by the fact that the peaks in the mass of cold gas temporally

correspond to the peaks in the outflow rate, suggesting a galactic duty cycle,

with a fountain cycle duration of ∆tcycle ∼ 100 − 150 Myr. The mass of

gas ejected from the disc is lower with a lower corona mass, because stellar

feedback injects less momentum and energy in the ISM as a consequence of

the lower SFR levels in the disc. We have seen that the accretion of coronal

gas helps the galaxy to maintain an almost constant cold gas mass in the disc,

confirming the primary role of the corona in sustaining the star formation in

the galaxy.

Furthermore, we have analyzed the metallicity distribution of the gas in the

entire simulation box, a quantity particularly important for the cooling of the

corona. The mixing of the gas caused by galactic fountains creates a gaseous

mixture with a higher metallicity with respect to the initial one of the corona,

this mixture will have a more efficient radiative cooling thanks to the presence

of more heavy elements. Moreover, the gas accreted onto the disc causes a

chemical evolution of this gas, diluting its metallicity. We found a correlation

between the mass of the corona and the dilution of the metallicity in the disc.

More massive coronae accrete more metal-poor mass and faster onto the disc,

128



pushing its metallicity lower.

Our analysis has shown the fundamental role of the galactic corona in the evolution

of Milky Way-type galaxies, allowing the star formation to continue over time and

modifying the chemical evolution in the disc itself.

The investigation performed in this Thesis work can be expanded in several ways.

The first aspect that can be analyzed is to explore different configuration for the

corona. In our simulations we have found that the corona has an initial rapid collapse

due to the excessive cooling at the center that causes large gas inflows supporting

a high level of star formation. A more centrally stable corona can help to obtain a

more gradual evolution for this component, strengthening our results. This results

can be achieved by modifying the initial conditions of the simulations along two

main lines:

• Currently the corona is set up with a null velocity, adding a rotation component

to the coronal gas can help in slowing, or at least delaying its accretion onto

the disc.

• In the central regions the cooling time of the corona is extremely short (∼ 10−
100 Myr). This is caused by the chosen Hernquist (1990) density profile, which

has a central cusp. The efficiency of the cooling strongly depends on the density

of the gas and having a less centrally-concentrated corona would decrease the

accretion rate of the coronal gas. This can be achieved by exploring different

corona density profiles, in particular using cored profiles such as a β model

(see e.g. Moster et al. 2011).

Another line of investigation that can be pursued is to explore a larger portion

of the parameter space, in particular studying those parameters that regulate both

structural and kinematic properties of the galaxy and parameters regulating the

intensity of radiative and supernova feedback. Both aspects might have a potentially

large impact on the circulation of gas between the disc and the halo of a star-forming

galaxy that needs to be investigated. For instance, the intensity of the fountain

flow could depend on the gas surface density in the disc, since a higher gas surface

density implies a higher surface star formation rate because of the Kennicut-Schmidt

relation (Schmidt, 1959; Kennicutt Jr, 1998). This directly affects the intensity of

supernova-driven outflows and the gaseous exchanges with the corona. The (disc or

corona) metallicity profiles can also be varied in order to have metallicity gradients

compatible with the observational constraints and to analyze their impact on the
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global evolution of the galaxy. Moreover, it could be very interesting to change the

total galaxy mass, which in turn influences the temperature of the corona. Indeed,

more massive galaxies have hotter coronae and this might make the condensation

and accretion of the coronal gas more difficult.

The type of simulations analyzed in this Thesis work represent a bridge between

idealized small-scale simulations and cosmological simulations, allowing to obtain a

high/intermediate resolution while still considering a realistic galactic setup. Nev-

ertheless, the model galaxy evolves in isolation and it is not inserted in a full cosmo-

logical context. For this reason, in the future the SMUGGLE model will be ported

from idealized simulations studying the evolution of isolated galaxies to cosmological

applications. In this way, it will be possible to follow the evolution of star-forming

galaxies like the Milky Way with a higher degree of physical fidelity, drawing a

coherent picture of the formation and evolution of such objects.
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