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Sommario

L’aggiustamento isostatico post-Glaciale (in inglese Glacial Isostatic Adjustment, o GIA)

è uno dei fenomeni principi della geofisica alle basse frequenze. Esso consiste nella de-

formazione della superficie terrestre e del geoide in seguito allo scioglimento di masse

ghiacciate. Studiando il GIA i geofisici sono in grado di determinare le caratteristiche

salienti dell’interno della Terra, risolvendo un problema inverso in cui le variabili note

sono le deformazioni osservate, mentre le incognite sono la struttura interna della Terra

e la descrizione spazio-temporale dello scioglimento del ghiaccio. Tuttavia, per la na-

tura stessa dei problemi inversi, è estremamente di�cile ottenere una soluzione unica;

inoltre, numerosi fenomeni geofisici di diversa natura “inquinano” i dati di spostamento,

rendendo la risoluzione di tale problema estremamente complessa.

In questa tesi studierò quali conseguenze comporta, in termini di spostamento atte-

so, l’assunzione di un modello reologico con un transiente nel mantello terrestre. Nelle

reologie transienti la risposta di un corpo a sollecitazioni esterne varia nel tempo: inizial-

mente si nota una risposta rapida, che progressivamente si esaurisce, lasciando il posto

ad una risposta stazionaria. La scelta della reologia transiente è ricaduta sul modello di

Andrade, introdotto dall’omonimo fisico nel 1910 per descrivere la deformazione di alcu-

ni materiali poli-cristallini ad alta temperatura, ed attualmente utilizzata per lo studio

delle defromazioni planetarie. Ovviamente, per caratterizzare Andrade, avremo bisogno

di considerare altre reologie, perciò anche altri modelli reologici saranno esaminati, con

particolare uso di quello di Maxwell. Tale scelta è motivata dal fatto che, nella riso-

luzione classica del problema del GIA, quando non si considera la possibilità di e↵etti

transienti nel mantello, si usa descriverne il comportamento tramite il corpo di Maxwell.

Al contrario, quando gli e↵etti transienti sono considerati, in letteratura si è fatto largo

uso del modello di Burgers.

Alla conoscenza del relatore e dell’autrice di questa tesi, non risulta in letteratura

nessuna descrizione esplicita, in termini di numeri di Love, del rilassamento post-glaciale

di una Terra omogenea (sfera di Kelvin) con reologia di Andrade. Per questo motivo in

questa tesi si indagherà proprio tale possibilità.



Lo scopo principale che vuole adempiere questo lavoro è determinare, dopo averne ben

descritto le caratteristiche principali, come i profili di spostamento generati da modelli

di Terra che considerano reologie transienti (Andrade) nel mantello, si discostano da

modelli in cui sono presenti reologie steady-state; soprattutto si vuole cercare di capire

in che momento della simulazione, e in che punto della superficie della terra rispetto alla

massa ghiacciata considerata, gli e↵etti transienti sono meglio distinguibili. Verranno

considerate sia deformazioni dovute a glaciazioni passate, sia quelle dovute all’attuale

cambiamento climatico.
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Abstract

Glacial Isostatic Adjustment (GIA) is one of the most important phenomena of low

frequency geophysics. It consists in the deformation of the Earth’s surface and the geoid

in response to ice-sheets melting. By studying GIA, geophysicists are able to infer the

main characteristics of the Earth’s interior, by solving an inverse problem whose known

variables are the observed surface displacements, while the unknowns are the Earth’s

internal structure and the space-temporal ice melting description. Nevertheless, by the

nature of inverse problems, it is extremely di�cult to obtain a unique solution; moreover,

a vast number of diverse geophysical phenomena taints displacement data, making the

resolution of the problem very complicated.

In this thesis I will study the consequences, in terms of displacement, that the as-

sumption of a model with a transient rheology in the Earth’s mantle entails. In transient

rheologies the response of a body to external factors varies with time: at the beginning,

a fast response occurs, but it decreases progressively over time. In this thesis I will con-

sider Andrade’s transient rheology, introduced in 1910 by the homonymous physicist to

describe the deformation of some poly-crystalline materials at high temperatures, and

currently used for the study of planetary deformations. In order to characterize Andrade

rheology, we will need to compare it with other rheologies, especially Maxwell body. This

choice is motivated by the fact that, in classical GIA problems, when the possibility of

transient e↵ects in the mantle is discarded, the Maxwell body is the one generally used.

On the contrary, when the e↵ects of a transient are considered, the Burgers body is the

one usually adopted in literature.

To the knowledge of the supervisor and the author of this thesis, an explicit de-

scription, in terms of Love numbers, of the post-glacial relaxation of an homogeneous

(Kelvin’s sphere) Earth with Andrade rheology, does not exist. For this reason, in this

thesis, I will investigate this possibility.

The main purpose of this work is to determine how displacement profiles generated

by Earth model which consider transient rheologies in the mantle di↵er from models

in which steady-state rheologies are accounted. We would like to understand at which

moment of the simulation, and in which position with respect the considered ice load, the



e↵ects of the transient rheology will be better discernible from those due to steady-state

rheologies. Both the cases of deformation due to past deglaciations and those due to

present-day climate change will be taken into account.
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Motivations

In 1731, A. Celsius marked on a costal rock at Lovgrund, Sweden, the sea level.

There the uplift of Earth’s surface was a well known phenomenon, but we ought to

Celsius the first scientific measurement. The mark is still visible and almost 1.7 m over

current sea level. During those years, many scholars explored a number of explanations

for the change in the height of the land, and the idea that an ice sheet could have

depressed it was first proposed by Jamieson (1865) [1, 2]. Nowadays we are aware that

what Celsius and the Sweden population were experiencing, were the e↵ects of Glacial

Isostatic Adjustment (GIA).

In the last fifty years, our knowledge in terms of GIA has progressed considerably,

thanks to the work of many scientists and to the technological innovation. Now we know

that the surface deformation measured in many lands, especially at the high latitudes,

is due to the viscoelastic response of the Earth under the e↵ect of the ancient ice-sheets

melting, that occurred thousands of years ago. Indeed, the weight of an ice sheet is able

to depress the solid Earth below it and also to deform the neighbouring areas. This is

due to the rheology of Earth’s interior: the lithosphere, that we can consider as a thin

and elastic superficial layer, bends and, if time is su�cient, the material in the mantle,

that for long time-scales could be defined as a viscoelastic body, flees from the position

of the applied load to its neighbours, creating a sort of swelling called “forebulge”.

GIA is a topic of fundamental importance in Geophysics not only because it al-

lows us to deepen our knowledge of the cryosphere-geosphere interactions, but also (and

especially) because it o↵ers the possibility to study the Earth rheological response on in-

termediate and long time scales. It is often confused with Post Glacial Rebound (PGR),

while, actually, PGR, the movement of the Earth’s crust in response to the melting of

continental ice sheets, represents only one of its numerous aspects. GIA includes indeed

a wide range of phenomena connected to the loading and unloading of the Earth’s surface
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caused by the periodical variation of continental ice masses, such as global and regional

temporal variations of the Earth’s gravity field, fluctuations of the Earth’s rotation axis,

or the sea level change [1].

The most common viscoelastic body, and even one of the most used to model the

Earth’s mantle in GIA problems, is the Maxwell body. It exhibits, after the action of a

constant stress, an instantaneous elastic deformation followed by a constant strain rate,

called steady-state creep [3, 4].

Since the late 1970s, satellite measurements allow scientists to deepen the analysis

of GIA e↵ects. However, several inconsistencies that arose from this new data instilled

in some of them the doubt that the observed deformations where not the result of the

action of a steady state response, and the idea that “transient e↵ects” must be considered

started peeking out. A transient in rheology is a time dependent-behaviour, that marks

the passage from a regime (like the instantaneous elastic response), to another (like the

steady state-creep).

There exists in literature many examples of rheologies which account for a transient

stage, like that of Burgers, but to probe new possibilities I will focus the attention upon

the Andrade’s rheology, widely used in the study of tidal deformation, but not much in

the field of load deformations. This choice is motivated by the fact that it represents

a more realistic rheological model than the Burgers body, since it has actually been

observed in experiments on metals and polycrystalline materials at high temperature

[5]. Nevertheless, a fully analytical approach is not possible for Andrade’s rheology. The

work of this thesis will investigate if this rheological model is able to represent well the

observed deformation, focusing the attention not only on the physics that this hypothesis

involves, but also on another important question: if a transient e↵ect is indeed present,

are we able to see it by observing GIA at the Earth’s surface ?
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Chapter 1

Basic rheological laws

This chapter is a brief introduction regarding basic Earth’s rheological properties,

drawing inspiration from [6] and [7]. After few words about the Earth’s compositional

structure, I will introduce some aspects of rheology which are essential for the following

chapters of this thesis. Basic rheological models will be analysed, with the aim of defining

a rheological stratification for the Earth. After a brief discussion about the problem of

mantle rheology, and the actual presence of a transient, Andrade rheological model will

be introduced.

1.1 The compositional structure of the Earth

The Earth is the third planet of the Solar System. It belongs to the family of the rocky

planets, and following the nebular theory, it generated by the union of planetesimals by

accretion. Then the gravitational di↵erentiation, the energy released from the impact of

meteors and from the radioactive decay were able to warm the planet until the complete

fusion. The lighter elements and the ones with low melting point migrated to the surface

of the liquid planet, forming the crust once the temperatures cooled; the heavier elements,

like iron and nickel, were further pushed towards the interior. This explains why the

Earth appears layered in mineralogical terms [8].

The compositional layers are:

• Crust - composed mainly by silicon oxide, Al, Na and K. It separated by the mantle

by the so called Mohorovicic discontinuity, (or Moho), depth at which seismologists
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Figure 1.1: Earth’s compositional structure. Adapted from [7].

register a sharp increase in the seismic wave velocity. One can distinguish the

continental crust, with a mean thickness of 30 km, and a oceanic crust, only 10 km

thick. The continental crust can be split as well into two components: a superficial

one, mostly composed by granite, and a deeper one, mainly basaltic. In general,

the crust mean density is less than 3000 kg/m3 [7].

• Mantle - below the Moho, we find the mantle, a layer that extends until a depth

of 2885 km. We can distinguish an upper mantle (from the moho to 670 km),

hosting mainly phase transitions of silicates, whose most common is olivine, and a

lower part (from 670 km to 2885 km), more homogeneous and mainly composed

of iron oxides, Si and Mg [7].

• Core - at depth of 2885 km, the Gutenberg discontinuity marks the boundary

between the mantle and the core. Also the core is divided into two portions at a

depth of 5100 km: the external one, the outer core, is fluid, and composed of Fe

and other lighter elements, and the internal core, solid, composed of Fe and Ni [7].

Knowing the composition of Earth’s interior is fundamental for many reasons, but as re-

gard the work of this thesis, considering its mechanical and dynamical behaviour is more

suitable. That’s why I will present, in the next section, an alternative Earth’s structure,
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called “rheological structure”. But first, a few introductory words about rheology.

1.2 A few words about rheology

Rheology is a interdisciplinary science that studies the deformation and flow of ma-

terials. From the Greek ⇢̀✏́! - flow - and �o�◆́↵ - study of - it literally means study

of the flow. The rheology of a material does not depend only on its characteristics or

its atomic structure, but also on external parameters like temperature, pressure, and

especially time. In rheology, the terms solid and fluid take a di↵erent meaning with

respect the common use: a material is fluid when under a given stress is able to flow

[3].

The main purpose in rheology is to write the so called constitutive equations, mathe-

matical relationships that express the deformation that a body undergoes in response to

a given stress. The deformation - strain - (indicated by ✏) is a kinematic quantity that

describes the changes in shape and volume of a continuum. The stress ⌧ is a dynamical

quantity connected to the traction exerted on the body. Stress and strain are not the

only terms that appear in a constitutive equation: with them we find often the intrinsic

material parameters (such as the viscosity ⌘, the rigidity µ and others). Generally, a

constitutive equation has the form [9]:

R(✏, ✏̇, ✏̈; ⌧, ⌧̇ , ⌧̈ , {P}) = 0 (1.1)

where R is called “rheological function”, and {P} refers to the intrinsic material param-

eters.

In rheology there are two possible approaches [3]: a solid-state one, in which from

considerations regarding how particles are dispose and how they move in the lattice,

it is possible to determine the constitutive equations, and the continuum mechanics

approach, where the rheological properties of materials are deduced macroscopically and

phenomenologically. For the topics that will be presented in this thesis, I will consider

only the second approach. There is a vast variety of rheological behaviours; the most

common rheological laws are Hooke’s law (elasticity), Newtonian law (viscous fluids)

and the Maxwell law for visco-elastic materials. However, other important laws exist, of

importance for this thesis.
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In order to define the rheology of a material, several reference tests can be established:

Creep Test

In a creep test, the stress �(t) is applied at time t = 0 and it is held constant

afterwards: �(t) = �
0

H(t), where �
0

is a constant stress and H(t) is the Heaviside’s

function. In general, the response of materials to a creep test can be split in three

steps: a primary creep (or a transient creep), a secondary creep, or a steady - state creep

and a tertiary creep, which precede the fracture. During all this time the strain is a

non-decreasing function [9].

Stress-relaxation Test

In a relaxation test, the strain ✏(t) is applied at time t = 0 and it is held constant

afterwards: ✏(t) = ✏
0

H(t), where ✏
0

is a strain constant value. Typically, the stress

decays with time: the phenomenon is known as “stress relaxation” [9].

Stress-recovery Test

In a stress-recovery test, a constant stress �
0

is applied at a time t = t
1

and held

constant until time t = t
2

= t
1

+ T , where T > 0 is the duration of the test. Thus, the

stress is: �(t) = �
0

(H(t� t
1

)�H(t� t
2

)). This is a variant of the creep test, in which

the material is loaded and subsequently un-loaded [9].

Cyclic Test

In a cyclic test, for t > 0 the stress is imposed to vary with time according to a har-

monic function �(t) = �
0

H(t) sin(!t+ �). For a general (inelastic) rheology, a phase lag

� is observed between strain and stress, physically associated with the energy dissipation

within the continuum [9].

On the basis of the response to these tests, we can gather materials into classes. Here

is a brief description of the main ones: linear elasticity, newtonian fluids and, as regard

viscoelasticity, I will consider the Maxwell body, the Kelvin-Voigt body and the Burgers

body.
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Linear Elasticity

Figure 1.2: In linear elasticity, the relationship between strain and stress is linear.

Hooke’s law of linear elasticity

�ij = Cijkl✏kl (1.2)

was the first written constitutive equation. Here is reported in the continuous mechanics

form, were �ij is the stress tensor, Cijkl the elastic constants tensor and ✏ij is the strain.

Linear elastic materials deform proportionally to the applied stress (Figure 1.2), and once

the external force is removed, they recover totally, coming back to the unperturbed state.

Basically, almost all solid bodies exhibit elastic deformation under small and short-time

stresses. In rheology the linear elasticity is represented with a spring.

Let’s consider the response of a linear elastic body in a creep test. In one dimension,

since �(t) = �
0

H(t), from the 1D constitutive equation � = µ✏, were µ is the elastic

rigidity, we obtain

�
0

H(t) = µ✏ ) ✏ =
�
0

µ
for t > 0 (1.3)

In a stress-relaxation test we have ✏(t) = ✏
0

H(t), hence we obtain

� = µ✏
0

H(t) ) � = ✏
0

µ for t > 0. (1.4)

For a visualisation of these two results see Figure 1.3 and 1.4.
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Figure 1.3: sketch representation of the result of a creep test on a linear elastic material.
The strain remains constant at the value ✏ = �0

µ
since the stress is applied.

Figure 1.4: Sketch representation of the result of a a stress-relaxation test on a linear
elastic material. In this case, it is the stress that remains constant at the value � = ✏

0

µ
since the strain is applied.
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Newtonian fluids

Figure 1.5: In a Newtonian fluid there is linearity between the stress and the time
derivative of the strain.

A Newtonian fluid is a material able to flow, in other words it deforms indefinitely

after the application of a finite stress (Figure 1.5). The constitutive equation is:

�ij = ⌘✏̇ij, (1.5)

where �ij is the stress tensor, ⌘ is the viscosity and ✏̇ij is the strain rate. Almost all

fluids we encounter in every-day life are newtonian fluids. Viscosity is a parameter that

depends on the material properties, and it is measured in units of Pa ·s. Di↵erently from

elastic materials, newtonian fluids are not able to recover the original state. In rheology,

newtonian fluids are conventionally represented with a damper or a dashpot.

If we consider the response of a Newtonian fluid under the e↵ects of a creep test,

from the 1D constitutive equation � = ⌘✏̇ we obtain

�
0

H(t) = ⌘✏̇ ) ✏ =

Z
�
0

H(t)

⌘
dt =

�
0

⌘
t for t > 0 . (1.6)

In Figure 1.6 this result is schematically displayed. We also note that, since in a stress-

relaxation test we have ✏(t) = ✏
0

H(t), the stress is

� = ⌘✏
0

�(t) since
dH(t)

dt
= �(t) for t > 0. (1.7)
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Figure 1.6: Result of a creep test on a Newtonian fluid.

Viscoelasticity

Combining together elastic and viscous behaviour we obtain viscoelastic materials.

They combine the properties of an elastic body with those of a fluid.

Maxwell Body

One obtains a Maxwell fluid when a spring and a damper are coupled in series. The

e↵ect of this disposition is that the two elements are subject to the same stress, but

not to the same strain. By linearity, the total strain rate ✏̇ can be obtained by adding

together the elastic and the fluid contributions [9]:

✏̇ = ✏̇H + ✏̇N =
�̇

µ
+

�

⌘
. (1.8)

In order to compute the response of this body to the creep test and to the relaxation

test, we will make use of Laplace transform:

L{f(t)} = f̃(s) =

Z 1

0

�
f(t)e�stdt (1.9)

We remark that the definition (1.9) is not the most general definition for the Laplace

transform, but the more suitable for our purposes. For a further reading about Laplace
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transform and their properties, see [10, 11]. By applying the Laplace transform to Eq.

(1.8), we obtain

✏̃s� ✏(0�) =
�̃s� �(0�)

µ
+

�̃

⌘
, (1.10)

and, assuming that both pre-initial conditions vanish, we have:

✏̃s =
�̃s

µ
+

�̃

⌘
, (1.11)

so that, after some elementary steps, one obtains:

�̃ =
µs

s+ ⌧�1

M

✏̃ = µ̃M ✏̃ with ⌧M =
⌘

µ
. (1.12)

The ⌧M constant is called Maxwell relaxation time and µ̃M is the Maxwell complex mod-

ulus. Curiously, Eq. (1.12) is formally identical to Hooke’s law (Eq. 1.2). This is an

expression of the Correspondence Principle of linear viscoelasticity: the Laplace trans-

formed viscoelastic rheological equation is formally obtained from the elastic equations,

provided that the elastic moduli (e.g., µ) are changed into appropriate complex moduli,

like µ̃M(s), which is a function of the Laplace variable s. The Correspondence Principle

will be introduced formally in Section 1.3. Considering Eq. (1.12) we can compute the

response to a creep test and to a relaxation test in the same way we do for the elastic

and newtonian fluid bodies.

For the creep test, by substituting �̃ with the Laplace transform of �(t) = �
0

H(t) we

obtain:

�̃
0

s
= µ̃M ✏̃ ) ✏̃

�
0

=
1

sµ̃M

⌘ J̃M , (1.13)

where J̃M is the Maxwell creep compliance. To obtain the body response to the Heaviside

load, one should perform, on the expression found, the inverse Laplace transform, in order

to retrieve the solution into the time domain. The result is:

L�1{J̃M} = L�1

⇢
1

µs
+

1

⌘s2

�
= JM =

1

µ
H(t) +

t

⌘
, (1.14)
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hence:

✏(t) =
�
0

µ
H(t) +

�
0

⌘
t. (1.15)

In Figure 1.7 it is possible to visualize this result.

Figure 1.7: The response of a Maxwell body to a stress relaxation test. We can see the
instantaneous elastic response, immediately followed by a steady-state regime.

As regard the relaxation test, starting from 1.12 and considering the Laplace trans-

form of ✏(t) = ✏
0

H(t), we have:

�̃ =
µ̃M

s
✏
0

) �̃

✏
0

=
µ̃M

s
⌘ G̃M (1.16)

where GM is called relaxation modulus. Ratio �̃/✏
0

represents the (transformed) stress

per unit strain in a relaxation experiment. It only depends upon the nature of the

rheological body. Once again, performing the inverse Laplace transform, we obtain:

L�1{G̃M} = L�1

⇢
µ

s+ ⌧�1

M

�
= GM(t) = µe�t/⌧M . (1.17)

Hence, we obtain the response of the Maxwell body under the action of a constant strain

in terms of the stress:

�(t) = ✏
0

µe�t/⌧M , (1.18)
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showing that the stress decreases exponentially, with a decay constant ⌧M . The phe-

nomenon is known as stress relaxation., The function (1.18) reported in Figure 1.8.

Figure 1.8: The response of a Maxwell’s body to an applied constant deformation, in
terms of stress.

The Kelvin-Voigt body

This rheological body is composed of the same rheological elements of the Maxwell

body, but in this case they are arranged in parallel. This fact deeply modifies the

behaviour of the system. This time indeed, the dash and the spring are subject to the

same strain, but not to the same stress.

The stress will be the sum of two contributions:

� = �H + �N = µ✏+ ⌘✏̇ , (1.19)

where ⌘ is the viscosity, and µ the rigidity. Even this time we will compute the trans-

formed constitutive equation and we will obtain the creep compliance JK and the relax-

ation modulus GK .

By applying the Laplace transform to (1.19) one obtains:

�̃ = ⌘(s✏̃� ✏(0�)) + µ✏̃, (1.20)
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and assuming ✏(0�) = 0, we find:

�̃ = µ̃K ✏̃, with µ̃K = ⌘

✓
s+

µ

⌘

◆
(1.21)

where the term µ̃K is the complex modulus for the Kelvin-Voigt model. By defining the

characteristic time ⌧K = ⌘/µ, the complex modulus becomes:

µ̃K = ⌘

✓
s+

1

⌧K

◆
. (1.22)

Even in this case we remark that Eq. (1.21) is formally identical to Hooke’s law (1.2). To

determine the creep compliance JK , in Eq. (1.21) we substitute the Laplace transform

of �(t) = �
0

H(t), that is �̃ = �
0

/s. It follows that:

✏̃

�
0

=
1

sµ̃K

=
1

s⌘(s+ 1

⌧K
)
= J̃K , (1.23)

which is the Kelvin-Voigt creep compliance. Since J̃K is the product of two transforms,

to compute the inversion to the time domain it is necessary to apply the Convolution

Theorem: L (f(t) ⇤ g(t)) = f̃(s)g̃(s). After some lines of straightforward calculations,

one obtains:

JK(t) =
1

µ

�
1� e�t/⌧K

�
. (1.24)

The form of this last equation describes the response of a Kelvin-Voigt body under the

action of a constant stress. It is worth to note that here there is no instantaneous

response, since JK(0) = 0, and the subsequent flow is characterized by a transient be-

haviour, where the strain rate varies with time [9]. A constant strain is however reached

for time t �! 1. In Figure 1.9 one can see qualitatively this kind of response. Regard-

ing the relaxation modulus GK , by substituting the Laplace transform of the constant

strain ✏(t) = ✏
0

H(t), that is ✏̃ = ✏
0

/s and Eq. (1.21), we obtain

�̃

✏
0

=
µ̃K

s
= G̃K , (1.25)
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Figure 1.9: The response of a Kelvin-Voigt’s body to an applied constant stress, in terms
of the strain.

which is what we were looking for. The inversion to the time domain is immediate:

GK(t) = ⌘�(t) + µH(t), t � 0 . (1.26)

In this case, if the Kelvin-Voigt body is subject to a constant strain, it responds with a

initial instantaneous elastic deformation, followed by a regime that remains on a constant

value of stress: hence the Kelvin-Voigt body does not relax (Figure 1.10).

Figure 1.10: The response of a Kelvin-Voigt’s body to an applied constant deformation,
in terms of the stress.

The Burgers body

The Burgers body is a rheological model composed by a Maxwell body and a Kelvin-

Voigt body arranged in series. Under a creep test, it exhibits an instantaneous elastic
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behaviour, followed by a transient creep and damping of vibrations over the short time-

scale, and a linearly viscous behaviour over the long time-scale. For this properties it

was proposed as an unifying model for the rheology of the mantle, capable of accounting

for vast range of phenomena [3] (from the propagation of seismic waves to PGR). It can

be demonstrated that the creep compliance JB for the Burgers body is the sum of JM

and JK :

JB(t) =
1

E
2

H(t) +
1

E
1

⇣
1� e

� t
⌧K

⌘
+

t

⌘
2

, (1.27)

where subscripts
1

,
2

refer to the Kelvin-voigt and the Maxwell component respectively.

The creep compliance JB reflects the ability of a Burgers body to respond to a finite

stress with an instantaneous elastic response, then a transient, and finally a steady-state

creep.

The relaxation modulus require more computational work. The final expression is:

GB(t) = G
1

e�
t
⌧1 +G

2

e�
t
⌧2 , (1.28)

where G
1

, G
2

, ⌧
1

, ⌧
2

are positive constants determined by the material parameters E
1

,

E
2

, ⌘
1

, ⌘
2

. Thus, the relaxation of a Burgers body occurs following a discrete spectrum

of relaxation. In the following Figures 1.11 and 1.12, the creep compliance and the

relaxation modulus are qualitatively displayed.

Figure 1.11: The response of a Burgers body to an applied constant stress, in terms of
strain.
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Figure 1.12: The response of a Burger body to an applied constant strain, in terms of
stress.

Transient e↵ects

Considering Eq. (1.15), valid for a Maxwell body, we can note that the transition

from the elastic response to the steady state creep is virtually instantaneous, while the

typical outcome of a cyclic test performed on a general polycrystalline material exhibits

a smoother transition. As we can see in Figure 1.13, the more general form of response

to a stress-recovery test can be split into five steps:

• When the load is applied at time t = t
1

, there is an instantaneous elastic deforma-

tion.

• This is followed by a transient creep, where the strain increases with time at a

decreasing rate.

• When conditions permit (i.e., the temperature is su�ciently high), the transient

creep state may be followed by a stage of steady-state creep, characterized by a

constant strain rate [3].

• Once the load is removed (t = t
2

) there is an instantaneous recovery of the elastic

strain, followed by a time-dependent recovery of the transient strain.

• At the end, the deformation acquired during the steady-state creep is permanent

and unrecoverable.

This kind of history plot is typical of polycrystalline materials, but the time-dependence

of the transient creep function is extremely variable, depending on material and external
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Figure 1.13: General response of polycrystalline materials in terms of deformation to a
stress-recovery test.

conditions. This is why several empirical laws have been proposed, which account, in

some cases, for experimental observations. Some of these are:

Exponential retardation ✏(t) = A
h
1� e�

t
⌧

i

Logarithmic creep law ✏(t) = A log(1 + ↵t)

Modified Lomnitz law ✏(t) =
�

µ

⇣
1 +

q

↵
[(1 + ↵)↵ � 1]

⌘
,

where A, q and ↵ are parameters that depend on the material. In this thesis I will

consider a particular transient creep function, determined by Andrade in 1910 [12], that

will be discussed in the next sections.

1.3 Correspondence Principle

Considering the constitutive equation of a linear viscoelastic body [13]:

p
0

� + p
1

�̇ + p
2

�̈ + ... = q
0

✏+ q
1

✏̇+ q
2

✏̈+ ... (1.29)
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or, more briefly

P�(x, t) = Q✏(x, t) (1.30)

where P and Q are operators of the form F =
Pn

j=0

fj
dj

dtj
.

Taking their Laplace transforms, one obtains:

P (s)�̃(x, s) = Q(s)✏̃(x, s) (1.31)

where P and Q now are polynomials of the variable s. Then, writing

�̃(x, s) =
Q(s)

P (s)
✏̃(x, s) = Ẽ(s)✏̃(x, s) (1.32)

we obtain an expression that is formally identical to the Hooke linear elastic law:

�(x, t) = E(t)✏(x, t) . (1.33)

We have just shown that if we know the analytical solutions of the elasto-static problem

(with its appropriate boundary conditions), then the solution in the Laplace domain of

the quasi-static viscoelastic problem is obtained by substituting in the corresponding

elastic solution the constant E(t) with the appropriate Ẽ(s). Then, in principle, the

solution of the corresponding elastic problem can be anti-transformed in order to obtain

the viscoelastic solution in the time domain. This principle has been used in Section 1.2

to compute the creep compliance and the relaxation modulus of Maxwell and Kelvin-

Voigts bodies.

1.4 Earth rheological Structure

The Earth’s rheological stratification can be inferred by laboratory experiments made

upon typical mantle rocks, by studying the long period behaviour of the Earth in response

to surface loading and unloading and also by seismological investigations. The seismic

wave propagation demonstrate that on short time scale (100 ÷ 105s) , the Earth interior

behaves like a solid, while by studying GIA it seems that the Earth behaves like a fluid.

This fact could appear ambiguous, but only considering classical definition of solid and
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Figure 1.14: Earth’s rheological structure. Adapted from [7].

fluid, based on the atomic structure of the materials. In rheology this fact is well known,

and to describe it, Markus Reiner, one of the fathers of rheology, introduced the so-called

Deborah Number [14]:

De =
⌧rel
⌧exp

=
Relaxation time

T ime scale of the experiment
. (1.34)

A small De is an indicator of fluid behaviour, while larger De is indicator of an elastic

behaviour. The same material can thus exhibit a di↵erent behaviour under di↵erent

external conditions: for instance, in the mantle, in the case of seismic waves propagation,

we have De ⇡ 1, for GIA we have De ⇡ 1, and for mantle convection De ⇡ 0. Once

clarified this aspect and the importance of considering time-scales in rheology, we can

try to divide the Earth on a rheological basis. We have:

• Lithosphere. This first layer is elastic, even on long time scale (108 years). Its

lower boundary is the 1600 K isotherm: over this temperature, the rocks lose

their rigidity, and start behaving plastically. The lithosphere, or strong layer,

is fragmented in plates that move rigidly under the e↵ect of stresses generated

by mantle convection. Under the oceans, the mean lithospere thickness is 100

km, while under continents it can reach 200 km. Considering the compositional
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stratification, the lithosphere includes the crust and the upper part of the mantle,

usually named lithospheric mantle. The behaviour of rocks depends not only on

temperature, but also on the level of applied stress. This explains why in some

regions of the lithosphere, we can observe an elastic-plastic behaviour even at

the depth of the lower crust or of the lithospheric mantle. Under the 1600 K

isotherm we find the sub-lithospheric mantle, a zone that exhibits solid state creep,

a particular behaviour that allows solid rock to flow like a fluid, under specific

conditions of temperature and pressure. The layers of the Earth that exhibit solid

state creep, after the application of a constant stress, are subject to a stationary

flux if we consider a time scale of 104 yrs [7].

• Astenosphere. Beneath the lithosphere, we find the asthenosphere. This layer

is able to sustain deviatoric stress only on very short (100 years) time scales, and

flows on longer time scales. The thickness of the astenosphere is comparable to

that of the lithosphere [7].

• Mesosphere. This is the part of the mantle in which convection takes place. We

can distinguish an upper part, ranging from the boundary with the asthenosphere

to 700 km, with a mean viscosity of 1021 Pa · s, and a lower part, that arrives to

the Gutenberg discontinuity, with a mean viscosity of 1022÷23Pa · s [7].

• Outer core. The absence of S-waves suggests that the outer core is fluid. This

statement finds support in the existence of the Earth magnetic field: only the

presence of a fluid conductor could explain it. Indeed, Fe is able to maintain its

magnetic properties only under temperature below Curie point (780�C), but the

core estimated temperature vary from 3000�C in the mantle-outer core boundary

to 6000�C in the outer-inner core boundary [6].

• Inner core. The return of the S-waves suggest the presence of a solid, elastic inner

core.

1.5 The problem of Mantle rheology

The detailed understanding of Earth’s mantle behaviour is still an open topic in

geophysics. Even if we dispose of a good quantity and variety of data, the complexity of
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the phenomena that take place in it and the impossibility of direct observations represent

important obstacles. In the late 70s, satellite data and further analysis of GIA seemed

to confirm the results of previous studies of Haskell [15] in which mantle viscosity was

assumed to have the almost constant value of 1021Pa·s. This clashed with the conception

of the Earth thermal structure: considering the Hering-Nabarro creep as the dominant

mechanism for deformation in the mantle, one finds that viscosity should increase with

depth [16].

An explanation for this fact is considering that the ratio of the actual temperature

over the melting temperature is constant throughout the mantle, or even (and more

correctly) a decreasing function of depth. Another explanation could be considering

that mantle creep obeys to a power law with stresses increasing with depth, but in this

case there would be a contradiction, since glacial rebound stresses decrease with depth.

One possible way out of this dilemma is to bring transient creep phenomena into the

analysis [16]. The first considering the idea of a transient in mantle was J. Weertman, on

the base of qualitative considerations, and later Peltier, in 1985, provided a mathematical

support for this hypothesis [17].

If the transient is present, and if we assume that the mantle has a linear rheological

response, then a suitable model for describing it would be the Burger’s bi-viscous body

[3] (see Section 1.2). For this reason, the Burger’s body was used by Peltier in its

seminal work in 1981 [18], and became a reference model in Geophysics for the study of

PGR when transient e↵ects are taken into account (along with the Maxwell body when

transient phenomena are neglected). However, the Burger’s body represents only a first

approximation, that assumes implicitly a discrete spectrum of relaxation. On the other

side, creep laws like Andrade’s one o↵er a more realistic description of the transient stage,

in which the spectrum of relaxation is continuous, with the downside of a more complex

mathematical description. In this work I will consider which role plays the presence of a

transient in the Earth’s mantle, representing it through Andrade’s creep law, and I will

try to answer to this fundamental question: if the transient would be present actually,

considering that, since last glacial maximum, 21 000 years have passed, are we still able

to see it?
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Two-layer mantle: Lambeck’s school of thought

A fundamental ingredient in the PGR problem is a realistic ice-history, that is the

spatio-temporal evolution of the ice-sheet. Depending on the problem we need to solve,

the ice-history must be more or less detailed, regional or global, etc... . To understand

present-day deformation due to PGR and to obtain valuable information about Earth’s

rheology, it is necessary to characterize, as better as possible, the deglaciation phase of

the last glacial cycle, which started 21 kyr ago. The major attempts to do so come from

two groups: Peltier and colleagues, and Lambeck and colleagues. The main di↵erences

in the two approaches is in the treatment of ice loads over continental shelves or shallow

basins and in the way in which their techniques are applied to the observational datasets

[19]. Peltier’s analysis mainly focuses on global solutions, while Lambeck’s one focuses

on separate regional solutions.

We will not explain in detail the two approaches, because for our purpose it is su�-

cient to consider the ultimate results of their analyses. While models by Peltier school

assume a viscosity in the upper mantle at 1021 Pa·s and the lower one at 2·1021 Pa·s [20],
Lambeck’s school prefers considering a two-layer mantle model with viscosities for the up-

per and the lower mantle set to 5.1·1020 Pa·s (with a possible range (3.5�7.5)1020 Pa·s),
and 1.3 · 1022 Pa · s ( with a possible range (0.8� 2.8)1022 Pa · s) [19]. Of course these

two models produce di↵erent expected displacements and sea-level change histories, and

it will be interesting to see if the presence of the transient is more evident in one of the

two models. For this reason we will take both two models in consideration.

1.6 Andrade Rheology

One of the first quantitative descriptions of plastic deformation of metal and poly-

crystalline materials at high temperature is the one proposed by Andrade in 1910 [12],

who reported the results of his experimental studies of deformation of Pb and Cu [21].

In general, creep of solids can be subdivided into several stages: at first it is possible

to observe an instantaneous creep, that occurs immediately after the application of the

load; then a transient creep follows. If the temperature is high enough, transient creep

usually leads to linear steady state creep, followed by an accelerated creep preceding the

rupture [3]. In Figure 1.15 it is possible to see one of the plots reported in Andrade’s
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Figure 1.15: The curve “Constant Stress”, shows each one of the three step described
above, the instantaneous creep, the transient and the steady-state, while the curve “con-
stant load” shows the behaviour of the body charged with a constant load, until the
break point. From [12].

seminal work [12].

During experiments, Andrade observed that the metallic sample obeyed the following

law:

✏ = ✏
0

+ �t↵ (1.35)

where ✏
0

is the initial deformation, � a material parameter and ↵ = 1/3 according to

Andrade’s experiments. Parameter ↵ determines the duration of the transient response

in the primary creep. Lee and Morris [22] established that ↵ is a function of the presence

of impurities at the grain boundaries as well as irregularities in the grain shape. Pa-

rameter � characterizes the intensity of anelastic friction in the material, and therefore

must depend upon the density of the defects in the lattice of the material. However,

the shape of this dependence remains unknown, because no research has ever been un-

dertaken in this direction in the case of di↵usion-driven attenuation [23]. Analysing its

physical dimensions, it results that � has units s�↵Pa�1. Reporting the same reasoning

of Castillo-Rogez et al. [23], it would not be incorrect presuming that these units are the
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result of a combinations of parameters “with less exotic dimensions”. From their work

it results experimentally that � = µ�(1�↵)⌘�↵, where µ is the elastic rigidity and ⌘ is the

viscosity of the material.

In order to obtain the complex modulus suitable for Andrade, let’s consider the

Andrade’s rheology creep function:

JA(t) =
1

µ
H(t) + �t↵ +

1

⌘
t . (1.36)

By considering equation (1.13), let’s try to compute the complex modulus of Andrade’s

model by multiplying the Laplace transform of (1.36) by s:

sJ̃A(s) =
1

µs
s+ �� (↵ + 1)s�(↵+1)s+

1

⌘s2
s (1.37)

where � (x) is the Gamma Function. Exploiting the definition of � we have:

sJ̃A(s) =
1

µ
+

� (↵ + 1)

µ(1�↵)s↵⌘↵
+

1

⌘s
(1.38)

and finally, indicating with ⌧M = ⌘/µ one obtains:

sJ̃A(s) =
1

µ
+

� (↵ + 1)

µ(s⌧M)↵
+

1

⌧Mµs
=

1

µ


1 +

� (↵ + 1)

(s⌧M)↵
+

1

⌧Ms

�
, (1.39)

So we find:

µ̃A =
1

s ˜JA(s)
=

⇢
1

µ


1 +

� (↵ + 1)

(s⌧M)↵
+

1

⌧Ms

���1

. (1.40)

It is interesting to remark that once the Laplace transform of (1.36) is given, through

the general relationship:

J̃G̃ =
1

s2
, (1.41)

valid for all linear rheologies, it is possible to obtain the Andrade’s relaxation modulus

GA(s), completely characterizing the rheological response of this kind of body [24]. Un-

fortunately, a closed-form inversion of GA(s) to obtain GA(t) is not possible, and one
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Figure 1.16: Creep compliance of Andrade’s body (blue) and Maxwell’s one (red) plotted
as a function of time. As we can see, the transition between the elastic response and the
steady-state in Maxwell’s case is sharp, while in Andrade’s body the transient phase is
smoother and o↵ers a gradual transition from the instantaneous elastic response to the
steady-state, in agreement with laboratory observations.

must appeal to numerical methods.

Transient creep of many materials at high temperatures obey Andrade’s law [5], and

during years it has gained much popularity in planetary sciences, while in geophysics

the Burger’s solid or the standard linear solid are preferred, but this is just a choice of

convenience that guarantees a completely analytical resolution of the problem.

In this Thesis I will focus the attention upon the di↵erences that emerges in the esti-

mates of expected displacement between models that consider a non-transient behaviour

for the mantle (like the Maxwell body) and models in which the transient is present, like

Andrade’s one. For a visualisation of the main di↵erences between this two models, in

Figure 1.16 I show their creep compliance to facilitate the comparison.

Insights into Andrade’s rheology

Let’s focus one moment on Figure 1.16. The main feature of Maxwell rheology is

being the simplest composition of an instantaneous elastic response and a subsequent

newtonian flow: hence, immediately after the elastic phase, the creep compliance follows

a linear regime with a constant slope. On the contrary, as it is clear even from Figure 1.16,
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in the definition of the Andrade rheology, the exponential factor t↵ does not allow any

relaxation: even if the variation of the slope is more and more weak as the time passes,

actually we can’t say, in a strict mathematical way, that Andrade’s rheology reaches

a steady stare regime. Of course we are nitpicking, but aware of this fact we can try

to do further comparison between Andrade and Maxwell rheological models. Observing

Andrade’s creep function (1.36) and Maxwell’s one (1.14), we notice that they di↵er only

for the additional factor �t↵. We can thus try to establish under which conditions the

time derivative of Andrade’s term �t↵ is comparable to the one of Maxwell’s term. By

writing Eq. (1.36) and (1.14) derivatives for time t > 0:

JA(t) =
1

µ


H(t) +

✓
t

⌧M

◆↵

+
t

⌧M

�
! J 0

A(t) =
1

µ

"
↵

⌧M

✓
t

⌧M

◆↵�1

+
1

⌧M

#

JM(t) =
1

µ


H(t) +

t

⌧M

�
! J 0

M(t) =
1

µ


1

⌧M

� (1.42)

where we have exploited the definition of �, we understand that we are interested in

determining for which conditions

↵

⌧M

✓
t

⌧M

◆↵�1

=
1± ✏

0

⌧M
(1.43)

where ✏
0

is arbitrarily small. After some algebra, we find:

t

⌧M
=

✓
↵

1± ✏
0

◆ 1
1�↵

(1.44)

and by choosing ✏
0

= �0.1, ↵ = 1/3, we obtain that the ratio t/⌧M ' 0.2. These fast

calculations demonstrate that the two terms are comparable after a time that corresponds

to 1/5 of Maxwell’s relaxation time.
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Chapter 2

Love Numbers

Love numbers (LNs) are a powerful tool in (Geo)physics, whose importance and main

features will be exposed in this chapter. First developed in the context of the tidal theory,

the LNs have been lately applied to the surface load problem, becoming the Load Love

Numbers (LLNs). After a brief description of their initial conception (Section 2.1), I

will present their elastic and viscoelastic form (Sections 2.2, 2.3). Considering that their

basic definition refers to the response to an impulsive load, in Section 2.4 I will show how

to obtain Heaviside LLNs, which account for the response to a step function forcing. In

Section 2.5 I will show their analytical form and in Section 2.6 I will report the LLNs

for the case of a Kelvin sphere behaving according to Andrade’s rheological model.

2.1 The origin of Love numbers

Love numbers (LN) were first introduced by the english mathematician A. E. H. Love

in 1909 [25]. Love introduced its formalism in the study of the Earth’s tides, allowing

a simple and elegant description of a extremely complex phenomenon. In a few words

we can define LNs as dimensionless parameters that measure the rigidity of a planetary

body and the susceptibility of its shape to change in response to a tidal potential [26].

Love originally introduced the vertical LN h and the potential LN k; later, in 1912, T.

Shida added a third LN, the horizontal one, l.

Love’s idea was as brilliant as simple: he understood that the total gravitational

potential, evaluated at a given point at the surface of a body subject to a tidal force,

30



must be the sum of two contributions: a direct potential, and an indirect one, due to the

Earth’s response:

�tot = �
0

+ �0. (2.1)

In his seminal work Love considered an ideal homogeneous spherical Earth of radius a

and density ⇢. Denoting by ⇢
0

and p
0

the mean density of the Earth and the pressure,

trough the hydrostatic equilibrium, we can define the gravitational potential �
0

as:

@�
0

@r
=

1

⇢
0

@p
0

@r
, (2.2)

where as a first approximation, we have assumed that p
0

is function of the distance r

from the centre of the Earth only, and that p
0

(a) = 0.

In general, the gravitational potential � can be expanded in series of harmonics:

�
0

(r, ✓,�, t) =
1X

n=0

�
0n(r, ✓,�, t) . (2.3)

Then, let’s consider the e↵ect of an external body, deforming with its gravitational

attraction the undisturbed Earth described above. We are interested in computing the

total deformation that the Earth will experience under the e↵ect of the tidal forces, so

we suppose that these forces can be derived from another potential which, in the region

r > 0, can be expressed as a sum of spherical solid harmonics of integer degrees as well.

Let �0
n be a single spherical harmonic term of this sum, the degree n of this term

being a positive integer. Under the action of the forces derived from the potential �0

the body will be deformed. The total gravitational potential �tot of the disturbed body

at a point will not be �
0

, but it will be the sum of �
0

, and the potential �0 due to the

mass redistribution. The great idea that Love had at the time was supposing that, since

tide deformations can be regarded as infinitesimal, each one of the harmonic component

of the incremental potential �0 should be proportional to the corresponding harmonic

component of �
0

, allowing us to write:

�0
n = Kn(r)�0n . (2.4)
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So finally we find:

�tot =
1X

n

[�
0n +Kn(r)�0n] =

1X

n

[1 +Kn(r)]�0n =
1X

n

(�
0n + �0

n) = �
0

+ �0 (2.5)

where K(r) is a function of r. Then, defining K(a) = k the value that this function

assume at the Earth surface, we have the so called Love number for the gravitational

potential.

Following the same reasoning, it is possible to define a Love number h for the the

vertical component of the displacement field, and the Shida’s LN l for the horizontal

components of the displacement field.

2.2 Elastic Load Love Numbers

In the following pages it will be useful to refer to another derivation of LN, that

will be described in this paragraph. In the previous Section we introduced tidal Love

numbers (TLNs), but for the purpose of this thesis we will make large use of loading

Love numbers (LLNs). Indeed, with appropriate modifications, the formalism of LNs

is suitable also for the description of the response of the Earth due to space-temporal

variations of a applied load, that is the Surface Load Problem.

So we consider a point mass acting on the surface of a rigid, spherically symmetric

Earth. Because of rigidity, the surface stress exerted by the mass due to its own weight

does not cause deformation. However, the load, with its perturbing mass, induces a

“direct variation” of Earth’s gravitational potential. We can describe the point mass

acting on the sphere as:

µ(t) = �(t)�m , (2.6)

where �(t) is Dirac’s delta, t is time, and �m is the load mass, which we assume to be

negligible with respect to the whole Earth’s mass.

Our goal now is to compute the variation in the gravitational potential that an

observer in O = (✓,�), where ✓ and � are the co-latitude and the geocentric longitude,

will record after the application of the point mass. As reference figure, consider Figure

2.1. According to Newton’s law, if ↵ is the angular distance from the point mass and
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μ(t )=(θ ' ,λ ' )

O=(θ ,λ)

Figure 2.1: Schematic representation of the current problem: the point mass µ(✓0,�0)
acts on a rigid Earth. We aim to compute its e↵ects on the gravitational potential in
the point O.

the observer, then the direct gravitational potential �r reads

�r(↵, t) =
Gµ(t)

d(↵)
, (2.7)

where r stands for rigid. By elementary plane trigonometry, d(↵) = 2a sin(↵
2

), and

calling me the Earth’s mass, using Universal Gravitation Law g = Gme/a2, we have:

�r(↵, t) = �(t)
ag�m

2me sin(↵
2

)
. (2.8)

Now we can define the Green’s function (GF) for the direct gravitational potential as

� �,r(↵, t) =
�r(↵, t)

�m
= �(t)

ag

2me sin(↵
2

)
. (2.9)

which represents the potential variation per unit applied mass �m and per unit time.

A more modern formulation can be achieved by recognizing in the trigonometrical
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term an analytical result involving Legendre polynomials [9]:

1

2 sin(↵
2

)
=

1X

l=0

Pl(cos↵) , (2.10)

so that

� �,r(↵, t) = �(t)
1X

l=0

�r
lPl(cos↵) , (2.11)

where

�r
l =

ag

me
. (2.12)

This “Legendre sum” allows to establish in a natural way the spectral representation of

the GF for the direct gravitational potential [27].

Now we can finally consider the deformable Earth. In this case, the change in mass

distribution will be the sum of two contributions: the direct one that we have already

presented and an indirect (or incremental) gravitational potential variation that we will

call �e(↵, t) due to the elastic response of the Earth to the load. Hence, we make the

hypothesis that, similar to � �,r, the corresponding GF can be expressed as an expansion

like:

� �,e(↵, t) = �(t)
1X

l=0

�e
lPl(cos↵) (2.13)

where coe�cients �e
l are appropriate l-dependent coe�cients; of course, we expect that

�r
l 6= �e

l . The value of �e
l depends on the elastic properties of the adopted Earth model,

and are ultimately determined by solving the equilibrium equations 2.38, 2.39, 2.40,

2.41. Following the ideas in the fundamental works of Love, and as we have just shown

in Section 2.1, Eq. (2.4), we assume that, at a given harmonic degree l, coe�cients �e
l

are proportional to those of the direct potential variation:

�e
l = kL,e

l �r
l , (2.14)

where kL,e
l is the elastic LLN for the potential. Of course, for a rigid Earth, since no
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displacement is possible, kL,e
l = 0.

Then, the total potential GF for an elastic Earth is

� �(↵, t) ⌘ � �,r + � �,e = �(t)
ag

me

1X

l=0

(1 + kL,e
l )Pl(cos↵) (2.15)

By Bruns formula [28], the change in height of the geoid equipotential surface is

N =
�

�
, (2.16)

where � the perturbation of the gravitational potential and � the local gravity acceler-

ation. Hence, it is straightforward to obtain the GF for the geoid height variation, per

unit mass and time, which reads:

� g(↵, t) = �(t)
a

me

1X

l=0

(1 + kL,e
l )Pl(cos↵) . (2.17)

We Finally obtained the GF � g, that is the total geoid surface displacement due to the

load exerted by the point mass. Term “1” describes the direct geoid elevation change,

term “kL,e
l ” describes the indirect e↵ect due to the elastic yielding of the Earth. In

analogy with � �,e, the elastic GF associated with the vertical displacement field (along

r) shall have the form:

� u,e(↵, t) = �(t)
1X

l=0

ue
lPl(cos↵) ,

with ue
l being an appropriate coe�cient. However, since there is no rigid Earth contri-

bution,

� u = � u,e ,

and defining the vertical LLN, hL,e
l by:

ue
l = hL,e

l

�r
l

g
= hL,e

l

a

me
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we have

� u(↵, t) = �(t)
a

me

1X

l=0

hL,e
l Pl(cos↵) . (2.18)

Finally, along the same lines, the elastic GF for the horizontal displacement field is

defined in a vector form, conveniently expanded in series of @↵Pl(cos↵):

� v,e(↵, t) = �(t)
1X

l=0

vel @↵Pl(cos↵)↵̂

Even in this case there is no rigid Earth contribution, so the total GF is

� v = � v,e ,

and once again we can define the horizontal LN lL,el by:

vel = lL,el

�r
l

g
= lL,el

a

me
,

and we have

� v(↵, t) = �(t)
a

me

1X

l=0

lel @↵Pl(cos↵)↵̂ . (2.19)

Lastly, we may write:

� g(↵, t) =
a

me

1X

l=0

(�(t) + kL
l (t))Pl(cos↵)

� u(↵, t) =
a

me

1X

l=0

hL
l (t)Pl(cos↵)

� v(↵, t) =
a

me

1X

l=0

lLl (t)@↵Pl(cos↵)↵̂

(2.20)

where

kL
l (t) = kL,e

l �(t), hL
l (t) = hL,e

l �(t), lLl (t) = lL,el �(t) . (2.21)
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and ↵̂ is a unit vector lying on the sphere and parallel to the great circle passing through

the observer O(✓,�) and the impulsive load µ(✓0,�0) (see Figure 2.1).

2.3 Viscoelastic Load Love Numbers

In the framework of the viscoelastic normal modes (VNM) theory, Peltier (1974) and

others have shown that for a 1-D Maxwell viscoelastic model the Loading Love numbers

(LLNs) are causal functions, (i.e., one-sided functions vanishing for t < 0), characterised

by two physically distinct components.

The first component (or elastic component, already described above) is in-phase with

the (� � like) impulsive load and only depends on the value of the elastic constants

and density of layers. The second component (the viscous component) is discussed here,

taking advantage of the existing literature. This component is sensitive to the rheological

profile of the Earth, but it also depends upon the elastic parameters and density. Due to

the delayed readjustment of the Earth, the viscous component is lagged with respect to

the impulsive load. The viscous components of all the viscoelastic LLNs have a multi-

exponential form [9]. The time-dependent k LLNs for a Earth with Maxwell generalised

rheology have the general multi-exponential form:

kL
l (t) = kL,e

l �(t) +H(t)
MX

i=1

kL
lie

slit

hL
l (t) = hL,e

l �(t) +H(t)
MX

i=1

hL
lie

slit

lLl (t) = lL,el �(t) +H(t)
MX

i=1

lLlie
slit,

(2.22)

where the first term is the elastic component described in previous Section, and the

second one is the viscous component, where each of the kL
li (hL

li, l
L
li) with (i = 1, ...M)

are the M viscous terms of the LLN, each one associated to a negative frequency sli =

�1/⌧li < 0, where ⌧li are the characteristic relaxation times of the Earth’s model, and

M is the number of VNMs, determined by the number and rheology of layers. By the

viscoelastic normal mode method developed by Peltier [29], it has been established that

this holds true for the classical (steady-state) Maxwell rheology but also for transient
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rheologies like the Burgers’ body. The values of the LLNs of degree l = 1 depend on the

choice of the origin of the reference frame adopted to describe the deformation and the

change in the geopotential. Normally, they are written in centre of mass (CM) reference

frame of the system (Earth + Load).

By substituting those LNs in expressions 2.20 we obtain the viscoelastic time-dependent

GFs:

� g(↵, t) =
a

me

1X

l=0

(�(t) + kL
l (t))Pl(cos↵)

� u(↵, t) =
a

me

1X

l=0

hL
l (t)Pl(cos↵)

� v(↵, t) =
a

me

1X

l=0

lLl (t)@↵Pl(cos↵)↵̂ ,

(2.23)

where:

kL
l (t) = kL,e

l �(t) +H(t)
MX

i=1

kL
lie

slit

hL
l (t) = hL,e

l �(t) +H(t)
MX

i=1

hL
lie

slit

lLl (t) = lL,el �(t) +H(t)
MX

i=1

lLlie
slit .

(2.24)

2.4 Generic Heaviside Load Love Numbers

In this work I will not consider the response to an impulsive load, since we are

interested in computing the response of the Earth to the unloading consequent to the

melting of an ice load. That’s why in this section we will discuss how to obtain the

Heaviside Love numbers (HLNs), which express the response of the Earth to a prolonged

load: in other words, they represent the response of the planet to a creep experiment

(see Section 1.2).
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For simplicity, from now on we will denote in this section a generic LN as

x(t) = xe�(t) +H(t)
X

i

xie
sit , (2.25)

where we keep the l-dependence implicit to simplify the notation. This expression still

describes the response to an impulsive forcing, and as said before, it can be split into an

elastic component (the first term), and a viscous component (the second one). It can be

demonstrated that, if the forcing has a heaviside step function form

H(t) =

(
0, t  0

1, t > 0
(2.26)

Heaviside LLNs can be expressed by computing the time convolution

xH(t) ⌘ x(t) ⇤H(t) =

Z 1

�1
x(t� t0)H(t0)dt0 . (2.27)

This holds if any load time history is used in place ofH(t), but for our purpose considering

the Heaviside case will be enough. The previous expression leads to:

xH(t) =

Z 1

�1
x�(t� t0)H(t0)dt0

=

Z 1

�1

 
xe�(t� t0) +H(t� t0)

X

i

xiesi(t�t0)

!
H(t0)dt0

=

Z 1

�1
xe�(t� t0)H(t0)dt0 +

Z 1

�1

 
H(t� t0)

X

i

xiesi(t�t0)

!
H(t0)dt0 ,

(2.28)

where using the filter properties of the � distribution, the first integral gives:

Z 1

�1
xe�(t� t0)H(t0)dt0 = xeH(t) . (2.29)
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As regards the second, we find:

Z 1

�1
H(t� t0)H(t0)

X

i

xiesi(t�t0)dt0 =

Z 1

0

H(t� t0)
X

i

xiesi(t�t0)dt0

= H(t)
X

i

xi

Z t

0

esi(t�t0)dt0 = H(t)
X

i

xi


�esi(t�t0)

si

�t

0

= �H(t)
X

i

xi1� esit

si
,

(2.30)

so, until now we have obtained:

xH(t) = xeH(t)�H(t)
X

i

xi1� esit

si
(2.31)

but, by using the definition of Heaviside function, for t > 0, an equivalent form is

xH(t) = xe �
X

i

xi1� esit

si
. (2.32)

It is interesting considering the case of a forcing acting in the opposite way as well, in

other words a step function that for t < 0 assumes a constant value and vanishes in

t = 0: g(t) = 1 �H(t). This load history finds its physical equivalent in the unloading

problem of an (ice) mass that, acting from a time t = �1, suddenly vanishes at t = 0.

In this case we have:

x1�H(t) = x�(t) ⇤ (1�H(t)) . (2.33)
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We have:

x1�H(t) =

Z 1

�1
x�(t� t0)(1�H(t0))dt0

=

Z 1

�1

 
xe�(t� t0) +H(t� t0)

X

i

xiesi(t�t0)

!
(1�H(t0))dt0

=

Z 1

�1

 
xe�(t� t0) +H(t� t0)

X

i

xiesi(t�t0)

!
dt0 �

Z 1

�1
xe�(t� t0)H(t0)dt0+

�
Z 1

�1

 
H(t� t0)

X

i

xiesi(t�t0)

!
H(t0)dt0

= xe +

Z 1

�1
H(t� t0)

X

i

xiesi(t�t0)dt0 �
Z 1

�1
xe�(t� t0)H(t0)dt0+

�
Z 1

�1
H(t� t0)H(t0)

X

i

xiesi(t�t0)dt0

= xe +H(t)
X

i

xi

Z t

�1
esi(t�t0)dt0 � xeH(t)�H(t)

X

i

xi

Z t

0

esi(t�t0)dt0

= xe +H(t)
X

i

xi


�esi(t�t0)

si

�t

�1
� xeH(t)�H(t)

X

i

xi


�esi(t�t0)

si

�t

0

= xe �H(t)
X

i

xi

si
� xeH(t) +H(t)

X

i

xi1� esit

si
.

So that, for t � 0:

x1�H(t) = �
X

i

xi

si
+
X

i

xi1� esit

si
. (2.34)

Let’s come back for a moment on Eq. (2.32), focusing the attention on the following

limits:

Elastic Limit : lim
t 7!0

xH(t) = xe (2.35)

Fluid Limit : lim
t 7!1

xH(t) = xe �
X

i

xi

si
. (2.36)

These are called the elastic and the fluid limits of the LNs; they represent respectively
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the instantaneous and the long-term response. We will make use of them in order to

demonstrate the validity of results (2.32) and (2.34).

Indeed, considering the combination of both load histories, H(t) and g(t), we obtain

a constant load history: H(t) + g(t) = H(t) + 1 � H(t) = 1. This means dealing with

a load acting from a time t = �1 and end at t = 1. In terms of Love numbers, we

expect that xH(t) + x1�H(t) = xf (t), that is the Love fluid number (eq. 2.36). Indeed,

xH(t)+x1�H(t) = xe�
X

i

xi1� esit

si
�
X

i

xi

si
+
X

i

xi1� esit

si
= xe�

X

i

xi

si
= xf . (2.37)

2.5 Analytical form of Load Love Numbers

Until now an analytical expression of the LNs has not been established.

For doing so, we have to evaluate the displacement and the gravitational potential

variation for the chosen Earth model. This means solving a simultaneous set of equa-

tions, including momentum equation, continuity equation, the constitutive equation and

the Laplace equation for the Earth potential with appropriate regularity and boundary

conditions. If we consider the simpler case of an homogeneous and incompressible Earth,

with a constant value of density, viscosity and elastic parameters, the equations can be

written in a simplified form [30]:

Momentum Equation : r · � + ⇢~g = 0 (2.38)

Continuity Equation : r · ~u = 0 (2.39)

Laplace Equation : r2� = 0 (2.40)

Constitutive Equation : � = �(✏, ✏̇, ..., ~p) (2.41)

where � is the stress tensor, ⇢ the density, ~g the gravitational acceleration, ~u the

displacement field, � the gravitational potential at the exterior of the solid Earth and

the symbols r· and r2 indicate respectively the divergence and the Laplacian.

Even if we consider the simplified system of Eqs. (2.38 - 2.41), the resolution of

this system is extremely di�cult and requires many lines of calculations, and for more

insight one can refer to [30]. Anyway, in the vast majority of cases, when we consider

compressible or heterogeneous Earth model with two or more layers, it is even not assured
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that a closed solution can be found analytically, and one should consider numerical

methods.

Elastic Load Love Numbers for the Kelvin Model

α
μ ,ρ

Figure 2.2: Representation of the Kelvin Model.

There exists, fortunately, another case in which the solution for the LLNs can easily

be found analytically: it is the case of the so called Kelvin Model (KM) (Figure 2.2),

firstly introduced by Thomson (later appointed Lord Kelvin) [31]. In the elastic case, it

consists of an homogeneous sphere, with radius a, density ⇢ and rigidity µ, and it can

represent an average Earth model. In the viscoelastic one, the KM shall be characterised,

in addition, by an appropriate number of rheological parameters, like viscosities. So

basically, with respect the model described in the previous paragraph, we have relaxed

the hypothesis of rigidity. Following [29], and solving Equations (2.38 - 2.41), the explicit

expressions for the elastic incompressible KM LLNs are:

kL,e
l = � 1

1 + �l⇠

hL,e
l = �(2l + 1)/3

1 + �l⇠

lL,el = � 1/l

1 + �l⇠

(2.42)
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where

�l =
2l2 + 4l + 3

l
and ⇠ =

µ

⇢ga
(2.43)

These expressions are valid for l > 2, since for l = 0 we can assume that all LLNs are

zero in case of an impulsive point mass load. For l = 1, the choice of the reference frame

a↵ects the value of LLNs.

Viscoelastic Load Love Numbers for the Kelvin model

For the visco-elastic KM, it is possible to use the Correspondence Principle (see

Section 1.3) of linear viscoelasticity to obtain the VE LLNs from the corresponding

elastic expressions. For example, in order to obtain the VE solution corresponding to

a Maxwell rheology, we substitute the elastic modulus µ with by the Maxwell complex

modulus µ̃M = µs

s+⌧�1
M

, while at numerator we have the fluid limits:

hL
l (s) =

hL,f
l

1 + �l
µM (s)
⇢ga

with hL,f
l = �2l + 1

3

kL
l (s) =

kL,f
l

1 + �l
µM (s)
⇢ga

with kL,f
l = �1

lLl (s) =
lL,fl

1 + �l
µM (s)
⇢ga

with lL,fl = �1

l
,

(2.44)

It is necessary to perform the Laplace inverse transform to obtain the LLNs in the time

domain. Before doing so, we can try to modify the expressions (2.44), in order to simplify

the inversion. Firstly, let’s define ✏2 = �l
⌘

⇢ga
. In this way, the generic LLNs become:

xL
l (s) =

xL,f
l

1 + �lµM (s)
⇢ga

=
xL,f
l

1 + ✏2
s

s+ 1

⌧M

=
xL,f
l (s+ 1/⌧M)

1/⌧M + s✏2 + s
. (2.45)

If we gather in the denominator (1 + ✏2), we obtain:

xL
l (s) =

xL,f
l (s+ 1/⌧M)

(1 + ✏2)(s+ 1/⌧KV )
, (2.46)
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where ⌧KV = ⌧M(1 + ✏2) . So we have found:

xL
l (s) =

xL,f
l

(1 + ✏2)

(s+ 1/⌧M)

(s+ 1/⌧KV )
. (2.47)

Defining

xe = lim
s!1

x(s) =
xL,f
l

(1 + ✏2)
(2.48)

we can write:

xL
l (s) = xe (s+ 1/⌧M)

(s+ 1/⌧KV )
(2.49)

and with a little algebra we find:

xL
l (s) = xe

✓
1 +

(1/⌧M � 1/⌧KV )

(s+ 1/⌧KV )

◆
, (2.50)

and if we define

xv =
xf (

1

⌧M
� 1

⌧KV
)

(1 + ✏2)
, (2.51)

reminding that xf = xe(1 + ✏2), we finally obtain:

xL
l (s) = xe +

xf ( 1

⌧M
� 1

⌧KV
)

(1 + ✏2)(s+ 1

⌧KV
)
= xe +

xv

s+ 1

⌧KM
l

, (2.52)

with

xv =
xf ( 1

⌧M
� 1

⌧KV
)

(1 + ✏2)
. (2.53)

This formulation for viscoelastic LLNs allows an easier inversion in the time domain:

xL
l (t) = xe�(t) +H(t)xve(�t/⌧KM ) (2.54)

Following the terminology introduced by Wu and Peltier [30], this last formula is referred
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to as the M0 viscoelastic mode of relaxation [9].

2.6 Andrade’s Load Love numbers for the Kelvin’s

Sphere

By exploiting the Correspondence Principle, in this Section we will try to define

the explicit form of LLNs for a planet uniform and homogeneous, with an Andrade

rheology. It will be su�cient to substitute in Eqs. (2.44) the definition of Andrade

complex modulus. Considering the potential Love Number

kA
l (s) =

kL,f
l

1 + �l
µA(s)
⇢ga

and recalling the form of µA(s) (equation 1.40):

µA(s) =

⇢
1

µ


1 +

� (↵ + 1)

(s⌧M)↵
+

1

⌧Ms

���1

=

⇢
1

µ


1 +

� (↵ + 1)µ↵

(s⌘)↵
+

µ

⌘s

���1

=

⇢
1

µ


(s⌘)↵ + � (↵ + 1)µ↵ + µ(⌘s)↵�1

(s⌘)↵

���1

by developing the exponent and multiplying numerator and denominator by s⌘ one

obtains:

µA(s) =
µ(s⌘)↵+1

(s⌘)↵(s⌘ + µ) + s⌘µ↵� (↵ + 1)
.

By using this relationship in the expression of kA
l , and making the fluid limits explicit,

we have:

kA
l =

�1

1 +
�lµ(s⌘)↵+1

⇢ga[(s⌘)↵(s⌘ + µ) + s⌘µ↵� (↵ + 1)]

(2.55)
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In the same way we can write the expressions for kA
l and lAl :

hA
l = � 2l + 1

3

✓
1 +

�lµ(s⌘)↵+1

⇢ga[(s⌘)↵(s⌘ + µ) + s⌘µ↵� (↵ + 1)]

◆ , (2.56)

lAl =
�1

l

✓
1 +

�lµ(s⌘)↵+1

⇢ga[(s⌘)↵(s⌘ + µ) + s⌘µ↵� (↵ + 1)]

◆ . (2.57)

These last three expressions represent the value of the Laplace-transformed LLN for a

spherical homogeneous planet (KM) obeying to Andrade’s rheology. Contrary to expres-

sions (2.44) their form is not multi-exponential. However, Eq. (2.55), (2.56) and (2.56),

are defined in the Laplace transform domain, and they need to be inverse-transformed

in the time domain. The problem is that this procedure is far from being immediate

as in the Maxwell’s case. To perform the inversion we need to consider an alternative

numerical methods between the many proposed by the field of Numerical Analysis.
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Chapter 3

ALMA: the planetary Love Numbers

calculator

ALMA (the plAnetary Love nuMbers cAlculator) [32] is a Fortran 90 program that com-

putes the tidal and the loading Love numbers of a spherically symmetric, incompressible,

viscoelastic planet, using the Post-Widder-Gaver (PWG) Laplace inversion formula. In

the classical approach, the relaxation of a planet subject to a load (that finds its physical

application in the study of post-glacial or post-seismic deformations) is computed using

normal-mode method [29], based on the application of the propagator technique [32].

This semi-analytical approach allows to compute the response of an Earth model whose

rheological parameters vary arbitrarily with depth. However, this method requires to

perform the inverse transform of the LLNs expression. In the case of Andrade’s rheol-

ogy, whose explicit expressions for LLNs are reported in Section 2.6, Eqs. (2.55 - 2.57),

this can not be done in a straightforward way through the Bromwhich integral method.

With ALMA, this step is by-passed by using instead the PWG formula to transform the

solution from the Laplace domain, back into the time domain.

In this Chapter a brief introduction about NM method is presented in Section 3.1, as

well as a description of the PWG method used by ALMA in Section 3.2; Then, in Section

3.3, we will briefly describe the code, and finally in Section 3.4 some of the results will

be reported. Here I remark that In this Chapter and in the following, we will use n to

refer to the harmonic degree, in place of l.
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3.1 Viscoelastic normal Mode: theory and draw-

backs

The solutions of the equilibrium equations of a spherically symmetric Earth subject to

a surface load are usually expressed in terms of the so called load-deformation coe�cients,

that are the LLNs. We already used this solutions, but in this Section we will see briefly

how they can be obtained by following the procedure described in [29], well known

as viscoelastic normal mode method (VNM). This technique implies a layer-by-layer

propagation of the fundamental solution of the equilibrium equation (2.38) in the Laplace

domain, and the solution of the secular equation whose roots determine the spectrum of

relaxation of the Earth [33]. Within the normal-mode method, the Love numbers can

be obtained solving a boundary value problem in the Laplace domain that involves the

use of the matrix propagation technique. Let’s consider the case of an incompressible

Earth model that includes an elastic lithosphere on top of a stack of L homogeneous

viscoelastic layers, and a homogeneous, inviscid core [33].

The interfaces between layers are at radii ri, with i = 0, 1, ...., L + 2, where r
0

= 0,

r
1

is the core-mantle boundary and rL+2

is the free surface of the Earth. Within each

layer, for any harmonic degree n, the solution vector containing vertical and horizontal

displacements and stresses, the incremental potential and its gradient can be written as

~y(r, s) = Yk(r, s)~ck(s) rk < r < rk+1

for k = 1, ...L+ 1, (3.1)

where Yk is the 6 ⇥ 6 fundamental matrix referring to the kth layer, and the elastic

lithosphere is labelled by k = L + 1. In agreement with the Correspondence Principle

of linear viscoelasticity, the matrix Yk depends on the variable s through the complex

shear modulus µ̃(s), and therefore it is determined by the elastic parameters of each

layer (for example from the rigidity µ and the viscosity ⌘ in case of a Maxwell layer). If

we impose the necessary boundary conditions (continuity conditions for all of the field

variables across the mantle boundaries and the lithosphere-mantle boundary, as well as

appropriate boundary conditions at the core-mantle boundary) then the solution vector

at the Earth’s surface can be written as:

~y(a, s) = WJ ~K , (3.2)
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where the s-dependence is implicit at the right-hand side, J is the interface core-mantle

matrix, W is the propagator

W (r, s) =
1Y

j=L+1

Yj(rj+1

)Y �1(rj), (3.3)

and the constant ~K is to be determined imposing the surface boundary conditions. These

can be imposed exploiting a projection matrix Pb that extracts from ~y(a, s) the three

known components at the surface (vertical and horizontal stress, and gradient of the

geopotential):

Pb~y(a, s) = ~bf(s) , (3.4)

where ~b is given by [34] and f(s) is the Laplace transform of the time-history of the

point-like surface load. Introducing a further projection matrix such that

Px~y(a, s) = ~x(a, s) ⌘ [u, v,�]t(a, s) , (3.5)

(where u, v are the vertical and horizontal displacement field and � is the incremental

potential) and using it with Eq. (3.4) in (3.2) we obtain:

~x(a, s) = PxWJ(PbWJ)�1f(s)~b . (3.6)

Then, using the definitions of Love numbers in the Laplace domain

h(s) =
me

a
u(a, s)

l(s) =
me

a
v(a, s)

k(s) = �1� me

aga
�(a, s)

(3.7)

and the residues theorem, we finally obtain the spectral form of the Love numbers:

x̃(s) =

 
xe +

MX

k=1

xk

s� sk

!
f(s) , (3.8)
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where x̃ is the Laplace transform of any of the three Love numbers and M is the number

of viscoelastic modes. The terms sk in Eq. (3.8) are the roots of the secular equation

Det(PbWJ) = 0 (3.9)

and xk, (k = 1, ...,M) are the associated residues, with xe representing the limit for large

s values in the case of an impulsive forcing (f(s) = 1). Finally, we remark that the Love

numbers have a multi-exponential form in the time domain, as it is possible to see by

inverting expression above. Despite its success, the normal-mode method is characterized

by several shortcomings, mostly associated with the resolution of the secular equation

[33].

Here we summarize the main ones:

• In incompressible models, the number of roots of the secular equation increases

linearly with increasing number of layers [32]. If compressibility is accounted for,

a denumerable infinite number of modes appear even for an homogeneous Earth

[42];

• At large harmonic degrees, the roots sk of Eq. (3.8) become closely spaced and

sometimes di�cult to resolve [41];

• There is no way to determine a priori where the most significant roots are placed

along the real negative axis, and neglecting some roots may lead to a loss of pre-

cision, with possible catastrophic consequences;

• One wrongly identified root may cause errors in the computation of the residue

that may a↵ect the whole time dependence of the Love numbers;

These are some of the motivations that encouraged several research groups to find out

new methods for computing LLNs of 1D-layered Earth models.
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3.2 The Post-Widder-Gaver method

An alternative to VNM is exploited in ALMA [32], which performs a numerical Laplace

inversion of Eq. (3.6) using the Post–Widder formula [35][36][37]:

f(t) = lim
n 7!1

(�1)n

n!

⇣n
t

⌘n+1

f̂ (n)
⇣n
t

⌘
with t > 0 , (3.10)

where f̂ represents the Laplace transform, and f̂ (n) is the nth s-derivative of f̂ .

This formula is a shortcut that allows to directly obtain the Laplace anti-transform

in terms of derivatives of the transform, without the need of applying the traditional

inverse Laplace formula. It is true that other formulas exist for the inversion of the

Laplace transforms, that do not involve the nth derivative, but they are characterized by

other complexities, and the PW is formally simple and easy to program [33]. However,

if a closed-form expression for f̂ (n)(s) is not available, Gaver [38] has shown that f(t)

can be approximated by a sequence of functions

fn(t) = (�1)n
n↵

t

✓
2n

n

◆
�nf̂

⇣n↵
t

⌘
, n = 1, 2, ..., N (3.11)

where
�
n
k

�
is the binomial coe�cient, N is the maximum order of the sequence, ↵ = ln 2

and � is the forward di↵erence operator, that is �f(nx) = f((n+1)x)�f(nx). In their

work, Abate and Valkò [39] shown that it is possible to write

fn(t) = Gn
n, (3.12)

with the recursive algorithm:

Gk
0

=
k↵

t
f̂

✓
k↵

t

◆
1 6 k 6 2N,

Gk
n =

✓
1 +

k

n

◆
Gk

n�1

�
✓
k

n

◆
Gk+1

n�1

1 6 n 6 N ; 1 6 k 6 2N � n

(3.13)

where the Gk
n are called the “Gaver functionals”.

This last three equations are the basis of the so called PWG method. The PWG

approach allows to compute directly the Laplace inverse of x̂(a, s) and to derive the
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Love numbers for any value of t. Since for a stable, stratified and incompressible Earth

all of the poles of x̂(a, s) are located on the negative axis, in the PWG approach the

Laplace transform f̂ is sampled in a singularity-free region. With this method we can

bypass both the analytical inversion of the array PbWJ in Eq. (3.6) and the root-finding

procedures that are needed to solve the secular Eq. (3.9), and this implies, in terms of

code, enormous semplifications [33]. Following this procedure we will lose the standard

normal-mode spectral form of the LN, so if the individual normal modes (si, li) and the

elastic term le are needed, they must be obtained by non-linear regression. However, the

simplicity of the PWG method has its drawbacks [33]:

• The sequence has a logarithmic convergence: we will need a large number of terms

to obtain a su�ciently large number of significant digits in the inverse function;

• Since the evaluation of fn(t) demands the computation of f̂ , the PWG approach,

like the normal-mode one, should become more ine�cient as the number of vis-

coelastic layers grows;

• Gaver recurrence is known to be numerically unstable and to lead to catastrophic

cancellation above some finite, threshold value of N .

Nonetheless, with respect of the normal mode method, the advantages of the PWG

approach are:

• The numerical solution of the secular equation is no longer necessary;

• Love numbers are directly computed in the time domain for any time history;

• The algebraic structure of the numerical codes is greatly simplified;

• The method can be extended to (possibly compressible) finely layered models in a

straightforward manner, as well as to arbitrary linear viscoelastic rheologies.

3.3 ALMA: some details

ALMA has been developed using the IBM XL Fortran 90 compiler and has been tested

on a 1.5 GHz Macintosh Power PC G4. Program alma.f90 has been built from scratch;

ALMA is executed by the bash shell script alma.sh, and can be configured using the
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Fortran “include” file alma.inc.

In Fig 3.1 we can see one example of the configuration file I used for my tests. It is

Figure 3.1: ALMA’s configuration file.

divided into four Section:

• General parameters: in this section I set the parameters, choosing the number

of significant digits, the order of the Gaver sequence, the LN type (tidal or load),

the range of degrees of the LN, as well as the step, and lastly the desired time

interval.

• Rheological model: this section tells ALMA which rheological model is to be used.
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The rheological models used will be described in the following tables.

• Output files: In the last section it is possible to set the names of the output files.

One can chose the file format which gives LNs as a function of time or LNs as a

function of harmonic degree.

3.4 Computing Love numbers with ALMA

In the following pages the results I obtained using ALMA will be presented. For this

work used the latest version, ALMA3.

Calibration

At first I needed to calibrate and set all the parameters in the correct way. So I

used Spada 2008 [32] as a benchmark, and I tried to reproduce the results shown in that

paper. The following two plots 3.2 and 3.3 are the outcomes of this work.

I used the Earth model introduced by Bills and James (BJ97) [40] (for details about

the values of the parameters, see Table 3.1), a simple 4-layer Earth model with an elastic

lithosphere, a 2-layer Maxwell mantle and an inviscid fluid core. I configured ALMA to

compute the two asymptotes of LNs for a Heaviside function, conventionally referred

to as the “elastic LNs” (in other words the short-term behaviour for t �! 0, that I

obtained setting t = 10�6yr) and the ”fluid LNs” (obtained when one considers the

long-term behaviour t �! 1, so I set t = 106yr). In the title of Figures 3.2 and 3.3,

nla is for “number of layers”, referring to the number of layers in the mantle, nsd is the

number of significant digit, while ng is the order of the Gaver method (see [38]). All

these are parameters that ALMA requires.

In both asymptotes, the LLNs of lower degrees have quite di↵erent values, but then,

as the harmonic degree increases, they tend to a similar value close to zero (see Figures

3.2 and 3.3).
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Radius Density Rigidity Viscosity Rheology
m · 103 kg/m3 · 103 Pa · 1011 (Pa·s·1021)
6371 2.771 0.315 1 elastic
6271 4.120 0.954 1 Maxwell
5701 4.508 1.990 2 Maxwell
3480 10.925 0 0 fluid

Table 3.1: Parameters for Bills and James (1997), a 4�layer Earth model proposed in
[40]. In the last columns the written description “elastic”, “Maxwell” and “fluid” indicate
the rheological law to be used.
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Figure 3.2: Elastic LLns k, h and l as a function of the harmonic degree for Earth model
BJ97. The lower degrees of h, k and l assume di↵erent values while at higher degrees
> 102 they tend to zero. The scale is semi-log.
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Figure 3.3: Fluid LLNs k, h and l as a function of the harmonic degree for Earth model
BJ97. Even in this case the lower degrees of h, k and l assume di↵erent values while at
higher degrees they all tend to zero. The scale is semi-log.

Then I used a more complex Earth model: VSS96, introduced in [42], in which a

detailed rheological layering is adopted for the mantle, with 28 Maxwell layers (nla= 28),

an inviscid fluid core and an elastic lithosphere. Even in this case I considered the elastic

(Figure 3.4) and the fluid limit. In particular, in the fluid limit, I tested for which value

of nds ALMA showed instabilities. These latter reflect the known singularity of the matrix

Y �1 for s ! 0 and the increased numerical noise introduced by the large number of

products in Eq (3.3) [43]. I found nsd = 32 (Figure 3.5), although in [32] it was found

that nsd = 64. I have made two assumptions to justify this discrepancy: either the

di↵erence in the nsd value is due to the di↵erent Earth model used (in the paper the

authors use another 30-layer model, di↵erent from VSS96), or the ALMA’s version I’m

using, that is an upgraded one with respect the one used in [32], has a superior precision

and stability.
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Figure 3.4: Elastic LLNs k, h and l as a function of the harmonic degree for Earth model
VSS96. The scale is semi-log.
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Figure 3.5: Fluid LLNs k, h and l as a function of the harmonic degree for Earth model
VSS96. Here is the case in which nsd= 32 and, as mentioned above, at degree n > 102

the instability explodes. The scale is semi-log.

58



To close this first set of experiments, I produced a plot showing the trend of LLNs of

degrees 2, 4, 8, 16, 32, 64 as a function of time, produced using model BJ97. Here I report

the case of h (Figure 3.6). Even in this case I had the opportunity to compare my results

with the ones reported in [32], and the correspondence was more than satisfactory. As

we can notice in Figure 3.6, their trend is almost the same: from an initial value included

between 0 and 2, at a time that varies from 10�1 kyrs to 100 kyrs, it starts decreasing,

with di↵erent slopes, until it reaches a new lower constant value.
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Figure 3.6: Love load number h as a function of time, for various harmonic degrees. Note
that the scale is semi-log.
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Comparison between Andrade’s and Maxwell’s rheologies in a

3-layer Earth

In a second stage I started some experiments more pertinent to my work. In partic-

ular, I started considering a simple 3�layer Earth model, GS00 (Table 3.4), with a fluid

core, a homogeneous mantle and an elastic lithosphere. I configured ALMA to produce

the h, k and l LLNs for two di↵erent cases: in the first case, the mantle behaves like a

Maxwell’s body, in the second like an Andrade’s one. ALMA considered for the two cases

the same parameter values, reported in Table 3.4, but in the mantle layer consider the

presence of a Maxwell’s rheology or an Andrade’s one, depending on the case.

Radius Density Rigidity Viscosity Rheology
m · 103 kg/m3 · 103 Pa · 1011 (Pa·s)
6371 3.300 0.28 1 Elastic
6271 4.518 1.45 1 Maxwell/Andrade
3480 10.977 0 0 Fluid

Table 3.2: Parameters for GS00, a 4�layered Earth model. In the last columns the writ-
ten description “elastic”, “Maxwell”, “fluid” indicate to ALMA which kind of rheological
behaviour attribute the parameters.

To make ALMA do this, it is su�cient to set the last column of the configuration file

(the file in which are described all the elastic and rheological parameters of each layer)

with the required rheology, typing Maxwell or Andrade. In Figure 3.7 we can see the

outcomes of h for degree n = 2. In the following Figure 3.8 I show the result also for k

and l, and even for higher harmonic degrees (n = 53, n = 87).

We can notice that the main di↵erences are in the central part of the plot, and in

general we can see that Andrade’s LLNs follow a smoother trend. Moreover we can see

that the Andrade’s trend tends to deviate earlier from the elastic value with respect the

Maxwell’s one.

To investigate of the discrepancy between the first case and the second one, I plotted

for di↵erent degrees (n = 2, n = 53, n = 87) the ratio Andrade
Maxwell

. In Figure 3.9 it

is clear that they reach their maximum amplitude for times 10�1  t  1 kyr. Of

course this ratio has significance only when LN for the Maxwell model are di↵erent

from 0. Unfortunately, as we can notice already in Figure 3.8, for high degrees, like
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Figure 3.7: Comparison between Andrade’s and Maxwell’s results for LLNs h, k and l,
for n = 2. The scale is semilog.
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Figure 3.8: Comparison between LLNs produced by two di↵erent 3-layered Earth model,
having respectively a mantle responding to Maxwell’s model and to Andrade’s model.
The results are reported for the three LLNs and for the harmonic degree n = 2, 53, 87.
The scale is semilog.
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Figure 3.9: Ratio between LLNs computed with Andrade and Maxwell rheologies in the
mantle. The maximum amplitudes are reached in a time interval 10�1  t  1 kyrs.
The results are reported for the three LLNs and for the harmonic degree n = 2, 53, 87.
The scale is semilog.
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n = 53, n = 87, the l LLNs cross the zero, creating in plots 3.9, 3.12 singularities which

have no physical meaning. The last set of Figures (3.10, 3.11, 3.12) shows once again

the ratio Andrade
Maxwell

, but for more harmonic degrees (n = 2, 4, 8, 16, 32, 48).
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Figure 3.10: Ratio Andrade
Maxwell

as a function of time for k LN. The maxima are reached for
times that go from t = 10�1 kyrs for the lower degrees, to almost t = 1 kyrs for the
higher degrees. The scale is semilog.
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Figure 3.11: Ratio Andrade
Maxwell

as a function of time for h LN. Their trend is very similar to
the k’s one. The scale is semilog.
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Figure 3.12: Ratio Andrade
Maxwell

as a function of time for l LN. The singularity has no physical
meaning and it is only do to the fact that, for higher degrees (n = 20, 50, 100), both
values of Maxwell and Andrade’s LLNs cross the 0. The scale is semilog.
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To conclude this Section, I would like to underline the main findings of this first

set of experiments: Andrade’s LLNs follow a smoother time evolution with respect to

Maxwell’s ones. This fact reflects the presence of the transient, or, in other words, a

more gradual transition from the initial (elastic) response, to the long-term viscous one.

However, as it is even more clear in the figure in which I plotted the ratio Andrade
Maxwell

(Figure

3.9 - 3.12), the di↵erences, in terms of LLNs, manifest themselves only in a particular

range of time, and they reach their maximum around 10�1÷0 kyrs. This means that there

exists a particular range of times in which we are able to discern between the presence

of a transient behaviour or not, and in the case of a point mass load that acts following

a Heaviside step function, this time is set around 10�1÷0 kyrs. It is too early to make

final considerations, since for an accurate analysis it would be better to include in our

computations the presence of a load with finite physical dimensions and with a realistic

load history, in order to simulate in the best way the unloading of an ice-sheet, and

understand when (and where) it would be possible to measure the discrepancies between

the two models, provided that these latter are actually measurable. For this reason in

the next chapter I will introduce and discuss the problem of the surface loading, that

will allow us to compute the expected deformation of the Earth to the unloading of a

realistic load representing, for instance, a melting ice-sheet.
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Chapter 4

Surface Loads: modelling Glacial

Isostatic Adjustment

Any massive body above the Earth’s surface represents, at the same time, a gravita-

tional attractor and a load. In this way, atmosphere, oceans, rivers, ice sheets, volcanoes

etc... are able to deform and modify the Earth’s shape. The complexity of an accurate de-

scription of the deformation of the Earth under the e↵ects of natural loads originates not

from the number of possible loads, but especially from their reciprocal interaction. The

Earth is a system composed of many other subsystems (the atmosphere, the cryosphere,

the hydrosphere, the geosphere ...) that are inter-connected in a non-linear way. These

interactions originate a huge number of geophysical phenomena whose interpretation is

still source of discussion and debate among scientists. As an example of the extreme

complexity of these kind of phenomena, let’s suppose that we wish to estimate the ex-

pected displacement caused by the present-day melting of the Greenland ice sheet due

to climate change. Unfortunately, it will not be enough to compute the deformation

uniquely caused by the unloading due to the melting ice, but we will also have to take

into account that the ocean will receive part of the melted water (while another part

will be absorbed by the ground, and another part will evaporate), changing its mass and

thus its load on the solid Earth, and then that the change in sea level will contribute in

changing the coastline. Furthermore, even the loss of ice mass will imply a modification

in the gravitational attraction that the lands exert on the water, contributing as well

to the redistribution of the waters and in the modification of the coastline - and thus,
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of the load. It is not over yet, since we have not considered that the melting of the ice

sheet, and the subsequent redistribution of the water, will imply a chance in the inertia

tensor of the planet, modifying the rotational motion to conserve angular momentum,

and therefore, the Earth’s shape.

The geophysical problem that we have just illustrated is known as “Surface Loading”

problem, and aims to understand the amount of the deformation caused by the natural

loading and unloading of the surface of our Planet. The first and simplest solutions came

from Boussinesq (1885), who considered the response of a non-gravitating elastic half

space to an applied surface point load. The solution he found, expressed in a cylindrical

coordinate system (z, r, ✓), is:

uz =
P

4⇡µR


2(1� ⌫) +

z2

R2

�

ur =
P

4⇡µR


zr

R2

� (1� ⌫)r

R + z

�

u✓ = 0 ,

(4.1)

where uz, ur and u✓ are the vertical, the horizontal and the azimuthal displacements, µ

is the shear modulus, ⌫ the Poisson ratio, P the load magnitude and R =
p
r2 + z2 [9].

Even if this problem contained all the essential ingredients that appears in a more general

case [29], its solutions gives a poor description of the complexity of the deformation, since

it does not account neither the stratification of the Earth, nor the e↵ects of a distributed

load, and not even for any kind of gravitational e↵ects.

Many progress in this field came after the introduction of the Green’s function ap-

proach, originally proposed by Longman in 1962 [44] and then improved by Farrell

[27, 29]. In this chapter we will see how, starting from the Green’s functions previously

introduced, it is possible, once we know the space and time evolution of the load, to com-

pute the displacement, or better, computing the so-called Surface Response Function

(SRF).
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4.1 Surface Response Function

The response of the Earth to a finite variation of surface load L is represented by

the Surface Response Function [9]:

SRF = SRF (�, t) (4.2)

where � = (✓,�) are the point where SRF is evaluated. Depending on the type of

response that is required, it is possible to define di↵erent SRFs, like that for the geoid

height variation G, for the vertical displacement U , or for the horizontal displacement V .
Of course the SRF will depend not only on the evolution of the load, but also on the

Earth model that we decide to employ (and therefore, on the LLNs).

Thus, all the SRFs have the general form:

SRF (�, t) = (� ⌦ L)(�, t) =
Z 1

1
dt0
Z

e

� (↵, t� t0)L(�0, t0)dA0 (4.3)

where:

• ⌦ is the spatio-temporal convolution operator,

• � is the Green’s function,

•
R
e
denotes the integration over Earth’s surface, and

• ↵ is the angular distance between the impulsive point load of the GF and the

observer.

We remark that � is determined exclusively by the choice of the Earth model, and

therefore by the number and the characteristics of each layer, while the load function L
depends on the geometry and evolution of the load [9].

For the following discussion, it will be useful to reduce the SRF to a standard spectral

form. For doing so, at first we need to expand the load function in series of spherical

harmonics:

L =
X

nm

LnmYnm with Lnm =
1

4⇡

Z

�

L(�, t)Y⇤
nm(�)d�, (4.4)
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where Ynm is the spherical harmonic function of degree l and order m, and ⇤ denotes the

complex conjugation. For the GF, we use the general form

� (↵, t) =
a

me

1X

n=0

xn(t)Pn(cos↵), (4.5)

where xn(t) denotes one of the following combinations:

xn(t) ⌘

8
>>><

>>>:

�(t) + kL
n (t), � = � g (Geoid height G)

hL
n(t), � = � u (Vertical displacement U)

`Ln(t), � = � ` (Horizontal displacement V)

(4.6)

where we remark that for the horizontal displacement V it is necessary to consider in

Eq. (4.5) the derivative with respect the spatial coordinates of the Legendre polynomial

Pn.

Considering these definitions, let’s perform the convolution (4.3) in order to find out

the expansion in series of spherical harmonics of the SRF :

SRF (�, t) ⌘
Z 1

�1
dt0
Z

e

� (↵, t� t0)L(�0, t0)dA0

=

Z 1

�1
dt0
Z

�

 
a

me

1X

t=0

xn(t� t0)Pn(cos↵)

!
·
 
X

n0m0

Ln0m0(t0)Yn0m0(�0)

!
a2d�0

=
a3

me

Z 1

�1
dt0
Z

�

 1X

n=0

xn(t� t0)

2n+ 1

nX

m=�n

Y⇤
nm(�

0)Ynm(�)

!
· (· · · )d�0

=
a3

me

X

nm

Ynm(�)

2n+ 1

Z 1

�1
dt0xn(t� t0)

X

n0m0

Ln0m0(t0)

Z

�

Y⇤
nm(�

0)Yn0m0(�0)d�0

=
4⇡a3

me

X

nm

Ynm(�)

2n+ 1

Z 1

�1
xn(t� t0)Lnm(t

0)dt0

=
X

nm

SRFnm(t)Ynm(�) ,

(4.7)
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with the harmonic coe�cients:

SRFnm(t) =
1

⇢e
3

2n+ 1
(xn(t) ⇤ Lnm(t)), (4.8)

where ⇢e = 3me

4⇡a3
is the Earth’s average density, and ⇤ is the time convolution.

The Sea Level Equation

We have obtained an explicit expression for the SRF , but we still need to define

the load variation function. The most complete approach to the definition of the SRF

entails the resolution of the Sea Level Equation (SLE) [27].

The SLE is an integral equation defined by:

�SL(✓, �, t) =
⇢i
�
� ⌦i I +

⇢w
�
� ⌦o �SL� mi(t)

⇢wAo(t)
� ⇢i

�
� ⌦ I � ⇢

�
� ⌦o �SL (4.9)

where:

• �SL is the change in sea level at point (✓, �) between time t and some reference

time t
0

,

• I is the evolution of global ice thickness change,

• ⇢i and ⇢w are ice and ocean water densities, respectively,

• � is the gravity acceleration,

• � represents a Green’s function that describes perturbations to the solid Earth

displacement field and the gravitational potential due to surface loading [29], [46],

• ⌦i and ⌦o represent convolutions in space and time over the ice sheets and the

ocean, respectively,

• the third term is the eustatic term, where Ao is the ocean area and mi(t) is the

variation of the ice mass.

The most common way of solving it [2], is using a pseudo-spectral approach (e.g.

[45], [46]). The SLE is an extremely powerful mathematical tool, which allows us to
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determine, for a chosen range of times, the evolution of the sea level, and thus, of the

coastlines. Of course the resolution of the equation requires many e↵orts, reason for

which it become natural asking if our load function has to be really so much detailed. As

we will see in the next chapter, the regions in which the e↵ects of the transient are visible

include a finite range of angular distances, that depend on the original dimension and

on the evolution of the load (the ice-sheet). This range is typically close to the physical

boundaries of the load, and for this reason we are interested in the local response; the

SLE instead, provides a global self-consistent solution for the variation of the sea level

(and thus, the load) worldwide, while the nature of our problem is more local-scale size.

For this reason, instead of solving the SLE, we can consider a simplified load problem,

whose assumptions allow to find a closed solution in terms of vertical and horizontal

displacement, and geoid height variation [9].

The simplified load problem

Assumptions

ice ice

i

x y

z

w

Figure 4.1: An illustration of the simplified loading problem. The ice can vary in space
and time over the subset i, while the water thickness assumes a spatially uniform but
time dependent value over the subset w.

The assumptions of the simplified load problem are the following: we will consider

the load L as the sum of two contributions, the first, Li, accounts the variation of the
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ice load, and the second, Lw, refers to the water-covered region. The contribution Li

is known and can vary in space and time over a defined subset i; on the other hand,

Lw is defined over the subset w that is disjoint to i, and represents a uniform load that

assumes a constant value all over w. This representation is quite unrealistic, since the

borders of w do not change. It is equivalent to assume that the topography is infinitely

steep so that coastlines do not migrate with varying sea level. Moreover, ice and water

elements can not overlap, so this approach excludes presence of marine ice and considers

only grounded ice (above sea level).

The two components of the surface load are defined in the following way: the ice load

is

Li = ⇢idi(�)�i(�)f i(t), (4.10)

where ⇢i is the ice density, di(�) > 0 is the ice thickness at the coordinates � = (✓,�),

f i(t) � 0 is the time history of the ice height, and �i(�) is the mask function, defined as:

�i(�) ⌘

8
<

:
1, if � 2 i

0, otherwise.
(4.11)

The melt water load is:

Lw = ⇢wdw(t)�i(�) , (4.12)

where ⇢w is the density of the water, �w(�) is now defined as:

�i(�) ⌘

8
<

:
1, if � 2 w

0, otherwise ,
(4.13)

and finally dw(t) > 0, is the yet unknown time dependent water layer thickness, that

we will determined in order to satisfy the constraint of mass conservation. Adding

the previous two definitions together, and generalizing to the case of N i individual ice
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elements, we have the total load function:

L(�, t) = ⇢i
N iX

N=1

�
di,N(�)�i,N(�)f i,N(t)

�
+ ⇢wdw(t)�w(�) . (4.14)

Mass conservation Principle

We now need to impose the mass conservation principle. It can be demonstrated

that it can be stated requiring that the average over the Earth surface of the total load

variation must be zero:

< L(�, t) >e= 0 . (4.15)

We can exploit this relationship to compute the unknown variable dw(t):

dw(t) = � ⇢i

⇢w
< di(�)�i(�) >e

< �w(�) >e
f i(t), (4.16)

where the negative sign indicates that, as expected, an increase in the ice thickness is

compensated by a uniform sea-level fall and vice-versa [9]. Then, substituting Eq. (4.16)

in the total load function (4.14) we obtain:

L(�, t) = ⇢i
✓
di(�)�i(�)� < di(�)�i(�) >e

< �w(�) >e
�w(�)

◆
f i(t) . (4.17)

The form of Eq. (4.16) appears quite complex. We now see how to find an equivalent

and lighter form, that later will be used to obtain a more suitable definition for L. After
exploiting the term �i(�), the numerator becomes:

< di(�)�i(�) >e=
Ai

Ae
< di(�) >i . (4.18)

Then, using the definition of the ice load variation:

mi(t) ⌘
Z

e

Li(�, t)dA =

Z

e

⇢idi(�)�i(�)f i(t)dA = ⇢if i(t)

Z

i

di(�)dA

= ⇢if i(t)Ai < di(�) >i

(4.19)
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Combining these two relationships we have:

< di(�)�i(�) >e=
mi(t)

⇢iAif i(t)
. (4.20)

Finally, we note that the denominator of Eq. (4.16), < �w(�) >e represents just the

ratio between the melt water and the Earth’s surface, Aw/Ae, so that we can write dw(t)

simply as:

dw(t) = �mi(t)

⇢wAw
. (4.21)

This expression gives the assumed uniform sea-level variation corresponding to the ice

mass variationmi(t), and sometimes this is referred to as “Eustatic Sea-level Variation”[47].

Complex spherical harmonics expansion

The next step is expanding in series of complex spherical harmonics the mass con-

serving load (4.17), to preserve the expanded definition of L we introduced in Eq. (4.4).

At first, we expand the ice term:

di(�)�(�) =
X

nm

dinmYnm(�), (4.22)

with coe�cients

dinm ⌘ 1

4⇡

Z

�

�i(�)di(�)Y⇤
nm(�)d� =

1

4⇡

Z

i

di(�)Y⇤
nm(�)d� , (4.23)

and sub-sequentially the melt water term:

�w(�) =
X

nm

�w
nmYnm(�), (4.24)

with

�w
nm ⌘ 1

4⇡

Z

�

�w(�)Y⇤
nm(�)d� =

1

4⇡

Z

w

Y⇤
nm(�)d� . (4.25)
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Since for any scalar field, the mean over the whole Earth’s surface is < F >e= F
00

, we

can conclude that:

L(�, t) = ⇢if i(t)
X

nm

diwnmYnm(�) , (4.26)

where:

diwnm = dinm �
✓
di
00

�w
00

◆
�w
nm . (4.27)

Now we have all the ingredients for computing the SRFs, so the convolution (4.7) be-

comes:
8
>>>><

>>>>:

U
V✓

V�

G

9
>>>>=

>>>>;

(�, t) ⌘ 3⇢i

⇢e

X

nm

diwnm

8
><

>:

chn(t)

c`n(t)

ckn(t)

9
>=

>;
·

8
>>>><

>>>>:

1

r✓

r�

1

9
>>>>=

>>>>;

Ynm(�) (4.28)

where the time-convolutions are:

8
><

>:

chn
c`n
ckn

9
>=

>;
(t) ⌘ 1

2n+ 1

Z 1

�1
dt0

8
><

>:

hL
n

`Ln
� + kL

n

9
>=

>;
(t� t0)f i(t0) . (4.29)

4.2 Surface Response Function for axis-symmetric

loads

There exist a particular case for the load problem in which special properties of the

load geometries allow additional simplifications. It is the case of the axis-symmetric

surface loads, i.e., surface loads for which regions i and w are symmetric for rotations

around the z� axis [9]. Hypothetically, we can imagine the case of a disc-shaped ice

sheet surrounded by an unique ocean (Figure 4.2). If we define a reference frame with

the north pole at the centre of the ice disc load, the �i and �w functions will depend
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x y

z

w

i

θ=α

Figure 4.2: An illustration of an axis-symmetric load.

only on colatitude ✓:

�i(✓) ⌘

8
<

:
1, if 0  ✓  ↵

0, if ↵  ✓  ⇡
�w(✓) ⌘

8
<

:
0, if 0  ✓  ↵

1, if ↵  ✓  ⇡ ,
(4.30)

where ↵ is the half-amplitude of the ice load. For the moment we make no other as-

sumptions, leaving arbitrary the function di(✓) describing the ice surface, which shall be

made specific later on.

The symmetry of the load allows us to compute the dinm coe�cients of the surface
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load:

dinm =
1

4⇡

Z

�

�i(�)di(�)Y⇤
nm(�)d�

=
1

4⇡

Z

�

�i(✓)di(✓)µnmPnm(cos ✓)e
�im� sin ✓d✓d�

=
1

4⇡
µnm

Z
2⇡

0

e�im�d�⇥
Z ⇡

0

�i(✓)di(✓)Pnm(cos ✓) sin ✓d✓

=
1

4⇡
µnm2⇡�m0

Z ⇡

0

�i(✓)di(✓)Pnm(cos ✓) sin ✓d✓

=
µnm�m0

2n+ 1

✓
2n+ 1

2

Z ⇡

0

�i(✓)di(✓)Pnm(cos ✓) sin ✓d✓

◆

=
µnm�m0

2n+ 1
din

(4.31)

where µnm are normalization constants that comes from the definition of complex spher-

ical harmonics: Ynm(�) = µnmPnm(cos ✓)eim�, and where

din =
2n+ 1

2

Z ⇡

0

�i(✓)di(✓)Pnm(cos ✓) sin ✓d✓ . (4.32)

We remark that in the second line of Eq.(4.31) we have exploited the definition of the

complex spherical harmonics. In the same way we can gain a similar definition for �w
nm:

�w
nm =

µnm�m0

2n+ 1
�w
n where �w

n =
2n+ 1

2

Z ⇡

0

�w(✓)Pnm(cos ✓) sin ✓d✓ . (4.33)

Putting these two results together in Eq. (4.27), we have:

diwnm =
µnm�m0

2n+ 1

✓
din �

di
0

�w
0

�w
n

◆
=

µnm�m0

2n+ 1
diwn , (4.34)

where:

diwn = din �
di
0

�w
0

�w
n . (4.35)

Substituting this expression into (4.28) it is possible to arrive to a final solution.
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The SRF for the vertical displacement leads to:

U(�, t) ⌘ 3⇢i

⇢e

X

nm

diwnmc
h
n(t)Y(�)

=
3⇢i

⇢e

X

nm

µnm�m0

2n+ 1
diwn chn(t)µnmPnm(cos ✓)e

im�

=
3⇢i

⇢e

X

nm

µn0

2n+ 1
diwn chn(t)µn0Pn0(cos ✓)

) U(✓, t) = 3⇢i

⇢e

1X

n=0

diwn chn(t)Pn(cos ✓) ,

(4.36)

and the SRF for the geoid height can be obtained in the same way, obtaining:

G(✓, t) = 3⇢i

⇢e

1X

n=0

diwn ckn(t)Pn(cos ✓) . (4.37)

For the longitudinal displacement term, we have:

V✓(✓, t) =
3⇢i

⇢e

1X

n=0

diwn c`n(t)
@Pn(cos ✓)

@✓
(4.38)

whereas, due to the symmetry of the load, we obtain:

V� = 0 . (4.39)

4.3 Surface Response Function for disc loads

In this Section we will consider the case of a disc-shaped load (Figure 4.3), in which

di = const over the whole subset i. As a consequence, from the integral 4.32 we have:

din =
2n+ 1

2

Z ⇡

0

�i(✓)di(✓)Pn(cos ✓) sin ✓d✓

=
2n+ 1

2
di
Z

1

cos↵

Pn(x)dx

=
2n+ 1

2
di
Z

1

cos↵

P 0
n+1

(x)� P 0
n�1

(x)

2n+ 1
dx ,

(4.40)
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Ice sheet

α

z

θ

Figure 4.3: Disc-shaped load of half-amplitude ↵.

where in the last line we have exploited the “shifted derivative property” of Legendre

polynomials. Given that Pn(1) = 1, we obtain:

din =
di

2
(Pn�1

(cos↵)� Pn+1

(cos↵)) , (4.41)

and similar considerations lead to:

�w
n =

1

2
(Pn�1

(cos↵)� Pn+1

(cos↵)) . (4.42)

With these last definitions, the coe�cients diwn become:

diwn =

✓
din �

di
0

�w
0

�w
n

◆

=
di

2
(Pn�1

� Pn+1

) +
di/2

1/2

1� cos↵

1 + cos↵

1

2
(Pn�1

� Pn+1

)

=
di

2
(Pn�1

� Pn+1

)

✓
1 +

1� cos↵

1 + cos↵

◆

= di
Pn�1

� Pn+1

1� cos↵
l � 1

(4.43)

where here, for the sake of simplicity, we have abbreviated Pn(cos↵) by Pn.
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Finally, the SRF of the disc load are:

U(✓, t) = 3⇢i

⇢e

1X

n=0

diwn chn(t)Pn(cos ✓) (4.44)

G(✓, t) = 3⇢i

⇢e

1X

n=0

diwn ckn(t)Pn(cos ✓) (4.45)

V✓(✓, t) =
3⇢i

⇢e

1X

n=0

diwn c`n(t)
@Pn(cos ✓)

@✓
, (4.46)

with

diwn = di
Pn�1

(cos↵)� Pn+1

(cos↵)

1� cos↵
l � 1 . (4.47)

The disc-shaped load is precisely the load model that I will use in the following

simulations. In the next chapter I will show the results of my work: after computing the

LLNs for various Earth models in the previous chapter, and after showing, in this chapter,

how to obtain the expected deformation caused by a plausible load, I will evaluate the

contribution of transient rheology to surface deformation.
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Chapter 5

Results of the simulations

In this chapter I will discuss the results obtained by the simulations I performed with

ALMA. I used a FORTRAN 90 code for computing the convolution in Eqs. (4.44), (4.46),

(4.45) and then I used MATLAB to produce the plots that will be shown in this chapter.

The first experiment has the simplest set up: an inverted Heaviside-step function (see

Figure 5.1) as time history describing the melting of a disc-shaped ice-sheet applied on

a 3-layer Earth.

The second experiment considers a more realistic time history, representing a deglacia-

tion that occurred between 21 kyr and 6 kyr ago, in which the ice melts following a

gradual steps decrease. The Earth model used is the same as in the first experiment.

The third experiment consisted in two simulations performed considering a 2-layer

mantle, respectively with viscosity trends that follow the ideas of Peltier [20] and Lam-

beck [48] (see Section 1.5). The time history used is the one of the previous experiment.

In the fourth and last experiment I performed a simulation in which I consider present-

day ice melting: the ice load is smaller, in order to reproduce glaciers and ice caps, the

Earth model accounts for a thinner lithosphere and the ice history has a ramp-shape.

5.1 Experiment 1: Heaviside time-history, 3-layer

Earth

In the first simulation, I considered the easiest time evolution for the ice load: the

step function. In this experiment the description of the melting of the ice is extremely
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Figure 5.1: Step Function representing the evolution of the ice sheet. In this case,
extremely simplified, the ice disappears suddenly at t = 0.

simplified: the disc-shaped ice-sheet, unperturbed since t = �1, suddenly disappears

at t = 0 yr (see Figure 5.1). The half-amplitude of the ice-sheet is set to 10�, to

simulate the displacement magnitudes expected from the melting of an ice-sheet such as

the Laurentide. This load function is then convoluted following Eqs. (4.44), (4.45) and

(4.46) with the LLNS obtained for a 3-layer Earth model (nmax = 10000) considering

both Maxwell and Andrade rheologies in the mantle. (see parameters in Table 5.1). This

Radius Density Rigidity Viscosity Rheology
m · 103 kg/m3 · 103 Pa · 1011 Pa · s
6371 3.300 0.28 1021 E
6271 4.518 1.45 1021 M/A
3480 10.977 0 0 F

Table 5.1: Parameters for GS00, a 3�layered Earth model. In the last column the
”E”, ”M”, F”, ”A” indicate the rheological behaviour attribute the parameters (Elastic,
Maxwell, Fluid and Andrade).

first approach does not aim to describe in detail a realistic response of the Earth, but it

is a first step for gaining confidence with the main characteristics of the responses of the

two Earth models considered. In Figure 5.2 a schematic representation of the problem

is shown.

At first I have computed the expected vertical displacement as a function of the

angular distance ✓, from t = 0 until t = 10 kyr, with a temporal step of 0.5 kyr. In

Figure 5.3 are reported some of the steps of its time evolution, for times t = 0, 0.5, 5
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Figure 5.2: Schematic representation of the first simulation. ↵ is the angular extension
of the disc-shaped ice load.
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Figure 5.3: Vertical Displacement: in this plot the vertical displacement is shown as
a function of the angular distance ✓ from the centre of the disc-shaped ice sheet. In the
figure, four time steps are considered. t = 0, t = 0.5, t = 5 and t = 10 kyr. For the ease
of visualization, the dashed curves refer to the displacement computed with a Maxwell
rheology in the mantle, while the solid one are the one computed considering an Andrade
rheology.
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and 10 kyr. At t = 0 the profile reflects perfectly the ice load: at small angular distances

we have the maximum depression, then, at around 10�, corresponding to the ice-sheet

boundary, the displacements decrease rapidly until values close to zero; moreover, at

time t = 0 the two responses (the one computed considering a Maxwell’s rheology and

the one considering an Andrade’s rheology in the mantle) coincide. This is because a

state of isostatic equilibrium was reached before the instantaneous deglaciation. Then,

in the following time step, at t = 0.5 kyr, we see that, due to the absence of the load,

the Earth’s surface starts uplifting. As it will be shown better later, I found that the

maximum di↵erence between the expected displacement computed with the two models

is reached at this time step. Indeed, in the following time steps, for t = 5, 10 kyr

the computed displacement almost superimpose. Of course by choosing a smaller time

interval, it would be possible to locate this event with a better precision, but for our

purposes this is su�cient. One of the most remarkable considerations is that after a

time t = 10 kyr the Earth has almost totally recovered from the deformation caused by

the ice-load, or at least, the residual deformation is ten times smaller than the initial

response.

Figure 5.4 shows the horizontal displacement. Even in this case, for t = 0 the

responses for the two rheologies are the same, and for t = 0.5 kyr we have the maximum

di↵erence between Maxwell and Andrade. Then, for subsequent times, this di↵erence

tends to disappear and, at the same time, the deformations decrease to zero. The shape

of the horizontal displacement has a particular trend with a minimum fixed at 10� and

the two maximum at its sides. The symmetry imposes that the displacement must vanish

for angular distances ✓ = 0� and ✓ = 180�.

Considering the geoid displacement, we can see their trends in Figure 5.5. They

reflect in a smoother way the vertical deformations. Between the cases analysed until

now, this is the one whose response recover the most from the original deformation: for

t = 10 kyr the plot is almost flat.

To better define the displacement variation I have also computed the displacement

rates (or velocities). To estimate the velocity with MATLAB at a particular time ti+1

and

at a particular angular distance, I simply computed the di↵erence between the value of

the displacement at ti+2

and at ti, and then I divided by the time interval. That is why,

in all the plots that show the rates, I will refer not to a single time instant, but to the

relative time interval.
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Figure 5.4: Horizontal Displacement: the displacement is displayed as a function of
the angular distance ✓ from the centre of the ice-load. The dotted curves refer to an
Earth model with a Maxwell rheology in the mantle, the solid ones to Andrade. The
four group of curves refers to times t = 0, t = 0.5, t = 5 and t = 10 kyr.
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Figure 5.5: Geoid Height variations: variation of height of the geoid as a function
of angular distance. Here are reported four time steps, t = 0, t = 0.5, t = 5 and
t = 10 kyr. Their shape is qualitatively similar to the one of the vertical displacement,
but the amplitude di↵ers.
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During my experiments I found that the rates reach their maximum values at the

beginning, in the period included between t = 0 kyr and t = 1kyr, then they linearly

decrease until they reach the minimum at the end of the simulation, for the time t =

9 ÷ 10 kyr. In Figures 5.6 and 5.7 we can see these two cases. The rates are shown

as a function of the angular distance. It is interesting to notice that in the ideal case

that we are considering (a huge amount of ice that disappears instantaneously), the

initial response in terms of vertical displacement reaches a considerable value (10 cm/yr).

Another relevant consideration is the fact that Andrade’s response is faster than the

Maxwell one: this could be inferred even by just observing the first three Figures (5.3 -

5.5): Andrade’s displacements are always closer to the following time step, and this fact

finds a confirmation in the plot of the maximum rates (Figure 5.6), where Andrade’s

velocities are always higher than Maxwell’s ones. Nevertheless, during the simulation,
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Figure 5.6: Maximum displacement velocities: in this graph are reported, as a
function of the angular distance, the maximum velocities of vertical (u) and horizontal
(v) displacement, as well as the variation in geoid height g. This maximum occurs in a
time between 0 and 1 kyr; during the whole duration of the simulation these velocities
progressively decrease.

this di↵erence tends to vanish and in the final step (Figure 5.7) the two models have

almost the same velocities. This is particularly true in the case of the geoid height

(Figure 5.7), were the two trends are indistinguishable.
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It is interesting to notice that, as regard the vertical velocity, the initial trend has

only positive values (Figure 5.6), while in the last time step (Figure 5.7), at an angular

distance of ✓ > 10�, the velocity changes sign, and becomes negative. Observing Figure

5.3, it is clear that this is due the the adjustment of the forebulge: this sort of lateral

bulge feels the e↵ect of the surrounding uplift, but contrary to the depressed region,

during the ice accumulation, it lifted up over z = 0. For this reason, it is possible to

see in the simulation that after more or less t = 5 kyr from the disappearance of the ice

load, that region is characterized by a negative velocities, that means a drop in terms of

displacement.
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Figure 5.7: Minimum displacement velocities: in this graph are reported, as a
function of the angular distance, the minimum velocities of vertical (u) and horizontal
(v) displacement, as well as the variation in geoid height g, which occurs for t = 9÷10 kyr.
Notice that with respect Figure 5.6 the y axis has been re-scaled.

To conclude this first experiment, in Figures 5.8 and 5.9 I show the maximum and

minimum absolute value di↵erences between the expected displacement computed by the

two models. As previously mentioned, the maximum di↵erences appear at the beginning

of the simulation, for t = 0.5 kyr (Figure 5.8), while the minimum appears at the end

(Figure 5.9). In both cases, the larger di↵erences occur in the estimate of the vertical

displacement, that reaches 15 m at t ' 500 yr. Then these di↵erences tend to decrease,

reaching their minimum values for t = 10 kyr.
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Figure 5.8: Maximum absolute di↵erence between vertical, horizontal and geoid
displacement computed with Maxwell and Andrade’s model. This occurs at the start of
the simulation, for t = 500 yr.
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Figure 5.9: Minimum absolute di↵erence between vertical, horizontal and geoid
displacement computed with Maxwell and Andrade’s model. This occurs at the end of
the simulation, for t = 10 kyr. Note that the y scale is di↵erent with respect to the
previous plot.

90



5.2 Experiment 2: realistic step-function time-history,

3-layer Earth

Figure 5.10: Sketch of the second time history used. This time the description of the
melting is gradual, and thus more realistic. From its maximum at 21 kyr, the ice height
decreases in a piecewise manner in time steps of 1 kyr until it reaches zero 6 kyr ago,
when the full deglaciation occurs.

In this second experiment I considered a more realistic representation of the evolution

of the ice load, whose plot is described in Figure 5.10.

With this spirit, next simulations aim at reproducing the expected deformations (and

relative rates) due to the melting of a continental ice-sheet like, for example, the Lau-

rentide. This ice-sheet, during the Late Pleistocene, extended over the western interior

Plains and Great Lakes region in the central region of North America (Figure 5.11).

Figure 5.11: Laurentide Ice sheet at Last Glacial Maximum: figure from [49].
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This area generally encompasses the northwestern interior Plains of North America,

extending from the Rocky Mountains in the west to the western Great Lakes and Hudson

Bay in the east [50]. The Laurentide underwent a fast deglaciation that acted in di↵erent

times over di↵erent regions. Our simulation is extremely rough and does not aim to

retrace accurately the Laurentide deglaciation, since our ice model is just a disc-shaped

load that gradually loses height but that does not shrink. Indeed, we remark here that

we are not interested in computing the most reliable values of displacement that we

expect to observe from satellite data, but our purpose is instead understanding the main

di↵erences that a rheological model accounting for a transient produce with respect to

models that do not account for transient e↵ects. I used the same Earth models of the
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Figure 5.12: Vertical displacement: the displacement is plotted as function of the
angular distance from the center of the ice-load. Four temporal steps are reported:
t = 0, 5, 10 and 21 kyr. The shape of the profile is quite similar to the previous one of
experiment 1.

previous experiment, whose parameters are reported in Table 5.1, and following the same

methods I computed the expected displacement.

Observing the plots concerning the surface dispacement and the geoid height

variation (Figures 5.12, 5.13, 5.14) at first sight no large di↵erences appear with respect

to Figures 5.3, 5.4, 5.5.

However, a more careful analysis reveals interesting features. First of all, the time

range in which the Earth’s surface forgets the deformation is di↵erent: the simulation
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Figure 5.13: Horizontal displacement: the horizontal displacement is plotted as func-
tion of the angular distance from the center of the ice-load. Four temporal steps are
reported: t = 0, 5, 10 and 21 kyr. Even in this case we can recognize the typical trend
of the horizontal displacement, with the minimum nearby the boundary of the ice sheet
and the maximums at its sides.
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Figure 5.14: Geoid height variations: the geoid height is plotted as a function of
the angular distance from the center of the ice-load. Four temporal step are reported:
t = 0, 5, 10, 21 kyr.
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is continued to 21 kyr. This makes sense considering that the ice does not disappear

instantaneously like it did before, but melts gradually and it disappears 6 kyr before

present. Then, another characteristic feature is that the deformation computed consid-

ering Andrade’s rheology for the mantle di↵ers much less than the one computed with

a Maxwellian mantle with respect to the first experiment. Indeed, the two curves, the

dashed one and the solid one, are always very close to each other.
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Figure 5.15: Time evolution of the velocity profile of the vertical displacement:
in the first 10 kyr velocities under the melting ice-sheet increase from initial value of
6÷ 7 mm/yr to 14 mm/yr. Then the profile remains almost the same for the following
4.5 kyr. In the time step time included between 14.5÷ 15.5 kyr a drop occurs, and then
the velocities decrease almost linearly until the end of the simulation.

Something that may not emerge from the previous plots is the evolution of the dis-

placement rates, that is instead well described in the following Figures 5.15, 5.16, 5.17.

While in the previous experiment the velocity profile, after reaching instantaneously its

maximum at the first time steps, followed a linear reduction, now the tendency is di↵er-

ent.

Here the maximum velocities are reached not in the first time step, but around 9 ÷
10 kyr from the start of the simulations. Then, for a time of ⇠ 5 kyr, the profile remains

almost constant. Subsequentially, in the time step corresponding to 14.5÷ 15.5 kyr, the

velocities undergo to a sudden decrease. This temporal instant coincides with the one in

which the ice-sheet vanishes totally. After this drop, the velocities tend to decrease.
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Figure 5.16: Time evolution of the velocity profile of the horizontal displace-
ment: the main temporal features are the same of the vertical displacement (the growth
until 14.5 ÷ 15.5 kyr and then the decrease). This time I plotted the instant in which
the drop happens: the yellow and violet line refers to t = 14÷ 15 kyr, while the green
and light blue one the following time step t = 14.5÷ 15.5 kyr.
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Figure 5.17: Time evolution of the velocity profile of geoid height variation: this
profile is really similar to the one of the vertical displacement rate: from values between
1.2 mm/yr and 1.3 mm/yr, at t = 14÷ 15 kyr the velocities reach their maximum and
then, in the following time step, they decrease suddenly. Here are reported four di↵erent
time steps: t = 0÷ 1 kyr, t = 14÷ 14 kyr, t = 16.5÷ 17.5 kyr and t = 19.5÷ 20.5 kyr.
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5.3 Experiment 3: 2-layer Mantle

The disc-shaped ice-sheet that we have considered in our simulation has a half-

amplitude of ↵ = 10�, that correspond to a diameter on the Earth’s surface of' 2000 km.

Thus, the lateral extent of this ice-sheet is so large that the induced deformation is likely

to be sensitive to Earth’s deep layers. Therefore, ignoring a realistic layering of the

mantle would produce inaccurate results. For this reason in the following experiment,

a two-layer mantle model will be used. We opted for the model BJ97 [40]. Recalling

the discussion of Section 1.5 we will consider both a “Peltier” layering, in which the

viscosity of the upper mantle (1021Pa · s) di↵ers by a factor 2 from the viscosity of the

lower mantle (2 · 1021Pa · s) [20], both a “Lambeck” layering, in which the viscosities

di↵er of a factor 10 [19]. Here I remark that, for the upper mantle, I do not use exactly

the parameters that Lambeck has indicated in his work as the better estimate (0.5 ·1021);
I made this choice to build two models in which only the viscosity of the lower mantle

varies, with the aim of focusing on the role of this unique phenomena. Therefore, taking

advantage of the large value interval in which Lambeck has defined the viscosity of the

upper mantle, I considered the higher value, 7.5 · 1020 ' 1021 Pa · s. In Figure 5.18, for

the sake of clarity, we can see a schematic representation of the present simulation.

α

z

Figure 5.18: Schematic representation of the third simulation. ↵ is the angular extension
of the disc-shaped ice load. The mantle is divided into an upper and a lower layer.

We note that the presence of a two-layer mantle o↵ers us the chance of considering a

transient rheology in the upper or in the lower mantle, separately. We have a total of 6

possibilities:

• Peltier’s Maxwell mantle - Max-2M(P): In this model, the two mantles are
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characterized by a Maxwell rheology, and the viscosities are 1021Pa ·s for the upper
one and 2 · 1021Pa · s for the lower mantle;

• Peltier’s mantle with Andrade in the upper mantle - And-SUP(P): In

the upper mantle, an Andrade’s rheology is present and the viscosity is set to

1021Pa · s, while the lower mantle follows a Maxwell’s rheology with a viscosity

value of 2 · 1021Pa · s;

• Peltier’s mantle with Andrade in the lower mantle - And-INF(P): this

time the Andrade rheology is in the lower mantle, whose viscosity is set to 2 ·
1021Pa · s, while in the upper mantle we have a Maxwell rheology with a viscosity

of 1021Pa · s;

• Lambeck’s Maxwell mantle - Max-2M(L): the two mantles follow a Maxwell

rheology. The viscosities are 1021Pa · s for the upper one and 1022Pa · s for the

lower;

• Lambeck’s mantle with Andrade in the upper mantle - And-SUP(L):

The upper mantle obey Andrade rheology and its viscosity is set to 1021Pa · s, the
lower mantle follows a Maxwell rheology and its viscosity is set to 1022Pa · s;

• Lambeck’s mantle with Andrade in the lower mantle - And-INF(L):

Andrade rheology is in the lower mantle, with a viscosity set to 1022Pa · s, while
in the upper mantle there is a Maxwell rheology with a viscosity of 1021Pa · s;

In Table 5.2 the values of all the parameters of BJ97 are summarized. For all models I

computed with ALMA the corresponding LLNs up to n = 10000. This third experiment is,

among the ones performed until now, the more realistic, and therefore in this section we

will address the main aim of this thesis, that is understanding until how many (kilo)years

the e↵ects of a transient behaviour in the Earth are observable.

Displacements

The following outputs were obtained in the same way of the previous simulations. In

this Section I will report the output concerning the expected deformations as a function

of the angular distance ✓ for di↵erent times. Di↵erently from the previous experiment,
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Figure 5.19: Vertical Displacement: in the four plots the vertical displacement is
reported for di↵erent times t = 0, 7, 14.5 and 21 kyr. At t = 0 kyr we can distinguish
the di↵erent initial deformation estimated from this and the previous experiment. At
t = 7 kyr and t = 14.5 kyr the surface beneath the load is uplifting; at the end of the
simulation we can distinguish well the di↵erence between the displacement computed
using models that considered Peltier’s approach and Lambeck’s one.
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Radius Density Rigidity (Pa) Viscosity Rheology
m · 103 kg/m3 · 103 Pa · 1011 1021Pa · s
6371 2.771 0.315 1 E
6271 4.120 0.954 1 M/A
5701 4.508 1.990 2 (P) or 10(L) M/A
3480 10.925 0 0 F

Table 5.2: Parameters for Bills and James (1997), a 4�layer Earth model proposed
in [40]. In the last column “E”, “M”, “F”, “A” indicate to which kind of rheological
behaviour attribute the parameters (Elastic, Maxwell, Fluid, Andrade). The value of
viscosity of the lower mantle can change whether we are considering Lambeck(L) or
Peltier (P) approaches.

the number of considered model obliged me to choose a di↵erent way of representing

data: in this case, each window represents a single temporal step.

Concerning the vertical displacement (Figure 5.19), we can see that the profiles

have the general features of the previous simulations: the surface beneath the ice load

is gradually subject to an uplift, while at angular distances ✓ > 20� the deformation

is almost negligible. In all the figures concerning the displacements and the velocities,

in addition to the six models listed above, I reported also the output of the previous

experiment, (dashed curves) in order to have a basis for comparison.

The first thing that stands out is that, for t = 0, in the region between 0�  ✓  10�,

there is a di↵erence in the depth of the surface below the ice sheet computed from this

experiment and the previous one. The models considered before lies about 20 m above

the new ones. This has nothing to do with the viscosities, rather it is due to the di↵erent

densities chosen for the layers, that entail a di↵erent depth for the isostatic compensation.

The second thing that one can notice, is that these new models with a layered mantle

and greater viscosities predicts a much slower deformation than the ones with a unique

mantle. At the end of the simulation, the region between 0�  ✓  10� is still depressed,

while in the previous experiment we saw that after a time of 21 kyr the residual defor-

mation was a factor 10 lower than the original one. Then, we can say that the di↵erences

between the new models increase with time, and after more or less 15 kyr, we can notice

that the profiles split into two groups: the one that reaches the maximum height is the

group of the simulations done considering a Peltier viscosities layering, while Lambeck0s

ones lies about thirty meters below. An intuitive explanation for this fact is that the
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Lambeck model, thanks to a viscosity of the lower mantle set to 1022 Pa · s, results less
prone to deformation (hence, has a longer relaxation time).

Another remarkable feature of these plots, especially visible in the one for t = 21 kyr,

is that inside each of the two groups, the trend regarding the three possibilities for the

mantle behaviour are arranged in the same order: at the top we have the model with

an Andrade transient component in the lower mantle (and Maxwell in the upper one),

then the one with Andrade in the upper mantle, and the last is always the one with

Maxwell in the two mantles. This is in line with the previous results: we saw that,

indeed, Andrade’s transient rheology produced faster deformation than the Maxwell

one. In this case we have a composition of Andrade and Maxwell rheologies in the

mantle, so it was foreseeable that the case of an upper and lower mantle with a Maxwell

behaviour produced the slowest deformation. Nevertheless, is quite interesting to see that

considering a transient behaviour in the lower mantle generates a faster deformation than

a transient in the upper mantle. In the next section regarding rates of displacement we

will better characterize this behaviour.

The horizontal displacement (Figure 5.20) have the typical shape with two max-

ima around 6� and 14�, and the minimum in 10�. The symmetry of the problem imposes

a null horizontal displacement in 0� and 180�. Even here we can notice an initial di↵er-

ence between the computed displacement of the new experiment and the previous one.

However, since the entity of the horizontal deformations are of the order of few meters,

these di↵erences are much smaller than those of the vertical deformations. Unlike the

previous case, here the outputs stand, for the whole duration of the simulation, almost

in the same values interval and it is more complicated to group the results. The general

trend is a reduction of the displacement toward the zero for increasing time, but as hap-

pened before, in 21 kyr the deformation does not disappear at all. This reduction a↵ects

primarily the peripheral areas, while the zone around the ice-sheet boundary maintains

its shape, with the two maximua and the minimum at ✓ = 10�.

Regarding the di↵erence between Peltier’s and Lambeck’s models, we can see that

in Peltier’s case, the trends seems a little delayed with respect Lambeck’s one, which

decreases faster. However, while for angular distances > 15� Peltier’s horizontal dis-

placement decreases linearly, in Lambeck’s case, especially at the end of the simulation,

a lateral swelling starts developing.

In the geoid height variation plot (Figure 5.21), we can see that in general what
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Figure 5.20: Horizontal Displacement: in the four plots the horizontal displacement
is reported for di↵erent times t = 0, 7, 14, 5 21 kyr. At t = 0 kyr we can distinguish
a little but significant di↵erence in the shape of the curves computed by this and the
previous experiment. Both in t = 7 kyr and t = 14.5 kyr the value of each output
assume similar value, and it is di�cult to discern them; at the end of the simulation the
trends are still very close to each other but some di↵erences can be observed.
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we said for the vertical variation holds true even in this case, with the usual di↵erence

that the plots are smoother and the amplitudes of the displacements are smaller.
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Figure 5.21: Geoid Height Variation: in the four plots the geoid height is reported
for di↵erent times t = 0, 7, 14.5 and 21 kyr. The main features follow the one of the
vertical displacement.

Velocities

In the following pages are reported the plots regarding the evolution of the displace-

ment rates. These plots are particularly important since displacement rates are leading

data in PGR.

Starting from the vertical displacement rate (Figure 5.22), what we can say is that

its evolution reflects the one of the previous experiment (an increase in the displacement

rate under the ice load, then a sudden drop when the load is removed, followed by

a gradual decrease). The main di↵erence that we can notice observing Figure 5.22

regards the values of these velocities. With respect the previous experiment, they are
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Figure 5.22: Vertical Displacement Rate: even in this figure four di↵erent time
interval are represented. From angular distances ↵ < 15�, the velocity trends remain for
the most part of the experiment grouped into two clusters: Peltier’s and Lambeck’s one.

lower, and they never exceed the value of 8 mm/yr. In the first phase, from the start

of the simulation until t = 14 ÷ 15 kyr they increase from an initial value around

2 mm/yr untill, for the case of Peltier’s models, ⇠ 7 mm/yr, and until ⇠ 4.5 mm/yr

as regards Lambeck’s models. Then, at t = 14.5 ÷ 15.5 kyr the disappearance of the

ice load generates the drop in the velocity values that we observed even in the previous

experiment. This time the entity of the drop is not marked as it was in the previous

case (Peltier’s trends decrease from ⇠ 7 mm/yr to ⇠ 5 mm/yr while Lambeck’s from

⇠ 5 mm/yr to ⇠ 3 mm/yr. Then, until the end of the simulation, the profile remains

almost unvaried. As it was mentioned in the discussion about the vertical displacements,

here it appears even more clearly that the faster models are the ones with Andrade in the
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Figure 5.23: Horizontal Displacement Rate: in this figure we see the evolution of
the vertical velocity through four di↵erent time intervals: t = 0 ÷ 1, t = 14 ÷ 14,
t = 14.5÷ 15.5 and t = 20÷ 21 kyr.

lower mantle. The di↵erence in velocity is not very significant, but however it is a fact

of remarkable interest: we can conclude that, the GIA vertical displacements involving

huge ice sheet is mostly controlled by the deepest mantle layers.

The horizontal displacement rate (Figure 5.23) is characterized, in the first part

of the experiment, until t = 14 ÷ 15 kyr, by negative velocities that increase with time

in the y� axis negative direction and have their minimum around ✓ = 10� (see the first

box of Figure 5.23). In the time step t = 14.5 ÷ 15.5 kyr, the disappearance of the

ice-sheet modifies the shape of the velocity profile, and as we can see in the third box

of Figure 5.23, the central part of the concavity raises up. Then, until the end of the

simulation, the models with Maxwell in the two mantles and the ones with Andrade in
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the lower mantle remain almost unchanged in this new position, while the one referring

to the models with Andrade in the upper mantle increase in value toward the y axis.

Basically, we can say that in this last time range, while the models And-INF(P), And-

INF(L), Max-2M(P) and Max-2M(L) have a null acceleration, the ones with Andrade in

the upper mantle have positive accelerations. This means that, contrary to the vertical

displacement, the horizontal one seems more influenced by the rheology of the upper

mantle.

As regards the geoid height variation (Figure 5.21), we can see that in general

what we said for the vertical displacement rates holds true, with the usual di↵erence

that the profiles are smoother and the amplitudes are smaller.
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Figure 5.24: Geoid height variation rate:in the four plots the geoid height is reported
for di↵erent times t = 0, 14÷ 15, 14.5÷ 15.5 and 20÷ 21 kyr. The main features follow
the one of the vertical displacement.
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5.4 Experiment 4: present day ice melting

In the previous sections we have solved the problem of understanding which are

the optimal time and position for observing the e↵ects of a transient rheology for a

deglaciation occurred in the past. In this last section we will investigate if also present

day climate change is able to trigger responses attributable to transient e↵ects. To do

so, we will need to change the dimension of the considered load: present day climate

change acts firstly on alpine and peripheral glaciers, that due to their dimension and

other external conditions, are more sensitive to temperature warming than the bulk of

ice-sheet. In this section we will thus consider the following problem:

t
100 yr

1

Figure 5.25: Schematic representation of the ice history used in the fourth experiment.

• Ice-History: thanks to a new version of ALMA, we will consider a ramp-shaped

ice-history (Figure 5.25). The ramp describes the growth of the glacier, that from

time t = 0 yr in which no ice is present, evolves until it reaches its maximum

thickness for t = 100 yr.

• Earth Model: due to the dimensions of the load, we need an Earth model with a

better description of the upper layers. To do so without invoking a detailed Earth

model with many layers, we will consider a 3-layer Earth model in which the crust

has a thickness of 30 km, the mantle is uniform and reaches a depth of 3480 km,

and then the core is fluid and inviscid. Basically, we are considering model GS00

with a thinner lithosphere. Parameters of this model are reported in Table 5.4.
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Here we remark that, for the case of Burgers, the rigidity µ
1

and the viscosity ⌘
1

have the valeus shown in Table 5.4, while µ
2

= 0.3 · µ
1

and ⌘
2

= 0.1 · ⌘
1

.

• Ice-Load: the purpose of this experiment is simulate the response to present day

ice melting, that involves mainly alpine and peripherical glaciers. For this reason,

since we continue using the disc-shaped model, the ice load angular extension is

reduced to ✓ = 1�, that represents a surface extension of 38 820 km2. This is a good

representation of alpine glaciers, that by definition do not exceed the dimensions

of 50 000 km2.

• Rheology: we will take into consideration four di↵erent rheology for the mantle:

Elastic, Maxwell, Burgers, and Andrade. All this rheological models are described

in Chapter 1.

Radius Density Rigidity Viscosity Rheology
m · 103 kg/m3 · 103 Pa · 1011 Pa · s
6371 3.300 0.28 1021 E
6341 4.518 1.45 1021 M/A/E/B
3480 10.977 0 0 F

Table 5.3: Parameters for the modified GS00 model. Di↵erently from the previous case,
here the lithosphere is thinner, only 30 km thick. In the last column “E”, “M”, “F”,
“A” and “B” indicate to which kind of rheological behaviour attribute the parameters
(Elastic, Maxwell, Fluid, Andrade and Burgers).

First of all, using ALMA, I obtained the LLNs until the harmonic degree n = 256 for

all the four Earth model described above; then, I performed convolutions Eqs. (4.44),

(4.46) and (4.45) to obtain the displacements. I plotted the results with MATLAB. As

done before, using MATLAB I also computed the displacement rates. In this experiment I

choose to represent data in a di↵erent way: the ice load is small, so we do not expect to

recognize its e↵ects at great angular distances. Since we are interested to recognize the

time interval in which the e↵ects of the transients start to di↵er from the ones produced

by non-transient rheologies, I opted for plots in which, at a given angular distance ✓, the

displacement is shown as a function of time. I considered ✓ = 0�, 1�, 2�.

The result I obtained from the convolutions referred however to a deformation due

to the formation or to the growth of a glacier, while in the actual case we would obtain

108



the deformation due to deglaciation process. Rather than modifying the convolution and

making it able to consider an ice-history of the type 1� ramp(t), I simply multiply the

output by �1. So, di↵erently from before, at the start of the simulation the displacement

is zero, while in the previous case we where able to plot the initial depression.

In the first three figures, vertical, horizontal and geoid displacement are shown, while

in the other three we see the velocities.

Figure 5.26 represents the vertical displacement. The three boxes represent the

angular distances ✓ = 0�, 1�, and 2�. The higher values of displacement are reached at

✓ = 0�, and by moving away from the centre of the glacier the amplitude of the displace-

ments decreases. However, in all the three cases, the trends of the displacement are the

same: the model with a Burgers rheology in the mantle produces the larger displace-

ments, that have their maximum at t = 100 yr. Immediately below, we have Andrade,

and then Maxwell and the Elastic case. The rheology that accounts for transient e↵ects

(Burgers and Andrade) shows a convexity while the other two have a linear trend. As

we can see, starting from t = 40 yr Burger and Andrade models are well distinguishable

from each other and from the elastic and Maxwell’s output. Compared to the di↵erence

between Andrade and Burgers, the outputs computed with a Maxwell rheology and an

elastic one remain smaller until the end of the simulation, at t = 100 yr. This first figure

tells us that, if our glacier started losing mass in the 80’s, at present day we should

be able to discern the presence (or not) of a transient in the mantle. Of course this is

a rough estimate, a more detailed analysis should exploit as more as possible the data

available about the ice melting, to model a more accurate deglaciation time history, but

these experiments give us a first indication about the time-scales involved.

The horizontal displacement for ✓ = 0�, 1�, and 2� is shown in Figure 5.27. Of

course, under the centre of the load, ✓ = 0�, no horizontal displacements take place for

symmetry reasons. At the load boundary, for ✓ = 1�, the highest values of displacement

are those of the models that consider an Elastic or Maxwell’s rheology in the mantle,

while Andrade and Burgers produce lower results. The situation is reversed at ✓ = 2�.

Recalling the shape of the horizontal displacements saw in previous experiment, we know

that in ✓ = 1� we are seeing a minimum, while ✓ = 2� is a point taken at the exterior

the load, and we can expect that it is a point near the one in which we have one of

the two characteristic maxima. It is interesting to notice that, according to the plot,

the di↵erence between the maximum and the minimum have a larger size in the case of
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Figure 5.26: Vertical Displacement: in the three boxes we can see the computed
displacement at ✓ = 0�, 1� and 2� as a function of time. The four curves represent the
responses of the considered models. The number above each plots represents angular
distances ✓ = 0�, 1�, 2� from the centre of the load.
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Figure 5.27: Horizontal Displacement: as above, in the three boxes, we can see the
expected displacements for ✓ = 0�, 1� 2� as a function of time.
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models that do not consider the transient in the mantle.

The geoid displacement (Figure 5.28) follows the same trends of the vertical dis-

placement, with the di↵erence that the amplitudes are smaller.
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Figure 5.28: Geoid Displacement: the geoid displacements are shown as a function
of time for the angular distances ✓ = 0�, 1� and 2�. The four trends refer to the output
relative to di↵erent models that account respectively for Elastic, Maxwell, Burger and
Andrade rheology in the mantle. The profiles retraces the ones of the vertical displace-
ments.
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The rates reflects what we have just seen in the displacement plots. Regarding the

vertical velocities (Figure 5.29), the highest values are reached by the models that

assume a Burger’s rheology and an Andrade’s one in the mantle, with values around 13

and 8 mm/yr respectively, at t = 100 yr. The velocities obtained with these two models

show a progressive deceleration, while the Maxwell model shows a linear behaviour and

the elastic response rate remains constant during the whole simulation. The velocities

seems to decrease with increasing angular distance from the centre of the load.
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Figure 5.29: Vertical Displacement Rate: the rates are shown as a function of time
for the angular distances ✓ = 0�, 1� and 2�. In the title of each box, the number indicates
the angular distance. The four trends refer to the output relative to di↵erent models
described in the legend.
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The horizontal velocities (Figure 5.30) show a particular trend. Of course at ✓ = 0�

the velocity vanishes by symmetry, while at ✓ = 1�, except for the elastic model, the other

three have a decreasing trend. The Burgers curve seems to decelerate in the last phase of

the simulation. On the contrary, at ✓ = 2� transient models seems to accelerate. These

particular profiles suggest that the horizontal displacement is assuming its characteristic

shape, with the minimum at ✓ = 1�, at the boundary of the ice load, and the two maxima

at its sides.
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Figure 5.30: Horizontal Displacement Rate; the rates are shown as a function of
time for the angular distances ✓ = 0�, 1� and 2�. The four trends refer to the output
relative to di↵erent models that account respectively for Elastic, Maxwell, Burgers and
Andrade rheology in the mantle.

Even in this case the geoid displacement rates (Figure 5.31) follow the trend of
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the vertical rates. The usual di↵erences are in the magnitude of the velocities. The

higher values are reached at ✓ = 0� and from the Burger’s body model (0.4 m/yr at

t = 100 yr. Immediatly below we have Andrade’s model: 0.25 m/yr at t = 100 yr.
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Figure 5.31: Geoid Displacement Rate: in this figure the geoid dispacement rates are
shown as a function of time for the angular distances ✓ = 0�, 1� and 2�. The four trends
refer to the output relative to di↵erent models that account respectively for Elastic,
Maxwell, Burger and Andrade rheology in the mantle.
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Chapter 6

Conclusions

In this final chapter I wish to recall the most important results discussed in this thesis.

After the first introductory chapter in which the main rheological laws were presented,

we have introduced the Love numbers formalism and applied it to the surface load prob-

lem. Then, we had all the necessary ingredients to compute, once chosen a suitable

ice-history, the expected displacement (and relative rates) produced by several Earth

models. We considered both experiments “in the past”, with the aim of understanding

when past deglaciation caused deformation trends in which the transient component was

distinguishable from other Earth’s models with steady-state rheologies, and experiments

“ in the future ”, to understand when present day climate change may be able to pro-

duce measurable displacement attributable to the presence of a transient in the Earth’s

behaviour.

We started with three experiments “in the past”: the first had the simplest condi-

tions (Heaviside ice-history, 3-layer Earth Model), from which we were however able to

understand that:

• The model that accounts for an Andrade’s transient in the mantle produces larger

vertical, horizontal, and geoid displacement rates than the one in which we consider

a Maxwell rheology;

• The horizontal displacement has a particular shape, with a minimum nearby the

ice-sheet boundary and two maxima at its sides. For symmetry reason, the hori-

zontal displacement vanishes at angular distances ✓ = 0�, and ✓ = 180�.
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• The geoid displacement profile can be described as a smoother version of the vertical

displacement profile, with smaller magnitude.

• In this experiment, the best time to distinguish the e↵ects of the transient from

those of a steady-state rheology is immediately after the disappearance of the ice-

load, while the best position is the point on the Earth’s surface under the centre

of the disc-shaped ice-sheet.

The first three statements remained true also for the following experiments.

The second experiment exploited the same Earth model but this time the ice-history

was more realistic, and in place of accounting for a unique step in which the ice suddenly

disappeared, it considered a gradual step-decrease of the ice. The conclusion of this

experiment confirmed the one of the previous, and added a particular: when the ice

melting is gradual, the displacement rates change in value during the simulation: the

velocities increase until the time in which we remove totally the ice-load. At that moment

they undergo to a sudden drop, after which they decrease further. This fact characterizes

even the following experiments. Even in this case the best moment in which possible

transient e↵ects are clearly osservable is when the ice disappears totally, but if before

this occurred at the beginning of the simulation, here we must wait for ' 14.5÷15.5 kyr.

The third experiment accounted for a two-layered mantle. We considered both a

“Peltier’s” layering, with viscosities of the upper and lower mantle respectively 1021 and

2·1021 Pa·s, and a “Lambeck’s” layering, were the two viscosities were 1021 and 1022 Pa·s.
The two-layer mantle allowed us also to investigate if the presence of the transient only

in a portion of the mantle (the upper or the lower) had remarkable consequences. The

main results we found out were:

• Considering a layer (the lower) in which the viscosity is higher slows down dis-

placement rates;

• The general behaviour of the displacement rates follows the one observed in the

second experiment: a first phase of increasing velocities, then the drop at the ice

disappearance moment, and then a slow reduction;

• Vertical displacements are more sensitive to the rheology of the lower mantle, while

horizontal displacements to the one of the upper mantle. This feature finds a qual-

itative explanation considering that horizontal displacements are linked especially
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with horizontal fluxes of the Earth’s interior material, which for geometric reasons

have more freedom of movement with respect vertical fluxes, that have a restricted

area corresponding to the thickness of the mantle.

• The best moment in which the e↵ects of the transient can be observed was, even

here, at the disappearance of the ice, between 14.5 and 15.5 kyr ago, at angular

distances ✓ < 8� for vertical and geoid displacement. The horizontal ones shows

greater di↵erences between Andrade’s models and the Maxwell’s one at t = 21 kyr

and in the angular distances around the minimum and the two maxima.

Considering the last simulation the more suitable for answering the fundamental

question of this thesis, we can say that the best time at which the presence of a possible

transient can be observed in the profile of the vertical displacement occurred more or

less between 14.5 and 15.5 kyr ago. However, collecting the information deduced by

previous experiments, I think that, in general, the e↵ects of a transient rheology produces

the greater di↵erences, in term of expected displacement, with respect to a steady-state

rheology, when sudden changes happen to the load. Indeed I do not think that it is just a

coincidence that the best times at which the transient can be observed happened always

at the disappearance of the ice-load. Hence, the best situations in which we can try to

find a possible transient are those in which the ice-load underwent to fast and sudden

variations.

Regarding the last experiment, our purpose was understanding when actual climate

change will be able to produce deformations attributable to the presence of a rheological

transient behaviour in the Earth. We assumed a ramp ice-history, in which the ice melted

linearly in 100 yr. This ice model is even more detailed than the previous ones. We saw

that the expected displacements with the greater magnitudes were the vertical ones: in

a century, considering the Earth model of Table 5.4 , an ice-sheet of angular amplitude

of 1� can produce an uplifting of the Earth’s surface of 1 m under its centre (considering

a Burger’s rheology in the mantle). Observing the data of the vertical displacement,

we can say that after 40 yr from the start of the melting, the four curves representing

Earth’s models with Andrade, Burgers, Maxwell and an elastic rheology in the mantle

start producing su�ciently di↵erent expected displacement. Beyond 50 yr the curves of

the two steady-state rheologies (Maxwell and linear elastic) are well distinguishable from

the one of Burgers and Andrade’s. Even Burgers and Andrade’s curves are discernible
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after 50 yr. For the horizontal displacement, we should wait a little more to distinguish

the various trends: a time of 60 yr seems however enough for discerning between Burg-

ers trend, Andrade’s trend and the steady-state rheologies trend (Maxwell and elastic

rheology).

Considering the rate of the actual melting of alpine glaciers and ice-caps, in the next

decades, we should be able to recognize patterns potentially attributable to transient

e↵ects in the Earth’s surface deformation data.
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