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Abstract

Ultracold gases are an exceptionally versatile platform to test novel physical concepts.
Thanks to the development of new experimental techniques, they have greatly advanced
our understanding of the physics of many-body systems and allowed precision measure-
ments of fundamental constants. Bose-Fermi mixtures can then be introduced in this
context. This novel quantum many-body system is essentially an ultracold gas made up
by both bosons and fermions, where tunable attractive or repulsive interactions between
the components can be introduced. At T = 0 and for weak interactions the bosons
condense while the fermions behave as a Fermi liquid. In particular, a recent system
of interest is given by two-dimensional Bose-Fermi mixtures with both Bose-Fermi and
Bose-Bose repulsive interactions. In the present work, a Quantum Monte Carlo study
is conducted, for a fixed value of boson concentration, at zero-temperature from the
weak to the strong Bose-Fermi coupling limit. Variational Monte Carlo and Fixed-Node
Diffusion Monte Carlo are applied using an optimized Jastrow-Slater wavefunction, ex-
tending previous methodology developed for the three-dimensional case. The results
are then compared with perturbative predictions, showing very good agreement in the
weak coupling region. Variational Monte Carlo agrees with the analytic predictions only
for extremely weak coupling, while Diffusion Monte Carlo proves necessary to recover
good agreement over the whole perturbative regime. For stronger couplings, our simula-
tions indicate the tendency of the mixture to form bosonic clusters. This finding would
definitively deserve further investigation, which is postponed to future works.
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Introduction

All particles in nature can be distinguished between bosons, obeying Bose-Einstein statis-
tics, and fermions, obeying Fermi-Dirac statistics. These different statistics determine a
very different behaviour in the quantum regime, namely when the thermal wavelength
λT = h/

√
2πmkBT associated to a particle of mass m at temperature T (h and kB being

the Planck and Boltzmann constants, respectively) becomes comparable to the average
interparticle distance n−1/d (where n is the particle density and d the dimensionality of
the system). At sufficiently low temperature, noninteracting bosons condense in a sin-
gle quantum state, with all particles sharing the same single-particle wavefunction. For
fermions this is strictly forbidden by Pauli exclusion principle. The first phenomenon,
known as Bose-Einstein condensation (BEC), is at the heart of superfluidity and super-
conductivity. Fermi statistics, on the other hand, guarantees the existence and stability
of atomic structures, including the elements and molecules of which we are made. Fur-
thermore, for fermions, a microscopic theory for pairing in charged systems was intro-
duced in 1957 by Bardeen, Cooper and Schrieffer [1]. In their celebrated BCS theory,
the (conventional) superconductivity, discovered in 1911, was explained in terms of the
formation of electronic pairs (Cooper pairs) below a certain critical temperature, giving
a good description of the phenomenology observed in experiments with conventional su-
perconductors. The subsequent discovery of the first cuprate superconductor in 1986 by
Bednorz and Müller gave a large impetus to the search for a theory able to connect the
conventional superconductor to such novel systems and motivated the exploration of the
so called BCS-BEC crossover.

All these physical phenomena find an excellent testing platform in ultracold gases. In
fact, thanks to the recent development of experimental techniques, such as laser cooling,
it has been possible to cool down to near absolute zero atomic and molecular gases and
explore in this way the quantum regime where these interesting phenomena occur. In
addition, ultracold gases allow one to test theories and to address fundamental issues of
quantum mechanics as well as to reproduce physical systems relevant to other areas in
physics, with a flexibility and a degree of tunability of parameters unimaginable in the
original system of interest. Furthermore ultracold gases offer the possibility to construct
novel many-body systems, which are not commonly found in nature.

Bose-Fermi mixtures can be introduced within this florid framework. These novel
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quantum systems have attracted much attention over the last fifteen years. It is es-
sentially an ultracold gaseous mixture made up by both bosons and fermions, where
attractive or repulsive interactions between the two components can be introduced. A
new experimental technique, which exploits Feshbach resonances in the scattering be-
tween atoms, has made it possible to tune the interaction between bosons and fermions
by simply changing the value of external parameters (such as the magnetic field) [2],
and explore almost all the interaction regimes of the system. The situation of most
interest is that of a Bose-Fermi mixture with an attractive interaction between bosons
and fermions (and a reciprocal repulsive interaction between bosons). At zero temper-
ature, one expects that for weak Bose-Fermi attraction a Fermi sea will coexist with
a BEC of bosons. By increasing the interaction strength, molecular bound states of
one boson and one fermion will be created. Such molecular bound states are fermionic
Feshbach molecules which, contrary to the case of the BCS-BEC crossover in fermionic
systems, cannot condense because they obey the Fermi-Dirac statistics. By increasing
the coupling, the condensate will be progressively depleted by the conversion of bosons
(and fermions) to composite fermions. By increasing further the coupling and assuming
that the number of bosons does not exceed the number of fermions, the conversion of
bosons into composite fermions will be complete, and the original Bose-Fermi mixture
will behave as a Fermi-Fermi mixture in such molecular regime. For systems with ma-
jority of fermions, a first order phase transition has been found to divide the molecular
region from the region where a BEC is present at T = 0 [3], contrary to the case of
the BCS-BEC crossover in ultracold fermions for which the weakly-interacting regime is
connected to the strongly-interacting regime with a crossover.

Bose-Fermi mixtures with an attractive boson-fermion interaction have already been
studied in three dimensions both theoretically and experimentally. In particular, Bose-
Fermi mixtures can be treated, from a numerical point of view, through Quantum Monte
Carlo techniques (QMC). Variational Monte Carlo (VMC) and Fixed-Node Diffusion
Monte Carlo (FN-DMC) are both used to obtain upper bounds for the ground state
energy of the gas. For three-dimensional Bose-Fermi mixtures, Quantum Monte Carlo
studies have been developed at zero temperature from the weak to the strong-coupling
limit, providing a good description of the system both in the condensed and in the
molecular phase [3, 4].

The possibility to confine ultracold gases in a two-dimensional trap geometry prompted
interest in two-dimensional mixtures. Fermi-Fermi mixtures in two dimensions have al-
ready been studied in some theoretical works [5, 6]. Two-dimensional Bose-Fermi mix-
tures are, instead, still marginally explored in the literature. A recent paper by Bazak
and Petrov [7], has motivated great interest on two-dimensional Bose-Fermi mixtures
with an attractive BF interaction and a repulsive BB interaction. The authors, in fact,
showed an important result: the composite fermionic dimers (boson + fermion), formed
in the two-dimensional mixture, may exhibit a strong p-wave mutual attraction, which
should lead to a stable p-wave superfluid gas. Thus, a complete and exhaustive study

4



of this system, both with theoretical and numerical techniques, may be helpful to de-
velop guidelines for future experiments with the aim of realizing the first high-TC p-wave
superfluid in ultracold fermionic matter.

This is the context in which the present thesis sets in. Before studying the system
described by Bazak and Petrov, however, a preliminary study must be conducted for
a simpler system, that is, a two-dimensional Bose-Fermi mixture with both repulsive
BF and BB interactions. Compared to the system considered in [7], this system does
not foresee the formation of the fermionic dimers but, instead, is characterized only
by a homogeneous phase, which is very similar to the condensed phase of the previous
mixture. Thus, the purpose of this thesis is to carry out a Quantum Monte Carlo study
of a Bose-Fermi mixture with both BF and BB repulsive interactions, by extending and
adapting the methodology developed for three-dimensional Bose-Fermi mixtures. The
results of the simulations are then compared with perturbative predictions [8], for which
agreement is expected at least for low values of the BF interaction.

The dissertation is organized as follows. In Chapter 1 we introduce the reader into
the field of ultracold gases, paying particular attention to the phenomenon of Feshbach
resonances and to the recent theoretical and experimental interest in Bose-Fermi mix-
tures.

Chapter 2 is entirely devoted to the vast world of Quantum Monte Carlo. In partic-
ular, after a brief review of some fundamental concepts of statistics, we face the problem
of the generation of random numbers according to a generic probability distribution
function, which can be solved by introducing an important algorithm: the Metropo-
lis algorithm. Then we show how the integral of a function can be dealt using Monte
Carlo methods, introducing the fundamental concept of importance sampling. Varia-
tional Monte Carlo and Diffusion Monte Carlo are thus introduced, paying particular
attention to how the simulations must be implemented and which trial function best ap-
proximates the true ground state wavefunction. Furthermore, some sections are devoted
to the approximations used during our simulations and how these affect our results.

Chapter 3 is mainly dedicated to the results of our simulations. We first show the
conventions used during our work in order to clarify the notation. Then the results
of VMC and DMC simulations, together with the results of all the preliminary analyses
carried out, are presented. Finally, the last section is reserved for the comparison between
QMC results and theoretical predictions ([8]).
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Chapter 1

Ultracold Bose-Fermi mixtures

1.1 Ultracold Gases

Ultracold gases [9, 10, 11] are a relatively young field in atomic and molecular physics.
They became world-wide known after the experimental achievement of Bose-Einstein
condensation in 1995 [12, 13]. In more recent years, these systems have attracted a great
deal of attention also in other areas of physics, such as condensed matter physics, nuclear
physics and quantum information. This is mainly due to the high degree of control that
can be achieved experimentally. Feshbach resonances, for example, can be used to tune
the interaction strength between atoms. Furthermore, optical potentials allow to vary
the magnitude of the interactions as well as the effective dimensionality of the system.

The physics of ultracold gases concerns atomic systems with low densities and with
temperatures close to absolute zero. Three length scales are used to identify the physical
regime of ultracold gases: the range of the interaction potential between atoms r0, the
mean interparticle distance lm and the thermal de Broglie wavelength λT .

The quantum degeneracy regime is achieved when the thermal de Broglie wavelength
(which represents the size of the wavepacket associated to a particle) is on the order
of or larger than the interparticle distance (λT & lm). In such regime quantum effects
will dominate, in the sense that particles become indistinguishable and can no longer be
described by classical Maxwell-Boltzmann statistics.

The diluteness condition is also fundamental in the context of ultracold gases and it
is reached when both the thermal wavelength λT and the interparticle distance lm are
larger than r0. In particular, this condition guarantees universality in the description of
the scattering of particles: the scattering problem does not depend on the features of the
interatomic potential, but only on the lowest angular momentum scattering length a.

6



1.2 Feshbach resonances

In this section we show the main aspects that characterize the phenomenon known as
Feshbach resonance. It is not the purpose of this thesis to present a thorough review of
scattering theory and of all the resulting phenomena (we refer the reader to references
[14, 15]).

In a scattering process, the internal states of the particles in the initial or final states
are described by a set of quantum numbers, such as those for the spin, the atomic species,
and their state of excitation. Generally, a possible choice of these quantum numbers
identifies the so called channel. Clearly, this implies that scattering processes can be
divided into single-channel scattering problems or multi-channel scattering problems. To
give an example, at the temperature of interest for Bose-Einstein condensation, atoms
are in their electronic ground states and the only relevant internal states are therefore
the hyperfine states. Because of the existence of several hyperfine states for a single
atom, the scattering of cold alkali atoms is a multi-channel problem.

In a multi-channel scattering problem, the elastic scattering in one channel can be
altered dramatically if there is a low-energy bound state in a second channel which
is closed (in the sense that its energy is higher than the available energy when the
particles are free at large distance). This phenomenon, generally known as Feshbach
resonance, was first investigated in the context of nuclear physics. Then, thanks to
its versatility, it has become a fundamental tool in investigations of the basic atomic
physics of cold atoms. In particular, Feshbach resonances appear when the total energy
of two scattering particles in an open channel is approaching the energy of a bound state
in a closed channel. Two particles in an open channel can scatter to an intermediate
state in a closed channel, which subsequently decays to give two particles in one of the
open channels. This second-order processes give rise to a contribution to the scattering
amplitude which has the form of a sum of terms of the type

a ∼ 1

E − Eres
, (1.1)

where E is the energy of the particles in the open channel and Eres is the energy of a
bound state in the closed channels modified by the coupling between closed and open
channels. Consequently, the closer the bound closed state energy is to the energy of
the incoming particles in the open channels, the greater the effect on the scattering
length. The effective interaction between particles in the open channel can thus become
attractive or repulsive, depending on the side of the resonance. Since the energies of
states depend on the external parameters, such as the magnetic field, these resonances
make it possible to tune the effective interactions between atoms.

Given an external magnetic field B applied to the system under study, we call B0 the
value of the field at which the threshold energy of the open channel matches the modified
bound-state energy (Eref ) in the closed channel. The expression for the scattering length
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in presence of a Feshbach resonance is given by:

a = abg

(
1− ∆B

B −B0

)
, (1.2)

where abg is the background scattering length far from the resonance and ∆B is the width
parameter. The scattering length a is thus changed by the resonance for variations of
the magnetic field of the order of ∆B, which represents the width of the resonance. This
parameter depends on the coupling between the channels and on the different magnetic
moments in the channels (for further detail see Ref. [15]). Eq. 1.2 shows that, for B = B0,
the scattering length has a divergence. In the context of ultracold gases, one refers to this
particular situation as the unitarity limit. Notice also that, because of the dependence of
the scattering length on 1/(B −B0), large changes in the interaction as well as changes
in the sign of the interaction can be obtained just by slightly varying the magnetic field.

1.3 Bose-Fermi mixtures

After an exploration of a rich variety of systems, entirely composed by the same species
of bosons or fermions, nowadays the attention is focusing on a new interesting kind of
systems, the mixtures, which include ultracold gases composed by bosons and fermions,
or by bosons of two different atomic species, or by multi-component fermions (for ex-
ample fermions of the same atomic species in two or more different hyperfine levels).
Feshbach resonances play again a relevant role, since they can be exploited to tune the
interaction between particles, allowing the realization of numerous experiments. The
first heteronuclear boson-fermion Feshbach molecules were obtained in Hamburg [16]
and later in Boulder [17], with a Bose-Fermi mixture of 40K − 87Rb in presence of a
Feshbach resonance. The creation of Feshbach molecules in B-F mixtures was achieved
also with 23Na − 6Li [18] and 23Na − 40K [19] mixtures, in the latter case observing
lifetimes of the order of 100 ms, sufficient for the setup of many-body effects.

On the theoretical side, the initial works on boson-fermion mixtures studied, mainly
with mean-field and perturbative approaches, the problem of instability (for collapse or
phase-separation) of the systems [20, 21, 22]. Subsequent research started to consider
what happens in the presence of a Feshbach resonance and to study strongly interacting
systems, approaching the problem in several ways: within mean-field approximation,
with the diagrammatic formalism or with fully numerical methods (Quantum Monte
Carlo methods).

The case of broad Fano-Feshbach resonance attracted a lot of attention in recent
years. This is because broad resonances imply the smallness of the effective range pa-
rameter r0 of the boson-fermion interaction with respect to both the average particle
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distance lm and the boson-fermion scattering length aBF [23]. Then, under these con-
ditions, the system can be described simply by a Hamiltonian made just by bosons
and fermions mutually interacting via a contact potential, without explicitly describing
internal degrees of freedom of the atoms.

The most relevant case of Bose-Fermi mixture in literature is the one in which there
is an attractive Bose-Fermi (BF) interaction and a repulsive Bose-Bose (BB) interaction.
In particular, it is expected that for weak attraction, at sufficiently low temperature the
bosons condense, while the fermions behave like a Fermi liquid, and the BF interaction
can be treated with perturbative methods [24, 25]. Instead, for sufficiently strong at-
traction, bosons and fermions pair into molecules. The two above opposite regimes of
a Bose-Fermi mixture have thus been explored already to some extent in experiments.
The intermediate (unitary) region, instead, has remained inaccessible so far, essentially
because of the large losses due to the three-body recombination into deep energy levels,
favored by the presence of three-body (Efimov) bound states. Some control of these
losses should, however, be achieved by working with small concentrations of bosons (the
dominant recombination process being proportional to the square of the density of the
bosons), and by considering isotopic mixtures, for which Efimov states are relevant only
very close to the resonance [26].

The Bose-Fermi mixtures described above were studied also with numerical and di-
agrammatic approaches. In particular, in [27, 3] the competition between Bose-Fermi
pairing and boson condensation in a broadly resonant three-dimensional Bose-Fermi mix-
ture was analysed. The authors showed that for increasing Bose-Fermi attraction, the
boson-fermion pairing correlations progressively reduce the boson condensation temper-
ature and make it eventually vanish at a critical coupling above which the condensate is
completely depleted. Furthermore, in the case of a Bose-Fermi mixture with a prevalence
of fermions, a first-order quantum phase transition was found from a state with condensed
bosons immersed in a Fermi sea, to a Fermi-Fermi mixture of composite fermions and
unpaired fermions.

1.3.1 Two-dimensional case

Thanks to the possibility of confining mixtures in two dimensions using optical po-
tentials, a new interest has arisen towards two-dimensional mixtures. A peculiarity of
these systems is the presence of an additional resonance (confinement-induced resonance)
which offers greater flexibility in tuning the interactions between the components of the
mixture.

A very important theoretical study was conducted by Bazak and Petrov [7], where it
was shown that in a two-dimensional Bose-Fermi mixture, for a sufficiently strong Bose-
Bose repulsion, two- and three-molecule collisions are elastic. Furthermore, according
to that paper, the composite fermionic dimers, formed in the two-dimensional mixture,
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may exhibit a strong p-wave mutual interaction, which should lead to a stable p-wave
superfluid gas. However, apart from these results, two dimensional mixtures have been
studied only marginally.

This motivates the present thesis’ work, which will focus on the study of two-
dimensional Bose-Fermi mixtures with QMC techniques, in particular in a regime where
the interactions are repulsive both between bosons and bosons, and between fermions
and bosons. The Hamiltonian to be considered in the QMC simulations will be:

Ĥ = − ~2

2mF

NF∑
i=1

∇2
i −

~2

2mB

NB∑
i′=1

∇2
i′

+

NF ,NB∑
i,i′

VBF (rii′) +

NB∑
i′<j′

VBB(ri′j′) ,

(1.3)

where i, j, ... and i′, j′, ... label, respectively, fermions and bosons, and the laplacian
operators ∇2

i = ∂2

∂x2i
+ ∂2

∂y2i
for two-dimensional Bose-Fermi mixtures. The specific form of

the interaction potentials VBF (r) and VBB(r) is irrelevant in the dilute regime of interest
to experiments with ultracold gases. In our simulations we will then simply take a soft-
disk potential for both interactions: VBB(r) = V 0

BB for r < RBB and zero elsewhere, and
similarly for VBF (r), and parametrize the strength of the interactions in terms of the
scattering lengths aBB and aBF .
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Chapter 2

Quantum Monte Carlo methods

Quantum Monte Carlo (QMC) techniques include a large family of computational meth-
ods whose common aim is the study of complex quantum systems. One of the major goals
of these approaches is to provide a reliable solution (or an accurate approximation) of the
quantum many-body problem, studying the properties of microscopic systems made of
many interacting particles. QMC methods allow for a direct treatment and description
of complex many-body effects encoded in the wave function, going beyond mean-field
theory and offering an exact solution of the many-body problem in some circumstances.

There are different types of Quantum Monte Carlo approaches but all share the
common use of the Monte Carlo method, which is exploited to compute multidimensional
integrals or to solve differential equations of many variables. In particular, in this chapter
we will see only two QMC techniques that have been used during this thesis work:
Variational Monte Carlo (VMC) and Diffusion Monte Carlo (DMC).

Due to the high flexibility of these computational methods, Quantum Monte Carlo
techniques find application in various research fields such as nuclear physics, condensed
matter physics or quantum chemistry.

Before describing these powerful techniques, we need to briefly introduce some basic
standard definitions and concepts of Statistics such as random variables, probability
distribution functions, etc. Of course, this will be only an introduction and exploring
the vast world of statistics and probability theory will certainly not be the purpose of
this thesis. Classical texts in mathematical statistics have been written by Feller [28]
and Gnedenko [29]. The introductory part of the book by Hammersley and Handscomb
[30] is both concise and precise.

2.1 Basic concepts of Statistics

In the following, we are going to deal extensively with the basic concepts of Statistics
and its mathematical foundation, probability theory.
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2.1.1 Events and probability

In probability theory, an event is an outcome or defined collection of outcomes of an
experiment. In principle, by using classical physics laws, we can make exact predictions
of events by knowing exactly the initial conditions. In practice, there are several events
that are unpredictable, essentially because it is impossible to have the exact knowledge
of the initial conditions.

In the definition of probability, it is important to assume that there exist reproducible
experiments, that, under very similar initial conditions, produce different events (denoted
here by Ei). It is therefore natural to introduce the probability of the event Ei as:

P (Ei) = pi =
Number of successful events

Total number of experiments
. (2.1)

It is worth to repeat again that this is only a brief review of the key notions of probability
theory and for an exhaustive discussion we refer to the books [28] and [29]. However, one
can see that the number pi, i.e., the probability of the event Ei, is consistently defined
in the limit of a large number of experiments [31].

Two events Ei and Ej are said to be mutually exclusive events if and only if the
occurrence of Ei implies that Ej does not occur and vice versa. If Ei and Ej are mutually
exclusive, then:

P (Ei and Ej) = 0 and P (Ei or Ej) = pi + pj . (2.2)

A whole class of events can be mutually exclusive for all i and j. When the class is
exhaustive, that is all possible events have been enumerated, being M the number of
exclusive events characterizing the experiment, then, by using (2.2) clearly:

P (some Ei) =
M∑
i=1

pi = 1 . (2.3)

In order to characterize all possible exclusive events one can define composite events. For
composite events, the probability is labeled by more than one index and it is called joint
probability. In the particular case where composite events are independent, the joint
probability can be factorized into a product of the corresponding marginal probabilities
(the probabilities of individual events occurring). Thus we can define as composite
events the ones obtained by two or more realizations of the same experiment. In fact,
by definition, we assume that different realizations of the same experiment are always
independent, otherwise there should exist some particular external condition that has
a clear influence on the experiment and has not been correctly taken into account to
classify exhaustively the events of the experiment.
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2.1.2 Random variables and probability distribution functions

Before giving the rigorous definitions, it might be useful to address these concepts using
practical examples. The typical example is the result of throwing a die. If we place
ourselves in a purely deterministic point of view, we could imagine being able to exactly
determine the motion of the die and, in consequence, the result of the throwing once the
initial conditions are fixed (such as height, angle, velocity and so on). It is, however,
simpler to imagine our incapacity and, consequently, it is commonly stated that the
result of throwing a die is unexpected, or random. This is an example of the concept of
random variable. Usually a random variable is related to the outcome of a given physical
action of a special nature, such that we have not a precise control on all the conditions
which make unique the result of the referred action. This incapacity does not mean that
we have absolute ignorance about the outcome, and the partial knowledge of the action
is related to the so-called probability distribution function, which is usually abbreviated
as pdf. Thus, if it is assumed that the die has a perfect regular form, and is perfectly
homogeneous, and other additional requirements (assuming the equiprobability of the
results), the outcome of the action throwing a die is a number of the set {1, 2, 3, 4, 5, 6},
each result having a probability of value 1/6.

When we toss two dice simultaneously, then the possible result for the sum of values
is an integer between 2 and 12. A simple combinatorial calculation shows that there is
a different number of ways of obtaining a particular result. Thus, to this new physical
action we must assign a random variable with values between 2 and 12, but with different
probabilities for each result. As a consequence, we understand that there is a double
information to be supplied in order to define a random variable: the domain and the
probability distribution function. The domain will represent the set of accessible values,
and the pdf the probability or frequency with which these values appear.

Once for a given experiment E all the possible exclusive events Ej are classified,
for each realization of the experiment there is only one integer i such that Ei is verified.
Therefore we can define a random variable i→ xi, as a real-valued function associated to
any possible successful event Ei. There are some conditions to be taken in consideration
with respect to the definition of a random variable. The domain must contain all possible
values that the random variable may take. Moreover, the probability related to a given
value must be positive or null and, finally, the sum of all probabilities must be unity,
indicating certitude.

So far we have implicitly discussed about variables which take only a discrete set of
values, however one may define random variables also in the continuum. If one makes
this extension, it is no longer possible to talk of probability of a given value, and instead
one must limit oneself to talk of probability that the result is contained in a interval
[x, x + ∆x]. When dealing with continuous random variables, the relevant concept of
probability distribution function is replaced by the density of probability distribution
function, again abbreviated by pdf. This function represents the limit of the ratio between
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the probability of having a value in the interval [x, x+ ∆x] and ∆x, when ∆x→ 0.
Another concept which we will see later applied and which is closely related to the

pdf is the cumulative distribution function, Pi or F (x). This function represents the
probability that the random variable takes a value less than or equal to xi or x, for
the cases of discrete and continuous distributions, respectively. In particular, in the
continuum, it is related to the pdf through the following relation:

F (x) =

∫ x

a

f(y) dy ,

where a is the lower boundary of the domain. The previous definitions regarding pdf’s
have been explicitly written for a single random variable. These distributions are then
called univariate. A logical extension is to consider multivariate pdf, just by replacing
the random variable x by the random vector x, as well as other related quantities. A
multivariate pdf is said to define uncorrelated random variables if it may be factorized
in the form:

f(x) ≡ f(x1, x2, ... , xd) =
d∏
i=1

fi(xi) .

2.1.3 Examples of distribution functions

The Uniform Distribution U(a, b) corresponds to the domain [a, b] and the related pdf
is a constant, with value 1/(b− a). By using the step function θ it may be described by
a single equation:

f(x) =
1

b− a
θ(x− a)θ(b− x) . (2.4)

The standard form of the uniform distribution is U(0, 1). This function is of primary
interest in Monte Carlo methods, being the basic tool to generate random numbers and
random deviates from the required distributions.
The Normal or Gaussian Distribution N(µ, σ) characterizes a pdf of Gaussian shape,
defined in the interval [−∞,+∞], and given by:

f(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
. (2.5)

We write the Gaussian distribution in this special form because the parameters µ and
σ have a specific meaning, as the mean and standard deviation of the distribution, to
be defined later. The standard form of the normal distribution is N(0, 1). Furthermore,
this distribution is particularly interesting in relation with the central limit theorem, to
be described later.
The Exponential Distribution is given by:

f(x) = γ exp (−γx) , (2.6)
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and defined in the domain [0,+∞]. This distribution is of particular relevance in physics,
being related with the radioactive decay and with the collisions of particles moving in
material media.

2.1.4 Expectation values

Let f(x) be a pdf with domain [a, b] and h(x) a function defined in the same domain.
The expectation value of h(x) with respect to f(x) is defined by the integral

E[h] = 〈h〉 =

∫ b

a

f(x)h(x) dx . (2.7)

There is a special class of expectation values, known with the name of moments of the
pdf, and defined as follows

• Mean is the expectation value of h(x) = x, and it is normally represented by the
letter µ,

µ =

∫ b

a

xf(x) dx . (2.8)

• Moments of a pdf are defined as the expectation value of xn, and usually are
represented by µ′n,

µ′n = 〈xn〉 . (2.9)

• Centered Moments are usually represented by µn, n = 0, 1, 2, ... , and correspond
to the expectation value of the function h(x) = (x − µ)n. For low values of n the
centered moments have particular names.

• Variance is the centered moment µ2 of a distribution function. Its square root is
known as the standard deviation, being usually represented by the letter σ,

σ =
√
〈(x− µ)2〉 . (2.10)

2.1.5 Distribution of mean values and central limit theorem

In many applications of statistics pdf’s are characterized by giving just the values of
the lowest moments µ and σ of the distribution. The Quantum Monte Carlo theory is
not an exception to this rule. In practice this means that instead of studying the full
distribution, one limits himself to less complete information. Certainly, this is almost
necessary when dealing with multivariate distributions or with expectation values of
functions of many variables. This is possible because there is a connection between µ
and σ and the full pdf. In order to understand this connection, it is convenient to study
the distribution of averages of a given random variable.
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From a generic univariate pdf f(x), one may define another univariate pdf related to
the mean of N random values of x,

z =
x1 + x2 + ...+ xN

N
,

and the question is which is the pdf g of the new random variable z.
In general it is not possible to get a precise expression of g(z) when considering an
arbitrary value of N and a general starting distribution f(x). It is possible, however, to
get an approximate result for N →∞, and this limit result is the so called central limit
theorem. A formal proof can be found in Ref. [32].

Theorem (Central limit theorem). The pdf g(z) of the average of N independent random
values corresponding to a pdf f(x), in the limit of large N , is a Gaussian distribution
whose mean is the mean µ of the pdf f(x) and whose variance is the variance σ2 of the
distribution f(x) divided by the number of values N used to compute the average.

This theorem is satisfied by a large class of pdf, but not all of them fulfill the conditions
for its validity (e.g., the Cauchy distribution is one of the exceptions). It is a theorem
of asymptotic or limit validity, the larger N the better the fulfillment.

In addition to the central limit theorem, there are two other theorems which serve to
empirically determine the pdf: the Chebyshev Inequality and the Law of Large Numbers.
For further details we refer to Guardiola’s paper [32]. All these three properties establish
the link between the empirical analysis of a given pdf and the mathematical knowledge
of it.

The previous discussion has been limited to the study of the distribution of the mean
of a pdf, and we have specifically considered univariate distributions. The theorem
can certainly be generalized to deal with other kind of expectation values as well as
with multivariate distributions. However, it is not within the scope of this thesis to
demonstrate how this extension is possible.

Before concluding this section, it is worth to underline the consequences of the central
limit theorem. This theorem can be used as a measure of the mean of the original
distribution and a confidence limit related to the new variance σ2/N . The square root
of this quantity, σ/

√
N , is normally appended to the estimator of the mean with a ±

sign. The error thus written must be interpreted as a confidence limit.
The dependence on N from the central limit theorem may also inform about the amount
of work to be done so as to have a predetermined error. For example, in order to halve
the error the empirical sampling must deal with four times more samples. Increasing the
number of samples is not always the best way of improving the quality of the results,
and the creativity in Monte Carlo work resides in the search of procedures to lower the
variance σ, which is the quantity which fixes the error scale.
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2.2 Generation of random numbers

Any physical problem tied to a probability distribution function may be dealt with a
simulation by means of a random number generator (RNG). The simulation consists in
statistically evolving the system through the generation of sequences of random num-
bers which are distributed with the pdf. This is certainly valid also for Monte Carlo
simulations, thus it is worth to see how random numbers, related to a given pdf, are
generated.

Of course, if random numbers are generated by means of a deterministic algorithm,
they are no longer random numbers, so the usual name is pseudo-random numbers.
However, the fact that we can predict the sequence is independent of its randomness,
as witnessed by correlations between subsequent numbers (one of the basic references
regarding the analysis of randomness is the book of Knuth [33]). For ease of exposition,
from now on, we will refer to all pseudo-random numbers by simply calling them random
numbers.

2.2.1 Uniform distribution

Algorithms to generate random numbers with a precise pdf are based on the generation
of random numbers from the uniform distribution U [0, 1]. Therefore, in this section, we
first introduce the main features of a uniform random generator and then we will see some
methods to transform the random numbers to another pdf. The main characteristics of
a uniform RNG are the following:

• Randomness. The generated sequence must pass a large number of tests of ran-
domness, including their consideration as pairs, triplets, ... nth-tuples of numbers.

• Periodicity. Random generators are periodic, so that after a certain number of
sequential generations the results repeat and randomness properties are lost. Con-
sequently, a random number generator is better the greater is its period.

• Speed of generation. This is a feature to be taken into account when one has to
deal with very large simulations.

• Portability. The ability to generate the same sequence of random numbers by
another computer or another programming language, just by coding appropriately
the algorithm.

• Repeatability. The possibility of generating again a previous sequence of random
numbers.
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The main reason to demand the last two properties is that a large part of the computer
work is devoted to checking and tuning the code, thus the presence of these two features
in the random number generator allows to simplify these jobs.

In our Monte Carlo simulations we use one of the random number generators present
in the Intel MKL libraries with period of order 1057, which provides a fair compromise
between the characteristics described above and which allows also to safely manage
parallel simulations.

2.2.2 The method of Change of Variables

We introduce now the method of Change of Variables which allows to generate random
numbers, according to a certain pdf, starting from uniformly distributed random num-
bers. The advantage of this method is that the associated algorithm is quite simple,
however it is not so general, being applicable only to some pdf.

Let x ∈ U [0, 1] and apply a one-to-one transformation y = h(x) which maps mono-
tonically the domain [0, 1] into a new domain [a, b]. A first question is to determine the
pdf corresponding to y, which will be represented by g(y). The link with the starting
distribution is the equality of the probabilities:

dx = g(y) dy .

From here it is simple to obtain the form of the new pdf,

g(y) =
dx

dy
=

dh−1(y)

dy
, (2.11)

where h−1 is the inverse function of h(y).
However, Eq. (2.11) does not solve our problem because we typically know g(y), but need
to determine the change of variables h(y) appropriate to our pdf. This can be done by
solving (2.11) for h:

h−1(y) =

∫ y

a

g(z) dz ≡ G(y) , (2.12)

where G(y) is the cumulative pdf of g(y).
The resulting algorithm is simple and can be briefly summarized as follows: the change
of variables is the inverse of the cumulative function of the pdf of interest. It is now
evident that the drawback of this method is that the algorithm will only be practical if
both cumulative function and its inverse are simple to obtain.
Some examples of the use of the method of Change of Variables are the following:

• Uniform distribution U [a, b], with sampling method y = a+ (b− a)x, for x ∈ [0, 1].

• Exponential distribution γ exp(−γy), with sampling method y = − log(x)/γ, for
x ∈ [0, 1].
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• Gaussian distribution.

The Gaussian distribution is a particular example of this method. In fact, in this case,
the cumulative distribution is given in terms of the complementary error function, which
has not a simple form and its inversion requires the solution of a transcendental equation.
However, this problem can be overcome using a method known as the Box-Muller method.
This technique still exploits the method of Change of Variables but uses the trick of
considering a bivariate Gaussian distribution, whose cumulative distribution function is
simpler and easily reversible. Thus, starting with two uniform random numbers, x1 and
x2, one can obtain an independent pair of Gaussian distributed numbers, y1 and y2. The
associated algorithm, known in literature as the Box-Muller algorithm [34], consists of
the following steps:

1. Sample x1 and x2 independently from the uniform distribution U [0, 1];

2. calculate y1 =
√
−2 log x1 cos(2πx2) and y2 =

√
−2 log x1 sin(2πx2);

3. y1 and y2 are two independent Gaussian random variables, with µ = 0 and σ = 1.
For a generic mean and variance one takes yi → σyi + µ.

2.2.3 Acceptance-Rejection method

Another important method, which is worth mentioning, for the generation of random
numbers is the Acceptance-Rejection method. This technique, due to von Neumann, is
a general purpose method valid for bounded distributions with finite domains. It may
be used also in multivariate distributions, but its efficiency tends to decrease with the
number of variables.
Assume the pdf f(x) defined in the domain [a, b], and let M be an upper bound to the
distribution, i.e. f(x) ≤M , x ∈ [a, b]. To obtain a sequence of random numbers of f(x)
proceed as follows:

1. Draw z ∈ U [a, b];

2. draw p ∈ U [0,M ];

3. if f(z) ≥ p then accept z as the random number, else discard both z and p and go
to the point 1.

For further details regarding the proof of this method and the generalization to the
modified von Neumann method (in order to have efficiency one) we refer the reader to
Guardiola’s paper [32].
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2.2.4 Markov chains and Metropolis Algorithm

When the probability distribution function to be sampled is complicated and possibly
multivariate, a general sampling method, known as Metropolis algorithm, can be used.
This method is closely related to the Variational Monte Carlo theory, thus it will receive
special attention in the following.

Before describing the main steps of the algorithm, it is worth to review the Markov
chain theory, that is the context in which the method is settled in (for a more exhaustive
description regarding Markov chains see Ref. [35]).

Markov chains

Roughly speaking, a Markov chain is a stochastic model describing a sequence of possible
events in which the probability of each event depends only on the state attained in the
previous event. A possible way of visualizing a Markov chain is through its interpretation
as a random walk : random walks are an example of Markov chains, in which future
behaviour is independent of past history. A typical example is the drunkard’s walk, in
which a point beginning at the origin of the Euclidean plane moves a distance of one
unit for each unit of time, the direction of motion, however, being random at each step.
One may walk at random in many different systems. For this reason, these concepts find
enormous application in the world of physics and in many other scientific or financial
fields. Interesting examples of random walks may be found in Ref. [36].
More rigorously, a Markov chain is defined in terms of a discrete set of states {s1, ... , sN}
and a rule governing the transition from a given state si to any other state of the set sj.
This rule is expressed in terms of a transition matrix T (j ← i) ≡ Tji so that Tji is the
probability of transition from the state si to the state sj. Some transition probabilities
may be null, and the matrix may also contain non-null diagonal terms representing the
probability of remaining at the initial state. Given that the matrix elements are transition
probabilities and that the transition probability from si to any final state must be unity,
this matrix must fulfill the following two properties

0 ≤ Tji ≤ 1 and
∑
j

Tji = 1 ,

so that the sum of any column is 1. Matrices fulfilling these two conditions are termed
stochastic. If it happens that a given column has all its elements null, but the diagonal,
then the state corresponding to this column is referred to as an absorbing state. Once it
is reached, it will never move from there.

Of course, Markov chains can be generalized to deal also with continuous set of states.
In cases like this, called Markov processes, instead of referring to a transition probability
one must deal with a density of probability, T (x′, x), which must in turn satisfy the two
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properties

T (x′, x) ≥ 0 and

∫
T (x′, x) dx′ = 1 .

We will be interested, for our purposes, in endless chains (i.e. with no absorbing states)
and we will consider only irreducible chains. A chain is called reducible if the set of states
may be divided into two disjoint sets so that there cannot be a transition from the first
set to the second one, and inversely.

The Direct problem

At this point, a crucial question could be which is the probability of staying at a given
state si after a long random walk. The answer is very simple: the probability of arriving
to si is the product of the probability of arriving to any state sj times the transition
probability from sj to si :

Pi =
∑
j

TijPj , (2.13)

where we have assumed that the probability distributions before and after the transition
are the same, namely the probability is stationary. This is an homogeneous linear system
whose solution is not uniquely defined unless an additional normalization condition is
introduced

∑
i Pi = 1 .

Solving this system of linear equations, by implementing an appropriate algorithm, allows
to determine the stationary probabilities Pi related to a Markov chain. We can then
interpret this algorithm as a method of generating random numbers corresponding to a
pdf Pi, without knowing the actual distribution (the generation being controlled by the
Markov chain, which is determined by its transition matrix Tij).

In the case of a Markov process, the equivalent to the matrix equation (2.13) is the
linear integral equation

P (x) =

∫
T (x, x′)P (x′) dx′ , (2.14)

with the supplementary normalization condition
∫
P (x) dx = 1 . This latter case is

more complicated because one cannot store the whole space of random variables as in
the discrete case. Instead, the function P (x), which is a pdf, is represented by a set of
random numbers {ξi} obtained sequentially, in such a form that the number ξi+1 of the
sequence is obtained by drawing a random number from the pdf f(x) ≡ T (x, ξi), which
is a conditional probability 1 of obtaining x from a given ξi. Certainly, it is not the same
to know the complete pdf P (x) for any x, and to consider a finite sequence of random
numbers which are distributed according to P (x). However, knowing the set of random
numbers permits the determination of expectation values related to P (x) (assuming the

1In probability theory, conditional probability is a measure of the probability of an event occurring,
given that another event (by assumption, presumption, assertion or evidence) has already occurred.
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central limit theorem holds).
Both of these methods, the discrete one and the continuous one, are practical only when
it is possible to sample from the transition matrix Tij and the pdf T (x, ξi), respectively.

Equation (2.13) is a relation defining the concept of stationary distribution. This
means that the pdf Pi is invariant under the action of the transition matrix Tij . The
existence of such a stationary distribution is guaranteed if each state i can be reached
by any other state j in a finite number of steps (irreducibility). If moreover there is no
characteristic period of recurrence, the chain is called aperiodic, and the stationary dis-
tribution is also an equilibrium distribution, in the sense that for any initial distribution
the recursive action of the transition matrix asymptotically drives the chain to Pi. The
previous conditions for the existence of an equilibrium distribution are necessary and
sufficient and are equivalent to saying that the Markov chain is ergodic.

The Inverse problem and Metropolis method

Our initial goal was to find a method to sample random numbers from a generic prob-
ability distribution function. We have seen above that one possibility is to solve the
system of linear equations (2.13) (or its continuous version (2.14)). However, in most
cases of interest we do not know a priori the transition matrix corresponding to a certain
stationary pdf and, consequently, the applications of this method are few and limited to
particular exceptions.
So, at this point, a question arises naturally: given a pdf Pi or P (x), is it possible to
find a stochastic matrix Tij or T (x, x′) defining a random walk which gives rise to the
mentioned pdf?
This question, known with the name of Inverse problem, was answered by N. Metropolis,
A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. W. Teller in 1953 [37], giving
a specific rule to construct it. The method, known as Metropolis or MR2T 2 method,
allows to generate random numbers from an arbitrary pdf.

For discrete distributions the solution is as follows. Let Sji be an auxiliary stochastic
and symmetric matrix. The seeked stochastic matrix is given by

Tji = Sji if Pj ≥ Pi , i 6= j

Tji = Sji Pj/Pi if Pj < Pi , i 6= j (2.15)

Tii = Sii +
∑
k

′
Ski(1− Pk/Pi) for k ∈ {Pk < Pi} .

The prime on the sum indicates that only states k such that Pk < Pi are considered. The
values of the diagonal elements have been fixed so as to fulfill the property

∑
j Tji = 1 .

In order to prove that the matrix so defined satisfies the wanted relation
∑

i TjiPi =
Pj, an intermediate step is to prove the detailed balance property:

TjiPi = TijPj , (2.16)
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where there is no sum over repeated indices. To check this relation it is convenient to
distinguish the two cases

Pj ≥ Pi , TjiPi = SjiPi TijPj = Sij
Pi
Pj
Pj = SijPi ,

Pj < Pi , TjiPi = Sji
Pj
Pi
Pi = SjiPj TijPj = SijPj .

Exploiting the symmetry of the auxiliary transition matrix Sij, both left relations are
equal to their respective right relations, proving the detailed balance property. At this
point, summing up on i in Eq. (2.16), one obtains the desired condition Pj =

∑
i TjiPi .

In the case of continuous processes one may write down a similar derivation.
Let us consider a stochastic and symmetric auxiliary transition function S(y, x) and
define

T (y, x) = S(y, x)θ(P (y)− P (x))

+ S(y, x)
P (y)

P (x)
θ(P (x)− P (y)) (2.17)

+ δ(y − x)

∫
S(z, y)

(
1− P (z)

P (y)

)
θ(P (x)− P (z)) dz .

This again satisfies the detailed balance property:

T (x, y)P (y) = T (y, x)P (x) . (2.18)

Metropolis algorithm

The Metropolis solution to the Inverse problem was extended to more general cases,
involving asymmetric transition matrices, by W. K. Hastings in 1970 [38], and for this
reason the complete version of the algorithm takes the name of Metropolis-Hastings
algorithm.
In the symmetric case, the algorithm can be summarized in the following few steps:

– Let I, starting state.

– Draw J from S(J, I).

– If P (J)/P (I) > RAND( )2 then I = J .

– I is the next state.

2Here RAND( ) is a generic procedure generating U [0, 1] uniform random numbers.
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Essentially, we select a candidate sj for the next state from the auxiliary transition matrix
Sji. Then, we compute the probability Pj of the candidate and we compare it with the
probability of the starting state Pi. If Pj is greater than Pi, the transition is accepted
(i.e. , the next state of the chain is sj), otherwise, if Pj is smaller than Pi the new state
is accepted with probability Pj/Pi . In case of rejection this means that we remain in si,
i.e. , the next state in the chain is the same as the old state, and it should be counted
again. We have seen here, for ease of discussion, the discrete version of the algorithm,
however, even in the case of continuous variables the procedure is quite similar.

Of course, the algorithm will be practical if we know how to generate random num-
bers from the auxiliary distribution S. Anyway, thanks to the freedom in choosing the
auxiliary transition function, we are able to choose the most convenient one. Usually,
but not necessary, the transition operator S is taken as an uniform distribution in a box
centered on the previous point or as a Gaussian distribution.

There are technical issues regarding the asymptotic nature of this algorithm and the
strong correlation between consecutive moves, but they will be addressed comprehen-
sively in the next section.

2.3 Monte Carlo method

In studying the properties of few- and many-body systems we are quite often driven to the
calculation of multidimensional integrals, either needed for solving differential equations
of motion, or involved in the evaluation of expectation values. Such integrals can be
calculated analytically in few relevant cases, but as soon as the number of degrees of
freedom is large most of the problems need some simplifications in order to be analytically
solved, thus introducing some approximations, which are not always controllable. When
exact analytical results are not available or not accurate enough, a possibility is to resort
to numerical methods. The drawback of these methods is that the free parameters of the
problem have to be specified from the beginning for each simulation so that the solution
is known only in a discrete set of points in parameter space, and one needs to use fitting
methods in order to give a more exhaustive answer.

There are several numerical techniques and among these, the Monte Carlo method is
very competitive if the number of degrees of freedom is very large or in presence of very
complicated integration domains (see [39] and [40]).

The essence of this stochastic method is to interpret multidimensional integrals as ex-
pectation values of some functions (observables) of the multidimensional configurations,
associated to certain probability distribution functions. These expectation values are
therefore estimated by sampling a relevant population of points in configuration space
(walkers), which are distributed according to the given pdf, and taking the average of
the observables calculated on the sampled walkers. An uncertainty in the estimated
observables is intrinsic, given the numerical and stochastic nature of the calculation, but
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it can be systematically estimated and reduced with longer samplings or more efficient
algorithms.

The original idea behind Monte Carlo methods was introduced in Nuclear Physics
by Fermi and then studied by Metropolis and Ulam (see [41] for a general introduction).
Several years later, these techniques were also applied in Quantum Physics and Quantum
Chemistry. In these contexts, major developments were the Variational Monte Carlo,
introduced by McMillan [42], and the Diffusion Monte Carlo, introduced by Anderson
[43] and refined by Reynolds, Ceperley and Alder [44], [45].

2.3.1 Crude Monte Carlo

We now see the easiest application of Monte Carlo methods to the solution of integrals.
This technique is called Crude Monte Carlo and it is simply based on the direct appli-
cation of the central limit theorem.
For ease of discussion, we consider the integral of a continuous univariate function h(x),
which can be written as follows∫ b

a

h(x) dx = (b− a)

∫ b

a

1

b− a
h(x) dx .

This apparently useless trick of multiplying and dividing the integral by the same quan-
tity (b − a), turns out to be of fundamental importance. In fact, at this point, the
expression on the right can be interpreted as the expectation value of the function h(x)
with respect to the uniform distribution function U [a, b]. Thus, in order to solve the
integral, one can simply implement an algorithm that calculates the average of {h(xi)},
where xi ∈ U [a, b]. Of course, along with the calculation of the average one may also
compute the variance by evaluating the expectation value of h(x)2.
The equations, in summary, to be used to correctly implement the algorithm are the
following:

〈h〉 =

∫ b

a

h(x) dx = lim
N→∞

b− a
N

N∑
i=1

h(xi) , xi ∈ U [a, b] , (2.19)

σ2 = lim
N→∞

b− a
N

 1

N

∑
i

h(xi)
2 −

(
1

N

∑
i

h(xi)

)2
 . (2.20)

We can see, from Eq. (2.20), that the variance of the mean σ2 is inversely proportional
to the number of samples N . Thus, in order to lower the variance, the only solution to
achieve this goal is to perform longer samplings, and consequently larger simulations.
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2.3.2 Importance sampling

In reality the variance can be lowered, without increasing the sampling, by using another
Monte Carlo method. We now introduce the fundamental technique known as Importance
Sampling, which is just another application of the central limit theorem to the calculation
of integrals.
We consider again the integral of a continuous univariate function h(x) which, this time,
can be written as ∫

h(x) dx =

∫
f(x)[h(x)/f(x)] dx .

We still used the trick of multiplying and dividing the integral by a same quantity,
but this time we have introduced an ad hoc pdf f(x) which cannot be pulled out of the
integral due to its dependence on x. Again, the expression on the right can be interpreted
as an expectation value of the function [h(x)/f(x)] but, this time, with respect to the
pdf f(x). This is, of course, the main difference with Crude Monte Carlo (i.e., the use
of a non-uniform pdf).
Another difference from the previous method is that the variance of its expectation values
can be smaller. In fact, while one should get roughly the same value for the expectation
value 〈h〉 using both procedures, Crude MC will give for the variance the value

σ2 =

∫
h(x)2 dx− 〈h〉2 ,

whereas the importance sampling method will give a different value

σ2 =

∫
f(x)[h(x)/f(x)]2 dx− 〈h〉2 .

Thus, by cleverly choosing the importance sampling function f(x) one may design a
better calculation from the MC point of view. Clearly, the search for the optimal im-
portance sampling function is an important step in implementing Monte Carlo methods.
The best function to use, in principle, is f(x) = C|h(x)|, where C is a proportionality
constant, however this solution is not always practical. Of course, in order to implement
the importance sampling method, an algorithm capable of drawing points from an ar-
bitrary probability distribution function, such as the Metropolis-Hastings algorithm, is
needed.

In addition to lowering the variance, there is a side benefit of this method, namely,
that it allows to deal with (null-measure) infinite integrands and/or infinite intervals,
just by choosing an appropriate pdf.

Before concluding this section, in order to give an idea of the power of this method,
we report the example 3.1 present in Guardiola’s paper [32].
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Example 2.3.1. Consider the six-dimensional integral of the function

F (x,y) = exp[−x2 − y2 − (x− y)2/2]

extended to the full space. The exact value is 10.9626.
Table 2.1 presents the calculation using the Crude MC method (each variable inte-
grated between −5 to +5), and the calculation with the importance sampling function
exp(−x2 − y2), adequately normalized. It is absolutely clear the advantage of using the
importance sampling algorithm, so that the extra work required to sample from the im-
portance sampling pdf is largely compensated by the smallness of the error. Just by com-
paring the errors quoted in the last row of the table, we may conclude that the importance
sampling method is about 250 times more efficient.

Crude MC Importance Sampling
12.80± 4.51 10.46± 0.26
8.93± 2.96 11.23± 0.26

21.90± 8.43 11.02± 0.26
12.70± 3.06 11.15± 0.26
13.84± 4.48 10.90± 0.25
4.58± 1.02 10.94± 0.26

14.84± 4.68 10.72± 0.25
8.17± 2.38 10.89± 0.25
6.79± 1.35 10.87± 0.26
5.56± 1.11 10.75± 0.25

11.01± 1.27 10.89± 0.08

Table 2.1: Results of the integral of example 2.3.1. The left column shows the Crude
MC method, whereas the right column the importance sampling MC method. Each
row corresponds to one hundred thousand samples, and the last row is the full average
corresponding to one million samples.

2.3.3 Markov Chain Monte Carlo

Combining the Metropolis-Hastings algorithm together with the importance sampling
method we obtain a general Monte Carlo method known as Markov Chain Monte Carlo
(MCMC). Thus, thanks to the Metropolis algorithm, we have a method to generate ran-
dom numbers according to a generic pdf and this allows to choose the optimal importance
sampling function capable to reduce significantly the variance.

Even if we have already seen in the previous sections how these two methods work, it
is important to dwell for a moment on the asymptotic nature of the Metropolis algorithm.
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In section 2.2.4 we have seen the important concepts of stationary distribution and equi-
librium distribution, the existence of which is guaranteed if the considered Markov chain
is ergodic. However, starting with a collection of points (called walkers), arbitrary dis-
tributed in configuration space, and evolving them3 thanks to the repeated action of the
transition matrix, the equilibrium distribution is reached only after a transient. Then,
after the transient, averages can be taken using all walkers at subsequent times.
We can now see how to practically apply this algorithm in order to determine the ex-
pectation value of a function, or observable, h(x) with respect to the pdf P (x):

• Start from a population of m walkers randomly distributed in space.

• Start iteration iter. For each walker ipop at position x do:

– Sample a point y′ from the auxiliary transition function S(y′, x).

– Calculate the quotient P (y′)/P (x) (if S is symmetric).

– If it is bigger than RAND( ) then accept the move (y = y′), else reject the
move (y = x).

– Calculate hipop = h(y).

• If the transient is finished, compute the partial sum h̄iter = 1
m

∑
ipop hipop.

• Go to the next iteration.

• The estimated expectation value is 〈h〉 = 1
n

∑
iter>transient h̄iter , where n is the

number of iterations after the transient.

We have seen that, in general, the auxiliary transition function S can be arbitrary but,
in practice, the choice of S determines the length of the transient after which the equi-
librium distribution is reached. Moreover, if for example S is a Gaussian distribution
of the variable (x− y), then a small variance of it will cause high acceptance ratio, but
high correlation between the moves, while a big variance will cause a small correlation
of the moves, but a small acceptance ratio. Very high or very low acceptance rates are
a sign that the Markov chain is not moving appreciably. There are not specific rules to
say when a certain rate of acceptances is reasonable, but a good compromise is obtained
with an acceptance ratio around 40% − 60%. Generally speaking, one could optimize
the transition matrix by optimizing the effective measured variance obtained in a chosen
wall time.
The issue of the correlation between successive moves is an insidious problem, especially
in the continuous case where the algorithm is prone to stronger correlations. Further-
more, the correlation between moves reflects itself in a high correlation between sub-
sequent values h̄iter, so that the central limit theorem cannot be immediately used to

3Each walker evolves independently under the action of the transition matrix.
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estimate the variance of 〈h〉. There are, in principle, two ways to overcome this problem.
The first solution exploits an interesting property of stochastic matrices which states
that any integer power of a given stochastic matrix, which is again stochastic, gives
rise to a stationary pdf which is the same as the stationary pdf related to the original
transition matrix. This property allows to thermalize the random walk, in the following
sense. Starting at a given state si we proceed carrying out a given number n of steps,
{si+1, si+2, ... , si+n}, but we only count or collect the state si+n after n steps, and so on.
In other words, n − 1 intermediate steps are discarded. In this way, the resulting col-
lection of states is again a set of random numbers corresponding to the pdf under study
and, thanks to this process of thermalization, we have minimized the effect of correlation
among successive states. Suitable correlation tests have to be performed to choose n.
The second solution, instead, consists in dividing the calculation into nb blocks such
that iterations from different blocks are not correlated anymore; this is true if the
length lb of a single block is longer than the correlation time of the estimated quan-
tity h. Therefore one can sum the contributions to 〈h〉 coming from the iterations
within a block h̄ib = 1

lb

∑
iter∈ib h̄iter, and use their variance to estimate the variance of

〈h〉 ≡ h̄ = 1
nb

∑
ib
h̄ib :

σ2
h ≈

1

nb

(
1

nb − 1

∑
ib

(h̄ib − h̄)2

)
. (2.21)

A longer correlation time forces to use longer blocks. This causes having less independent
contributions for calculating the observable and, consequently, an increase in variance.

Both solutions are correct. However, especially in the case of strong correlations, the
second method turns out to be more effective from a computational point of view. In
fact, longer correlation time implies more intermediate steps discarded, thus increasing
the number of random deviates to be generated in order to have independent samples.

See Appendix A for more details regarding Eq. (2.21) and the estimate of the corre-
lation time.

2.4 Variational Monte Carlo

Variational Monte Carlo (VMC) is the direct application of Monte Carlo integration, in
particular the MCMC method, to problems of Quantum Physics. In fact, when studying
quantum many-body systems such as those introduced in Chapter 1, we need a practical
tool able to calculate the expectation values of observables, even if this requires the
solution of complicated multidimensional integrals. It is then clear that a technique such
as the MCMC method is an optimal candidate for this purpose. Typical observables to be
calculated are, for example, the energy of the system or the correlation functions. Usually
these quantities need to be computed in the ground state or at thermal equilibrium. For
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a historical and pedagogical review about the Variational Monte Carlo method see Ref.
[46], for applications of VMC to systems of many bosons and fermions see [42] and [47],
respectively.

2.4.1 Variational method

Variational Monte Carlo is based on an important approximation method in Physics,
known as the Variational method, which is very useful in obtaining the bound state
energies and wave functions of a time-independent Hamiltonian Ĥ. See the book by B.
H. Bransden and C. J. Joachain [48] for a complete overview regarding this method and
other approximation methods in Quantum Physics.

Let Ĥ be a time-independent Hamiltonian. We denote by En its eigenvalues and
by φn the corresponding orthonormal eigenfunctions. Assuming that Ĥ has at least
one discrete eigenvalue, we consider an arbitrary normalizable function ψ such that the
following functional E[ψ] can be defined as

E[ψ] =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

=

∫
ψ∗Ĥψ∫
ψ∗ψ

, (2.22)

where the integration is extended over the full range of all coordinates of the system.
The functional above is independent of the normalization and of the phase of ψ. In
particular, it is often convenient to impose the condition 〈ψ|ψ〉 = 1.

It is clear that if the function ψ is identical to one of the exact eigenfunctions φn of
Ĥ, then E[ψ] will be equal to the corresponding exact eigenvalue En. It is also worth
stressing that if ψ and φn differ by δφ, it could be shown (see again Ref. [48]) that the
leading term of the difference between E[ψ] and the true eigenvalue En is quadratic in
δφ.

A very important important property of the functional (2.22) is that it provides an
upper bound to the exact ground state energy E0.
To prove this result, we expand the arbitrary, normalizable function ψ in the complete
set of orthonormal eigenfunctions φn of Ĥ. That is,

ψ =
∑
n

anφn , (2.23)
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where an are complex coefficients. Substituting (2.23) into (2.22), we find that

E[ψ] =
〈
∑

m amφm|Ĥ|
∑

n anφn〉
〈
∑

m amφm|
∑

n anφn〉

=

∑
m

∑
n a
∗
man〈φm|Ĥ|φn〉∑

m

∑
n a
∗
man〈φm|φn〉

=

∑
n |an|2En∑
n |an|2

,

where, in the last equality, we have used the relation Ĥφn = Enφn and the orthonormality
of the eigenfunctions φn. If we now subtract E0, the lowest energy eigenvalue, from both
sides of the expression above we obtain:

E[ψ]− E0 =

∑
n |an|2(En − E0)∑

n |an|2
. (2.24)

Since En ≥ E0, the right-hand side of (2.24) is non-negative and, consequently

E0 ≤ E[ψ] (2.25)

proving that the functional E[ψ] gives an upper bound for the ground state energy.
The property (2.25) constitutes the basis of the variational method for the approxi-

mate calculation of E0. This method consists in evaluating the quantity E[ψ] by using
trial functions ψ which depend on a certain number of variational parameters, and then
to minimize E[ψ] with respect to these parameters in order to obtain the best approxi-
mation of E0 allowed by the form chosen for ψ.

Clearly the energy of the ground state is not the only observable that can be evaluated
through the Variational Monte Carlo. However, in order to apply the variational method
to other measurable quantities, relations similar to the property (2.25) must hold.

2.4.2 Monte Carlo integration and local energy

Before the expectation value of a certain observable may be computed, the integral must
be transformed into a form suitable for Monte Carlo integration. In the following we are
mainly interested in studying the energy of the ground state, thus, for ease of discussion,
we proceed by considering as an example the expectation value of the Hamiltonian of
the system.

The two-dimensional Bose-Fermi mixture is described by the Hamiltonian (1.3). We
consider, for the moment, a generic trial wavefunction ψT which is dependent on the set
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of NF + NB particle positions, R = {r1, r2, ..., rNF , r1′ , r2′ , ..., rN ′
B
}. The expectation

value is then given by

E = 〈Ĥ〉 =

∫
ψ∗T ĤψT dR∫
ψ∗TψT dR

. (2.26)

Multiplying and dividing the numerator by the same quantity ψT , Eq. (2.26) may be
rewritten in an importance sampled form in terms of the probability density |ψT |2 :

〈Ĥ〉 =

∫
ψ∗T

ψT
ψT
ĤψT dR∫

ψ∗TψT dR
=

∫
|ψT |2 ĤψTψT

dR∫
|ψT |2 dR

. (2.27)

Thus the expectation value of the Hamiltonian can be expressed in the following compact
form

〈Ĥ〉 =

∫
f(R)EL(R) dR , (2.28)

where we have named the multivariate pdf as

f(R) =
|ψT (R)|2∫
|ψT (R)|2 dR

(2.29)

and we have introduced the quantity called local energy EL, given by

EL(R) =
1

ψT (R)
ĤψT (R) . (2.30)

The expression (2.28) allows then to apply the Markov Chain Monte Carlo method, in
the sense that the variational energy can be obtained by averaging the local energy
EL over the set of configurations {Ri} sampled from the modulus square of the trial
wavefunction:

E =
1

N

∑
EL(Ri) . (2.31)

A transition matrix which converges to the above probability distribution can be a Gaus-
sian in configuration space, that is

S(R′,R) =
1

(2πσ2)dN/2
exp

[
−|R−R

′|2

2σ2

]
, (2.32)

where, in our case, d = 2 and N = NF +NB.
The local energy EL, introduced in Eq. (2.30), is one of the central quantities in

Quantum Monte Carlo methods. It occurs, in fact, in both the Variational and Diffusion
Monte Carlo algorithms and its properties are exploited to optimize trial wavefunctions.
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The local energy has the useful property that for an exact eigenstate of the Hamiltonian,
the local energy is constant, and thus its variance is null. For a general trial wavefunction
the local energy is not constant and the associated variance is a measure of how well the
trial wavefunction approximates an eigenstate.
The determination of the local energy is one of the most computationally costly opera-
tions performed in QMC calculations. For typical Hamiltonians, which are the sum of a
kinetic energy term and a momentum-independent interaction potential, the contribution
to the local energy is the computation of the second derivatives of the wavefunction and
the numerical value of the potential, respectively. There is a second way of estimating the
kinetic energy which provides also a check for the stationarity of the distribution to be
sampled. This alternative method relies on the possibility to transform the expectation
value 〈ψT |∇2|ψT 〉 into −〈∇ψT |∇ψT 〉 by integration by parts. The transformed contri-
bution to the local kinetic energy will then be proportional to |∇ψT/ψT |2. Although
this second procedure leads to simpler and faster calculations, the resulting variance
will probably be greater (this is shown in Ref. [32]). It is useful to accumulate both the
estimators in order to check the correctness of the implementation of the VMC algorithm.

Lastly, before concluding this section, it is worth to underline that the probability
distribution f(R) described above is well defined (in the sense that it is positive and
normalized) even if the variational trial wavefunction is negative for some regions in
configuration space, due to the appearance of the modulus square of the wavefunction.
This fact is very important and, as we will see in the following, will be one of the main
differences between the VMC and the DMC methods.

2.5 Diffusion Monte Carlo

Variational Monte Carlo is a very efficient and fast algorithm, however its effectiveness
depends drastically on the accuracy of the chosen many-body trial wavefunction. We
then need a more refined method which is, in principle, independent from the choice of
the trial wavefunction, in order to obtain accurate results also for those situations where
we are unable to find a suitable many-body function. Diffusion Monte Carlo (DMC)
method is a good solution to this problem. This method allows to solve the many-body
Schroedinger equation in imaginary time by means of a stochastic procedure. In principle
the DMC method is exact, although in practice, several well-controlled approximations
must be introduced for calculations to remain tractable. The Diffusion Monte Carlo
algorithm was introduced by Anderson [43], [49] and refined by Reynolds, Ceperley and
Alder [45]. For general introductions see [32, 50, 51, 52, 53].
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2.5.1 Introduction

The Schroedinger equation in imaginary time, with proper boundary condition, has the
following form:

− ∂

∂τ
Ψ(R, τ) = (Ĥ(R)− Eref )Ψ(R, τ) ,

Ψ(R, τ = 0) = Ψi(R) .
(2.33)

R represents the set of all coordinates, τ = it/~ is the imaginary time in units of inverse
energy and Eref is an energy shift introduced for convenience. The formal solution of
the previous differential equation is

Ψ(R, τ) = e−[Ĥ−Eref ]τΨ(R, 0) , (2.34)

where the evolution operator exp [−(Ĥ − Eref )τ ] is also called Green’s function.
The expression (2.34) allows the interpretation of imaginary time evolution of states,

in the sense that the initial state Ψi(R) = Ψ(R, 0) evolves to the state Ψ(R, τ) thanks
to the action of the Green’s function exp [−(Ĥ − Eref )τ ]. Let us decompose Ψi(R) in

terms of the eigenstates φn(R) of the Hamiltonian Ĥ

Ψi(R) = Ψ(R, 0) =
∑
n

cnφn(R) ,

then the imaginary time evolution of the arbitrary starting state Ψ(R, 0) is given by

Ψ(R, τ) =
∑
n

cne
−[En−Eref ]τφn(R) , (2.35)

where we have used the fact that the eigenstates satisfy the relation Ĥφn(R) = Enφn(R).
So the imaginary time evolution consists of an exponential decay of each component of
the initial wavefunction (provided Eref < En, ∀n), with the interesting property that
the longest-living component is the lowest energy one, which is the ground state, if the
initial wavefunction has non-zero overlap c0 with the ground state.

Again, as in the case of VMC, the wave function is represented by a set of random
vectors or walkers, in such a form that the time evolution of the wave function is actually
represented by the evolution of the set of walkers.

Thus the resulting scheme of the DMC method is, in principle, quite simple: once
one has found an appropriate approximation for the short time Green’s function, and a
starting state has been determined4, the job consists in representing the starting state
by a collection of walkers and letting them evolve in time, i.e. obtaining a new collection

4In our case, we use as starting configurations those obtained from previous VMC simulations.
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of walkers from the previous one, up to a time large enough5 so that only the ground
state amplitude is relevant.

The energy can then be estimated by the mixed estimator

E =
〈φ0|Ĥ|ψT 〉
〈φ0|ψT 〉

=

∫
φ∗0(R)ET

L (R)ψT (R) dR∫
φ∗0(R)ψT (R) dR

, (2.36)

which is, in the case of bosonic systems, an exact estimator, in the sense that the resulting
energy does not depend from the chosen trial wavefunction ψT (see Appendix B for more
details about estimators of observables in MC methods and Section 2.5.6 for the relevant
case of fermionic systems).

It is worth to address, before concluding this introduction, an important issue related
to the imaginary time evolution, in particular with the non unitarity of the evolution
operator exp [−(Ĥ − Eref )τ ]. This particular aspect of imaginary evolution implies that
the norm of the state is not anymore conserved in time, growing without limit or going to
zero depending on the value of Eref . If Eref equals the ground state energy, Eref = E0,
then all amplitudes will go to zero at large time, with the exception of the amplitude of
φ0. On the other hand, if Eref > E0, all amplitudes will go to infinity and, conversely,
for Eref < E0, all amplitudes will go to zero. In any case, the c0 amplitude will always
dominate. A way of determining the ground state energy is then to adjust Eref so that
the norm of the state tends to a constant. This could be achieved, in practice, by choosing
as starting value for Eref the resulting energy of a preliminary VMC simulation and by
periodically setting Eref equal to the average energy of the previous n-iterations of the
algorithm (where this n is chosen in order to ensure maximum simulation stability).

2.5.2 Green’s function and small-time approximation

In general, an explicit expression for the Green’s function is not known analytically, due
to the presence of both the kinetic energy operator and the potential energy operator,
which do not commute. However, one may obtain approximations to the value of the
Green’s function for short time intervals. We will see below that a fundamental step, in
order to obtain these approximations, will be to make the coordinate representation of
the Green’s function explicit. Thus, in coordinate representation the Green’s function is
given by the matrix-element:

G(R′,R, τ) = 〈R′|e−(Ĥ−Eref )τ |R〉 , (2.37)

which, at τ = 0, becomes

5We still have a transient time τt to wait for the population of walkers to represent the stationary
distribution corresponding to φ0. However, unlike the VMC method, this is a physical transient as it
corresponds to a physical time evolution.
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G(R′,R, 0) = δ(R′ −R) . (2.38)

The time evolution equation (2.34) can be then written in terms of G(R′,R, τ) as

Ψ(R′, τ) =

∫
G(R′,R, τ)Ψ(R, 0) dR . (2.39)

From the operatorial representation of the Green’s function one may easily obtain the
formal differential equation

− ∂

∂τ
G = [Ĥ − Eref ]G ,

which is transformed in coordinate representation to the differential equation

− ∂G(R′,R, τ)

∂τ
=

− ~2

2m

∑
i

∇2
i +

∑
(i,j)

Vij − Eref

G(R′,R, τ) , (2.40)

with the boundary condition (2.38).
∑

(i,j) refers to the sum over all pairs of particles.

We have thus obtained an equation which is the equivalent of Eq. (2.33) but now it is
expressed in terms of the Green’s function in coordinate representation. Even if we have
obtained this expression, we still are unable to determine the exact Green’s function.
However, the above equation is a starting point to get a small-time approximation. In
fact the Green’s functions related exclusively to the kinetic or potential operators may
be readily determined.

For the kinetic operator we have the following coordinate representation

GK(R′,R, τ) = 〈R′|e−K̂τ |R〉 =
1

(4πDτ)dN/2
exp

[
−|R−R

′|2

4Dτ

]
, (2.41)

where the last equality is obtained by expressing the quantity 〈R′|e−K̂τ |R〉 in terms of
its momentum representation and then by solving the resulting integral. Here we have
introduced the constant D = ~2/2m and we have generalized the expression for arbitrary
vector components dN (in our case we just replace dN with 2(NF +NB) and we assume
that the mass of all the particles is the same).

The case of the Green’s function related to the potential energy is even simpler,
for momentum-independent interactions. It is then a local operator with coordinate
representation given by

GV (R′,R, τ) = e−(V̂ (R)−Eref )τδ(R−R′) = GV (R, τ)δ(R−R′) . (2.42)

At this point, if the commutator between the kinetic operator and the potential operator
were null, it would be possible to compute the exact Green’s function since we have
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all the necessary elements. However, this is not the case, so an approximate solution
consists in performing a perturbative expansion in terms of small time step. We start
from the exact factorization

e−[Ĥ−Eref ]τ =
n∏
i=1

e−[Ĥ−Eref ]
τ
n , (2.43)

with arbitrary n. For sufficiently large n, corresponding to a small time step dτ = τ/n,
each factor in the product can in turn be expanded in the following way

e−[Ĥ−Eref ]dτ = e−K̂dτe−(V̂−Eref )dτ +O(dτ 2) , (2.44)

which is Trotter formula (see [54]). The above approximation introduces a systematic
error in the Green’s function which is quadratic in the time step, so that suitable ex-
trapolations to dτ → 0 have to be produced in order to avoid a bias in the results of
the simulation. An approximate form for the full Green’s function, in coordinate repre-
sentation, is then obtained by replacing in Eq. (2.37) the relation (2.44) and using the
expressions of kinetic and potential Green’s function (2.41), (2.42) :

G(R′,R, dτ) = GK(R′,R, dτ)GV (R, dτ) +O(dτ 2) . (2.45)

We have finally obtained the so called small-time or primitive approximation of the
Green’s function.

It can been shown that a Green’s function with an error of order dτ 2 will produce an
estimated energy with a linear time-step dependence (see Ref. [32] for further details).

2.5.3 Diffusion interpretation of Schroedinger equation

The Schroedinger equation in imaginary time (2.33) can be written as

− ∂Ψ(R, τ)

∂τ
= [−D∇2 + V (R)− Eref ]Ψ(R, τ) , (2.46)

where we have just divided the Hamiltonian operator into the kinetic and potential
operators and we have introduced the constant D = ~2/2m . The above equation is
the starting point of this stochastic approach, in fact Eq. (2.46) can be interpreted as
a diffusion equation in a dN− dimensional space (we still remind that, in our case,
dN = 2(NF +NB)), with Ψ(R, τ) playing the role of the density of diffusing particles.

If the [Eref − V (R)]Ψ term were absent, Eq. (2.46) would be the usual diffusion
equation, with D acting as a diffusion constant. This simple equation can then be
simulated by a random walk of particles through configuration space. On the other
hand, if the term [Eref − V (R)]Ψ were present alone on the right-hand side, Eq. (2.46)
would be a rate equation, describing branching processes such as radioactive decay or
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exponential birth and death processes in a population. Thus, the entire equation can be
simulated as a combination of a diffusion and a branching process, in which the number
of diffusers increases or decreases at a given point proportional to the density of diffusers
already there. This branching serves to decrease the probability density in regions where
V (R) is large, and enhance it in regions of favorable potential energy.

For the diffusion interpretation to be valid, however, Ψ must always be positive, since
it is a population density. In reality, if the overall phase of the wavefunction is arbitrary,
Ψ may also be everywhere negative. Thus, at first glance, it seems that the process is
restricted to wavefunctions that have no nodes, such as for Bose systems in their ground
state. This is one of the main differences from the Variational Monte Carlo, where it is
not important whether the considered wavefunction has nodes or not. If, however, the
ground state φ0(R) does have nodes, the apparent limitation of the diffusion analogy
can be dealt with by treating positive and negative regions separately and prohibiting
the diffusion between them, thus introducing an approximation which takes the name of
fixed-node approximation (for further details see section 2.5.6 below).

In the previous sections we have introduced the Green’s functions and we have seen
how the time evolution operator in coordinate representation can be approximated thanks
to the use of both the kinetic and the potential Green’s functions. We now want to make
apparent the link between the diffusion interpretation of the Schroedinger equation and
the Green’s functions. Thus, the term GK is responsible for the diffusion process, acting
as a conditional transition probability: given a walker at positionR, one draws a random
number ξ from the Gaussian distribution (2.41) and moves the walker to

R→ R′ = R+ ξ .

The term GV , instead, can be interpreted as a branching factor, that is a probability for
the creation or destruction of copies of the walker at point R. Operatively the number
of created walkers is taken to be

ncopy = Int[GV (R, dτ) + ξ′] ,

where Int[x] gives the biggest integer number smaller than x and ξ′ is a random number
distributed according to U [0, 1]. Figure 2.1 naively represents the diffusion-branching
process.

For completeness, there is also another possible interpretation for the potential
Green’s function GV . This consists of considering GV as a weight when accumulating
the observables, without changing the number of walkers. This second possibility should,
in principle, produce the same result, it has however been noticed that the branching
technique gives a lower variance for the observables than the weighting technique. More-
over the second interpretation tends to favor the dominance of a single walker (see [55]
for more details).
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Figure 2.1: Pictorial view of the diffusion-branching process. The lines represent the
diffusion process governed by GK , the red crosses the death of a walker, the green stars
the birth of new walkers, governed by GV . The total number of walkers can change in
time. For large enough time the walkers are distributed as φ0 .

2.5.4 Importance sampling

The concept of importance sampling can be introduced also for Diffusion Monte Carlo.
As we have seen in section 2.3.2, its use may help in lowering the variance of the energy
estimators, reducing the required number of samples for a given value of the desired error.
There are several ways to introduce importance sampling in DMC. We will consider
Guardiola’s paper [32] as a guideline.

Instead of considering the wavefunction Ψ alone, let us now introduce the new quan-
tity (according to Ref. [56])

f(R, τ) = ψT (R)Ψ(R, τ) , (2.47)

where Ψ is a wavefunction satisfying the Schroedinger equation and ψT is a time-
independent trial wavefunction, which should be close to the exact ground state wave-
function. It is not necessarily the starting wavefunction Ψi, even if normally it is taken
also as the starting wavefunction. We then consider the (imaginary) time evolution of
f(R, τ), which is given by the following differential equation

− ∂f(R, τ)

∂τ
= −D∇2f(R, τ) +D∇ · [F (R)f(R, τ)] + [EL(R)−Eref ]f(R, τ) , (2.48)

where we have used again the local energy EL and we have introduced a new quantity
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F (R) called drift force. This new term appearing in the evolution equation is given by

F =
2

ψT (R)
∇ψT (R) . (2.49)

The right-hand side of Eq. (2.48) represents the action of the transformed Hamiltonian
Ĥ on the new probability distribution f . We can then express Ĥ as the sum of three
terms

Ĥ = K̂ + F̂ + L̂ ,

K̂ = −D∇2 ,

F̂ = D[(∇ · F (R) + F (R) ·∇] ,

L̂ = EL(R) ,

corresponding respectively to the kinetic part, the drift part and the local energy part.
To obtain the previous non importance sampling formula, one only has to put ψT = 1,
implying F = 0 and EL(R) = V (R). In other words, one gets the equation (2.48)
just by multiplying the time evolution equation (2.33) by the trial wavefunction ψT and
rearranging the terms appropriately.

One may define as above a Green’s function corresponding to this transformed oper-
ator, obeying a similar, but more complicated, differential equation. Formally, the new
Green’s function is given by the following expression

Ĝ = e−[K̂+F̂+L̂−Eref ]τ . (2.50)

Also in this case, we are not able to calculate the exact expression for the total Green’s
function. Thus we can proceed as in section (2.5.2) considering the coordinate represen-
tation of each single piece of Ĝ. The term GK(R′,R, τ) is the same as in the section
above. The term GL(R′,R, τ) is obtained from GV (R′,R, τ) replacing V with the local
energy EL. The Green’s function related to the drift force GF (R′,R, τ) is instead given
by (see [57])

〈R′|GF |R〉 = δ(R′ −R(τ)) , (2.51)

where R(τ) is the solution of the following differential equation

dR(τ)

dτ
= DF (R(τ)) (2.52)

with the boundary condition R(0) = R. Let us focus on solving the differential equation
(2.52). If the quantum force were a constant vector, then the solution would simply be
the initial condition shifted with constant velocity F (that is why the drift force is also
called drift velocity):

GF (R′,R, τ) = δ(R+ τDF −R′) . (2.53)
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We will adopt this approximation, which is good provided that τ is small and F not too
large. However, when the trial wavefunction goes to zero but has finite gradient, so that
F diverges, this is a very bad approximation and suitable cut-offs have to be artificially
introduced, or more refined methods have to be used (see Ref. [58] for further details).
We can finally obtain the approximate total Green’s function for small time-step dτ ,
which is given by the product of the three terms described above:

G(R′,R, dτ) =

∫
GV (R, dτ)GF (R1,R, dτ)GK(R1,R

′, dτ) dR1 + O(dτ 2)

= GK(R′,R+ dτDF , dτ)GV (R, dτ) + O(dτ 2) .

(2.54)

Even after introducing the importance sampling, the diffusion-branching interpre-
tation of the (imaginary) time evolution equation still be valid but with some little
modifications. Equation (2.48), which incorporates importance sampling through ψT , is
a diffusion equation for a density function f(R, τ) with diffusion constant D = ~2/2m.
The branching term is now proportional to the ”excess local energy” [EL(R) − Eref ],
which, unlike the original one, with a good choice of ψT does not become singular when
V (R) does. Also, an additional term ~2

2m
∇ · [F f ] now appears in Eq (2.48). This new

term acts to impose a directed drift velocity on diffusion with consequences on the sam-
pling regions, in the sense that, in regions of low probability (where ψT is small) one
has a large drift force F and hence any diffusers reaching such a region are driven away.
Thus, the advantage of Eq. (2.48) over Eq. (2.33) is that the diffusion process for f(R, τ)
is guided by ψT (through the force F ), so that the sampling is performed preferentially
in regions where ψT is large.
Therefore, summing up, if ψT is a good approximation of the ground state with this algo-
rithm we have two benefits: the drift accelerates the dynamics towards the ground state
and the branching term becomes a very smooth factor. These improvements yield aver-
ages with much lower statistical uncertainties than those obtained without importance
sampling.

2.5.5 DMC algorithm

Here we collect and resume all the results that we have seen in the previous sections
in order to present a scheme of the algorithm of the DMC method. Of course, before
implementing the code, an importance sampling trial function must be determined. Also,
adequate procedures must be devised in order to compute the local energy and the drift
force. We postpone the discussion of these important issues to section 2.6.

The algorithm can therefore be schematized in this way:

• Initialization:
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– Get a proper value for the time step;

– Guess a value for the energy shift Eref ;

– Create a starting set of walkers, representing the function f(R, τ = 0);

– For each walker R compute and store the local energy and the drift function;

– Initialize accumulators for energy and its square6, as well as for other observ-
ables.

• Start time evolution loop. For each walker do:

– Generate a trial move

R′ = R+DdτF (R) + ξ ,

where ξ is drawn from the multivariate Gaussian distribution with null mean
and variance σ2 = 2Ddτ ;

– Compute the replication factor

n = [exp {dτ(EL(R)/2 + EL(R′)/2− Eref )}] ,

where the square brackets mean integer part and both the initial and the final
configurations contribute, as it can be shown that this reduces the time-step
bias;

– Unless n = 0 make n copies of R′, EL(R′) and F (R′) to the new set of
walkers;

– Copy the new set of walkers to the old set;

– Test the growth of the population and, if necessary, adjust the energy Eref ;

– If the transient is finished, update the accumulators for averages and errors.

• Go to the next time iteration and repeat all the previous operations belonging to
the time evolution loop until a sufficiently long time has passed.

• Compute averages and errors.

It is worth to stress that, usually, DMC simulations are performed after preliminary
VMC simulations. Thus one can determine both the initial energy shift Eref and the
starting configuration of walkers from Variational Monte Carlo results.
Another point that requires special attention and which should be discussed here is the
correlation between successive positions. We have seen that the correctness of the DMC

6Necessary for the calculation of the variance.
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method is strictly related to the small-time approximation of the total Green’s function.
Then it is necessary to implement the algorithm with ever smaller time-steps. However,
if the time-step is very small, successive positions are strongly correlated. Even if the
source of the correlation is in principle different, this correlation problem is very similar
to the one already seen in VMC section. Thus we have again two solutions, which are
a thermalization loop or a block analysis. Also for this case the second solution is the
most convenient one for the reasons already mentioned in the section 2.3.3.

2.5.6 Fixed-node approximation

When we talked about the diffusion interpretation of the Schroedinger equation we said
that a necessary condition for its validity is the absence of nodes in the ground-state
wavefunction. This condition is always guaranteed for bosonic systems, whose ground-
state wavefunction is everywhere positive and thus can be interpreted as a probability
distribution function. However, in the case of fermionic systems, the antisymmetry of
the wavefunction imposes the presence of positive and negative regions in configuration
space. The problem of the sign of the wavefunction, which goes under the name of ”sign
problem”, is a very famous issue in the context of Quantum Monte Carlo simulations.

One possible approach is to consider the sign of the wavefunction as a factor that
multiplies the contribution of the single walker to the observables. This has been proven
to result in a increasing fluctuation of the estimators of the observables with increasing
imaginary time, reducing the signal with respect to the noise, so that a refined analysis
has to be performed (see [44, 59, 60, 61]). Many other approaches to overcome this
problem have been proposed, even if it has been demonstrated [62] that there is not
a general solution, that is an algorithm both exact and convergent in a time which is
polynomial in the number of degrees of freedom.

An approximate solution, which has been proven to be very precise for the ground
state of ultracold gases, is obtained through the fixed-node approximation (FN). This
approximation strongly relies on importance sampling and the use of a good trial function
ψT , which can usually be constructed for dilute systems. Before going into the details of
the FN approximation it is good to introduce some important definitions:

– nodal surface, region in the configuration space where a wavefunction is zero;

– nodal pocket, connected region in configuration space whose boundary is a part of
the nodal surface.

In light of these new definitions, the problem of fermionic wavefunctions is that the sign
of the wavefunction changes from a nodal pocket to the next one and the position of the
nodal surface is not known a priori. Perhaps, it might be helpful to know the symmetry
properties of the wavefunction (which sometimes are known from the physical knowledge
of the considered system), however it is in general impossible to determine in a precise
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way the complete nodal surface of an unknown function Ψ. It is therefore fundamental
to use the FN approximation.

The essence of the fixed-node approximation is to fix the nodal surface of the studied
wavefunction Ψ (the one that satisfies the Schroedinger equation (2.33)) to be equal
to that of a trial wavefunction ψT , so that the nodal pockets of Ψ and ψT coincide.
Then the Diffusion Monte Carlo, with the help of the importance sampling algorithm,
is applied to the distribution f = ψTΨ which turns to be everywhere positive, except
on the nodal surface. Thus the branching-diffusion interpretation of the many-body
Schroedinger equation is preserved, provided that the nodal surface is never crossed. In
other words, this is essentially equivalent to having a constraint defining impenetrable
barriers which cannot be crossed by the walkers: every time a walker attempts to cross
the nodal surface, it is killed (i.e., its replication factor n is made zero).

Ceperley [45] and almost simultaneously Moskowitz and collaborators [63] proved
that the energy obtained with the mixed estimator (see Appendix B) in the fixed-node
approximation is an upper bound to the fermion ground state energy.
If the nodal surface of the trial wavefunction were equal to the exact surface, then this
upper bound would coincide with the ground state energy. The proof of this statement,
for the case of spin independent wavefunctions is the following.
Let the trial wavefunction ψT (R) be antisymmetric in the spatial variables. Further, let
vα be the connected volumes in configuration space bounded by the nodes of ψT . In each
of these volumes there is a unique ground state eigenfunction Ψα(R) with eigenvalue εα,
which satisfies the equations{

ĤΨα(R) = εαΨα(R) R ∈ vα ,
Ψα(R)ψT (R) > 0

and
Ψα(R) = 0 R ∈ Σ ,

where we have denoted the nodal surface with the Greek capital letter Σ.
The fixed node procedure solves this problem exactly in each volume element:

Ψ(R, τ) −−−→
τ→∞

Ψα(R) .

For each α we can then define an antisymmetric function

Ψ̃α(R) =
∑
P

(−)PΨα(PR) ,

whose variational energy7 is ∫
Ψ̃∗αĤΨ̃α dR∫
Ψ̃∗αΨ̃α dR

= εα ≥ E0 .

7By construction the variational energy is bigger or equal to the ground state energy.
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Here E0 is the fermion ground state energy and P simply represents a permutation of
the fermions. We have thus shown that each eigenvalue εα is an upper bound to the
ground state energy E0.

In the fixed node approximation, one usually attempt to populate as many volumes
vα as possible. This is a consequence of the fact that the best upper bound (for a given
ψT ) is obtained if all volumes vα have been populated (see [45] for further information).

2.6 Trial wavefunctions

The choice of the trial wavefunction is critical in both VMC and DMC calculations.
In the first case, the trial wavefunction has to be as close as possible to the ground
state solution in order to obtain precise results. In the second case, instead, we need a
wavefunction which is able to reproduce the nodal surface of the solution of the many-
body Schroedinger equation in the best possible way. Also, refined trial wavefunctions
improve the importance sampling algorithm, reducing the cost of obtaining a certain
statistical accuracy without increasing the number of sampling. Of course, this does not
mean that any function can be used. In fact, only wavefunctions which are physical and
for which the gradient and the laplacian may be efficiently computed, can be used.

For bosons in the ground state, the Jastrow wavefunction [42, 64] was able to capture
the few-body correlations which dominate the dilute systems physics, while for fermions
the Slater [47] or BCS determinants [65, 66, 67] proved very accurate in describing the
nodal surface. For systems containing both bosons and fermions (such as Bose-Fermi
mixtures) a good ansatz for the wavefunction is given by the Jastrow-Slater wavefunction
[3, 4].

Jastrow wavefunction

The Jastrow wavefunction is a symmetrized product of few-body wavefunctions. The
simplest form, which is suitable for describing dilute systems, contains only the two-
body correlation terms and reads as

ψJ(R) =
∏
i<j

f(rij) , (2.55)

where the product is extended over all the pairs of interacting particles. In this form
the two-body term depends only on the distance between the particles in the pair rij =
|ri − rj|. In case of short range interactions the function f is taken to be a solution
of the two-body problem with suitable boundary conditions (see Appendix C for the
details of the calculation). Notably, this choice of f allows to deal also with Coulomb-
like potentials, which show a divergence when rij = 0, guaranteeing the exactness of the
wavefunction at the two-body level at short distances. In case one considers two generic
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species of particles (let us call them up, ↑, and down, ↓), the general (two-body) Jastrow
function is:

ψJ(R) = J↑↑(R)J↓↓(R)J↑↓(R) =
∏
i<j

f↑↑(rij)
∏
a<b

f↓↓(rab)
∏
i,a

f↑↓(ria) , (2.56)

where the indices i, j refer to the ↑ particles and the indices a, b refer to the ↓ particles.
Once the wavefunction has been chosen, an important step is the calculation of the

explicit form of the drift force and of the local energy (in particular of the kinetic term).
Thus the drift forces Fα

i,a, where the index α = x, y refers to the spatial coordinate,
reduce to

Fα
↑↑i = 2

∂αiJ↑↑
J↑↑

= 2
∑
j 6=i

∂αif↑↑(rij)

f↑↑(rij)
= 2

∑
j 6=i

f ′↑↑(rij)

f↑↑(rij)

αi − αj
rij

, (2.57)

for the ↑↑ case and analogously for the other cases.
The local kinetic energy of the Jastrow wavefunction is instead given by

K = D

{
2
∑
i<j

[
eL↑↑(rij) +

(
f ′↑↑(rij)

f↑↑(rij)

)2
]

+ 2
∑
a<b

[
eL↓↓(rab) +

(
f ′↓↓(rab)

f↓↓(rab)

)2
]

+2
∑
i,a

[
eL↑↓(ria) +

(
f ′↑↓(ria)

f↑↓(ria)

)2
]
− 1

4
(FS · FS + FA · FA + 2FS · FA)

}
,

(2.58)

where the global force vectors are FS = {Fα
↑↑i, F

α
↓↓a} and FA = {Fα

↑↓i, F
α
↑↓a} and eL =

−(f ′′ + (d − 1)f ′/r)/f is the local kinetic energy of the two-body problem in units of
2D. The last term can be also written equivalently as 1

4
F · F , where the scalar product

is meant as a sum over the coordinates of all the particles. See the PhD thesis [68] for
the details of the calculation.

In the case of Bose-Fermi mixtures we identify fermions (F) with ↑ particles and
bosons (B) with ↓ particles. The Jastrow wavefunction is now simpler than the gen-
eral case (2.56) because we assume that the short-range fermion-fermion interaction is
negligible, since the fermions are polarized and the usually dominant zero-temperature
s-wave correlations are thus prevented by Pauli principle [3]. Thus it reads as

ψJ(R) = JBB(R)JFB(R) =
∏
a<b

fBB(rab)
∏
i,a

fFB(ria) . (2.59)

Jastrow-Slater wavefunction

In the study of fermionic systems the Jastrow wavefunction cannot be used alone, since
it is symmetric in the exchange of particles. The simplest antisymmetric wavefunction
that one can use is a Slater determinant. The antisymmetry of this type of functions
comes directly from the properties of the determinant (i.e., by interchanging any pair of
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columns or rows a minus sign appears). Slater determinants can be constructed using
different functions depending on the system that one is studying. For dilute systems,
non-interacting single particle wavefunctions (i.e., plane waves) proved to be good enough
for comparison with experimental results (see [67, 69]).

We can then couple the Jastrow function and the Slater determinant in order to obtain
a more refined wavefunction, called Jastrow-Slater wavefunction, which is now able to
describe interacting systems containing both bosons and fermions. In the particular case
of Bose-Fermi mixtures, it can be written as the following product:

ψJS = ψJDF , (2.60)

where the determinant is defined as

DF (RF ) = detSFpi = det[φkp(ri)] . (2.61)

The φkp orbitals are single particle wavefunctions corresponding to eigenvectors of mo-
mentum in a box with periodic boundary conditions (see Section 2.7 for further details
on the periodicity of the system). In order to have a real wavefunction we used the
cos(kr) and sin(kr) functions. For the k vectors we choose the eigenvalues of momen-
tum starting from the zero vector up to the Fermi wavevector fixed by the number of
particles and the volume of the box (in the thermodynamic limit only by the density).

We will now derive some useful relations for the calculation of the drift force and of
the local kinetic energy for the Slater term DF . It is convenient to introduce the inverse
Slater matrix S̄, whose properties are:∑

i

SpiS̄iq =
∑
i

φkp(ri)S̄iq = δpq
∑
p

S̄jpφkp(ri) =
∑
p

S̄jpSpi = δij .

Since the iterative calculation of the determinant involves the cofactors Api in the equa-
tion DF =

∑
i SipApi (cofactor expansion of the determinant), for any p, the inverse

matrix is related to the cofactors in the following way: S̄pi = Api/DF . Two useful prop-
erties can therefore be deduced, concerning the derivatives of the Slater determinant:

1

DF

∂DF

∂Sip
= S̄pi

∂S̄pi
∂Sjq

= −S̄qiS̄pj .

It is now possible to derive the drift force for the Slater determinant

Fα
i =

2

DF

∂αiDF =
2

DF

∑
p

∂DF

∂Sip

∂Sip
∂αi

= 2
∑
p

S̄pi∂αiφkp(ri) , (2.62)
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and the local kinetic energy

K = − D

DF

∑
i

∑
α

∂2αiDF = − D

DF

∑
i

∑
α

∂αi

[
DF

∑
p

S̄pi
∂Sip
∂αi

]

= −D
∑
i

∑
α

[(∑
pq

S̄qi
∂Siq
∂αi

S̄pi
∂Sip
∂αi

)
−

(∑
pq

S̄qi
∂Siq
∂αi

S̄pi
∂Sip
∂αi

)

+
∑
p

S̄pi∂
2
αi
φkp(ri)

]
= −D

∑
i,p

∑
α

S̄pi∂
2
αi
φkp(ri) ,

(2.63)

where the index α = x, y refers again to the spatial coordinate. In the homogeneous sys-
tem which we consider, the functions φkp are just plane waves. Thus, the last expression
simply turns into K = D

∑
p k

2
p, where kp is the modulus of the p-th eigenvector of mo-

mentum. Going back to the complete wavefunction (2.60), let us now use the superscript
S, J to refer to the Slater determinants or the Jastrow factors respectively. The total
drift force is simply F = F J + F S

F (where again the indices of these vectors correspond
to the ordered coordinates of all the particles). The total local kinetic energy is instead
given by

KJS = − D

ψJS

(∑
i,α

∂αiψJS +
∑
a,α

∂αaψJS

)
= KJ +KS

F −
D

2
(F J · F S) . (2.64)

We now have all the elements to construct the necessary quantities required by both
VMC and DMC algorithms.

2.7 Finite-size systems

When dealing with extended systems we cannot attempt the simulation with an infinite
number of particles. The usual way of dealing with these systems, inherited from Sta-
tistical Mechanics [37, 70], consists in representing the system in a simulation cell with
appropriate periodic boundary conditions (PBC). For a general d-dimensional system,
the simulation cell is a d-dimensional hypercube with linear size L so that Ld = N/n,
where n is the particle density. The implementation of PBC requires a regular behavior
of the trial wavefunctions at the boundary of the simulation box: in the case of Slater
determinants, the single particle orbitals must have a period for which L is an integer
multiple; in the case of Jastrow factors, one requires that at the distance r = L/2 the
function goes to a constant and its derivative goes to zero.

The implementation of PBC implies also additional conditions on the Monte Carlo
moves. In fact, every time a particle comes out from the elementary cell, it must be
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brought back inside by subtracting or adding an integer number of times the length
L. Moreover, when calculating properties involving a pair of particles, such as Jastrow
factors, one has to consider the closest replica of the particles (see Fig. 2.2).

Figure 2.2: Periodic boundary conditions and closest replica.

Even if the fixed and limited number of particles implies an accessible computational
time, the finite size of the systems could be a problem. This is evident when one wants
to calculate, using QMC techniques, the properties of a system in the thermodynamic
limit. It is therefore necessary to study how these finite-size effects negatively affect our
results in order to find a way, if any, to mitigate them. However, it is clear from the
outset, that finite-size errors cannot be completely erased, introducing a systematic error
in our simulations that will have to be appropriately estimated (see Sec. 3.2.2).

The finite-size error can be reduced by choosing particular particle numbers. In case
of bosonic systems, this idea is tied to the possibility of allowing the system crystallize,
i.e. , when particles prefer to place themselves around an ordered and periodic structure.
Instead, in case of fermionic systems there is a set of magical numbers which are related
to the concept of closed shell and to the ability to emulate the properties of the system
in the thermodynamic limit. In the following, we will devote our attention to this second
case as in our B-F mixtures bosons constitute only a small fraction of the total particles.

By imposing the periodic boundary conditions discussed above on the two-dimensional
simulation cell with side L, we are implicitly fixing the discrete values of the wavevectors
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k of the particles. Thus, possible values of k must follow the rule

k =
2π

L
(nx, ny) ,

where the n are positive or negative integer numbers. At this point one can notice
that there are some combinations of the allowed wavevectors which better describe the
thermodynamic limit. These combinations are those that form the so called closed shells
(i.e. , combinations where the sum of all k is zero). In fact, in the thermodynamic limit,
the average value of k is just zero. Furthermore, one constructs configurations of fermions
that respect discrete rotational symmetries, which are expected in the thermodynamic
limit. For these reasons it can be deduced that to realize such configurations only
some particular numbers are able to satisfy all the previous requests, that are, in two
dimensions: 5, 9, 13, 21, 29, 37, 45, 49, 57, 61, ... . Figure 2.3 provides an example of
how these closed shells must be built to respect the properties described above.

Kx

Ky

N  = 5F N  = 9F

Kx

Ky

Figure 2.3: Construction of the first two non-trivial closed shells for a fermionic system.
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Chapter 3

Quantum Monte Carlo simulations

In this Chapter we apply the QMC techniques described in Chapter 2 to the two-
dimensional Bose-Fermi mixture described in Section 1.3. Our simulations are based
on a QMC code written by G. Bertaina (from INRiM, Torino, Italy). The code has al-
ready been used to address many different physical systems (we mention Refs. [6, 71, 72,
73] as examples of some recent applications of the code), but it has never been applied
so far to Bose-Fermi mixtures in two dimensions. The simulations of the present work
have being carried out by using the parallel computing cluster of the Open Physics Hub
(https://site.unibo.it/openphysicshub/en) at the Physics and Astronomy Department in
Bologna.

The present chapter is organized as follows. A first introductory section points out the
conventions adopted during the simulations. Then, we show how the VMC simulations
and the DMC simulations must be carried out in order to take into account all the
systematic errors introduced by the approximations used. Finally, we compare the results
of our simulations with the perturbative predictions.

3.1 Input parameters and conventions

The QMC code used in our simulations is a general purpose algorithm adaptable to
many different physical systems. It is thus important to highlight what are the input
parameters to be specified and which are the conventions used in our simulations.

Let us begin by describing the parameters necessary for the correct functioning of the
program. We can divide the entire set of parameters into two distinct classes which are
independently specified through two different input files: the Monte Carlo parameters
and the physical parameters. The former are strictly related to the type of MC algorithm
used and to the type of analysis conducted. In case of VMC simulations the number
of walkers, the number of MC moves and the length of the transient must be specified.
Also, a factor related to the acceptance ratio is necessary in order to ensure the correct
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movement of the Markov chain. The case of DMC simulations is, instead, slightly more
complicated than the previous one. Of course, the number of walkers, the number of MC
moves and the length of the transient have to be fixed again, but now one must specify
also the reference energy Eref and the time step. Other parameters of a more technical
nature are introduced, such as the cutoff factor (see Sec. 3.3.2 for further details) or the
number of copies allowed in the branching process, in order to control the often unstable
diffusion-branching process of the DMC algorithm. The physical parameters required,
on the other hand, do not distinguish between VMC and DMC. We need then to specify
the main characteristics of the system that we want to study. Before going into details,
it is important to stress that almost all physical parameters, with the exception of the
number of components and the number of particles of each type, are physical quantities
and therefore have a unit of measure. However, the values we enter as input in the
program must be dimensionless quantities, therefore we will have to divide or multiply
the previous quantities by suitable reference values (indicated with the subscript R). So,
the first parameters are the number of different species present in the mixture and the
relative numbers of particles. Then we need to specify the mass of the particles

mass i =
mi

mR

, (3.1)

where the index i refers to the type of species considered. In our case, we have only two
species with equal mass, thus we always fix for our simulations

mF

mR

=
mB

mR

= 1 ,

in order to have the relation mF = mB = mR. Other parameters are the total density
of particles n = nF + nB, given by

dens = nR2
R , (3.2)

and the following constant

h2o2mRl2 =

~2
2mRR

2
R

ER
, (3.3)

that allows us to fix the unit of energy and of time step. The interactions between
bosons and fermions and those between bosons and bosons are regulated by two pairs of
parameters (

R̃BF =
RBF

RR

, RBF
P =

RBF

ãBF

)
(3.4)

(
R̃BB =

RBB

RR

, RBB
P =

RBB

ãBB

)
, (3.5)
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where ãBF and ãBB are the scattering lengths which follow the convention described in
the Appendix C and RBB and RBF are the radii of the potential disks that we consider
as model potentials. In particular, by choosing different values of R̃ we can vary the
magnitude of the interaction, while changing the value of RP we modify the structure
of the potential, in the sense that for RP = 1.0 we have a hard disk potential, instead
for RP > 1.0 we have a soft disk potential. In our simulations we are only interested in
the soft disk case, thus we fix, without ever changing, RBB

P = RBF
P = 2.0 . This choice is

irrelevant in the weakly interacting regime, where what matters is only the ratio between
the scattering lengths and the average particle distance, however results can depend on
this parameter for strong interactions.

As can be seen from the previous expressions, the values of the physical parameters
entered in the program depend on the choice of the reference constants (RR, ER) used.
This arbitrariness can very easily lead to misunderstandings and errors. For this reason,
it is important to establish a convention that will then be used for the duration of the
simulations. We thus fix the reference length RR as the mean distance between fermions
l
(F )
m , which, in two dimensions, is given by

RR = l(F )
m =

1
√
nF

, (3.6)

where nF is the fermion density. Furthermore, we require that the reference energy ER
is equal to the Fermi energy εF :

ER = εF =
~2k2F
2mF

, (3.7)

where mF is the fermionic mass (in our convention mF = mR) and kF is the Fermi
wavevector which in two dimensions is given by kF =

√
4πnF . This choice of RR and ER

imposes some conditions on the physical parameters dens and h2o2mRl2 . In particular,

dens = n

(
1
√
nF

)2

=
n

nF
=
nF + nB
nF

= 1 +
nB
nF
≡ 1 + x , (3.8)

where nB is the boson density and x = nB/nF = NB/NF is the boson concentration. We
also use

h2o2mRl2 =
~2nF
2mR

2mF

~2k2F
=
nF
k2F

=
nF

4πnF
=

1

4π
. (3.9)

The adopted convention has two useful consequences: the first is that the time step of
the DMC will be in units of the inverse Fermi energy of the fermions (~/εF ); the second
is that the energies resulting from the QMC simulations will be in units of εF .
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Although the physical parameters described above are one of the most convenient
choices in the implementation of the QMC code, they are not necessarily as effective
in the theoretical description of the physical system. In fact, in Quantum Many-Body
theory, for two dimensional systems, it is more convenient to describe the BF and the BB
coupling strength in terms of the dimensionless parameters gBF and gBB respectively:

gBF = − 1

log(kFaBF )
gBB = − 1

log (nBa2BB)
, (3.10)

where aBF and aBB are the scattering lengths which respect the convention described in
Appendix C. The coupling parameters (3.10) are related to the input parameters R̃ and
RP by the following relations (see Appendix D for further details on the derivation):

gBF = − 1

log(kFaBF )
= − 1

log
[√

4π eγ

2

(
R̃BF

RBFP

)] , (3.11)

gBB = − 1

log (nBa2BB)
= − 1

log

[
x e2γ

4

(
R̃BB

RBBP

)2] , (3.12)

where γ ' 0.577... is Euler-Mascheroni constant.
Due to these relations, in the following we can find the interactions described in terms

of the coupling parameters or in terms of the input parameters.
Before concluding this section, in the input file one has also to specify the boundary

conditions chosen (PBC) and the trial wavefunction to use in the simulations (Jastrow-
Slater).

3.2 VMC simulations

Before obtaining the VMC results shown in Section 3.4 several preliminary analyses must
be conducted. The purpose of this section is therefore to summarize and report all the
simulations that were necessary to obtain consistent and precise results. In particular,
the main issue addressed concerns the finite size of the system simulated with the QMC
techniques. For this reason, the simulations were repeated considering different closed
shells, with an ever larger number of fermions (and bosons).

The Bose-Fermi mixture under study is mainly composed of fermions, since we con-
sider low bosonic concentrations. Therefore the BF interaction is the most relevant term
of the total interaction energy. For this reason, we decide to fix a small value of the BB
interaction (in terms of the input parameters we set R̃BB = 0.001 and RBB

P = 2.0) and

we then consider several values of the BF interaction by varying R̃BF (Table 3.1 reports
the interactions considered in terms of both input and coupling parameters).
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R̃BF RBF
P gBF R̃BB RBB

P gBB
1.0× 10−9 2.0 0.0493 1.0× 10−3 2.0 0.0594
1.0× 10−5 2.0 0.0904 1.0× 10−3 2.0 0.0594
1.0× 10−3 2.0 0.1550 1.0× 10−3 2.0 0.0594
5.0× 10−3 2.0 0.2065 1.0× 10−3 2.0 0.0594
1.0× 10−2 2.0 0.2410 1.0× 10−3 2.0 0.0594
3.0× 10−2 2.0 0.3278 1.0× 10−3 2.0 0.0594
5.0× 10−2 2.0 0.3938 1.0× 10−3 2.0 0.0594
1.0× 10−1 2.0 0.5417 1.0× 10−3 2.0 0.0594
2.0× 10−1 2.0 0.8673 1.0× 10−3 2.0 0.0594

Table 3.1: List of the values of the interactions considered in terms of both input and cou-
pling parameters. Each row represents a particular configuration of interactions studied.
The coupling parameter gBB is obtained from Eq. 3.12 for x = 12/49.

3.2.1 Optimization of the variational parameters

In section 2.4 we have described the variational method and how it can be used to
obtain an upper bound for the ground state energy. However, until now, we have not yet
described any variational parameters in our trial wavefunction. We therefore decided to
introduce the parameters R̄BF and R̄BB, which are used to parametrize, in the Jastrow
factors, the distance at which the trial wavefunction goes to a constant (examine Section
2.7 to see how PBC are implemented for Jastrow-Slater wavefunctions). In this way, the
energy becomes a functional of the two variational parameters R̄BF and R̄BB. Thus, for
distinct values of these parameters, several simulations must be carried out in order to
find the minimum of the energy.

Clearly, the optimal values of R̄BF and R̄BB are affected by the considered interac-
tions. It is therefore necessary to optimize these variational parameters for each possible
value of the interactions. Since the BB interaction is kept constant, the first analysis we
conducted was to identify an optimal R̄BB parameter to be used in all subsequent simu-
lations. In particular, we fixed R̃BF = 0.01, R̃BB = 0.001 and RBF

P = RBB
P = 2.0 and we

performed several simulations by varying R̄BB. The resulting energies were then fitted
with a parabola in order to identify the minimum of the energy and the corresponding
optimized value for R̄BB (see Fig. 3.1).

Once we found the optimized variational parameter R̄BB, for each value of the BF
interaction, we conducted similar analyses by identifying the respective optimized R̄BF

(see Fig. 3.2). The results of the optimization of the variational parameters are reported
in Table 3.2 and are then used in all subsequent simulations. It should be pointed out
that these analyses were conducted for the smallest closed shell studied (13 fermions +
3 bosons) and the results were then extended to the subsequent larger closed shells by
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Figure 3.1: Optimization of the variational parameter R̄BB. The energy per fermion, in
units of Fermi energy, is plotted with respect to the variational parameter, which is in
units of the mean interparticle distance lm. The error bars are given by the statistical
error of the Monte Carlo simulations. The extrapolated optimal value for the variational
parameter is R̄BB = 1.85 . We notice that there is only a very mild dependence on this
parameter.

implicitly assuming the independence of the variational parameters from the finite-size
effects.

3.2.2 Finite-size correction

In order to study finite-size effects, for each interaction listed in Table 3.1, we consider
several closed shells trying to keep a constant concentration of bosons (x ' 0.238).
The allowed combinations of bosons and fermions (NB, NF ) that we have analysed are
reported in Table 3.3.

The procedure used to estimate the finite-size effects can be described as follows.
First, for each fermionic closed shell, we have calculated the difference in energy per
particle between a finite system of non-interacting fermions and an infinite one:

∆K = EN
x=0 − E∞x=0 ,
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R̃BF R̃BB R̄BF R̄BB

1.0× 10−9 1.0× 10−3 1.08 1.85
1.0× 10−5 1.0× 10−3 1.26 1.85
1.0× 10−3 1.0× 10−3 1.40 1.85
5.0× 10−3 1.0× 10−3 1.45 1.85
1.0× 10−2 1.0× 10−3 1.50 1.85
3.0× 10−2 1.0× 10−3 1.68 1.85
5.0× 10−2 1.0× 10−3 1.80 1.85
1.0× 10−1 1.0× 10−3 2.00 1.85
2.0× 10−1 1.0× 10−3 1.99 1.85

Table 3.2: Combinations of the optimal variational parameters for each interaction con-
figuration. R̄BF and R̄BB are obtained by following the procedure described in Sec. 3.2.1.
These variational parameters are expressed in units of the mean interparticle distance
lm.

NB NF x ∆K
3 13 0.2308 −0.020501
5 21 0.2381 +0.015582
7 29 0.2414 −0.008034
9 37 0.2432 +0.004321

11 45 0.2444 +0.003551
12 49 0.2449 −0.002445

Table 3.3: Configurations of bosons and fermions analysed. The number of fermions is
chosen in order to have closed fermionic shells. The last column represents the difference
in energy per particle between a finite system of non-interacting fermions (with NF

fermions) and an infinite one. This difference ∆K typically decreases as NF grows,
however with oscillations.

57



	0.55618

	0.5562

	0.55622

	0.55624

	0.55626

	0.55628

	0.5563

	0.55632

	0.55634

	1.3 	1.35 	1.4 	1.45 	1.5 	1.55 	1.6 	1.65

E/
(N

Fε
F)

R- BF	/	lm

VMC
Fit

Figure 3.2: Example of optimization of the variational parameter R̄BF for the interaction
configuration R̃BF = 0.01 and R̃BB = 0.001. The energy per fermion, in units of Fermi
energy, is plotted with respect to the variational parameter, which is in units of the
mean interparticle distance lm. The error bars are given by the statistical error of the
Monte Carlo simulations. The extrapolated optimal value for the variational parameter
is R̄BF = 1.50 .

where EN
x=0 is obtained from preliminary VMC simulations and E∞x=0 is the energy per

particle in the thermodynamic limit, which, in two dimensions, is given by εF/2. ∆K (see
Tab. 3.3) can then be interpreted as the finite-size correction in case of a non-interacting
fermionic system. Our first attempt at reducing finite-size effects was to use ∆K as a
finite-size correction also for the interacting Bose-Fermi mixture. However, this choice
turned out not to be a valid solution, since ∆K is a good approximation only for weakly
interacting systems. We therefore decided to introduce a multiplicative factor b in front
of ∆K (following [74]), which depends on the interactions. Thus, we assume that the
energy per fermion of the finite B-F mixture is given by:

EN
QMC = E∞ − b∆K ,

where E∞ is the energy per fermion in the thermodynamic limit for a fixed value of
boson concentration x. Although in our simulations we try to keep x constant, as the
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number of fermions grows, considering the constraints imposed by the closed shells, the
concentration of bosons will slightly increase (See Table 3.3). This leads to an increase
in the interaction energy, as it depends on the number of bosons present in the mixture.
This dependence on boson concentration must be somehow introduced in the previous
formula if we want to compare the VMC results obtained for different closed shells. This
can be done by treating E∞ as the sum of two terms:

E∞ = E∞x=0 + c x .

The first term in the sum is x-independent and it is again the energy per particle for a
non-interacting fermionic system in the thermodynamic limit, the second instead contains
the interaction part and it is proportional to the boson concentration by the constant c.
We can then replace this expression for E∞ in the equation above, obtaining:

EN
QMC = E∞x=0 + c x− b∆K . (3.13)

Parameters b and c can be estimated, for each interaction, by performing several simu-
lations for all the studied closed shells and by fitting the resulting energies per fermion
with Eq. (3.13). This is a two-dimensional fit, in terms of x and ∆K. The parameter
b can then be used for the finite-size correction of the QMC simulations (see Fig. 3.3),
meanwhile c can be used as a further check of the correctness of the results. In particular,
the finite-size error can be taken into account by adding the term b∆K:

E
N (C)
QMC = EN

QMC + b∆K . (3.14)

The error on parameter b obtained from the fit, multiplied by ∆K, will then be added
to the statistical uncertainty of the QMC simulations.

This apparently heuristic method for the estimation of the finite-size effects can be
justified from a theoretical point of view. The procedure implemented above is just
a particular application of a more general method developed by Kwon, Ceperley and
Martin [75], which relies on the identification of the fermions present in the mixture with
a Fermi liquid. The authors of the previous paper show also that the b parameter that
we have estimated corresponds to the inverse of the effective mass. Without going into
details of Fermi liquid theory, which is not the purpose of this thesis, we limit ourselves
to reporting in Tab. 3.4 the resulting values of b.

3.3 DMC simulations

The DMC simulations were conducted for the same interactions already considered with
VMC. The energies resulting from the VMC simulations, together with the final positions
of the walkers, were used to fix the reference energies Eref and the initial positions of
the walkers, respectively.
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Figure 3.3: Effects of the finite-size correction, described in Sec. 3.2.2, on VMC results
for a particular value of the interaction. The energy per fermion, in unit of the Fermi
energy, is plotted with respect to the boson concentration x = NB/NF . The finite-size
correction becomes smaller and smaller as we analyse larger and larger closed shells.
Notice that the finite-size corrected results display an expected linear dependence on the
concentration.

Also in this case, before obtaining the final results shown in Section 3.4, several pre-
liminary analyses must be conducted. First of all, we choose as our trial wavefunction the
previous optimized Jastrow-Slater function. This is clearly an advantage of having run
VMC simulations first. Secondly, we exploit the results for the finite-size effects, obtained
from the Variational Monte Carlo, also for the DMC method. It must be underlined that,
in principle, one would have to perform again the same finite-size analyses, described in
Section 3.2.2, also for the DMC as they could give slightly different results. In practice,
since DMC simulations are much more computationally expensive than VMC, we simply
assumed that the finite-size effects are not affected by the type of QMC algorithm used.
Furthermore, as we have seen in the previous chapter, DMC depends on the time step
(dτ) used in the simulations. Consequently, a time-step analysis must be performed to
understand how a non-zero dτ affects our simulations.
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R̃BF gBF R̃BB b
1.0× 10−9 0.0493 1.0× 10−3 0.983± 0.013
1.0× 10−5 0.0904 1.0× 10−3 0.982± 0.014
1.0× 10−3 0.1550 1.0× 10−3 0.978± 0.014
5.0× 10−3 0.2065 1.0× 10−3 0.974± 0.015
1.0× 10−2 0.2410 1.0× 10−3 0.971± 0.015
3.0× 10−2 0.3278 1.0× 10−3 0.962± 0.014
5.0× 10−2 0.3938 1.0× 10−3 0.948± 0.015
1.0× 10−1 0.5417 1.0× 10−3 0.917± 0.012
2.0× 10−1 0.8673 1.0× 10−3 0.853± 0.016

Table 3.4: Resulting values of b obtained following the procedure described in Sec. 3.2.2.
This parameter, according to Refs. [75, 74], corresponds to the inverse of the Fermi
liquid effective mass.

3.3.1 Evidence of clustering

During our DMC simulations we experienced some issues regarding the block analysis
(see Section 2.3.3 and Appendix A). In particular, we have found that for high BF
interactions, even if we performed longer and longer simulations, the correlation lengths
were much bigger than the maximum block lengths assumed. Also, by plotting the
resulting energies per particle with respect to the MC iterations, we have observed large
fluctuations even at the end of the simulations, a behavior that typically occurs when
the transient is not yet concluded. These issues could be interpreted in two different
ways. One possibility, more technical in nature, could be that the simulations were not
long enough. The second option, instead, could be related to some lack of knowledge
regarding our physical system. The first hypothesis was immediately discarded: we
performed simulations ten times longer than those with low interaction finding the same
problem. We then conjectured that, for strong BF repulsion, bosons are affected by
an effective attractive interaction, thus forming bosonic clusters within the mixture. In
this way, the Bose-Fermi mixture loses its homogeneity and can no longer be efficiently
simulated with a Jastrow-Slater function, which is unable to describe the presence of
bosonic clusters.

In order to prove the correctness of this conjecture, we decided to perform a quali-
tative study of the pair distribution function for bosons. The pair distribution function
gσ,σ′(r, r′) is proportional to the probability density of finding a σ particle at position r
when a σ′ particle is at position r′. For a translationally invariant and isotropic fluid, as
in our case, the pair distribution function depends just on the relative distance |r − r′|.
One can then set r′ = 0, and introduce the shorter notation gσ,σ′(r) ≡ gσ,σ′(r, r′ = 0).
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In the second quantization formalism one has (see e.g [76]))

gσ,σ′(r) =
〈Ψ̂†σ(r)Ψ̂†σ′(0)Ψ̂σ′(0)Ψ̂σ(r)〉

nσnσ′
, (3.15)

where ψ̂†σ(r) is the field operator creating a σ particle at position r, while nσ and nσ′

are the number densities of σ and σ′ particles, respectively. Here, we focus on the
boson-boson pair distribution function gB,B(r). The BB repulsion will suppress the
probability of finding two bosons close to each other, so we expect gB,B(r) to be small
at short distances. By increasing the distance, the probability density will increase until
it will reach a plateau value (which, due to the normalization in Eq. (3.15), is 1 in the
thermodynamic limit, and 1 − 1/NB for a finite-size system: in our case with NB = 12
the plateau value is ≈ 0.92). However, if the BF repulsion is strong enough to introduce
an effective attraction between the bosons, what is expected is that a maximum in
the probability density will occur for some intermediate distance, and then decrease to a
plateau value for r →∞. The pair distribution function for bosons can be calculated with
both VMC and DMC algorithms (we refer again to Refs. [68] and [76]). So we analysed
gB,B(r) for all the interaction configurations, using both VMC and DMC methods (we
performed our simulations for the biggest closed shell studied, i.e., 12 bosons plus 49
fermions). The main results are shown in Figs. 3.4, 3.5.

Looking at the Figures 3.4 and 3.5, what emerges is that in the DMC results we
observe the typical behaviour that occurs following the formation, from a certain BF
interaction onwards, of bosonic clusters. Instead, in the VMC results, this behaviour is
not so evident. This diversity is due to the different nature of the two algorithms. VMC
simulations cannot yield more physical information than what is already present in the
trial wavefunction, so if the bosonic clusters are not included in the trial wavefunction,
they will not even be present in the observables. This is reflected only in a small variation
of the pair distribution function with respect to the case of a homogeneous system. The
situation is different in the DMC algorithm where a real physical evolution is carried out
as a function of the imaginary time. In this case, the system will evolve towards the true
ground state containing the bosonic clusters regardless of the chosen trial wavefunction,
thus explaining the peculiar behavior of gB,B(r). However, the diffusion-branching pro-
cess of the DMC is highly influenced by the chosen trial wavefunction. In fact, if it is
very different from the true ground state, the sampling will be carried out in sparsely
populated areas of the configuration space, resulting in energy peaks that compromise
the convergence of the energy.

Thus, thanks to this qualitative analysis, we can say that, for sufficiently strong
BF repulsion (see Figs. 3.5e, 3.5f), bosonic clusters occur even if there is a repulsive
interaction between bosons and between bosons and fermions. The Bose-Fermi mixture
then loses its homogeneity and a new trial wavefunction is needed if we want to study the
cases R̃BF = 0.1 and R̃BF = 0.2 which correspond to gBF = 0.5417 and gBF = 0.8673,
respectively. We therefore limited our DMC simulations only to cases where R̃BF ≤ 0.05.
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Figure 3.4: VMC results of gB,B(r), varying the BF interaction, for the biggest closed
shell studied (12B + 49F).
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Figure 3.5: DMC results of gB,B(r), varying the BF interaction, for the biggest closed
shell studied (12B + 49F).
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It is worth stressing that, based on the limited data we have, we cannot assert the
presence of a phase transition between the ”homogeneous phase” and the ”clustered”
one. In particular, if such phase transition exists, we have not properly characterized
what type it is. Of course, further analyses are required, especially in the intermediate
interaction region (0.05 < R̃BF < 0.1).

3.3.2 Time-step analysis and systematic errors

In Section 2.5 we have described the main ideas and approximations behind the DMC
method. We have seen that, in order to obtain an explicit form for the total Green’s
function, we have to use the small-time approximation. Thus, in principle, if one wants
more and more accurate results, the time step dτ must be reduced. However, by reducing
the time step, the duration of the simulation increases as well as the computational
resources required. The choice of the time step is therefore a matter of fundamental
importance in the implementation of DMC simulations. Furthermore, an analysis on the
systematic effects caused by the choice of a finite time step must be conducted.

What is usually done in the context of the DMC method is to perform a time-step
analysis, in the sense that, once the interaction configuration and the closed shell have
been fixed, one performs several simulations for a sequence of decreasing values of dτ .
Then, the resulting energies are fitted with a linear function in order to extrapolate the
corrected value for null time step. The error obtained from the fit on the extrapolated
result is then added to the statistical uncertainty of the DMC algorithm as a systematic
time-step error. Of course, this analysis is very expensive from a computational point of
view, since several DMC simulations are required for a single interaction configuration.
For this reason, we decided to analyse only the lowest (R̃BF = 1.0×10−9, gBF = 0.0493)

and the highest (R̃BF = 0.05, gBF = 0.3938) interaction configurations. The results of
the time-step analyses are shown in the Figures 3.6 and 3.7.

For the intermediate interaction configurations, where a time-step analysis has not
been carried out, the contribution due to the finite dτ must be estimated. Thus, we set
an intermediate time step (dτ = 0.012) that would provide a good compromise between
accuracy of the results and duration of the simulations. Then we compared the DMC
results for time step dτ = 0.012 of the lowest interaction configuration (gBF = 0.0493)
and of the highest interaction configuration (gBF = 0.3938) with their respective extrap-
olated results from the time-step analysis. We used these two discrepancies as boundaries
of the corrections for finite time step. At this point, exploiting the fact that the DMC
energies depend linearly on the time step (see Refs. [68, 58]), we estimated, through
a linear interpolation process, the finite time-step correction for each intermediate in-
teraction value gBF . Then, looking at the effect of the time-step extrapolation for the
lowest and the highest interaction configurations (see Figs. 3.6 and 3.7), which consists
in a shift towards higher energy values, we decided to sum the finite step correction to
the DMC results. As finite step error, to be added to the QMC statistical uncertainty
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Figure 3.6: Time-step analysis for the biggest closed shell studied (12B + 49B). The
time step is measured in units of ~/εF . Fit number 1 was obtained by considering all
time-step points, fit number 2, instead, by excluding the highest time-step point. The
extrapolated values of the energy per fermion from fit 1 and fit 2, in units of εF , as
dτ → 0 are given by 0.517911 ± 0.000010 and 0.517900 ± 0.000001, respectively. These
values must then be adjusted with the finite-size correction. The error bars are given by
the statistical uncertainty of DMC simulations.

and the finite-size error, we assigned arbitrarily half of the finite step correction.
During our DMC simulations, we introduced an energy cutoff in the algorithm, in

order to control and simplify the diffusion-branching process, thus avoiding energy peaks
that slow down the convergence to a precise value of energy. This cutoff is of the form
∆E = c/

√
dτ , where ∆E is the maximum allowed difference between the sampled local

energy and a reference energy which we take as the result of a converged VMC simu-
lation, and c is a free parameter. This modification of the algorithm implies, according
to Ref. [77], the introduction of a systematic bias that must be appropriately estimated
in order to have consistent and precise results. A possible way to estimate this error,
once a time step, a closed shell and an interaction configuration are fixed, is to perform
several simulations varying the cutoff factor and then extrapolate the energy value for
cutoff → ∞ (absence of cutoff). However, studying how the cutoff acts in the DMC
algorithm allowed us to understand that this systematic bias introduced is actually al-
ready contained within the finite time-step error. Going into details, the energy peaks
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Figure 3.7: Time-step analysis for the biggest closed shell studied (12B+49B). The time
step is measured in units of ~/εF . Fit number 1 was obtained by considering all time-step
points, fit number 2, instead, by excluding the highest time-step point. We considered
fit number 2 because it best represents small time-step points. The extrapolated values
of the energy per fermion from fit 1 and fit 2, in units of εF , as dτ → 0 are given
by 0.594164 ± 0.000062 and 0.594112 ± 0.000004, respectively. These values must then
be adjusted with the finite-size correction. The error bars are given by the statistical
uncertainty of DMC simulations.

suppressed by the cutoff occur when the sampling is done near the nodal surface or in
sparsely populated areas of the configuration space. It is therefore the task of the drift
force (see Sec. 2.5.4) to move away the sampling from these regions. The time step, in-
stead, regulates the step of MC moves. However, the drift force acts only at the end of
the MC step, thus, if one chooses a large time step it could arrive near the nodal surface
(generating a peak in the energy value) and only at the end of the move it is pushed back
by the drift force. Then, by choosing an ever smaller time step we reduce the width of the
MC step so that the repeated action of the drift force will not bring the sampling close
to the nodal surface, avoiding the generation of energy peaks (i.e., avoiding the action
of the introduced cutoff). Moreover, the cutoff scales as dτ−1/2. For these reasons, it
is clear that if we perform the dτ → 0 extrapolation, described in the previous section,
the systematic error due to the cutoff will be null. The case of intermediate interaction
configurations, where time-step analyses were not conducted, is different. We did not
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perform a cutoff analysis such that described above, thus we are not able to estimate
this systematic error. However we understand that this systematic bias is included in
the finite time-step error.

Given the sizeable role of the finite time-step bias at the chosen time-step for in-
termediate interactions, a full time-step analysis will be needed in future work to more
accurately determine the equation of state.

3.4 Final results

In this Section we compare the final results of the VMC and DMC simulations with
analytic predictions. We focus our attention on the second order perturbative correction
in the coupling parameter gBF .

3.4.1 Perturbative predictions

A perturbative calculation for the energy of a two-dimensional Bose-Fermi mixture to
second order in the coupling parameter gBF is available from a previous master thesis’
work [8], yielding for the energy density the expression:

E

V
=− k2FnB

4mR log(kFaBF )

[
1− 1

2 log(kFaBF )

(
w + 1

w − 1
logw + log

(
w

(w + 1)2

)
− 1

)]

+
k2F

2mF

nF
2

+ EB , (3.16)

where mR is the reduced mass of the system, w = mB/mF is the mass ratio and we have
set ~ = 1. The term EB is the energy density of the boson component in the absence of
coupling with the fermion component, i.e., for gBF = 0. Equation (3.16) was obtained in
[8] by assuming the coupling parameters gBF and gBB to be both small, neglecting terms
of order higher than two in gBF , gBB, or their combinations. Under this assumption,
terms involving simultaneously gBF and gBB do not contribute. An accurate perturbative
expansion for EB has been obtained in [78], and verified with QMC calculations shortly
after [79]. Here, since in our simulations the boson-boson parameter gBB has been kept
fixed to a very small value, it will be sufficient to retain the lowest order expression for
EB, namely

EB = − 2πn2
B

mB log (nBa2BB)
. (3.17)

The novelty of Eq. (3.16) lies however in the second order perturbative term in the BF
coupling parameter, which we will check against our QMC simulations.

68



In our Bose-Fermi mixture, we assumed that the mass of the bosons (mB) was equal
to that of the fermions (mF ), so that the mass ratio (w) simplifies to one and the reduced
mass becomes mR = mB/2 = mF/2. Thus, taking the w → 1 limit, Eq. (3.16), together
with Eq. (3.17), becomes:

E

V
= − k2FnB

4mF
2

log(kFaBF )

[
1− (1− log 4)

2 log(kFaBF )

]
− 2πn2

B

mB log (nBa2BB)
+

k2F
2mF

nF
2
. (3.18)

We now want to compare the theoretical predictions with the QMC results. To do this,
it is necessary to rewrite the previous formula in order to obtain an energy per fermion
in units of εF .
We then multiply the above energy density for (nF εF )−1, obtaining:

E

NF εF
=
E

V
· 1

nF εF
= − x

log(kFaBF )

[
1− 1− log 4

2 log(kFaBF )

]
− x2

log(nBa2BB)
+

1

2
, (3.19)

where we have introduced the boson concentration x = nB/nF and we used εF =
~2k2F
2mF

(with ~ = 1) and the fact that in two dimensions kF =
√

4πnF . Eq. (3.19) can be
expressed in terms of the coupling parameters gBF and gBB introduced in Sec. 3.1 :

E

NF εF
= x gBF

[
1 + gBF

1− log 4

2

]
+ x2gBB +

1

2
, (3.20)

where the second order perturbative correction in terms of gBF is given by

∆E

NF εF
= x g2BF

1− log 4

2
. (3.21)

It is also useful to express Eq. (3.19) in terms of the MC input parameters. Using the
expressions obtained in Appendix D, we have that

E

NF εF
=− x

1
2

log

[
4π
(
R̃BF

RBFP

)2]
1− 1− log 4

log

[
4π
(
R̃BF

RBFP

)2]
− x2

log

[
x
(
R̃BB

RBBP

)2] +
1

2
. (3.22)

3.4.2 Comparison between analytic and QMC results

We now compare the results of VMC and DMC with the analytic prediction expressed
by Eq. (3.19). Once the biggest closed shell studied has been chosen (12B + 49F), thus
fixing the boson concentration in the mixture (x = 12/49), several QMC simulations were
performed varying the BF repulsive interaction. In particular, we fixed the BB repulsive
interaction by setting R̃BB = 1.0× 10−3 and RBB

P = 2.0 corresponding to gBB = 0.0594.
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We set RBF
P = 2.0 and we allowed R̃BF to vary, thus fixing the structure of the potential

(soft disk potential) but changing the magnitude of the interaction. This corresponds,
in terms of the coupling parameter, to varying gBF according to the values reported in
Tab. 3.1. The comparison between theoretical and QMC results is then shown in Fig. 3.8
and in Tables 3.5, 3.6.

From Figure 3.8 it appears that the QMC results are in agreement with theoretical
predictions for gBF < 0.4. In particular, for gBF < 0.3, DMC and VMC results dif-
fer slightly while for greater BF interactions the two algorithms give different results.
However the energy scale is too large to allow us to accurately compare the results. Fur-
thermore, we are mainly interested in the second order perturbative correction in gBF .
Thus, in Fig. 3.9 and in Tables 3.7, 3.8, we compare Eq. (3.21) with the corresponding
QMC results.

From Table 3.7 one can see that VMC results are in agreement with the perturbative
predictions only for the first point with lower interaction. In particular, for gBF > 0.05,
one can see that the VMC results are no longer compatible with either the DMC results
or the perturbative predictions. This is because the trial wavefunction ψT is just an
approximation to the exact ground state wavefunction. It is however reassuring that the
VMC provides higher values than the others, being an upper bound of the ground state
energy. The agreement between the DMC results and the theoretical predictions extends
instead up to gBF ' 0.3278. At the interaction point gBF = 0.3938 the three different
results are all in disagreement. The most reliable result is the one provided by the DMC,
which we have also seen to be an upper bound of the true energy. This makes sense,
considering that the value of the BF coupling parameter is relatively large to expect
the perturbative approach to be valid. For gBF > 0.5, we are unable to make definite
conclusions on the accuracy of the DMC results, due to the convergence problems related
to apparent clustering of bosons, as we discussed in Sec. 3.3.1. In this regime of strong
repulsion, we also expect that the details of the chosen model potential start to matter,
and a future analysis will be needed to understand the universality of our DMC results
close to the phase separation transition.
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gBF VMC Corrected VMC Prediction
0.0493 0.518079(13) 0.515675(46) 0.515570
0.0904 0.528081(17) 0.525681(52) 0.525363
0.1550 0.543558(48) 0.541166(81) 0.540434
0.2065 0.555619(24) 0.553237(61) 0.552165
0.2410 0.563501(27) 0.561126(64) 0.559884
0.3278 0.582602(34) 0.580249(67) 0.578806
0.3938 0.596258(34) 0.593941(72) 0.592716
0.5417 0.623620(42) 0.621378(71) 0.622392
0.8673 0.670372(67) 0.668287(106) 0.680431

Table 3.5: Resulting values of energy per fermion, in units of εF , obtained with VMC
method. In the third column the effects of the finite size correction (see Sec. 3.2.2) have
been considered.

gBF DMC Extracted DMC Corrected DMC Prediction
0.0493 0.517786(15) 0.515506(43) 0.515506(110) 0.515570
0.0904 0.527492(22) − 0.525296(160) 0.525363
0.1550 0.542478(29) − 0.540422(230) 0.540434
0.2065 0.554133(34) − 0.552192(292) 0.552165
0.2410 0.561656(33) − 0.559793(326) 0.559884
0.3278 0.580120(38) − 0.578459(417) 0.578806
0.3938 0.593278(38) 0.591794(47) 0.591794(493) 0.592716

Table 3.6: Resulting values of energy per fermion, in units of εF , obtained with DMC
method. In the second and third columns the effects of the finite size correction (see
Sec. 3.2.2) and of the finite time-step correction (see Sec. 3.3.2) have been considered. In
particular, in the second column a full time-step analysis was conducted, while in the
third, the finite time-step correction was obtained through a linear interpolation process
(see again Sec. 3.3.2).
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gBF VMC Corrected VMC Prediction
0.0493 +0.002394(13) −0.000010(46) −0.000115
0.0904 +0.002331(17) −0.000069(52) −0.000387
0.1550 +0.001988(48) −0.000404(81) −0.001136
0.2065 +0.001437(24) −0.000945(61) −0.002017
0.2410 +0.000870(27) −0.001505(64) −0.002747
0.3278 −0.001287(34) −0.003640(67) −0.005082
0.3938 −0.003794(34) −0.006111(72) −0.007335
0.5417 −0.012652(42) −0.014894(71) −0.013880
0.8673 −0.045639(67) −0.047724(106) −0.035581

Table 3.7: Resulting values of the second order perturbative correction ∆E (per fermion),
in units of εF , obtained with VMC method. In the third column the effects of the finite
size correction (see Sec. 3.2.2) have been considered.

gBF DMC Extracted DMC Corrected DMC Prediction
0.0493 +0.002102(15) −0.000179(43) −0.000179(110) −0.000115
0.0904 +0.001742(22) − −0.000454(160) −0.000387
0.1550 +0.000907(29) − −0.001148(230) −0.001136
0.2065 −0.000050(34) − −0.001990(292) −0.002017
0.2410 −0.000976(33) − −0.002838(326) −0.002747
0.3278 −0.003769(38) − −0.005430(417) −0.005082
0.3938 −0.006774(38) −0.008258(47) −0.008258(493) −0.007335

Table 3.8: Resulting values of the second order perturbative correction ∆E (per fermion),
in units of εF , obtained with DMC method. In the second and third columns the effects
of the finite size correction (see Sec. 3.2.2) and of the finite time-step correction (see
Sec. 3.3.2) have been considered. In particular, in the second column a full time-step
analysis was conducted, while in the third, the finite time-step correction was obtained
through a linear interpolation process (see again Sec. 3.3.2).
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Figure 3.8: Comparison between theoretical and QMC results. The energy per fermion,
in units of εF , is expressed as a function of the coupling parameter gBF , introduced
in Sec. 3.1. Errorbars are smaller than symbol size. VMC results (black squares) are
adjusted with finite-size corrections described in Sec. 3.2.2. The respective errors are
the sum of the statistical fluctuations of VMC algorithm and of the finite-size errors.
DMC results (green crosses) are adjusted with finite-size corrections and finite time-step
corrections (see Sec. 3.3.2). The respective errors contain also the finite time-step contri-
bution. The DMC results (red circles) differ from the green ones because an exhaustive
time-step analysis is conducted. In this case the DMC points are given by the dτ → 0 ex-
trapolated results and only the finite-size correction is performed. The respective errors
are obtained in a similar way to the green case, but this time the time-step uncertainties
are given by the errors on the fit of the extrapolated results. For gBF > 0.4, DMC
simulations cannot be conducted (see Sec. 3.3.1).
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Figure 3.9: Comparison between theoretical and QMC results. The second order per-
turbative correction ∆E (per fermion), in units of εF , is expressed as a function of the
coupling parameter gBF . Errorbars are smaller than symbol size. VMC results (black
squares) are adjusted with finite-size corrections described in Sec. 3.2.2. The respective
errors are the sum of the statistical fluctuations of VMC algorithm and of the finite-size
errors. DMC results (green crosses) are adjusted with finite-size corrections and finite
time-step corrections (see Sec. 3.3.2). The respective errors contain also the finite time-
step contribution. The DMC results (red circles) differ from the green ones because an
exhaustive time-step analysis is conducted. In this case the DMC points are given by the
dτ → 0 extrapolated results and only the finite-size correction is performed. The respec-
tive errors are obtained in a similar way to the green case, but this time the time-step
uncertainties are given by the errors on the fit of the extrapolated results. For gBF > 0.4,
DMC simulations cannot be conducted (see Sec. 3.3.1).
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Conclusions and perspectives

In this master degree thesis we have studied a two-dimensional Bose-Fermi mixture, with
both BF and BB repulsive interactions, using Quantum Monte Carlo techniques. We
have extended the methodology developed for a three-dimensional Bose-Fermi mixture
to two dimensions. Our simulations were performed for a mixture of bosons and fermions
of equal mass, fixed boson concentration x = 12/49 and BB repulsive interaction (which
in terms of the BB coupling parameter is given by gBB = 0.0594), and exploring several
values of the BF repulsive interaction, from the weak to the strong-coupling limit. In
particular, the Quantum Monte Carlo study was developed at zero-temperature, through
the use of two particular techniques: Variational Monte Carlo and Fixed-Node Diffusion
Monte Carlo. We have considered a short-range soft-disk potential and used a Jastrow-
Slater function as a trial wavefunction.

More specifically, concerning the VMC simulations, we have first optimized the vari-
ational parameters introduced in our trial wavefunction, by extrapolating the minimum
energies through parabolic fits. Then, we studied how finite-size effects affect our results,
finding an effective method to accurately estimate finite-size corrections. These correc-
tions are also used to adjust the DMC results, assuming that the two algorithms depend
in the same way on finite-size effects. During the simulations we experienced some issues
in the strong-coupling limit (for gBF > 0.4). We therefore carried out some analyses,
evaluating the pair distribution function of bosons for both the VMC and the DMC meth-
ods. Even if this was a qualitative analysis, we have found that, for large values of the
BF interaction (gBF > 0.4), bosons experience an effective attractive interaction which
drives the formation of bosonic clusters. The system then loses its homogeneity and can
no longer be described through a Jastrow-Slater wavefunction, which does not foresee the
presence of clusters. Based on the limited data we have, we cannot assert the presence
of a phase transition and, even more, we cannot establish the possible type of transi-
tion. Several possible outlooks are provided by this result. Of course, further analyses
are required, especially in the intermediate interaction region (0.3938 < gBF < 0.5417)
but also in the strong-coupling limit, where a new trial wavefunction is needed in order
to properly describe the bosonic clusters. Furthermore, it may be worth to study the
dependence of the hypothetical transition with respect to the details of the potential,
which are probably relevant in that regime.
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On the other hand, considering the DMC simulations, we studied how the choice of a
finite time step affects the results. In particular, we performed a time-step (dτ) analysis
for the point with the largest BF interaction and for the one with the least BF interaction.
This allowed us to obtain the corrected results for dτ → 0. The time-step corrections to
the intermediate interaction points were obtained through a linear interpolation process.

We have then compared the corrected QMC results with analytic perturbative cal-
culations. In particular we were interested in the second order perturbative correction.
We obtained an agreement between the QMC and the theoretical results in the weak-
coupling limit (for gBF < 0.05). For larger BF interactions, VMC results differ from the
DMC and theoretical ones. At the interaction point gBF = 0.3938, there is no longer
an agreement between the results. DMC result is then the most reliable one, being an
upper bound of the true energy.

Several future extensions of the present work are foreseen. First of all, focusing
on repulsive Bose-Fermi mixtures, a more thorough analysis of the perturbative regime
would require one to consider also different values of the boson concentration nB/nF ,
as well as different mass ratios mB/mF . Away from the perturbative regime, it would
then be interesting to analyze more in depth the formation of bosonic clusters induced
by the Bose-Fermi repulsion. In particular, a stronger Bose-Bose repulsion is expected
to suppress the clustering: the interplay between the two kind of interactions should be
analyzed in detail. A further important question to be considered is the dependence of
the results on the details of the interaction potentials (e.g., the soft-core vs hard-core
character of the interaction).

Finally, one could tackle the attractive 2D Bose-Fermi mixtures of relevance to the
recent theoretical proposal by Bazak and Petrov [7]. From weak to moderate Bose-
Fermi attraction VMC and DMC simulations could be performed with the same trial
wavefunction used in the present work, while the strong-coupling case will require using a
different trial wavefunction, taking into account the formation of molecules in the system.
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Appendix A

Estimation of correlation length and
variance

In a Monte Carlo calculation the principal source of statistical error in the measured
value of a quantity is usually the fluctuation of that quantity between two successive
steps. This is of course due to the innate randomness and statistical nature of MC
methods.
If we make N independent measurements of a certain quantity h, it is straightforward to
estimate the statistical error associate to such quantity, which is the error on the mean.
The true average of h is simply the mean h̄ of those N measurements, meanwhile the
best estimate of the standard deviation on the mean is given by

σ =

√
1
N

∑N
i=1(hi − h̄)2

N − 1
=

√
1

N − 1
(h2 − h̄2) (A.1)

However this is not the case we will be dealing with in our Monte Carlo simulations. In
fact, due to the generation of random numbers through the Metropolis-Hastings algo-
rithm, correlations between quantities estimated in subsequent steps arise.

Several error estimation methods can be used in case of correlated measurements,
among which the simplest is the blocking method (see Ref. [80] for other general-purpose
error estimation methods). Let us consider N iterations of a stochastic process that
produces a series of random values for the observable of interest hx, where x is the index
of the iteration. We can divide the series into n blocks of length M = N/n and calculate
the estimator of the mean for each block j, 〈hx〉j = h̄j = 1

M

∑
x∈j hx. If the block length

M is sufficiently large (i.e. bigger than the correlation time), each block is independent
and, consequently, the h̄j are independent of each other. Then the expectation value of
the observable h is simply given by the average of all h̄j

〈h〉 = h̄ =
1

n

∑
j

h̄j =
1

n

1

M

∑
j

∑
x∈j

hx =
1

N

∑
x

hx , (A.2)
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whereas the error on the mean is given again by Eq. (A.1), except that N is now replaced
by the number n of blocks

σ =

√
1

n(n− 1)

∑
j

(h̄j − h̄)2 . (A.3)

This method is intuitive and will give a reasonable estimate of the error. However,
it strongly depends on the number of different blocks the data are divided into (thus
depending on the block length). It is then necessary to perform a block analysis, in
the sense that the variance associated to the mean (given by the square of Eq. (A.3)) is
plotted with respect to different block lengths. So one expects that the variance goes to
the previous wrong estimate (the square of Eq. (A.1)) for M → 0, then increases up to
a steady value, after M ≈Mc, which provides the correct estimate of the (square) error,
then possibly decreases again if M is too large and there are too few blocks (see Fig. A.1).
The value MC indicates the correlation length, after which both the correlation effects
have disappeared and the central limit theorem starts to be valid.
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Figure A.1: Example of error estimated with the standard deviation of the block averages
as explained in the text (arb. units). In this case we would set Error = 0.006, and we
would notice that the correlation length is MC ≈ 100.
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Appendix B

Estimators of observables

The estimators of the observables calculated with VMC are called variational estimators

〈Ô〉V =
〈ψT |Ô|ψT 〉
〈ψT |ψT 〉

, (B.1)

while those calculated with DMC are called mixed estimators

〈Ô〉M =
〈ψT |Ô|φ0〉
〈ψT |φ0〉

. (B.2)

We can also define the pure estimator as

〈Ô〉P =
〈φ0|Ô|φ0〉
〈φ0|φ0〉

, (B.3)

which corresponds to the true quantum-mechanical equilibrium value at zero tempera-
ture.

If the operator Ô commutes with the Hamiltonian Ĥ, i.e. [Ô, Ĥ] = 0, the correspond-
ing mixed estimator can be exact (a trivial example is the case Ô = Ĥ). In general the
mixed estimator is an approximation of the pure one (see [81] for the direct calculation
of pure estimators in DMC). One can write φ0 = ψT + δψ and the pure estimator can be
approximated with the extrapolated estimator:

〈Ô〉P =
〈φ0|Ô|φ0〉
〈φ0|φ0〉

=
〈ψT + δψ|Ô|ψT + δψ〉
〈ψT + δψ|ψT + δψ〉

≈ 2〈Ô〉M − 〈Ô〉V = 〈Ô〉E , (B.4)

provided δψ � ψ. Conversely, if we observe that 〈Ô〉M is significantly different from
〈Ô〉V , we can infer that the used trial wavefunction is not accurate. An example of this
situation is described in Section 3.3.1 where we notice that the variational and mixed
estimators of the pair distribution functions of bosons are very different in a certain
regime of strong repulsion, and we argue that the used trial wavefunction is not capable
to describe the clustering of bosons.
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Appendix C

Two-body problem and scattering
length in two dimensions

In classical mechanics, the two-body problem consists in determining the motion of two
massive objects which are abstractly viewed as point particles. Furthermore, the prob-
lem assumes that the two objects interact only with each other, excluding the presence of
any external force. In quantum mechanics, things get more complicated due to Heisen-
berg’s uncertainty principle, which prevents to define precisely, at the same time, both
the position and the momentum of particles. In this context, the two-body problem is
understood as solving the Schroedinger equation for two particles which interact through
a certain potential. This problem, therefore, falls within the general framework of scat-
tering theory.

Let us then consider the scattering of two particles (1 and 2) in two dimensions. The
starting point is certainly the Schroedinger equation, with the following Hamiltonian:

Ĥ =
P̂ 2

1

2m1

+
P̂ 2

2

2m2

+ Û(|x1 − x2|) , (C.1)

where we have assumed a central potential (i.e., a potential that depends only on the
distance between the two particles) and we have indicated with x1 and x2 the coordi-
nate vectors of particles 1 and 2 respectively. It is convenient to express the previous
Hamiltonian in terms of the center of mass x and of the relative position r. Let us
introduce

P̂ = P̂1 + P̂2 (total momentum)

P̂ =
m2P̂1 −m1P̂2

m1 +m2

(relative momentum)

(C.2)
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which are respectively the conjugate momenta of

x =
m1x1 +m2x2

m1 +m2

r = x1 − x2 .

(C.3)

The Hamiltonian thus becomes:

Ĥ =
P̂ 2

1

2m1

+
P̂ 2

2

2m2

+ Û(|x1 − x2|)

=
1

2

P̂ 2
1m2(m1 +m2) + P̂ 2

2m1(m1 +m2)

m1m2(m1 +m2)
+ Û(|x1 − x2|)

=
1

2

m1m2(P̂
2
1 + P̂ 2

2 + 2P̂1P̂2)

m1m2(m1 +m2)
+

1

2

m2
1P̂

2
2 +m2

2P̂
2
1 − 2m1m2P̂1P̂2

m1m2(m1 +m2)
+ Û(|x1 − x2|)

=
1

2

(P̂1 + P̂2)
2

m1 +m2

+
1

2

(
m2P̂1 −m1P̂2

m1 +m2

)2

·
(
m1 +m2

m1m2

)
+ Û(|x1 − x2|)

=
P̂

2

2M
+

[
P̂ 2

2mR

+ Û(|r|)

]
≡ ĤCM + Ĥrel , (C.4)

where M = m1 +m2 is the total mass and mR = (m1m2)/(m1 +m2) is the reduced mass.
From now on we assume that the two particles have the same mass m1 = m2 = m,
thus the reduced mass becomes simply mR = m/2. The total Hamiltonian Ĥ can then
be divided into two independent pieces ĤCM and Ĥrel which describe respectively the
motion of the center of mass x and the evolution of the relative position r. In particular,
since ĤCM contains only the kinetic term, the center of mass moves like a free particle of
mass M . These results suggest the following ansatz for the solution of the Schroedinger
equation:

ψ(x, r) = φ(x)ϕ(r) . (C.5)

Assuming now that the external forces are zero, which makes sense in the context of
a two-body problem, the total momentum P of the center of mass is conserved, and
the center-of-mass wavefunction has the free particle form: φ(x) = eiP ·x. There is
arbitrariness in the choice of P . For simplicity we choose P = 0 whereby the above
wavefunction becomes

ψ(x, r) = ϕ(r) . (C.6)
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The previous choice regarding the value of the total momentum P allows to simplify the
Hamiltonian Ĥ by ignoring the center of mass term:

Ĥ = Ĥrel =
P̂ 2

2mR

+ Û(|r|) = −~2

m
∇2

r + U(|r|) . (C.7)

We have thus obtained an Hamiltonian which now depends only on the two-
dimensional vector of the relative position r. At this point, in two-dimensional scattering
theory, the next step consists in performing a change of variables going into polar coor-
dinates:

r = (rx, ry) −→ (x, θ)

ϕ(r) = ϕ(rx, ry) −→ ϕ(x, θ) ,

where we have indicated the modulus of the relative position r with the variable x (i.e. ,
|r| = x). Expressing the Laplacian in polar coordinates, the Schroedinger equation
becomes: [

∂2

∂x2
+

1

x

∂

∂x
+

1

x2
∂2

∂θ2
+
m

~2
(E − U)

]
ϕ(x, θ) = 0 . (C.8)

Since the Hamiltonian is invariant upon rotation, it is advantageous to perform a
partial wave expansion, which consists in considering the wavefunction ϕ as a sum of
products, where each term is separated into a radial and an angular part. Let us then
plug this

ϕ(x, θ) =
∞∑
l=0

Rl(x)Yl(θ) =
∞∑
l=0

Rl(x)eilθ (C.9)

into the Schroedinger equation (C.8). We thus obtain[
∂2

∂x2
+

1

x

∂

∂x
+

1

x2
∂2

∂θ2
+
m

~2
(E − U)

] ∞∑
l=0

Rl(x)eilθ = 0 =⇒

∞∑
l=0

[
∂2Rl

∂x2
eilθ +

1

x

∂Rl

∂x
eilθ +

1

x2
Rl(−l2)eilθ +

m

~2
(E − U)Rle

ilθ

]
= 0 =⇒

∞∑
l=0

[
∂2

∂x2
+

1

x

∂

∂x
− l2

x2
+
m

~2
(E − U)

]
Rl(x)eilθ = 0 . (C.10)

For each of the values of l it is possible to solve separate radial Schroedinger equations.
In case of s-wave scattering we consider only the l = 0 partial wave (which is the leading
term for low energy scattering) and the previous equation becomes:[

∂2

∂x2
+

1

x

∂

∂x
+
m

~2
(E − U)

]
R0(x) = 0 . (C.11)
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This is now a one-dimensional Schroedinger equation. Let us call m
~2E = k2 and m

~2U = Ũ ,
then the Eq. (C.11) can be written as

d 2R0

dx2
+

1

x

dR0

dx
+ (k2 − Ũ)R0 = 0 . (C.12)

We can make a substitution, introducing the reduced radial function u(x) which is related
to R0 by the expression R0(x) = u(x)/

√
x, thus

d 2u

dx2
+

(
k2 +

1

4x2
− Ũ

)
u = 0 . (C.13)

At this point, in order to solve the Schroedinger equation, it is necessary to make explicit
the shape of the potential U . Of course, the choice of U is arbitrary and depends on the
system that we are studying. Several potentials can be used, where for each of them it
is possible to have a different solution to the problem. In QMC, for a two-dimensional
system with repulsive interactions, the most used potentials are:

(Hard disk) U(x) =

{
+∞ x < R

0 x ≥ R (x < L/2)
(C.14)

(Soft disk) U(x) =

{
V0 x < R

0 x ≥ R (x < L/2)
(C.15)

We now consider the case of a soft disk potential, which is the one that we have used
for our simulations (the hard disk case can then be derived by the solution taking the
V0 → +∞ limit for x < R). Furthermore, we have to distinguish between two other
cases, which are {

k2 ≥ Ũ

k2 < Ũ .

We only consider the second option because in our simulations we only deal with repulsive
potentials (i.e. , Ũ > 0). By introducing −k̃2 ≡ k2 − Ũ = k2 − m

~2V0, the differential
equation (C.13) becomes

d 2u

dx2
+

(
−k̃2 +

1

4x2

)
u = 0 , (C.16)

which is a Bessel’s equation whose solution is given by a linear combination of Bessel
functions (see [82] for details regarding Bessel’s equations and functions). Thus, going
back to the radial function R0(x) we have

R0(x) =


b1I0(k̃x) + b2K0(k̃x) for x < R

c1J0(kx) + c2Y0(kx) for R ≤ x ≤ L/2

1 for x > L/2

(C.17)
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where I0 and K0 are the modified Bessel functions of the first and second kind while J0
and Y0 are the usual Bessel functions of the first and second kind. The constant solution
for x > L/2 is a consequence of the periodic boundary conditions to which the system
under study is subjected (see Section 2.7 for more clarifications). At this point, the
solution to the two-body problem is determined once the values of the coefficients ap-
pearing in the above system have been found. This can be done by imposing appropriate
boundary conditions. First of all, we need that R0 goes to zero for x→ 0. Studying the
behaviour of the modified Bessel functions I0 and K0, one finds that the only possibility
to satisfy this condition is to require that the coefficient b2 be zero. Thus the solution
simplifies to

R0(x) =


b1I0(k̃x) for x < R

c1J0(kx) + c2Y0(kx) for R ≤ x ≤ L/2

1 for x > L/2 .

(C.18)

Now we impose the continuity of R0 and its first derivative in x = R and x = L/2. These

conditions will produce four equations, which with the addition of the definition of k̃,

will form a system of five equations for five unknown variables
(
b1, c1, c2, k, k̃

)
:

c1J0(kR) + c2Y0(kR)− b1I0(k̃R) = 0 (A)

c1kJ1(kR) + c2kY1(kR) + b1k̃I1(k̃R) = 0 (B)

c1J0(kL/2) + c2Y0(kL/2) = 1 (C)

c1J1(kL/2) + c2Y1(kL/2) = 0 (D)

(k2 − Ũ) = −k̃2 (E)

(C.19)

From (E) we can see that we are able to obtain k̃ once k is known. Equation (D) can
be written as

c1 = −c2
Y1(kL/2)

J1(kL/2)

and then can be inserted in (A)

−c2
Y1(kL/2)

J1(kL/2)
J0(kR) + c2Y0(kR) = b1I0(k̃R) =⇒

b1 = c2

(
Y0(kR)

I0(k̃R)
− Y1(kL/2)

J1(kL/2)

J0(kR)

I0(k̃R)

)
.
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Now, by plugging (D) and (A) in (B) we get

c2
Y1(kL/2)

J1(kL/2)
kJ1(kR)− c2kY1(kR)− c2

(
Y0(kR)

I0(k̃R)
− Y1(kL/2)

J1(kL/2)

J0(kR)

I0(k̃R)

)
k̃I1(k̃R) = 0 .

This is an equation for k (since k̃ is related to k), which can be solved using numerical
algorithms (e.g. , bisection algorithm) after a qualitative function study. We therefore

find a solution k = k∗ (or, equivalently, k̃ = k̃∗). At this point we insert (D) in (C):

−c2
Y1(kL/2)

J1(kL/2)
J0(kL/2) + c2Y0(kL/2) = 1 =⇒

c2 =
1

Y0(kL/2)− Y1(kL/2)
J1(kL/2)

J0(kL/2)
.

Computing this last equation with k = k∗ we find the coefficient c2. Then through (A)
we find b1 and finally using (D) we determine the last unknown coefficient c1, definitively
solving the two-body problem.

Asymptotic behaviour and scattering length

The continuity condition of the logarithmic derivative calculated in R allows us to obtain
the ratio between the coefficients c2 and c1, which, as we will see in the following, is closely
related to the scattering length. Thus, we have that

b1k̃I1(k̃R)

b1I0(k̃R)
=
−c1kJ1(kR)− c2kY1(kR)

c1J0(kR) + c2Y0(kR)
=⇒

k̃
I1(k̃R)

I0(k̃R)
(c1J0(kR) + c2Y0(kR)) = −c1kJ1(kR)− c2kY1(kR) =⇒

c2
c1

(
k̃
I1(k̃R)

I0(k̃R)
Y0(kR) + kY1(kR)

)
= −kJ1(kR)− k̃ I1(k̃R)

I0(k̃R)
J0(kR) =⇒

c2
c1

=
−kJ1(kR)− k̃ I1(k̃R)

I0(k̃R)
J0(kR)

k̃ Y0(kR)

I0(k̃R)
I1(k̃R) + kY1(kR)

. (C.20)
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At this point we can study the asymptotic behaviour, considering small k. The main
reference for the asymptotic form of Bessel functions is still book [82]. The previous
expression thus becomes:

c2
c1

=
π

2 k2−Ũ
Ũ

[
log(kR

2
) + γ

]
+ 4

ŨR2

(C.21)

= − π

2 log
(
k Re−

2

ŨR
eγ

2

) + O(k2) , (C.22)

where γ is the Euler-Mascheroni constant. But, on the other hand, from the scattering
theory we know that for small k and at large distances the wavefunction will be that
of a free wave shifted by a certain phase shift dependent on l (in our case l = 0). In
particular, one has that:

c2
c1

= −A sin δ0
A cos δ0

= − tan δ0 −−→
k→0

π

2 log(ka)
, (C.23)

where a is the so called scattering length. By comparing (C.22) with (C.23) we can extract
the expression for the scattering length in two dimensions for soft disk potentials:

a = Re−
2/ŨR e

γ

2
. (C.24)

One can notice that, in two dimensions, the scattering length is always positive. It is also
very important to stress that, in scattering theory, there is some ambiguity regarding the
definition of the scattering length. In fact, there are two different conventions which are
distinguished from each other according to the constants included in the definition. The
first convention is the one seen above in Eq. (C.24) where all the constant factors are
included, the second one, instead excludes the constant term eγ/2 from the definition.
To avoid confusion, we will indicate the second convention by putting a tilde on the
letter a, so that

ã = Re−
2/ŨR =

2

eγ
a . (C.25)

The hard disk potential case can be obtained by the previous expressions by simply taking
the limit Ũ → +∞. The convention of (C.25) is then natural when considering the hard-
disk potential, since in this case ã is equal to the radius of the potential. However, in the
case of ultracold gases where the focus is often on attractive interactions, the convention
(C.24) is more customary, because it is related to the energy of the universal bound state
by Eb = − ~2

ma2
, and we therefore use it in order to compare our QMC simulations with

perturbative predictions.
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Appendix D

Relation between physical and input
parameters

In this Appendix we show that there is a connection between the coupling parameters
introduced in (3.10) and the input parameters R̃ and RP . Let us begin with some
algebraic manipulations:

ln(kFaBF ) = ln[(kFaBF )2]
1/2 =

1

2
ln(k2Fa

2
BF ) =

1

2
ln(4πnFa

2
BF ) =

1

2
ln

[
4πnF

e2γ

4
(ãBF )2

]
,

where in the last equality we have used the relation obtained in Appendix C that links
the two different conventions in the definition of the scattering length. At this point we
perform the mathematical trick of multiplying and dividing by the same quantity the
argument of the logarithm, thus we have

1

2
ln

[
4πnF

e2γ

4
(ãBF )2

]
=

1

2
ln

[
4πnF

e2γ

4
R2
R

(
RBF

RR

)2(
ãBF

RBF

)2
]

=
1

2
ln

4πnF
e2γ

4
R2
R

(
R̃BF

RBF
P

)2
 ,

using the definitions (3.4) of R̃BF and of RBF
P . Then we recall that by the conventions

chosen for the reference parameters, the reference length RR = 1/
√
nF . So the previous

expression becomes

1

2
ln

4πnF
e2γ

4
R2
R

(
R̃BF

RBF
P

)2
 = ln

[
√

4π
eγ

2

(
R̃BF

RBF
P

)]
.
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Thus, we can finally express the coupling parameter gBF in terms of the input parameters:

gBF = − 1

ln(kFaBF )
= − 1

ln
[√

4π eγ

2

(
R̃BF

RBFP

)] . (D.1)

Similar procedure can be also applied for the calculation of the BB counterpart. Thus,
given the logarithm of nBa

2
BB, we use again the trick of multiplying and dividing by a

same quantity:

ln(nBa
2
BB) = ln

[
nB

e2γ

4
R2
R

(
RBB

RR

)2(
ãBB

RBB

)2
]
,

where we exploit the relation between the two definitions of scattering length (Appendix

C). Then, using the definitions of the input parameters R̃BB and RBB
P , we can rewrite

the previous expression as

ln

[
nB

e2γ

4
R2
R

(
RBB

RR

)2(
ãBB

RBB

)2
]

= ln

nB e2γ
4
R2
R

(
R̃BB

RBB
P

)2
 .

At this point, we replace R2
R with 1/nR and we introduce the boson concentration x =

nB/nF . So, we obtain

ln

nB e2γ
4
R2
R

(
R̃BB

RBB
P

)2
 = ln

x e2γ
4

(
R̃BB

RBB
P

)2
 .

Using the last result we can express the coupling parameter gBB in terms of the input
parameters as

gBB = − 1

ln (nBa2BB)
= − 1

ln

[
x e2γ

4

(
R̃BB

RBBP

)2] . (D.2)

88



Bibliography

[1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. “Theory of Superconductivity”. In:
Physical Review 108, 5 (1957), pp. 1175–1204.

[2] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga. “Feshbach resonances in ultracold
gases”. In: Reviews of Modern Physics 82, 2 (2010), pp. 1225–1286.

[3] G. Bertaina, E. Fratini, S. Giorgini, and P. Pieri. “Quantum Monte Carlo Study
of a Resonant Bose-Fermi Mixture”. In: Physical Review Letters 110, 11 (2013),
p. 115303.

[4] A. Guidini, G. Bertaina, D. E. Galli, and P. Pieri. “Condensed phase of Bose-Fermi
mixtures with a pairing interaction”. In: Physical Review A 91, 2 (2015), p. 023603.

[5] G. Bertaina and S. Giorgini. “BCS-BEC Crossover in a Two-Dimensional Fermi
Gas”. In: Physical Review Letters 106, 11 (2011), p. 110403.

[6] S. Pilati, G. Orso, and G. Bertaina. “Quantum Monte Carlo simulations of two-
dimensional repulsive Fermi gases with population imbalance”. In: Physical Review
A 103, 6 (2021), p. 063314.

[7] B. Bazak and D. S. Petrov. “Stable p-Wave Resonant Two-Dimensional Fermi-Bose
Dimers”. In: Physical Review Letters 121, 26 (2018), p. 263001.

[8] L. Cardarelli. “Ground state properties of dilute Bose-Fermi mixtures in two and
three dimensions”. MA thesis. University of Camerino, 2014.

[9] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari. “Theory of Bose-Einstein
condensation in trapped gases”. In: Reviews of Modern Physics 71, 3 (1999),
pp. 463–512.

[10] I. Bloch, J. Dalibard, and W. Zwerger. “Many-body physics with ultracold gases”.
In: Reviews of Modern Physics 80, 3 (2008), pp. 885–964.

[11] S. Giorgini, L. P. Pitaevskii, and S. Stringari. “Theory of ultracold atomic Fermi
gases”. In: Reviews of Modern Physics 80, 4 (2008), pp. 1215–1274.

[12] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell.
“Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor”. In: Science
269, 5221 (1995), pp. 198–201.

89



[13] K. B. Davis, M. -O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M.
Kurn, and W. Ketterle. “Bose-Einstein Condensation in a Gas of Sodium Atoms”.
In: Physical Review Letters 75, 22 (1995), pp. 3969–3973.

[14] J. R. Taylor. Scattering Theory: The Quantum Theory of Nonrelativistic Collisions.
Dover Pubns, 2006.

[15] C. J. Pethick and H. Smith. Bose–Einstein Condensation in Dilute Gases. Cam-
bridge University Press, 2008.

[16] C. Ospelkaus, S. Ospelkaus, L. Humbert, P. Ernst, K. Sengstock, and K. Bongs.
“Ultracold Heteronuclear Molecules in a 3D Optical Lattice”. In: Physical Review
Letters 97, 12 (2006), p. 120402.

[17] J. J. Zirbel, K.-K. Ni, S. Ospelkaus, J. P. D’Incao, C. E. Wieman, J. Ye, and D. S.
Jin. “Collisional Stability of Fermionic Feshbach Molecules”. In: Physical Review
Letters 100, 14 (2008), p. 143201.

[18] M.-S. Heo, T. T. Wang, C. A. Christensen, T. M. Rvachov, A. Cotta, J.-H. Choi,
Y.-R Lee, and W. Ketterle. “Formation of ultracold fermionic NaLi Feshbach
molecules”. In: Physical Review A 86, 2 (2012), p. 021602.

[19] C.-H. Wu, J. W. Park, P. Ahmadi, S. Will, and M. W. Zwierlein. “Ultracold
Fermionic Feshbach Molecules of 23Na40K”. In: Physical Review Letters 109, 8
(2012), p. 085301.

[20] L. Viverit, C. J. Pethick, and H. Smith. “Zero-temperature phase diagram of binary
boson-fermion mixtures”. In: Physical Review A 61, 5 (2000), p. 053605.

[21] X. X. Yi and C. P. Sun. “Phase separation of a trapped Bose-Fermi gas mixture:
Beyond the Thomas-Fermi approximation”. In: Physical Review A 64, 4 (2001),
p. 043608.

[22] R. Roth and C. P. Sun. “Mean-field instability of trapped dilute boson-fermion
mixtures”. In: Physical Review A 65, 2 (2002), p. 021603.

[23] S. Simonucci, P. Pieri, and G. C. Strinati. “Broad vs. narrow Fano-Feshbach res-
onances in the BCS-BEC crossover with trapped Fermi atoms”. In: Europhysics
Letters 69, 5 (2005), pp. 713–718.

[24] A. P. Albus, S. A. Gardiner, F. Illuminati, and M. Wilkens. “Quantum field the-
ory of dilute homogeneous Bose-Fermi mixtures at zero temperature: General for-
malism and beyond mean-field corrections”. In: Physical Review A 65, 5 (2002),
p. 053607.

[25] L. Viverit and S. Giorgini. “Ground-state properties of a dilute Bose-Fermi mix-
ture”. In: Physical Review A 66, 6 (2002), p. 063604.

90



[26] K. Helfrich, H.-W. Hammer, and D. S. Petrov. “Three-body problem in heteronu-
clear mixtures with resonant interspecies interaction”. In: Physical Review A 81,
4 (2010), p. 042715.

[27] E. Fratini and P. Pieri. “Pairing and condensation in a resonant Bose-Fermi mix-
ture”. In: Physical Review A 81, 5 (2010), p. 051605.

[28] W. Feller. An introduction to probability theory and its applications. New York: J.
Wiley, 1957.

[29] B. Gnedenko. The theory of Probability. Moscow: Mir Publ., 1975.

[30] J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Norwich:
Methuen, 1965.

[31] S. Sorella and F. Becca. SISSA Lecture notes on Numerical methods for strongly
correlated electrons. June 2016.

[32] R. Guardiola. Monte Carlo Methods in Quantum Many-Body Theories. Springer,
1998.

[33] D. E. Knuth. The Art of Computer Programmer, Vol. II Seminumerical Algorithms.
New York: Addison Wesley, 1971.

[34] G. E. P. Box and M. E. Muller. “A Note on the Generation of Random Normal
Deviates”. In: The Annals of Mathematical Statistics 29, 2 (1958), pp. 610–611.

[35] P. G. Hoel, S. C. Port, and C. J. Stone. Introduction to stochastic processes. Boston:
Houghton Mifflin Company, 1972.

[36] M. Gardner. Circo Matemático. Madrid: Alianza, 1985.
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