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INTRODUCTION 
 

One of the main problems in the field of Artificial Intelligence is the efficiency of neural 

networks models. For a while, in the past few years, it seemed that most tasks involving such 

models could simply be solved by designing larger, deeper models and training them on 

larger datasets for longer time. This approach requires better performing and therefore 

expensive and energy consuming hardware and will have an increasingly significant 

environmental impact when those models are deployed at scale. Last year OpenAI developed 

GPT-3, a Transformer-based model capable of performing multiple Natural Language 

Processing tasks. Even though it is a surprisingly effective model, it has the big drawback of 

having 175 billion parameters and training sets of about 570GB of data.   

In the field of Computer Vision, we have the same kind of problems on a smaller scale. Even 

if it is true that language models are often much bigger than the models used in Image 

Classification or Object Detection, we still need heavy models which require expensive and 

energy consuming hardware to obtain good results on some datasets or tasks. Ideally, we 

would like to achieve the same level of performances by training smaller models in less time 

and using only a fraction of the computational resources required by these cumbersome 

models. Unfortunately, small models often lack the capability to learn complex relationships 

and knowledge in the training data as shown by Caruana and its collaborators in Model 

Compression1. Therefore, they show that we cannot avoid training cumbersome models for 

certain tasks and applications, but we can then transfer the knowledge they extracted into 

smaller models and deploy those. By doing so we can obtain small models with a reduced 

gap in performance with respect to the cumbersome ones compared to the same models 

trained in the standard way. Such models would also be much smaller than the cumbersome 

ones, allowing us to deploy them in contexts that do not have enough computational power at 

their disposal. 

In 2015 G. Hinton, J. Dean and O. Vinyals presented Knowledge Distillation 2  (KD), a 

technique that leveraged the logits produced by a big, cumbersome model to guide the 

training of a smaller model. The two networks were called “Teacher” and “Student” given the 

analogy between the big model with large knowledge and the small model which has yet to 

learn everything. They proved that it is possible to extract useful knowledge from the teacher 

logits and use it to obtain a better performing student when compared with the same model 



that learned all by itself. In the past few years, a lot of contributions from different 

researchers build on top of this basic framework, proposing new types of knowledge that can 

be used and improving on the knowledge transferring.  Such intense research is summarized 

in a recent survey3. 

This thesis provides an overview of the current state-of-the-art in the field of Knowledge 

Distillation, analyses some of the most interesting approaches, and builds on them to exploit 

very confident logits in a more effective way. Furthermore, it provides experimental evidence 

on the importance of using also smaller logit entries and correcting mistaken predictions from 

the teacher in the distillation process. 

The structure of the thesis is as follows. In Chapter 1, we will review the current state-of-the-

art regarding Knowledge Distillation, explaining in detail the types of knowledge that can be 

extracted from a teacher and how they can be transferred to the student. In Chapter 2, we will 

present three new proposals to optimise and improve the transfer of Knowledge that, to the 

best of our knowledge, have not been investigated. In the last Chapter we will present the 

results of the experiments we ran to test the effectiveness of the above-mentioned proposals, 

before concluding with a brief recap of our work. 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 1 – KNOWLEDGE DISTILLATION 
 

1.1 - VANILLA KNOWELDGE DISTILLATION 
 

Knowledge Distillation leverages the knowledge learned by the teacher model to improve the 

training of a student by transferring such knowledge to the student model. In the original 

paper, the authors noted that a lot of what the model learns during its training about the 

training data is lost in tasks such as image classification because it requires to condensate the 

acquired knowledge to a single class to make a prediction. Therefore, they proposed to use 

the logits produced by the teacher instead of the final output. The logits, or pseudolikelihood, 

are the values that compose the distribution over the classes in the last layer of the teacher, 

before the SoftMax function is applied. 

Such a distribution is subject to the first of the two hyperparameters that Knowledge 

Distillation employs, the Temperature. In fact, the logits distribution produced by a network 

will have a higher peak in correspondence to the predicted class and smaller values for the 

other classes. The Temperature is used to smoothen such a distribution and to highlight inter-

class relations that the model learned. This kind of knowledge was called “Dark Knowledge” 

by Hinton et al. 

Formally, this means that the SoftMax output becomes:  

 

𝑝𝑖 =
exp(

𝑧𝑖
𝑇
)

∑ exp(
𝑧𝑗
𝑇)𝑗

 

 

(1) 

 

This equation is equivalent to the standard SoftMax for 𝑇 = 1, while for higher values of 𝑇 

the distribution becomes smoother, from which the name “soft targets”. The data labels, one-

hot encoded in a vector, are called “hard targets”. 

Even though the soft targets embed significant knowledge, they are not enough to train a 

network correctly on a labelled dataset by themselves. The authors proposed to mix the 

proportion of the loss function dependent on soft and hard targets according to another 

hyperparameter, Alpha. 



 

 

The loss function therefore becomes:  

 ℒ(𝑥,𝑊) = 𝛼 ∗ 𝐶𝐸(𝑦, 𝜎(𝑧𝑠, 𝑇 = 1)) + (1 − 𝛼) ∗ 𝐾𝐿𝐷(𝜎(𝑧𝑡 , 𝑇 = 𝜏), 𝜎(𝑧𝑠, 𝑇 = 𝜏)) ∗ 𝜏2 

 

(2) 

 

The first term of the sum is the Cross-Entropy loss between the hard targets (𝑦) and the labels 

predicted by the student (𝜎(𝑧𝑠, 𝑇 = 1) is the SoftMax function applied to the logits of the 

student 𝑧𝑠), while the second term is the Kullback-Leibler Divergence4, which is a measure of 

how much information is lost if the student logits distribution, smoothened by 𝑇, is used to 

approximate the smoothened teacher logits distribution.  

 

 

It is also important to notice how the soft targets term is multiplied by the squared value of 

the temperature. This is necessary since smoothing the distributions results in a smoothing of 

the gradient produced by the soft targets of a factor 
1

𝜏2
, which needs to be corrected to avoid 

an unbalanced contribution despite the alpha factor. The algorithm is summarized in 

algorithm box 1. 

Algorithm 1: Vanilla Distillation 

Input: pre-trained teacher, student, x = data samples, y = hard targets, 𝜏= temperature 

and 𝛼  

For each epoch: 

  for 𝑥𝑖 in 𝑥: 

    teacher logits = teacher(𝑥𝑖) 

    student logits = student(𝑥𝑖) 

    student pred = SoftMax(student logits) 

    teacher logits =  teacher logits / 𝜏 

    student logits =  student logits / 𝜏 

    teacher pred = SoftMax(teacher logits) 

    smoothen student pred = SoftMax(student logits) 

  loss = 𝛼 ∗ 𝐾𝐿𝐷(teacher pred, smoothen student pred) + (1-𝛼)*CE(student pred, 𝑦𝑖) 



In the same paper, the authors report how a student trained in this setting achieves two 

relevant objectives: 

• Its accuracy on the test sets improves sensibly compared to when the model is trained 

only with hard targets in the standard way 

• The model is capable of avoid overfitting, showing how soft targets also have a 

regularizing effect on the training   

1.1.1 - SUBSEQUENT WORKS 
 

In the following years, multiple new research projects have been focused on this topic. As 

mentioned earlier, it is undoubtedly very useful to get a small model to perform as well as a 

cumbersome one. According to a recent survey, the field of Knowledge Distillation is 

currently split in two main branches of techniques that focus on two different aspects of 

Knowledge Distillation. The first branch focuses on what kind of knowledge can be distilled, 

identified in three types of knowledge that can be extracted from a teacher. The second 

branch focuses on how to distil such a knowledge. 

In the following sections, I will describe them providing an overview of a few state-of-the-art 

approaches for each one. 

1.2 - TYPES OF KNOWLEDGE 
 

1.2.1 – RESPONSE-BASED KNOWLEDGE 
 

Response Based Distillation is the first branch of Knowledge Distillation approaches that 

followed directly from the Vanilla Distillation. In this batch of approaches, the main idea is to 

have the student imitate the logits of the last layer of the teacher. This general idea is formally 

expressed as: 

 ℒ𝑅𝑒𝑠𝐷(𝑧𝑡, 𝑧𝑠) = ℒ𝑅(𝑧𝑡, 𝑧𝑠) 

 

(3) 

 

Where ℒ𝑅𝑒𝑠𝐷  is the Response Based Distillation Loss and 𝑧𝑡  and 𝑧𝑠  are the logits of the 

teacher and the student. ℒ𝑅(∙)  is the divergence loss between logits. In general, such a 

setting can be thought as Fig. 1 



 

FIGURE 1 GENERAL FRAMEWORK FOR RESPONSE-BASED KNOWLEDGE DISTILLATION 

As mentioned above, this setting has been proved to bring regularizing effects to the training 

similarly to what is done by label smoothing and other regularizes. Various approaches have 

been developed to exploit this effect of Knowledge Distillation. For example, in Transferring 

Knowledge to Smaller Network With Class-Distance Loss5 they used an l2 norm as a training 

objective for the student to minimize the distance between the feature vectors that are fed to 

the last dense layer of the teacher and the student. The training of the teacher is also slightly 

modified, adding an additional component to the Cross Entropy loss. Here, a multiplier is 

used to enhance the l2 norm of the vector produced for the current class and the mean vector 

of the other classes minus a minimal threshold finetuned for the current class. 

Response Based approaches have been applied to a variety of tasks, from object detection to 

semantic localization in Computer Vision. It has been proved however that it has one 

significant drawback: it completely ignores the knowledge acquired by the teacher in its 

earlier layers, as showed in Fitnets: Hints for thin deep nets6. 

1.2.2 – FEATURE-BASED KNOWLEDGE 
 

The methods that exploit the knowledge in those layers have been grouped in the Feature 

Based group. Here, the focus is on the intermediate representations learned by a network in 

its earlier layers. In Fitnets, the layers from which this knowledge is extracted have been 

called “Hint Layers”, a pun on the verb “to hint” and the name of the main author of 

Knowledge Distillation, Geoffrey Hinton. A similar layer is chosen in the student network 

and is called “guided layer”. The choice of the layers can heavily influence the training given 

the regularizing effect it has. Choosing deeper layers results in a loss of flexibility in how the 

student will learn in shallower layers, while shallower layers may not have feature maps rich 

enough in knowledge. For this reason, the layers are usually chosen in the middle of the 

networks.  



The outputs of these intermediate layers are called feature maps. Given that usually the 

teacher network is bigger than the student, its feature maps will be bigger than the feature 

maps produce by the guided layer. The original proposal used a regressor to make the guided 

layer match the dimensions of the hint layer, while more recent approaches focused on more 

sophisticated ways face the task. 

In Paying more Attention to Attention7, the feature map of the hint layer is flattened to obtain 

a 2D tensor defined over the spatial dimensions. The absolute values of the elements of that 

tensor are used to compute an attention map across the channel dimension. The authors 

proposed to do this with three different functions: 

• Sum of absolute values: 𝐹𝑠𝑢𝑚(𝐴) = ∑ |𝐴𝑖|
𝐶
𝑖=1  

• Sum of absolute values raised to the power of p:  𝐹𝑠𝑢𝑚
𝑝 (𝐴) = ∑ |𝐴𝑖|

𝐶
𝑖=1  

• Max of absolute values raised to the power of p: 𝐹𝑚𝑎𝑥
𝑝 (𝐴) = 𝑚𝑎𝑥𝑖=1,𝐶|𝐴𝑖|

𝑝 

 

FIGURE 2 ACTIVATION ATTENTION MAPS FOR VARIOUS NETWORKS: NETWORK-IN-NETWORK, RESNET34, RESNET-101. 

The following year it was proposed to use the so called “factors” to transport the knowledge 

between networks using an interesting concept: features maps from the teacher are fed to a 

small stack of convolutional layers called “paraphraser”, whose job is to simplify the feature 

extracted from the teacher’s hint layer into a factor to make it comprehensible for the student, 

which in turn uses a similar convolutional stack as a “translator” to fully understand the 

factor. The paraphraser maintains the feature map’s spatial dimension but resizes the 

channels by an hyperparameter k. It is trained in an unsupervised way: 

 𝐿𝑟𝑒𝑐 = ‖𝑥 − 𝑃(𝑥)‖2 

 

(4) 

 

The translator is trained jointly with the student, so the student’s loss is the sum of the 

classification task and the translator’s losses: 



 
𝐿𝑠 = 𝐶𝐸(�̂�,  𝑦) +  𝛽 ‖

𝐹𝑇
‖𝐹𝑇‖2

−
𝐹𝑆

‖𝐹𝑆‖2
‖
1

 

 

(5) 

 

One of the most recent approaches is called Semantic Calibration (SemCKD)8 and focused on 

giving guidance to the student guided layers from multiple hint layers in a different capacity, 

according to an attention allocation process. It first constructs similarity matrices for multiple 

layers across student and teacher: 

                                        𝐴𝑆𝑙
𝑆 = 𝑅(𝐹𝑆𝑙

𝑆) ∙ 𝑅(𝐹𝑆𝑙
𝑆)

T
𝐴𝑇𝑙

𝑇 = 𝑅(𝐹𝑇𝑙
𝑇 ) ∙ 𝑅(𝐹𝑇𝑙

𝑇)
T
 

 

(6) 

 

Where 𝑅(∙) ∶ ℝ𝑏×𝑐×ℎ×𝑤 ↦ℝ𝑏×𝑐ℎ𝑤  is a reshaping operation that makes 𝐴𝑆𝑙
𝑆  and 𝐴𝑇𝑙

𝑇  two 

𝑏 × 𝑏 matrices. 

It then uses a Multi-Layer Perceptron to create the queries and keys of an attention 

mechanism: 

   𝑄𝑆𝑙[𝑖] = 𝑀𝐿𝑃𝑄(𝐴𝑆𝑙
𝑆 [𝑖])  𝐾𝑇𝑙[𝑖] = 𝑀𝐿𝑃𝐾(𝐴𝑇𝑙

𝑇 [𝑖]) 

 

(7) 

 

From here, it computes the weight associated with each pair of hint-guided layers: 

𝛼(𝑆𝑙,𝑇𝑙)
𝑖 =

𝑒𝑄𝑆𝑙[𝑖]
T𝐾𝑇𝑙[𝑖]

∑ 𝑒
𝑄𝑆𝑙 [𝑖]

T𝐾𝑇𝑗[𝑖]
𝑗

 

 

(8) 

 

In the end, the teacher’s feature maps are projected into the same space of the student’s 

feature maps to match the dimensions and guide the training for every pair of layers, such 

that the loss term associated with SemCKD becomes: 

ℒ𝑆𝑒𝑚𝐶𝐾 = 𝛽 ∑ ∑ ∑𝛼(𝑆𝑙,𝑇𝑙)
𝑖 𝑀𝑆𝐸(𝐹𝑇𝑙

𝑇 [𝑖], 𝑃𝑟𝑜𝑗(𝐹𝑆𝑙
𝑆 [𝑖], 𝑇𝑙)

𝑏

𝑖=1

𝑇𝐿

𝑇𝑙=1

𝑆𝐿

𝑆𝑙=1

) 

 

(9) 

 

ℒ𝑇𝑜𝑡𝑎𝑙 =∑ℒ𝐾𝐷𝑖

𝑏

𝑖=1

+ ℒ𝑆𝑒𝑚𝐶𝐾  

 

(10) 

 

However, the most effective method developed in this context is called “Rocket-Launching” 9 

and consists in a simple idea: if the student is a smaller version of the same network as the 



teacher (i.e., a ResNet18 and a ResNet34) we could unify their backbones, with small 

adjustments to their dimensionalities, and train them at the same time.  

 

FIGURE 3 ROCKET LAUNCHER FRAMEWORK, THE LIGHT NET IS THE STUDENT AND THE BOOSTER NET IS THE TEACHER 

In particular, the loss function that updates the shared backbone will have three components: 

the hard targets loss for the student, the hard-targets loss for the teacher and the distillation 

loss. Formally: 

ℒ𝑇𝑜𝑡𝑎𝑙 = 𝐶𝐸𝑇(𝑦, 𝑞(𝑥)) +𝐶𝐸𝑆(𝑦, 𝑝(𝑥)) + ℒ𝑀𝑖𝑚𝑖𝑐(𝑙(𝑥), 𝑧(𝑥)) 

 

(11) 

 

ℒ𝑀𝑖𝑚𝑖𝑐  is the SNN-MIMIC loss formulated to workaround the vanishing gradient problem 

that can undermine other distances, like MSE. It is defined as:  

ℒ𝑀𝑖𝑚𝑖𝑐 = 
1

2𝑇
∑‖𝜎(𝑧𝑠, 𝑇 = 1)−𝑧𝑠‖2

2

𝑖

 
(12) 

 

Where 𝑙(𝑥) is the logits distribution that produces 𝑝(𝑥) through SoftMax, same for 𝑧(𝑥) and 

𝑞(𝑥). N and T are respectively the number of samples and the temperature. 

1.2.3 – RELATION-BASED KNOWLEDGE 
 

While both Response-Based and Feature-Based models focused on the outputs of specific 

layers in the model, the Relation-Based methods explore the relationships between data 

samples or different layers and try to exploit those to improve the student’s training. 

Generally, the framework of Relation-Based Distillation with feature maps is: 

ℒ𝑅𝑒𝑙𝐷(𝑓𝑡 , 𝑓𝑠) = ℒ𝑅1 (𝜓𝑡(𝑓𝑡, 𝑓𝑡), 𝜓𝑠(𝑓𝑠, 𝑓𝑠)) (13) 

 



While if we are considering the instances relations: 

ℒ𝑅𝑒𝑙𝐷(𝑓𝑡 , 𝑓𝑠) = ℒ𝑅2 (𝜓𝑡(𝑡𝑖 , 𝑡𝑗), 𝜓𝑠(𝑠𝑖, 𝑠𝑗)) (14) 

 

In A Gift from KD10 the authors showed how making a small network try to imitate the 

output of a bigger network can be a hard constraint on its training since there are multiple 

ways to obtain a specific output from an input. They proposed that student should learn the 

method to obtain the solution instead of trying to imitate completely the feature maps 

produced by the teacher. They proposed to consider two layers in both the teacher and the 

student and to compute their Flow Solution Process (FSP) matrix as: 

𝐺𝑖,𝑗(𝑥;𝑊) = ∑∑
𝐹𝑠,𝑡,𝑖
1 (𝑥;𝑊) × 𝐹𝑠,𝑡,𝑗

2 (𝑥;𝑊)

ℎ × 𝑤

𝑤

𝑡=1

ℎ

𝑠=1

 

 

(15) 

 

Where 𝐹𝑠,𝑡,𝑖
1  and 𝐹𝑠,𝑡,𝑖

2  are the feature maps generated by the two layers in the teacher or the 

student, 𝑥 is the input and 𝑊 are the weights of the layer. The loss function for the distillation 

is then defined as: 

𝐿𝐹𝑆𝑃(𝑊𝑡 , 𝑊𝑠) =
1

𝑁
∑∑𝜆𝑖 × ‖𝐺𝑖

𝑇(𝑥,𝑊𝑡) − 𝐺𝑖
𝑆(𝑥,𝑊𝑠)‖2

2
𝑛

𝑖=1𝑥

 

 

(16) 

 

It is clear in the equation that each data sample has a different weight to counterbalance the 

possibly unbalanced datasets.  

The relationships between feature maps produced by different layers have been a very 

interesting topic for a lot of researchers. One of the most effective and interesting techniques 

developed for the task is called Graph-Based KD by Multi-Head Attention Network11. As the 

authors mention in their work, their idea was inspired by the fact that Graph Neural Networks 

can learn relation between vectors by embedding them in their own space and the Attention 

Network is the most widespread GNN. The most glaring case of this behaviour is given by 

the Attention Mechanism, in which a query vector and a key vector are embedded, through 

several layers of Attention Heads, into a graph of their relations. 

 

 

 

 



 

 

 

 

 

 

As in the FSP method, we choose two layers of each network from which we extract queries 

(the shallower layer’s feature map, or Frontend Feature Vector set 𝑉𝐹), and keys (the deeper 

layer’s feature map, or Backend Feature Vector set 𝑉𝐵): 

𝑉𝐵 = {𝑣𝑖
𝐵|1 ≤ 𝑖 ≤ 𝑁}𝑉𝐹 = {𝑣𝑗

𝐹 |1 ≤ 𝑗 ≤ 𝑁} (17) 

 

The two vector sets have different dimensions that need to be matched and then embedded in 

a single set: 

𝑆 = [𝜃(𝑣𝑖
𝐵) ∙ 𝜙(𝑣𝑗

𝐹)]1≤𝑖≤𝑁,1≤𝑗≤𝑁 (18) 

Such an embedding is performed, in practice, with a simple Fully Connected-Batch 

Normalization combination.  

Attention 𝐺 is obtained by normalizing with SoftMax every set obtained: 

𝐺 = [𝑁𝑚(𝑆𝑎)]1≤𝑎≤𝐴  where  𝑁𝑚(𝑆) = [
exp(𝑆𝑖,𝑗)

∑ exp(𝑆𝑖,𝑘)𝑘
]1≤𝑖≤𝑁,1≤𝑗≤𝑁 

(19) 

At this point, the estimator shown in fig. 4 tries to estimate 𝑉𝐵 from 𝑉𝐹 and 𝐺: 

�̅�𝐵 = 𝑓2(𝐺 ∙ 𝑓1(𝑉
𝐹)) (20) 

  

𝑓1(𝑉
𝐹) = max(0, 𝐵𝑁(𝑊1𝑉

𝐹)) and𝑓2(𝐺 ∙ 𝑓1(𝑉
𝐹)) =

𝑊2𝐺 ∙ 𝑓1(𝑉
𝐹) + 𝑏2

‖𝑊2𝐺 ∙ 𝑓1(𝑉𝐹) + 𝑏2‖2
 

(21) 

  

Finally, the loss function for the training of the Attention Network is: 

ℒ𝑀𝐻𝐴𝑁 = ∑
1

𝑁
𝑉𝑚
𝐵�̅�𝑚

𝐵

𝑀

𝑚=1

 

(22) 

FIGURE 4 THE MULTI-HEAD GRAPH DISTILLATION (LEFT) AND THE DETAIL OF THE ATTENTION HEADS AND ESTIMATOR (RIGHT) 



The Attention Mechanism pays attention to 𝑉𝐹 to estimate 𝑉𝐵 so in G we can find two kinds 

of information: 

1. Feature Transform, which is the relation representing the FSP. 

2. Intra-Data Relation, because the Attention Mechanism works throughout the mini 

batch, effectively embedding knowledge about the dataset in the graph 

The knowledge is the transferred to the student by virtue of the Attention Networks shown in 

fig. 4: 

ℒ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 𝐾𝐿𝐷(𝐺𝑚,𝑖,𝑗,𝑎
𝑆 , 𝐺𝑚,𝑖,𝑗,𝑎

𝑇 ) = ∑ 𝐺𝑚,𝑖,𝑗,𝑎
𝑆 (log(𝐺𝑚,𝑖,𝑗,𝑎

𝑆 ) − log(𝐺𝑚,𝑖,𝑗,𝑎
𝑇 ))

𝑚,𝑖,𝑗,𝑎

 
(23) 

1.3 - TYPES OF DISTILLATION 
 

1.3.1 - OFFLINE DISTILLATION 
 

The Offline Distillation scheme is the classical scheme outlined in the Vanilla Distillation by 

Hinton. It consists in a pre-trained teacher that already contains all the knowledge we could 

distil and a student that needs to be trained using one or more of the knowledges described 

above. The training of the teacher is usually not discussed as part of the Knowledge 

Distillation process, so the offline methods are developed using any kind of dataset and 

architectures with no regard to what was used to train the teacher. 

The main advantage of these methods is that they are very easy to implement, but it comes 

with some drawbacks. The fact that the teacher is fixed and usually has a much larger 

capacity than the student means that it still needs a lot of resources and time to be trained and 

often represent a hard constraint on a small student that cannot match its cap.  

One of the approaches developed for this kind of knowledge that inspired this work is called 

Spherical Knowledge Distillation. When a teacher makes a prediction, it often has a high 

confidence in it, resulting in a high logit for the predicted class and lower logits for the rest. 

This confidence comes from the knowledge it acquired during the training phase, the same 

knowledge we would like to transfer to the student. 

In Spherical Knowledge Distillation, the authors noted how the confidence of the final 

prediction is highly determined by the magnitude of logits. Thus, compared with logits, 



normalized logits are less affected by the teacher’s confidence while retaining relevant 

knowledge to transfer. 

They decomposed the teachers and students’ logits as:  

𝑓𝑇(𝑥) = ‖𝑓𝑇(𝑥)‖
2

2
∗

𝑓𝑖
𝑇(𝑥)

‖𝑓𝑇(𝑥)‖
2

2 
(24) 

𝑓𝑆(𝑥) = ‖𝑓𝑆(𝑥)‖
2

2
∗

𝑓𝑖
𝑆(𝑥)

‖𝑓𝑆(𝑥)‖
2

2 
(25) 

The experiments they conducted showed that using the norm of logits in Vanilla Knowledge 

Distillation is detrimental to the final accuracy of the student, while using normalized logits 

improves it. 

From a gradient perspective, they noted that: 

∂ℒKD

∂𝑓𝑖
𝑆(𝑥)

= 
∂‖𝑙𝑆(𝑥)𝑓𝑆(𝑥) − 𝑙𝑇(𝑥)𝑓𝑇(𝑥)‖

2

𝜕𝑓𝑖
𝑆(𝑥)

= 2𝑙𝑆(𝑥)(𝑙𝑆(𝑥)𝑓𝑆(𝑥) − 𝑙𝑇(𝑥)𝑓𝑖
𝑇(𝑥)) 

(26) 

During the distillation process, while the student tries to learn 𝑓𝑖
𝑇(𝑥), the student’s gradient of  

𝑓𝑆(𝑥) changes all the time and therefore will difficulty converge to 𝑓𝑖
𝑇(𝑥), which is stable. 

They avoid this problem by normalizing both logits by the average of the teacher’s l2 norms 

before smoothening with the temperature. The distribution becomes more uniform, shrinking 

the distance between the higher logits and the lower. 

�̂�𝑖 =
exp(𝑓𝑖(𝑥) ∗

𝑙𝑎𝑣𝑔
𝜏 )

∑ exp(𝑓𝑗(𝑥) ∗
𝑙𝑎𝑣𝑔
𝜏 )𝑗

 

(27) 

The distillation loss becomes: 

ℒ = 𝛼∑�̂�𝑖
𝑇log(�̂�𝑖

𝑆)

𝑖

+ (1 − 𝛼)∑𝑦log(�̂�𝑖
𝑆)

𝑖

 

 

(28) 

 

 

 

 

 



 

This approach highlighted that there is the possibility to exploit the confidence of the teacher 

to improve the distillation framework, which we will talk about in the chapter regarding 

Relative Knowledge Distillation. 

 

1.3.2 - ONLINE DISTILLATION 
 

Often the need for a pre-trained teacher poses a relevant obstacle for some applications. To 

avoid it, a variety of Online methods that train the student and the teacher at the same time 

have been devised. The Rocket-Launcher method outlined earlier is one of such examples, in 

which the logits predicted from the teacher at training time are included in the student’s loss 

function. 

 

FIGURE 5 UMBRELLA DISTILLATION 

The main contributions to this topic fall under the umbrella of Deep Mutual Learning1312. 

Here, two networks 𝜃1 and 𝜃2 are trained at the same time with similar loss functions: 

Algorithm 2: Spherical Distillation 

Input: pre-trained teacher, student, x = data samples, y = hard targets, 𝜏  = temperature 

and 𝛼 = alpha 

For each epoch: 

  for 𝑥𝑖 in 𝑥: 

    teacher logits = teacher(𝑥𝑖) 

    student logits = student(𝑥𝑖) 

    student pred = SoftMax(student logits) 

    teacher pred = SoftMax(teacher logits ∗ 
𝑙𝑎𝑣𝑔

𝜏
) 

    smoothened student pred = SoftMax(student logits ∗
𝑙𝑎𝑣𝑔

𝜏
) 

    loss =  𝛼 ∗ 𝐾𝐿𝐷(teacher pred, smoothen student pred) + (1-𝛼) * CE(student pred, 𝑦𝑖) 



ℒ𝜃1 = 𝐶𝐸𝜃1 + 𝐾𝐿𝐷(𝑝2||𝑝1) and ℒ𝜃2 = 𝐶𝐸𝜃2 + 𝐾𝐿𝐷(𝑝1||𝑝2) 

 

(29) 

The two CE components are the Cross Entropy loss on the hard targets and the KLD is the 

Kullback-Leibler Divergence given by using the one network’s prediction to approximate the 

others. This framework is easily extendable to situations in which there are more than two 

networks: 

ℒ𝜃𝑘 = 𝐶𝐸𝜃𝑘 +𝐾𝐿𝐷(𝑝𝑎𝑣𝑔||𝑝𝑘) where 𝑝𝑎𝑣𝑔 =
1

𝐾−1
∑ 𝑝𝑙
𝐾
𝑙=1,𝑙≠𝑘  (30) 

The topic of n networks trained together is further explored in Knowledge Distillation for 

Collaborative Learning (KDCL). Here, each network is fed the same image augmented in a 

different way to improve the overall generalization capability of the networks on the datasets. 

 

FIGURE 6 KNOWLEDGE DISTILLATION FOR COLLABORATIVE LEARNING 

The loss function is: 

ℒ = ∑𝐿𝐶𝐸
𝑖 + 𝜆𝐿𝐾𝐿𝐷

𝑖

𝑚

𝑖=1

 
(31) 

One idea to select a teacher between all the networks could be to choose the one with the 

lower loss with respect to the Cross-Entropy loss, so the KLD is calculated between each 

student and the selected teacher. This selection could be more effectively treated as an 

optimization problem in which all network’s logits represent a column of a matrix 𝑍 and it 

boils down to solving the optimization problem: 

𝑚𝑖𝑛𝛼∈ℛ𝑚𝐿𝐶𝐸(𝛼
𝑇𝑍, 𝑦) given that ∑ 𝛼𝑖 = 1, 𝛼𝑖 ≥ 0𝑚

𝑖=1  (32) 

Another idea is to test the performances of the networks on a validation subset after every 

training step, in which case we will be much surer to select the teacher with the highest 



generalization ability. To do so, the authors proposed to compute the generalization error on 

an input of the ensemble of networks as: 

 

𝐸 =∑∑𝜔𝑖𝜔𝑗𝐶𝑖𝑗

𝑚

𝑗=1

𝑚

𝑖=1

 
(33) 

Where: 

𝐶𝑖𝑗 = ∫(𝑓𝑖(𝑥) − 𝑡)(𝑓𝑗(𝑥) − 𝑡)𝑝(𝑥)𝑑𝑥 ≈
1

𝑁
∑(𝑓𝑖(𝑥𝑘) − 𝑡

𝑁

𝑘=1

)(𝑓𝑗(𝑥𝑘) − 𝑡) 
(34) 

Each 𝜔𝑘  is a weight such as 𝜔𝑘 =
∑ 𝐶𝑘𝑗

−1𝑚
𝑗=1

∑ ∑ 𝐶𝑘𝑗
−1𝑚

𝑗=1
𝑚
𝑖=1

  and 𝑓𝑖(𝑥) is the probability distribution of the 

i-th network. 

Even more interesting was the use of multi-level distillation in Online Knowledge Distillation 

with Diverse Peers (OKDDip)13. The soft targets are derived from the group of peers by 

aggregating the predictions of all peers with different weights: 

𝑡𝑎 = ∑ 𝛼𝑎𝑏 ∙

𝑚−1

𝑏=1

𝑞′𝑏 

(35) 

 

FIGURE 7 ONLINE KNOWLEDGE DISTILLATION WITH DIVERSE PEERS 

 

The overall framework is trained by: 

ℒ𝑂𝐾𝐷𝐷𝑖𝑝 = ∑ℒ𝑔𝑡(𝑎) + 𝑇2ℒ𝑑𝑖𝑠1(𝑡𝑎 , 𝑞
′
𝑎
) + 𝑇2ℒ𝑑𝑖𝑠2

𝑚

𝑎=1

(𝑡𝑚 , 𝑞
′
𝑚
) 

(36) 



 

ℒ𝑑𝑖𝑠1 is the usual KLD between a peer and the aggregated soft targets of the others while 

ℒ𝑑𝑖𝑠2 is the KLD between each peer and a group leader. 

The use of Attention-Based Targets allows each peer to better attend the others by calculating 

the weights as an Embedded Gaussian distance with normalization: 

𝛼𝑎𝑏 =
𝑒𝐿(ℎ𝑎)

𝑇𝐸(ℎ𝑏)

∑ 𝑒𝐿(ℎ𝑎)
𝑇𝐸(ℎ𝑓)𝑚−1

𝑓=1

 
(37) 

𝐿(ℎ𝑎) = 𝑊𝐿
𝑇ℎ𝑎  𝑊(ℎ𝑎) = 𝑊𝐸

𝑇ℎ𝑎 (38) 

ℎ𝑎 are the extracted features from a peer and 𝑊𝐸
𝑇 , 𝑊𝐿

𝑇  are learned projections matrices that 

embed respectively the features extracted by all peers and by the current peer.  The use of 

both matrices allows the framework to keep two key properties: 

• Asymmetry, which allows to suppress negative effect of having peers with different 

level of optimization without stopping the positive guidance that comes from multiple 

peers. 

• Dynamicity, to give more flexibility to the ensemble by calibrating the use of peers 

according to how optimized they have become at each training step. 

Some of the most recent works in the context of Online Distillation fall under the Generative 

Adversarial Distillation umbrella. Generative Adversarial Networks has had great success in 

a lot of fields. It consists of two competing networks, a generator and a discriminator, whose 

jobs are to generate a new data sample and to distinguish it from a real data sample. Such an 

approach has been proposed for knowledge distillation too by different authors.  

 

FIGURE 8 GENERAL FRAMEWORK FOR GENERATIVE ADVERSARIAL DISTILLATION 



There are three main categories of adversarial distillation. In the first category’s methods, the 

generator creates synthetic data that is then used as a training dataset or to augment the 

existing dataset. For example, in Zero-shot Knowledge Transfer14, they propose to compute n 

gradient steps on the generator and then produce a batch of synthetic data to maximize the 

Kullback-Leibler Divergence between the teacher and the student. Only after that, they take 

m gradient steps on the student to make it match the teacher’s distribution on the synthetic 

samples. However, it is theoretically possible that the generator starts exploring a larger 

portion of the data space in which the teacher has not been trained, producing unrealistic 

images. This happens because there is no constraint on the kinds of images it can generate. 

The experiments carried out to prove it did show that, if the number of classes is limited (i.e., 

Cifar10, MNIST) random noisy images are clustered in a single class. 

The second category’s methods use the discriminator to distinguish the student’s logits or 

feature from those produced by the teacher while the last category’s approaches use the 

teacher and the student as a generator and trains them jointly, much like it would happen in 

online distillation. 

The main contribution for both these categories was given by Feature-map level Online 

Adversarial Knowledge Distillation15 

 

FIGURE 9 FEATURE-MAP LEVEL ONLINE ADVERSARIAL KNOWLEDGE DISTILLATION 

As shown in Fig. 10, the two networks are not student and teacher because the distillation 

here happens in an online setting. Each network has its own discriminator that considers the 

other network’s feature map as the real feature map, performing a simple binary classification 

to distinguish them. Each network can be decomposed in two parts: 

• the feature extractor, which is roughly equivalent to a classical GAN generator, that 

will have loss function: 

ℒ𝐺𝑘 = [1 − 𝐷𝑘(𝐺𝑘(𝑥))]
2 (39) 



• the discriminator is trained by itself, its loss does not influence the networks losses: 

ℒ𝐷𝑘 = [1 − 𝐷𝑘(𝐺𝑛(𝑥))]
2 +𝐷𝑘(𝐺𝑘(𝑥))

2
 

 

(40) 

The distillation then happens by computing the Kullback-Leibler Divergence between the 

logits produced by the two network, the discriminator’s loss, and the Cross-Entropy loss: 

ℒ1 = 𝐶𝐸 + 𝑇2 × ℒ𝐾𝐿𝐷 (
𝑧1
𝑇
,
𝑧2
𝑇
) + ℒ𝐺1 

(41) 

ℒ2 = 𝐶𝐸 + 𝑇2 × ℒ𝐾𝐿𝐷 (
𝑧2
𝑇
,
𝑧1
𝑇
) + ℒ𝐺2 

(42) 

 

1.3.3 - SELF DISTILLATION 
 

Self-Distillation is a special case of Online-Distillation in which the same network is both the 

student and the teacher. The basic implementation of this intuition came from Be Your Own 

Teacher16, in which was proposed to use deeper layers of the network to directly train 

shallower layers. An example of this concept can be easily imagined by thinking about a 

ResNet architecture such as Fig. 5 

 

FIGURE 10 THE GENERAL FRAMEWORK OF KNOWLEDGE DISTILLATION ACCORDING TO BE YOUR OWN TEACHER 

Each residual block is part of the overall network, but at training time a classifier head 

composed of a Residual Bottleneck layer and a Fully Connected layer with SoftMax 

activation is added on top of it. With this addition, each block produces its own prediction 

that can be used to distil knowledge from the deeper block, which will be more accurate and 

richer in information given what the previous block had already learned about the data space. 

ℒ =∑((1 − 𝛼) ∙ ℒ𝐶𝐸(𝑞
𝑖, 𝑦) + 𝛼 ∙ ℒ𝐾𝐿𝐷(

𝐶

𝑖

𝑞𝑖, 𝑞𝐶) + 𝜆 ∙ ‖𝐹𝑖 − 𝐹𝐶‖2
2) 

 

(43) 



For this work the authors did not use the logits produced by each classifier but the output of 

the SoftMax 𝑞𝑖 and the feature maps 𝐹𝑖.  

Almost at the same time, Snapshot Distillation17 was proposed. The authors noticed that even 

if the accuracy improvements brought by Knowledge Distillation are significant, often the 

process is computationally expensive.  

They proposed to train the student with guidance provided by previous iterations of the same 

student instead of using different networks or layers as a teacher. In other words, we consider 

an intermediate state of the same model as teacher, store it, and use it to obtain a distillation 

loss to add to the Cross Entropy at the last iteration of a minibatch.  

So, if a training process using a minibatch 𝐵𝑙 consists of L epochs, the gradients are updated 

using: 

ℒ(ℬ𝑙 , 𝜃𝑙−1) = −
1

|𝐵𝑙|
∑ {𝜆𝑙

𝑆 ∙ 𝑦𝑛
𝑇 ln 𝑓(

(𝑥𝑛,𝑦𝑛)∈ℬ𝑙

𝑥𝑛, 𝜃𝑙−1) + 𝜆𝑙
𝑇 ∙ 𝐾𝐿[𝑓(𝑥𝑛 , 𝜃𝑐𝑙)||𝑓(𝑥𝑛, 𝜃𝑙−1)]} 

 

(44) 

𝜆𝑙
𝑆  and 𝜆𝑙

𝑇  are the weights that balance soft and hard targets. However, it is evident that being 

the teacher the same architecture as the student just a few passes earlier, their prediction may 

be very close, leading the second term of the loss to degenerate to zero.  

It is worth noticing that in this approach the student did not use a temperature hyperparameter 

to smoothen the distribution of logits. They explained that using the same model as both 

teacher and student does not raise difficulties for what concerns the capacity of the student 

with respect to the teacher, while in classical settings such a gap needs to be accounted for by 

smoothening the logits distribution.  

 

 

 

 

 

 

 



CHAPTER 2 – PROPOSED IMPROVEMENTS 
In this chapter, we present some ways to improve the performance of Vanilla Knowledge 

Distillation. The methods we propose can be categorized as Response-Based, Offline-

Distillation and focus on two different aspects of Knowledge Distillation that we found were 

not investigated enough in literature.  

The first aspect concerns what to do with incorrect predictions by the teacher. In general, 

such predictions are not very useful, sometimes they may even be detrimental to the training 

of a distilled student, because they pull the gradients in the wrong direction with respect to 

the Cross-Entropy component of the loss, so the knowledge that the student would acquire 

may be lost in the process.  

The second aspect is based on the observation that a too confident teacher is not really that 

useful. In fact, if the teacher predicts the correct class all the time with high confidence, then 

the SoftMax outputs something very similar to a one-hot encoded vector, no matter the 

temperature’s smoothing that was applied.  

Starting from these considerations, we propose three new approaches to Knowledge 

Distillation. 

2.1 - EARTH MOVER DISTILLATION 
 

The main idea behind Earth Mover Distillation is to obtain relevant knowledge from samples 

that were incorrectly classified by the teacher. To do so, we used Earth Mover Distance on 

the teacher’s SoftMax predictions. 

 Earth Mover Distance, or Wasserstein metric, is a measure of the distance between two 

probability distributions interpreted as the minimum cost of turning one distribution into the 

other one. Informally, the name comes from the amount of dirt to move to turn one pile of 

dirt into another one. 

 

 

 

 



 

In practice, when the teacher’s prediction is wrong, we smoothen the logits using the 

temperature hyperparameter as usual and apply the SoftMax. We then sum the smaller 

probabilities of the incorrect classes to the correct class, giving the student more samples to 

obtain knowledge from the teacher. 

2.2 - TWO TEMPERATURE DISTILLATION 
 

With “Two Temperature Distillation” we tried another way to improve the effectiveness of 

Knowledge Distillation when the teacher’s predictions were wrong. Instead of correcting 

them, which is an artificial way to alter the output produced by the teacher, the idea behind it 

is that a higher temperature, and therefore a stronger smoothening of the logits distribution, 

makes the SoftMax output on the correct class closer to the output of the predicted class. 

When the teacher makes correct predictions we used a smaller temperature, to keep the 

correct class prediction higher than the rest.  

This method is identical to Vanilla Distillation with the exception that distinguishes the 

predictions between correct and incorrect ones, giving each its own temperature. 

 

Algorithm 3: Earth Mover Distillation 

Input: pre-trained teacher, student, x = data samples, y = hard targets, 𝜏 = temperature 

and 𝛼  

For each epoch: 

  for 𝑥𝑖 in 𝑥: 

    if 𝑦𝑝𝑟𝑒𝑑  != 𝑦𝑖: 

      teacher logits = teacher(𝑥𝑖) 

      teacher predictions = SoftMax(teacher logits / 𝜏) 

      sorted = sort(teacher predictions, by=ascending) 

      for value in sorted: 

         teacher predictions[𝑦𝑖] = teacher predictions[𝑦𝑖] + value 

         if teacher predictions[𝑦𝑖] = = max(teacher predictions): 

            break 

     Vanilla Distillation(teacher logits, student logits, 𝜏, 𝛼) 



 

 

2.3 - RELATIVE KNOWLEDGE DISTILLATION 
 

As outlined in Spherical Distillation, the confidence of a teacher can diminish the amount of 

knowledge we are able to transfer to the student. But a high confidence in a class also means 

that most of the other classes will have very low logits. This would convey the information 

that those classes have nothing in common with the correct class and, therefore, are not very 

useful for the distillation process.  

In case the prediction is incorrect it would not be useful to the distillation process because it 

would steer the gradients in a different direction than the Cross Entropy loss, so we would 

like to adjust it similarly to what is described in Earth Mover Distillation. 

We propose four different implementations of “Relative Knowledge Distillation”, or RKD, to 

verify if these two assumptions are valid.  

 

 

Algorithm 4: Two Temperature Distillation 

Input: pre-trained teacher, student, x = data samples, y = hard targets,  

𝜏𝑟𝑖𝑔ℎ𝑡  = temperature for correct predictions, 𝜏𝑤𝑟𝑜𝑛𝑔  = temperature for incorrect 

predictions and 𝛼  

For each epoch: 

  for 𝑥𝑖 in 𝑥: 

    teacher logits = teacher(𝑥𝑖) 

    student logits = student(𝑥𝑖) 

    teacher pred = SoftMax(teacher logits) 

    if max(teacher pred) == 𝑦𝑖: 

       Vanilla Distillation(teacher logits, student logits, 𝜏𝑟𝑖𝑔ℎ𝑡, 𝛼) 

    else: 

       Vanilla Distillation(teacher logits, student logits, 𝜏𝑤𝑟𝑜𝑛𝑔, 𝛼) 



2.3.1 - RELATIVE KNOWLEDGE DISTILLATION V1 
 

There are two main ideas behind the formulation of Relative Knowledge Distillation. First, 

one could think that a good teacher should be the most accurate possible on the task at hand. 

This is however an incorrect assumption: a very accurate teacher often has a lot of confidence 

in its predictions, resulting in the output of its last SoftMax layer being very similar to the 

one-hot encoding of the targets. In the Vanilla Distillation framework, the loss function is 

composed of two terms, the Cross Entropy loss between the student’s predictions and the 

one-hot encoding of the labels, and the Kullback-Leibler Divergence between the teacher’s 

and the student’s predictions.  

ℒ =  𝛼 𝐶𝐸(𝑦,  𝑆) + (1 − 𝛼) 𝐾𝐿𝐷(𝑇, 𝑆)  (45) 

Where S and T are the SoftMax outputs of the student and the teacher, respectively. The KLD 

is defined as the measure of how one probability distribution can be used to approximate 

another one: 

𝐾𝐿𝐷(𝑇||𝑆) = ∑𝑇(𝑖)𝑙𝑜𝑔2(
𝑇(𝑖)

𝑆(𝑖)
)

𝑖

 
(46) 

It is evident that it relates closely to Cross Entropy. In fact: 

𝐾𝐿𝐷(𝑇||𝑆) = ∑𝑇(𝑖)𝑙𝑜𝑔2 (
𝑇(𝑖)

𝑆(𝑖)
)

𝑖

 

=∑𝑇(𝑖)𝑙𝑜𝑔2(𝑇(𝑖))

𝑖

−∑𝑇(𝑖)𝑙𝑜𝑔2(𝑆(𝑖))

𝑖

 

=∑𝑇(𝑖)𝑙𝑜𝑔2(𝑇(𝑖))

𝑖

+ 𝐶𝐸(𝑇(𝑖), 𝑆(𝑖)) 

(47) 

Therefore, the final loss for Vanilla Distillation becomes: 

ℒ =  𝛼 𝐶𝐸(𝑦,  𝑆) + (1 − 𝛼) 𝐾𝐿𝐷(𝑇, 𝑆)  

=  𝛼 𝐶𝐸(𝑦,  𝑆) + (1 − 𝛼) ∑𝑇(𝑖)𝑙𝑜𝑔2(𝑇(𝑖))

𝑖

+ 𝐶𝐸(𝑇(𝑖), 𝑆(𝑖))  

= 𝛼 𝐶𝐸(𝑦,  𝑆) + (1 − 𝛼) 𝐶𝐸(𝑇,  𝑆) + (1 − 𝛼)∑𝑇(𝑖)𝑙𝑜𝑔2(𝑇(𝑖))

𝑖

  

 

(48) 



If 𝑦 ≈ 𝑇, meaning if the teacher is very confident and its predictions resemble the one-hot 

encoded vector of the targets, the two Cross Entropy terms are redundant. The other term is 

the entropy of the distribution T:  

(1 − 𝛼)∑𝑇(𝑖)𝑙𝑜𝑔2(𝑇(𝑖))

𝑖

 

The distribution T is simply the distribution that the teacher model learned to fit all data 

points in the space of the training set, therefore it is constant given that the training set does 

not change. The student will try to mimic the distribution of the teacher but their capacity 

gap, meaning the difference in depth and/or number of parameters, does not allow for an 

accurate mimicking, making the teacher an unreliable one for the distillation process. 

The second idea comes from considering that not every class has something in common with 

the others. From a human point of view, we instinctively know that a dog has nothing in 

common with a house while it has a few things in common with a cat such as eyes, mouth, 

ears etc. In Vanilla Knowledge Distillation any class is treated equally, smoothened with the 

same temperature no matter the image that is being fed in input.  

One could say that this approach overestimates the knowledge contained in the smallest 

classes and that it would be much more valuable to highlight the difference between two 

similar classes of images than the difference between very different classes. 

In the first version of RKD, the absolute value of the lower, incorrect logits is subtracted from 

the higher logit when the prediction is correct. This operation can also be thought of as a form 

of penalty given to the teacher for not being totally confident that its decision was the correct 

one.  

When the prediction is incorrect, all its logits are set to zero. In this way, the SoftMax 

prediction is uniform and therefore the predicted label is randomly chosen. Such an approach 

to handle incorrect predictions may seem, and in fact is, extreme. With this version of RKD 

we want to understand if we can extract useful knowledge even from the mistakes of the 

teacher. 

Lowering the confidence has the effect of bringing closer the first few classes that are 

deemed more probable for the current data sample. When these adjusted logits are 

smoothened by the temperature parameter, the resulting distribution presents peaks that are 

much closer than they would be if the temperature was applied directly to the original logits. 



 

FIGURE 11 VANILLA LOGITS AND RELATIVE KD V1 LOGITS OF A CORRECT PREDICTION. 

 THE VALUE OF THE PREDICTED CLASS (8) IS LOWERED USING THE ABSOLUTE  

VALUES OF THE SMALLER LOGITS AS A PENALTY  BUT REMAINS THE HIGHEST ONE. 

 

FIGURE 122 VANILLA LOGITS AND RELATIVE KD V1 LOGITS OF AN INCORRECT PREDICTION.  

THE VALUE OF EVERY CLASS IS SET TO 0 SO THE OUTPUT OF THE SOFTMAX WILL BE RANDOMIC. 

 



After adjusting the logits as described above, the classical Vanilla Distillation equation is 

applied. The algorithm works as follows. 

 

Algorithm 4: Relative Knowledge Distillation V1 

Input: pre-trained teacher, student, x = data samples, y = hard targets, 𝜏 = temperature 

and 𝛼  

For each epoch: 

  for 𝑥𝑖 in 𝑥: 

    teacher logits = teacher(𝑥𝑖) 

    student logits = student(𝑥𝑖) 

    teacher pred = SoftMax(teacher logits) 

    if max(teacher pred) == 𝑦𝑖: 

      sorted logits = sort(teacher logits) 

       for logit in sorted logits: 

          teacher logits[𝑦𝑖] = teacher logits[𝑦𝑖] -  |𝑙𝑜𝑔𝑖𝑡| 

          if teacher logits[𝑦𝑖] < sorted logits[-2]: 

             teacher logits[𝑦𝑖]= teacher logits[𝑦𝑖] +  |𝑙𝑜𝑔𝑖𝑡| 

             break 

    else: 

       teacher logits = [0, …, 0] 

  Vanilla Distillation(teacher logits, student logits, 𝜏, 𝛼) 

 

2.3.2 - RELATIVE KNOWLEDGE DISTILLATION V2 
 

In the first version, the incorrect predictions were completely discharged and substituted with 

a random prediction. The second version tries to improve on this aspect by using Earth Mover 

distance to correct the logits distribution when the teacher is wrong. It follows from the 

considerations expressed in the previous section on the confidence of the teacher that, if we 

accept that a too confident teacher gives a redundant term to the distillation loss function, and 

that most knowledge is embedded in the second highest logit produced, it is natural to assume 

that the logits produced by an image capable of tricking the teacher into making a mistake 

could contain a lot of interesting and useful knowledge. 



The behaviour for correct predictions is the same as in RKD V1, meaning that the highest 

logit is lowered but remains higher than the second highest logit.  

  

 

FIGURE 133 VANILLA KD AND RELATIVE KD V2 LOGITS FOR INCORRECT PREDICTIONS. 

CLASS 5 (INCORRECT PREDICTION) REMAINS THE SAME WHILE CLASS 0 (CORRECT CLASS)  

BECOMES THE HIGHEST ONE BUT STAYS CLOSE TO CLASS 5 

 

 

 

 

 

 

 

 

 

 

 

 

 



Algorithm 5: Relative Knowledge Distillation V2 

Input: pre-trained teacher, student, x = data samples, y = hard targets, 𝜏 = temperature and 

𝛼  

For each epoch: 

  for 𝑥𝑖 in 𝑥: 

    teacher logits = teacher(𝑥𝑖) 

    student logits = student(𝑥𝑖) 

    teacher pred = SoftMax(teacher logits) 

    if max(teacher pred) == 𝑦𝑖: 

      sorted logits = sort(teacher logits, by = ascending) 

      for logitin sorted logits: 

          teacher logits[𝑦𝑖] = teacher logits[𝑦𝑖] - |𝑙𝑜𝑔𝑖𝑡| 

          if teacher logits[𝑦𝑖] < sorted logits[-2]: 

             teacher logits[𝑦𝑖] = teacher logits[𝑦𝑖] +  |𝑙𝑜𝑔𝑖𝑡| 

             break 

    else: 

        sorted logits = sort(teacher logits) 

        for 𝑙𝑜𝑔𝑖𝑡 in sorted logits: 

          teacher logits[𝑦𝑖] = teacher logits[𝑦𝑖] + |𝑙𝑜𝑔𝑖𝑡| 

          if teacher logits[𝑦𝑖] < sorted logits[-2]: 

             teacher logits[𝑦𝑖] = teacher logits[𝑦𝑖] +  |𝑙𝑜𝑔𝑖𝑡| 

             break 

  Vanilla Distillation(teacher logits, student logits, 𝜏, 𝛼) 

 
 

 

 

 

 

 

 

 



2.3.3 - RELATIVE KNOWLEDGE DISTILLATION V3 
 

Both methods described above try to extract the most knowledge possible from the higher 

logits. We try to understand if and how much the smaller logits impact the distillation 

process. 

To do that, we developed RKD V3, which is the same as RKD V2 in every aspect except for 

a detail: every time a smaller logit is added or subtracted to the higher ones, it is also set to 

zero. Intuitively, one could argue that it is not a great idea to voluntarily lose part of the 

knowledge that could be extracted. The final goal of this version, and the experiments we ran 

for it, was to prove that there is knowledge there, but it is not as relevant or as impactful as 

the rest of the logits. 

 

FIGURE 14 VANILLA KD AND RELATIVE KD V3 LOGITS FOR CORRECT PREDICTIONS. 

THE VALUES SUBTRACTED TO THE CORRECT CLASS ARE SET TO 0, 

LEAVING ONLY THE FOUR HIGHER VALUES. THE SAME THING HAPPENS FOR INCORRECT PREDICTIONS. 

 

 

 

 

 



Algorithm 6: Relative Knowledge Distillation V3 

Input: pre-trained teacher, student, x = data samples, y = hard targets, 𝜏 = temperature 

and 𝛼  

For each epoch: 

  for 𝑥𝑖 in 𝑥: 

    teacher logits = teacher(𝑥𝑖) 

    student logits = student(𝑥𝑖) 

    teacher pred = SoftMax(teacher logits) 

    sorted indexes logits = argsort(teacher logits, by = ascending) 

    if max(teacher pred) == 𝑦𝑖: 

        for idx in sorted indexes logits: 

          teacher logits[𝑦𝑖] = teacher logits[𝑦𝑖] – |𝑡𝑒𝑎𝑐ℎ𝑒𝑟𝑙𝑜𝑔𝑖𝑡𝑠[𝑖𝑑𝑥]|           

          plc = teacher logits[idx] 

          teacher logits[idx]= 0 

          if teacher logits[𝑦𝑖] < sorted logits[-2]: 

             teacher logits[𝑦𝑖] = teacher logits[𝑦𝑖] +  |𝑡𝑒𝑎𝑐ℎ𝑒𝑟𝑙𝑜𝑔𝑖𝑡𝑠[𝑖𝑑𝑥]| 

             𝑡𝑒𝑎𝑐ℎ𝑒𝑟𝑙𝑜𝑔𝑖𝑡𝑠[𝑖𝑑𝑥] = plc 

             break 

    else: 

        for 𝑖𝑑𝑥 in sorted indexes logits: 

          teacher logits[𝑦𝑖] = teacher logits[𝑦𝑖] + |𝑡𝑒𝑎𝑐ℎ𝑒𝑟𝑙𝑜𝑔𝑖𝑡𝑠[𝑖𝑑𝑥]| 

          plc = 𝑡𝑒𝑎𝑐ℎ𝑒𝑟𝑙𝑜𝑔𝑖𝑡𝑠[𝑖𝑑𝑥] 

          𝑡𝑒𝑎𝑐ℎ𝑒𝑟𝑙𝑜𝑔𝑖𝑡𝑠[𝑖𝑑𝑥] = 0 

          if teacher logits[𝑦𝑖] < sorted logits[-2]: 

            teacher logits[𝑦𝑖] = teacher logits[𝑦𝑖] +  |𝑡𝑒𝑎𝑐ℎ𝑒𝑟𝑙𝑜𝑔𝑖𝑡𝑠[𝑖𝑑𝑥]| 

            teacher logits[idx] = plc 

            break 

  Vanilla Distillation(teacher logits, student logits, 𝜏, 𝛼) 

 

 

 

 



2.3.4 - RELATIVE KNOWLEDGE DISTILLATION V4 

 

One could say that the two ideas behind RKD conflicts with each other. In fact, the first idea 

at the roots of RKD says that an overconfident teacher is often a threat to an effective 

distillation process. In other words, this simply means that the distance between the predicted 

logit and the second highest logit should not be too large. This can be achieved by increasing 

the latter or lowering the former. But closing the gap between the two higher logits by 

increasing the correct one means that the distance between it and the other, smaller logits 

increases as well. In every version of RKD we have seen, we always increased one logit and 

therefore we increased such gap. 

The second idea of RKD is to avoid a redundancy of the Cross Entropy term in the 

distillation loss equation as showed in the previous sections, particularly in (48). If the 

prediction is incorrect the Kullback-Leibler distance will steer the loss and the gradients in a 

different direction than Cross Entropy, but that difference in direction could represent an 

effective source of knowledge.  

For these reasons, the last version of RKD we propose behaves as usual, lowering the 

confidence of the teacher, but does not make any difference between correct and incorrect 

predictions. When the teacher is mistaken, it is not corrected by increasing the logit 

corresponding to the correct class. Instead, the higher logit predicted is always lowered to be 

as close as possible to the second one. The algorithm is reported in the following page. 

 

 

 

 

 

 

 

 

 



Algorithm 7: Relative Knowledge Distillation V4 

Input: pre-trained teacher, student, x = data samples, y = hard targets, 𝜏 = temperature 

and 𝛼  

For each epoch: 

  for 𝑥𝑖 in 𝑥: 

    teacher logits = teacher(𝑥𝑖) 

    student logits = student(𝑥𝑖) 

    teacher pred = SoftMax(teacher logits) 

    sorted indexes logits = argsort(teacher logits) 

    for 𝑖𝑑𝑥 in sorted indexes logits: 

          teacher logits[𝑦𝑖] = teacher logits[𝑦𝑖] – |𝑡𝑒𝑎𝑐ℎ𝑒𝑟𝑙𝑜𝑔𝑖𝑡𝑠[𝑖𝑑𝑥]| 

          if teacher logits[𝑦𝑖] < sorted logits[-2]: 

             teacher logits[𝑦𝑖] = teacher logits[𝑦𝑖] +  |𝑡𝑒𝑎𝑐ℎ𝑒𝑟𝑙𝑜𝑔𝑖𝑡𝑠[𝑖𝑑𝑥]| 

             break 

   Vanilla Distillation(teacher logits, student logits, 𝜏, 𝛼) 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3 – EXPERIMENTAL RESULTS AND 

DISCUSSION 

 

3.1 - EXPERIMENTAL SETUP 
 

We have carried out experiments for each method described above. Each model, except for 

the ResNet152/ResNet5018 combination, has been implemented in PyTorch and trained in 

Google Colab for 200 epochs with Stochastic Gradient Descent. The learning rate was set at 

0.1, momentum at 0.9 and weight decay at 0.0005. The learning rate was multiplied by a 

factor of 0.2 at epochs 60, 120 and 160. We used the CIFAR10 and CIFAR100 datasets, 

which are formed by 32x32 images classified in 10 and 100 classes respectively, following 

the classical 50k/10k training and testing split. The dataset has been augmented with random 

crops and random horizonal flips.  

TEACHER STUDENT 

ResNet152 ResNet50 

ResNet34  ResNet18  

WideResNet 40-1  WideResNet 16-1 

WideResNet 40-2  WideResNet 16-2  

 

TABLE 1  COMBINATIONS OF ARCHITECTURES USED IN THE EXPERIMENTS 

The ResNet152/ResNet50 combination has been trained with Stochastic Gradient Descent 

with learning rate set at 0.1 and halved every time the validation accuracy does not improve 

for two consecutive epochs. If there is no improvement for three epochs, the training is 

stopped. This resulted in experiments running for 15/20 epoch, about 80 minutes in total, 

which is much less than the PyTorch experiments. The CIFAR10 dataset was augmented as 

described previously, with an additional upscaling added in the beginning of the networks to 

bring the images at 224x224 resolution. 

Given the presence of hyperparameters in every method, I ran the experiments with different 

combinations of alpha and temperature. In the case of Two Temperatures Distillation, the 

combinations include alpha, right temperature, and wrong temperature.  

• Alpha = 0.1, 0.3 and 0.5 

• Temperature = 2, 5, 10 



• Right temperature = 2, 5 

• Wrong temperature = 10, 20, 50 

The initial tests to prove if there was any validity behind the idea of Relative Distillation were 

run with a ResNet152 and a ResNet50 in Keras but have not been repeated in PyTorch with 

the same setting as the others because the computational power needed to train such big 

network was much higher than the runtime available on Colab. However, these initial tests 

were very important for the subsequent work, and we will therefore briefly report and talk 

about them.  

We experimented with every method described in the previous Chapter and compared them 

with the teacher’s and student’s baselines, meaning the two networks trained only with Cross 

Entropy. In addition, to give a more comprehensive outlook on the improvements that these 

methods bring to Knowledge Distillation, we compare the results obtained with the 

performances of Vanilla Distillation and Spherical Distillation distilled from the same 

teacher.  

3.2 - EXPERIMENTS 

 

3.2.1 - RESNET-152/RESNET-50 
 

The classical Vanilla Distillation performed reasonably well, improving over the baseline 

teacher of 2.04%. On the other hand, Spherical Distillation performed badly in this setting, 

being detrimental to the training of the student.  

 

 

 

Teacher Student Vanilla SKD RKD V1 RKD V2 Two Temp Earth Mover 

94.35% 91.59% 93.63% 85.76% 94.86% 94.26% 94.08% 93.23% 

TABLE 2 RESNET-152/RESNET-50 ON CIFAR10 



 

FIGURE 145 RESNET-152/RESNET-50 EXPERIMENTS ON CIFAR10 

Two Temperature Distillation improved on the student’s baseline by 2.49%, initially 

suggesting that there was a good intuition behind the idea of treating the incorrect predictions 

in a different way than the correct predictions. Earth Mover Distillation, even if it did not 

improve on the Vanilla Distillation performances, at least improved on the student’s baseline 

by 1.64%. 

Relative Distillation V1 and V2 performed the best out of all the methods, improving by 

3.27% and 2.67% respectively. It is worth pointing out that RKD V1 produced a student that 

was even more accurate than its teacher. Even the worse performing combination of 

hyperparameters had an accuracy of 94.01%, which is higher than the best combination of 

every other method except Two Temperature.  

Every method has a variance that depends on the specific combination of hyperparameters. 

Both RKD V1 and V2 proved to be more stable than Vanilla Distillation or Two 

Temperature. Earth Mover Distillation is the worst one from this point of view, oscillating by 

as much as 7% in this setting and even more in others. 

3.2.2 - RESNET-34/RESNET-18 
 

In the ResNet-34/18 experiments some patterns start to be recognizable from the plot of the 

different methods. For example, we can see how Relative Knowledge Distillation is always 

performing a little worse than the others, showing that a little bit of knowledge can be learned 

from the smaller logits. It is worth noting that RKD V1, V2, V4 and Vanilla perform 



basically on par with each other. Given that the three RKD versions differ only by their 

handling of incorrect predictions, and that Vanilla does not distinguish between correct and 

incorrect predictions, it appears that when the teacher is wrong, it does not influence the 

distillation process. If correcting the predictions could be useful to the distillation, RKD V2 

should perform sensibly better than RKD V1 and V4. On the same note, another recurring 

pattern are the Earth Mover’s performances. EM distillation is often the worst performing 

method, actively worsening the student’s baseline performances. 

 

Teacher Student Vanilla SKD RKD 

V1 

RKD 

V2 

RKD 

V3 

RKD 

V4 

Two 

Temp 

Earth 

Mover 

95.68 94.91 95.65 95.21 95.66 95.68 95.44 95.61 95.4 94.54 

 

TABLE 3 RESNET-34/RESNET-18 ON CIFAR10 

 

FIGURE 156 RESNET-34/RESNET-18 EXPERIMENTS ON CIFAR10 

Two Temperature Distillation performs on par with RKD V3, improving on the student’s 

baseline and RKD’s main competitor, SKD, but not on Vanilla Distillation. 

We ran the same experiments on Cifar100, expecting similar results. We expected the 

difference in the number of classes in the dataset to let RKD V3 perform much worse than 

the others or to dilute the knowledge of the smaller logits so much that it would not make a 

difference. As the graph and table below shows, the second interpretation seems to be true.  

The best performing methods is still RKD V2, with V1 and V3 very close right after. It 

improves on Vanilla distillation by 0.25% and more importantly SKD by 0.80%. Two Temp 



stays almost on par with SKD while Earth Mover distillation is still detrimental to the 

baseline student. 

Teacher Student Vanilla SKD RKD 

V1 

RKD 

V2 

RKD 

V3 

RKD 

V4 

Two 

Temp 

Earth 

Mover 

78.04 77.83 79.47 78.92 79.63 79.72 79.62 79.61 78.79 76.07 

 

TABLE 4 RESNET-34/RESNET-18 ON CIFAR100 

 

 

FIGURE 17 RESNET-34/RESNET-18 EXPERIMENTS ON CIFAR100 

 

3.2.3 - WIDERESNET-40-1/WIDERESNET-16-1 
 

WideResNet19 is a version of ResNet modified to be shallower and therefore lighter, making 

up for the loss of layers and capacity by virtue of the widening factor, which is set to 1 in 

these experiments.  

With this combination of architectures, Vanilla Distillation improves the baseline student by 

1.05%. SKD performs very badly, with a loss of 0.80% in accuracy when even Earth Mover 

Distillation can slightly improve on the baseline. As in the other architectures, the best 

performing methods are RKD V1 and V2, improving 1.25% and 1.16% on baseline student.  

It is however clear from the plot below that every method performs roughly the same in this 

case except for SKD and RKD V4. 



 

 

TABLE 5 WIDERESNET-40-1/WIDERESNET-16-1 ON CIFAR10 

 

 

FIGURE 18 WIDERESNET-40-1/WIDERESNET-16-1 EXPERIMENTS ON CIFAR10 

 

With Cifar100 the results are very different. There are two clear winners, RKD V1 and SKD, 

performing at 1.70% and 1.88% better than the baseline student and even 0.48% and 0.64% 

better than Vanilla. All the other versions of RKD performed on par or slightly worse than 

the baseline student. 

The worst performing method is by far Earth Mover Distillation. In this case, it achieves an 

accuracy of 6.98%, showing that it clearly has big stability problems. We ran the experiments 

multiple times for this method and got the same result with every hyperparameters 

combinations. 

WideResNet 

40-1 

WideResNet 

16-1 

Vanilla SKD RKD 

V1 

RKD 

V2 

RKD 

V3 

RKD 

V4 

Two 

Temp 

Earth 

Mover 

69.61 66.39 67.63 68.1 68.27 65.64 63.52 66.16 66.23 6.98 

 

TABLE 6 WIDERESNET-40-1/WIDERESNET-16-1 ON CIFAR100 

Teacher Student Vanilla SKD RKD 

V1 

RKD 

V2 

RKD 

V3 

RKD 

V4 

Two 

Temp 

Earth 

Mover 

93.78 91.10 92.16 90.29 92.36 92.27 90.77 91.14 92.1 92.05 



 

FIGURE 19 WIDERESNET-40-1/WIDERESNET-16-1 EXPERIMENTS ON CIFAR100 

 

3.2.4 - WIDERESNET-40-2/WIDERESNET-16-2 
 

The last combination of architectures that we tested is WideResNet-40-2 and WideResNet-

16-2. For Cifar10, the results here are very similar to each other. RKD V4 and V2 are the 

only one to surpass the 94% accuracy threshold, together with the teacher. As usual, Earth 

Mover Distillation is detrimental to the student while all the other methods, including Vanilla 

Distillation and SKD, score between 93.80% and 93.98%. 

Getting definitive conclusions from such close scores is very difficult. It could seem that both 

the smaller logits and the correction of incorrect predictions have a small influence on the 

distillation process. 

WideResNet 

40-2 

WideResNet 

16-2 

Vanilla SKD RKD 

V1 

RKD 

V2 

RKD 

V3 

RKD 

V4 

Two 

Temp 

Earth 

Mover 

94.69 93.4 93.85 93.95 93.98 94.02 93.81 94.0.7 93.86 91.93 

 

TABLE 7 WIDERESNET-40-2/WIDERESNET-16-2 ON CIFAR10 

 



 

FIGURE 20 WIDERESNET-40-2/WIDERESNET-16-2 EXPERIMENTS ON CIFAR10 

For what concerns Cifar100, there is a clear outlier in the plot below. One of the 

combinations of hyperparameters we tried for RKD V2 (alpha set at 0.5 and temperature at 2) 

produced an interesting student that would converge much faster than any other method to the 

final accuracy and surpass it by up to 4% 50 epochs before finishing training. 

Here, Earth Mover Distillation is the worst performing method as usual and Two 

Temperature Distillation worsened the student.   

 

TABLE 8 WIDERESNET-40-2/WIDERESNET-16-2 ON CIFAR100 

WideResNet 

40-2 

WideResNet 

16-2 

Vanilla SKD RKD 

V1 

RKD 

V2 

RKD 

V3 

RKD 

V4 

Two 

Temp 

Earth 

Mover 

75.92 71.7 74.06 74.18 73.73 74.63 73.06 73.47 71.55 55.83 



 

 

FIGURE 161 WIDERESNET-40-2/WIDERESNET-16-2 EXPERIMENTS ON CIFAR100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CONCLUSIONS 
 

In this thesis we set out to improve Knowledge Distillation to produce better students. To do 

so, we proposed a few methods based on two main ideas: a) a too confident teacher generates 

a logits distribution that produces a Kullback-Leibler Divergence term redundant with respect 

to the Cross Entropy term of the loss function, b) the incorrect predictions pull the gradients 

in the wrong direction, which can be detrimental to the student’s training. 

We showed that reducing the confidence of the teacher in an Offline, Response Based 

Distillation setting with Relative Knowledge Distillation improves the results obtained by 

both Vanilla Distillation and Spherical Distillation. To do so, we proposed to reduce the 

distance between the higher logits in the teacher’s distribution by considering the smaller 

logits as a kind of penalty due to the teacher’s lack of confidence in its predictions. The 

experiments on RKD V3, in which the smaller logits are set to 0 after they have been 

subtracted or summed to the highest logit, showed that the smaller logits still convey a little 

amount of knowledge which can be useful in the distillation process, but the larger part of the 

knowledge distilled is embedded in the higher logits.   

We also showed that correcting the mistaken predictions can convey a bit of knowledge 

useful in the distillation process. There are two ways to do this: after the SoftMax, but the 

distillation process becomes often detrimental to the student’s training and is heavily 

dependent on the hyperparameters combinations, as it can be seen in the Earth Mover 

Distillation experiments, or in the logits. In the latter case, we showed with RKD V2 that it 

brings improvements to the distillation with respect to RKD V4, which is the same method 

without adjusting the logits. In Two Temperature Distillation we experimented with using 

two different temperature parameters to smoothen the logits when the teacher’s predictions 

are correct or incorrect. The wrong prediction temperature was set to be much higher than the 

correct one to produce a much smoother distribution. It did not bring consistently significant 

improvements over Vanilla Distillation. 

Finally, for what concerns the improvements on Knowledge Distillation, we showed that 

RKD V1 improves on Vanilla and Spherical Distillation by 1.23% on the 

ResNet152/ResNet50 combination, while in other cases does not bring any improvements. 

Most notably, RKD V2 brings improvements on almost every combination of architectures, 



up to 0.8% over Vanilla and Spherical Distillation. This proved to be the most consistent of 

the methods we designed and experimented with. 

RKD V3 and RKD V4 did not improve consistently the results of Vanilla and Spherical 

Distillation. RKD V3 often worsened the other two method’s performances, most likely 

because of the loss of the knowledge in the smaller logits. RKD V4 proved to be the best 

method in just one case, in the other was often worse or on par with Vanilla Distillation. 

In the future, it could be interesting to study how Relative Knowledge Distillation can be 

used in Feature Based Distillation frameworks, for example by adding classifiers head on top 

of feature maps and applying the RKD framework on each of them. 
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