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Abstract

Depth estimation is a necessary task to understand and navigate the environment

around us. Over the years, many active sensors have been developed to mea-

sure depth but they are expensive and require additional space to be mounted. A

cheaper alternative consists of estimating depth maps using images taken by a

mobile phone camera. Since most mobile phones don’t have cameras built for

stereo depth sensing, it would be ideal to be able to recover depth from a single

image using only the computational capability of the mobile phone itself. This

can be achieved by training a neural network on ground truth depth maps. This

type of data is very expensive to obtain so it’s preferred to train the neural net-

work using self-supervision from multiple images. Since the devices where the

trained models will be deployed have only one camera, it is ideal to train the net-

work on monocular videos representing the actual data distribution at deployment.

Self-supervised training using monocular videos lowers the accuracy of the depth

maps and brings the additional challenge of being able to predict depth only up

to an unknown scale factor. To this end, additional information, velocity provided

by the GPS, and sparse points computed by a monocular SLAM algorithm, are

employed to recover scale and improve the accuracy. This study will investigate

different neural network architectures and training schemes to achieve depth maps

as accurately as possible given the constraints of the computational budget avail-

able on modern mobile phones.
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Chapter 1

Introduction

1.1 Depth maps

A depth map is a single-channel image where each pixel value corresponds to

the distance of the viewed object from the camera center along the principal axis.

This type of information is necessary for an agent to create an internal three-

dimensional reconstruction of the scene. Applications of depth estimation range

from autonomous driving where vehicles need depth estimation to understand how

far away other objects are, to augmented reality where a 3D scene reconstruction

is needed to properly visualize virtual objects, to photography where depth infor-

mation is used to simulate bokeh effects.
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1.2 Active sensors

Depth maps can be acquired through several techniques and tools. Some of these

rely on active sensors such as LIDARs and can achieve very high accuracy in

ideal conditions. This type of sensor uses the time of flight of a laser beam to

measure depth. By rotating the laser and casting many beams at different angles,

it can generate sparse depth maps such as the ones in Figure 1.1. However, LI-

DARs are expensive and require a lot of mounting space, this makes it unrealistic

to mount one on every agent that needs depth-sensing capabilities. Moreover,

LIDARs struggle to provide correct estimates for moving and reflective objects.

Other active light-based sensors like Microsoft Kinect suffer from limited depth

estimation range. RADARs can also provide depth information but it struggles

with bridges and its depth maps are very sparse that makes them unsuitable for

any accurate 3D scene reconstruction.

Figure 1.1: Example of sparse depth map provided by a LIDAR sensor. Note the lack
of information in the upper part of the image due to sensor limitations.

1.3 Image-based depth estimation

A cheaper and overall more robust alternative lies in recovering depth from stan-

dard camera images. The most straightforward but more expensive solution relies

on two cameras whose image planes are coplanar and are displaced horizontally
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similar to our eyes. The horizontal baseline between the two cameras creates a

parallax that causes a scene point to be projected to different positions on the re-

spective images. The displacement between the projection positions on the two

images is called disparity. As shown in Figure 1.2, if we know the cameras’ cal-

ibration parameters and correspondences of pixels between the two images, we

can measure disparity in pixels, convert it to meters and then recover the depth of

the pixel as the inverse of the disparity. Theoretically, given that all pixel corre-

spondences are known, this method can provide dense depth maps, meaning depth

information for each pixel.

Figure 1.2: Given two cameras whose image planes are coplanar depth of point P can
be recovered if the camera focal length and the position of point P in the two images
are known.

1.3.1 Learning depth estimation

The correspondences can be estimated using traditional descriptor-based matching

algorithms. These methods, however, do not allow to recover depth for uniformly

colored objects and occluded regions. For this reason neural networks have been

recently employed to learn the disparity map given two images captured from a

stereo setup or even just a single image. This task is usually learned by a neu-
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ral network using supervised training on datasets whose ground truth depth maps

have been collected either using LIDARs or by generating the dataset in a simula-

tor to provide dense pixel-perfect disparity maps.

1.4 Self-supervised training

Supervised training requires expensive sensors, such as LIDARs, to acquire ac-

curate ground truth data. Moreover, the supervision offered by these sensors is

sparse and often does not provide depth information for the upper part of the im-

age due to limitations in the sensors, as shown in Figure 1.1. To overcome this

issue self-supervision can be employed to learn depth by imposing geometrical

constraints between the different camera images and their predicted depth maps.

This thesis aims at deployment of a depth estimation network on mobile phones

that are not equipped with stereo camera setup. The self-supervised training

scheme is therefore based on monocular video feeds. This allows fine-tuning of

the network on a data distribution that is as close as possible to the target distri-

bution at inference time. Unlike self-supervision from stereo images, this training

scheme allows estimation of depth maps only up-to-scale. This is due to the lack

of scale information in the pose between the camera frames used during training.

Moreover, self-supervision from monocular videos often results in inaccuracies

due to color inconsistencies between different images. To tackle the former prob-

lem, scale recovery using GPS velocity is employed. For the latter, sparse depth

points provided by a monocular SLAM system is used to improve accuracy in

harder regions of the images.
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1.5 Why mobile phones as target platform

Most recent works focus on estimating depth using an expensive GPU to achieve

realtime performance with very complex networks and postprocessing steps.

In a real-world scenario, these devices cannot be employed due to money, power,

and space limitations. Less expensive and more power-efficient devices such as

the Jetson TX2 and Jetson Xavier improve on these limitations but still require

dedicated mounting and a relatively high power budget, close to 10W. Mobile

phones, on the other hand, offer a prebuilt platform, ready for deployment with

integrated batteries and very low power requirements. They are easily mount-

able in many systems like cars that might benefit from depth-sensing capabilities.

Moreover, many common mobile applications, such as bokeh simulation and aug-

mented reality, rely on depth sensing.

1.6 Thesis Structure

The first part of the thesis will cover the related work in Chapter 2 and an in-

depth explanation of the Monodepth2 model by Godard et al. [5] in Chapter 3.

In Chapter 4 all the techniques used to tackle the shortcomings of Monodepth2

will be shown. In 5 all the results will be reported. Finally, in Chapter 6 future

possible developments will be discussed followed by the conclusions.
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Chapter 2

Related Work

Previous works in monocular depth estimation can be split into supervised and

self-supervised approaches. The former makes use of ground truth depth maps

at training time the latter relies on image reconstruction. Both training scheme

will be covered in the literature review, respectively in Section 2.1 and Section

2.2. Moreover, since the goal of the thesis is to run in real-time on mobile phones,

papers about compact architectures and neural network optimization will also be

discussed in a separate section. Finally, as a SLAM system will be used to gener-

ate sparse depth maps to improve the accuracy of the predictions, so the literature

regarding this technology will also be covered.

2.1 Supervised Monocular Depth Estimation

Eigen et al. [6] were among the first to achieve high accuracy using convolutional

layers for monocular depth estimation. They employed two networks to compute
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depth at different scales and used supervised training with projections of LIDAR

points as ground truth training samples. To tackle the problem of scale ambiguity,

they introduced a relative depth error metric. Laina et al. [16] improved upon this

by applying a fully convolutional neural network to the task, proposing the use

of up-convolutions instead of the more common, but computationally expensive,

deconvolutions. They also introduced the reverse Huber loss (BerHu) to better

deal with the wide value range of depth. It allows to give relatively high impor-

tance to big errors, similar to an L2 loss but without disregarding small errors,

similar to an L1 loss. All these works presented the depth estimation problem as

a regression task. Fu et al. [7] took a different path and cast the depth estima-

tion problem as an ordinal regression task, asking the network to predict, for each

pixel, a probability distribution over a set of possible depths. Even though the

depth maps produced suffered from clear discretization artifacts, this approach

brought noticeable quantitative improvements, beating previous state-of-the-art

methods by a wide margin. These limitations have been tackled by a number of

subsequent works. In particular, Bhat et al. [4] achieved much better qualita-

tive and quantitative results using an attention module to correct the predictions,

as well as predicting the bin widths as a function of the input image rather than

using a predetermined static discretization. Raftl et al. [24] improved the robust-

ness of monocular depth estimation by mixing different datasets during training.

They proposed a robust training objective invariant to changes in depth range and

scale. With their approach, they achieved high accuracy in zero-shot cross-dataset

transfer tasks, notoriously difficult for monocular depth estimation.
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2.2 Self-Supervised Monocular Depth Estimation

Depth supervision requires expensive hardware (usually LIDAR sensors) and of-

ten requires manual refinement of the ground truth to tackle hardware limitations.

An alternative is given by self-supervised depth estimation, where given two im-

ages taken from different points of view, one is reconstructed from the other

through the prediction of the disparity for each pixel. The warping operation used

to reconstruct an image from the other is differentiable thanks to the development

of spatial transformer networks (STN) [15]. Godard et al. [10] used STNs and

stereo images for self-supervised training. They found that predicting both the

left and right disparity map and introducing a left-right consistency loss helps

to stabilize the training and learn accurate dense disparity maps. Their network

was able to beat even the supervised approaches available at the time. Successive

work tried to improve the robustness and accuracy of the predictions, by employ-

ing different, novel loss functions and more complex networks. Aleotti et al. [1]

improved upon the commonly used appearance loss by implementing an discrimi-

nator whose task was to discern ground truth images from the reconstructed ones.

Thanks to this adversarial approach, they measured a slight accuracy improvement

compared to Godard.

Another strong assumption behind the photometric loss is the presence in the

scene of only lambertian materials, meaning that objects appear uniformly bright

from all directions of view. Since this assumption is often violated, Shu et al.

[26] proposed to add a feature-based loss to the standard photometric loss. They

use an autoencoder to learn a feature representation for the images and then com-

pute the loss for monocular depth estimation on the features. The auto-encoder is

regularized based on desired properties for the features, namely smoothness and

magnitude of gradient. Andraghetti et al. [2] achieved better metrics by adding as
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input sparse depths computed with a traditional visual odometry algorithm. These

were densified using a sparse autoencoder based on sparse invariant convolutions

[30] and then used as additional input to the depth estimation network. Huynh et

al. [14] employed feature alignment kernels to merge sparse points from SLAM

to the feature maps extracted from the images. In Bello et al. [11] the same or-

dinal regression approach of [7] is used in a self-supervised framework. Using

the predicted disparity probability volumes they compute an occlusion mask to

ignore occluded regions during training. Moreover, they apply the same ordinal

regression approach on previous networks, like MonoDepth [10], showing how

discretized disparity bins generalize to other architectures too. Regarding self-

supervised networks using monocular data for training, one of the biggest mile-

stones is represented by Monodepth2 [5]. Since the pose between the different

camera frames is unknown in this setting, they employed a PoseNet to predict it.

By computing a mask for stationary pixels, they also took into account the prob-

lem of objects moving at the same speed as the camera, that would otherwise be

estimated to be at infinite depth. The problem of scale ambiguity, a natural con-

sequence of monocular training, was not addressed so at test time the predicted

depth maps were scaled by comparing their median with the ground truth median

value. This limitation was tackled in [25] where Guizilini et al. introduced a new

network based on 3D convolutions and a new scale recovery method based on the

velocity ground truth data acquired by the OXTS of the KITTI dataset [8].

2.3 Compact architectures for real-time performance

The previously discussed works attempted to improve accuracy using complex

networks. This leads to higher inference time, oftentimes struggling to achieve
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real-time execution even on a high-end desktop GPU. However, in many real-

world applications, real-time performance is desirable and computing resources

available are limited. Many compact architectures have been proposed in the past,

such as the MobileNet family [12]. However, they have not been widely tested on

monocular depth estimation tasks, limiting the architecture investigation to the im-

age classification task. As an example, squeeze and excitation attention modules

[13] implemented attention mechanism in a lightweight fashion for convolutional

neural networks. They have been shown to increase accuracy with minimal per-

formance loss in a wide variety of networks [23]. More recently, an even better

alternative has been proposed by Bello et al. [3] where the computation of feature

maps has been discarded in favor of more computationally efficient lambda func-

tions.

Regarding efficient architectures specifically built for depth estimation, Poggi

et al. [21] proposed Pydnet, a pyramidal encoder-decoder architecture to solve

monocular depth estimation with acceptable accuracy and inference time even on

low power devices like Raspberry Pi 3. FastDepth [35], uses depthwise separa-

ble convolution and nearest neighbor upsampling to optimize the decoder stage.

Together with an encoder based on MobileNetV1 they achieve real-time perfor-

mance on a Jetson TX2. Using optimized compilation and pruning (through

NetAdapt [22]), they measure a further 4-fold response time improvement. In

MiniNet, Liu et al. [17] change the encoder with a recurrent neural network to

further lower the number of network weights and inference time. Wang [32] used

RegNetY-06 [23] together a custom decoder block and thanks to wide ablation

studies they achieved higher accuracy than FastDepth while maintaining real-time

performance on Android using an ARM A76 CPU.
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2.4 SLAM and Visual Odometry

Self-supervised depth estimation, particularly when tackled as a regression prob-

lem rather than ordinal regression, has the major pitfall of having many local min-

ima [34] and struggling with noisy textured objects like trees and thin structures

like poles. Traditional SLAM algorithms are instead tuned to exploit these image

irregularities and often are capable of providing very accurate estimates but for

only a few points in the image, making them a good choice to improve the short-

comings of monocular depth estimation networks [2]. ORB-SLAM [19] is one

of the most used methods for monocular SLAM. To perform monocular SLAM

and retrieve scale, additional assumptions, like camera height from the ground, or

sensors are needed. In [20] ORB-SLAM was improved by allowing the retrieval

of the scale factor using data provided by an IMU. On the other hand, Tian et

al. [29] tried to tackle the problem using the assumption of fixed height from the

ground. This assumption is often correct for driving datasets since the camera is

fixed on the car.

There have also been attempts at using neural networks to retrieve the scale and

improve SLAM and VO outputs. In CNN-SLAM [28] CNN are used for Dens-

eSLAM with accurate scale recovery. More recently, Yang et al. [36] use neural

networks to estimate pose, depth, and depth uncertainty in a fully self-supervised

framework by adopting some innovative losses that take into account photometric

inconsistencies between frames.
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Chapter 3

The Baseline

In [5] Godard et al. presented Monodepth2, a network for monocular depth esti-

mation. Their proposed self-supervised training scheme accommodates training

data obtained from both stereo and monocular cameras. In the latter case, the

network learns to estimate depth only up to a scale factor. Their method requires

only camera images and camera calibration parameters during training, forgoing

the expensive and sparse supervision of ground truth depth from LIDAR sen-

sors. Monodepth2 is the primary baseline that sets the stage for the extensions

experimented in this thesis. In this chapter, the Monodepth2 framework will be

described highlighting the differences in the reimplementation compared to the

original formulation described in the paper. The extensions and improvements

experimented during the thesis will be described in Chapter 4.
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Figure 3.1: Scheme of Monodepth2 pipeline. This is a simplification with only two
input frames, in the original paper and re-implementation done for this thesis 3 frames
(t-1, t, t+1) were used.

3.1 Depth estimation as Image Reconstruction

The core idea behind Monodepth2 is to cast the depth estimation problem as an

image reconstruction task. The equation

z
′
p
′
= π(Rπ

−1(z, p)+ t)

where

π(zp) = Kzp

π
−1(z, p) = K−1zp

describes the relationship between two images of the same static scene taken from
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two different points of views. K is the camera intrinsic matrix, z and p are the orig-

inal depth and pixel homogeneous coordinates with 1 as last element, z
′
and p

′
are

the depth and pixel coordinates after the transformation, from first camera to the

second, represented by the rotation matrix R and translation vector T . Using this

relationship it is possible to reconstruct an image in a differentiable way using

spatial transformer networks [15] with backward bilinear sampling. It should be

noted that this formula is valid only under constant brightness and Lambertian sur-

face assumptions. These are violated in realistic scenes and apposite techniques

to tackle them will be presented in Section 3.3.

When training using a pair of stereo images, the relative camera pose is usually

static and known beforehand, just like the intrinsic matrix. In this setup, only a

depth network is needed to predict depth that will be used to warp the source im-

age into the target image reference frame.

When training using monocular videos, on the other hand, the relative camera

pose is unknown, and constantly changing during the video. The camera pose

between two frames can be estimated in a number of ways. We experimented

both with a traditional monocular SLAM algorithm and with an apposite neural

network to predict the pose alongside the depth. The latter is the approach used in

Monodepth2 as shown in Figure 3.1.

3.2 Network Structure

The depth network used by Godard et al. is an encoder-decoder model with skip

connections, with the structure shown in Figure 3.2. Each one of the multiscale

outputs was passed through a sigmoid activation function and used to generate a

18



Figure 3.2: Depth network used by Godard et al. It is composed by an encoder a
decoder and multiple disparity heads that compute the disparity maps, later converted
to depth maps, at multiple scales.

scaled disparity map with:

D = dmin +(dmax−dmin)∗Dsig

where Dsig is the output of the network after the sigmoid activation function and

D is the scaled disparity map. dmin and dmax are the minimum and maximum dis-

parity that the network can predict.

The encoder model in Monodepth2 uses a ResNet18 while the decoder upsamples

feature maps via nearest neighbor upsampling followed by 2D convolutions. It is

important to mention that Godard et al. measured better results when using reflec-

tive padding instead of zero padding.

When training using sequence data and not only stereo data, an additional net-

work, the pose network was used to predict the 6 degrees of freedom (6DoF)

transformations between the camera frames of the input images. This network
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is a separate ResNet18 whose input is the concatenation, along the image chan-

nel axis, of all n input frames. The output, computed by a fully-connected layer,

are all the 6n parameters of the relative camera poses: 3n rotation parameters in

axis-angle representation and 3n translations.

3.3 Losses

The training loss function employed by Godard et al. is a weighted combination of

two main components, namely a masked photometric term Lp and a smoothness

term Ls, giving a total loss of

L = µLp +λLs

Since the L1 error is not robust to brightness changes, it’s not suitable by itself as

photometric loss. For this reason the photometric error pe(Ia, Ib) between image

Ia and image Ib is computed as:

pe(Ia, Ib) =
α

2
(1−SSIM(Ia, Ib))+(1−α)‖Ia− Ib‖1

where SSIM is the structural similarity index as described in [33].

To improve the disparity map in occluded regions, only the minimum photometric

error between all the reconstructed images It ′→t and the target image It is used

during training. Therefore,

Lp = min
t ′

pe(It ′→t , It)
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Moving objects are another major problem during the training. In particular, the

position of the objects moving at the same speed as the camera, as projected onto

the image plane, will not change between frames when training using only monoc-

ular videos. For example, this scenario could arise on highways with cars in front

of and with the same speed as the camera. This will lead the network to learn an

infinite depth for such objects. To tackle this problem, the weight term µ is set to

zero in all pixels where the photometric error between the source images It ′ and

the target image It is lower than the one with the reconstructed images It ′→t .

µ = [min
t ′

pe(It ′→t , It)> min
t ′

pe(It ′ , It)]

This allows the network to ignore all the regions that do not change over time,

avoiding the pitfall of predicting infinite depth for them. The smoothness loss Ls

regularizes the predictions based on the assumption that depth is locally smooth.

To account for object edges, an edge-aware term is added based on the gradient

of the image. Following [11] we add an additional coefficient λ to choose how

strongly the edge aware component should impact the loss.

Ls = |∂xDt |e−λ |∂xIt |+ |∂yDt |e−λ |∂yIt |

3.4 Experimental Setup

3.4.1 KITTI Dataset

The KITTI Dataset [9] provides a reliable benchmark for autonomous driving

task, such as depth prediction, stereo matching, optical flow, visual odometry and

object detection. The dataset was captured by driving in a vehicle equipped with
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two grayscale and two color cameras with a baseline of 0.54 meters. Accurate

ground truth depth data is provided by a velodyne laser scanner. Accurate poses

are possible thanks to a GPS localization system with integrated inertial measure-

ment unit. The datasets are captured by driving in mid-sized cities, rural areas and

highways.

In its raw form, the dataset contains 42,382 frames from 61 scenes, with a typ-

ical image being 1242×375 pixels in size. We employed two different splits for

the data. The first one, referred from here on as Eigen Split [6], contains 22,600

frames in the train set and 697 frames in the test set. The second one, from here

on called Odometry Split, contains 13,200 frames in the train set and 8691 frames

in the test set.

3.4.2 Stockholm Dataset

The Stockholm dataset was captured using a Pixel 5 mounted on the windshield

of a car. It provides 1280x720 RGB images captures at 30 Hz, camera matrix and

GPS-based location and speed gathered once every second. To make scale training

easier we apply linear interpolation to the GPS speed in order to have measure-

ments for all frames. Ground truth LIDAR data is not available for this dataset,

therefore accurate depth accuracy measurement is not possible. Nonetheless we

can have an estimation for the accuracy by comparing the predicted depths with

the depth from object size as described in Section 3.4.4.

The dataset is manually filtered in order to remove scenes where the car is static

and the long sequences on highways that would lead to learning the wrong depth

for cars moving at the same speed of the camera. After filtering, the dataset con-

tains 43900 images for the train split and 1500 images for the test set.
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3.4.3 Depth Metrics

Evaluation of depth is based on 6 metrics for test sets with ground truth depth

maps. The evaluation is performed by resizing, with bilinear interpolation, the

predicted disparity maps to the ground truth height and width. Unless otherwise

noted, the evaluation for networks trained using stereo data (S), velocity data (Vel)

or sparse depth maps data (SD) is carried out on the raw output of the network

without additional median scaling to align the scale with the ground truth. Net-

work trained using standard monocular training make use instead of depth map

scaling at test time. In the following sections Dgt is the ground truth sparse depth

map, Dpred the predicted dense depth map. V is the set of pixel coordinates for

which Dgt contains a valid (non-zero) pixel. N is the cardinality of V . Evalua-

tion is done only for pixels whose ground truth depth is known and the following

metrics were the one used.

Absolute Relative Error

1
N ∑

(i, j)∈N

|Dgt(i, j)−Dpred(i, j)|
Dgt(i, j)

Squared Relative Error

1
N ∑

(i, j)∈N

||Dgt(i, j)−Dpred(i, j)||2

Dgt(i, j)

Root Mean Squared Error

√
1
N ∑

(i, j)∈N
|Dgt(i, j)−Dpred(i, j)|2
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Threshold

#{Dgt(i, j) : max{Dpred(i, j)
Dgt(i, j)

,
Dgt(i, j)

Dpred(i, j)
}< 1.25k}

#{Dgt(i, j)}
(3.1)

where k is the level of the threshold and #M denotes the cardinality of set M. We

used k = 1,2,3.

3.4.4 Depth from object size

For the Stockholm dataset 5.2, we don’t have any ground truth depth map avail-

able. In order to have a general idea of how accurate, at least in terms of scale,

the depth prediction is, we extrapolate depth information from this datasets using

projective geometry.

Since some objects size is usually known, we can recover the distance of these

objects from the camera along the principal azis if we know their size in the real

world, in the image and the camera matrix. This method to recover depth from

object size is shown in Figure 3.3.

Figure 3.3: How to recover depth of an object, given his real world and image sizes.

Traffic signs are the perfect candidate for this task since their size is usually stan-

dardized in a country. Moreover, thanks to their mounting location, their height

isn’t usually distorted due to camera angles so recovering depth from their size

would be quite robust. One downside of using traffic sign is the necessity to label
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all the images in the dataset manually since commonly pretrained object detectors

don’t provide accurate enough bounding boxes for traffic signs far away. On top

of this, the predicted disparity maps struggle particularly in representing traffic

signs so there would be a lot of noise in the predictions even with perfect depth

information from traffic signs size.

For these reason we decided to use car size to measure depth. Compared to traffic

signs, cars are seen from a wide variety of angles and their height in the image

gets therefore distorted more. Moreover their height in the real world is not the

same for all cars, albeit there isn’t a huge variation for most of them. But most

importantly, even when further away from the camera, currently available object

detectors like YOLO-V3 are capable of detecting quite accurate bounding boxes.

And finally, since cars are bigger than traffic signs, the depth network usually

doesn’t completely miss their detection in the depth map.

Once chosen how to get a depth estimation from objects size in the image, we

need to choose what depth from the prediction of the network to assign to this

object. Since the bounding box can cover a wide area of the image, a wide range

of depths might fall in the box. For this reason taking the average of the depths

in the bounding box doesn’t provide a good estimation of the predicted depth for

the car (Figure 3.4). We investigated two alternatives: taking the median of the

depths and the minimum. The former is motivated by the fact that in most cases

the object covers the biggest portion of the bounding box so the median of the pre-

dicted depths would very likely fall into the object region. The latter was tested

because object height is usually dependant on the closest part of the object, since

it appears bigger.

Figure 3.4 shows the scatter plot of the depth predicted based on car height and

the median and minimum approach applied to the ground truth depth map. As can

be seen, the best alignment between the ground truth and depth based on object
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(a) (b)

Figure 3.4: Scatter plot comparing how well the estimated depth using bounding box
height aligns with the minimum (a) and median (b) values of the ground truth depth
maps in the bounding box.

size is obtained when taking the median of the ground truth depths contained in

the bounding box. 3.3.

3.5 Pose Metrics

Since we also have a pose network that predicts relative pose between two frames,

we decided to measure how accurate the pose predicted by the network was. This

test is mostly for informative purposes, since the focus wasn’t on improving the

pose prediction but just improve the depth map accuracy.

To evaluate pose we use 2 metrics following the practice for the KITTI odometry

benchmark [8]. We evaluate the errors for a set of sequence lengths, from 100m

to 800m with 100m steps. We then average them out to obtain our final error

metrics. Given two frames i and j, Pgt(i, j) and Ppred(i, j) are the ground truth

and predicted relative camera pose transformation matrix between frame i and
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j. Perr(i, j) = Ppred(i, j)P−1
gt (i, j) is the error between the two poses. We can

then convert Perr(i, j) in axis-angle vector Rerr(i, j) for the rotation and translation

vector Terr(i, j). Defining V the set of frames for which we have ground truth

poses and L the set of sequence lengths we evaluate, we get the following error

metrics:

Average translation error

1
#L#V ∑

l∈L
∑
i∈V

‖Terr(i, i+ l)‖
‖Tgt(i, i+ l)‖

Average rotation error

1
#L#V ∑

l∈L
∑
i∈V

‖Rerr(i, i+ l)‖
‖Tgt(i, i+ l)‖

3.6 Implementation Details

Unless otherwise specified, all the experiments were conducted with the follow-

ing parameters. Some of the parameters are slightly different compared to Mon-

odepth2 mainly for computational reasons with our ablation study confirming the

negligible change in accuracy. As an example, when training using stereo data the

baseline was set to 0.54 compared to 0.1 of Monodepth2. This allowed removing

the post-scaling factor that was used in the official implementation to correct the

scale of the predicted depth. Experiments confirmed that the accuracy remained

unchanged.

dmin and dmax were set respectively to 1m and 200m, allowing to cover the full

range of the KITTI dataset ground truth depths (2m - 80m) while providing some
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margin for different datasets with different camera angles.

Since the networks were trained on an NVidia RTX 3090, compared to the Titan

Xp used for the original paper, it was possible to increase the batch size from the

12 used by Godard et al. to 16. The input image resolution was set to 640x192

pixels.

The optimizer employed was Adam with starting learning rate of 10−4, β1 = 0.9,

β2 = 0.999 and ε = 10−7.

Unless otherwise noted, all networks are trained for 30 epochs dividing the learn-

ing rate by 3 at epoch 20 and again at epoch 25. Data augmentation was performed

on the fly with 50% chance of horizontal flip and with the following color aug-

mentations: random brightness (±20%), contrast (±20%), saturation (±20%) and

hue (±10%).

Following the approach of Godard et al. [5], the color-augmented images were

given as input to the network but, for the loss computation, non-color-augmented

versions were used.

A noticeable difference compared to the original paper lies in the computation of

the loss only at the highest output scale rather than all the four scales, as done

by the original paper. Moreover, the loss was computed by working at the output

resolution rather than up-sampling the disparity map at the original input image

resolution. Regarding the inference time evaluation, all experiments were run on a

Redmi Note 10 5G. Unless otherwise noted, all models were run in floating point

inference mode using the Tensorflow Lite GPU Delegate with the precision loss

flag enabled. The inference time was always measured by running inference at

640x352 input resolution. This was chosen as the closest resolution to the orig-

inal phone camera aspect ratio that could also be executed on all networks em-

ployed, most of which apply stride 32 so they require an input whose resolution

is a multiple of 32.
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Chapter 4

Experimentation

The baseline by Godard et al. uses a relatively complex network that is not suitable

for real-time inference on mobile phones. Moreover, there are some severe limita-

tions regarding correctly scaled disparity maps when training with only monocular

videos. It also did not cover a real-world deployment scenario where camera in-

trinsic and mount position could be very different compared to the training set. As

shown in [31] these changes can greatly affect the accuracy of the predictions.

A wide range of experiments has been run to find a more efficient architecture

(Section 4.1), improve accuracy with SLAM sparse depth maps (Section 4.2) and

recover scale while training using only monocular data (Section 4.3).

4.1 Faster Neural Networks

The experiments regarding different neural networks for depth and pose estima-

tion can be subdivided into three main sections. Regarding the depth network, the
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encoder-decoder structure with skip connection was kept constant while the archi-

tectures of the encoder and decoder were changed to find a good balance between

inference speed and accuracy.

The pose network, on the other hand, is not needed at inference time. For this

reason it was not under any inference time requirements and the only reason to

experiment with different pose network architectures was to achieve better depth

accuracy.

4.1.1 Encoders

The MobileNet family has historically performed well in computer vision tasks

when under low inference time constraints on mobile platforms like smartphones.

For this reason, both MobileNet 2 and MobileNet 3 [12] were tried as encoders.

As shown in Figure 4.1, both of these networks use inverted bottleneck blocks.

The information passed between each block has a low number of channels that is

then expanded by 1x1 convolutions before being processed with 3 by 3 depthwise

convolutions. MobileNet 3 introduces also a squeeze and excitation module to

the block. This raises the question of whether to apply the skip connection before

Figure 4.1: Inverted residual blocks used in the MobileNet architecture. In the original
residual block, the number of channels is compressed with 1 by 1 convolution before
applying a 3 by 3 convolution. In inverted residual blocks, the number of channels is
instead lowered between blocks and expanded before applying a depthwise convolution.
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or after the expansion. The experiments in Table 4.1 show that skip connections

should be applied before expansion for MobileNets.

LOWER IS BETTER HIGHER IS BETTER
KITTI-Odometry - Eigen Crop Inference Time Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

EfficientNetB0 Before Expansion 130 ms 0.142 0.788 4.431 0.813 0.944 0.979
After Expansion 179 ms 0.139 0.753 4.360 0.820 0.946 0.980

MobileNetV3 Before Expansion 83 ms 0.139 0.759 4.353 0.820 0.947 0.980
After Expansion 138 ms 0.142 0.787 4.400 0.818 0.944 0.979

Table 4.1: Results on KITTI Odometry sequences 0, 4, 5, 7 using the Eigen Crop.
Depending on the encoder architecture it might be more beneficial to apply the skip
connections before or after the expansion in the residual block. Nonetheless, the accu-
racy gain doesn’t justify the inference time increase.

Another architecture experimented with was PydNet [21]. This architecture was

specifically designed for depth estimation at low latency on embedded hardware.

As can be seen in Figure 4.2 the encoder of PydNet is a very simple stack of

convolutional layers and most of the complexity of the network is in the decoder

blocks. Using a different decoder we were able to improve the inference time as

described in Section 4.1.2. Thanks to the newfound inference time margin, an

additional variation of the PydNet encoder has been tried, with an higher number

of channels in the early stages of the network.

As final comparison, EfficientNet [27] usually outperforms MobileNet in image

classification tasks while having a smaller amount of parameters. Unfortunately,

when it comes to inference on mobile phones, the EfficientNet models are mea-

surably slower than the MobileNet equivalents. This trade-off is justified if we

measured for depth estimation the same accuracy gains the architecture offers for

image classification. As can be seen in Table 4.2, this was not measured in our

experiments, where EfficientNet network performed comparably to MobileNet

while being much slower. In the end, we found that PydNet with an expanded

number of channels for the early stages gave the best trade-off between inference

time and accuracy, providing the highest accuracy among the networks we exper-
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Figure 4.2: PydNet architecture. Note the use of very slow deconvolution layers instead
of faster but less accurate nearest neighbor upsampling.

imented with, while retaining satisfying inference time at deployment. We will

therefore, otherwise explicitly noted, use this type of encoder in all the following

experiments.

When aiming at even faster inference times, the PydNet encoder with a lower

number of channels or MobileNetV3 with skip connections before expansion

proves to be a good choice if the accuracy loss is acceptable for the task.

The phone used during the thesis is slower than the target for the final deploy-

ment. On average, the Redmi Note 10 has double the inference time. Therefore,

we chose to target a maximum inference time of 180 ms on the Redmi Note 10,

allowing realtime inference on the deployment platform with some margin for

overhead.
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LOWER IS BETTER HIGHER IS BETTER
KITTI-Odometry - Eigen crop Inference Time Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

Pydnet16 47 ms 0.144 0.798 4.405 0.810 0.941 0.978
Pydnet32 77 ms 0.139 0.746 4.279 0.822 0.946 0.980
Pydnet64 141 ms 0.136 0.720 4.225 0.829 0.948 0.980
MobileNetV3 Large - After Expansion 138 ms 0.142 0.787 4.400 0.818 0.944 0.979
MobileNetV3 Large - Before Expansion 83 ms 0.139 0.759 4.353 0.820 0.947 0.980
MobileNetV3 Small - After Expansion 76 ms 0.147 0.840 4.578 0.802 0.940 0.978
MobileNetV2 - After Expansion 139 ms 0.138 0.742 4.279 0.823 0.946 0.980
EfficientNetB0 - Before Expansion 130 ms 0.142 0.788 4.431 0.813 0.944 0.979
EfficientNetB0 - After Expansion 179 ms 0.139 0.753 4.360 0.820 0.946 0.980

Table 4.2: Results on KITTI odometry sequences 0, 4, 5, 7. For different encoders.
Inference Time was measured using the Tensorflow Lite GPU Delegate on a Redmi
Note 10 5G at 640x352 input resolution.

4.1.2 Decoders

As previously mentioned, the architecture used also allows experimentation with

different decoders. In the original Monodepth2 architecture, the decoder made use

of mirror padding, with exponential linear unit activations and nearest neighbor

upsampling as shown in Figure 4.3. While being a relatively efficient decoder,

thanks to the use of nearest neighbor upsampling rather than deconvolutions, it

still has a very computationally expensive structure since it was not designed for

real-time inference on embedded hardware.

We also experimented with the baseline as well as the best decoder architecture

found by Wang [32]. The former is a simple decoder block using 5 by 5 depth-

wise convolutions (Figure 4.4). The latter (Figure 4.5) inherits the idea of splitting

the number of channels from the split-shuffle architecture [18]. This decreases the

computational complexity of the convolutional layers and to allow communica-

tion between branches it shuffles the channels between each block. Since opti-

mized implementations of the split and shuffle operations were not present in the

framework used to deploy on mobile phones, the block was modified by removing

the split and shuffle operation and adding a depthwise convolution in the second
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Figure 4.3: Monodepth2 Decoder Block

Figure 4.4: Naive depthwise convolution decoder block.

Figure 4.5: Decoder block from MobileDepth [32] inspired by the SplitShuffle architec-
ture. Each block splits the work into two branches, applying 3 by 3 convolutions only in
one of them. A shuffling of the channels at the end of the block allows communication
between the two branches.

Figure 4.6: Modification of the SplitShuffle decoder block. It trades inference times
for higher accuracy. The computational complexity is still low thanks to the halved
number of channels.
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branch too, following more closely the structure of the ShuffleNet 2 [18] block

when the spatial resolution changes.

From the ablation study on the decoders, shown in Table 4.3, it can be seen that

the best decoder depends on the target inference time and the available hardware.

The MobileDepth block runs very quickly but the accuracy is among the lowest.

Our block is 25% slower but improves upon all metrics measurably. Finally, if the

deployment hardware allows for the higher computational complexity, the Mon-

odepth2 original decoder structure achieves the best results while running 57%

slower than our proposed block. Interestingly, increasing the number of channels

of our decoder block, while heavily influencing the inference time, does not lead

to better accuracy.

LOWER IS BETTER HIGHER IS BETTER
KITTI-Odometry - Eigen crop Inference Time Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

MobileDepth SplitShuffle 113 ms 0.139 0.728 4.280 0.822 0.947 0.981
Simple Depthwise CNN Decoder 122 ms 0.140 0.736 4.335 0.817 0.946 0.981
Ours 141 ms 0.135 0.717 4.220 0.830 0.948 0.981
Pydnet Decoder 198 ms 0.134 0.694 4.151 0.834 0.951 0.981
Monodepth2 Decoder 220 ms 0.132 0.703 4.153 0.836 0.950 0.981
Ours - Higher number of channels 437 ms 0.136 0.724 4.211 0.830 0.949 0.980

Table 4.3: Results on KITTI odometry sequences 0, 4, 5, 7 for different decoders.

4.1.3 Pose Networks

Unlike training from stereo images, training from monocular videos requires the

prediction of the pose between the different input images. The accuracy of this

pose can influence greatly the accuracy of the depth predictions [5] since, if the

predicted pose is wrong, the depth map that minimizes the image reconstruction

loss will also be incorrect.

One key difference with the depth network is the lack of any inference time re-

quirements on the pose estimation network. This is due to the fact that at deploy-
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ment we infer depth only on one frame so we do not need to know the relative

camera pose between the previous frames. The only drawback of overly complex

pose networks is the slower training, and in some cases, the need to reduce the

batch size due to GPU memory restrictions.

Monocular SLAM systems offer an alternative to training a pose network. We

use the pose predicted by the SLAM system. The actual pose evaluation will be

covered more in detail in Section 5.3.

Following Monodepth2, we predict pose with an axis-angle representation and

0.01 scale. This means that the head of our networks is a fully connected layer

with 6n output values to represent the n camera transformations between the n+1

frames given as input. The output is multiplied by 0.01 to allow for better initial-

ization.

Our baseline is the Monodepth2 pose network based on a ResNet18 backbone. As

an alternative, we also used MobileNetV2, EfficientNetB0 and EfficientNetB4 to

investigate the possibility of achieving similar or improved accuracy, while chang-

ing the complexity of the backcbone. The network head remained unchanged with

a global average pooling layer applied at the last output of the backbone followed

by a fully-connected layer.

As can be seen in Table 4.4 our baseline performed best in both accuracy and

training time. It is worth noting that the SLAM system albeit providing a more

accurate pose estimation (Section 5.3), leads to a much worse depth accuracy. Fi-

nally, the more complex architecture of EffientNetB4 does not manage to improve

the accuracy of the estimated depths albeit training much slower than our baseline.

For these reason in all the following experiments we used ResNet18 for our pose

network.
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LOWER IS BETTER HIGHER IS BETTER
KITTI-Odometry - Eigen crop Training Time Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 (ResNet18) 8h 30min 0.135 0.717 4.220 0.830 0.948 0.981
Zenuity VO 8h 35min 0.160 1.030 5.209 0.779 0.931 0.974
EfficientNetB0 10h 50min 0.138 0.740 4.253 0.826 0.949 0.981
EfficientNetB4 15h 59min 0.137 0.724 4.221 0.826 0.948 0.981
MobileNetV2 9h 58min 0.137 0.729 4.260 0.826 0.949 0.981

Table 4.4: Results on KITTI odometry sequences 0, 4, 5, 7 for different pose networks.
The evaluation of the pose accuracy will be shown in Section 5.3
.

4.2 Sparse Depths

As previously mentioned, traditional SLAM algorithms provide often very ac-

curate 3D points albeit very sparse in the image. Following previous work by

Andraghetti et al. [2], the main goal of this section is to describe a possible im-

provement in accuracy thanks to the injection of 3D points computed by a monoc-

ular SLAM system into the pipeline.

The SLAM system used is not open source. It is chosen for the higher accuracy

of its generated points than the likes of ORB-SLAM3. It provides also points at

correct scale. On the other hand, the scale recovery method based on the IMU

implemented in ORB-SLAM3 was not able to reliably recover the scale for many

of the driving sequences used. This was probably due to the high noise in the IMU

data and low acceleration values measured when the driving speed was constant.

Just like ORB-SLAM3, the points generated by the SLAM algorithm used are

very sparse in the image (Figure 4.7a) and this makes them unsuitable for stan-

dard convolutional neural networks that usually assume a dense input.

As shown in Table 4.6, concatenating the sparse depth maps with the color im-

ages results in a very small improvement. A much better alternative is provided

by interpolating the sparse depth maps before concatenating them with the input

image channels, as shown in Figure 4.7b. Both these options have the advantage
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(a)

(b)

Figure 4.7: Sparse disparity maps generated by Zenuity monocular SLAM system (a)
and interpolation of the sparse depth maps (b).

of being relatively inexpensive computationally.

The original work by Andraghetti et al. [2] ignored the computational complexity

and achieved much better metrics by utilizing an autoencoder to interpolate the

sparse depth maps. They made use of multiple sparsity invariant convolutional

layers, originally developed by Uhrig et al. [30]. The re-implementation of the

same approach showed that the accuracy improvements were replicated even with

the different pipeline and networks used in this thesis. Our resulting network ar-

chitecture was modified as shown in Figure 4.8.

Following [2] two additional losses were added to maximize the effectiveness of

the new information available. The first, an inner loss Linner to help the auto-

encoder train and enforce consistency between the input sparse depths and the

output of the autoencoder.

Linner =
1
N ∑

Dsd(i, j)>0
|Ddd(i, j)−Dsd(i, j)|
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Figure 4.8: Network structure with sparse depths autoencoder.

The second loss added, the outer loss Louter, was to enforce consistency between

the input sparse depths and the predicted disparity maps.

Louter =
1
N ∑

Dsd(i, j)>0
|D(i, j)−Dsd(i, j)|

The total loss became as a consequence:

L = µLp +λLs +αLinner +βLouter

Ablation of the parameters α and β of these two losses can be seen in Table 4.5.

These were run using the autoencoder structure originally developed in [2]. While

in previous experiments the evaluation was run after scaling the predicted depth

maps to have their median match with the median of the ground truth depth maps,
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in this section we evaluate without median scaling to show what values for the

outer loss do not allow scale recovery. The ablation study shows that an higher

inner loss weight is slightly counterproductive. Regarding the outer loss weight,

if too low it does not allow scale recovery, while with a too high β the accuracy

drops again.

LOWER IS BETTER HIGHER IS BETTER
α β Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

0.01 0.01 0.488 3.862 9.425 0.010 0.040 0.618
0.1 0.01 0.458 3.468 9.031 0.013 0.067 0.789
0.5 0.01 0.503 4.076 9.739 0.009 0.031 0.425
0.01 0.1 0.104 0.706 3.962 0.869 0.947 0.975
0.1 0.1 0.105 0.728 3.961 0.868 0.947 0.975
0.5 0.1 0.105 0.734 3.990 0.867 0.945 0.974
0.01 0.5 0.110 0.848 4.115 0.863 0.943 0.972
0.1 0.5 0.111 0.832 4.048 0.864 0.944 0.973
0.5 0.5 0.110 0.813 4.034 0.865 0.945 0.973

Table 4.5: Results on KITTI odometry sequences 0, 4, 5, 7 for different values of alpha
and beta when using the autoencoder from [2]. Median scaling with ground truth was
disabled in this experiments.

Based on the assumption that the depth maps provided by the SLAM system are

very sparse, it was observed that it was possible to lower the input and output res-

olution of the autoencoder while keeping most of the points. The lower resolution

could allow us to run at a much higher inference speed while keeping most of the

information. To do so, we applied max pooling with stride 4 to the input sparse

disparity maps and then applied nearest neighbour upsampling to scale the output

of the autoencoder up to the original resolution again. Finally, to further lower

the inference time, we used a simpler autoencoder with fewer layers and smaller

kernels.

As shown in Table 4.6, accuracy remained comparable but inference times were

drastically reduced.
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KITTI-Odometry LOWER IS BETTER HIGHER IS BETTER
Eigen crop Inference Time Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

No sparse depths 141 ms 0.134 0.7142 4.196 0.8323 0.9491 0.9807
Raw SD 143 ms 0.1155 0.6875 4.331 0.8412 0.9439 0.9759
Interpolated SD* 143 ms 0.1051 0.7146 3.997 0.8656 0.9463 0.9749
Autoencoder from [2] 406 ms 0.1056 0.7463 3.932 0.8721 0.9477 0.9747
Ours 152 ms 0.1035 0.6416 3.999 0.8649 0.9482 0.9763
Interpolated SD + Ours 152 ms 0.1068 0.687 4.062 0.8612 0.9476 0.976

Table 4.6: Results on KITTI odometry sequences 0, 4, 5, 7 for different methods to
inject traditional SLAM system knowledge into monocular depth estimation. It should
be noted that nor the SLAM algorithm nor the interpolation were included in the
inference time measurements.

4.2.1 Masking Sparse depths

One shortcoming of the sparse depth points we used was the lack of occlusion

handling during their generation. All points in the local map of the SLAM solution

that were falling inside the camera field of view were projected in the sparse depth

maps. This allowed more points per image but some very noticeable artefacts in

scenes with moving objects (Figure 4.9). Since the code used to generate the point

was not open source, an experiment was conducted to measure how much this type

of error was impacting the results.

Figure 4.9: The sparse depth maps used were generated by using all the mapped points,
falling inside the camera frustum, without taking into account possible occlusions. This
leads to particularly relevant mistakes in the case of moving objects.

A pretrained object detection network was run on the training images to detect

all the most common moving objects (cars, trucks, bicycles, pedestrians). The

sparse depth maps were then filtered by removing all the points that fell into the

predicted bounding boxes whose confidence score was above 0.3. The network
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used was a Tensorflow 2 implementation of YOLO-V3 1, with weights pretrained

on the COCO dataset.

In Table 4.7 we can see the comparison between the network trained with all

the sparse points and the one trained with the masked sparse points using YOLO

bounding boxes. Evaluation was performed both on the full frame and also only

for the ground truth depth points falling inside the bounding boxes. The latter

was run to measure how much the predictions improved on the masked regions

that should be the ones to benefit more from this masking approach. A small

improvement was measured for both evaluation regions, which confirms that the

lack of occlusion handling is not a major bottleneck in the network’s depth maps

accuracy.

LOWER IS BETTER HIGHER IS BETTER
KITTI-Odometry Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

Eigen crop Default 0.103 0.696 3.931 0.872 0.949 0.976
Masked SD 0.099 0.631 3.854 0.876 0.952 0.977

Objects only Default 0.198 2.729 6.488 0.735 0.861 0.921
Masked SD 0.187 2.260 6.190 0.738 0.868 0.927

Table 4.7: Comparison between models using all the sparse depth map points and
models not using points on cars. The Object only crop evaluates only on ground truth
depth map points that are falling inside the vehicles’ bounding boxes.

4.3 Scale recovery

One of the major shortcomings of training a network using only monocular videos

is the theoretical impossibility in recovering a correct scale for the predicted depth

maps to estimate a per-image scaling factor. This leads most research on this field

to correct the scale at test time by comparing the median of the ground truth with

the median of the predicted depth maps. Since this is clearly not applicable to a

1https://github.com/schissmantics/yolo-tf2
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real world deployment, scale recovery is necessary either at train time or test time.

The latter is not ideal since we want to keep computations at deployment as low

as possible. For this reason we investigated scale recovery during training.

As seen in Section 4.2, training using an high enough coefficient for the outer loss

allows the learning of correctly scaled depth maps. This works well but given the

fact that the SLAM algorithm used is proprietary, additional investigations for a

faster and cheaper alternative have been conducted.

One option could be to assume constant height from the ground and enforce such

height by computing the ground plane from the predicted depth maps and then es-

timate the predicted camera height. One limitation of this approach is that it relies

on constant height from the ground, that might not be always known if the phone

is mounted in different vehicles. A more robust approach, proposed in [25], uses

velocity information to enforce the correct scale at the pose network level. As a

consequence, the predicted depth is learnt at a correct scale too. Velocity informa-

tion can be acquired by GPS and, as long as there is no bias in the measurements,

the network will learn the correct scale even when the speed measurements are

noisy.

Following their approach, we added an additional loss term Lvel .

Lvel(t, t
′
) =

∣∣∣∣‖vt +vt ′‖
2

∆t−‖tt→t ′‖
∣∣∣∣

Where tt→t ′ is the translation predicted by the pose network between frame t and

frame t
′
, vt and vt ′ are respectively the ground truth velocity for the respective

frames and ∆t is the time difference between the two images timestamps. The

final total loss for the network becomes:

L = µLp +λLs +αLinner +βLouter + γLvel
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Choosing the correct value for γ is very important since if the value is too low the

network will ignore the velocity loss component and not learn any scale. On the

other hand, if the value is too high, the network will focus excessively on the scale

and since the ground truth velocity has some noise it will hinder the learning of a

stable pose leading to less stable training for the depth network too.

For these reasons, we conducted ablation studies on the γ hyperparameter. In

Table 4.8 the network was trained without the autoencoder, so without inner and

outer loss too, to avoid interference with the scale learning. The best value found

was γ = 0.005. Higher values hindered slightly the accuracy of the depths maps.

We assumed this is due to the added noise in the pose network gradients, making

it less stable and harder to train the depth network. Lower values were not enough

to get the network to learn depth.

LOWER IS BETTER HIGHER IS BETTER
γ Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

0.001 0.497 4.091 9.133 0.010 0.035 0.479
0.005 0.123 0.721 4.338 0.832 0.943 0.977
0.01 0.123 0.739 4.384 0.830 0.940 0.976
0.015 0.124 0.734 4.403 0.826 0.939 0.975
0.02 0.123 0.735 4.391 0.828 0.940 0.975

Table 4.8: Results on KITTI odometry sequences 0, 4, 5, 7 for different values of
parameter γ used to weight the velocity loss term.

4.4 Quantization

Quantization is a technique that allows to lower the FLOPs and memory required

to run a model while retaining most of the accuracy. Moreover, it also allows to

save space on the device even when inference cannot be speeded up. Given appro-

priate hardware and software frameworks, the computational complexity can be

reduced too. As an example, integer operations are usually much faster and energy

efficient than floating point arithmetic, therefore converting the model weights and
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arithmetic to use only integers would be greatly beneficial.

When using a lower number of bytes or numeric types to represent weights, not

all software frameworks for deployment on mobile phones allow to experience

the inference speed benefits, due to limitations in their implementations. These

limitations are also related to the processor used. As an example, models whose

weights have been quantized to 8-bits integers can run faster on mobile phones’

CPUs but not on GPUs that resort to floating point 16-bit inference mode even

for 8-bits integers models. This is a current limitation of the library we used and

might change in the future library updates.

We therefore experiment with different quantizations methods and measure per-

formance on all type of processor available on the Redmi Note 10 used for our

experiments. As can be seen in Table 4.9, saving weights as 16-bits floats rather

than 32-bits allows to double inference speed with an unnoticeable loss in accu-

racy on the test set. On the other hand quantizing our model to 8-bits integers al-

lows higher inference speed on CPU but the accuracy drop is significantly higher.

The generated depth maps are still usable although discretization artifacts are now

much more noticeable, as can be seen in Figure 4.10. It should be noted that our

phone hardware achieves lower inference time using 16-bits float on GPU rather

than 8-bits integers on CPU. Nonetheless, since with the hardware and software li-

brary used, 8-bits quantization is the only way to noticeably speed-up computation

on CPU, it might still be useful if inference on GPU cannot be run for technical

reasons, such as overheating or other processes already using the GPU.

It is relevant to note that some mobile phones offer an additional processor to run

neural networks on. For some of these, it can be accessed using the Hexagon

Delegate of Tensorflow Lite, for others the NNAPI allows the exploitation of the

neural network accelerator. The network model compatibility with the accelerator

is fundamental. As an example, our network is currently not fully compatible with
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(a)

(b)

Figure 4.10: Estimated depth map before (a) and after (b) 8bit integer quantization.

the Hexagon delegate and therefore doesn’t benefit from faster inference times on

phones that offer support for the delegate. On the other hand, MobileNet3 is fully

compatible and the inference time is much lower when running fully 8-bit inte-

ger models on the accelerator (82ms vs 420ms). This shows how hardware and

software really dictate the model choice. Unfortunately the Hexagon delegate is

not compatible with many mobile phones therefore we didn’t use it as a target.

On the other hand GPUs are available on most mobile phones and with proper

ventilation around the phone overheating can easily be prevented. GPUs are also

the fastest processor for neural networks on many mobile phones. Therefore, all

of the experiments in the thesis used 16-bits floating point arithmetic run on GPU.
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INFERENCE TIME METRICS
Model Quantization CPU GPU Abs Rel δ < 1.25

No Sparse Depths Float32 645 ms 262 ms 0.123 0.832
No Sparse Depths Float16 625 ms 141 ms 0.123 0.831
No Sparse Depths Int8 541 ms 140 ms 0.128 0.809
Sparse Depths Float32 732 ms 285 ms 0.104 0.865
Sparse Depths Float16 722 ms 152 ms 0.104 0.865
Sparse Depths Int8 612 ms 152 ms 0.108 0.860

Table 4.9: Results on KITTI odometry sequences 0, 4, 5, 7 for different quantization
techniques.

4.5 Additional approaches tried

In the course of the thesis additional experiments were run that did not bring

measurable improvements in the metrics but are worth mentioning.

4.5.1 Disparity Probability Volumes

In [7] Fu et al. proposed to cast depth estimation as an ordinal regression task.

Therefore, the network has to predict a probability distribution over a set of possi-

ble depth bins. Bello et al. [11] extended the idea to self-supervision from stereo

images. Following their proposal we experimented a similar approach on our net-

works both with stereo training and only monocular training.

Figure 4.11 shows the different training procedure used. The main idea is to pre-

dict a probability distribution over a list of N disparity bins for each pixel instead

of a disparity map. The output of the network is the disparity logit volume DL
L. We

then warp multiple copies of the same image, one for each bin and the predicted

disparity logit volume into the target image reference frame. We feed the warped

disparity logit volume through a softmax function to generate the disparity prob-

ability volume DPR
L . Finally, we generate our reconstructed image by weighting
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Figure 4.11: Disparity probability volumes pipeline for stereo training used by Bello et
al. [11].

the differently warped images by the warped probability volumes for the given

pixel and disparity bin. To be noted, instead of warping different images into the

same camera reference frame, like for the standard regression self-supervision, we

warp the disparity volume and the images into multiple cameras reference frame

(t =+1, t =−1) and then proceed with the rest of the pipeline as usual.

One major difference with the work by Bello et al. [11] is the lack of a left-right

consistency loss and the lack of crop augmentation in our experiments. This was

done to limit memory consumption and to keep consistency with the pipeline of

previous experiments and Monodepth2 [5].

As can be seen in Table 4.10 casting depth estimation as a classification task low-

ers the accuracy with the pipeline we used. One of our hypothesis was that the

simpler network was limiting the potential of the new training approach. To test

this hypothesis, we experimented with a more complex network but once again

achieved the same results, as shown in the last two rows of 4.10. We therefore

concluded that the differences in training data augmentation and lack of left-right

consistency were the cause for the different results compared to Bello et al. [11].
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LOWER IS BETTER HIGHER IS BETTER
KITTI-Odometry Training Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

Our Model MS 0.133 1.070 5.463 0.818 0.932 0.970
Our Model w/ DV MS 0.133 1.046 5.396 0.817 0.932 0.970
Our Model M 0.123 0.721 4.338 0.832 0.943 0.977
Our Model w/ DV M 0.244 1.982 6.930 0.600 0.862 0.952
Our Model w/ DV w/ VO Pose M 0.221 1.847 6.563 0.665 0.898 0.967
Complex Model M 0.131 1.165 5.546 0.823 0.933 0.970
Complex Model w/ DV M 0.129 0.984 5.705 0.817 0.930 0.973

Table 4.10: Results on KITTI Eigen Test Split by casting depth estimation as a classi-
fication task following Bello et al. [11] work.

4.5.2 Temporal Consistency

In attempt to simulate the left-right consistency term often used in stereo training

we implemented a similar approach for consistency in monocular videos. The

idea of the left-right consistency term is that depth maps predicted for the left

and right images should be consistent, meaning that projecting the left disparity

map on the right one should lead to a very small reprojection error, mostly due to

occlusions. The same approach can be used when training with monocular videos

by employing the pose predicted by the pose network to warp the depth maps and

enforce consistency for the predictions across multiple frames. One added benefit

of this approach is the generation of scale-consistent depth maps. The latter is

not really useful in our pipeline since we can recover depth with the velocity loss

term but it allows an easier scale recovery post-training in case that the velocity

loss term was not used. In Figure 4.12, we show the pipeline modifications to

allow temporal consistency. We add to our loss an additional term

Ltc = λtc ∑
t

∑
i, j
|Dt→t ′ (i, j)−Dt ′ (i, j)|

to enforce temporal consistency between the predicted depth maps. In Table 4.11

we show the ablation study regarding different weights for the Ltc term. It can
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Figure 4.12: Temporal consistency pipeline with 2 input frames.

be seen that temporal consistency didn’t allow us to improve accuracy while it

increased the training time. For these reasons we didn’t include it in our pipeline

and the models trained for the results in Chapter 5 do not make use of temporal

consistency.

LOWER IS BETTER HIGHER IS BETTER
λtc Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

0 0.123 0.721 4.338 0.832 0.943 0.977
0.001 0.125 0.732 4.401 0.829 0.943 0.977
0.01 0.128 0.735 4.503 0.821 0.942 0.977
0.1 0.132 0.746 4.637 0.812 0.944 0.978

Table 4.11: Results on KITTI odometry sequences 0, 4, 5, 7 for different weights for
the temporal consistency loss term. Accuracy doesn’t improve compared to the baseline
without temporal consistency.

4.5.3 YUV input data

The most common image format is RGB, where each pixel color is usually en-

coded as 3 bytes representing the Red, Green, Blue components of the pixel color.

RGB while being easy to understand and use it’s not very useful when trying
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to compress images by taking into account human perception. As an example,

humans are more sensitive to the green color than red and blue and therefore if

we downsample the green channel we will notice a much bigger difference than

downsampling the red channel. The YUV image format, originally developed to

maintain compatibility with black and white TVs, takes into account human per-

ception and it allows easier compression of image data. The YUV model defines

a color space in terms of one luminance component (Y) and two chrominance

components, called U (blue projection) and V (red projection) respectively. The

most common version of YUV image format is YUV420 where the horizontal

and vertical resolution of the UV channels are halved to allow for lower data

bandwidth. For these reasons, YUV image format is nowadays very common on

mobile phones and the default format on Android. Since the output images of the

camera on Android are in YUV format, a conversion is needed. An alternative lies

in training the neural network with YUV input image data, removing the need for

conversion from RGB to YUV at inference time on the mobile phone. To make

sure that different image formats don’t lead to lower accuracy we trained our net-

works with YUV input images. As can be seen in Table 4.12, the new format

doesn’t affect accuracy, and the differences measured are explainable as noise due

to the random initialization.

LOWER IS BETTER HIGHER IS BETTER
KITTI-Odometry Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

RGB 0.104 0.642 3.999 0.865 0.948 0.976
YUV 0.104 0.640 3.989 0.864 0.948 0.976

Table 4.12: Results on KITTI odometry sequences 0, 4, 5, 7 with different input image
formats.

51



Chapter 5

Evaluation and Results

5.1 KITTI Dataset Results

Here we will present the main results achieved on the KITTI dataset [9]. When

training with sparse depth maps as additional input we were able to train only

using the left images of the Odometry Split since we didn’t have sparse depth

maps available for the other frames and images. To maintain a fair comparison

we therefore trained using only this subset of data unless otherwise noted. Pose

evaluation was run on the 8691 frames of the test set of the Odometry Split.

LOWER IS BETTER HIGHER IS BETTER
KITTI-Odometry Training Data Inference Time Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 � M+S 380 ms 0.119 0.733 4.274 0.846 0.945 0.976
Monodepth2 � M+Vel 380 ms 0.126 0.758 4.330 0.840 0.941 0.974
PydNet � M+Vel 147 ms 0.142 0.841 4.524 0.818 0.944 0.977
Ours M+Vel 141 ms 0.123 0.721 4.338 0.832 0.942 0.977
Ours M+Vel+SD 152 ms 0.103 0.627 3.950 0.866 0.949 0.977

Table 5.1: Evaluation on KITTI Odometry with models trained on the KITTI Odometry
Split. Legend: �: Our reimplementation, M: Monocular videos, S: Stereo, Vel: Velocity
information for scale recovery, SD: Sparse depths using our simplified autoencoder.
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LOWER IS BETTER HIGHER IS BETTER
KITTI-Eigen-Split Training Data Inference Time Abs Rel Sq Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 w/o pretraining M+S - 0.127 1.031 5.266 0.836 0.943 0.974
PydNet S - 0.153 1.363 6.030 0.789 0.918 0.963
Monodepth2 � M+S 380 ms 0.132 1.141 5.463 0.820 0.933 0.970
Monodepth2 � M+Vel 380 ms 0.135 1.153 5.642 0.812 0.929 0.968
PydNet � M+Vel 147 ms 0.145 1.306 5.749 0.802 0.924 0.965
Ours M+Vel 141 ms 0.134 1.070 5.763 0.801 0.928 0.968

Table 5.2: Evaluation on KITTI Eigen Split with models trained on the KITTI Odometry
Split. Legend: �: Our reimplementation, M: Monocular videos, S: Stereo, Vel: Velocity
information for scale recovery.

Figure 5.1: Two examples of disparity maps estimated by our network without input
sparse depths. From top to bottom: input image, estimated depths maps, per-pixel
absolute relative error with KITTI non-improved depth maps.

5.2 Stockholm Dataset

Given the different resolution compared to the KITTI dataset, the input images of

the Stockholm dataset were rescaled to 640×352 during training instead of 640×

192. Sparse depth maps are not available for the dataset and therefore experiments

with the autoencoder and sparse depths inputs will not be discussed.

Figure 5.5 shows that the network was able to learn scale since most of the points

lie on the ideal red line. The qualitative evaluation offered in Figure 5.4 shows

how traffic signs and poles are detected much better than when training with the
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Figure 5.2: Two examples of disparity maps estimated by our network with input sparse
depths. From top to bottom: input image with sparse disparity maps, output of the
"autoencoder", estimated depths maps, per-pixel absolute relative error with KITTI
non-improved depth maps.

KITTI dataset. It also shows the capability of detecting bridges correctly and the

correct depth prediction for cars that the camera is following.

5.3 Pose Evaluation

The goal of our networks was not to provide accurate pose estimations. Nonethe-

less, learning accurate depths, with scale, using monocular videos, requires that

the output pose is relatively accurate. Particularly, we expect higher accuracy of

the depth maps the closer the scale of the estimated pose is to the ground truth.

In Table 5.3 it is shown that more complex neural networks don’t necessarily im-

prove the accuracy of pose. This suggests the presence of a fundamental limitation
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Figure 5.3: Three examples of disparity maps estimated by our network on the Stock-
holm dataset. It is relevant to note how the poles and traffic sign are detected much
better compared to the KITTI dataset. As can be seen, cars followed by the main
vehicle are still detected at a realistic distance rather than infinite depth.

in the training scheme that doesn’t allow to learn more accurate poses.

Seq. 00 Seq. 04 Seq. 05 Seq. 07
KITTI-Odometry Trel Rrel Trel Rrel Trel Rrel Trel Rrel

MD2 PoseNet 10.059 4.081 3.536 2.347 10.926 5.212 9.958 6.964
EffNetB4 9.351 3.567 3.508 2.244 8.540 4.236 8.590 6.128
EffNetB0 12.135 4.837 3.911 2.432 12.335 5.936 11.329 8.619

Table 5.3: Results on KITTI odometry sequences 0, 4, 5, 7 with different pose networks.
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Figure 5.4: Three examples of disparity maps estimated by our network on the Stock-
holm dataset. It is relevant to note how the poles and traffic sign are detected much
better compared to the KITTI dataset. As can be seen, cars followed by the main
vehicle are still detected at a realistic distance rather than infinite depth.

Figure 5.5: Relationship between size based object depth and median predicted depth.
Aside from some outliers, particularly at higher distances, we can see that the network
recovered the scale correctly since the ideal red line is fairly close to the points.
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Figure 5.6: Path predicted by the Monodepth 2 (ResNet18) pose network in sequence
7 (sequence part of the Odometry Split test set).
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Chapter 6

Conclusions and further

developments

The aim of this thesis was to tackle monocular depth estimation with a lightweight

neural network suitable for realtime inference on a mobile phone. Therefore, the

first task was an exploration of different neural network architectures to lower in-

ference time while maintaining accuracy. It was shown how architectures devel-

oped for image classification are not ideal for depth estimation due to the different

number of channels needed at the different stages of the network. A modified

version of PydNet [21], with a different number of channels, was used as encoder.

The decoder of PydNet was instead simplified by employing faster nearest neigh-

bour upsampling followed by depthwise convolutions.

The next task was to inject scale information in the monocular training, tackling

the problem of prediction of depth maps only up-to-scale when not using stereo

data for training. This was achieved employing ground truth velocity provided by

GPS/OXTS sensors to train a correctly scaled pose and therefore depth maps.
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Finally, following previous work by Andraghetti et al. [2], we improved the ac-

curacy of the predicted depth maps using as additional input sparse depth maps

estimated by a monocular SLAM algorithm. To maintain low inference time, the

autoencoder from [2] was simplified without major losses in accuracy.

The system proposed allows to train easily on new data since only monocular

videos and GPS information are needed. This simplifies deployment to different

scenarios since it makes fine-tuning on new data much easier.

On the other hand one major limitation to deployment in the wild is the possible

different camera orientation and position that can greatly affect the depth maps

quality. Future developments will try to improve the robustness of the neural net-

work to different camera focal lengths, mounting positions and orientations.

Moreover, the current training pipeline requires most of the images in the train

set to be static scenes. On the KITTI dataset auto-masking allows to not predict

infinite depths for cars that the camera is following. Auto-masking is not enough

when most of the training data contains cars moving at speeds very similar to the

camera, like on highways. This makes manual filtering of the training data re-

quired. Future work will try to remove this limit allowing the network to ignore

more effectively non-static regions of the image.
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