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Abstract

The impact of Deep Learning is due to the ability of its algorithm to mimic

purely instinctive decisions, by reaching humanlike performance inmany iso

lated tasks, like image recognition or speech recognition. However, on the

way to general artificial intelligence, which comprehend the set of cognitive

abilities that gives machines a humanlike intelligence it is extremely diffi

cult to believe that these techniques, in an isolated way, can lead to a turning

point. This because humans are still capable of performing more abstract and

conscious reasoning processes on top of these instinctive tasks. This condi

tion makes the need of a more complex and general theories, where the deep

learning techniques constitutes only an ingredient of the final recipe.

In this thesis, we propose an implementation of a neurosymbolic frame

work tomerge symbolic and subsymbolic reasoning andwe aim to investigate

how this integration improves deep learning systems with the use of additional

background knowledge in form of symbolic rules. Starting from Markov

Logic Networks we introduce neural networks to provide different weights

for different grounding of the same formula and we inject subsymbolic capa

bilities into MLNs.

Then, to test our implementation, we move to Argument Mining, a com

plex NLP task whose goal is the extraction of structured information from raw

textual sources. We compare our approach to a baseline using only data with

out rules and to another neurosymbolic framework, and establish that using

logical rules during the training process gives a positive contribution to the

task.
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Chapter 1

Introduction

1.1 Motivations

Artificial Intelligence (AI) is expected to be the next huge technological revo

lution, which is already shaping each and every aspect of our everyday lives.

Automotive, banking, energy, fashion, healthcare, manufacturing are only a

few among all the fields in which AI is making improvements and this trend

can only increase in the next years.

Its impact has only been felt by the world in these last years, thanks to

the advancement of a class of techniques, called deep learning, whose explo

sion in research and together with a huge improvement of the hardware, made

possible the solution of tasks, such as image recognition, speech recognition,

natural language understanding, which only few years earlier were deemed

solvable only by human intelligence.

The advantage of the deep learning algorithms is their ability to mimic

those human decisions that are more purely instinctive rather than due to a

careful analysis. These kind of decisions include the associative tasks: if we

look at an image of a car, we will say that it is a car without consciously con

sidering each single part of it and analyze them, being a pure associative an

swer. This success of deep learning can be attributed to a paradigm shift from

the original AI which was more interested in miming the conscious reasoning
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process typical of human intelligence.

At this point we can ask ourselves if deep learning can be considered on

the way to general artificial intelligence, which comprehend the set of cog

nitive abilities that gives machines a humanlike intelligence. Even though

there is no doubt that deep learning is making a lot of progress in this direc

tion, it is also true that humans are still capable of performing more abstract

and conscious reasoning processes on top of these instinctive tasks. In fact, re

calling the image example, after having recognized the car, the human viewer

will also try to check if a logical analysis of its answer make sense or not.

This analysis goes in the direction of the reasoning process which is the AI

approach before deep learning and is likely to be beneficial for this and other

similar tasks in the future.

This example highlights how the human intelligence is a continuous inter

action between these two mechanism: the former that is instinctive, fast, due

to many similar experiences, and the latter that is slow and careful, generaliz

ing single experience in general rules.

1.2 Stateoftheart

Neuralsymbolic integration [15] is the task of merging symbolic and sub

symbolic reasoning. This work has a long history but it has taken a new look

after the deep learning explosion as a new AI research subfield. There are two

major ways of performing this integration.

• Exploit neural techniques to improve purely symbolic tasks. This can be

done in several ways. To begin with, thanks to their particular layered

structure of hidden variables, neural models are usually much faster in

performing inference and they can be effectively used to perform a fast

approximate inference [6, 7, 41]. In addition, neural models usually

deal with subsymbolic representations of elements of the world under

investigation allowing the exploitation of the particular geometry of the
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perceptual world to simplify inference [10]. Indeed, at the end of the

day, except very isolated cases, humans themselves reason about the

world around them and not about abstract entities. Moreover, when

this perceptual space is not known, lot of neural models still assume

its existence and they encode a vectorized representation to symbolic

entities, which is optimized as a parameter of the learning problem.

• Exploit symbolic techniques to relate multiple neural tasks. In multi

task learning, there are neural models solving multiple tasks simultane

ously and in most of (if not all) the cases tasks are not isolated but are

related to each other. This is sometimes referred to as structured predic

tion or structured learning, like in argument mining as we will see later.

Structure is an high level source of knowledge, much more clean and

valuable than single examples and it could improve neural models since

it describes a lot of data in a compact way. So, embedding structure in

a deep learning task would, in theory, bring a boost in performance.

Despite the consciousness of the importance of such an integration between

the approaches, the development of a unifying theory is still missing. There

are many valuable contribution but, probably due to the heterogeneity of skills

of researchers needed, also a lot of confusion on how to compare the methods

to underline the common features and the differences. This condition makes

the need of a unified and broad theory describing multiple approaches and able

to recover a symbolic approach in purely symbolic tasks and a subsymbolic

approach in purely subsymbolic tasks.

1.3 Contributions

The major contributions of the thesis are as follows:

• Implementation of a neurosymbolic framework combining the nerual

networks with the symbolic method of the Markov Logic Networks
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based on [23]

• Proposal of a method for learning weights of formula in combination

with neural networks

• Application of the framework to an argumentation mining task

1.4 Outline

This thesis is structured as follows.

Chapter 2 introduces basic concepts necessary for the rest of the disserta

tion. In particular, the formalism of First Order Logic which is the ba

sis of many approaches for expressing complexly structured knowledge.

Then, Markov Logic Networks are introduced to apply firstorder logic

to practical AI problems and they are the basis of our neurosymbolic

integration.

Chapter 3 begins by describing groundspecificMarkov LogicNetworks [23]

and introduces our approach to implement the integration of neural net

works into MLNs. Then it goes more in details into the implementation

describing the features, the syntax and the learning algorithm.

Chapter 4 describes the experiments done with the system. It first begins

with a pure neural task, a multiclass classification problem, showing

that without logic rules the framework behave like a standard neural

network. Then, after introducing argument mining, our approach is ap

plied to a related task to show how the introduction of rules improves

the performances of the model.

Chapter 5 draws the conclusions of the presented work and introduces pos

sible future improvements.



Chapter 2

Literature Review

2.1 First Order Logic

A logic is a formal system of sentences, supplied with syntax and semantics,

together with mechanisms for asserting and deducting the truth of sentences.

Bymaking different ontological assumptions and by restricting the set of well

formed sentences, different logics can be introduced. The simplest, and most

abstract logic we can study is called propositional logic.

Definition 2.1.1 (Proposition). A proposition is a statement that can be either

true or false; it must be one or the other, and it cannot be both.

FirstOrder logic is a generalization of propositional logic. Propositional

logic can represent propositions, whereas firstorder logic can represent in

dividuals and propositions about individuals. For example, in propositional

logic from Socrates is a man and If Socrates is a man then Socrates is mortal

the conclusion Socrates is mortal can be drawn. In firstorder logic this can

be represented much more finegrained. From Socrates is a man and All man

are mortal the conclusion Socrates is mortal can be drawn.

In first order logic, formulas are constructed using four types of symbols:

constants, variables, functions, and predicates. Constant symbols represent
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objects in the domain of interest (e.g., people: Anna, Bob, Chris, etc.). Vari

able symbols range over the objects in the domain. Function symbols (e.g.,

MotherOf) represent mappings from tuples of objects to objects. Predicate

symbols represent relations among objects in the domain (e.g., Friends) or

attributes of objects (e.g., Smokes). An interpretation specifies which objects,

functions and relations in the domain are represented by which symbols. Vari

ables and constants may be typed, in which case their values range only over

objects of the corresponding type. For example, the variable x might range

over people (e.g., Anna, Bob, etc.).

A term is recursively defined as consisting of either a constant, a variable

or a function applied to a tuple of terms. A term is said to be ground, if it

contains no variables. An atomic formula or atom is a predicate symbol ap

plied to a tuple of terms (e.g., Friends(x, MotherOf(Anna))). Formulas

are recursively constructed from atomic formulas using logical connectives

(disjunction ∨, conjunction ∧, negation ¬, implication → and equivalence

↔) and quantifiers (universal ∀ and existential ∃). A positive literal is an

atomic formula; a negative literal is a negated atomic formula. A ground

atom or ground predicate is an atomic formula all of whose arguments are

ground terms. The Herbrand base of a FOL theory (set of sentences in First

Order Logic) is the set of all ground atoms constructed using the predicates,

functors and constants of the theory. A Herbrand interpretation, also called a

(possible) world, is an assignment of a truth value to all atoms in the Herbrand

base. A formula is satisfiable iff there exists at least one world in which it is

true.

A firstorder knowledge base (KB) is a set of sentences or formulas in first

order logic. Logical inference in firstorder logic is the problem of determining

if a knowledge base KB entails a given formula F , denoted KB |= F , which

means that F is true in every world where all formulae inKB are true. For au

tomated inference, it is often convenient to convert formulas to a more regular

form, typically Conjunctive Normal Form (CNF), also known as clausal form.
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A KB in clausal form is a conjunction of clauses, which consist of a disjunc

tion of literals. Inference in firstorder logic is only semidecidable. Because

of this, knowledge bases are often constructed using a restricted subset of first

order logic with more desirable properties. The most widely used restriction

is to Horn clauses, which are clauses containing at most one positive literal.

2.2 Markov Logic Networks

Markov Logic Networks (MLNs) [35] implement a probabilistic logic pro

viding a general interface to integrate learning and probabilistic inference. In

particular, firstorder logic is used to define boolean Markov Random Fields

(MRFs). A firstorder KB can be seen as a set of hard constraints on the set

of possible worlds: if a world violates even one formula, it has zero proba

bility. The basic idea in MLNs is to soften these constraints: when a world

violates one formula in the KB it is less probable, but not impossible. The

fewer formulas a world violates, the more probable it is. Each formula has

an associated weight that reflects how strong a constraint it is: the higher the

weight, the greater the difference in log probability between a world that sat

isfies the formula and one that does not, other things being equal. MLNs can

be exploited to mostly carry out both inference and weight learning of the log

ical rules involved in a learning process. MLNs incorporate logical semantics

defining feature functions into probability distributions to create models that

capture both the structure and the uncertainty in machine learning tasks.

In particular, MLNs rely on the notion of Markov random field. An MRF

is a probabilistic graphical model for the joint distribution of a set of variables

and it is composed of an undirected graph expressing the variable dependen

cies and a set of potential functions. For each variable it is considered a node

in the graph while a potential function (i.e. a nonnegative function of the state

of the corresponding clique) is associated to any clique of the graph.

Definition 2.2.1 (MRF). Let x = (x1, . . . , xn) ∈ X be a vector of random
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variables and let ϕ = (ϕ1, . . . , ϕm) be a vector of potentials, where each poten

tial ϕj assigns a realvalued score to any configuration of the variables. Given

ω = (ω1, . . . , ωm) a vector of realvalued weights, a Markov Random Field is

a probability distribution of the form:

P (x) = 1
Z

exp

 m∑
j=1

ωjϕj(x)

 (2.1)

where Z =
∫

X exp
( ∑m

j=1 ωjϕj(x′)
)
dx′ is known as the partition function.

The integration with logic is carried out in MLNs as follows. Each poten

tial function ϕj is associated to a firstorder logic formula Fj in a knowledge

base KB. A knowledge base can be seen as a set of constraints on the set

of possible assignment, the fewer formulas an assignment violates, the more

probable it is, while it has the lowest probability if it violates all the formulas.

Each formula has to be considered either as hard (infinite weight) or can be

weighted to penalize differently the assignments with respect to the formula

satisfaction, the higher the weight, the greater the difference in log probability

between a world that satisfies the formula and one that does not.

Definition 2.2.2 (MLN). AMarkov logic network L is a set of pairs (Fj, ωj),

where Fj is a FOL formula and ωj is a real number. Relatively to a set of

constants K = k1, . . . , k|K|, it defines an MRF ML,K as follows:

• ML,K contains one binary node for each possible grounding of each

predicate appearing in L. The value of the node is 1 if the ground atom

is true, and 0 otherwise;

• ML,K contains one feature for each possible grounding of each formula

Fj in L. The value of this feature is 1 if the ground formula is true, and

0 otherwise. The weight of the feature is the ωj associated with Fj in L.

The graphical structure of ML,K follows from 2.2.2: there is an edge be

tween two nodes of ML,K if and only if the corresponding ground atoms ap

pear together in at least one grounding of some formula in L [35]. To better
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Figure 2.1: Ground Markov Network obtained by applying the formulas in
2.2, to the constants Ann (A) and Bob (B)

visualise this, consider the follow example: we want to build a model to infer

whether a person smokes, and whether a person has cancer with a some prob

ability. And we have a firstorder KB that, for simplicity, has only the two

formulas presented in (2.2).

Smokes(a) → Cancer(a)

Friends(a,b) → (Smokes(a) ↔ Smokes(b))
(2.2)

The first step in a MLN is the grounding of the formulas presented in the

KB. Figure 3.1 shows the graph of the ground Markov network defined by

the formulas in 2.2 and the constants Ann (A) and Bob (B). Each node in this

graph is a ground atom (e.g., Friends(A, B)). The graph contains an arc be

tween each pair of atoms that appear together in some grounding of one of the

formulas. ML,K can now be used to infer the probability that Ann and Bob

have cancer given whether or not they smoke and they are friends. Each state

of ML,K represents a possible world. A possible world is a set of objects, a set

of functions (mapping from tuples of objects to objects), and a set of relations

that hold between those objects; together with an interpretation, they deter

mine the truth value of each ground atom. The following assumptions ensure

that the set of possible worlds for (L, K) is finite, and that ML,K represents

a unique, welldefined probability distribution over those worlds, irrespective
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of the interpretation and domain. These assumptions are:

Unique names Different constants refer to different objects;

Domain closure The only objects in the domain are those representable using

the constant and function symbols in (L, K);

Known functions For each function appearing inL, the value of that function

applied to every possible tuple of arguments is known, and is an element

of K [35].

The possible groundings of a predicate in 2.2.2 are obtained simply by replac

ing each variable in the predicate with each constant in K, and replacing each

function term in the predicate by the corresponding constant.

2.2.1 Learning

Once the grounded Markov Network is constructed, the next step in a MLN,

is to calculate the weights associated to each formula in the KB. There are

two approaches to weight learning in MLNs: generative and discriminative.

In generative learning, there is no separate notion of query or evidence atoms.

The weights are learned by maximizing the loglikelihood of the entire set

of ground atoms [30]. In particular, given a set of formulas and a database

of atoms, a training set, we wish to find the formulas’ maximum a posteri

ori (MAP) weights, e.g., the weights that maximize the product of their prior

probability (prior probability represents what we originally believed before

new evidence is uncovered) and the data likelihood. Since optimization is

typically posed as error function minimization, we will equivalently minimize

the negative loglikelihood [25].

Then, there is another weight learning approach called discriminative learn

ing. In discriminative learning, we know a priori which predicates will be used

to supply evidence and which ones will be queried [30]. In many applications,

like in classification problems, we know a priori which atoms will be evidence
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and which ones will be queried, and the goal is to correctly predict the latter

given the former.

2.2.2 Limitation on MLNs

One of the main application of supervised machine learning is to find asso

ciations between given information (features) and the target (the class, in the

case of classification) which has to be predicted. In the case of (probabilistic)

firstorder logic, this association can be interpreted as an implication, contain

ing some query predicate in the righthand side and some evidence predicates

in the left, as showed in the following formula:

Feature(x,a1,…,an) ∧ Feature(y,b1,…,bn) → Target(x,y) (2.3)

Following the standard approach of the MLNs we would associate a single

weight to such a formula and this would generate a too simple model consid

ering all the features equal and the respective MLN would merely learn the

classifier that predicts the most frequent realization of the predicate Feature

in the dataset. This approach would not take advantage of the discriminative

power of the features: it is instead necessary to learn different weights for

different combinations of features. A way to tacke this issue is to learn a dif

ferent weight for each possible combination of constants but this would lead to

a huge number of formulae: assuming that each variable a1, . . . , an, b1, . . . , bn

has k possible realizations (constants), then the number of generated formu

lae would be N = k2n. The exponential growth of the number of parameters

makes this approach unsuitable for the present application in almost any real

world problem. Another alternative is to avoid predicates of high arity by

splitting the equation (2.3) in a set of 2n different formulae. This can be done
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by replacing the predicate Feature in several different predicates Featurej:

Feature1(x,+a1) → Target(x, y)

. . .

Featuren(y,+bn) → Target(x, y)

(2.4)

Considering the formulae in (2.4) would create an MLN with 2n × k weights,

resulting in a much simpler model. Such an MLN would use only a linear

combination of the features, being exactly equivalent to a logistic regression

model with 2n multinomial input attributes [18]. On the other hand, in sev

eral related applications of machine learning to real world problems, it is fun

damental to use a nonlinear combination of the features in order to achieve

accurate predictions.

Another limitation of standardMLNs is that they cannot compare different

constants of the same type. If we consider for example a discrete attribute,

where there is an ordering between the outcome of the variable, for example a

rating system, in a logic representation there will be no direct information that

one value is closer to another one. This means that also realvalued attributes

cannot be directly used in Markov logic, while very often they represent a key

information for many tasks [23].



Chapter 3

Neural Integration of Markov

Logic Networks

3.1 Markov Logic Networks with grounding spe

cific weights

The solution proposed in [23] to overcome standardMLNs limitations consists

in assigning different weights to different groundings of the same firstorder

logic rule. In particular, each weight will depend on the specific groundings

of a subset of the variables appearing in the firstorder logic formula: these

variables are called selected variables. In [23], for weight learning, a discrim

inative approach is used and, therefore, the conditional probability of query

atoms Y given evidence X can be expressed with the following:

P (Y = y|X = x) = e
∑

Fi∈Fy

∑
j

ωi(gij ,θi)·nij(x,y)

Zx

(3.1)

where gij denotes the jth ground configuration of the selected variables in

the ith formula, ωi a realvalued parameterized function returning the weight

attached to each ground formula after the selected variables have been bound

to the constants in gij and nij(x, y) is the number of true groundings in (x, y)
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Figure 3.1: Weight assignment to a specific grounding of a firstorder logic
rule

matching gij . In general, θi is a parameter vector. The special case where θi is a

scalar and ωi = θi recovers standard MLN. In general, ωi can be any function,

computed for example using kernel machines or multilayer perceptrons. In

case of kernel logistic regression (KLR), for example, the weight attached to

ground formula gij will be computed as:

ωi(gij) = θT
i ϕ(gij) (3.2)

being ϕ the feature mapping induced by the kernel. In the following the

groundingspecific weights will be computed by neural networks as showed in

Fig.3.1. The introduction of neural networks to provide different weights for

different grounding of the same formula brings to the definition of predicates

which purpose is only to link a constant with its relative feature vector. These

predicates are called Feature Predicates. The truth value of these predicates is

always known and it is true for correct matching and false for incorrect ones.

This is important to provide the neural networks always with the correct inputs

for a specific grounding of a formula.
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3.2 Learning

We want to train the neural networks in order to maximize the pseudo log

likelihood of the entire set of ground atoms. This reflects the generative set

tings of the MLNweight learning. We can consider all the ground atoms of an

MLN as a set of random variables Y = (Y1, . . . , Yl, . . . , Yn) where Yl can as

sume values in {0, 1} depending on the truth value of the lth ground atom. We

learn MLN weights from one or more relational databases. We make a closed

world assumption: if a ground atom is not in the database, it is assumed to be

false. A database is effectively a vector y = (y1, . . . , yl, . . . , yn) where yl is

the truth value of the lth ground atom. Given a database, MLN weights can

in principle be learned using standard methods. Unfortunately, counting the

number of true groundings of a formula in a database is intractable, even when

the formula is a single clause. A more efficient alternative is to optimize the

pseudolikelihood, which is an approximation to the joint probability distri

bution of a collection of random variables. However, the pseudolikelihood

ignores nonlocal interactions between variables, and may lead to poor results

when inference across nonneighboring variables is required [39]. This is not

our case because in our experiment we are going to use a simple MLN with

few and simple rules.

Given a set of random variables Y = (Y1, Y2, . . . , Yn) the pseudolikeli

hood of Y = y = (y1, y2, . . . , yn) is:

P ∗
w(Y = y) =

n∏
l=1

Pw(Yl = yl|MBy(Yl)) (3.3)

where MBy(Yl) is the state of the Markov blanket of Yl in the database.

To calculate the pseudolikelihood Pw(Yl = yl|MBy(Yl)) of each variable
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given the state of its Markov Blanket in the database, we have to recall the Lo

cal Markov property of the Markov Random Fields, which states that a vari

able is conditionally independent of all other variables given its neighbours:

Xv ⊥⊥ XV \N [v]|XN(v) (3.4)

In a undirected graphical model, one can show that a node’s Markov blanket

is its set of immediate neighbors. So, in our case, considering Yl the node

correspondent to a certain variable and X all the other variables, we will have:

Yl ⊥⊥ X\cl(Yl)|MB(Yl) (3.5)

where cl(Yl) ≜ MB(Yl)∪{Yl} is the closure of node Yl. By the independence

we have that:

Pw(Yl = yl|X = x) = Pw(Yl = yl|MBy(Yl)) (3.6)

This result allows us to use the equation (3.1) for the computation of the

pseudolikelihood of the single variable, considering the variable itself as the

query atom and the variables of the Markov Blanket as the evidence atoms.

We can summarize (combining (3.3), (3.1) and (3.6)) the final result with

the closed form of the pseudolikelihood of the world y = (y1, y2, . . . , yn)

P ∗
w(Y = y) =

n∏
l=1

e
∑

Fi∈Fyl

∑
j

ωi(gij ,θi)·nij(MBy(Yl),yl)

ZMBy(Yl)
(3.7)

Defining l(θ) = log P (Y = y; θ) as the pseudo loglikelihood, it can be shown

that the gradient with respect to a generic parameter θik contributing to weight

ωi is:
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∂l(θ)
∂θik

= ∂l(θ)
∂ωi

∂ωi

∂θik

=

=

 n∑
l=1

[
ni(x) − Pw(Yl = 0|MBy(Yl))ni(y[Yl=0])

− Pw(Yl = 1|MBy(Yl))ni(y[Yl=1])
] ∂ωi

∂θik

(3.8)

where ni(y[Yl=0]) is the number of true groundings of the ith formula when

we force Yl = 0 and leave the remaining data unchanged, and similarly for

ni(y[Yl=1]). The partial derivatives ∂ωi/∂θik can be obtained by the backprop

agation of the neural network.

One of the main advantages in using this approach is that computing (3.8)

(or (3.7)) does not require inference over the model and the computation can

be made more efficient noting these things:

• Considering only the Markov Blanket, the sum in (3.8) can be sped up

by ignoring predicates that do not appear in the ith formula;

• We can compute only once the counts ni(x), ni(y[Yl=0]) and ni(y[Yl=1])

given that they do not change with the weights;

• We can ignore ground formulaswhose truth value is unaffected by chang

ing the truth value of any single literal leading to the equality of the

counts in the summation, specifically ni(x) = ni(y[Yl=0]) = ni(y[Yl=1]).

This can often be the great majority of ground clauses because it holds

for any clause which contains at least two true literals.



3.3 Implementation 18

3.3 Implementation

3.3.1 Syntax and notation

In order to show the implementation of Markov logic networks with ground

ing specific weights, we use a purposely modified version of the “Smokers”

dataset [35] which is a classical example in statistical relational learning lit

erature. Here, three relations are defined on a set of constants representing

people: the unary predicate Smokes identifies those people who smoke, the

unary predicate Cancer identifies those people who have a cancer and the bi

nary predicate Friends indicates that two people are friends. This dataset is

often used to show how a statistical relational learning algorithm can model a

distribution by finding a correlation of smoking habits of friends.

MLN and Database definition

The main files used for running a simulation are the MNL and the DB file.

The MLN file contains all the predicates and the formulas used as we can see

here

# Predicate declaration

Person(id,&person)

Cancer(id)

Friends(id,id)

Smokes(id)

# Formula declaration

Person(a,$pa) ∧ Smokes(a) → Cancer(a)

Person(a,$pa) ∧ Person(b,$pb) ∧ Friends(a,b) → (Smokes(a) ↔

Smokes(b))

while the DB file contains the evidences of our world

Person(Ann, ANN)

Person(Bob, BOB)

Cancer(Ann)
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!Cancer(Bob)

!Friends(Ann,Bob)

Predicate declaration

In predicate declaration, we allow a type T to be preceded by an ampersand (&

character): this indicates that constants C1, . . . , Cn of type T found in the .db

file are not just simple constants, but pointers to feature vectors. In particular,

the name of constant Ck will be the index of the feature vector associated with

that constant within the features file.

For example, if we declare the following predicate

Person(id, &person)

and in the .db file we find the following ground predicate

Person(Ann, ANN)

then, constant named ANN will point to vector of features: in this case, the

features associated to the person Ann.

Rule declaration

In order to declare a rule with groundingspecific weights, in rule declaration

we allow the presence of dollar symbols ($ character) preceding variables: for

example, if in a certain rule two variables x and y are both preceded by a dol

lar sign $, then the firstorder formula will be associated to a neural network

which will compute groundingspecific weights, taking in input the informa

tion given by the realizations of variables x and y. Let us clarify this idea with

an example. Consider the following predicates and formula:

Person(id, &person)

Friends(id, id)

Smokes(id)

Person(a,$pa) ∧ Person(b,$pb) ∧ Friends(a,b)



3.3 Implementation 20

→ (Smokes(a) ↔ Smokes(b))

In this case, we have a formula with two dollars, corresponding to two person

variables, pa and pb. Type person has a & in Person predicate declaration, so

person constants will point to feature vectors (see Section 3.3.1), which will

be the input to the neural network. Suppose for example that in the .db file the

following two ground predicates exist:

Person(Ann,ANN)

Person(Bob,BOB)

Then, the weight of the following ground formula

Person(Ann,ANN) ∧ Person(Bob,BOB) ∧ Friends(Ann,Bob)

→ (Smokes(Ann) ↔ Smokes(Bob))

will be computed by a neural network which takes in input the vectors of fea

tures indexed by ANN and BOB constants in the global features file. In this way,

each grounding of the firstorder clause will have a different weight. The fea

tures file will be organized one vector per line, indexed by the constant names,

as follows:

3.3.2 Grounding

One of the innovation introduced in the framework regards the grounding side.

In fact, in general, for each formula all the possible groundings are made, lead

ing also to some meaningless configurations. We tackled this issue by acting

on the Feature Predicate and considering acceptable only the ones inside

the DB file. In this way, considering the smokers example, the grounding of

the Feature Predicate
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Person(id,&person)

will only generate as groundings

Person(Ann,ANN)

Person(Bob,BOB)

and not also

Person(Ann,BOB)

Person(Bob,ANN)

that will lead to feed the neural network with the wrong features.

3.3.3 Learning algorithm

The learning part of the framework consists of two main parts: the preparation

and the training.

Preparation

This is done only once before starting the training of the neural networks and

creates the variables that will be used, at training time, for taking into account

the logical part of the problem. The output dictionaries of this part are:

• A dictionary containing, for each variable, the indexes of the grounding

of the formulas that the variable makes true;

• A dictionary containing, for each grounding of each formula, the num

ber of times that each value of the variable makes that grounding true.

In fact, in this part an iteration on all the groundings of the formulas is done,

for each grounded formula all the values of the variable associated to each

grounded atom are considered. In our case we only consider binary variables

because the atoms can be true or false. Then, for each of these values, the

evidenceworld is updated accordingly and the truth value of the corresponding

formula is checked. In case it is true the dictionaries are updated properly.
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Training

The training is implemented with a standard training loop where the forward

pass consist of feeding all the neural networks with the respective vectors of

features. Then the output weights are used to calculate the likelihood (3.7) of

the evidence database using the dictionaries obtained in the preparation phase.

The backpropagation is done automatically with the automatic differentiation

implemented in Pytorch and it is enhanced by multiplying all the weights by

the gradient of the MLN.



Chapter 4

Experiments

The framework presented has been thought with a versatility principle: able

to adapt or be adapted to many different functions or activities. With this in

mind, it can be applied to any deep learning task regardless of the symbolic

rules. In fact, if there are no constraints to be satisfied, it will behave like a

standard neural network. In this chapter we will go through one of these exam

ples, showing how to translate a typical deep learning task into an MLN and

an experiment performed on an Argument Mining task which will benefit of

the symbolic rules introduced with the framework. This happens because typ

ically the argumentative components of a document are interconnected with

each other, so as to form an argumentative graph. The task of classifying a

single component (or relationship) would probably benefit from considering

not only the attributes of the component itself but also the attributes of the

components and of the relationship that belong to the same neighborhood in

the argumentative graph.

4.1 Multiclass Classification with MNIST

Multiclass classification is the problem of classifying instances into one of

three or more classes. Each sample can only be labeled as one class. For

example, classification using features extracted from a set of images of fruit,
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where each image may either be of an orange, an apple, or a pear. Each image

is one sample and is labeled as one of the 3 possible classes. Multiclass clas

sification makes the assumption that each sample is assigned to one and only

one label  one sample cannot, for example, be both a pear and an apple.

The MNIST database (Modified National Institute of Standards and Tech

nology database) is a large collection of handwritten digits. It has a training

set of 60,000 examples, and a test set of 10,000 examples. It is a subset of

a larger NIST Special Database 3 (digits written by employees of the United

States Census Bureau) and Special Database 1 (digits written by high school

students) which contain monochrome images of handwritten digits. The digits

have been sizenormalized and centered in a fixedsize image. The original

black and white (bilevel) images from NIST were size normalized to fit in

a 20 × 20 pixel box while preserving their aspect ratio. The resulting im

ages contain grey levels as a result of the antialiasing technique used by the

normalization algorithm. The images were centered in a 28 × 28 image by

computing the center of mass of the pixels, and translating the image so as to

position this point at the center of the 28 × 28 field [22]. The task consists to

classify the image of a digit into the relative digit.

Figure 4.1 shows the Markov Logic Network related to this task. We can

see that we only need two predicates: one Feature Predicate Digit to link each

sample to the feature vector representing the image and a predicate Number

used as the variable for the classification. For the network part, we have only

a neural formula which takes care of the classification of the digit.

For example, if in the Database we have Digit(ID0,F0), the framework

will generate the following groundings for the neural formula:

Digit(ID0, F0) → Number(ID0, 0)

Digit(ID0, F0) → Number(ID0, 1)

Digit(ID0, F0) → Number(ID0, 2)

Digit(ID0, F0) → Number(ID0, 3)

Digit(ID0, F0) → Number(ID0, 4)
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Digit(ID0, F0) → Number(ID0, 5)

Digit(ID0, F0) → Number(ID0, 6)

Digit(ID0, F0) → Number(ID0, 7)

Digit(ID0, F0) → Number(ID0, 8)

Digit(ID0, F0) → Number(ID0, 9)

The weight of each grounded formula corresponds to the relative output of the

Convolutional Neural Network (CNN) used for the classification (e.g the out

put 0 is the weight of the formula Digit(ID0, F0) → Number(ID0, 0))

and in case the Database contains Number(ID0,5) the training will push the

output 5 of the CNN to an higher value with respect to the others.

Figure 4.1: MLN of the MNIST experiment

4.1.1 Experiments

To show the capability of our approach to recover a subsymbolic approach in

purely subsymbolic tasks, wemake an experiment on theMNIST dataset. Due

to the fact that for each digit the framework generates 11 variables (1 Feature

Predicate and 10 predicates for each possible digit), using the whole dataset of

60,000 samples for training would have generated 660,000 variables, making

the whole task unfeasible in the grounding phase. So, we have limited the

number of training samples to 2,000 since we are only interested in showing

that the behaviour, in comparison the pure neural network approach, is the

same.
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For what concerns the networks’ architecture, we rely on a simple architec

ture made of two convolutional layers followed by two fullyconnected lay

ers for the classification. We use ReLU as activation function and employ

dropout after the two central layers. To avoid overfitting both methods are

trained with earlystopping on the accuracy score of the class classification,

using a patience of 100 epochs.

Table 4.1 reports the results of our experiment on the whole validation

set. The evaluation has been done on the accuracy of the predictions. We can

notice, from the results, that the two method are completely equivalent and

the negligible difference can be attributed to stochastic variations in training

phases. This confirms that our method can behave like a pure neural model in

absence of symbolic rules.

Neural Nets GSMLN

Validation set 96.36 96.55

Table 4.1: Experiment on MNIST dataset. The first column presents the pure
neural training and the second one the training involving GSMLN. Scores are
reported as percentage values.

4.2 Argument Mining

Argument Mining (AM) is a discipline that stems fromNatural Language Pro

cessing (NLP) and Knowledge Representation and Reasoning (KRR) [5] with

the goal to automatically extract arguments and their relations from a given

natural language document [24]. It has been defined as the general task of

analyzing discourse on the pragmatics level and applying a certain argumen

tation theory to model and automatically analyze the data at hand [17]. AM’s

goal is therefore the extraction of structured information from raw textual

sources, giving an understanding of the relations between single arguments

and the complex structure they create. Among the many useful and practical
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applications of such a discipline, it can be used to perform factchecking and

recognize misleading content [8, 13], support decision making in healthcare

application [29] and the legal domain, improve the understanding of the po

sition of political candidates [31], support teachers in an educational context

[26], and support debate technology [40]. AM can be generally divided into

a series of subtasks [5, 21, 24] that are often addressed in a pipeline fashion.

Typically, there is a first phase of component detection followed by a relation

prediction task. Component detection consists of extracting the arguments

from the document, detecting their boundaries, and classifying them. Two

examples of components type are claims and evidences. The former may be

opinions and hypotheses expressed by the author, while the latter are facts and

objective information that are reported in the document. The following step is

the relations prediction, whose purpose is to establish which components are

in an argumentative relationship (link prediction) and what type of relation

ship do they have (relation classification). Two examples of relationships are

support and attack. The former is when an evidence component does provide

information based on which a claim can be made, while the latter is when two

claims contradict each other and therefore can not both be true at the same

time.

All these subtasks can be addressed independently, but, since the infor

mation obtained by one of them can give a meaningful insight on the other, it

is beneficial to address them together. In fact, the argumentation model and

the domain of the documents often provide information regarding constraints

and rules that may regulate the type of the components and their relationships.

This is the reason why most of the approaches adopt a pipeline scheme in or

der to exploit the knowledge gathered in the component detection to perform

the more challenging task of relation prediction. Another method is to use

systems that jointly learn to perform both tasks, often creating a highlevel

representation of the problem during the process. The development of new

advanced Deep Learning techniques for NLP has had a beneficial impact on
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this field, leading to great results in some AM areas. However, more work is

still required and despite the already made attempts to integrate this knowl

edge into DL approaches, the proper formal integration of the two worlds in

this domain has not been carried on yet.

4.2.1 Neurosymbolic Argument Mining

Argumentation mining requires an ability to exploit common sense knowl

edge, typical of human reasoning, to understand whether a given piece of ev

idence supports a given claim, or whether two claims attack each other. The

tasks involved in the AM systems, from the simpler one like argument compo

nent detection to more complex one like argumentation structure prediction,

have seen a great improvement in the recent years due to the development of

new deep learning techniques in the field of NLP. Despite this great advance

of deep neural networks in NLP, we claim that, in case of AM, using these

strategies alone will no longer be enough to tackle such complicated issues.

On the other hand, structured arguments have been studied and formalized for

decades using models expressed in a logic framework [2] with knowledge ex

pressed in the form of rules and constraints to AM. So far, these two worlds

have advanced largely independently of each other, but we count on that a

large advancement in AM ought to come from the combination of symbolic

and subsymbolic approaches, such as these developed in the Neural Sym

bolic (NeSy) [4] or Statistical Relational Learning (SRL) [9, 16, 19] commu

nities. These approaches, differently from simple techniques of applying a set

of rules on the output of a neural network, can directly enforce (hard or soft)

constraints during training and, in so doing, penalizing a solution that does not

satisfy them. Consequently, we can train different neural networks for differ

ent tasks (e.g one to classify argument components and one to detect links

between them) and, during the training process, impose global constraints to

tune the weights of the networks to have valid solutions. Apart from the work
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described in this thesis, there are many systems that enable this scheme, such

as DeepProblog [27] and Logic Tensor Network [37], that we are going to use

for comparison in the experiments.

Logic Tensor Networks (LTN) [11, 12, 38, 37] is a framework that inte

grates firstorder manyvalued logical reasoning [3] with tensor networks [34],

implemented in TensorFlow [1]. By combining neural networks with first

order fuzzy logic it allows efficient learning from noisy data in the presence

of logical constraints, and reasoning with logical formulas describing general

properties of the data. It uses a differentiable firstorder logic language, called

Real Logic, to incorporate data and logic. LTN belongs to the “tensorization”

approaches, a class of undirect neurosymbolic approaches [33] which embed

First Order Logic entities, such as constants and facts, into realvalued ten

sors. Hence, it is possible to use FOL to impose soft constraints at training

time and to verify and investigate properties at test time. LTNs are limited to

the application of the knowledge at training time [36].

4.3 Dataset and Rules

4.3.1 AbstRCT

The AbstRCT Corpus [29] extends a previous work [28], and consists of ab

stracts of scientific papers regarding randomized control trials for the treat

ment of specific diseases (i.e. neoplasm, glaucoma, hypertension, hepatitis b,

diabetes). The final corpus contains 659 abstracts, for a total of about 4000

argumentative components. The dataset is divided into three parts: neoplasm,

glaucoma, and mixed. The first one contains 500 abstracts about neoplasm,

divided into train (350), test (100), and validation (50) splits. The remaining

two are designed to be test sets. One contains 100 abstracts for glaucoma,

while the other contains 20 abstracts for each disease. Components are la

beled as EVIDENCE (2808) and CLAIM (1390), while relations are labeled
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as SUPPORT (2259) and ATTACK (342). Out of 25,000 possible pairs of

components, about 10% of them have a relationship.

4.3.2 Rules and MLN definition

Following the directives in 3.3.1 we have to define a Feature Predicate Text

which links each statement to the relative feature vector, then we have a pred

icate Type that define the type of the statement among Claim and Evidence

and a third predicate Link to establish which components are in an argumen

tative relationship.

Given that we are interested in component classification and link predic

tion, we define two neural formulas linked to two neural networks whose pur

pose is to output the weight relative to the classification variable.

For what concerns the hard rules that characterize the GSMLN approach,

from the properties of the dataset we can extract two axioms:

• no symmetric link can exist, so if there is a link between two components

there must be no inverse link. This rule can be stated in first order logic

formalism in this way:

Link(id1, id2) → !Link(id2, id1) (4.1)

• transitivity property of claims, or better claims can be linked only to

other claims, so if a component is classified as a claim and it is linked

to another component, then also this component is of type claim. This

rule can be stated in first order logic formalism in this way:

Type(id1, Claim) ∧ Link(id1, id2) → Type(id2, Claim)

(4.2)

Figure 4.2 summarize the Markov Logic Network previously described.
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Figure 4.2: MLN of the AbstRCT experiment

4.4 Method and Architecture

4.4.1 Architecture

We tackle both component classification and link prediction as classification

tasks. We define two neural networks TypeNetwork and LinkNetwork, ded

icated respectively to component classification and link prediction. The first

network takes a component as input and produces a probability distribution

over the possible component classes as output. The second one receives two

components and outputs a probability distribution over 0 and 1 which repre

sents the probability of the existence of an argumentative link between two

components. For sentence embeddings, we have decided to use GloVe [32]

embeddings of size 25, averaging over the words of the sentences. We have

chosen this method for sake of simplicity and because it allows us to obtain

lowdimensional embeddings without the need of training new embeddings

or relying on dimensionalityreduction techniques that may invalidate the ex

pressiveness of the embeddings. For what concerns the networks’ architec

ture, we rely on a simple architecture made of three stacked fullyconnected

layers and a softmax classifier. We use ReLU as activation function, and em

ploy dropout with probability p = 0.4 after each layer.
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4.4.2 Method

To compare the approaches and evaluate if the use of symbolic rules yields

positive results, we perform a baseline training relying only on the data. In

order to compare, also, our system with an already existent framework we

decided to use Logic Tensor Network with the same architecture as done in

[14].

Then, for using our approach, we have tried to introduce the logical rules

in different ways: training the whole model from scratch with the rules or

doing a neural pretraining and a logical fine tuning with the axioms. We saw

that doing everything from the beginning was not only slower but also worse

in terms of performance with respect to the baseline. So, we tought that pre

training the models would benefit because it brings the model on the right path

and then the fine tuning allow the model to refine itself with logical rules. To

avoid overfitting, the baseline is trained with earlystopping on the F1 score of

the link prediction, using patience of 1000 epochs, while the GSMLN consist

of a further training with earlystopping, on the same metric, with a patience

of 100 epochs.

Since the training of neural models is nondeterministic, the results of a

single training are influenced by the random seed that is used, thus they may

not be reliable or reproducible. We have therefore decided to extend our ini

tial analysis, repeating the training procedure 20 times, with different seeds,

obtaining for each configuration 20 trained neural networks. We evaluate our

models in two different ways. At first, we consider for each metric the aver

age of the scores (AVG) obtained by every single network. Then, we evaluate

the predictions obtained using all the 20 models in ensemble voting. In our

ensemble setting the class of each entity is assigned as the class voted by the

majority (MAJ) of the networks. We train an ensemble of 20 networks both

for TypeNetwork and LinkNetwork, and evaluate the aggregated output.

The evaluation of the two approaches will be based on several aspects. We
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will measure the F1 metrics regarding link prediction and component classi

fication, to assess if the rules improve the performance of the models. Then,

we will compute the degree of agreement between the networks related to the

predictions of the ensemble.

4.5 Experimental Results

Table 4.2 summarizes the results of our experiments. The results for the LTN

experiments are taken from [14]. For the classification tasks, we report the

F1 score for each class and the macroF1 score for component classification.

For the link prediction task we report the F1 score for each class. To mea

sure the agreement between the models of the ensemble we use the Krippen

dorff’s alpha [20]. For what concerns the AM tasks, the difference between

the MAJ and AVG approaches is negligible in both the rulebased and the no

rules setting either for component classification and for link prediction, where

the difference is at most 2 percentage points. The presence of rules seems

to be beneficial especially for the task of link prediction, where the networks

perform consistently better than the ones trained without rules. In compari

son with LTNs, our approach performs better in predicting the link relation

in all the datasets. Conversely, our approach has performed slightly worse on

component classification with respect to the other twomethods, but such a dif

ference is not present in all the datasets. The agreement between the networks

is at least acceptable in all the settings, with higher values for component clas

sification. The use of rules leads to a decrease in terms of agreement for link

prediction despite being still acceptable, while it brings no difference for com

ponent classification, except for LTNs where we can see a drop.
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Only Data LTN GSMLN

Test set Aspect Criterion MAJ AVG MAJ AVG MAJ AVG

Components 80 79 79 78 80 79

Evidence 86 86 84 83 86 86

Classification Claim 74 73 74 74 75 73

Neoplasm Link 35 35 35 35 37 37

NoLink 83 83 85 85 88 88

Agreement Component class. 86 79 86

Link prediction 79 70 70

Components 79 78 81 82 78 78

Evidence 88 88 88 88 88 88

Classification Claim 69 68 75 75 68 68

Glaucoma Link 46 47 47 45 48 49

NoLink 88 88 90 89 92 92

Agreement Component class. 81 75 81

Link prediction 79 71 69

Components 79 78 81 80 78 78

Evidence 86 86 86 85 86 86

Classification Claim 71 70 76 75 70 70

Mixed Link 39 39 39 40 39 40

NoLink 85 85 87 87 89 89

Agreement Component class. 84 76 84

Link prediction 79 69 70

Table 4.2: Results of neurosymbolic AM on AbstRCT. The first two columns
presents the baseline approach, the following two the approach involving LTN
and the last two the approach involving GSMLN. Scores are reported as per
centage values.
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4.6 Discussion

In the framework, logic rules play an important role during the training pro

cess of the neural networks. The definition of training rules requires only to

know first order logic, without the need to have any expertise regarding ma

chine learning, neuralsymbolic systems, or deep networks. The decoupling

between the symbolic and the neural part allows changing either of them with

out any direct impact on the other. This holds for both the hybrid approaches

that has been considered. Furthermore, in our work, the symbolic part can be

plugged in at any time of the training giving rise to different learning config

urations by switching between the two even from one epoch to another. Such

modularity would be also highly beneficial in the context of AM, allowing to

easily use the same neural architecture in different contexts, since differences

across corpora can be expressed through different symbolic rules [14].

Our results show how the introduction of two symbolic rules has given a

positive contribution to the task, increasing the accuracy of the link prediction.

Even if the architecture used for the experiment is relatively simple and the

results may be not comparable with the state of the art, we think that the impact

of rules may hold even for more advanced models.



Chapter 5

Conlusions and Future Works

Nowadays there is increasing awareness of the importance of the subfield of

neurosymbolic in the AI community. Probably, this is also occurring at a

point in time when we are starting to discover and recognize the inherent lim

itations of pure deep learning approaches. The use of additional background

knowledge is a natural way to try to further improve deep learning systems,

and much of this line of work falls into the neurosymbolic AI field. The gen

eral opinion appears to be that combining neural and symbolic approaches is

at least a path forward to much stronger AI systems and towards humanlevel

artificial intelligence.

The purpose of this thesis has been the implementation of a neurosymbolic

framework to merge symbolic and subsymbolic reasoning. We started from

Markov Logic Networks, which already combine logic and probability by at

taching weights to firstorder clauses, then we introduced neural networks to

provide different weights for different grounding of the same formula and, in

so doing, we injected subsymbolic capabilities into MLNs.

To test the integration, we have decided to use a task of Argumentation

Mining, a research field that both symbolic and subsymbolic approaches find

challenging. We have compared our approach to a baseline using only data

without rules and to another neurosymbolic framework, Logic Tensor Net

works. Our results have shown that using a neuralsymbolic framework to
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introduce logical rules during the training process gives a positive contribu

tion to the task, increasing the accuracy of the link prediction and performs

slightly better than LTN.

The framework is still in an early stage and a future development could be

an effort to optimize the computation of the pseudolikelihood. The current

implementation provides a nesting of three forloops for the computation of

the pseudolikelihood of a single variable, and, since it has to be computed for

all variables, it produces a sequential bottleneck on the whole training step.

This is due to the iterations on the dictionaries that embed the symbolic part.

Given that they are based on values computed at the beginning of the training

algorithm, they can be redesigned into data structures (e.g., three dimensional

sparse matrices with formaulas as rows, groundings as columns and variables

as pages) that can avoid a sequential computation and enrich the feature vector

of each variable with information on the symbolic part (e.g., add the variable,

formula and grounding indices to the feature vector) to retrieve, in a constant

computational cost, the data needed. This could also benefit of the parallel

computation on GPUs and increase a lot the speed of the process.

Another aspect to consider is that, given that the implementation of the

learning algorithm follows the generative approach, we do not take advantage

of known predicates which can be used to supply evidence. Moreover, the

implementation with pseudolikelihood may lead poor results when inference

across nonneighboring variables is required. This can be tackled by extending

the framework with a discriminative learning approach using the conditional

likelihood, which will not be so different from what we already do with the

Feature Predicates whose truth value is always known.

In conclusion, an improvement can be done also on the grounding of the

Database optimizing the process for using larger datasets. After this, it would

be interesting to test our approach on problems with a richer, more expressive

domain than the datasets we used here.
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