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C’e stato un momento in cui ho pensato:

“non ce la faccio, non ce la posso fare da solo”
Poi ho chiuso gli occhi

e ho immaginato me stesso mentre agivo.

E ce I’ho fatta: ho superato la paura e ce I’ho fatta.
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Abstract

The impact of Deep Learning is due to the ability of its algorithm to mimic
purely instinctive decisions, by reaching human-like performance in many iso-
lated tasks, like image recognition or speech recognition. However, on the
way to general artificial intelligence, which comprehend the set of cognitive
abilities that gives machines a human-like intelligence it is extremely diffi-
cult to believe that these techniques, in an isolated way, can lead to a turning
point. This because humans are still capable of performing more abstract and
conscious reasoning processes on top of these instinctive tasks. This condi-
tion makes the need of a more complex and general theories, where the deep
learning techniques constitutes only an ingredient of the final recipe.

In this thesis, we propose an implementation of a neuro-symbolic frame-
work to merge symbolic and sub-symbolic reasoning and we aim to investigate
how this integration improves deep learning systems with the use of additional
background knowledge in form of symbolic rules. Starting from Markov
Logic Networks we introduce neural networks to provide different weights
for different grounding of the same formula and we inject sub-symbolic capa-
bilities into MLNs.

Then, to test our implementation, we move to Argument Mining, a com-
plex NLP task whose goal is the extraction of structured information from raw
textual sources. We compare our approach to a baseline using only data with-
out rules and to another neuro-symbolic framework, and establish that using
logical rules during the training process gives a positive contribution to the

task.
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Chapter 1

Introduction

1.1 Motivations

Artificial Intelligence (Al) is expected to be the next huge technological revo-
lution, which is already shaping each and every aspect of our everyday lives.
Automotive, banking, energy, fashion, healthcare, manufacturing are only a
few among all the fields in which Al is making improvements and this trend
can only increase in the next years.

Its impact has only been felt by the world in these last years, thanks to
the advancement of a class of techniques, called deep learning, whose explo-
sion in research and together with a huge improvement of the hardware, made
possible the solution of tasks, such as image recognition, speech recognition,
natural language understanding, which only few years earlier were deemed
solvable only by human intelligence.

The advantage of the deep learning algorithms is their ability to mimic
those human decisions that are more purely instinctive rather than due to a
careful analysis. These kind of decisions include the associative tasks: if we
look at an image of a car, we will say that it is a car without consciously con-
sidering each single part of it and analyze them, being a pure associative an-
swer. This success of deep learning can be attributed to a paradigm shift from

the original AI which was more interested in miming the conscious reasoning
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process typical of human intelligence.

At this point we can ask ourselves if deep learning can be considered on
the way to general artificial intelligence, which comprehend the set of cog-
nitive abilities that gives machines a human-like intelligence. Even though
there is no doubt that deep learning is making a lot of progress in this direc-
tion, it is also true that humans are still capable of performing more abstract
and conscious reasoning processes on top of these instinctive tasks. In fact, re-
calling the image example, after having recognized the car, the human viewer
will also try to check if a logical analysis of its answer make sense or not.
This analysis goes in the direction of the reasoning process which is the Al
approach before deep learning and is likely to be beneficial for this and other
similar tasks in the future.

This example highlights how the human intelligence is a continuous inter-
action between these two mechanism: the former that is instinctive, fast, due
to many similar experiences, and the latter that is slow and careful, generaliz-

ing single experience in general rules.

1.2 State-of-the-art

Neural-symbolic integration [15] is the task of merging symbolic and sub-
symbolic reasoning. This work has a long history but it has taken a new look
after the deep learning explosion as a new Al research subfield. There are two

major ways of performing this integration.

 Exploit neural techniques to improve purely symbolic tasks. This can be
done in several ways. To begin with, thanks to their particular layered-
structure of hidden variables, neural models are usually much faster in
performing inference and they can be effectively used to perform a fast
approximate inference [6, 7, 41]. In addition, neural models usually
deal with subsymbolic representations of elements of the world under

investigation allowing the exploitation of the particular geometry of the
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perceptual world to simplify inference [10]. Indeed, at the end of the
day, except very isolated cases, humans themselves reason about the
world around them and not about abstract entities. Moreover, when
this perceptual space is not known, lot of neural models still assume
its existence and they encode a vectorized representation to symbolic

entities, which is optimized as a parameter of the learning problem.

» Exploit symbolic techniques to relate multiple neural tasks. In multi-
task learning, there are neural models solving multiple tasks simultane-
ously and in most of (if not all) the cases tasks are not isolated but are
related to each other. This is sometimes referred to as structured predic-
tion or structured learning, like in argument mining as we will see later.
Structure is an high level source of knowledge, much more clean and
valuable than single examples and it could improve neural models since
it describes a lot of data in a compact way. So, embedding structure in

a deep learning task would, in theory, bring a boost in performance.

Despite the consciousness of the importance of such an integration between
the approaches, the development of a unifying theory is still missing. There
are many valuable contribution but, probably due to the heterogeneity of skills
of researchers needed, also a lot of confusion on how to compare the methods
to underline the common features and the differences. This condition makes
the need of a unified and broad theory describing multiple approaches and able
to recover a symbolic approach in purely symbolic tasks and a subsymbolic

approach in purely subsymbolic tasks.

1.3 Contributions

The major contributions of the thesis are as follows:

* Implementation of a neuro-symbolic framework combining the nerual

networks with the symbolic method of the Markov Logic Networks
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based on [23]

* Proposal of a method for learning weights of formula in combination

with neural networks

» Application of the framework to an argumentation mining task

1.4 Outline

This thesis is structured as follows.

Chapter 2 introduces basic concepts necessary for the rest of the disserta-
tion. In particular, the formalism of First Order Logic which is the ba-
sis of many approaches for expressing complexly structured knowledge.
Then, Markov Logic Networks are introduced to apply first-order logic
to practical Al problems and they are the basis of our neuro-symbolic

integration.

Chapter 3 begins by describing ground-specific Markov Logic Networks [23]
and introduces our approach to implement the integration of neural net-
works into MLNs. Then it goes more in details into the implementation

describing the features, the syntax and the learning algorithm.

Chapter 4 describes the experiments done with the system. It first begins
with a pure neural task, a multi-class classification problem, showing
that without logic rules the framework behave like a standard neural
network. Then, after introducing argument mining, our approach is ap-
plied to a related task to show how the introduction of rules improves

the performances of the model.

Chapter 5 draws the conclusions of the presented work and introduces pos-

sible future improvements.



Chapter 2

Literature Review

2.1 First Order Logic

A logic is a formal system of sentences, supplied with syntax and semantics,
together with mechanisms for asserting and deducting the truth of sentences.
By making different ontological assumptions and by restricting the set of well-
formed sentences, different logics can be introduced. The simplest, and most

abstract logic we can study is called propositional logic.

Definition 2.1.1 (Proposition). A proposition is a statement that can be either

true or false; it must be one or the other, and it cannot be both.

First-Order logic is a generalization of propositional logic. Propositional
logic can represent propositions, whereas first-order logic can represent in-
dividuals and propositions about individuals. For example, in propositional
logic from Socrates is a man and If Socrates is a man then Socrates is mortal
the conclusion Socrates is mortal can be drawn. In first-order logic this can
be represented much more fine-grained. From Socrates is a man and All man
are mortal the conclusion Socrates is mortal can be drawn.

In first order logic, formulas are constructed using four types of symbols:

constants, variables, functions, and predicates. Constant symbols represent
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objects in the domain of interest (e.g., people: Anna, Bob, Chris, etc.). Vari-
able symbols range over the objects in the domain. Function symbols (e.g.,
Mother0f) represent mappings from tuples of objects to objects. Predicate
symbols represent relations among objects in the domain (e.g., Friends) or
attributes of objects (e.g., Smokes). An interpretation specifies which objects,
functions and relations in the domain are represented by which symbols. Vari-
ables and constants may be typed, in which case their values range only over
objects of the corresponding type. For example, the variable z might range
over people (e.g., Anna, Bob, etc.).

A term is recursively defined as consisting of either a constant, a variable
or a function applied to a tuple of terms. A term is said to be ground, if it
contains no variables. An atomic formula or atom is a predicate symbol ap-
plied to a tuple of terms (e.g., Friends(x, Mother(Of (Anna))). Formulas
are recursively constructed from atomic formulas using logical connectives
(disjunction V, conjunction A, negation —, implication — and equivalence
+>) and quantifiers (universal V and existential ). A positive literal is an
atomic formula; a negative literal is a negated atomic formula. A ground
atom or ground predicate is an atomic formula all of whose arguments are
ground terms. The Herbrand base of a FOL theory (set of sentences in First
Order Logic) is the set of all ground atoms constructed using the predicates,
functors and constants of the theory. A Herbrand interpretation, also called a
(possible) world, is an assignment of a truth value to all atoms in the Herbrand
base. A formula is satisfiable iff there exists at least one world in which it is
true.

A first-order knowledge base (KB) is a set of sentences or formulas in first-
order logic. Logical inference in first-order logic is the problem of determining
if a knowledge base K B entails a given formula F', denoted K B = F, which
means that F' is true in every world where all formulae in K B are true. For au-
tomated inference, it is often convenient to convert formulas to a more regular

form, typically Conjunctive Normal Form (CNF), also known as clausal form.
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A KB in clausal form is a conjunction of clauses, which consist of a disjunc-
tion of literals. Inference in first-order logic is only semidecidable. Because
of'this, knowledge bases are often constructed using a restricted subset of first-
order logic with more desirable properties. The most widely used restriction

is to Horn clauses, which are clauses containing at most one positive literal.

2.2 Markov Logic Networks

Markov Logic Networks (MLNs) [35] implement a probabilistic logic pro-
viding a general interface to integrate learning and probabilistic inference. In
particular, first-order logic is used to define boolean Markov Random Fields
(MRFs). A first-order KB can be seen as a set of hard constraints on the set
of possible worlds: if a world violates even one formula, it has zero proba-
bility. The basic idea in MLNSs is to soften these constraints: when a world
violates one formula in the KB it is less probable, but not impossible. The
fewer formulas a world violates, the more probable it is. Each formula has
an associated weight that reflects how strong a constraint it is: the higher the
weight, the greater the difference in log probability between a world that sat-
isfies the formula and one that does not, other things being equal. MLNs can
be exploited to mostly carry out both inference and weight learning of the log-
ical rules involved in a learning process. MLNs incorporate logical semantics
defining feature functions into probability distributions to create models that
capture both the structure and the uncertainty in machine learning tasks.

In particular, MLNs rely on the notion of Markov random field. An MRF
is a probabilistic graphical model for the joint distribution of a set of variables
and it is composed of an undirected graph expressing the variable dependen-
cies and a set of potential functions. For each variable it is considered a node
in the graph while a potential function (i.e. a non-negative function of the state

of the corresponding clique) is associated to any clique of the graph.

Definition 2.2.1 (MRF). Let x = (z1,...,z,) € X be a vector of random
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variables and let ¢ = (¢4, ..., ¢,,) be a vector of potentials, where each poten-
tial ¢; assigns a real-valued score to any configuration of the variables. Given
w = (wy,...,wn) avector of real-valued weights, a Markov Random Field is

a probability distribution of the form:
1 m
P(z) = — XD ( wjgbj(:c)) (2.1)
j=1

where Z = [y exp ( S wids( )) dx’ is known as the partition function.

The integration with logic is carried out in MLNs as follows. Each poten-
tial function ¢; is associated to a first-order logic formula F} in a knowledge
base KB. A knowledge base can be seen as a set of constraints on the set
of possible assignment, the fewer formulas an assignment violates, the more
probable it is, while it has the lowest probability if it violates all the formulas.
Each formula has to be considered either as hard (infinite weight) or can be
weighted to penalize differently the assignments with respect to the formula
satisfaction, the higher the weight, the greater the difference in log probability

between a world that satisfies the formula and one that does not.

Definition 2.2.2 (MLN). A Markov logic network L is a set of pairs (F},w,),
where F} is a FOL formula and w; is a real number. Relatively to a set of

constants K = ki, ..., kx|, it defines an MRF M, x as follows:

* M} k contains one binary node for each possible grounding of each
predicate appearing in L. The value of the node is 1 if the ground atom

is true, and 0 otherwise;

» M, k contains one feature for each possible grounding of each formula
F;in L. The value of this feature is 1 if the ground formula is true, and

0 otherwise. The weight of the feature is the w; associated with F in L.

The graphical structure of M, i follows from 2.2.2: there is an edge be-
tween two nodes of M, i if and only if the corresponding ground atoms ap-

pear together in at least one grounding of some formula in L [35]. To better
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Friends(A,B)

o

U

Friends(B.A)

Figure 2.1: Ground Markov Network obtained by applying the formulas in
2.2, to the constants Ann (A) and Bob (B)

Friends(A,A) Friends(B,B)

Cancer(B)

visualise this, consider the follow example: we want to build a model to infer
whether a person smokes, and whether a person has cancer with a some prob-
ability. And we have a first-order KB that, for simplicity, has only the two

formulas presented in (2.2).

Smokes(a) — Cancer(a)
(2.2)
Friends(a,b) — (Smokes(a) <+ Smokes (b))

The first step in a MLN is the grounding of the formulas presented in the
KB. Figure 3.1 shows the graph of the ground Markov network defined by
the formulas in 2.2 and the constants Ann (A) and Bob (B). Each node in this
graph is a ground atom (e.g., Friends(A, B)). The graph contains an arc be-
tween each pair of atoms that appear together in some grounding of one of the
formulas. M| x can now be used to infer the probability that Ann and Bob
have cancer given whether or not they smoke and they are friends. Each state
of M, k represents a possible world. A possible world is a set of objects, a set
of functions (mapping from tuples of objects to objects), and a set of relations
that hold between those objects; together with an interpretation, they deter-
mine the truth value of each ground atom. The following assumptions ensure
that the set of possible worlds for (L, K) is finite, and that M, x represents

a unique, well-defined probability distribution over those worlds, irrespective
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of the interpretation and domain. These assumptions are:
Unique names Different constants refer to different objects;

Domain closure The only objects in the domain are those representable using

the constant and function symbols in (L, K);

Known functions For each function appearing in L, the value of that function
applied to every possible tuple of arguments is known, and is an element

of K [35].

The possible groundings of a predicate in 2.2.2 are obtained simply by replac-
ing each variable in the predicate with each constant in K, and replacing each

function term in the predicate by the corresponding constant.

2.2.1 Learning

Once the grounded Markov Network is constructed, the next step in a MLN,
is to calculate the weights associated to each formula in the KB. There are
two approaches to weight learning in MLNSs: generative and discriminative.
In generative learning, there is no separate notion of query or evidence atoms.
The weights are learned by maximizing the log-likelihood of the entire set
of ground atoms [30]. In particular, given a set of formulas and a database
of atoms, a training set, we wish to find the formulas’ maximum a posteri-
ori (MAP) weights, e.g., the weights that maximize the product of their prior
probability (prior probability represents what we originally believed before
new evidence is uncovered) and the data likelihood. Since optimization is
typically posed as error function minimization, we will equivalently minimize
the negative log-likelihood [25].

Then, there is another weight learning approach called discriminative learn-
ing. In discriminative learning, we know a priori which predicates will be used
to supply evidence and which ones will be queried [30]. In many applications,

like in classification problems, we know a priori which atoms will be evidence
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and which ones will be queried, and the goal is to correctly predict the latter

given the former.

2.2.2 Limitation on MLNs

One of the main application of supervised machine learning is to find asso-
ciations between given information (features) and the target (the class, in the
case of classification) which has to be predicted. In the case of (probabilistic)
first-order logic, this association can be interpreted as an implication, contain-
ing some query predicate in the right-hand side and some evidence predicates

in the left, as showed in the following formula:

Feature(x,aj,..,a,) A Feature(y,b;,..,b,) — Target(x,y) (2.3)

Following the standard approach of the MLNs we would associate a single
weight to such a formula and this would generate a too simple model consid-
ering all the features equal and the respective MLN would merely learn the
classifier that predicts the most frequent realization of the predicate Feature
in the dataset. This approach would not take advantage of the discriminative
power of the features: it is instead necessary to learn different weights for
different combinations of features. A way to tacke this issue is to learn a dif-
ferent weight for each possible combination of constants but this would lead to
a huge number of formulae: assuming that each variable ay, ..., a,, by, ..., b,
has k possible realizations (constants), then the number of generated formu-
lae would be N = k?". The exponential growth of the number of parameters
makes this approach unsuitable for the present application in almost any real
world problem. Another alternative is to avoid predicates of high arity by

splitting the equation (2.3) in a set of 2n different formulae. This can be done
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by replacing the predicate Feature in several different predicates Feature;:

Feature; (x,+a;) — Target(x, y)

(2.4)

Feature, (y,+b,) — Target(x, y)

Considering the formulae in (2.4) would create an MLN with 2n x k weights,
resulting in a much simpler model. Such an MLN would use only a linear
combination of the features, being exactly equivalent to a logistic regression
model with 2n multinomial input attributes [18]. On the other hand, in sev-
eral related applications of machine learning to real world problems, it is fun-
damental to use a non-linear combination of the features in order to achieve
accurate predictions.

Another limitation of standard MLNSs is that they cannot compare different
constants of the same type. If we consider for example a discrete attribute,
where there is an ordering between the outcome of the variable, for example a
rating system, in a logic representation there will be no direct information that
one value is closer to another one. This means that also real-valued attributes
cannot be directly used in Markov logic, while very often they represent a key

information for many tasks [23].



Chapter 3

Neural Integration of Markov

Logic Networks

3.1 Markov Logic Networks with grounding spe-
cific weights

The solution proposed in [23] to overcome standard MLNs limitations consists
in assigning different weights to different groundings of the same first-order
logic rule. In particular, each weight will depend on the specific groundings
of a subset of the variables appearing in the first-order logic formula: these
variables are called selected variables. In [23], for weight learning, a discrim-
inative approach is used and, therefore, the conditional probability of query

atoms Y given evidence X can be expressed with the following:

eZFier Z]- wi(gij,0i)nij(@,y)

P(Y =y|X =2) = Z

(3.1)

where g¢;; denotes the j-th ground configuration of the selected variables in
the i-th formula, w; a real-valued parameterized function returning the weight
attached to each ground formula after the selected variables have been bound

to the constants in g;; and n;;(x, y) is the number of true groundings in (x, y)
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Person(Ann, ANN) A Smokes(Ann)
Feature — —
— Cancer(Ann)
Vector

Figure 3.1: Weight assignment to a specific grounding of a first-order logic
rule

matching g;;. In general, 0; is a parameter vector. The special case where 0; is a
scalar and w; = 6; recovers standard MLN. In general, w; can be any function,
computed for example using kernel machines or multilayer perceptrons. In
case of kernel logistic regression (KLR), for example, the weight attached to

ground formula g;; will be computed as:

wi(gi;) = 0] d(g5) (3.2)

being ¢ the feature mapping induced by the kernel. In the following the
grounding-specific weights will be computed by neural networks as showed in
Fig.3.1. The introduction of neural networks to provide different weights for
different grounding of the same formula brings to the definition of predicates
which purpose is only to link a constant with its relative feature vector. These
predicates are called Feature Predicates. The truth value of these predicates is
always known and it is true for correct matching and false for incorrect ones.
This is important to provide the neural networks always with the correct inputs

for a specific grounding of a formula.
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3.2 Learning

We want to train the neural networks in order to maximize the pseudo log-
likelihood of the entire set of ground atoms. This reflects the generative set-
tings of the MLN weight learning. We can consider all the ground atoms of an
MLN as a set of random variables Y = (Y3,...,Y},...,Y,) where Y] can as-
sume values in {0, 1} depending on the truth value of the /th ground atom. We
learn MLN weights from one or more relational databases. We make a closed
world assumption: if a ground atom is not in the database, it is assumed to be
false. A database is effectively a vector y = (y1,..., v, ..., ¥y,) Where y; is
the truth value of the /th ground atom. Given a database, MLN weights can
in principle be learned using standard methods. Unfortunately, counting the
number of true groundings of a formula in a database is intractable, even when
the formula is a single clause. A more efficient alternative is to optimize the
pseudo-likelihood, which is an approximation to the joint probability distri-
bution of a collection of random variables. However, the pseudo-likelihood
ignores non-local interactions between variables, and may lead to poor results
when inference across non-neighboring variables is required [39]. This is not
our case because in our experiment we are going to use a simple MLN with
few and simple rules.

Given a set of random variables Y = (Y7,Y5,...,Y},) the pseudolikeli-
hood of Y =y = (y1,y2, ..., yn) is:

PA(Y =) = [[ Pa(Yi = w|MB, (%) (3.3)
=1

where M B, (Y)) is the state of the Markov blanket of Y} in the database.
To calculate the pseudolikelihood P, (Y; = y;|M B,(Y;)) of each variable
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given the state of its Markov Blanket in the database, we have to recall the Lo-
cal Markov property of the Markov Random Fields, which states that a vari-

able is conditionally independent of all other variables given its neighbours:
Xy L X\ np) | X v ) (3.4

In a undirected graphical model, one can show that a node’s Markov blanket
is its set of immediate neighbors. So, in our case, considering Y; the node

correspondent to a certain variable and X all the other variables, we will have:
Y AL X\l (V) [M B(Y1) (3.5)

where cl(Y;) & M B(Y;)U{Y}} is the closure of node Y;. By the independence

we have that:
Py(Yi=ulX =2) = P,(Y1 = yi| M B,(Y?)) (3.6)

This result allows us to use the equation (3.1) for the computation of the
pseudolikelihood of the single variable, considering the variable itself as the
query atom and the variables of the Markov Blanket as the evidence atoms.

We can summarize (combining (3.3), (3.1) and (3.6)) the final result with

the closed form of the pseudo-likelihood of the world y = (y1, Y2, . - ., Yn)

n eZFierz Z]- wi(gij,0i)mij (M By (Y1),y1)

Py =y) =]

=1 ZMBI/(YZ)

(3.7)

Defining I(6) = log P(Y = y; 0) as the pseudo log-likelihood, it can be shown
that the gradient with respect to a generic parameter #;;, contributing to weight

w; 18:
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ol) () dw;

_ (Z [na(2) — Pu(Yi = 0MB, (Y)ms(ypyin) 68

&ui

— P,(Y, = 1|MBy(Yl))ni(ym=1])D 00,

where 7;(yv,—q)) is the number of true groundings of the 7th formula when
we force ¥; = 0 and leave the remaining data unchanged, and similarly for
ni(Y[y,;=11). The partial derivatives Ow;/00;;, can be obtained by the backprop-
agation of the neural network.

One of the main advantages in using this approach is that computing (3.8)
(or (3.7)) does not require inference over the model and the computation can

be made more efficient noting these things:

» Considering only the Markov Blanket, the sum in (3.8) can be sped up

by ignoring predicates that do not appear in the sth formula;

+ We can compute only once the counts n;(z), n;(y[y,=0)) and n;(ypv,=1))

given that they do not change with the weights;

* We can ignore ground formulas whose truth value is unaffected by chang-
ing the truth value of any single literal leading to the equality of the
counts in the summation, specifically n;(z) = 1, (yy,—0) = 17 (Ypy,=1)-
This can often be the great majority of ground clauses because it holds

for any clause which contains at least two true literals.



3.3 Implementation 18

3.3 Implementation

3.3.1 Syntax and notation

In order to show the implementation of Markov logic networks with ground-
ing specific weights, we use a purposely modified version of the “Smokers”
dataset [35] which is a classical example in statistical relational learning lit-
erature. Here, three relations are defined on a set of constants representing
people: the unary predicate Smokes identifies those people who smoke, the
unary predicate Cancer identifies those people who have a cancer and the bi-
nary predicate Friends indicates that two people are friends. This dataset is
often used to show how a statistical relational learning algorithm can model a

distribution by finding a correlation of smoking habits of friends.

MLN and Database definition

The main files used for running a simulation are the MNL and the DB file.
The MLN file contains all the predicates and the formulas used as we can see
here
# Predicate declaration
Person(id,&person)
Cancer (id)
Friends(id,id)
Smokes (id)
# Formula declaration
Person(a,$pa) A Smokes(a) — Cancer(a)
Person(a,$pa) A Person(b,$pb) A Friends(a,b) — (Smokes(a) <
Smokes (b))
while the DB file contains the evidences of our world
Person(Ann, ANN)
Person(Bob, BOB)

Cancer (Ann)
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ICancer (Bob)

IFriends (Ann,Bob)

Predicate declaration

In predicate declaration, we allow a type T" to be preceded by an ampersand (&
character): this indicates that constants C1, . .., ), of type T" found in the .db
file are not just simple constants, but pointers to feature vectors. In particular,
the name of constant C, will be the index of the feature vector associated with
that constant within the features file.

For example, if we declare the following predicate
Person(id, &person)
and in the .db file we find the following ground predicate
Person(Ann, ANN)

then, constant named ANN will point to vector of features: in this case, the

features associated to the person Ann.

Rule declaration

In order to declare a rule with grounding-specific weights, in rule declaration
we allow the presence of dollar symbols ($ character) preceding variables: for
example, if in a certain rule two variables = and y are both preceded by a dol-
lar sign $, then the first-order formula will be associated to a neural network
which will compute grounding-specific weights, taking in input the informa-
tion given by the realizations of variables x and y. Let us clarify this idea with

an example. Consider the following predicates and formula:

Person(id, &person)
Friends(id, id)
Smokes (id)
Person(a,$pa) A Person(b,$pb) A Friends(a,b)
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— (Smokes(a) <+ Smokes(b))

In this case, we have a formula with two dollars, corresponding to two person
variables, pa and pb. Type person has a & in Person predicate declaration, so
person constants will point to feature vectors (see Section 3.3.1), which will
be the input to the neural network. Suppose for example that in the .db file the

following two ground predicates exist:

Person(Ann,ANN)
Person(Bob,BOB)

Then, the weight of the following ground formula

Person(Ann,ANN) A Person(Bob,BOB) A Friends(Ann,Bob)
— (Smokes (Ann) <+ Smokes(Bob))

will be computed by a neural network which takes in input the vectors of fea-
tures indexed by ANN and BOB constants in the global features file. In this way,
each grounding of the first-order clause will have a different weight. The fea-
tures file will be organized one vector per line, indexed by the constant names,

as follows:

BOB

3.3.2 Grounding

One of the innovation introduced in the framework regards the grounding side.
In fact, in general, for each formula all the possible groundings are made, lead-
ing also to some meaningless configurations. We tackled this issue by acting
on the Feature Predicate and considering acceptable only the ones inside
the DB file. In this way, considering the smokers example, the grounding of

the Feature Predicate
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Person(id,&person)
will only generate as groundings

Person(Ann, ANN)

Person(Bob,B0B)
and not also

Person(Ann,B0OB)
Person(Bob, ANN)

that will lead to feed the neural network with the wrong features.

3.3.3 Learning algorithm

The learning part of the framework consists of two main parts: the preparation

and the training.

Preparation

This is done only once before starting the training of the neural networks and
creates the variables that will be used, at training time, for taking into account

the logical part of the problem. The output dictionaries of this part are:

A dictionary containing, for each variable, the indexes of the grounding

of the formulas that the variable makes true;

* A dictionary containing, for each grounding of each formula, the num-

ber of times that each value of the variable makes that grounding true.

In fact, in this part an iteration on all the groundings of the formulas is done,
for each grounded formula all the values of the variable associated to each
grounded atom are considered. In our case we only consider binary variables
because the atoms can be true or false. Then, for each of these values, the
evidence world is updated accordingly and the truth value of the corresponding

formula is checked. In case it is true the dictionaries are updated properly.
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Training

The training is implemented with a standard training loop where the forward
pass consist of feeding all the neural networks with the respective vectors of
features. Then the output weights are used to calculate the likelihood (3.7) of
the evidence database using the dictionaries obtained in the preparation phase.
The backpropagation is done automatically with the automatic differentiation
implemented in Pytorch and it is enhanced by multiplying all the weights by
the gradient of the MLN.



Chapter 4

Experiments

The framework presented has been thought with a versatility principle: able
to adapt or be adapted to many different functions or activities. With this in
mind, it can be applied to any deep learning task regardless of the symbolic
rules. In fact, if there are no constraints to be satisfied, it will behave like a
standard neural network. In this chapter we will go through one of these exam-
ples, showing how to translate a typical deep learning task into an MLN and
an experiment performed on an Argument Mining task which will benefit of
the symbolic rules introduced with the framework. This happens because typ-
ically the argumentative components of a document are interconnected with
each other, so as to form an argumentative graph. The task of classifying a
single component (or relationship) would probably benefit from considering
not only the attributes of the component itself but also the attributes of the
components and of the relationship that belong to the same neighborhood in

the argumentative graph.

4.1 Multiclass Classification with MNIST

Multiclass classification is the problem of classifying instances into one of
three or more classes. Each sample can only be labeled as one class. For

example, classification using features extracted from a set of images of fruit,
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where each image may either be of an orange, an apple, or a pear. Each image
is one sample and is labeled as one of the 3 possible classes. Multiclass clas-
sification makes the assumption that each sample is assigned to one and only
one label - one sample cannot, for example, be both a pear and an apple.

The MNIST database (Modified National Institute of Standards and Tech-
nology database) is a large collection of handwritten digits. It has a training
set of 60,000 examples, and a test set of 10,000 examples. It is a subset of
a larger NIST Special Database 3 (digits written by employees of the United
States Census Bureau) and Special Database 1 (digits written by high school
students) which contain monochrome images of handwritten digits. The digits
have been size-normalized and centered in a fixed-size image. The original
black and white (bilevel) images from NIST were size normalized to fit in
a 20 x 20 pixel box while preserving their aspect ratio. The resulting im-
ages contain grey levels as a result of the anti-aliasing technique used by the
normalization algorithm. The images were centered in a 28 x 28 image by
computing the center of mass of the pixels, and translating the image so as to
position this point at the center of the 28 x 28 field [22]. The task consists to
classify the image of a digit into the relative digit.

Figure 4.1 shows the Markov Logic Network related to this task. We can
see that we only need two predicates: one Feature Predicate Digit to link each
sample to the feature vector representing the image and a predicate Number
used as the variable for the classification. For the network part, we have only
a neural formula which takes care of the classification of the digit.

For example, if in the Database we have Digit (IDO,F0), the framework
will generate the following groundings for the neural formula:

Digit(IDO, FO) — Number (IDO, 0)
Digit (IDO, FO) Number (IDO, 1)
Digit (IDO, FO) Number (IDO, 2)

N

N
Digit (IDO, FO) — Number (IDO, 3)
Digit(IDO, FO) — Number(IDO, 4)
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Digit (IDO, FO) Number (IDO, 5)

Digit (IDO, FO) Number (IDO, 6)

Digit(IDO, FO)

N
N
— Number (IDO, 7)
N

Digit (IDO, FO) Number (IDO, 8)
Digit(IDO, FO) — Number(IDO, 9)
The weight of each grounded formula corresponds to the relative output of the
Convolutional Neural Network (CNN) used for the classification (e.g the out-
put O is the weight of the formula Digit (IDO, FO) — Number(IDO, 0))
and in case the Database contains Number (ID0,5) the training will push the

output 5 of the CNN to an higher value with respect to the others.

Digit(id, &digit)
Number (id, n)

n=20,1, 2, 3, 4, 5,6, 7, 8,9

Digit(a, $fa) — Number(a, n)

Figure 4.1: MLN of the MNIST experiment

4.1.1 Experiments

To show the capability of our approach to recover a subsymbolic approach in
purely subsymbolic tasks, we make an experiment on the MNIST dataset. Due
to the fact that for each digit the framework generates 11 variables (1 Feature
Predicate and 10 predicates for each possible digit), using the whole dataset of
60,000 samples for training would have generated 660,000 variables, making
the whole task unfeasible in the grounding phase. So, we have limited the
number of training samples to 2,000 since we are only interested in showing
that the behaviour, in comparison the pure neural network approach, is the

same.
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For what concerns the networks’ architecture, we rely on a simple architec-
ture made of two convolutional layers followed by two fully-connected lay-
ers for the classification. We use ReLU as activation function and employ
dropout after the two central layers. To avoid overfitting both methods are
trained with early-stopping on the accuracy score of the class classification,
using a patience of 100 epochs.

Table 4.1 reports the results of our experiment on the whole validation
set. The evaluation has been done on the accuracy of the predictions. We can
notice, from the results, that the two method are completely equivalent and
the negligible difference can be attributed to stochastic variations in training
phases. This confirms that our method can behave like a pure neural model in

absence of symbolic rules.

GSMLN

Neural Nets

Validation set 96.36 96.55

Table 4.1: Experiment on MNIST dataset. The first column presents the pure
neural training and the second one the training involving GSMLN. Scores are
reported as percentage values.

4.2 Argument Mining

Argument Mining (AM) is a discipline that stems from Natural Language Pro-
cessing (NLP) and Knowledge Representation and Reasoning (KRR) [5] with
the goal to automatically extract arguments and their relations from a given
natural language document [24]. It has been defined as the general task of
analyzing discourse on the pragmatics level and applying a certain argumen-
tation theory to model and automatically analyze the data at hand [17]. AM’s
goal is therefore the extraction of structured information from raw textual
sources, giving an understanding of the relations between single arguments

and the complex structure they create. Among the many useful and practical
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applications of such a discipline, it can be used to perform fact-checking and
recognize misleading content [8, 13], support decision making in healthcare
application [29] and the legal domain, improve the understanding of the po-
sition of political candidates [31], support teachers in an educational context
[26], and support debate technology [40]. AM can be generally divided into
a series of subtasks [5, 21, 24] that are often addressed in a pipeline fashion.
Typically, there is a first phase of component detection followed by a relation
prediction task. Component detection consists of extracting the arguments
from the document, detecting their boundaries, and classifying them. Two
examples of components type are claims and evidences. The former may be
opinions and hypotheses expressed by the author, while the latter are facts and
objective information that are reported in the document. The following step is
the relations prediction, whose purpose is to establish which components are
in an argumentative relationship (link prediction) and what type of relation-
ship do they have (relation classification). Two examples of relationships are
support and attack. The former is when an evidence component does provide
information based on which a claim can be made, while the latter is when two
claims contradict each other and therefore can not both be true at the same
time.

All these subtasks can be addressed independently, but, since the infor-
mation obtained by one of them can give a meaningful insight on the other, it
is beneficial to address them together. In fact, the argumentation model and
the domain of the documents often provide information regarding constraints
and rules that may regulate the type of the components and their relationships.
This is the reason why most of the approaches adopt a pipeline scheme in or-
der to exploit the knowledge gathered in the component detection to perform
the more challenging task of relation prediction. Another method is to use
systems that jointly learn to perform both tasks, often creating a high-level
representation of the problem during the process. The development of new

advanced Deep Learning techniques for NLP has had a beneficial impact on
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this field, leading to great results in some AM areas. However, more work is
still required and despite the already made attempts to integrate this knowl-
edge into DL approaches, the proper formal integration of the two worlds in

this domain has not been carried on yet.

4.2.1 Neuro-symbolic Argument Mining

Argumentation mining requires an ability to exploit common sense knowl-
edge, typical of human reasoning, to understand whether a given piece of ev-
idence supports a given claim, or whether two claims attack each other. The
tasks involved in the AM systems, from the simpler one like argument compo-
nent detection to more complex one like argumentation structure prediction,
have seen a great improvement in the recent years due to the development of
new deep learning techniques in the field of NLP. Despite this great advance
of deep neural networks in NLP, we claim that, in case of AM, using these
strategies alone will no longer be enough to tackle such complicated issues.
On the other hand, structured arguments have been studied and formalized for
decades using models expressed in a logic framework [2] with knowledge ex-
pressed in the form of rules and constraints to AM. So far, these two worlds
have advanced largely independently of each other, but we count on that a
large advancement in AM ought to come from the combination of symbolic
and sub-symbolic approaches, such as these developed in the Neural Sym-
bolic (NeSy) [4] or Statistical Relational Learning (SRL) [9, 16, 19] commu-
nities. These approaches, differently from simple techniques of applying a set
of rules on the output of a neural network, can directly enforce (hard or soft)
constraints during training and, in so doing, penalizing a solution that does not
satisfy them. Consequently, we can train different neural networks for differ-
ent tasks (e.g one to classify argument components and one to detect links
between them) and, during the training process, impose global constraints to

tune the weights of the networks to have valid solutions. Apart from the work
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described in this thesis, there are many systems that enable this scheme, such
as DeepProblog [27] and Logic Tensor Network [37], that we are going to use
for comparison in the experiments.

Logic Tensor Networks (LTN) [11, 12, 38, 37] is a framework that inte-
grates first-order many-valued logical reasoning [3] with tensor networks [34],
implemented in TensorFlow [1]. By combining neural networks with first-
order fuzzy logic it allows efficient learning from noisy data in the presence
of logical constraints, and reasoning with logical formulas describing general
properties of the data. It uses a differentiable first-order logic language, called
Real Logic, to incorporate data and logic. LTN belongs to the “tensorization”
approaches, a class of undirect neuro-symbolic approaches [33] which embed
First Order Logic entities, such as constants and facts, into real-valued ten-
sors. Hence, it is possible to use FOL to impose soft constraints at training
time and to verify and investigate properties at test time. LTNs are limited to

the application of the knowledge at training time [36].

4.3 Dataset and Rules

4.3.1 AbstRCT

The AbstRCT Corpus [29] extends a previous work [28], and consists of ab-
stracts of scientific papers regarding randomized control trials for the treat-
ment of specific diseases (i.e. neoplasm, glaucoma, hypertension, hepatitis b,
diabetes). The final corpus contains 659 abstracts, for a total of about 4000
argumentative components. The dataset is divided into three parts: neoplasm,
glaucoma, and mixed. The first one contains 500 abstracts about neoplasm,
divided into train (350), test (100), and validation (50) splits. The remaining
two are designed to be test sets. One contains 100 abstracts for glaucoma,
while the other contains 20 abstracts for each disease. Components are la-

beled as EVIDENCE (2808) and CLAIM (1390), while relations are labeled
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as SUPPORT (2259) and ATTACK (342). Out of 25,000 possible pairs of

components, about 10% of them have a relationship.

4.3.2 Rules and MLN definition

Following the directives in 3.3.1 we have to define a Feature Predicate Text
which links each statement to the relative feature vector, then we have a pred-
icate Type that define the type of the statement among Claim and Evidence
and a third predicate Link to establish which components are in an argumen-
tative relationship.

Given that we are interested in component classification and link predic-
tion, we define two neural formulas linked to two neural networks whose pur-
pose is to output the weight relative to the classification variable.

For what concerns the hard rules that characterize the GSMLN approach,

from the properties of the dataset we can extract two axioms:

* no symmetric link can exist, so if there is a link between two components
there must be no inverse link. This rule can be stated in first order logic

formalism in this way:

Link(idl, id2) — !Link(id2, id1) (4.1)

* transitivity property of claims, or better claims can be linked only to
other claims, so if a component is classified as a claim and it is linked
to another component, then also this component is of type claim. This

rule can be stated in first order logic formalism in this way:

Type(idl, Claim) A Link(idl, id2) — Type(id2, Claim)
(4.2)

Figure 4.2 summarize the Markov Logic Network previously described.
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Text(id, &feature)
Type(id, type)
Link(id, id)

type = {Claim, Premise}

Text(idl, $f1) — Type(idl, type)
Text(idl, $f1) A Text(id2, $f2) — Link(idl, id2)

Link(id1l, id2) — !'Link(id2, idl).
Type(idl, Claim) A Link(id1l, id2) — Type(id2, Claim).

Figure 4.2: MLN of the AbstRCT experiment

4.4 Method and Architecture

4.4.1 Architecture

We tackle both component classification and link prediction as classification
tasks. We define two neural networks TypeNetwork and LinkNetwork, ded-
icated respectively to component classification and link prediction. The first
network takes a component as input and produces a probability distribution
over the possible component classes as output. The second one receives two
components and outputs a probability distribution over 0 and 1 which repre-
sents the probability of the existence of an argumentative link between two
components. For sentence embeddings, we have decided to use GloVe [32]
embeddings of size 25, averaging over the words of the sentences. We have
chosen this method for sake of simplicity and because it allows us to obtain
low-dimensional embeddings without the need of training new embeddings
or relying on dimensionality-reduction techniques that may invalidate the ex-
pressiveness of the embeddings. For what concerns the networks’ architec-
ture, we rely on a simple architecture made of three stacked fully-connected
layers and a softmax classifier. We use ReLLU as activation function, and em-

ploy dropout with probability p = 0.4 after each layer.
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4.4.2 Method

To compare the approaches and evaluate if the use of symbolic rules yields
positive results, we perform a baseline training relying only on the data. In
order to compare, also, our system with an already existent framework we
decided to use Logic Tensor Network with the same architecture as done in
[14].

Then, for using our approach, we have tried to introduce the logical rules
in different ways: training the whole model from scratch with the rules or
doing a neural pre-training and a logical fine tuning with the axioms. We saw
that doing everything from the beginning was not only slower but also worse
in terms of performance with respect to the baseline. So, we tought that pre-
training the models would benefit because it brings the model on the right path
and then the fine tuning allow the model to refine itself with logical rules. To
avoid overfitting, the baseline is trained with early-stopping on the F1 score of
the link prediction, using patience of 1000 epochs, while the GSMLN consist
of a further training with early-stopping, on the same metric, with a patience
of 100 epochs.

Since the training of neural models is non-deterministic, the results of a
single training are influenced by the random seed that is used, thus they may
not be reliable or reproducible. We have therefore decided to extend our ini-
tial analysis, repeating the training procedure 20 times, with different seeds,
obtaining for each configuration 20 trained neural networks. We evaluate our
models in two different ways. At first, we consider for each metric the aver-
age of the scores (AVG) obtained by every single network. Then, we evaluate
the predictions obtained using all the 20 models in ensemble voting. In our
ensemble setting the class of each entity is assigned as the class voted by the
majority (MAJ) of the networks. We train an ensemble of 20 networks both
for TypeNetwork and LinkNetwork, and evaluate the aggregated output.

The evaluation of the two approaches will be based on several aspects. We
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will measure the F1 metrics regarding link prediction and component classi-
fication, to assess if the rules improve the performance of the models. Then,
we will compute the degree of agreement between the networks related to the

predictions of the ensemble.

4.5 Experimental Results

Table 4.2 summarizes the results of our experiments. The results for the LTN
experiments are taken from [14]. For the classification tasks, we report the
F1 score for each class and the macro-F1 score for component classification.
For the link prediction task we report the F1 score for each class. To mea-
sure the agreement between the models of the ensemble we use the Krippen-
dorft’s alpha [20]. For what concerns the AM tasks, the difference between
the MAJ and AVG approaches is negligible in both the rule-based and the no-
rules setting either for component classification and for link prediction, where
the difference is at most 2 percentage points. The presence of rules seems
to be beneficial especially for the task of link prediction, where the networks
perform consistently better than the ones trained without rules. In compari-
son with LTNs, our approach performs better in predicting the link relation
in all the datasets. Conversely, our approach has performed slightly worse on
component classification with respect to the other two methods, but such a dif-
ference is not present in all the datasets. The agreement between the networks
is at least acceptable in all the settings, with higher values for component clas-
sification. The use of rules leads to a decrease in terms of agreement for link
prediction despite being still acceptable, while it brings no difference for com-

ponent classification, except for LTNs where we can see a drop.
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Only Data LTN GSMLN
Test set Aspect Criterion MAJ AVG MAJ AVG MAJ AVG
Components 80 79 79 78 80 79
Evidence 86 86 84 83 86 86
Classification ~ Claim 74 73 74 74 75 73
Neoplasm Link 35 35 35 35 37 37
No-Link 83 83 85 85 88 88
Agreement Component class. 86 79 86
Link prediction 79 70 70
Components 79 78 81 82 78 78
Evidence 88 88 88 88 88 88
Classification  Claim 69 68 75 75 68 68
Glaucoma Link 46 47 47 45 48 49
No-Link 88 88 90 89 92 92
Agreement Component class. 81 75 81
Link prediction 79 71 69
Components 79 78 81 80 78 78
Evidence 86 86 86 85 86 86
Classification  Claim 71 70 76 75 70 70
Mixed Link 39 39 39 40 39 40
No-Link 85 85 87 87 89 89
Agreement Component class. 84 76 84
Link prediction 79 69 70

Table 4.2: Results of neuro-symbolic AM on AbstRCT. The first two columns
presents the baseline approach, the following two the approach involving LTN
and the last two the approach involving GSMLN. Scores are reported as per-
centage values.
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4.6 Discussion

In the framework, logic rules play an important role during the training pro-
cess of the neural networks. The definition of training rules requires only to
know first order logic, without the need to have any expertise regarding ma-
chine learning, neural-symbolic systems, or deep networks. The decoupling
between the symbolic and the neural part allows changing either of them with-
out any direct impact on the other. This holds for both the hybrid approaches
that has been considered. Furthermore, in our work, the symbolic part can be
plugged in at any time of the training giving rise to different learning config-
urations by switching between the two even from one epoch to another. Such
modularity would be also highly beneficial in the context of AM, allowing to
easily use the same neural architecture in different contexts, since differences
across corpora can be expressed through different symbolic rules [14].

Our results show how the introduction of two symbolic rules has given a
positive contribution to the task, increasing the accuracy of the link prediction.
Even if the architecture used for the experiment is relatively simple and the
results may be not comparable with the state of the art, we think that the impact

of rules may hold even for more advanced models.



Chapter 5

Conlusions and Future Works

Nowadays there is increasing awareness of the importance of the subfield of
neuro-symbolic in the Al community. Probably, this is also occurring at a
point in time when we are starting to discover and recognize the inherent lim-
itations of pure deep learning approaches. The use of additional background
knowledge is a natural way to try to further improve deep learning systems,
and much of this line of work falls into the neuro-symbolic Al field. The gen-
eral opinion appears to be that combining neural and symbolic approaches is
at least a path forward to much stronger Al systems and towards human-level
artificial intelligence.

The purpose of this thesis has been the implementation of a neuro-symbolic
framework to merge symbolic and sub-symbolic reasoning. We started from
Markov Logic Networks, which already combine logic and probability by at-
taching weights to first-order clauses, then we introduced neural networks to
provide different weights for different grounding of the same formula and, in
so doing, we injected sub-symbolic capabilities into MLNSs.

To test the integration, we have decided to use a task of Argumentation
Mining, a research field that both symbolic and sub-symbolic approaches find
challenging. We have compared our approach to a baseline using only data
without rules and to another neuro-symbolic framework, Logic Tensor Net-

works. Our results have shown that using a neural-symbolic framework to
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introduce logical rules during the training process gives a positive contribu-
tion to the task, increasing the accuracy of the link prediction and performs
slightly better than LTN.

The framework is still in an early stage and a future development could be
an effort to optimize the computation of the pseudo-likelihood. The current
implementation provides a nesting of three for-loops for the computation of
the pseudo-likelihood of a single variable, and, since it has to be computed for
all variables, it produces a sequential bottleneck on the whole training step.
This is due to the iterations on the dictionaries that embed the symbolic part.
Given that they are based on values computed at the beginning of the training
algorithm, they can be redesigned into data structures (e.g., three dimensional
sparse matrices with formaulas as rows, groundings as columns and variables
as pages) that can avoid a sequential computation and enrich the feature vector
of each variable with information on the symbolic part (e.g., add the variable,
formula and grounding indices to the feature vector) to retrieve, in a constant
computational cost, the data needed. This could also benefit of the parallel
computation on GPUs and increase a lot the speed of the process.

Another aspect to consider is that, given that the implementation of the
learning algorithm follows the generative approach, we do not take advantage
of known predicates which can be used to supply evidence. Moreover, the
implementation with pseudolikelihood may lead poor results when inference
across non-neighboring variables is required. This can be tackled by extending
the framework with a discriminative learning approach using the conditional
likelihood, which will not be so different from what we already do with the
Feature Predicates whose truth value is always known.

In conclusion, an improvement can be done also on the grounding of the
Database optimizing the process for using larger datasets. After this, it would
be interesting to test our approach on problems with a richer, more expressive

domain than the datasets we used here.
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